Science.gov

Sample records for wastewater organic compounds

  1. Non-targeted analyses of organic compounds in urban wastewater.

    PubMed

    Alves Filho, Elenilson G; Sartori, Luci; Silva, Lorena M A; Silva, Bianca F; Fadini, Pedro S; Soong, Ronald; Simpson, Andre; Ferreira, Antonio G

    2015-09-01

    A large number of organic pollutants that cause damage to the ecosystem and threaten human health are transported to wastewater treatment plants (WWTPs). The problems regarding water pollution in Latin America have been well documented, and there is no evidence of substantive efforts to change the situation. In the present work, two methods to study wastewater samples are employed: non-targeted 1D ((13)C and (1)H) and 2D NMR spectroscopic analysis to characterize the largest possible number of compounds from urban wastewater and analysis by HPLC-(UV/MS)-SPE-ASS-NMR to detect non-specific recalcitrant organic compounds in treated wastewater without the use of common standards. The set of data is composed of several compounds with the concentration ranging considerably with treatment and seasonality. An anomalous discharge, the influence of stormwater on the wastewater composition and the presence of recalcitrant compounds (linear alkylbenzene sulfonate surfactant homologs) in the effluent were further identified. The seasonal variations and abnormality in the composition of organic compounds in sewage indicated that the procedure that was employed can be useful in the identification of the pollution source and to enhance the effectiveness of WWTPs in designing preventive action to protect the equipment and preserve the environment.

  2. Sorption of emerging trace organic compounds onto wastewater sludge solids.

    PubMed

    Stevens-Garmon, John; Drewes, Jörg E; Khan, Stuart J; McDonald, James A; Dickenson, Eric R V

    2011-05-01

    This work examined the sorption potential to wastewater primary- and activated-sludge solids for 34 emerging trace organic chemicals at environmentally relevant concentrations. These compounds represent a diverse range of physical and chemical properties, such as hydrophobicity and charge state, and a diverse range of classes, including steroidal hormones, pharmaceutically-active compounds, personal care products, and household chemicals. Solid-water partitioning coefficients (K(d)) were measured where 19 chemicals did not have previously reported values. Sludge solids were inactivated by a nonchemical lyophilization and dry-heat technique, which provided similar sorption behavior for recalcitrant compounds as compared to fresh activated-sludge. Sorption behavior was similar between primary- and activated-sludge solids from the same plant and between activated-sludge solids from two nitrified processes from different wastewater treatment systems. Positively-charged pharmaceutically-active compounds, amitriptyline, clozapine, verapamil, risperidone, and hydroxyzine, had the highest sorption potential, log K(d)=2.8-3.8 as compared to the neutral and negatively-charged chemicals. Sorption potentials correlated with a compound's hydrophobicity, however the higher sorption potentials observed for positively-charged compounds for a given log D(ow) indicate additional sorption mechanisms, such as electrostatic interactions, are important for these compounds. Previously published soil-based one-parameter models for predicting sorption from hydrophobicity (log K(ow)>2) can be used to predict sorption for emerging nonionic compounds to wastewater sludge solids.

  3. Fate of Volatile Organic Compounds in Constructed Wastewater Treatment Wetlands

    USGS Publications Warehouse

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.

    2004-01-01

    The fate of volatile organic compounds was evaluated in a wastewater-dependent constructed wetland near Phoenix, AZ, using field measurements and solute transport modeling. Numerically based volatilization rates were determined using inverse modeling techniques and hydraulic parameters established by sodium bromide tracer experiments. Theoretical volatilization rates were calculated from the two-film method incorporating physicochemical properties and environmental conditions. Additional analyses were conducted using graphically determined volatilization rates based on field measurements. Transport (with first-order removal) simulations were performed using a range of volatilization rates and were evaluated with respect to field concentrations. The inverse and two-film reactive transport simulations demonstrated excellent agreement with measured concentrations for 1,4-dichlorobenzene, tetrachloroethene, dichloromethane, and trichloromethane and fair agreement for dibromochloromethane, bromo-dichloromethane, and toluene. Wetland removal efficiencies from inlet to outlet ranged from 63% to 87% for target compounds.

  4. MULTISPECTRAL IDENTIFICATION AND CONFIRMATION OF ORGANIC COMPOUNDS IN WASTEWATER EXTRACTS

    EPA Science Inventory

    Application of multispectral identification techniques to samples from industrial and POTW wastewaters revealed identities of 63 compounds that had not been identified by empirical matching of mass spectra with spectral libraries. wenty-five of the compounds had not been found in...

  5. Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer.

    PubMed

    Chang, Meng-Wen; Chern, Jia-Ming

    2009-08-15

    Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

  6. Organic compounds downstream from a treated-wastewater discharge near Dallas, Texas, March 1987

    USGS Publications Warehouse

    Buszka, P.M.; Barber, L.B.; Schroeder, M.P.; Becker, L.D.

    1994-01-01

    Comparison of instantaneous flux values of selected organic compounds in water from downstream sites indicates: (1) the formation of chloroform in the stream following the discharge of the treated effluent, and that (2) instream biodegradation may be decreasing concentrations of linear alkylbenzene compounds in water. The relative persistence of many of the selected organic compounds in Rowlett Creek downstream from the municipal wastewater-treatment plant indicates that they could be transported into Lake Ray Hubbard, a source of municipal water supply.

  7. Production of a High Efficiency Microbial Flocculant by Proteus mirabilis TJ-1 Using Compound Organic Wastewater

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiqiang; Xia, Siqing; Zhang, Jiao

    2010-11-01

    The production of a high efficiency microbial flocculant (MBF) by Proteus mirabilis TJ-1 using compound organic wastewater was investigated. To cut down the cost of the MBF production, several nutritive organic wastewaters were selected to replace glucose and peptone as the carbon source and the nitrogen source in the optimized medium of strain TJ-1, respectively. The compound wastewater of the milk candy and the soybean milk was found to be good carbon source and nitrogen source for this strain to produce MBF. The cost-effective culture medium consists of (per liter): 800 mL wastewater of milk candy, 200 mL wastewater of soybean milk, 0.3 g MgSO4ṡ7 H2O, 5 g K2HPO4, 2 g and KH2PO4, pH 7.0. The economic cost for the MBF production can be cut down over a half by using the developed culture medium. Furthermore, the utilization of the two wastewaters in the preparation of culture medium of strain TJ-1 can not only save their big treatment cost, but also realize their resource reuse.

  8. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    USGS Publications Warehouse

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  9. Reduction of organic trace compounds and fresh water consumption by recovery of advanced oxidation processes treated industrial wastewater.

    PubMed

    Bierbaum, S; Öller, H-J; Kersten, A; Klemenčič, A Krivograd

    2014-01-01

    Ozone (O(3)) has been used successfully in advanced wastewater treatment in paper mills, other sectors and municipalities. To solve the water problems of regions lacking fresh water, wastewater treated by advanced oxidation processes (AOPs) can substitute fresh water in highly water-consuming industries. Results of this study have shown that paper strength properties are not impaired and whiteness is slightly impaired only when reusing paper mill wastewater. Furthermore, organic trace compounds are becoming an issue in the German paper industry. The results of this study have shown that AOPs are capable of improving wastewater quality by reducing organic load, colour and organic trace compounds.

  10. Xenobiotic organic compounds in runoff from fields irrigated with treated wastewater.

    PubMed

    Pedersen, Joel A; Yeager, Matt A; Suffet, I H

    2003-02-26

    Investigations of agricultural nonpoint source pollution typically focus on a relatively narrow range of targeted toxic and biostimulatory compounds (e.g., specific pesticides, nutrients). Regular application of numerous other organic compounds to agricultural fields in pesticide formulations, irrigation water, soil amendments, and fertilizers may result in their transport into surface waters via runoff. We examined whether potentially toxic dissolved and particle-associated "nontarget" organic compounds were present in surface runoff from agricultural fields irrigated with disinfected tertiary recycled water or wastewater effluent-dominated streamwater. Gas chromatographic-mass spectrometric analyses of filtered runoff samples revealed the presence of numerous nontarget compounds of potential toxicological significance including pesticide transformation products, pesticide adjuvant chemicals, plasticizers, flame retardants, pharmaceuticals, and personal care product ingredients. Although the toxicity of many of these compounds is poorly characterized, some may elicit subtle but profound toxicological effects. Agricultural runoff also represented a source of allochthonous natural organic matter to the stream system.

  11. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    USGS Publications Warehouse

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen

  12. Membrane filtration of agro-industrial wastewaters and isolation of organic compounds with high added values.

    PubMed

    Zagklis, Dimitris P; Paraskeva, Christakis A

    2014-01-01

    The aim of the current study was the exploitation of agro-industrial wastes or by-products such as olive mill wastewater (OMW) and defective wines. A cost-effective system for their maximum exploitation is suggested, using a combined process of membrane filtration and other physicochemical processes. Wastewaters are first treated in a membrane system (prefiltration, ultrafiltration, nanofiltration, and reverse osmosis) where pure water and other organic fractions (by-products) are obtained. Organic fractions, called hereafter byproducts and not wastes, are further treated for the separation of organic compounds and isolation of high added value products. Experiments were performed with OMW and defective wines as characteristic agro-industrial wastewaters. Profit from the exploitation of agro-industrial wastewaters can readily help the depreciation of the indeed high cost process of membrane filtration. The simple phenolic fraction of the OMW was successfully isolated from the rest of the waste, and problems occurring during winemaking, such as high volatile acidity and odours, were tackled.

  13. Membrane filtration of agro-industrial wastewaters and isolation of organic compounds with high added values.

    PubMed

    Zagklis, Dimitris P; Paraskeva, Christakis A

    2014-01-01

    The aim of the current study was the exploitation of agro-industrial wastes or by-products such as olive mill wastewater (OMW) and defective wines. A cost-effective system for their maximum exploitation is suggested, using a combined process of membrane filtration and other physicochemical processes. Wastewaters are first treated in a membrane system (prefiltration, ultrafiltration, nanofiltration, and reverse osmosis) where pure water and other organic fractions (by-products) are obtained. Organic fractions, called hereafter byproducts and not wastes, are further treated for the separation of organic compounds and isolation of high added value products. Experiments were performed with OMW and defective wines as characteristic agro-industrial wastewaters. Profit from the exploitation of agro-industrial wastewaters can readily help the depreciation of the indeed high cost process of membrane filtration. The simple phenolic fraction of the OMW was successfully isolated from the rest of the waste, and problems occurring during winemaking, such as high volatile acidity and odours, were tackled. PMID:24434988

  14. [Pollution characteristics of volatile organic compounds from wastewater treatment system of vitamin C production].

    PubMed

    Guo, Bin; Lu, Guo-Li; Ren, Ai-Ling; Du, Zhao; Xing, Zhi-Xian; Han, Peng; Gao, Bo; Liu, Shu-Ya

    2013-12-01

    Using a portable gas chromatography and mass spectrometry (GC-MS), the volatile organic compounds (VOCs) pollution in each unit of the wastewater treatment system for vitamin C production was studied, and the species characteristics of volatile organic compounds (VOCs) were analyzed and summarized. The results showed that 32 kinds of volatile organic compounds were identified, and the total mass concentration range of volatilizing VOCs was 0.9629-32.0970 mg x m(-3). The most species and the largest concentration (25 and 32.0970 mg x m(-3)) of volatilizing VOCs were found in grit chamber, which was located in the most front-end of the wastewater treatment system and was in semi-closed state. The proportion of molecular sulfide in the grit chamber was as high as 30.02%; Higher proportions of aromatic hydrocarbons were monitored in the subsequent processing units, with percentages of 21.06%-31.48%. The main types of VOCs monitored were chlorinated hydrocarbons and ketones, accounting for 6.39%-55.80% and 10.40%-58.08% of the total amount, respectively; 14 kinds of VOCs were detected in every unit of the wastewater treatment system: acetone, 2-butanone, n-hexane, chloroform, chlorobenzene etc, among which, vinyl chloride, styrene and 1,3-butadiene belong to the highly toxic substances. The vinyl chloride concentration exceeded the standard of "atmospheric pollutants emission standards" (GB 16297-1996), while 1,3-butadiene and other pollutants have no national standard limits. The results of this study provide a scientific basis for the revision of China's pharmaceutical wastewater VOCs emission standards.

  15. Occurrence of pharmaceuticals, hormones, and organic wastewater compounds in Pennsylvania waters, 2006-09

    USGS Publications Warehouse

    Reif, Andrew G.; Crawford, J. Kent; Loper, Connie A.; Proctor, Arianne; Manning, Rhonda; Titler, Robert

    2012-01-01

    Concern over the presence of contaminants of emerging concern, such as pharmaceutical compounds, hormones, and organic wastewater compounds (OWCs), in waters of the United States and elsewhere is growing. Laboratory techniques developed within the last decade or new techniques currently under development within the U.S. Geological Survey now allow these compounds to be measured at concentrations in nanograms per liter. These new laboratory techniques were used in a reconnaissance study conducted by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection, to determine the occurrence of contaminants of emerging concern in streams, streambed sediment, and groundwater of Pennsylvania. Compounds analyzed for in the study are pharmaceuticals (human and veterinary drugs), hormones (natural and synthetic), and OWCs (detergents, fragrances, pesticides, industrial compounds, disinfectants, polycyclic aromatic hydrocarbons, fire retardants and plasticizers). Reconnaissance sampling was conducted from 2006 to 2009 to identify contaminants of emerging concern in (1) groundwater from wells used to supply livestock, (2) streamwater upstream and downstream from animal feeding operations, (3) streamwater upstream from and streamwater and streambed sediment downstream from municipal wastewater effluent discharges, (4) streamwater from sites within 5 miles of drinking-water intakes, and (5) streamwater and streambed sediment where fish health assessments were conducted. Of the 44 pharmaceutical compounds analyzed in groundwater samples collected in 2006 from six wells used to supply livestock, only cotinine (a nicotine metabolite) and the antibiotics tylosin and sulfamethoxazole were detected. The maximum concentration of any contaminant of emerging concern was 24 nanograms per liter (ng/L) for cotinine, and was detected in a groundwater sample from a Lebanon County, Pa., well. Seven pharmaceutical compounds including acetaminophen

  16. Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain

    USGS Publications Warehouse

    Phillips, P.; Chalmers, A.

    2009-01-01

    Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate

  17. Seasonal and wastewater stream variation of trace organic compounds in a dairy processing plant aerobic bioreactor.

    PubMed

    Heaven, Michael W; Wild, Karl; Verheyen, Vincent; Cruickshank, Alicia; Watkins, Mark; Nash, David

    2011-09-01

    Bioreactors are often an integral part of dairy factory efforts to reduce the biological oxygen demand of their wastewater. In this study, infeed, mixed liquor and supernatant samples of an aerobic bioreactor used by a dairy factory in South-Eastern Australia were analyzed for nutrients and organic compounds using gas chromatography-mass spectrometry and physicochemical analyses. Despite different concentrations of organic inputs into the bioreactor, nutrients and trace organic compounds were reduced significantly (i.e. average concentration of trace organic compounds: infeed=1681 μg/L; mixed liquor=257 μg/L; supernatant=23 μg/L). However, during one sampling period the bioreactor was adversely affected by the organic loading. Trace organic compounds in the samples were predominantly fatty acids associated with animal products. The analyses suggest that it is possible to trace a disruptive input (i.e. infeed with high organic carbon concentrations) into an aerobic bioreactor by measuring concentrations of fatty acids or ammonia. PMID:21704516

  18. [Source emission characteristics and impact factors of volatile halogenated organic compounds from wastewater treatment plant].

    PubMed

    He, Jie; Wang, Bo-Guang; Liu, Shu-Le; Zhao, De-Jun; Tang, Xiao-Dong; Zou, Yu

    2011-12-01

    A low enrichment method of using Tenax as absorbent and liquid nitrogen as refrigerant has been established to sample the volatile halogenated organic compounds in Guangzhou Liede municipal wastewater treatment plant as well as its ambient air. The composition and concentration of target halogenated hydrocarbons were analyzed by combined thermal desorption/GC-MS to explore its sources profile and impact factors. The result showed that 19 halogenated organic compounds were detected, including 11 halogenated alkanets, 3 halogenated alkenes, 3 halogenated aromatic hydrocarbons and 2 haloesters, with their total concentrations ranged from 34.91 microg x m(-3) to 127.74 microg x m(-3) and mean concentrations ranged from n.d. to 33.39 microg x m(-3). Main pollutants of the studied plant were CH2Cl2, CHCl3, CFC-12, C2H4Cl2, CFC-11, C2HCl3 and C2Cl4, they came from the wastewater by volatilization. Among the six processing units, the dehydration room showed the highest level of halogenated organic compounds, followed by pumping station, while the sludge thickener was the lowest. The emissions from pumping station, aeration tank and biochemical pool were significantly affected by temperature and humidity of environment.

  19. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions.

  20. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. PMID:26183941

  1. Occurrence of Organic Wastewater Compounds in Selected Surface-Water Supplies, Triangle Area of North Carolina, 2002-2005

    USGS Publications Warehouse

    Giorgino, M.J.; Rasmussen, R.B.; Pfeifle, C.M .

    2007-01-01

    Selected organic wastewater compounds, such as household, industrial, and agricultural-use compounds, sterols, pharmaceuticals, and antibiotics, were measured at eight sites classified as drinking-water supplies in the Triangle Area of North Carolina. From October 2002 through July 2005, seven of the sites were sampled twice, and one site was sampled 28 times, for a total of 42 sets of environmental samples. Samples were analyzed for as many as 126 compounds using three laboratory analytical methods. These methods were developed by the U.S. Geological Survey to detect low levels (generally less than or equal to 1.0 microgram per liter) of the target compounds in filtered water. Because analyses were conducted on filtered samples, the results presented in this report may not reflect the total concentration of organic wastewater compounds in the waters that were sampled. Various quality-control samples were used to quality assure the results in terms of method performance and possible laboratory or field contamination. Of the 108 organic wastewater compounds that met method performance criteria, 24 were detected in at least one sample during the study. These 24 compounds included 3 pharmaceutical compounds, 6 fire retardants and plasticizers, 3 antibiotics, 3 pesticides, 6 fragrances and flavorants, 1 disinfectant, and 2 miscellaneous-use compounds, all of which likely originated from a variety of domestic, industrial, and agricultural sources. The 10 most frequently detected compounds included acetyl-hexamethyl tetrahydronaphthalene and hexahydro-hexamethyl cyclopentabenzopyran (synthetic musks that are widely used in personal-care products and are known endocrine disruptors); tri(2-chloroethyl) phosphate, tri(dichloroisopropyl) phosphate, and tributyl phosphate (fire retardants); metolachlor (herbicide); caffeine (nonprescription stimulant); cotinine (metabolite of nicotine); acetaminophen (nonprescription analgesic); and sulfamethoxazole (prescription antibiotic

  2. Oxidation of AOX and organic compounds in pharmaceutical wastewater in RSM-optimized-Fenton system.

    PubMed

    Xie, Yawei; Chen, Lujun; Liu, Rui

    2016-07-01

    Adsorbable organic halogens (AOX) and total organic carbon (TOC) removal efficiencies in pharmaceutical wastewater treated by Fenton process under response surface methodology (RSM) optimized conditions were studied. High regression coefficient value R(2) (R(2) = 0.9680, 0.9040 for AOX and TOC removal efficiency, respectively) and low value coefficient of variation (2.21%, 2.04% for AOX and TOC, respectively) of the quadratic model indicated that the model was accurate in predicting the experimental results. The desirability function was used to optimize AOX and TOC removal efficiencies simultaneously. The optimal pH, Fe(2+) concentration, molar ratio of H2O2/Fe(2+) and reaction time were found to be 3.3, 19.05 mM, 20.16 and 2.2 h, respectively, and 91.78% AOX and 75.01% TOC were removed under these conditions, which was validated. Furthermore, gas chromatography-mass spectrometer (GC-MS) results revealed that 28 out of 33 kinds of organic compounds, including 11 kinds of AOX were completely removed by the Fenton process while one new AOX compound, 4,5,6,7-tetrachlorophthalide, was produced which was the result of the carbonyl of 4,5,6,7-tetrachloro-1,3-isobenzofurandione being attacked in the Fenton reaction. These results indicated that analysis of organics was important since new AOX compounds could be produced in Fenton process despite the value of AOX decreasing. PMID:27115846

  3. Occurrence of organic wastewater compounds in effluent-dominated streams in Northeastern Kansas

    USGS Publications Warehouse

    Lee, C.J.; Rasmussen, T.J.

    2006-01-01

    Fifty-nine stream-water samples and 14 municipal wastewater treatment facility (WWTF) discharge samples in Johnson County, northeastern Kansas, were analyzed for 55 compounds collectively described as organic wastewater compounds (OWCs). Stream-water samples were collected upstream, in, and downstream from WWTF discharges in urban and rural areas during base-flow conditions. The effect of secondary treatment processes on OWC occurrence was evaluated by collecting eight samples from WWTF discharges using activated sludge and six from WWTFs samples using trickling filter treatment processes. Samples collected directly from WWTF discharges contained the largest concentrations of most OWCs in this study. Samples from trickling filter discharges had significantly larger concentrations of many OWCs (p-value < 0.05) compared to samples collected from activated sludge discharges. OWC concentrations decreased significantly in samples from WWTF discharges compared to stream-water samples collected from sites greater than 2000??m downstream. Upstream from WWTF discharges, base-flow samples collected in streams draining predominantly urban watersheds had significantly larger concentrations of cumulative OWCs (p-value = 0.03), caffeine (p-value = 0.01), and tris(2-butoxyethyl) phosphate (p-value < 0.01) than those collected downstream from more rural watersheds.

  4. Fate of trace organic compounds during vadose zone soil treatment in an onsite wastewater system

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Meyer, M.T.

    2010-01-01

    During onsite wastewater treatment, trace organic compounds are often present in the effluents applied to subsurface soils for advanced treatment during vadose zone percolation and groundwater recharge. The fate of the endocrine-disrupting surfactant metabolites 4-nonylphenol (NP), 4-nonylphenolmonoethoxylate (NP1EO), and 4-nonylphenolmonoethoxycarboxylate (NP1EC), metal-chelating agents ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), antimicrobial agent triclosan, stimulant caffeine, and antibiotic sulfamethoxazole during transport through an unsaturated sandy loam soil was studied at a field-scale test site. To assess the effects of effluent quality and hydraulic loading rate (HLR) on compound fate in the soil profile, two effluents (septic tank or textile biofilter) were applied at two design HLRs (2 or 8 cm/d). Chemical concentrations were determined in the two effluents and soil pore water at 60, 120, and 240 cm below the soil infiltrative surface. Concentrations of trace organic compounds in septic tank effluent were reduced by more than 90% during transport through 240 cm (often within 60 cm) of soil, likely due to sorption and biotransformation. However, the concentration of NP increased with depth in the shallow soil profile. Additional treatment of anaerobic septic tank effluent with an aerobic textile biofilter reduced effluent concentrations of many compounds, but generally did not affect any changes in pore water concentrations. The soil profile receiving septic tank effluent (vs. textile biofilter effluent) generally had greater percent removal efficiencies. EDTA, NP, NP1EC, and sulfamethoxazole were measured in soil pore water, indicating the ability of some trace organic compounds to reach shallow groundwater. Risk is highly dependent on the degree of further treatment in the saturated zone and the types and proximity of uses for the receiving groundwater environment. ?? 2009 SETAC.

  5. Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

    2014-01-01

    Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample

  6. Volatile organic compound emissions from wastewater treatment plants in Taiwan: legal regulations and costs of control.

    PubMed

    Cheng, Wen-Hsi; Hsu, Shu-Kang; Chou, Ming-Shean

    2008-09-01

    This study assessed volatile organic compound (VOC) emission characteristics from wastewater treatment plants (WWTPs) in five Taiwanese industrial districts engaged in numerous manufacturing processes, including petrochemical, science-based industry (primarily semiconductors, photo-electronics, electronic products and biological technology), as well as multiple manufacturing processes (primarily pharmaceuticals and paint manufacturing). The most aqueous hydrocarbons dissolved in the wastewater of Taiwanese WWTPs were acetone, acrylonitrile, methylene chloride, and chloroform for the petrochemical districts; acetone, chloroform, and toluene for the science-based districts; and chlorinated and aromatic hydrocarbons for the multiple industrial districts. The aqueous pollutants in the united WWTPs were closely related to the characteristics of the manufacturing plants in the districts. To effectively prevent VOC emissions from the primary treatment section of petrochemical WWTPs, the updated regulations governing VOC emissions were issued by the Taiwanese Environmental Protection Administration in September 2005, legally mandating a seal cover system incorporating venting and air purification equipment. Cost analysis indicates that incinerators with regenerative heat recovery are optimal for treating high VOC concentrations, exceeding 10,000 ppm as CH(4), from the oil separation basins. However, the emission concentrations, ranging from 100 to 1,000 ppm as CH(4) from the other primary treatment facilities and bio-treatment stages, should be collected and then injected into the biological oxidation basins via existing or new blowers. The additional capital and operating costs required to treat the VOC emissions of 1,000 ppm as CH(4) from primary treatment facilities are less than USD 0.1 for per m(3) wastewater treatment capacity.

  7. Reconnaissance of Organic Wastewater Compounds at a Concentrated Swine Feeding Operation in the North Carolina Coastal Plain, 2008

    USGS Publications Warehouse

    Harden, Stephen L.

    2009-01-01

    Water-quality and hydrologic data were collected during 2008 to examine the occurrence of organic wastewater compounds at a concentrated swine feeding operation located in the North Carolina Coastal Plain. Continuous groundwater level and stream-stage data were collected at one monitoring well and one stream site, respectively, throughout 2008. One round of environmental and quality-control samples was collected in September 2008 following a period of below-normal precipitation and when swine waste was not being applied to the spray fields. Samples were collected at one lagoon site, seven shallow groundwater sites, and one surface-water site for analysis of 111 organic wastewater compounds, including household, industrial, and agricultural-use compounds, sterols, pharmaceutical compounds, hormones, and antibiotics. Analytical data for environmental samples collected during the study provide preliminary information on the occurrence of organic wastewater compounds in the lagoon-waste source material, groundwater beneath fields that receive spray applications of the lagoon wastes, and surface water in the tributary adjacent to the site. Overall, 28 organic wastewater compounds were detected in the collected samples, including 11 household, industrial, and agricultural-use compounds; 3 sterols; 2 pharmaceutical compounds; 5 hormones; and 7 antibiotics. The lagoon sample had the greatest number (20) and highest concentrations of compounds compared to groundwater and surface-water samples. The antibiotic lincomycin had the maximum detected concentration (393 micrograms per liter) in the lagoon sample. Of the 11 compounds identified in the groundwater and surface-water samples, all with reported concentrations less than 1 microgram per liter, only lincomycin identified in groundwater at 1 well and 3-methyl-1H-indole and indole identified in surface water at 1 site also were identified in the lagoon waste material.

  8. Analysis of pharmaceutical and other organic wastewater compounds in filtered and unfiltered water samples by gas chromatography/mass spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Phillips, Patrick J.; Smith, Steven G.

    2014-01-01

    Research on the effects of exposure of stream biota to complex mixtures of pharmaceuticals and other organic compounds associated with wastewater requires the development of additional analytical capabilities for these compounds in water samples. Two gas chromatography/mass spectrometry (GC/MS) analytical methods used at the U.S. Geological Survey National Water Quality Laboratory (NWQL) to analyze organic compounds associated with wastewater were adapted to include additional pharmaceutical and other organic compounds beginning in 2009. This report includes a description of method performance for 42 additional compounds for the filtered-water method (hereafter referred to as the filtered method) and 46 additional compounds for the unfiltered-water method (hereafter referred to as the unfiltered method). The method performance for the filtered method described in this report has been published for seven of these compounds; however, the addition of several other compounds to the filtered method and the addition of the compounds to the unfiltered method resulted in the need to document method performance for both of the modified methods. Most of these added compounds are pharmaceuticals or pharmaceutical degradates, although two nonpharmaceutical compounds are included in each method. The main pharmaceutical compound classes added to the two modified methods include muscle relaxants, opiates, analgesics, and sedatives. These types of compounds were added to the original filtered and unfiltered methods largely in response to the tentative identification of a wide range of pharmaceutical and other organic compounds in samples collected from wastewater-treatment plants. Filtered water samples are extracted by vacuum through disposable solid-phase cartridges that contain modified polystyrene-divinylbenzene resin. Unfiltered samples are extracted by using continuous liquid-liquid extraction with dichloromethane. The compounds of interest for filtered and unfiltered sample

  9. Empirical Model for Predicting Concentrations of Refractory Hydrophobic Organic Compounds in Digested Sludge from Municipal Wastewater Treatment Plants

    PubMed Central

    Deo, Randhir P.; Halden, Rolf U.

    2009-01-01

    An empirical model is presented allowing for the prediction of concentrations of hydrophobic organic compounds (HOCs) prone to accumulate and persist in digested sludge (biosolids) generated during conventional municipal wastewater treatment. The sole input requirements of the model are the concentrations of the individual HOCs entering the wastewater treatment plant in raw sewage, the compound’s respective pH-dependent octanol-water partitioning coefficient (DOW), and an empirically determined fitting parameter (pfit) that reflects persistence of compounds in biosolids after accounting for all potential removal mechanisms during wastewater treatment. The accuracy of the model was successfully confirmed at the 99% confidence level in a paired t test that compared predicted concentrations in biosolids to empirical measurements reported in the literature. After successful validation, the resultant model was applied to predict levels of various HOCs for which occurrence data in biosolids thus far are lacking. PMID:20161626

  10. Odor and volatile organic compound removal from wastewater treatment plant headworks ventilation air using a biofilter.

    PubMed

    Converse, B M; Schroeder, E D; Iranpour, R; Cox, H H J; Deshusses, M A

    2003-01-01

    Laboratory-scale experiments and field studies were performed to evaluate the feasibility of biofilters for sequential removal of hydrogen sulfide and volatile organic compounds (VOCs) from wastewater treatment plant waste air. The biofilter was designed for spatially separated removal of pollutants to mitigate the effects of acid production resulting from hydrogen sulfide oxidation. The inlet section of the upflow units was designated for hydrogen sulfide removal and the second section was designated for VOC removal. Complete removal of hydrogen sulfide (H2S) and methyl tert-butyl ether (MTBE) was accomplished at loading rates of 8.3 g H2S/(m3 x h) (15-second empty bed retention time [EBRT]) and 33 g MTBE/(m3 x h) (60-second EBRT), respectively. In field studies performed at the Hyperion Treatment Plant in Los Angeles, California, excellent removal of hydrogen sulfide, moderate removal of nonchlorinated VOCs such as toluene and benzene, and poor removal of chlorinated VOCs were observed in treating the headworks waste air. During spiking experiments on the headworks waste air, the percentage removals were similar to the unspiked removals when nonchlorinated VOCs were spiked; however, feeding high concentrations of chlorinated VOCs reduced the removal percentages for all VOCs. Thus, biofilters offer a distinct advantage over chemical scrubbers currently used at publicly owned treatment works in that they not only remove odor and hydrogen sulfide efficiently at low cost, but also reduce overall toxicity by partially removing VOCs and avoiding the use of hazardous chemicals.

  11. Occurrence of Organic Wastewater Compounds in the Tinkers Creek Watershed and Two Other Tributaries to the Cuyahoga River, Northeast Ohio

    USGS Publications Warehouse

    Tertuliani, J.S.; Alvarez, D.A.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Koltun, G.F.

    2008-01-01

    The U.S. Geological Survey - in cooperation with the Ohio Water Development Authority; National Park Service; Cities of Aurora, Bedford, Bedford Heights, Solon, and Twinsburg; and Portage and Summit Counties - and in collaboration with the Ohio Environmental Protection Agency, did a study to determine the occurrence and distribution of organic wastewater compounds (OWCs) in the Tinkers Creek watershed in northeastern Ohio. In the context of this report, OWCs refer to a wide range of compounds such as antibiotics, prescription and nonprescription pharmaceuticals, personal-care products, household and industrial compounds (for example, antimicrobials, fragrances, surfactants, fire retardants, and so forth) and a variety of other chemicals. Canisters containing polar organic integrative sampler (POCIS) and semipermeable membrane device (SPMD) media were deployed instream for a 28-day period in Mayand June 2006 at locations upstream and downstream from seven wastewater-treatment-plant (WWTP) outfalls in the Tinkers Creek watershed, at a site on Tinkers Creek downstream from all WWTP discharges, and at one reference site each in two nearby watersheds (Yellow Creek and Furnace Run) that drain to the Cuyahoga River. Streambed-sediment samples also were collected at each site when the canisters were retrieved. POCIS and SPMDs are referred to as 'passive samplers' because they sample compounds that they are exposed to without use of mechanical or moving parts. OWCs detected in POCIS and SPMD extracts are referred to in this report as 'detections in water' because both POCIS and SPMDs provided time-weighted measures of concentration in the stream over the exposure period. Streambed sediments also reflect exposure to OWCs in the stream over a long period of time and provide another OWC exposure pathway for aquatic organisms. Four separate laboratory methods were used to analyze for 32 antibiotic, 20 pharmaceutical, 57 to 66 wastewater, and 33 hydrophobic compounds. POCIS and

  12. Volatile organic compound emissions during the composting of biosolids from a domestic wastewater treatment plant.

    PubMed

    Ramos, C X; Estévez, S L; Giraldo, E

    2002-01-01

    VOCs emitted by two composting static piles of biosolids coming from the "El Salitre" wastewater treatment plant (Bogotá, Colombia) were analysed during the composting process. Each pile in its sampling time was maintained with a different aeration system. The sampling was made using Solid Phase Microextraction (SPME); separation and identifications were made using Gas Chromatography (GC) coupled to Mass Spectrometry (MS). Aliphatic and aromatic hydrocarbons, chlorinated compounds, ketones, mercaptans, alcohols and amines were identified in concentrations greater than the norms stipulated by the EPA for inhalation in humans beings. The emission behavior varied according to the aeration system used.

  13. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    USGS Publications Warehouse

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia

  14. Pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds in public drinking water wells in a shallow sand and gravel aquifer.

    PubMed

    Schaider, Laurel A; Rudel, Ruthann A; Ackerman, Janet M; Dunagan, Sarah C; Brody, Julia Green

    2014-01-15

    Approximately 40% of U.S. residents rely on groundwater as a source of drinking water. Groundwater, especially unconfined sand and gravel aquifers, is vulnerable to contamination from septic systems and infiltration of wastewater treatment plant effluent. In this study, we characterized concentrations of pharmaceuticals, perfluorosurfactants, and other organic wastewater compounds (OWCs) in the unconfined sand and gravel aquifer of Cape Cod, Massachusetts, USA, where septic systems are prevalent. Raw water samples from 20 public drinking water supply wells on Cape Cod were tested for 92 OWCs, as well as surrogates of wastewater impact. Fifteen of 20 wells contained at least one OWC; the two most frequently-detected chemicals were sulfamethoxazole (antibiotic) and perfluorooctane sulfonate (perfluorosurfactant). Maximum concentrations of sulfamethoxazole (113 ng/L) and the anticonvulsant phenytoin (66 ng/L) matched or exceeded maximum reported concentrations in other U.S. public drinking water sources. The sum of pharmaceutical concentrations and the number of detected chemicals were both significantly correlated with nitrate, boron, and extent of unsewered residential and commercial development within 500 m, indicating that wastewater surrogates can be useful for identifying wells most likely to contain OWCs. Septic systems appear to be the primary source of OWCs in Cape Cod groundwater, although wastewater treatment plants and other sources were potential contributors to several wells. These results show that drinking water supplies in unconfined aquifers where septic systems are prevalent may be among the most vulnerable to OWCs. The presence of mixtures of OWCs in drinking water raises human health concerns; a full evaluation of potential risks is limited by a lack of health-based guidelines and toxicity assessments.

  15. A POLYMER-CERAMIC COMPOSITE MEMBRANE FOR RECOVERING VOLATILE ORGANIC COMPOUNDS FROM WASTEWATERS BY PERVAPORATION

    EPA Science Inventory

    A composite membrane was constructed on a porous ceramic support from a block copolymer of styrene and butadiene (SBS). It was tested in a laboratory pervaporation apparatus for recovering volatile organic compounds (VOCs) such a 1,1,1-trichloroethane (TCA) and trichloroethylene ...

  16. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    PubMed

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study.

  17. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    PubMed

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. PMID:26822473

  18. Occurrence of organic wastewater compounds in drinking water, wastewater effluent, and the Big Sioux River in or near Sioux Falls, South Dakota, 2001-2004

    USGS Publications Warehouse

    Sando, Steven K.; Furlong, Edward T.; Gray, James L.; Meyer, Michael T.

    2006-01-01

    The U.S. Geological Survey (USGS) in cooperation with the city of Sioux Falls conducted several rounds of sampling to determine the occurrence of organic wastewater compounds (OWCs) in the city of Sioux Falls drinking water and waste-water effluent, and the Big Sioux River in or near Sioux Falls during August 2001 through May 2004. Water samples were collected during both base-flow and storm-runoff conditions. Water samples were collected at 8 sites, which included 4 sites upstream from the wastewater treatment plant (WWTP) discharge, 2 sites downstream from the WWTP discharge, 1 finished drinking-water site, and 1 WWTP effluent (WWE) site. A total of 125 different OWCs were analyzed for in this study using five different analytical methods. Analyses for OWCs were performed at USGS laboratories that are developing and/or refining small-concentration (less than 1 microgram per liter (ug/L)) analytical methods. The OWCs were classified into six compound classes: human pharmaceutical compounds (HPCs); human and veterinary antibiotic compounds (HVACs); major agricultural herbicides (MAHs); household, industrial,and minor agricultural compounds (HIACs); polyaromatic hydrocarbons (PAHs); and sterol compounds (SCs). Some of the compounds in the HPC, MAH, HIAC, and PAH classes are suspected of being endocrine-disrupting compounds (EDCs). Of the 125 different OWCs analyzed for in this study, 81 OWCs had one or more detections in environmental samples reported by the laboratories, and of those 81 OWCs, 63 had acceptable analytical method performance, were detected at concentrations greater than the study reporting levels, and were included in analyses and discussion related to occurrence of OWCs in drinking water, wastewater effluent, and the Big Sioux River. OWCs in all compound classes were detected in water samples from sampling sites in the Sioux Falls area. For the five sampling periods when samples were collected from the Sioux Falls finished drinking water, only one

  19. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant.

    PubMed

    Stackelberg, Paul E; Furlong, Edward T; Meyer, Michael T; Zaugg, Steven D; Henderson, Alden K; Reissman, Dori B

    2004-08-15

    In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal

  20. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant

    USGS Publications Warehouse

    Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B.

    2004-01-01

    In a study conducted by the US Geological Survey and the Centers for Disease Control and Prevention, 24 water samples were collected at selected locations within a drinking-water-treatment (DWT) facility and from the two streams that serve the facility to evaluate the potential for wastewater-related organic contaminants to survive a conventional treatment process and persist in potable-water supplies. Stream-water samples as well as samples of raw, settled, filtered, and finished water were collected during low-flow conditions, when the discharge of effluent from upstream municipal sewage-treatment plants accounted for 37-67% of flow in stream 1 and 10-20% of flow in stream 2. Each sample was analyzed for 106 organic wastewater-related contaminants (OWCs) that represent a diverse group of extensively used chemicals. Forty OWCs were detected in one or more samples of stream water or raw-water supplies in the treatment plant; 34 were detected in more than 10% of these samples. Several of these compounds also were frequently detected in samples of finished water; these compounds include selected prescription and non-prescription drugs and their metabolites, fragrance compounds, flame retardants and plasticizers, cosmetic compounds, and a solvent. The detection of these compounds suggests that they resist removal through conventional water-treatment processes. Other compounds that also were frequently detected in samples of stream water and raw-water supplies were not detected in samples of finished water; these include selected prescription and non-prescription drugs and their metabolites, disinfectants, detergent metabolites, and plant and animal steroids. The non-detection of these compounds indicates that their concentrations are reduced to levels less than analytical detection limits or that they are transformed to degradates through conventional DWT processes. Concentrations of OWCs detected in finished water generally were low and did not exceed Federal

  1. Organic wastewater compounds in water and sediment in and near restored wetlands, Great Marsh, Indiana Dunes National Lakeshore, 2009–11

    USGS Publications Warehouse

    Egler, Amanda L.; Risch, Martin R.; Alvarez, David A.; Bradley, Paul M.

    2013-01-01

    A cooperative investigation between the U.S. Geological Survey and the National Park Service was completed from 2009 through 2011 to understand the occurrence, distribution, and environmental processes affecting concentrations of organic wastewater compounds in water and sediment in and near Great Marsh at the Indiana Dunes National Lakeshore in Beverly Shores, Indiana. Sampling sites were selected to represent hydrologic inputs to the restored wetlands from adjacent upstream residential and less developed areas and to represent discharge points of cascading cells within the restored wetland. A multiphase approach was used for the investigation. Discrete water samples and time-integrated passive samples were analyzed for 69 organic wastewater compounds. Continuous water-level information and periodic streamflow measurements characterized flow conditions at discharge points from restored wetland cells. Wetland sediments were collected and analyzed for sorptive losses of organic wastewater compounds and to evaluate of the potential for wetland sediments to biotransform organic wastewater compounds. A total of 52 organic wastewater compounds were detected in discrete water samples at 1 or more sites. Detections of organic wastewater compounds were widespread, but concentrations were generally low and 95 percent were less than 2.1 micrograms per liter. Six compounds were detected at concentrations greater than 2.1 micrograms per liter—four fecal sterols (beta-sitosterol, cholesterol, beta-stigmastanol, and 2-beta coprostanol), one plasticizer (bis-2-ethylhex ylphthalate), and a non-ionic detergent (4-nonylphenol diethoxylate). Two 1-month deployments of time-integrative passive samplers, called polar organic chemical integrative samplers, detected organic wastewater compounds at lower concentrations than were possible with discrete water samples. Isopropyl benzene (solvent), caffeine (plant alkaloid, stimulant), and hexahydrohexamethyl cyclopentabenzopyran (fragrance

  2. Recycled water for stream flow augmentation: benefits, challenges, and the presence of wastewater-derived organic compounds.

    PubMed

    Plumlee, Megan H; Gurr, Christopher J; Reinhard, Martin

    2012-11-01

    Stream flow augmentation with recycled water has the potential to improve stream habitat and increase potable water supply, but the practice is not yet well understood or documented. The objectives of this report are to present a short review illustrated by a case study, followed by recommendations for future stream flow augmentation projects. Despite the fact that wastewater discharge to streams is commonplace, a water agency pursuing stream flow augmentation with recycled water will face unique challenges. For example, recycled water typically contains trace amounts of organic wastewater-derived compounds (OWCs) for which the potential ecological risks must be balanced against the benefits of an augmentation project. Successful stream flow augmentation with recycled water requires that the lead agency clearly articulate a strong project rationale and identify key benefits. It must be assumed that the public will have some concerns about water quality. Public acceptance may be better if an augmentation project has co-benefits beyond maintaining stream ecosystems, such as improving water system supply and reliability (i.e. potable use offset). Regulatory or project-specific criteria (acceptable concentrations of priority OWCs) would enable assessment of ecosystem impacts and demonstration of practitioner compliance. Additional treatment (natural or engineered) of the recycled water may be considered. If it is not deemed necessary or feasible, existing recycled water quality may be adequate to achieve project goals depending on project rationale, site and water quality evaluation, and public acceptance. PMID:23041295

  3. Survey of hazardous organic compounds in the groundwater, air and wastewater effluents near the Tehran automobile industry.

    PubMed

    Kargar, Mahdi; Nadafi, Kazem; Nabizadeh, Ramin; Nasseri, Simin; Mesdaghinia, Alireza; Mahvi, Amir Hossein; Alimohammadi, Mahmood; Nazmara, Shahrokh; Rastkari, Noushin

    2013-02-01

    Potential of wastewater treatment in car industry and groundwater contamination by volatile organic compounds include perchloroethylene (PCE), trichloroethylene (TCE) and dichloromethane (DCM) near car industry was conducted in this study. Samples were collected in September through December 2011 from automobile industry. Head-space Gas chromatography with FID detector is used for analysis. Mean PCE levels in groundwater ranged from 0 to 63.56 μg L(-1) with maximum level of 89.1 μg L(-1). Mean TCE from 0 to 76.63 μg L(-1) with maximum level of 112 μg L(-1). Due to the data obtained from pre treatment of car staining site and conventional wastewater treatment in car factory, the most of TCE, PCE and DCM removed by pre aeration. Therefor this materials entry from liquid phase to air phase and by precipitation leak out to the groundwater. As a consequence these pollutants have a many negative health effect on the workers by air and groundwater.

  4. Summary of Organic Wastewater Compounds and Other Water-Quality Data in Charles County, Maryland, October 2007 through August 2008

    USGS Publications Warehouse

    Lorah, Michelle M.; Soeder, Daniel J.; Teunis, Jessica A.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the government of Charles County, Maryland, and the Port Tobacco River Conservancy, Inc., conducted a water-quality reconnaissance and sampling investigation of the Port Tobacco River and Nanjemoy Creek watersheds in Charles County during October 2007 and June-August 2008. Samples were collected and analyzed for major ions, nutrients, organic wastewater compounds, and other selected constituents from 17 surface-water sites and 11 well sites (5 of which were screened in streambed sediments to obtain porewater samples). Most of the surface-water sites were relatively widely spaced throughout the Port Tobacco River and Nanjemoy Creek watersheds, although the well sites and some associated surface-water sites were concentrated in one residential community along the Port Tobacco River that has domestic septic systems. Sampling for enterococci bacteria was conducted by the Port Tobacco River Conservancy, Inc., at each site to coordinate with the sampling for chemical constituents. The purpose of the coordinated sampling was to determine correlations between historically high, in-stream bacteria counts and human wastewater inputs. Chemical data for the groundwater, porewater, and surface-water samples are presented in this report.

  5. Organic Compounds

    NASA Astrophysics Data System (ADS)

    Shankland, Kenneth

    For many years, powder X-ray diffraction was used primarily as a fingerprinting method for phase identification in the context of molecular organic materials. In the early 1990s, with only a few notable exceptions, structures of even moderate complexity were not solvable from PXRD data alone. Global optimisation methods and highly-modified direct methods have transformed this situation by specifically exploiting some well-known properties of molecular compounds. This chapter will consider some of these properties.

  6. Presence and distribution of organic wastewater compounds in wastewater, surface, ground, and drinking waters, Minnesota, 2000-02

    USGS Publications Warehouse

    Lee, Kathy E.; Barber, Larry B.; Furlong, Edward T.; Cahill, Jeffery D.; Kolpin, Dana W.; Meyer, Michael T.; Zaugg, Steven D.

    2004-01-01

    Results of this study indicate ubiquitous distribution of measured OWCs in the environment that originate from numerous sources and pathways. During this reconnaissance of OWCs in Minnesota it was not possible to determine the specific sources of OWCs to surface, ground, or drinking waters. The data indicate WWTP effluent is a major pathway of OWCs to surface waters and that landfill leachate at selected facilities is a potential source of OWCs to WWTPs. Aquatic organism or human exposure to some OWCs is likely based on OWC distribution. Few aquatic or human health standards or criteria exist for the OWCs analyzed, and the risks to humans or aquatic wildlife are not known. Some OWCs detected in this study are endocrine disrupters and have been found to disrupt or influence endocrine function in fish. Thirteen endocrine disrupters, 3-tert-butyl-4-hydoxyanisole (BHA), 4- cumylphenol, 4-normal-octylphenol, 4-tert-octylphenol, acetyl-hexamethyl-tetrahydro-naphthalene (AHTN), benzo[α]pyrene, beta-sitosterol, bisphenol-A, diazinon, nonylphenol diethoxylate (NP2EO), octyphenol diethoxylate (OP2EO), octylphenol monoethoxylate (OP1EO), and total para-nonylphenol (NP) were detected. Results of reconnaissance studies may help regulators who set water-quality standards begin to prioritize which OWCs to focus upon for given categories of water use.

  7. Occurrence of Selected Pharmaceutical and Organic Wastewater Compounds in Effluent and Water Samples from Municipal Wastewater and Drinking-Water Treatment Facilities in the Tar and Cape Fear River Basins, North Carolina, 2003-2005

    USGS Publications Warehouse

    Ferrell, G.M.

    2009-01-01

    Samples of treated effluent and treated and untreated water were collected at 20 municipal wastewater and drinkingwater treatment facilities in the Tar and Cape Fear River basins of North Carolina during 2003 and 2005. The samples were analyzed for a variety of prescription and nonprescription pharmaceutical compounds and a suite of organic compounds considered indicative of wastewater. Concentrations of these compounds generally were less than or near the detection limits of the analytical methods used during this investigation. None of these compounds were detected at concentrations that exceeded drinking-water standards established by the U.S. Environmental Protection Agency. Bromoform, a disinfection byproduct, was the only compound detected at a concentration that exceeded regulatory guidelines. The concentration of bromoform in one finished drinking-water sample, 26 micrograms per liter, exceeded North Carolina water-quality criteria. Drinking-water treatment practices were effective at removing many of the compounds detected in untreated water. Disinfection processes used in wastewater treatment - chlorination or irradiation with ultraviolet light - did not seem to substantially degrade the organic compounds evaluated during this study.

  8. Organic wastewater compounds in water and sediment in and near restored wetlands, Great Marsh, Indiana Dunes National Lakeshore, 2009–11

    USGS Publications Warehouse

    Egler, Amanda L.; Risch, Martin R.; Alvarez, David A.; Bradley, Paul M.

    2013-01-01

    A cooperative investigation between the U.S. Geological Survey and the National Park Service was completed from 2009 through 2011 to understand the occurrence, distribution, and environmental processes affecting concentrations of organic wastewater compounds in water and sediment in and near Great Marsh at the Indiana Dunes National Lakeshore in Beverly Shores, Indiana. Sampling sites were selected to represent hydrologic inputs to the restored wetlands from adjacent upstream residential and less developed areas and to represent discharge points of cascading cells within the restored wetland. A multiphase approach was used for the investigation. Discrete water samples and time-integrated passive samples were analyzed for 69 organic wastewater compounds. Continuous water-level information and periodic streamflow measurements characterized flow conditions at discharge points from restored wetland cells. Wetland sediments were collected and analyzed for sorptive losses of organic wastewater compounds and to evaluate of the potential for wetland sediments to biotransform organic wastewater compounds. A total of 52 organic wastewater compounds were detected in discrete water samples at 1 or more sites. Detections of organic wastewater compounds were widespread, but concentrations were generally low and 95 percent were less than 2.1 micrograms per liter. Six compounds were detected at concentrations greater than 2.1 micrograms per liter—four fecal sterols (beta-sitosterol, cholesterol, beta-stigmastanol, and 2-beta coprostanol), one plasticizer (bis-2-ethylhex ylphthalate), and a non-ionic detergent (4-nonylphenol diethoxylate). Two 1-month deployments of time-integrative passive samplers, called polar organic chemical integrative samplers, detected organic wastewater compounds at lower concentrations than were possible with discrete water samples. Isopropyl benzene (solvent), caffeine (plant alkaloid, stimulant), and hexahydrohexamethyl cyclopentabenzopyran (fragrance

  9. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  10. Occurrence and potential transport of selected pharmaceuticals and other organic wastewater compounds from wastewater-treatment plant influent and effluent to groundwater and canal systems in Miami-Dade County, Florida

    USGS Publications Warehouse

    Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.

    2012-01-01

    An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).

  11. Relation between organic-wastewater compounds, groundwater geochemistry, and well characteristics for selected wells in Lansing, Michigan

    USGS Publications Warehouse

    Haack, Sheridan K.; Luukkonen, Carol L.

    2013-01-01

    In 2010, groundwater from 20 Lansing Board of Water and Light (BWL) production wells was tested for 69 organic-wastewater compounds (OWCs). The OWCs detected in one-half of the sampled wells are widely used in industrial and environmental applications and commonly occur in many wastes and stormwater. To identify factors that contribute to the occurrence of these constituents in BWL wells, the U.S. Geological Survey (USGS) interpreted the results of these analyses and related detections of OWCs to local characteristics and groundwater geochemistry. Analysis of groundwater-chemistry data collected by the BWL during routine monitoring from 1969 to 2011 indicates that the geochemistry of the BWL wells has changed over time, with the major difference being an increase in sodium and chloride. The concentrations of sodium and chloride were positively correlated to frequency of OWC detections. The BWL wells studied are all completed in the Saginaw aquifer, which consists of water-bearing sandstones of Pennsylvanian age. The Saginaw aquifer is underlain by the Parma-Bayport aquifer, and overlain by the Glacial aquifer. Two possible sources of sodium and chloride were evaluated: basin brines by way of the Parma-Bayport aquifer, and surficial sources by way of the Glacial aquifer. To determine if water from the underlying aquifer had influenced well-water geochemistry over time, the total dissolved solids concentration and changes in major ion concentrations were examined with respect to well depth, age, and pumping rate. To address a possible surficial source of sodium and chloride, 25 well, aquifer, or hydrologic characteristics, and 2 groundwater geochemistry variables that might influence whether, or the rate at which, water from the land surface could reach each well were compared to OWC detections and well chemistry. The statistical tests performed during this study, using available variables, indicated that reduced time of travel of water from the land surface to the

  12. Removal of endocrine disrupting compounds from wastewater using polymer particles.

    PubMed

    Murray, Audrey; Örmeci, Banu; Lai, Edward P C

    2016-01-01

    This study evaluated the use of particles of molecularly imprinted and non-imprinted polymers (MIP and NIP) as a wastewater treatment method for endocrine disrupting compounds (EDCs). MIP and NIP remove EDCs through adsorption and therefore do not result in the formation of partially degraded products. The results show that both MIP and NIP particles are effective for removal of EDCs, and NIP have the advantage of not being as compound-specific as the MIP and hence can remove a diverse range of compounds including 17-β-estradiol (E2), atrazine, bisphenol A, and diethylstilbestrol. Removal of E2 from wastewater was also tested to determine the effectiveness of NIP in the presence of interfering substances and natural organic matter. Removal of E2 from wastewater samples was high and increased with increasing NIP. NIP represent an effective way of removing a wide variety of EDCs from wastewater. PMID:26744949

  13. Design and evaluation of a field study on the contamination of selected volatile organic compounds and wastewater-indicator compounds in blanks and groundwater samples

    USGS Publications Warehouse

    Thiros, Susan A.; Bender, David A.; Mueller, David K.; Rose, Donna L.; Olsen, Lisa D.; Martin, Jeffrey D.; Bernard, Bruce; Zogorski, John S.

    2011-01-01

    The Field Contamination Study (FCS) was designed to determine the field processes that tend to result in clean field blanks and to identify potential sources of contamination to blanks collected in the field from selected volatile organic compounds (VOCs) and wastewater-indicator compounds (WICs). The VOCs and WICs analyzed in the FCS were detected in blanks collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program during 1996-2008 and 2002-08, respectively. To minimize the number of variables, the study required ordering of supplies just before sampling, storage of supplies and equipment in clean areas, and use of adequate amounts of purge-and-trap volatile-grade methanol and volatile pesticide-grade blank water (VPBW) to clean sampling equipment and to collect field blanks. Blanks and groundwater samples were collected during 2008-09 at 16 sites, which were a mix of water-supply and monitoring wells, located in 9 States. Five different sample types were collected for the FCS at each site: (1) a source-solution blank collected at the USGS National Water Quality Laboratory (NWQL) using laboratory-purged VPBW, (2) source-solution blanks collected in the field using laboratory-purged VPBW, (3) source-solution blanks collected in the field using field-purged VPBW, (4) a field blank collected using field-purged VPBW, and (5) a groundwater sample collected from a well. The source-solution blank and field-blank analyses were used to identify, quantify, and document extrinsic contamination and to help determine the sources and causes of data-quality problems that can affect groundwater samples. Concentrations of compounds detected in FCS analyses were quantified and results were stored in the USGS National Water Information System database after meeting rigorous identification and quantification criteria. The study also utilized information provided by laboratory analysts about evidence indicating the presence of selected compounds

  14. Occurrence of Selected Pharmaceuticals, Personal-Care Products, Organic Wastewater Compounds, and Pesticides in the Lower Tallapoosa River Watershed near Montgomery, Alabama, 2005

    USGS Publications Warehouse

    Oblinger, Carolyn J.; Gill, Amy C.; McPherson, Ann K.; Meyer, Michael T.; Furlong, Edward T.

    2007-01-01

    Synthetic and natural organic compounds derived from agricultural operations, residential development, and treated and untreated sanitary and industrial wastewater discharges can contribute contaminants to surface and ground waters. To determine the occurrence of these compounds in the lower Tallapoosa River watershed, Alabama, new laboratory methods were used that can detect human and veterinary antibiotics; pharmaceuticals; and compounds found in personal-care products, food additives, detergents and their metabolites, plasticizers, and other industrial and household products in the environment. Well-established methods for detecting 47 pesticides and 19 pesticide degradates also were used. In all, 186 different compounds were analyzed by using four analytical methods. The lower Tallapoosa River serves as the water-supply source for more than 100,000 customers of the Montgomery Water Works and Sanitary Sewer Board. Source-water protection is a high priority for the Board, which is responsible for providing safe drinking water. The U.S. Geological Survey, in cooperation with the Montgomery Water Works and Sanitary Sewer Board, conducted this study to provide baseline data that could be used to assess the effects of agriculture and residential development on the occurrence of selected organic compounds in the lower Tallapoosa River watershed. Twenty samples were collected at 10 sites on the Tallapoosa River and its tributaries. Ten samples were collected in April 2005 during high base streamflow, and 10 samples were collected in October 2005 when base streamflow was low. Thirty-two of 186 compounds were detected in the lower Tallapoosa River watershed. Thirteen compounds, including atrazine, 2-chloro-4-isopropylamino-6-amino-s-triazine (CIAT), hexazinone, metalaxyl, metolachlor, prometryn, prometon, simazine, azithromycin, oxytetracycline, sulfamethoxazole, trimethoprim, and tylosin, had measurable concentrations above their laboratory reporting levels

  15. Changes in reproductive biomarkers in an endangered fish species (bonytail chub, Gila elegans) exposed to low levels of organic wastewater compounds in a controlled experiment

    USGS Publications Warehouse

    Walker, David B.; Paretti, Nicholas V.; Cordy, Gail; Gross, Timothy S.; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Matter, William J.; Gwinn, Jessica; McIntosh, Dennis

    2009-01-01

    In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations <1.0 μg/L. Male bonytail chub (Gila elegans) in tanks containing municipal effluent had significantly lower levels of 11-ketotestosterone (p = 0.021) yet higher levels of 17β-estradiol (p = 0.002) and vitellogenin (p = 0.036) compared to control male fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17β-estradiol than control females (p = 0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r = 0.00) versus control (r = −0.66) female fish. We found a similar, but not as significant, trend between treatment (r = −0.45) and control (r = −0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed.

  16. Changes in reproductive biomarkers in an endangered fish species (bonytail chub, Gila elegans) exposed to low levels of organic wastewater compounds in a controlled experiment

    USGS Publications Warehouse

    Walker, D.B.; Paretti, N.V.; Cordy, G.; Gross, T.S.; Zaugg, S.D.; Furlong, E.T.; Kolpin, D.W.; Matter, W.J.; Gwinn, J.; McIntosh, D.

    2009-01-01

    In arid regions of the southwestern United States, municipal wastewater treatment plants commonly discharge treated effluent directly into streams that would otherwise be dry most of the year. A better understanding is needed of how effluent-dependent waters (EDWs) differ from more natural aquatic ecosystems and the ecological effect of low levels of environmentally persistent organic wastewater compounds (OWCs) with distance from the pollutant source. In a controlled experiment, we found 26 compounds common to municipal effluent in treatment raceways all at concentrations <1.0 ??g/L. Male bonytail chub (Gila elegans) in tanks containing municipal effluent had significantly lower levels of 11-ketotestosterone (p = 0.021) yet higher levels of 17??-estradiol (p = 0.002) and vitellogenin (p = 0.036) compared to control male fish. Female bonytail chub in treatment tanks had significantly lower concentrations of 17??-estradiol than control females (p = 0.001). The normally inverse relationship between primary male and female sex hormones, expected in un-impaired fish, was greatly decreased in treatment (r = 0.00) versus control (r = -0.66) female fish. We found a similar, but not as significant, trend between treatment (r = -0.45) and control (r = -0.82) male fish. Measures of fish condition showed no significant differences between male or female fish housed in effluent or clean water. Inter-sex condition did not occur and testicular and ovarian cells appeared normal for the respective developmental stage and we observed no morphological alteration in fish. The population-level impacts of these findings are uncertain. Studies examining the long-term, generational and behavioral effects to aquatic organisms chronically exposed to low levels of OWC mixtures are needed. ?? 2009 Elsevier B.V.

  17. Phytodegradation of organic compounds.

    PubMed

    Newman, Lee A; Reynolds, Charles M

    2004-06-01

    The phytodegradation of organic compounds can take place inside the plant or within the rhizosphere of the plant. Many different compounds and classes of compounds can be removed from the environment by this method, including solvents in groundwater, petroleum and aromatic compounds in soils, and volatile compounds in the air. Although still a relatively new area of research, there are many laboratories studying the underlying science necessary for a wide range of applications for plant-based remediation of organic contaminants.

  18. Widespread detection of N,N-diethyl-m-toluamide in U.S. streams: Comparison with concentrations of pesticides, personal care products, and other organic wastewater compounds

    USGS Publications Warehouse

    Sandstrom, M.W.; Kolpin, D.W.; Thurman, E.M.; Zaugg, S.D.

    2005-01-01

    One of the most frequently detected organic chemicals in a nationwide study concerning the effects of wastewater on stream water quality conducted in the year 2000 was the widely used insect repellant N,N-diethyl-m-toluamide (DEET). It was detected at levels of 0.02 μg/L or greater in 73% of the stream sites sampled, with the selection of sampling sites being biased toward streams thought to be subject to wastewater contamination (i.e., downstream from intense urbanization and livestock production). Although DEET frequently was detected at all sites, the median concentration was low (0.05 μg/L). The highest concentrations of DEET were found in streams from the urban areas (maximum concentration, 1.1 μg/L). The results of the present study suggest that the movement of DEET to streams through wastewater-treatment systems is an important mechanism that might lead to the exposure of aquatic organisms to this chemical.

  19. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Anders, E.; Hayatsu, R.; Studier, M. H.

    1973-01-01

    The problem of whether organic compounds originated in meteorites as a primary condensate from a solar gas or whether they were introduced as a secondary product into the meteorite during its residence in a parent body is examined by initially attempting to reconstruct the physical conditions during condensation (temperature, pressure, time) from clues in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is then analyzed on the basis of thermodynamic calculations, and compounds synthesized in model experiments on the condensation of carbon are compared with those actually found in meteorites. Organic compounds in meteorites seem to have formed by catalytic reactions of carbon monoxide, hydrogen, and ammonia in the solar nebula at 360 to 400 K temperature and about 3 to 7.6 microtorr pressure. The onset of these reactions was triggered by the formation of suitable catalysts (magnetite, hydrated silicates) at these temperatures.

  20. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  1. SORPTION OF ORGANICS ON WASTEWATER SOLIDS: CORRELATION WITH FUNDAMENTAL PROPERTIES.

    EPA Science Inventory

    Sorption of toxic organic compounds on primary, mixed-liquor, and digested solids from municipal wastewater treatment plants has been correlated with octanol/water partition coefficients arid with modified Randic indexes. he correlations developed are useful for assessing the rol...

  2. Evaluation of the treatment performance of lab-scaled vertical flow constructed wetlands in removal of organic compounds, color and nutrients in azo dye-containing wastewater.

    PubMed

    Dogdu, Gamze; Yalcuk, Arda

    2016-01-01

    The objective of this study is to examine the treatment performance of vertical flow intermittent feeding constructed wetland (VFCW) in removal of organic pollution, nutrients and color in azo-dye containing wastewater. The systems consisted of PVC reactors, some filling materials such as gravel, sand and zeolite and wetland plants including Typha angustifolia and Canna indica. The average treatment efficiency of the systems for COD, color, sulphate, NH4-N, and PO4-P were in the range of 57-63%, 94-99%, 44-48%, 39-44%, and 84-88%, respectively among the VFCW reactors. It is concluded that VFCW reactor system can effectively be used in the treatment of dye-rich wastewater, especially for the removal of color and in the reduction of COD. Biofilm formation and cleavage of azo bonds could be observed by SEM and FTIR results, respectively. Almost similar NH4-N and PO4-P removal were obtained in all reactors by using same amount of zeolite media.

  3. Organic compounds in meteorites

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.

    1980-01-01

    Recent studies of carbonaceous chondrites provide evidence that certain organic compounds are indigenous and the result of an abiotic, chemical synthesis. The results of several investigators have established the presence of amino acids and precursors, mono- and dicarboxylic acids, N-heterocycles, and hydrocarbons as well as other compounds. For example, studies of the Murchison and Murray meteorites have revealed the presence of at least 40 amino acids with nearly equal abundances of D and L isomers. The population consists of both protein and nonprotein amino acids including a wide variety of linear, cyclic, and polyfunctional types. Results show a trend of decreasing concentration with increasing carbon number, with the most abundant being glycine (41 n Moles/g). These and other results to be reviewed provide persuasive support for the theory of chemical evolution and provide the only natural evidence for the protobiological subset of molecules from which life on earth may have arisen.

  4. The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity.

    PubMed

    Wei, Xiao-xue; Zhang, Zi-yang; Fan, Qing-lan; Yuan, Xiao-ying; Guo, Dong-sheng

    2012-11-15

    This study investigated the change of hazardous materials in coking wastewater at different treatment stages (anaerobic, anaerobic/aerobic, anaerobic/aerobic/photo degradation, anaerobic/aerobic/ozone oxidation treatment) and the effects of them on the development of maize embryos and the activity of amylase and protease in maize seeds. Moreover the interaction of refractory organic matters in the wastewater at different treatment stages with amylase and protease also were determined in vitro. The results show that the biodegradable and the refractory organic compounds in the wastewater both can affect maize embryo development (germination inhibition rate is 19.3% for biodegradable organic compounds). As the treatment stage preceding, the inhibition effect of coking wastewater on the development of the maize embryo (for germination inhibition rates change from 49.3% to 24.6%) and on enzymatic activity (inhibition rates change from 63.9% to 22.4% for amylase) decreases gradually, but the photo-degradation treatment to anaerobic/aerobic effluent can increase its toxicity. The changes in the ability of the refractory organic compounds to bind with enzyme proteins, combined with the analysis of the organic components by GC/MS, show that in the process of coking wastewater treatment no new toxic chemicals were produced. PMID:23022415

  5. EMISSIONS OF METALS, CHROMIUM AND NICKEL SPECIES, AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

    EPA Science Inventory

    In order to provide data to support regulations on municipal wastewater sludge incineration, emissions of metals, hexavalent chromium, nickel subsulfide, polychlorinated dibenzo-dioxins and furans (PCDD/PCDFs), semivolatile and volatile organic compounds, carbon monoxide (CO)...

  6. Determination of potentially bioaccumulating complex mixtures of organochlorine compounds in wastewater: a review.

    PubMed

    Contreras López, M Concepción

    2003-03-01

    Organic chlorine compounds can be persistent environmental contaminants and may be accumulated through the food chain to the aquatic organisms, to fish and humans, depending basically on their hydrophobic properties. Consequently, there is an interest to measure these organic compounds from both the scientific and regulatory communities. The analytical essays have been improved for measuring specific organic chlorine compounds that present the most toxicological potential (polychlorinated biphenyls [PCBs], certain pesticides and dioxins), although they are tedious and time-consuming procedures. The existing tests to measure adsorbable organic halogens (AOX) or extractable organic halogens (EOX) do not distinguish the more hydrophobic organic chlorine matter. The intention of this paper is to make a review of the existing methods to measure the potentially bioaccumulating organochlorine compounds (OCs) from wastewater and propose a methodology to a standardisation procedure for complex mixtures of OCs in wastewater, such as pulp mill effluents. A new method has been proposed for determining the most hydrophobic part of the extractable organic halogens (EOX(fob)), the lowest reported value is 0.6 microg/l, expressed as chloride, and the relative standard deviation at 20 microg/l is 7% on laboratory samples and 30% on real effluents. This new procedure could be a valuable tool to complement environmental risk assessment studies of wastewater discharges. PMID:12605924

  7. Effect of biological wastewater treatment on the molecular weight distribution of soluble organic compounds and on the reduction of BOD, COD and P in pulp and paper mill effluent.

    PubMed

    Leiviskä, Tiina; Nurmesniemi, Hannu; Pöykiö, Risto; Rämö, Jaakko; Kuokkanen, Toivo; Pellinen, Jaakko

    2008-08-01

    Pulp and paper mill wastewater was characterizated, before (influent) and after (effluent) biological wastewater treatment based on an activated sludge process, by microfiltration (8, 3, 0.45 and 0.22microm) and ultrafiltration (100, 50, 30 and 3kDa) of the wastewater samples into different size fractions. Various parameters were measured on each fraction: molecular weight distribution (MWD) using high performance size exclusion chromatography (HPSEC), total organic carbon (TOC), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (Tot-P), phosphate phosphorus (PO(4)-P), electrical conductivity, pH, turbidity, charge quantity and zeta potential. The MWD, TOC and COD(Cr) results indicated that the majority of the material present in both the influent and effluent was in the medium molecular weight (MW) range (i.e. MW<10kDa) with three main MW sub-fractions. There were no significant differences in the range of the MWD between the influent and effluent samples. The magnitude of the MWD in the effluent was about one half that in the influent, the greatest reduction being in the 6kDa fraction. The 3kDa fractions of both the influent and effluent showed a considerable increase in BOD(7), probably due to the removal of compounds harmful to bacteria in 3kDa ultrafiltration. Influent turbidity decreased considerably in microfiltration (8-0.22microm). As the turbidity was removed by 0.22microm filtration, the anionic charge quantity started to decrease. Particles in the influent and effluent contained 19-29% and 14-20% of the total phosphorus, respectively. The major phosphorus fraction was in the form of soluble phosphate. PMID:18707750

  8. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS.

  9. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. PMID:24140682

  10. Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability.

    PubMed

    Yu, Xubiao; Xu, Ronghua; Wei, Chaohai; Wu, Haizhen

    2016-01-25

    The effect of ferrous sulfate (FeSO4) treatment on the removal of cyanide compounds and the improvement of biodegradability of coking wastewater were investigated by varying Fe:TCN molar ratios. Results suggested that the reaction between FeSO4 and coking wastewater was a two-step process. At the first step, i.e., 0≤Fe:TCN≤1.0, the reaction mechanisms were dominated by the precipitation of FeS, the complexation of CN(-), and the coagulation of organic compounds. The COD of coking wastewater decreased from 3748.1 mg/L to 3450.2 mg/L, but BOD5:COD (B/C) was improved from 0.30 to 0.51. At the second step, i.e., 1.0compounds by ferrous ions was the dominating mechanism. The COD showed a continuous increase to 3542.2 mg/L (Fe:TCN=3.2) due to the accumulated ferrous ions in coking wastewater. Moreover, B/C decreased progressively to 0.35, which was attributed to the negative effects of excess ferrous ions on biodegradability. To improve coking wastewater's biodegradability, a minimum ferrous dosage is required to complete the first step reaction. However, the optimum ferrous dosage should be determined to control a safe residual TCN in coking wastewater for the further biological treatment.

  11. Combined physical, chemical and biological treatments of wastewater containing organics from a semiconductor plant.

    PubMed

    Lin, Sheng H; Kiang, Chang D

    2003-02-28

    Wastewater containing organics from a semiconductor plant was experimentally investigated in this study. The wastewater is characterized by strong color, high chemical oxygen demand (COD), a large amount of refractory volatile organic compounds and low biodegradability. Because of these characteristics, treatment of this wastewater by traditional activated sludge method is essentially impossible. In the present work, combined physical, chemical and biological methods were synergistically utilized to tackle the wastewater. The combined treatment consisted of air stripping, modified Fenton oxidation and sequencing batch reactor (SBR) method. Air stripping was employed to remove the majority of volatile organic components (notably isopropyl alcohol) from the wastewater, while the Fenton treatment decomposed the remaining refractory organics leading to simultaneous reductions of wastewater COD and color. After proper dilution with other low-strength, organics-containing wastewater stream, the wastewater effluent was finally treated by the SBR method. Experimental tests were conducted to determine the effectiveness and the optimum operating conditions of each treatment process. Test results clearly demonstrated the advantages of the combined treatments. The treatment train was found capable of lowering the wastewater COD concentration from as high as 80,000 mg/l to below 100mg/l and completely eliminating the wastewater color. The overall water quality of the final effluent exceeded the direct discharge standard and the effluent can even be considered for reuse.

  12. Occurrence of Endocrine-Disrupting and Other Wastewater Compounds during Water Treatment with Case Studies from Lincoln, Nebraska and Berlin, Germany

    EPA Science Inventory

    Except for herbicides, research on the fate and transport of endocrine disrupting compounds and other organic wastewater compounds released into the environment and their potential presence in drinking water is in its infancy. Analytical methods still are being developed, evalua...

  13. Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, Grorge

    2001-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

  14. Electrochemical Transformation of Trace Organic Contaminants in Latrine Wastewater.

    PubMed

    Jasper, Justin T; Shafaat, Oliver S; Hoffmann, Michael R

    2016-09-20

    Solar-powered electrochemical systems have shown promise for onsite wastewater treatment in regions where basic infrastructure for conventional wastewater treatment is not available. To assess the applicability of these systems for trace organic contaminant treatment, test compound electrolysis rate constants were measured in authentic latrine wastewater using mixed-metal oxide anodes coupled with stainless steel cathodes. Complete removal of ranitidine and cimetidine was achieved within 30 min of electrolysis at an applied potential of 3.5 V (0.7 A L(-1)). Removal of acetaminophen, ciprofloxacin, trimethoprim, propranolol, and carbamazepine (>80%) was achieved within 3 h of electrolysis. Oxidation of ranitidine, cimetidine, and ciprofloxacin was primarily attributed to reaction with NH2Cl. Transformation of trimethoprim, propranolol, and carbamazepine was attributed to direct electron transfer and to reactions with surface-bound reactive chlorine species. Relative contributions of aqueous phase ·OH, ·Cl, ·Cl2(-), HOCl/OCl(-), and Cl2 were determined to be negligible based on measured second-order reaction rate constants, probe compound reaction rates, and experiments in buffered Cl(-) solutions. Electrical energy per order of removal (EEO) increased with increasing applied potentials and current densities. Test compound removal was most efficient at elevated Cl(-) concentrations present when treated wastewater is recycled for use as flushing water (i.e., ∼ 75 mM Cl(-); EEO = 0.2-6.9 kWh log(-1) m(-3)). Identified halogenated and oxygenated electrolysis products typically underwent further transformations to unidentifiable products within the 3 h treatment cycle. Identifiable halogenated byproduct formation and accumulation was minimized during electrolysis of wastewater containing 75 mM Cl(-). PMID:27564843

  15. Electrochemical Transformation of Trace Organic Contaminants in Latrine Wastewater.

    PubMed

    Jasper, Justin T; Shafaat, Oliver S; Hoffmann, Michael R

    2016-09-20

    Solar-powered electrochemical systems have shown promise for onsite wastewater treatment in regions where basic infrastructure for conventional wastewater treatment is not available. To assess the applicability of these systems for trace organic contaminant treatment, test compound electrolysis rate constants were measured in authentic latrine wastewater using mixed-metal oxide anodes coupled with stainless steel cathodes. Complete removal of ranitidine and cimetidine was achieved within 30 min of electrolysis at an applied potential of 3.5 V (0.7 A L(-1)). Removal of acetaminophen, ciprofloxacin, trimethoprim, propranolol, and carbamazepine (>80%) was achieved within 3 h of electrolysis. Oxidation of ranitidine, cimetidine, and ciprofloxacin was primarily attributed to reaction with NH2Cl. Transformation of trimethoprim, propranolol, and carbamazepine was attributed to direct electron transfer and to reactions with surface-bound reactive chlorine species. Relative contributions of aqueous phase ·OH, ·Cl, ·Cl2(-), HOCl/OCl(-), and Cl2 were determined to be negligible based on measured second-order reaction rate constants, probe compound reaction rates, and experiments in buffered Cl(-) solutions. Electrical energy per order of removal (EEO) increased with increasing applied potentials and current densities. Test compound removal was most efficient at elevated Cl(-) concentrations present when treated wastewater is recycled for use as flushing water (i.e., ∼ 75 mM Cl(-); EEO = 0.2-6.9 kWh log(-1) m(-3)). Identified halogenated and oxygenated electrolysis products typically underwent further transformations to unidentifiable products within the 3 h treatment cycle. Identifiable halogenated byproduct formation and accumulation was minimized during electrolysis of wastewater containing 75 mM Cl(-).

  16. Chemical procedures to detect carcinogenic compound in domestic wastewater

    NASA Astrophysics Data System (ADS)

    S, Abd Manan T.; A, Malakahmad

    2013-06-01

    This review presents chemical methods to detect carcinogenic compound in wastewater. Atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC) and gas chromatography mass spectroscopy (GCMS) and their alternative attached equipments were discussed. The application of each method is elaborated using related studies in the field.

  17. PERSISTENT PERFLUORINATED ORGANIC COMPOUNDS

    EPA Science Inventory

    Perfluorinated compounds (PFCs) have gained notoriety in the recent past. Global distribution of PFCs in wildlife, environmental samples and humans has sparked a recent increase in new investigations concerning PFCs. Historically PFCs have been used in a wide variety of consume...

  18. Energies of organic compounds

    SciTech Connect

    Wiberg, K.B.

    1995-07-01

    The studies included hydrolysis of ketals, hydration of alkenes, barrier to rotation about C-O bonds in esters and acids, hydrolysis of lactones, reduction of ketones, non-bonded interactions, and enthalpies of vaporization of ketones, ketals, and other compounds.

  19. Removal of phenolic compounds from wastewaters using soybean peroxidase

    SciTech Connect

    Wright, H.; Nicell, J.A.

    1996-11-01

    Toxic and odiferous phenolic compounds are present in wastewaters generated by a variety of industries including petroleum refining, plastics, resins, textiles, and iron and steel manufacturing among others. Due to its commercial availability in purified form, its useful presence in raw plant material, and its proven ability to remove a variety of phenolic contaminants from wastewaters over a wide range of pH and temperature, horseradish peroxidase (HRP) appears to be the peroxidase enzyme of choice in enzymatic wastewater treatment studies. Problems with HRP catalyzed phenol removal, however, include the formation of toxic soluble reaction by-products, the cost of the enzyme, and costs associated with disposal of the phenolic precipitate generated. Enzyme costs are incurred because the enzyme is inactivated during the phenol removal process by various side reactions. While recent work has shown that enzyme inactivation can be reduced using chemical additives, the problem of enzyme cost could be circumvented by using a less expensive source of enzyme. In 1991, the seed coat of the soybean was identified as a very rich source of peroxidase enzyme. Since the seed coat of the soybean is a waste product of the soybean food industry, soybean peroxidase (SBP) has the potential of being a cost effective alternative to HRP in wastewater treatment. In this study, SBP is characterized in terms of its catalytic activity, its stability, and its ability to promote removal of phenolic compounds from synthetic wastewaters. Results obtained are discussed and compared to similar investigations using HRP.

  20. Organic Compounds in Stardust

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Clemett. Simon J.; Sandford, Scott A.; Nakamura-Messenger, Keiko; Hoerz, Fredrich

    2011-01-01

    The successful return of the STARDUST spacecraft provides a unique opportunity to investigate the nature and distribution of organic matter in cometary dust particles collected from Comet 81P/Wild-2. Analysis of individual cometary impact tracks in silica aerogel using the technique of two-step laser mass spectrometry (L2MS) demonstrates the presence of complex aromatic organic matter. While concerns remain as to the organic purity of the aerogel collection medium and the thermal effects associated with hypervelocity capture, the majority of the observed organic species appear indigenous to the impacting particles and are hence of cometary origin. While the aromatic fraction of the total organic matter present is believed to be small, it is notable in that it appears to be N-rich. Spectral analysis in combination with instrumental detection sensitivities suggest that N is incorporated predominantly in the form of aromatic nitriles (R-C N). While organic species in the STARDUST samples do share some similarities with those present in the matrices of carbonaceous chondrites, the closest match is found with stratospherically collected interplanetary dust particles. These findings are consistent with the notion that a fraction of interplanetary dust is of cometary origin. The presence of complex organic N-containing species in comets has astrobiological implications since comets are likely to have contributed to the prebiotic chemical inventory of both the Earth and Mars.

  1. Organophosphorus Compounds in Organic Electronics.

    PubMed

    Shameem, Muhammad Anwar; Orthaber, Andreas

    2016-07-25

    This Minireview describes recent advances of organophosphorus compounds as opto-electronic materials in the field of organic electronics. The progress of (hetero-) phospholes, unsaturated phosphanes, and trivalent and pentavalent phosphanes since 2010 is covered. The described applications of organophosphorus materials range from single molecule sensors, field effect transistors, organic light emitting diodes, to polymeric materials for organic photovoltaic applications. PMID:27276233

  2. Organophosphorus Compounds in Organic Electronics.

    PubMed

    Shameem, Muhammad Anwar; Orthaber, Andreas

    2016-07-25

    This Minireview describes recent advances of organophosphorus compounds as opto-electronic materials in the field of organic electronics. The progress of (hetero-) phospholes, unsaturated phosphanes, and trivalent and pentavalent phosphanes since 2010 is covered. The described applications of organophosphorus materials range from single molecule sensors, field effect transistors, organic light emitting diodes, to polymeric materials for organic photovoltaic applications.

  3. Enzymatic oxidation of phenolic compounds in coffee processing wastewater.

    PubMed

    Torres, Juliana Arriel; Batista Chagas, Pricila Maria; Silva, Maria Cristina; dos Santos, Custódio Donizete; Duarte Corrêa, Angelita

    2016-01-01

    Peroxidases can be used in the treatment of wastewater containing phenolic compounds. The effluent from the wet processing of coffee fruits contains high content of these pollutants and although some studies propose treatments for this wastewater, none targets specifically the removal of these recalcitrant compounds. This study evaluates the potential use of different peroxidase sources in the oxidation of caffeic acid and of total phenolic compounds in coffee processing wastewater (CPW). The identification and quantification of phenolic compounds in CPW was performed and caffeic acid was found to be the major phenolic compound. Some factors, such as reaction time, pH, amount of H2O2 and enzyme were evaluated, in order to determine the optimum conditions for the enzyme performance for maximum oxidation of caffeic acid. The turnip peroxidase (TPE) proved efficient in the removal of caffeic acid, reaching an oxidation of 51.05% in just 15 minutes of reaction. However, in the bioremediation of the CPW, the horseradish peroxidase (HRP) was more efficient with 32.70%±0.16 of oxidation, followed by TPE with 18.25%±0.11. The treatment proposed in this work has potential as a complementary technology, since the efficiency of the existing process is intimately conditioned to the presence of these pollutants.

  4. Enzymatic oxidation of phenolic compounds in coffee processing wastewater.

    PubMed

    Torres, Juliana Arriel; Batista Chagas, Pricila Maria; Silva, Maria Cristina; dos Santos, Custódio Donizete; Duarte Corrêa, Angelita

    2016-01-01

    Peroxidases can be used in the treatment of wastewater containing phenolic compounds. The effluent from the wet processing of coffee fruits contains high content of these pollutants and although some studies propose treatments for this wastewater, none targets specifically the removal of these recalcitrant compounds. This study evaluates the potential use of different peroxidase sources in the oxidation of caffeic acid and of total phenolic compounds in coffee processing wastewater (CPW). The identification and quantification of phenolic compounds in CPW was performed and caffeic acid was found to be the major phenolic compound. Some factors, such as reaction time, pH, amount of H2O2 and enzyme were evaluated, in order to determine the optimum conditions for the enzyme performance for maximum oxidation of caffeic acid. The turnip peroxidase (TPE) proved efficient in the removal of caffeic acid, reaching an oxidation of 51.05% in just 15 minutes of reaction. However, in the bioremediation of the CPW, the horseradish peroxidase (HRP) was more efficient with 32.70%±0.16 of oxidation, followed by TPE with 18.25%±0.11. The treatment proposed in this work has potential as a complementary technology, since the efficiency of the existing process is intimately conditioned to the presence of these pollutants. PMID:26744933

  5. Biomedical Compounds from Marine organisms

    PubMed Central

    Jha, Rajeev Kumar; Zi-rong, Xu

    2004-01-01

    The Ocean, which is called the ‘mother of origin of life’, is also the source of structurally unique natural products that are mainly accumulated in living organisms. Several of these compounds show pharmacological activities and are helpful for the invention and discovery of bioactive compounds, primarily for deadly diseases like cancer, acquired immuno-deficiency syndrome (AIDS), arthritis, etc., while other compounds have been developed as analgesics or to treat inflammation, etc. The life-saving drugs are mainly found abundantly in microorganisms, algae and invertebrates, while they are scarce in vertebrates. Modern technologies have opened vast areas of research for the extraction of biomedical compounds from oceans and seas.

  6. Extraterrestrial Organic Compounds in Meteorites

    NASA Technical Reports Server (NTRS)

    Botta, Oliver; Bada, Jeffrey L.; Meyer, Michael (Technical Monitor)

    2003-01-01

    Many organic compounds or their precursors found in meteorites originated in the interstellar or circumstellar medium and were later incorporated into planetesimals during the formation of the solar system. There they either survived intact or underwent further processing to synthesize secondary products on the meteorite parent body. The most distinct feature of CI and CM carbonaceous chondrites, two types of stony meteorites, is their high carbon content (up to 3% of weight), either in the form of carbonates or of organic compounds. The bulk of the organic carbon consists of an insoluble macromolecular material with a complex structure. Also present is a soluble organic fraction, which has been analyzed by several separation and analytical procedures. Low detection limits can be achieved by derivatization of the organic molecules with reagents that allow for analysis by gas chromatography/mass spectroscopy and high performance liquid chromatography. The CM meteorite Murchison has been found to contain more than 70 extraterrestrial amino acids and several other classes of compounds including carboxylic acids, hydroxy carboxylic acids, sulphonic and phosphonic acids, aliphatic, aromatic and polar hydrocarbons, fullerenes, heterocycles as well as carbonyl compounds, alcohols, amines and amides. The organic matter was found to be enriched in deuterium, and distinct organic compounds show isotopic enrichments of carbon and nitrogen relative to terrestrial matter.

  7. Photoprotective compounds from marine organisms.

    PubMed

    Rastogi, Rajesh P; Richa; Sinha, Rajeshwar P; Singh, Shailendra P; Häder, Donat-P

    2010-06-01

    The substantial loss in the stratospheric ozone layer and consequent increase in solar ultraviolet radiation on the earth's surface have augmented the interest in searching for natural photoprotective compounds in organisms of marine as well as freshwater ecosystems. A number of photoprotective compounds such as mycosporine-like amino acids (MAAs), scytonemin, carotenoids and several other UV-absorbing substances of unknown chemical structure have been identified from different organisms. MAAs form the most common class of UV-absorbing compounds known to occur widely in various marine organisms; however, several compounds having UV-screening properties still need to be identified. The synthesis of scytonemin, a predominant UV-A-photoprotective pigment, is exclusively reported in cyanobacteria. Carotenoids are important components of the photosynthetic apparatus that serve both light-harvesting and photoprotective functions, either by direct quenching of the singlet oxygen or other toxic reactive oxygen species or by dissipating the excess energy in the photosynthetic apparatus. The production of photoprotective compounds is affected by several environmental factors such as different wavelengths of UVR, desiccation, nutrients, salt concentration, light as well as dark period, and still there is controversy about the biosynthesis of various photoprotective compounds. Recent studies have focused on marine organisms as a source of natural bioactive molecules having a photoprotective role, their biosynthesis and commercial application. However, there is a need for extensive work to explore the photoprotective role of various UV-absorbing compounds from marine habitats so that a range of biotechnological and pharmaceutical applications can be found.

  8. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy.

    PubMed

    Phillips, Patrick J; Gibson, Catherine A; Fisher, Shawn C; Fisher, Irene J; Reilly, Timothy J; Smalling, Kelly L; Romanok, Kristin M; Foreman, William T; ReVello, Rhiannon C; Focazio, Michael J; Jones, Daniel K

    2016-06-30

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region. PMID:27177500

  9. Regional variability in bed-sediment concentrations of wastewater compounds, hormones and PAHs for portions of coastal New York and New Jersey impacted by hurricane Sandy

    USGS Publications Warehouse

    Phillips, Patrick; Gibson, Cathy A; Fisher, Shawn C.; Fisher, Irene; Reilly, Timothy J.; Smalling, Kelly; Romanok, Kristin; Foreman, William; ReVello, Rhiannon C.; Focazio, Michael J.; Jones, Daniel K.

    2016-01-01

    Bed sediment samples from 79 coastal New York and New Jersey, USA sites were analyzed for 75 compounds including wastewater associated contaminants, PAHs, and other organic compounds to assess the post-Hurricane Sandy distribution of organic contaminants among six regions. These results provide the first assessment of wastewater compounds, hormones, and PAHs in bed sediment for this region. Concentrations of most wastewater contaminants and PAHs were highest in the most developed region (Upper Harbor/Newark Bay, UHNB) and reflected the wastewater inputs to this area. Although the lack of pre-Hurricane Sandy data for most of these compounds make it impossible to assess the effect of the storm on wastewater contaminant concentrations, PAH concentrations in the UHNB region reflect pre-Hurricane Sandy conditions in this region. Lower hormone concentrations than predicted by the total organic carbon relation occurred in UHNB samples, suggesting that hormones are being degraded in the UHNB region.

  10. Photochemical dimerization of organic compounds

    SciTech Connect

    Crabtree, R.H.; Brown, S.H.; Muedas, C.A.; Ferguson, R.R.

    1992-04-14

    This patent describes improvement in a Group IIb photosensitized vapor phase dimerization of an organic compound in which a gaseous mixture of a Group IIB metal and the organic compound is irradiated in a reaction zone with a photosensitizing amount of radiant energy. The improvement comprises: a continuous stream of the gaseous mixture is passed as a vapor phase in a single pass through the reaction zone at a temperature at which the thus-produced dimer condenses immediately upon the formation thereof; the starting gaseous mixture comprises hydrogen and two ethylenically unsaturated compounds selected from the group consisting of alkenes of at least six carbon atoms, unsaturated nitriles, unsaturated epoxides, unsaturated silanes, unsaturated amines, unsaturated phosphines, and fluorinated alkenes; the gaseous mixture comprises nitrous oxide and the organic compound is a saturated compound with C-H bond strengths greater than 100 kcal/mol or a mixture of the saturated compound and an alkene; or the starting gaseous comprises an activating amount of hydrogen and the dimerization is a dehydrodimerization or cross-dimerization of a saturated hydrocarbon.

  11. [The Study on the Characteristics of Organic Pollution in Typical Herbicide Plant Wastewater].

    PubMed

    Chen, Yu-hui; Xi, Hong-bo; Yu, Dong; Zhou, Yue-xi; Chen, Xue-min; Fu, Xiao-yong

    2015-12-01

    Herbicide wastewater is one of tne industrial wastewater, it has high salt content, poor biodegradability, biodegradable characteristics. Nitrogen-containing organic compounds are dominated in dissolved organic matter and dissolved organic matter of wastewater, BOD: COD = 0.045, C:N:P = 692:426:1. Applying static headspace, purg and trap, solid-phase extraction, solid-phase microextraction and liquid-liquid extraction as pretreatment methods combined with gas chromatography/mass spectrometry (GC/MS), which qualitatively analyzed the organic components of the Atrazine, acetochlor herbicide production wastewater and researched the UV spectrum, three-dimensional fluorescence spectroscopy of the wastewater and its major pollutants. The study of GC/MS indicated that Wastewater contained chlorinated hydrocarbons, BTEX and triazines, amides herbicides etc. 38 kinds of volatile and semi-volatile organic compounds, atrazine and acetochlor herbicides accounted for 87. 99%. Affected monocyclic or heterocyclic substances, the ultraviolet absorption spectrum of the wastewater in 210-230 and 250-270 nm in that the amino group lead to the UV absorption red shift 20 nm. Wastewater generated 5 fluorescence peak in λ(ex)/λ(em) = 200-280/300-400 nm, such as a(225/305 nm), b(265/365 nm), c(275/305 nm), d(285/390 nm), e(320/375 nm). Based on three-dimensional fluorescence results of the different functional groups of the characteristics organic, fluorescent area of unsaturated bond is in λ(ex)/λ(em) = 215-230/290-340 nm, the main contribution of the fluorescent substance in the region were olefins, benzene, heterocyclic in the wastewater; fluorescent area of Phenolic hydroxyl and carbonyl is in λ(ex)/λ(em) = 270/300 nm, the main contribution of the fluorescent substance in the region were phenols, ketones. PMID:26964227

  12. Students' Categorizations of Organic Compounds

    ERIC Educational Resources Information Center

    Domin, Daniel S.; Al-Masum, Mohammad; Mensah, John

    2008-01-01

    Categorization is a fundamental psychological ability necessary for problem solving and many other higher-level cognitive tasks. In organic chemistry, students must establish groupings of different chemical compounds in order not only to solve problems, but also to understand course content. Classic models of categorization emphasize similarity as…

  13. Tracing the limits of organic micropollutant removal in biological wastewater treatment.

    PubMed

    Falås, Per; Wick, Arne; Castronovo, Sandro; Habermacher, Jonathan; Ternes, Thomas A; Joss, Adriano

    2016-05-15

    Removal of organic micropollutants was investigated in 15 diverse biological reactors through short and long-term experiments. Short-term batch experiments were performed with activated sludge from three parallel sequencing batch reactors (25, 40, and 80 d solid retention time, SRT) fed with synthetic wastewater without micropollutants for one year. Despite the minimal micropollutant exposure, the synthetic wastewater sludges were able to degrade several micropollutants present in municipal wastewater. The degradation occurred immediately after spiking (1-5 μg/L), showed no strong or systematic correlation to the sludge age, and proceeded at rates comparable to those of municipal wastewater sludges. Thus, the results from the batch experiments indicate that degradation of organic micropollutants in biological wastewater treatment is quite insensitive to SRT increases from 25 to 80 days, and not necessarily induced by exposure to micropollutants. Long-term experiments with municipal wastewater were performed to assess the potential for extended biological micropollutant removal under different redox conditions and substrate concentrations (carbon and nitrogen). A total of 31 organic micropollutants were monitored through influent-effluent sampling of twelve municipal wastewater reactors. In accordance with the results from the sludges grown on synthetic wastewater, several compounds such as bezafibrate, atenolol and acyclovir were significantly removed in the activated sludge processes fed with municipal wastewater. Complementary removal of two compounds, diuron and diclofenac, was achieved in an oxic biofilm treatment. A few aerobically persistent micropollutants such as venlafaxine, diatrizoate and tramadol were removed under anaerobic conditions, but a large number of micropollutants persisted in all biological treatments. Collectively, these results indicate that certain improvements in biological micropollutant removal can be achieved by combining different

  14. Tracing the limits of organic micropollutant removal in biological wastewater treatment.

    PubMed

    Falås, Per; Wick, Arne; Castronovo, Sandro; Habermacher, Jonathan; Ternes, Thomas A; Joss, Adriano

    2016-05-15

    Removal of organic micropollutants was investigated in 15 diverse biological reactors through short and long-term experiments. Short-term batch experiments were performed with activated sludge from three parallel sequencing batch reactors (25, 40, and 80 d solid retention time, SRT) fed with synthetic wastewater without micropollutants for one year. Despite the minimal micropollutant exposure, the synthetic wastewater sludges were able to degrade several micropollutants present in municipal wastewater. The degradation occurred immediately after spiking (1-5 μg/L), showed no strong or systematic correlation to the sludge age, and proceeded at rates comparable to those of municipal wastewater sludges. Thus, the results from the batch experiments indicate that degradation of organic micropollutants in biological wastewater treatment is quite insensitive to SRT increases from 25 to 80 days, and not necessarily induced by exposure to micropollutants. Long-term experiments with municipal wastewater were performed to assess the potential for extended biological micropollutant removal under different redox conditions and substrate concentrations (carbon and nitrogen). A total of 31 organic micropollutants were monitored through influent-effluent sampling of twelve municipal wastewater reactors. In accordance with the results from the sludges grown on synthetic wastewater, several compounds such as bezafibrate, atenolol and acyclovir were significantly removed in the activated sludge processes fed with municipal wastewater. Complementary removal of two compounds, diuron and diclofenac, was achieved in an oxic biofilm treatment. A few aerobically persistent micropollutants such as venlafaxine, diatrizoate and tramadol were removed under anaerobic conditions, but a large number of micropollutants persisted in all biological treatments. Collectively, these results indicate that certain improvements in biological micropollutant removal can be achieved by combining different

  15. Antibiotic, Pharmaceutical, and Wastewater-Compound Data for Michigan, 1998-2005

    USGS Publications Warehouse

    Haack, Sheridan Kidd

    2010-01-01

    the filtered-wastewater analysis were detected. Antibiotics were detected at 7 of 20 tested surface-water sites, but none were detected in 2 groundwater samples. Pharmaceuticals were detected at 7 of 11 surface-water sites. Wastewater compounds were detected at 25 of 31 sites for which unfiltered water samples were analyzed and at least once at all 40 surface-water sites and all 4 groundwater sites for which filtered water samples were analyzed. Overall, the chemicals detected most frequently in Michigan waters were similar to those reported frequently in other studies nationwide. Patterns of chemical detections were site specific and appear to be related to local sources, overall land use, and hydrologic conditions at the time of sampling. Field-blank results provide important information for the design of future sampling programs in Michigan and demonstrate the need for careful field-study design. Field-replicate results indicated substantial confidence regarding the presence or absence of the many chemicals tested. Overall, data reported herein indicate that a wide array of antibiotic, pharmaceutical, and organic wastewater compounds occur in Michigan waters. Patterns of occurrence, with respect to hydrologic, land use, and source variables, generally appear to be similar for Michigan as for other sampled waters across the United States. The data reported herein can serve as a basis for future studies in Michigan.

  16. Stripping organics from groundwater and wastewater

    SciTech Connect

    Lamarre, B.; Shearouse, D.

    1996-03-01

    At thousands of installations worldwide, air stripping has been used as an efficient method for removing volatile and semi-volatile contaminants from water -- both groundwater and industrial wastewater streams. In addition to numerous field installations, extensive laboratory analysis has confirmed the performance of various types and sizes of air strippers, and has made the practice highly predictable for a wide range of contaminants. The general principles of air stripping are quite simple. Within an air stripper, an air stream is directed across a thin film of contaminated water. Contaminants at the air-water interface volatilize and are discharged to the atmosphere, or to an off-gas treatment system. The two main types of air strippers are packed towers and try-type strippers. In many cases, air stripping can be a fast, efficient and economical approach to treating organics-laden water streams. However, since different wastewater streams can vary significantly, each must be evaluated to characterize its constitutents, determine each constituent`s potential affinity or resistance to being volatilized, and identify any pre-treatment steps that need to be taken to produce the desired results.

  17. OPTIMIZATION OF MULTICOMPONENT PERVAPORATION FOR REMOVAL OF VOLATILE ORGANIC COMPOUNDS FROM WATER

    EPA Science Inventory

    Optimal operation of a hollow fiber membrane module for pervaporative removal of multicomponent volatile organic compounds (VOCs) from wastewater was studied. A shell-and-tube heat-exchange type of hollow fiber module was considered for treatment of a wastewater containing toluen...

  18. Biodegradation and biotransformation of wastewater organics as precursors of disinfection byproducts in water.

    PubMed

    Liu, Jin-lin; Li, Xiao-yan

    2010-11-01

    Laboratory experiments were carried out to investigate wastewater organics as the precursors of disinfection byproducts (DBPs) in drinking water supply. The focus was on the change in wastewater DBP precursors during biological degradation under simulated natural conditions. The wastewater and its treated secondary effluent were characterized for DBP formation potential (DBPFP) and DBP speciation profile, including trihalomethanes, haloacetic acids, chloral hydrate, and nitrogen-containing DBPs. Several model organic compounds, including humic acid, tannic acid, glucose, starch, glycine, and bovine serum albumin (BSA), were used to represent the different types of organic pollutants in wastewater discharge. The results show that the DBPFP of wastewater decreased after biodegradation, but the remaining organic matter had a greater DBPFP yield with chlorine. Different model organics displayed different changes in DBPFP during biodegradation. The DBPFP remained largely unchanged for the glycine solution, decreased greatly for the tannic acid and BSA solutions, and increased nearly 3-fold for the glucose and starch solutions after 10d of biodegradation. Meanwhile, the DBPFP yield increased from 3 for glycine to 51μg DBP mg(-1) C for its degradation residue, and from 1 for glucose and starch to 87 and 38μg DBP mg(-1) C for their organic residues, respectively. Although biodegradation may effectively remove some DBP precursors, biotransformation during the process produces new DBP precursors in the form of soluble microbial products (SMPs). The experimental results reveal that SMPs may be an important source of wastewater-derived DBP precursors in natural waters.

  19. Occurrence and treatment of wastewater-derived organic nitrogen.

    PubMed

    Chen, Baiyang; Kim, Youngil; Westerhoff, Paul

    2011-10-01

    Dissolved organic nitrogen (DON) derived from wastewater effluent can participate in reactions that lead to formation of nitrogenous chlorination by-products, membrane fouling, eutrophication, and nitrification issues, so management of DON is important for both wastewater reuse applications and nutrient-sensitive watersheds that receive discharges from treated wastewater. This study documents DON occurrence in full-scale water/wastewater (W/WW) treatment plant effluents and assesses the removal of wastewater-derived DON by several processes (biodegradation, coagulation, softening, and powdered activated carbon [PAC] adsorption) used for advanced treatment in wastewater reuse applications. After varying levels of wastewater treatment, the dominant aqueous nitrogenous species shifts from ammonia to nitrate after aerobic processes and nitrate to DON in tertiary treatment effluents. The fraction of DON in total dissolved nitrogen (TDN) accounts for at most 52% in tertiary treated effluents (median=13%) and 54% in surface waters impacted by upstream wastewater discharges (median=31%). The 5-day biodegradability/bioavailability of DON (39%) was higher, on average, than that of dissolved organic carbon (DOC, 26%); however, upon chlorination, the DON removal (3%) decreased significantly. Alum coagulation (with ≥8 mg/L alum per mg/L DOC) and lime softening (with pH 11.3-11.5) removed<25% of DON and DOC without selectivity. PAC adsorption preferentially removed more DOC than DON by 10% on average. The results provided herein hence shed light on approaches for reducing organic nitrogen content in treated wastewater. PMID:21741064

  20. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater

    PubMed Central

    Tafesh, Ahmed; Najami, Naim; Jadoun, Jeries; Halahlih, Fares; Riepl, Herbert; Azaizeh, Hassan

    2011-01-01

    Polyphenols or phenolic compounds are groups of secondary metabolites widely distributed in plants and found in olive mill wastewater (OMW). Phenolic compounds as well as OMW extracts were evaluated in vitro for their antimicrobial activity against Gram-positive (Streptococcus pyogenes and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). Most of the tested phenols were not effective against the four bacterial strains when tested as single compounds at concentrations of up to 1000 μg mL−1. Hydroxytyrosol at 400 μg mL−1 caused complete growth inhibition of the four strains. Gallic acid was effective at 200, and 400 μg mL−1 against S. aureus, and S. pyogenes, respectively, but not against the gram negative bacteria. An OMW fraction called AntiSolvent was obtained after the addition of ethanol to the crude OMW. HPLC analysis of AntiSolvent fraction revealed that this fraction contains mainly hydroxytyrosol (10.3%), verbascoside (7.4%), and tyrosol (2.6%). The combinations of AntiSolvent/gallic acid were tested using the low minimal inhibitory concentrations which revealed that 50/100–100/100 μg mL−1 caused complete growth inhibition of the four strains. These results suggest that OMW specific fractions augmented with natural phenolic ingredients may be utilized as a source of bioactive compounds to control pathogenic bacteria. PMID:21647315

  1. Role of fly ash in the removal of organic pollutants from wastewater

    SciTech Connect

    M. Ahmaruzzaman

    2009-03-15

    Fly ash, a relatively abundant and inexpensive material, is currently being investigated as an adsorbent for the removal of various organic pollutants from wastewater. The wastewater contains various types of phenolic compounds, such as chloro, nitro, amino, and other substituted compounds. Various types of pesticides, such as lindane, malathion, carbofuran, etc., and dyes, such as, methylene blue, crystal violet, malachite green, etc., are also present in the wastewater. These contaminants pollute the water stream. These organic pollutants, such as phenolic compounds, pesticides, and dyes, etc., can be removed very effectively using fly ash as adsorbent. This article presents a detailed review on the role of fly ash in the removal of organic pollutants from wastewater. Adsorption of various pollutants using fly ash has been reviewed. The adsorption mechanism and other influencing factors, favorable conditions, and competitive ions, etc., on the adsorption process have also been discussed in this paper. It is evident from the review that fly ash has demonstrated good removal capabilities for various organic compounds. 171 refs., 3 figs., 5 tabs.

  2. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.; Wong, Gregory K.

    2011-03-01

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  3. Volatile organic compound sensor system

    DOEpatents

    Schabron, John F.; Rovani, Jr., Joseph F.; Bomstad, Theresa M.; Sorini-Wong, Susan S.

    2009-02-10

    Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.

  4. Polar organic chemical integrative sampler (POCIS): application for monitoring organic micropollutants in wastewater effluent and surface water.

    PubMed

    Miège, Cécile; Budzinski, Hélène; Jacquet, Romain; Soulier, Coralie; Pelte, Thomas; Coquery, Marina

    2012-02-01

    In this paper, we discuss the advantages and drawbacks of POCIS (Polar Organic Chemical Integrative Sampler) for the evaluation of river water quality downstream of wastewater treatment plants. POCIS proved well adapted to sampling alkylphenols and several pharmaceuticals. Concentration factors and the decrease in limits of quantification, compared to grab water sample analyses, were significant except for hormones, β-blockers and bronchodilators. Promising preliminary results obtained in situ on deuterated atenolol used as a performance reference compound need to be confirmed in-lab. This work confirms that POCIS is a valuable tool for monitoring hydrophilic organic molecules in river and wastewaters. PMID:22193508

  5. In vivo endocrine disruption assessment of wastewater treatment plant effluents with small organisms.

    PubMed

    Castillo, Luis; Seriki, Kemi; Mateos, Stéphanie; Loire, Nicolas; Guédon, Nathalie; Lemkine, Gregory F; Demeneix, Barbara A; Tindall, Andrew J

    2013-01-01

    Surface water receives a variety of micro-pollutants that could alter aquatic organisms' reproduction and development. It is known that a few nanograms per litre of these compounds can induce endocrine-disrupting effects in aquatic species. Many compounds are released daily in wastewater, and identifying the compounds responsible for inducing such disruption is difficult. Methods using biological analysis are therefore an alternative to chemical analysis, as the endocrine disruption potential of the stream as a whole is considered. To detect hormonal disruption of thyroid and oestrogenic functions, fluorescent Xenopus laevis tadpoles and medaka (Oryzias latipes) fish larvae bearing genetic constructs integrating hormonal responsive elements were used for physiological screens for potential endocrine disruption in streams from an urban wastewater treatment plant. The Xenopus model was used to assess thyroid disruption and the medaka model oestrogenic disruption in wastewater samples. Assays using the genetically modified organisms were conducted on 9 influent and 32 effluent samples. The thyroidal effect of wastewater was either reduced or removed by the treatment plant; no oestrogenic effect was detected in any of the wastewater samples. PMID:23823564

  6. Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater.

    PubMed

    Camacho-Muñoz, Dolores; Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2014-09-01

    The distribution of pharmaceutically active compounds in the environment has been reported in several works in which wastewater treatment plants have been identified as the main source of these compounds to the environment. The concentrations of these compounds in influent wastewater can vary widely not only during the day but also along the year, because of the seasonal-consumption patterns of some pharmaceuticals. However, only few studies have attempted to assess the hourly variability of the concentrations of pharmaceutically active compounds in wastewater. In this work, the distribution and seasonal and hourly variability of twenty-one pharmaceuticals, belonging to seven therapeutic groups, have been investigated in urban and industrial wastewater. The highest concentrations of pharmaceutically active compounds, except salicylic acid, were found in urban wastewater, especially in the case of anti-inflammatory drugs and caffeine. The highest concentrations of salicylic acid were measured in industrial wastewater, reaching concentration levels up to 3295μgL(-)(1). The studied pharmaceutically active compounds showed different distribution patterns during winter and summer periods. Temporal variability of pharmaceutically active compounds during a 24-h period showed a distribution in concordance with their consumption and excretion patterns, in the case of urban wastewater, and with the schedule of industrial activities, in the case of industrial wastewater.

  7. [Role of Anammox Bacteria in Removal of Nitrogen Compounds from Wastewater].

    PubMed

    Kallistovaa, A Yu; Dorofeev, A G; Nikolaev, Yu A; Kozlov, M N; Kevbrina, M V; Pimenov, N V

    2016-01-01

    The review deals with the unique microbial group responsible for anaerobic ammonium oxidation with nitrite (anammox), and with the role of this process in development of the biotechnology for removal of nitrogen compounds from wastewater. The history of the study of this process is briefly related. Up-to date knowledge on the intracellular organization, energy metabolism, growth stoichiometry, and physiology of anammox bacteria is described, and the main methods for cultivation of these microorganisms are characterized. Special attention is paid to the problems associated with practical application of anammox bacteria, which result from their extremely slow growth, the absence of pure cultures, and the interaction with other microbial groups. PMID:27476201

  8. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  9. Fate of trace organics in a wastewater effluent dependent stream.

    PubMed

    Dong, Bingfeng; Kahl, Alandra; Cheng, Long; Vo, Hao; Ruehl, Stephanie; Zhang, Tianqi; Snyder, Shane; Sáez, A Eduardo; Quanrud, David; Arnold, Robert G

    2015-06-15

    Trace organic compounds (TOrCs) in municipal wastewater effluents that are discharged to streams are of potential concern to ecosystem and human health. This study examined the fate of a suite of TOrCs and estrogenic activity in water and sediments in an effluent-dependent stream in Tucson, Arizona. Sampling campaigns were performed during 2011 to 2013 along the Lower Santa Cruz River, where TOrCs and estrogenic activity were measured in aqueous (surface) and solid (riverbed sediment) phases. Some TOrCs, including contributors to estrogenic activity, were rapidly attenuated with distance of travel in the river. Those TOrCs that are not sufficiently attenuated and percolate to ground water have in common low biodegradation probabilities and low octanol-water distribution ratios. Independent experiments showed that attenuation of estrogenic compounds may be due in part to indirect photolysis caused by formation of organic radicals from sunlight absorption. Hydrophobic TOrCs may accumulate in riverbed sediments during dry weather periods, but riverbed sediment quality is periodically affected through storm-related scouring during periods of heavy rainfall and runoff. Taken together, evidence suggests that natural processes can attenuate at least some TOrCs, reducing potential impacts to ecosystem and human health. PMID:25777953

  10. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, G.D.; Moore, G.A.; Stone, M.L.; Reagen, W.K.

    1995-08-29

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs. 15 figs.

  11. Volatile organic compound sensing devices

    DOEpatents

    Lancaster, Gregory D.; Moore, Glenn A.; Stone, Mark L.; Reagen, William K.

    1995-01-01

    Apparatus employing vapochromic materials in the form of inorganic double complex salts which change color reversibly when exposed to volatile organic compound (VOC) vapors is adapted for VOC vapor detection, VOC aqueous matrix detection, and selective VOC vapor detection. The basic VOC vapochromic sensor is incorporated in various devices such as a ground probe sensor, a wristband sensor, a periodic sampling monitor, a soil/water penetrometer, an evaporative purge sensor, and various vacuum-based sensors which are particularly adapted for reversible/reusable detection, remote detection, continuous monitoring, or rapid screening of environmental remediation and waste management sites. The vapochromic sensor is used in combination with various fiber optic arrangements to provide a calibrated qualitative and/or quantitative indication of the presence of VOCs.

  12. Chapter A5. Section 6.1.F. Wastewater, Pharmaceutical, and Antibiotic Compounds

    USGS Publications Warehouse

    Lewis, Michael Edward; Zaugg, Steven D.

    2003-01-01

    The USGS differentiates between samples collected for analysis of wastewater compounds and those collected for analysis of pharmaceutical and antibiotic compounds, based on the analytical schedule for the laboratory method. Currently, only the wastewater laboratory method for field-filtered samples (SH1433) is an approved, routine (production) method. (The unfiltered wastewater method LC 8033 also is available but requires a proposal for custom analysis.) At this time, analysis of samples for pharmaceutical and antibiotic compounds is confined to research studies and is available only on a custom basis.

  13. Potential endocrine disrupting organic chemicals in treated municipal wastewater and river water

    USGS Publications Warehouse

    Barber, L.B.; Brown, G.K.; Zaugg, S.D.

    2000-01-01

    Select endocrine disrupting organic chemicals were measured in treated wastewater from Chicago, IL, Minneapolis/St. Paul, MN, Detroit, MI, and Milwaukee, WI, and in the Des Plaines, Illinois, and Minnesota Rivers during the fall of 1997 and the spring of 1998. Emphasis was given to alkylphenolpolyethoxylate (APEO) derived compounds, although 17-??-estradiol, bisphenol A, caffeine, total organic carbon, ethylenediaminetetraacetic acid (EDTA), and other compounds also were measured. Contaminants were isolated by continuous liquid-liquid extraction (CLLE) with methylene chloride and analyzed by gas chromatography/mass spectrometry in full scan and selected ion monitoring modes. The extracts were derivatized to form the methyl esters of alkylphenolethoxycarboxylates (APEC), and EDTA was isolated by evaporation and derivatized to form the tetrapropyl ester. The mass spectra of nonylphenol (NP) and octylphenol (OP) compounds are complex and show variations among the different ethoxylate and carboxylate homologs, reflecting variations in the ethylene oxide chain length. Recoveries for target compounds and surrogate standards ranged from 20-130%, with relative standard deviations of 9.9-53%. Detection limits for the various compounds ranged from 0.06-0.35 ??g/L. Analysis of the wastewater effluents detected a number of compounds including NP, NPEO, OP, OPEO, NPEC, caffeine, and EDTA at concentrations ranging from <1-439 ??g/L, with EDTA and NPEC being most abundant. There was variability in compound distributions and concentrations between the various sewage treatment plants, indicating differences in treatment type and influent composition. Several wastewater-derived compounds were detected in the river samples, with EDTA and NPEC persisting for considerable distance downstream from wastewater discharges, and NP and NPEO being attenuated more rapidly.

  14. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process.

    PubMed

    Ferre-Aracil, J; Valcárcel, Y; Negreira, N; de Alda, M López; Barceló, D; Cardona, S C; Navarro-Laboulais, J

    2016-06-15

    The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256mgO3L(-1) and the kinetic rate coefficient with the dissolved organic matter as 8.4M(-1)s(-1). The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7M(-1)s(-1) and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3€/m(3) under given circumstances. PMID:26971211

  15. Ozonation of hospital raw wastewaters for cytostatic compounds removal. Kinetic modelling and economic assessment of the process.

    PubMed

    Ferre-Aracil, J; Valcárcel, Y; Negreira, N; de Alda, M López; Barceló, D; Cardona, S C; Navarro-Laboulais, J

    2016-06-15

    The kinetics of the ozone consumption for the pretreatment of hospital wastewater has been analysed in order to determine the reaction rate coefficients between the ozone and the readily oxidisabled organic matter and cytostatic compounds. The wastewater from a medium size hospital was treated with ozone and peroxone methodologies, varying the ozone concentration, the reaction time and the hydrogen peroxide doses. The analysis shows that there are four cytostatic compounds, i.e. irinotecan, ifosfamide, cyclophosphamide and capecitabine, detected in the wastewaters and they are completely removed with reasonably short times after the ozone treatment. Considering the reactor geometry, the gas hydrodynamics, the mass transfer of ozone from gas to liquid and the reaction of all oxidisable compounds of the wastewater it is possible to determine the chemical ozone demand, COzD, of the sample as 256mgO3L(-1) and the kinetic rate coefficient with the dissolved organic matter as 8.4M(-1)s(-1). The kinetic rate coefficient between the ozone and the cyclophosphamide is in the order of 34.7M(-1)s(-1) and higher for the other cytostatics. The direct economic cost of the treatment was evaluated considering this reaction kinetics and it is below 0.3€/m(3) under given circumstances.

  16. Impact of ozonation in removing organic micro-pollutants in primary and secondary municipal wastewater: effect of process parameters.

    PubMed

    Mecha, Achisa C; Onyango, Maurice S; Ochieng, Aoyi; Momba, Maggy N B

    2016-01-01

    The study investigates the influence of process parameters on the effectiveness of ozonation in the removal of organic micro-pollutants from wastewater. Primary and secondary municipal wastewater containing phenol was treated. The effect of operating parameters such as initial pH, ozone dosage, and initial contaminant concentration was studied. An increase in contaminant decomposition with pH (3-11) was observed. The contaminant removal efficiencies increased with an increase in ozone dose rate (5.5-36.17 mg L(-1) min(-1)). Furthermore, the ultraviolet absorbance (UV 254 nm) of the wastewater decreased during ozonation indicating the breakdown of complex organic compounds into low molecular weight organics. Along the reaction, the pH of wastewater decreased from 11 to around 8.5 due to the formation of intermediate acidic species. Moreover, the biodegradability of wastewaters, measured as biological and chemical oxygen demand (BOD5/COD), increased from 0.22 to 0.53. High ozone utilization efficiencies of up to 95% were attained thereby increasing the process efficiency; and they were dependent on the ozone dosage and pH of solution. Ozonation of secondary wastewater attained the South African water standards in terms of COD required for wastewater discharge and dissolved organic carbon in drinking water and increased significantly the biodegradability of primary wastewater. PMID:27508381

  17. Green Technology for the Removal of Chloro-Organics from Pulp and Paper Mill Wastewater.

    PubMed

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya; Kumar, Vivek

    2015-07-01

    This study evaluates the treatment efficiency of a horizontal subsurface-flow constructed wetland (HSSF-CW) for the removal of chloro-organic compounds from pulp and paper mill wastewater. The surface area of the HSSF-CW unit was 5.25 m² and was planted with Colocasia esculenta. The wastewater was characterized for different chloro-organic compounds, that is, adsorbable organic halides (AOX), chlorophenolics, and chlorinated resin and fatty acids (cRFAs). Under a hydraulic retention time of 5.9 days, the average AOX, chlorophenolics, and cRFA removal from wastewater was 87, 87, and 93%, respectively. Some of the chlorophenolics were found to accumulate in the plant biomass and soil material. The mass balance studies show that a significant fraction of chlorophenolics and cRFA was degraded in the constructed wetland system. Modeling studies were carried out to estimate the first-order area-based removal rate constants (k) for chemical oxygen demand removal. The HSSF-CW was found to be an effective treatment technology for the remediation of pulp and paper mill wastewater. PMID:26163503

  18. Development of a method for the monitoring of odor-causing compounds in atmospheres surrounding wastewater treatment plants.

    PubMed

    Godayol, Anna; Marcé, Rosa M; Borrull, Francesc; Anticó, Enriqueta; Sanchez, Juan M

    2013-05-01

    This study describes the development of an analytical method based on active collection in a multisorbent Tenax TA/Carbograph 1TD tube, followed by thermal desorption and GC-MS for the determination of 16 volatile organic compounds in air samples. The analyzed compounds include ozone precursors and odor-causing compounds belonging to different chemical families (sulfur- and nitrogen-containing compounds, aldehydes, and terpenes). Two types of sorbents were tested and desorption conditions (temperature, time, and sampling, and desorption flow) were evaluated. External calibration was carried out using the multisorbent bed. Method detection limits in the range 0.2-2.0 μg m(-3) for 1 L samples were obtained. The method was applied for determining the target compounds in air samples from two different wastewater treatment plants. Most compounds were detected and toluene, limonene, and nonanal were found in particularly high concentrations with maximum values of 438, 233, and 382 μg m(-3), respectively.

  19. Hazardous organic compounds in groundwater near Tehran automobile industry.

    PubMed

    Dobaradaran, Sina; Mahvi, Amir Hossein; Nabizadeh, Ramin; Mesdaghinia, Alireza; Naddafi, Kazem; Yunesian, Masoud; Rastkari, Noushin; Nazmara, Shahrokh

    2010-11-01

    Potential of groundwater contamination by trichloroethylene (TCE) and other volatile organic compounds VOCs near car industry was conducted in this study. TCE, PCE, toluene, xylene, dichloromethane, cyclohexane, n-hexane and n-pentane were detected in all groundwaters. Mean TCE levels in groundwater ranged from 124.37 to 1,035.9 μg L⁻¹ with maximum level of 1,345.7 μg L⁻¹. Due to the data obtained from conventional wastewater treatment in car factory the TCE removal efficiency was only 24 percent which necessitates the TCE removal by advanced treatment processes before the use of well water.

  20. Process for removing an organic compound from water

    DOEpatents

    Baker, Richard W.; Kaschemekat, Jurgen; Wijmans, Johannes G.; Kamaruddin, Henky D.

    1993-12-28

    A process for removing organic compounds from water is disclosed. The process involves gas stripping followed by membrane separation treatment of the stripping gas. The stripping step can be carried out using one or multiple gas strippers and using air or any other gas as stripping gas. The membrane separation step can be carried out using a single-stage membrane unit or a multistage unit. Apparatus for carrying out the process is also disclosed. The process is particularly suited for treatment of contaminated groundwater or industrial wastewater.

  1. Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays

    PubMed Central

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven

    2015-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices. PMID:25084996

  2. Detection of organic compounds with whole-cell bioluminescent bioassays.

    PubMed

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.

  3. Reclaiming metals and organics from industrial wastewaters

    SciTech Connect

    Kilambi, S.

    1996-08-01

    The liquid membrane transport process is an emerging new technology where specific material species are transported selectively and rapidly across a liquid membrane. Supported liquid membranes (SLMs) can be used in metal ion separations, gas transfer, volatile organic compounds (VOCs) removal, solvent extraction, biotechnology and reverse osmosis (RO)/ultrafiltration (UF). Although SLMs were invented in the early 1970s, the bulk of experimental studies involving SLMs for metal removal have been carried out in the last 10 years. Some of these experimental studies included work that surveyed the liquid membrane applications in general, including those for metal ion removal; discussed the theoretical and experimental aspects of general, facilitated transport systems; reviewed the work being carried out at Argonne National Laboratory on separation of metal species by SLMs and also the development of /simple equations to describe the metal ions transport by SLMs; and presented the basic principles involved in applying SLM transport processes for recovery and separation of metals from aqueous solutions that include passive and active transport, aqueous and membrane diffusion and chemical reactions. This article will describe the economic feasibility for using an SLM for recovery of nickel and chromium from plating rise waters and compare the economics with alternate technologies.

  4. Biodegradable dissolved organic carbon for indicating wastewater reclamation plant performance and treated wastewater quality

    SciTech Connect

    Khan, E.; Babcock, R.W. Jr.; Viriyavejakul, S.; Suffet, I.H.; Stenstrom, M.K.

    1998-07-01

    Various methods for measuring biodegradable dissolved organic carbon (BDOC) in water have been introduced in the last decade. Applications of the methods have been limited to drinking water. The measure of BDOC has been used mainly to indicate the quality of raw and finished waters and evaluate the performance of biological activated carbon (ozone/granular activated carbon) systems in water treatment plants. Recently, a modified BDOC protocol was developed for examining reclaimed and secondary-treated wastewaters. Use of the new BDOC method can be extended to the wastewater treatment and reclamation fields. Samples collected from a wastewater reuse pilot facility were tested for BDOC. The modified BDOC method was able to detect the increase in biodegradability of ozonated tertiary-treated wastewater. Good relationships among BDOC, dissolved organic carbon (DOC), and soluble biochemical oxygen demand were obtained. The modified protocol was later used to measure BDOC in secondary-effluent samples from 13 municipal wastewater treatment plants. The results show that BDOC can also be used as an indicator of secondary-effluent quality. Likewise, strong and significant correlations were found among BDOC, DOC, and soluble chemical oxygen demand in secondary effluents.

  5. Soluble, semivolatile phenol and nitrogen compounds in milk-processing wastewaters.

    PubMed

    Verheyen, V; Cruickshank, A; Wild, K; Heaven, M W; McGee, R; Watkins, M; Nash, D

    2009-07-01

    Potable water is an essential and major input in processing our food supplies, and the continued growth in food manufacturing is placing increased pressure on this limited resource. Recycling and reuse of factory wastewater can lessen potable water use but requires a detailed understanding of wastewater properties. This study uses solid-phase extraction techniques with gas chromatography-mass spectrometry analysis to investigate trace-level semivolatile organic species in various waste and reference waters associated with the Burra Foods milk-processing plant located in Southeastern Australia. Our focus was on contaminants containing phenolic and heterocyclic nitrogen functional groups, which, because of their toxicity and persistence, may limit options for water recycling and reuse. Effluent from the wastewater treatment plant of the factory showed both the highest soluble carbon burden (47 mg/kg) and concentrations of target compounds. The target species found in these effluents included methyl phenol (13 mg/kg), hydroxy indole (9.8 mg/kg), synthetic tolyltriazoles (5.1 mg/kg) and alkyl phenol ethoxylates (0.2 mg/kg). Given the environmental stability of the tolyltriazoles, they may act as chemical markers where these effluents are used for purposes such as irrigation. Milk evaporator condensate waters, in contrast to the effluent, contained very few target species, with only low levels of pyrrolidine and piperidine derivatives such as ethylglutarimide (450 mug/L) detected. Although there were fewer target microcontaminants overall in the potable and creek reference waters, these samples had characteristic profiles. The potable water analysis revealed hydroxy cineole (2.1 microg/L) and the creek analysis revealed dichlorohydroxyacetophenone (0.3 microg/L), which were not detected in other waters. The compounds found in the wastewaters are likely to have been derived from milk or synthetic chemicals used in factory operations. The presence of nitrogen compounds in

  6. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  7. Biodegradation of halogenated organic compounds.

    PubMed Central

    Chaudhry, G R; Chapalamadugu, S

    1991-01-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  8. Biodegradation of halogenated organic compounds.

    PubMed

    Chaudhry, G R; Chapalamadugu, S

    1991-03-01

    In this review we discuss the degradation of chlorinated hydrocarbons by microorganisms, emphasizing the physiological, biochemical, and genetic basis of the biodegradation of aliphatic, aromatic, and polycyclic compounds. Many environmentally important xenobiotics are halogenated, especially chlorinated. These compounds are manufactured and used as pesticides, plasticizers, paint and printing-ink components, adhesives, flame retardants, hydraulic and heat transfer fluids, refrigerants, solvents, additives for cutting oils, and textile auxiliaries. The hazardous chemicals enter the environment through production, commercial application, and waste. As a result of bioaccumulation in the food chain and groundwater contamination, they pose public health problems because many of them are toxic, mutagenic, or carcinogenic. Although synthetic chemicals are usually recalcitrant to biodegradation, microorganisms have evolved an extensive range of enzymes, pathways, and control mechanisms that are responsible for catabolism of a wide variety of such compounds. Thus, such biological degradation can be exploited to alleviate environmental pollution problems. The pathways by which a given compound is degraded are determined by the physical, chemical, and microbiological aspects of a particular environment. By understanding the genetic basis of catabolism of xenobiotics, it is possible to improve the efficacy of naturally occurring microorganisms or construct new microorganisms capable of degrading pollutants in soil and aquatic environments more efficiently. Recently a number of genes whose enzyme products have a broader substrate specificity for the degradation of aromatic compounds have been cloned and attempts have been made to construct gene cassettes or synthetic operons comprising these degradative genes. Such gene cassettes or operons can be transferred into suitable microbial hosts for extending and custom designing the pathways for rapid degradation of recalcitrant

  9. Methods of making organic compounds by metathesis

    SciTech Connect

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  10. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  11. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  12. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  13. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  14. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  15. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  16. Natural versus wastewater derived dissolved organic carbon: implications for the environmental fate of organic micropollutants.

    PubMed

    Neale, Peta A; Antony, Alice; Gernjak, Wolfgang; Leslie, Greg; Escher, Beate I

    2011-08-01

    The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (K(DOC)) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log K(OW)) greater than 4 there was a significant difference in K(DOC) between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in K(DOC) was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log K(OW) > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using K(DOC) values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems. PMID:21703657

  17. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2013-03-19

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  18. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2012-10-23

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  19. Organic electronic devices using phthalimide compounds

    DOEpatents

    Hassan, Azad M.; Thompson, Mark E.

    2010-09-07

    Organic electronic devices comprising a phthalimide compound. The phthalimide compounds disclosed herein are electron transporters with large HOMO-LUMO gaps, high triplet energies, large reduction potentials, and/or thermal and chemical stability. As such, these phthalimide compounds are suitable for use in any of various organic electronic devices, such as OLEDs and solar cells. In an OLED, the phthalimide compounds may serve various functions, such as a host in the emissive layer, as a hole blocking material, or as an electron transport material. In a solar cell, the phthalimide compounds may serve various functions, such as an exciton blocking material. Various examples of phthalimide compounds which may be suitable for use in the present invention are disclosed.

  20. Organic pollution removal from coke plant wastewater using coking coal.

    PubMed

    Gao, Lihui; Li, Shulei; Wang, Yongtian; Sun, Hao

    2015-01-01

    Coke plant wastewater (CPW) is an intractable chemical wastewater, and it contains many toxic pollutants. This article presents the results of research on a semi-industrial adsorption method of coking wastewater treatment. As a sorbent, the coking coal (CC) was a dozen times less expensive than active carbon. The treatment was conducted within two scenarios, as follows: (1) adsorption after biological treatment of CPW with CC at 40 g L(-1); the chemical oxygen demand (COD) removal was 75.66%, and the concentration was reduced from 178.99 to 43.56 mg L(-1); (2) given an adsorption by CC of 250 g L(-1) prior to the biological treatment of CPW, the eliminations of COD and phenol were 58.08% and 67.12%, respectively. The CC that adsorbed organic pollution and was returned to the coking system might have no effect on both coke oven gas and coke.

  1. Organic pollution removal from coke plant wastewater using coking coal.

    PubMed

    Gao, Lihui; Li, Shulei; Wang, Yongtian; Sun, Hao

    2015-01-01

    Coke plant wastewater (CPW) is an intractable chemical wastewater, and it contains many toxic pollutants. This article presents the results of research on a semi-industrial adsorption method of coking wastewater treatment. As a sorbent, the coking coal (CC) was a dozen times less expensive than active carbon. The treatment was conducted within two scenarios, as follows: (1) adsorption after biological treatment of CPW with CC at 40 g L(-1); the chemical oxygen demand (COD) removal was 75.66%, and the concentration was reduced from 178.99 to 43.56 mg L(-1); (2) given an adsorption by CC of 250 g L(-1) prior to the biological treatment of CPW, the eliminations of COD and phenol were 58.08% and 67.12%, respectively. The CC that adsorbed organic pollution and was returned to the coking system might have no effect on both coke oven gas and coke. PMID:26114284

  2. VOLATILE ORGANIC COMPOUNDS AS EXPOSURE BIOMARKERS

    EPA Science Inventory

    Alveolar breath sampling and analysis can be extremely useful in exposure assessment studies involving volatile organic compounds (VOCs). Over recent years scientists from the US Environmental Protection Agency's National Exposure Research Laboratory have developed and refined...

  3. Microwave spectra of some volatile organic compounds

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1975-01-01

    A computer-controlled microwave (MRR) spectrometer was used to catalog reference spectra for chemical analysis. Tables of absorption frequency, peak absorption intensity, and integrated intensity are included for 26 volatile organic compounds, all but one of which contain oxygen.

  4. Energies of organic compounds. Final report

    SciTech Connect

    1995-07-01

    The objective of this research was to gain information on the energies of organic compounds and on the factors that control energies. The work involved calorimetric measurements of energy changes and theoretical studies of intramolecular interactions and molecular energies.

  5. PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  6. (CHINA) PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  7. Volatile organic compound emissions from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols with other impor...

  8. VOLATILE ORGANIC COMPOUNDS (VOCS) CHAPTER 31.

    EPA Science Inventory

    The term "volatile organic compounds' (VOCs) was originally coined to refer, as a class, to carbon-containing chemicals that participate in photochemical reactions in the ambient (outdoor) are. The regulatory definition of VOCs used by the U.S. EPA is: Any compound of carbon, ex...

  9. An artificial sweetener and pharmaceutical compounds as co-tracers of urban wastewater in groundwater.

    PubMed

    Van Stempvoort, D R; Roy, J W; Grabuski, J; Brown, S J; Bickerton, G; Sverko, E

    2013-09-01

    Groundwater in urban areas can be affected by numerous wastewater sources. Distinguishing these sources can facilitate better management of urban water resources and wastewater, and protection of urban aquatic environments. A single wastewater tracer, even if ideal (i.e. low background levels, non-reactive, low detection limits, etc.), would be unable to accomplish this task. Here, we investigated the potential advantages of using a suite of anthropogenic chemicals as co-tracers to distinguish wastewater sources that contribute to groundwater contamination at two urban sites. We considered both relatively ubiquitous and non-ubiquitous tracers in wastewater. At the Jasper (Alberta, Canada) site, concentrations of an artificial sweetener, two pharmaceutical compounds, and a degradate of nicotine in groundwater were strongly correlated as co-tracers. This evidence, along with the similar spatial distributions of these co-tracers could be used to delineate and distinguish a single municipal wastewater plume. At the Barrie (Ontario, Canada) site, there was moderate to strong correlation of the wastewater co-tracers, but local differences in their distributions and in the ratios of their concentrations could be used to infer that mixtures of two or more domestic septic plumes were present in the groundwater at this site. This study demonstrates the benefit of applying a suite of tracers to urban groundwater affected by wastewater contamination. This approach should be applicable at other urban sites.

  10. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70.degree. C. and 500.degree. C. and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  11. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-01-05

    Aromatic compounds are alkylated in a combination reactor/distillation column comprising a vessel suitable for operating between 70 C and 500 C and from 0.5 to 20 atmospheres pressure; an inert distillation packing in the lower one-third of said vessel; solid acidic catalytic material such as zeolites or an acidic cation exchange resin supported in the middle one-third of said vessel; and inert distillation packing in the upper one-third of said vessel. A benzene inlet is located near the upper end of the vessel; an olefin inlet is juxtaposed with said solid acidic catalytic material; a bottoms outlet is positioned near the bottom of said vessel for removing said cumene and ethyl benzene; and an overhead outlet is placed at the top of said vessel for removing any unreacted benzene and olefin.

  12. Characterisation of organic matter in IX and PACl treated wastewater in relation to the fouling of a hydrophobic polypropylene membrane.

    PubMed

    Myat, Darli T; Mergen, Max; Zhao, Oliver; Stewart, Matthew B; Orbell, John D; Gray, Stephen

    2012-10-15

    Extensive organic characterisation of a wastewater using liquid chromatography with a photodiode array and fluorescence spectroscopy (Method A), and UV(254) and organic carbon detector (Method B) was undertaken, as well as with fluorescence excitation emission spectroscopy (EEM). Characterisation was performed on the wastewater before and after ion exchange (IX) treatment and polyaluminium chlorohydrate (PACl) coagulation, and following microfiltration of the wastewater and pre-treated wastewaters. Characterisation by EEM was unable to detect biopolymers within the humic rich wastewaters and was not subsequently used to characterise the MF permeates. IX treatment preferentially removed low molecular weight (MW) organic acids and neutrals, and moderate amounts of biopolymers in contrast to a previous report of no biopolymer removal with IX. PACl preferentially removed moderate MW humic and fulvic acids, and large amounts of biopolymers. PACl showed a great preference for removal of proteins from the biopolymer component in comparison to IX. An increase in the fluorescence response of tryptophan-like compounds in the biopolymer fraction following IX treatment suggests that low MW neutrals may influence the structure and/or inhibit aggregation of organic compounds. Fouling rates for IX and PACl treated wastewaters had high initial fouling rates that reduced to lower fouling rates with time, while the untreated Eastern Treatment Plant (ETP) wastewater displayed a consistent, high rate of fouling. The results for the IX and PACl treated wastewaters were consistent with the long-term fouling rate being determined by cake filtration while both pore constriction and cake filtration contributed to the higher initial fouling rates. Higher rejection of biopolymers was observed for PACl and IX waters compared to the untreated ETP water, suggesting increased adhesion of biopolymers to the membrane or cake layer may lead to the higher rejection.

  13. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds.

    PubMed

    Sklavos, Sotirios; Gatidou, Georgia; Stasinakis, Athanasios S; Haralambopoulos, Dias

    2015-10-01

    Olive mill wastewater (OMW) is characterized by its high organic load and the presence of phenolic compounds. For first time, a solar distillator was used to investigate the simultaneous solar drying of OMW and the recovery of phenolic compounds with antioxidant properties in the distillate. Two experiments were conducted and the role of thermal insulation on the performance of the distiller was studied. The use of insulation resulted to higher temperatures in the distillator (up to 84.3 °C and 78.5 °C at the air and sludge, respectively), shorter period for OMW dewatering (14 days), while it increased the performance of distillator by 26.1%. Chemical characterization of the distillate showed that pH and COD concentration gradually decreased during the experiments, whereas an opposite trend was noticed for conductivity and total phenols concentration. Almost 4% of the total phenols found initially in OMW were transferred to the distillate when an insulated solar distillator was used. Gas chromatographic analysis of collected distillates confirmed the presence of tyrosol in all samples; whereas hydroxytyrosol was found only in fresh collected distillate samples. Further experiments should be conducted to optimize the process and quantify the concentrations of recovered phenolic compounds.

  14. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds.

    PubMed

    Sklavos, Sotirios; Gatidou, Georgia; Stasinakis, Athanasios S; Haralambopoulos, Dias

    2015-10-01

    Olive mill wastewater (OMW) is characterized by its high organic load and the presence of phenolic compounds. For first time, a solar distillator was used to investigate the simultaneous solar drying of OMW and the recovery of phenolic compounds with antioxidant properties in the distillate. Two experiments were conducted and the role of thermal insulation on the performance of the distiller was studied. The use of insulation resulted to higher temperatures in the distillator (up to 84.3 °C and 78.5 °C at the air and sludge, respectively), shorter period for OMW dewatering (14 days), while it increased the performance of distillator by 26.1%. Chemical characterization of the distillate showed that pH and COD concentration gradually decreased during the experiments, whereas an opposite trend was noticed for conductivity and total phenols concentration. Almost 4% of the total phenols found initially in OMW were transferred to the distillate when an insulated solar distillator was used. Gas chromatographic analysis of collected distillates confirmed the presence of tyrosol in all samples; whereas hydroxytyrosol was found only in fresh collected distillate samples. Further experiments should be conducted to optimize the process and quantify the concentrations of recovered phenolic compounds. PMID:26222602

  15. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater.

    PubMed

    Pan, Jing; Yuan, Fang; Yu, Long; Huang, Linli; Fei, Hexin; Cheng, Fan; Zhang, Qi

    2016-07-01

    Organics and nitrogen removal in four subsurface wastewater infiltration systems (SWISs), named SWIS A (without intermittent aeration and shunt distributing wastewater), SWIS B (with intermittent aeration), SWIS C (with shunt distributing wastewater) and SWIS D (with intermittent aeration and shunt distributing wastewater) was investigated. High average removal rates of 92.3% for COD, 90.2% for NH4-N and 88.1% for TN were achieved simultaneously in SWIS D compared with SWIS A, B and C. The excellent TN removal of SWIS D was due to intermittent aeration provided sufficient oxygen for nitrification in upper matrix and the favorable anoxic or anaerobic environment for denitrification in subsequent matrix, and moreover, shunt distributing wastewater provided sufficient carbon source for denitrification process. The results indicated that intermittent artificial aeration combined with shunt distributing wastewater could achieve high organics and nitrogen removal in SWISs.

  16. Organics and nitrogen removal from textile auxiliaries wastewater with A2O-MBR in a pilot-scale.

    PubMed

    Sun, Faqian; Sun, Bin; Hu, Jian; He, Yangyang; Wu, Weixiang

    2015-04-01

    The removal of organic compounds and nitrogen in an anaerobic-anoxic-aerobic membrane bioreactor process (A(2)O-MBR) for treatment of textile auxiliaries (TA) wastewater was investigated. The results show that the average effluent concentrations of chemical oxygen demand (COD), ammonium nitrogen (NH4(+)-N) and total nitrogen (TN) were about 119, 3 and 48 mg/L under an internal recycle ratio of 1.5. The average removal efficiency of COD, NH4(+)-N and TN were 87%, 96% and 55%, respectively. Gas chromatograph-mass spectrometer analysis indicated that, although as much as 121 different types of organic compounds were present in the TA wastewater, only 20 kinds of refractory organic compounds were found in the MBR effluent, which could be used as indicators of effluents from this kind of industrial wastewater. Scanning electron microscopy analysis revealed that bacterial foulants were significant contributors to membrane fouling. An examination of foulants components by wavelength dispersive X-ray fluorescence showed that the combination of organic foulants and inorganic compounds enhanced the formation of gel layer and thus caused membrane fouling. The results will provide valuable information for optimizing the design and operation of wastewater treatment system in the textile industry.

  17. Biodegradation of organic pollutants in saline wastewater by halophilic microorganisms: a review.

    PubMed

    Castillo-Carvajal, Laura C; Sanz-Martín, José Luis; Barragán-Huerta, Blanca E

    2014-01-01

    Agro-food, petroleum, textile, and leather industries generate saline wastewater with a high content of organic pollutants such as aromatic hydrocarbons, phenols, nitroaromatics, and azo dyes. Halophilic microorganisms are of increasing interest in industrial waste treatment, due to their ability to degrade hazardous substances efficiently under high salt conditions. However, their full potential remains unexplored. The isolation and identification of halophilic and halotolerant microorganisms from geographically unrelated and geologically diverse hypersaline sites supports their application in bioremediation processes. Past investigations in this field have mainly focused on the elimination of polycyclic aromatic hydrocarbons and phenols, whereas few studies have investigated N-aromatic compounds, such as nitro-substituted compounds, amines, and azo dyes, in saline wastewater. Information regarding the growth conditions and degradation mechanisms of halophilic microorganisms is also limited. In this review, we discuss recent research on the removal of organic pollutants such as organic matter, in terms of chemical oxygen demand (COD), dyes, hydrocarbons, N-aliphatic and N-aromatic compounds, and phenols, in conditions of high salinity. In addition, some proposal pathways for the degradation of aromatic compounds are presented.

  18. Calibration and field evaluation of Polar Organic Chemical Integrative Sampler (POCIS) for monitoring pharmaceuticals in hospital wastewater.

    PubMed

    Bailly, Emilie; Levi, Yves; Karolak, Sara

    2013-03-01

    The Polar Organic Chemical Integrative Sampler (POCIS) is a new tool for the sampling of organic pollutants in water. We tested this device for the monitoring of pharmaceuticals in hospital wastewater. After calibration, a field application was carried out in a French hospital for six pharmaceutical compounds (Atenolol, Prednisolone, Methylprednisolone, Sulfamethoxazole, Ofloxacin, Ketoprofen). POCIS were calibrated in tap water and wastewater in laboratory conditions close to relevant environmental conditions (temperature, flow velocity). Sampling rates (R(s)) were determined and we observed a significant increase with flow velocity and temperature. Whatever the compound, the R(s) value was lower in wastewater and the linear phase of uptake was shorter. POCIS were deployed in a hospital sewage pipe during four days and the estimated water concentrations were close to those obtained with twenty-four hour composite samples. PMID:23246753

  19. The occurrence and fate of phenolic compounds in a coking wastewater treatment plant.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Feng, Chunhua; Ren, Yuan; Hu, Yun; Yan, Bo; Wu, Chaofei

    2013-01-01

    The occurrence of 14 phenolic compounds (PCs) was assessed in the raw, treated wastewater, dewatered sludge and gas samples from a coking wastewater treatment plant (WWTP) in China. It was found that 3-cresol was the dominant compound in the raw coking wastewater with a concentration of 183 mg L(-1), and that chlorophenols and nitrophenols were in the level of μg L(-1). Phenol was the dominant compound in the gas samples, while 2,4,6-trichlorophenol predominated in the dewatered sludge sample. The anaerobic and aerobic tanks played key roles in the elimination of chlorophenols and phenols, respectively. Analysis of daily mass flows of PCs in WWTP showed that 89-98% of phenols and 83-89% of nitrophenols were biodegraded, and that 44-69% of chlorophenols were adsorbed to sludge, indicating that the fate of PCs was highly influenced by their biodegradability and physical-chemical property. PMID:23863439

  20. Microbial removal of hazardous organic compounds

    SciTech Connect

    Kobayashi, H.; Rittman, B.E.

    1982-03-01

    An in-depth evaluation of the potential for microorganisms to remove anthropogenic organic compounds, mainly priority pollutants and related compounds, is presented. The evaluation indicates that use of properly selected populations of microbes, and the maintenance of environmental conditions most conducive to their metabolism, can be an important means of improving biological treatment of organic wastes. One major theme is that microorganisms not normally associated with biological waste treatment have potential advantages when the removal of anthropogenic compounds is the goal. An extensive summary of examples of anthropogenic compounds and microorganisms that can attack them is presented in tabular form. A second table lists the selective uses of microorganisms for removal of different anthropogenic compounds. (KRM)

  1. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    PubMed

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage.

  2. Wastewater compounds in urban shallow groundwater wells correspond to exfiltration probabilities of nearby sewers.

    PubMed

    Lee, Do Gyun; Roehrdanz, Patrick R; Feraud, Marina; Ervin, Jared; Anumol, Tarun; Jia, Ai; Park, Minkyu; Tamez, Carlos; Morelius, Erving W; Gardea-Torresdey, Jorge L; Izbicki, John; Means, Jay C; Snyder, Shane A; Holden, Patricia A

    2015-11-15

    Wastewater compounds are frequently detected in urban shallow groundwater. Sources include sewage or reclaimed wastewater, but origins are often unknown. In a prior study, wastewater compounds were quantified in waters sampled from shallow groundwater wells in a small coastal California city. Here, we resampled those wells and expanded sample analyses to include sewage- or reclaimed water-specific indicators, i.e. pharmaceutical and personal care product chemicals or disinfection byproducts. Also, we developed a geographic information system (GIS)-based model of sanitary sewer exfiltration probability--combining a published pipe failure model accounting for sewer pipe size, age, materials of construction, with interpolated depths to groundwater--to determine if sewer system attributes relate to wastewater compounds in urban shallow groundwater. Across the wells, groundwater samples contained varying wastewater compounds, including acesulfame, sucralose, bisphenol A, 4-tert-octylphenol, estrone and perfluorobutanesulfonic acid (PFBS). Fecal indicator bacterial concentrations and toxicological bioactivities were less than known benchmarks. However, the reclaimed water in this study was positive for all bioactivity tested. Excluding one well intruded by seawater, the similarity of groundwater to sewage, based on multiple indicators, increased with increasing sanitary sewer exfiltration probability (modeled from infrastructure within ca. 300 m of each well). In the absence of direct exfiltration or defect measurements, sewer exfiltration probabilities modeled from the collection system's physical data can indicate potential locations where urban shallow groundwater is contaminated by sewage. PMID:26379202

  3. Atmospheric Chemistry of Micrometeoritic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Belle, C. L.; Pevyhouse, A. R.; Iraci, L. T.

    2011-01-01

    Micrometeorites approx.100 m in diameter deliver most of the Earth s annual accumulation of extraterrestrial material. These small particles are so strongly heated upon atmospheric entry that most of their volatile content is vaporized. Here we present preliminary results from two sets of experiments to investigate the fate of the organic fraction of micrometeorites. In the first set of experiments, 300 m particles of a CM carbonaceous chondrite were subject to flash pyrolysis, simulating atmospheric entry. In addition to CO and CO2, many organic compounds were released, including functionalized benzenes, hydrocarbons, and small polycyclic aromatic hydrocarbons. In the second set of experiments, we subjected two of these compounds to conditions that simulate the heterogeneous chemistry of Earth s upper atmosphere. We find evidence that meteor-derived compounds can follow reaction pathways leading to the formation of more complex organic compounds.

  4. Photoassisted Biodegradation of Irradiated Organics in Simulated Nuclear Wastewater.

    PubMed

    Makgato, Stanford S; Nkhalambayausi-Chirwa, Evans M

    2015-05-01

    The extent of dehalogenation and degradation of toxic aromatic compounds in a nuclear wastewater was evaluated using a two-stage system consisting of a photolytic reactor followed by a biological reactor. Experiments were performed by varying the initial 4-chlorophenol (4-CP) concentration from 50 to 1000 mg/L. The UV pretreatment stage improved the overall efficiency of biodegradation of the recalcitrant compound by facilitating degradability in the biological stage. Removal efficiencies greater than 98% were achieved at 4-CP feed concentrations < 50 mg/L. Adding an H2O2 dose of 0.1 mg/L as an oxidant further improved biodegradation under optimum operating conditions for the entire system. Some known aromatic compound degraders such as Pseudomonas aeruginosa and Pseudomonas mendocina were detected in the consortium using the 16S rRNA genetic fingerprint technique. To the authors' knowledge, this is the first study on biodegradation of halogenated aromatic compounds that are copollutants of metallic radionuclides in radioactive wastewater.

  5. Photoassisted Biodegradation of Irradiated Organics in Simulated Nuclear Wastewater.

    PubMed

    Makgato, Stanford S; Nkhalambayausi-Chirwa, Evans M

    2015-05-01

    The extent of dehalogenation and degradation of toxic aromatic compounds in a nuclear wastewater was evaluated using a two-stage system consisting of a photolytic reactor followed by a biological reactor. Experiments were performed by varying the initial 4-chlorophenol (4-CP) concentration from 50 to 1000 mg/L. The UV pretreatment stage improved the overall efficiency of biodegradation of the recalcitrant compound by facilitating degradability in the biological stage. Removal efficiencies greater than 98% were achieved at 4-CP feed concentrations < 50 mg/L. Adding an H2O2 dose of 0.1 mg/L as an oxidant further improved biodegradation under optimum operating conditions for the entire system. Some known aromatic compound degraders such as Pseudomonas aeruginosa and Pseudomonas mendocina were detected in the consortium using the 16S rRNA genetic fingerprint technique. To the authors' knowledge, this is the first study on biodegradation of halogenated aromatic compounds that are copollutants of metallic radionuclides in radioactive wastewater. PMID:26460459

  6. Air sparging of organic compounds in groundwater

    SciTech Connect

    Hicks, P.M.

    1994-12-31

    Soils and aquifers containing organic compounds have been traditionally treated by excavation and disposal of the soil and/or pumping and treating the groundwater. These remedial options are often not practical or cost effective solutions. A more favorable alternative for removal of the adsorbed/dissolved organic compounds would be an in situ technology. Air sparging will remove volatile organic compounds from both the adsorbed and dissolved phases in the saturated zone. This technology effectively creates a crude air stripper below the aquifer where the soil acts as the ``packing``. The air stream that contacts dissolved/adsorbed phase organics in the aquifer induces volatilization. A case history illustrates the effectiveness of air sparging as a remedial technology for addressing organic compounds in soil and groundwater. The site is an operating heavy equipment manufacturing facility in central Florida. The soil and groundwater below a large building at the facility was found to contain primarily diesel type petroleum hydrocarbons during removal of underground storage tanks. The organic compounds identified in the groundwater were Benzene, Xylenes, Ethylbenzene and Toluenes (BTEX), Methyl tert-Butyl Ether (MTBE) and naphthalenes in concentrations related to diesel fuel.

  7. Seasonal variation of endocrine disrupting compounds, pharmaceuticals and personal care products in wastewater treatment plants.

    PubMed

    Yu, Yong; Wu, Laosheng; Chang, Andrew C

    2013-01-01

    The occurrence of 14 endocrine disrupting compounds (EDCs), pharmaceuticals and personal care products (PPCPs) in influents, effluents and sludge from five wastewater treatment plants (WWTPs) in southern California was studied in winter and summer. All 14 compounds were detected in influent samples from the five WWTPs except for estrone. Paracetamol, naproxen and ibuprofen were the dominant compounds, with mean concentrations of 41.7, 35.7 and 22.3 μg/L, respectively. The treatment removal efficiency for most compounds was more than 90% and concentrations in the effluents were relatively low. Seasonal variation of the compounds' concentration in the wastewater was significant: the total concentration of each compound in the wastewater was higher in winter than in summer, which is attributed to more human consumption of pharmaceuticals during winter and faster degradation of the compounds in summer. The highest concentrations of triclosan and octylphenol were detected in sewage sludge, with mean concentrations of 1505 and 1179 ng/g, respectively. Risk quotients (RQs), expressed as the ratios of environmental concentrations and the predicted no-effect concentrations (PNEC), were less than unity for all the compounds except for estrone in the effluents, indicating no immediate ecological risk is expected. However, RQs were higher than unity for 2 EDCs (estrone and octylphenol) and carbamazepine in sludge samples, indicating a significant ecotoxicological risk to human health. Therefore, appropriate treatment of sewage sludge is required before its application. PMID:23178835

  8. Photocatalytic oxidation of organic compounds on Mars

    NASA Technical Reports Server (NTRS)

    Chun, S. F. S.; Pang, K. D.; Cutts, J. A.; Ajello, J. M.

    1978-01-01

    Ultraviolet-stimulated catalytic oxidation is proposed as a mechanism for the destruction of organic compounds on Mars. The process involves the presence of gaseous oxygen, UV radiation, and a catalyst (titanium dioxide), and all three of these have been found to be present in the Martian environment. Therefore it seems plausible that UV-stimulated oxidation of organics is responsible for degrading organic molecules into inorganic end products.

  9. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    PubMed

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON. PMID:27019968

  10. Odorous compounds in municipal wastewater effluent and potable water reuse systems.

    PubMed

    Agus, Eva; Lim, Mong Hoo; Zhang, Lifeng; Sedlak, David L

    2011-11-01

    The presence of effluent-derived compounds with low odor thresholds can compromise the aesthetics of drinking water. The potent odorants 2,4,6-trichloroanisole and geosmin dominated the profile of odorous compounds in wastewater effluent with concentrations up to 2 orders of magnitude above their threshold values. Additional odorous compounds (e.g., vanillin, methylnaphthalenes, 2-pyrrolidone) also were identified in wastewater effluent by gas chromatography coupled with mass-spectrometry and olfactometry detection. Full-scale advanced treatment plants equipped with reverse osmosis membranes decreased odorant concentrations considerably, but several compounds were still present at concentrations above their odor thresholds after treatment. Other advanced treatment processes, including ozonation followed by biological activated carbon and UV/H(2)O(2) also removed effluent-derived odorants. However, no single treatment technology alone was able to reduce all odorant concentrations below their odor threshold values. To avoid the presence of odorous compounds in drinking water derived from wastewater effluent, it is necessary to apply multiple barriers during advanced treatment or to dilute wastewater effluent with water from other sources.

  11. Reflectance spectroscopy of organic compounds: 1. Alkanes

    USGS Publications Warehouse

    Clark, R.N.; Curchin, J.M.; Hoefen, T.M.; Swayze, G.A.

    2009-01-01

    Reflectance spectra of the organic compounds comprising the alkane series are presented from the ultraviolet to midinfrared, 0.35 to 15.5 /??m. Alkanes are hydrocarbon molecules containing only single carbon-carbon bonds, and are found naturally on the Earth and in the atmospheres of the giant planets and Saturn's moon, Titan. This paper presents the spectral properties of the alkanes as the first in a series of papers to build a spectral database of organic compounds for use in remote sensing studies. Applications range from mapping the environment on the Earth, to the search for organic molecules and life in the solar system and throughout the. universe. We show that the spectral reflectance properties of organic compounds are rich, with major diagnostic spectral features throughout the spectral range studied. Little to no spectral change was observed as a function of temperature and only small shifts and changes in the width of absorption bands were observed between liquids and solids, making remote detection of spectral properties throughout the solar system simpler. Some high molecular weight organic compounds contain single-bonded carbon chains and have spectra similar to alkanes even ' when they fall into other families. Small spectral differences are often present allowing discrimination among some compounds, further illustrating the need to catalog spectral properties for accurate remote sensing identification with spectroscopy.

  12. Fate of selected pharmaceuticals and synthetic endocrine disrupting compounds during wastewater treatment and sludge anaerobic digestion.

    PubMed

    Samaras, Vasilios G; Stasinakis, Athanasios S; Mamais, Daniel; Thomaidis, Nikolaos S; Lekkas, Themistokles D

    2013-01-15

    The concentrations of nine emerging contaminants, including pharmaceutically active compounds (PhACs) (ibuprofen, IBF; naproxen, NPX; diclofenac, DCF; ketoprofen, KFN) and endocrine disrupting chemicals (triclosan, TCS; bisphenol, BPA; nonylphenol, NP; nonylphenol monoethoxylate, NP1EO; nonylphenol diethoxylate, NP2EO), were determined in wastewater and sludge samples of two wastewater treatment plants (WWTPs) in Greece. Average concentrations in raw and treated wastewater ranged from 0.39 (KFN) to 12.52 μg L(-1) (NP) and from wastewater was bound to the particulate phase, while PhACs and BPA were mainly detected in the aqueous phase. Removal of target compounds during wastewater treatment ranged between 39% (DCF) and 100% (IBF). Except of DCF and BPA, similar removal efficiencies were observed in both WWTPs and no effect of WWTP's size and operational conditions was noticed. Use of mass balances showed that accumulation on sludge was a significant removal mechanism for NPs and TCS, while biodegradation/biotransformation was the major mechanism for the other compounds. Sampling of raw and digested sludge demonstrated that IBF and NPX are significantly removed (>80%) during anaerobic digestion, whereas removal of EDCs was lower, ranging up to 55% for NP1EO. PMID:23257325

  13. Biodegradability of wastewater and activated sludge organics in anaerobic digestion.

    PubMed

    Ikumi, D S; Harding, T H; Ekama, G A

    2014-06-01

    The investigation provides experimental evidence that the unbiodegradable particulate organics fractions of primary sludge and waste activated sludge calculated from activated sludge models remain essentially unbiodegradable in anaerobic digestion. This was tested by feeding the waste activated sludge (WAS) from three different laboratory activated sludge (AS) systems to three separate anaerobic digesters (AD). Two of the AS systems were Modified Ludzack - Ettinger (MLE) nitrification-denitrification (ND) systems and the third was a membrane University of Cape Town (UCT) ND and enhanced biological P removal system. One of the MLE systems and the UCT system were fed the same real settled wastewater. The other MLE system was fed raw wastewater which was made by adding a measured constant flux (gCOD/d) of macerated primary sludge (PS) to the real settled wastewater. This PS was also fed to a fourth AD and a blend of PS and WAS from settled wastewater MLE system was fed to a fifth AD. The five ADs were each operated at five different sludge ages (10-60d). From the measured performance results of the AS systems, the unbiodegradable particulate organic (UPO) COD fractions of the raw and settled wastewaters, the PS and the WAS from the three AS systems were calculated with AS models. These AS model based UPO fractions of the PS and WAS were compared with the UPO fractions calculated from the performance results of the ADs fed these sludges. For the PS, the UPO fraction calculated from the AS and AD models matched closely, i.e. 0.30 and 0.31. Provided the UPO of heterotrophic (OHO, fE_OHO) and phosphorus accumulating (PAO, fE_PAO) biomass were accepted to be those associated with the death regeneration model of organism "decay", the UPO of the WAS calculated from the AS and AD models also matched well - if the steady state AS model fE_OHO = 0.20 and fE_PAO = 0.25 values were used, then the UPO fraction of the WAS calculated from the AS models deviated significantly

  14. Catalyst for Oxidation of Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Wood, George M. (Inventor); Upchurch, Billy T. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); Schyryer, Jacqueline L. (Inventor); DAmbrosia, Christine M. (Inventor)

    2000-01-01

    Disclosed is a process for oxidizing volatile organic compounds to carbon dioxide and water with the minimal addition of energy. A mixture of the volatile organic compound and an oxidizing agent (e.g. ambient air containing the volatile organic compound) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  15. Determination of Wastewater Compounds in Whole Water by Continuous Liquid-Liquid Extraction and Capillary-Column Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Zaugg, Steven D.; Smith, Steven G.; Schroeder, Michael P.

    2006-01-01

    A method for the determination of 69 compounds typically found in domestic and industrial wastewater is described. The method was developed in response to increasing concern over the impact of endocrine-disrupting chemicals on aquatic organisms in wastewater. This method also is useful for evaluating the effects of combined sanitary and storm-sewer overflow on the water quality of urban streams. The method focuses on the determination of compounds that are indicators of wastewater or have endocrine-disrupting potential. These compounds include the alkylphenol ethoxylate nonionic surfactants, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Wastewater compounds in whole-water samples were extracted using continuous liquid-liquid extractors and methylene chloride solvent, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-water samples fortified at 0.5 microgram per liter averaged 72 percent ? 8 percent relative standard deviation. The concentration of 21 compounds is always reported as estimated because method recovery was less than 60 percent, variability was greater than 25 percent relative standard deviation, or standard reference compounds were prepared from technical mixtures. Initial method detection limits averaged 0.18 microgram per liter. Samples were preserved by adding 60 grams of sodium chloride and stored at 4 degrees Celsius. The laboratory established a sample holding-time limit prior to sample extraction of 14 days from the date of collection.

  16. Nonaqueous battery with organic compound cathode

    SciTech Connect

    Yamaji, A.; Yamaki, J.

    1981-02-17

    A battery embodying this invention comprises: an anode including an anode-active material formed of one metal selected from the Group IA metals or preferably lithium metal; a cathode including a cathode-active material formed of metal or metal-free organic compounds having a phthalocyanine function or organic compounds having a porphin function; and an electrolyte prepared from a material which is chemically stable to the cathode and anode materials and permits the migration of the ion of the anode metal to the cathode for electrochemical reaction with the cathode-active material.

  17. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas.

    PubMed

    Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T

    2010-02-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics

  18. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas.

    PubMed

    Bidwell, Joseph R; Becker, Carol; Hensley, Steve; Stark, Richard; Meyer, Michael T

    2010-02-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and beta-sitosterol), plasticizers [diethylhexylphthalate and tris(2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surface-water site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewater-associated chemicals into the cave. Halogenated organics

  19. Occurrence of organic wastewater contaminants, pharmaceuticals, and personal care products in selected water supplies, Cape Cod, Massachusetts, June 2004

    USGS Publications Warehouse

    Zimmerman, Marc J.

    2005-01-01

    In June 2004, the U.S. Geological Survey, in cooperation with the Barnstable County Department of Health and Environment, sampled water from 14 wastewater sources and drinking-water supplies on Cape Cod, Massachusetts, for the presence of organic wastewater contaminants, pharmaceuticals, and personal care products. The geographic distribution of sampling locations does not represent the distribution of drinking-water supplies on Cape Cod. The environmental presence of the analyte compounds is mostly unregulated; many of the compounds are suspected of having adverse ecological and human health effects. Of the 85 different organic analyte compounds, 43 were detected, with 13 detected in low concentrations (less than 1 microgram per liter) from drinking-water supplies thought to be affected by wastewater because of previously detected high nitrate concentrations. (Phenol and d-limonene, detected in equipment blanks at unacceptably high concentrations, are not included in counts of detections in this report.) Compounds detected in the drinking-water supplies included the solvent, tetrachloroethylene; the analgesic, acetaminophen; the antibiotic, sulfamethoxazole; and the antidepressant, carbamazapine. Nitrate nitrogen, an indicator of wastewater, was detected in water supplies in concentrations ranging from 0.2 to 8.8 milligrams per liter.

  20. Remotion of organic compounds of actual industrial effluents by electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Sampa, M. H. O.; Duarte, C. L.; Rela, P. R.; Somessari, E. S. R.; Silveira, C. G.; Azevedo, A. L.

    1998-06-01

    Organic compounds has been a great problem of environmental pollution, the traditional methods are not effecient on removing these compounds and most of them are deposited to ambient and stay there for long time causing problems to the environment. Ionizing radiation has been used with success to destroy organic molecules. Actual industrial effluents were irradiated using IPEN's electron beam wastewater pilot plant to study organic compounds degradation. The samples were irradiated with and without air mixture by different doses. Irradiation treatment efficiency was evaluated by the Cromatography Gas Analyses of the samples before and after irradiation. The studied organic compounds were: phenol, chloroform, tetrachloroethylene (PCE), carbon tetrachloride, trichloroethylene (TCE), 1,1-dichloroethane, dichloromethane, benzene, toluene and xilene. A degradation superior to 80% was achieved for the majority of the compounds with air addition and 2kGy delivered dose condition. For the samples that were irradiated without air addition the degradation was higher.

  1. Metastable Equilibria Among Aqueous Organic Compounds

    NASA Astrophysics Data System (ADS)

    Shock, E.; Shipp, J.; Yang, Z.; Gould, I. R.

    2011-12-01

    Metastable equilibrium states exist when reactions among a subset of compounds in a chemical system are reversible even though other irreversible reactions exist in the same system. The existence of metastable equilibrium among organic compounds was initially detected by comparing ratios of organic acid concentrations reported for oil-field brines (Shock, 1988, Geology 16, 886-890; Shock, 1989, Geology 17, 572-573), and calculating the same ratios for likely oxidation states determined by mineral assemblages and mixtures of hydrocarbons in coexisting petroleum (Shock, 1994, in: The Role of Organic Acids in Geological Processes, Springer). This led to the notion of extending the concept of metastable equilibrium states to explicitly account for petroleum compositions (Helgeson et al., 1993, GCA, 57, 3295-3339), which eventually yielded the concept of hydrolytic disproportionation of kerogens to produce petroleum and CO2(g) (Helgeson et al., 2009, GCA, 73, 594-695). Experimental tests of metastable equilibrium among organic compounds began with the identification of reversible reactions between alkanes and alkenes that are dependent on the H2 fugacity of the experimental system (Seewald, 1994, Nature 370, 285-287). These were followed with a comprehensive series of long-term experiments leading to the hypothesis that reversible reactions include alkanes, alkenes, alcohol, aldehydes, ketones and carboxylic acids (e.g., Seewald, 2001, GCA 65, 1641-1664; 2003, Nature 426, 327-333; McCollom & Seewald, 2003, GCA 67, 3645-3664). We have conducted sets of hydrothermal organic transformation experiments that test the extent to which these reactions are indeed reversible using aromatic and cyclic compounds. Results demonstrate reversibility for reactions among dibenzyl ketone, 1,3-diphenyl-2-propanol, 1,3-diphenylpropene and 1,3-diphenylpropane, as well as among methylcyclohexanes, methylcyclohexenes, methylcyclohexanols, methylcyclohexanones and methylcyclohexadienes. The

  2. Photocatalytic: oxidation of volatile organic compounds present in airborne environment adjacent to sewage treatment plants.

    PubMed

    Raillard, C; Héquet, V; Le Cloirec, P; Legrand, J

    2004-01-01

    Emissions of volatile organic compounds (VOCs) from wastewater in municipal sewage or industrial wastewater treatment plants are often overlooked as sources of exposure to hazardous substances. The impact of such emissions on local airborne environments represents a growing source of scientific, toxicological and public health interest. Actually, VOCs are suspected to be quite dangerous for human health. Some of them belong to the family of odorous compounds and can cause serious annoyance in the neighbourhood of the emission sources. A way to remove VOCs released from sewers and wastewater treatment facilities could be to degrade them by photocatalytic oxidation. TiO2-based photocatalysts are known to be efficient for this kind of application. In the present work TiO2 P25 Degussa was deposited on glass supports. These materials were tested for the degradation of butanone-2 in a photocatalytic reactor. The influence of water vapour (relative humidity) was shown using the Langmuir-Hinshelwood kinetic model. PMID:14979545

  3. Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools.

    PubMed

    Belaid, Chokri; Khadraoui, Moncef; Mseddii, Salma; Kallel, Monem; Elleuch, Boubaker; Fauvarque, Jean Frangois

    2013-01-01

    Problems related with industrials effluents can be divided in two parts: (1) their toxicity associated to their chemical content which should be removed before discharging the wastewater into the receptor media; (2) and the second part is linked to the difficulties of pollution characterisation and monitoring caused by the complexity of these matrixes. This investigation deals with these two aspects, an electrochemical treatment method of an olive mill wastewater (OMW) under platinized expanded titanium electrodes using a modified Grignard reactor for toxicity removal as well as the exploration of the use of some specific analytical tools to monitor effluent phenolic compounds elimination. The results showed that electrochemical oxidation is able to remove/mitigate the OMW pollution. Indeed, 87% of OMW color was removed and all aromatic compounds were disappeared from the solution by anodic oxidation. Moreover, 55% of the chemical oxygen demand (COD) and the total organic carbon (TOC) were reduced. On the other hand, UV-Visible spectrophotometry, Gaz chromatography/mass spectrometry, cyclic voltammetry and 13C Nuclear Magnetic Resonance (NMR) showed that the used treatment seems efficaciously to eliminate phenolic compounds from OMW. It was concluded that electrochemical oxidation in a modified Grignard reactor is a promising process for the destruction of all phenolic compounds present in OMW. Among the monitoring analytical tools applied, cyclic voltammetry and 13C NMR a re among th e techniques that are introduced for thefirst time to control the advancement of the OMW treatment and gave a close insight on polyphenols disappearance.

  4. Simulation of comet particulates from organic compounds

    NASA Astrophysics Data System (ADS)

    Kajmakov, E. A.; Lizunkova, I. S.; Dranerich, V. A.

    1981-02-01

    A laboratory study of the sublimation of aqueous solutions of several organic compounds (urea, glycine, and phenylalanine) that might occur in comet nuclei is described. The molecules of the organic materials are found to form acicular crystals. If the concentration of the initial solution is reduced the acicular crystals will grow longer. The presence of elongated grains in comet atmospheres could explain certain polarization characteristics of comet radiation.

  5. Ultraviolet radiation absorbing compounds in marine organisms

    SciTech Connect

    Chalker, B.E.; Dunlap, W.C. )

    1990-01-09

    Studies on the biological effects of solar ultraviolet radiations are becoming increasingly common, in part due to recent interest in the Antarctic ozone hole and in the perceived potential for global climate change. Marine organisms possess many strategies for ameliorating the potentially damaging effects of UV-B (280-320 nm) and the shorter wavelengths of UV-A (320-400nm). One mechanism is the synthesis of bioaccumulation of ultraviolet radiation absorbing compounds. Several investigators have noted the presence of absorbing compounds in spectrophotometer scans of extracts from a variety of marine organisms, particularly algae and coelenterates containing endosymbiotic algae. The absorbing compounds are often mycosporine-like amino acids. Thirteen mycosporine-like amino acids have already been described, and several others have recently been detected. Although, the mycosporine-like amino acids are widely distributed. these compounds are by no means the only type of UV-B absorbing compounds which has been identified. Coumarins from green algae, quinones from sponges, and indoles from a variety of sources are laternative examples which are documented in the natural products literature. When the biological impact of solar ultraviolet radiation is assessed, adequate attention must be devoted to the process of photoadaptation, including the accumulation of ultraviolet radiation absorbing compounds.

  6. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology.

  7. Electricity generation from an inorganic sulfur compound containing mining wastewater by acidophilic microorganisms.

    PubMed

    Ni, Gaofeng; Christel, Stephan; Roman, Pawel; Wong, Zhen Lim; Bijmans, Martijn F M; Dopson, Mark

    2016-09-01

    Sulfide mineral processing often produces large quantities of wastewaters containing acid-generating inorganic sulfur compounds. If released untreated, these wastewaters can cause catastrophic environmental damage. In this study, microbial fuel cells were inoculated with acidophilic microorganisms to investigate whether inorganic sulfur compound oxidation can generate an electrical current. Cyclic voltammetry suggested that acidophilic microorganisms mediated electron transfer to the anode, and that electricity generation was catalyzed by microorganisms. A cation exchange membrane microbial fuel cell, fed with artificial wastewater containing tetrathionate as electron donor, reached a maximum whole cell voltage of 72 ± 9 mV. Stepwise replacement of the artificial anolyte with real mining process wastewater had no adverse effect on bioelectrochemical performance and generated a maximum voltage of 105 ± 42 mV. 16S rRNA gene sequencing of the microbial consortia resulted in sequences that aligned within the genera Thermoplasma, Ferroplasma, Leptospirillum, Sulfobacillus and Acidithiobacillus. This study opens up possibilities to bioremediate mining wastewater using microbial fuel cell technology. PMID:27155452

  8. Chlorinated organic compounds in urban river sediments

    SciTech Connect

    Soma, Y.; Shiraishi, H.; Inaba, K.

    1995-12-31

    Among anthropogenic chemicals, many chlorinated organic compounds have been used as insecticides and detected frequently as contaminants in urban river sediments so far. However, the number and total amount of chemicals produced commercially and used are increasing year by year, though each amount of chemicals is not so high. New types of contaminants in the environment may be detected by the use of newly developed chemicals. Chlorinated organic compounds in the urban river sediments around Tokyo and Kyoto, large cities in Japan, were surveyed and recent trends of contaminants were studied. Contaminants of the river sediments in industrial areas had a variety, but PCB (polychlorinated biphenyls) was detected in common in industrial areas. Concentration of PCB related well to the number of factories on both sides of rivers, although the use of PCB was stopped 20 years ago. In domestic areas, Triclosan (5-chloro-2-(2,4-dichlorophenoxy)-phenol) and Triclocarban (3,4,4{prime}-trichlorocarbanilide)(both are contained in soap or shampoo for fungicides), p-dichlorobenzene (insecticides for wears) and TCEP(tris-chloroethyl phosphate) were detected. EOX(extracted organic halogen) in the sediments was 5 to 10 times of chlorinated organic compounds detected by GC/MS. Major part of organic halogen was suggested to be included in chlorinated organics formed by bleaching or sterilization.

  9. Volatile organic compounds from leaves litter.

    PubMed

    Isidorov, Valery; Jdanova, Maria

    2002-09-01

    Qualitative composition of volatile emissions of litter of five species of deciduous trees was investigated by GC-MS. The list of identified substances contains more than 70 organic compounds of various classes. It was established that the composition of components emitted by the litter into the gas phase greatly differs from that of essential oils extracted by hydrodistillation from turned leaves collected from trees during fall. It is suggested that most compounds found in litter emissions are products of vital activity of microorganisms decomposing it. The reported data indicate that after the vegetative period is over the decomposition processes of litter are important seasonal sources of reactive organic compounds under the forest canopy.

  10. Catalytic Destruction Of Toxic Organic Compounds

    NASA Technical Reports Server (NTRS)

    Voecks, Gerald E.

    1990-01-01

    Proposed process disposes of toxic organic compounds in contaminated soil or carbon beds safely and efficiently. Oxidizes toxic materials without producing such other contaminants as nitrogen oxides. Using air, fuel, catalysts, and steam, system consumes less fuel and energy than decontamination processes currently in use. Similar process regenerates carbon beds used in water-treatment plants.

  11. Phototransformation of wastewater-derived trace organic contaminants in open-water unit process treatment wetlands.

    PubMed

    Jasper, Justin T; Sedlak, David L

    2013-10-01

    Open-water cells in unit process treatment wetlands can be used to exploit sunlight photolysis to remove trace organic contaminants from municipal wastewater effluent. To assess the performance of these novel systems, a photochemical model was calibrated using measured photolysis rates for atenolol, carbamazepine, propranolol, and sulfamethoxazole in wetland water under representative conditions. Contaminant transformation by hydroxyl radical ((•)OH) and carbonate radical ((•)CO3(-)) were predicted from steady-state radical concentrations measured at pH values between 8 and 10. Direct photolysis rates and the effects of light screening by dissolved organic matter on photolysis rates were estimated using solar irradiance data, contaminant quantum yields, and light screening factors. The model was applied to predict the land area required for 90% removal of a suite of wastewater-derived organic contaminants by sunlight-induced reactions under a variety of conditions. Results suggest that during summer, open-water cells that receive a million gallons of water per day (i.e., about 4.4 × 10(-2) m(3) s(-1)) of nitrified wastewater effluent can achieve 90% removal of most compounds in an area of about 15 ha. Transformation rates were strongly affected by pH, with some compounds exhibiting faster transformation rates under the high pH conditions associated with photosynthetic algae at the sediment-water interface and other contaminants exhibiting faster transformation rates at the circumneutral pH values characteristic of algae-free cells. Lower dissolved organic carbon concentrations typically resulted in increased transformation rates.

  12. Use of adsorption process to remove organic mercury thimerosal from industrial process wastewater.

    PubMed

    Velicu, Magdalena; Fu, Hongxiang; Suri, Rominder P S; Woods, Kevin

    2007-09-30

    Carbon adsorption process is tested for removal of high concentration of organic mercury (thimerosal) from industrial process wastewater, in batch and continuously flow through column systems. The organic mercury concentration in the process wastewater is about 1123 mg/L due to the thimerosal compound. Four commercially available adsorbents are tested for mercury removal and they are: Calgon F-400 granular activated carbon (GAC), CB II GAC, Mersorb GAC and an ion-exchange resin Amberlite GT73. The adsorption capacity of each adsorbent is described by the Freundlich isotherm model at pH 3.0, 9.5 and 11.0 in batch isotherm experiments. Acidic pH was favorable for thimerosal adsorption onto the GACs. Columns-in-series experiments are conducted with 30-180 min empty bed contact times (EBCTs). Mercury breakthrough of 30 mg/L occurred after about 47 h (96 Bed Volume Fed (BVF)) of operation, and 97 h (197 BVF) with 120 min EBCT and 180 min EBCT, respectively. Most of the mercury removal is attributed to the 1st adsorbent column. Increase in contact time by additional adsorbent columns did not lower the effluent mercury concentration below 30 mg/L. However, at a lower influent wastewater pH 3, the mercury effluent concentration decreased to less than 7 mg/L for up to 90 h of column operation (183 BVF). PMID:17459583

  13. Organic photosensitive devices using subphthalocyanine compounds

    DOEpatents

    Rand, Barry; Forrest, Stephen R.; Mutolo, Kristin L.; Mayo, Elizabeth; Thompson, Mark E.

    2011-07-05

    An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.

  14. Removals of pharmaceutical compounds from hospital wastewater in membrane bioreactor operated under short hydraulic retention time.

    PubMed

    Prasertkulsak, S; Chiemchaisri, C; Chiemchaisri, W; Itonaga, T; Yamamoto, K

    2016-05-01

    Pilot-scale membrane bioreactor (MBR) was operated at a short hydraulic retention time (HRT) of 3 h for the treatment of hospital wastewater. The removals of eleven pharmaceutical compounds in MBR operated at different mixed liquor suspended solids (MLSS) level were investigated during which nitrification degree was differed. The results experiments revealed the importance of immediate adsorption onto the colloidal particles in supernatant of MBR sludge and subsequently removed by membrane filtration for the recalcitrant pharmaceutical compounds. Nevertheless, the removals through biodegradation during short HRT were also found significant for some compounds. DGGE profile revealed the development of pharmaceutical degrading microorganisms in MBR. PMID:26852096

  15. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  16. Compositing water samples for analysis of volatile organic compounds

    USGS Publications Warehouse

    Lopes, T.J.; Fallon, J.D.; Maluk, T.L.

    2000-01-01

    Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Accurate mean concentrations of volatile organic compounds (VOCs) can easily and economically be obtained from a single VOC analysis by using proven methods of collecting representative, discrete water samples and compositing them with a gas-tight syringe. The technique can be used in conjunction with chemical analysis by a conventional laboratory, field-portable equipment, or a mobile laboratory. The type of mean concentration desired depends on the objectives of monitoring. For example, flow-weighted mean VOC concentrations can be used to estimate mass loadings in wastewater and urban storm water, and spatially integrated mean VOC concentrations can be used to assess sources of drinking water (e.g., reservoirs and rivers). The mean error in a discrete sample due to compositing is about 2% for most VOC concentrations greater than 0.1 ??g/L. The total error depends on the number of discrete samples comprising the composite sample and precision of the chemical analysis.Researchers are able to derive

  17. Climate impacts of biogenic organic compounds

    NASA Astrophysics Data System (ADS)

    Sengupta, Kamalika; Gordon, Hamish; Almeida, Joao; Rap, Alex; Scott, Catherine; Pringle, Kirsty; Carslaw, Ken

    2016-04-01

    Currently the most uncertain driver of climate change, impact of anthropogenic aerosols on earth's radiative balance depends significantly on estimates of cloud condensation nuclei (CCN), representation of the pre-industrial atmosphere among others. Nearly 90% of aerosols in the tropics are organic in nature of which a major part comes from biogenic sources. About 45% of the CCN in the atmosphere are formed in-situ via nucleation. Understanding the role of biogenic organic compounds in particle formation and their subsequent growth is hence imperative in order to quantify the climate impact of aerosols. The CLOUD experiment at CERN, which measures particle formation and growth rates in a uniquely clean chamber under atmospherically relevant conditions, found evidence of a nucleation mechanism involving only biogenic organic compounds. This mechanism significantly changes our pre-industrial estimates. The experimental results have been parameterized and included in a global aerosol microphysics model, GLOMAP, to quantify the impact of pure biogenic nucleation on CCN formation and their climatic impact. Further the treatment of secondary organic compounds in GLOMAP has been improved and the sensitivity of our estimates of radiative forcing to the same has been evaluated.

  18. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation.

    PubMed

    Xiao, Jiadong; Xie, Yongbing; Cao, Hongbin

    2015-02-01

    Heterogeneous photocatalysis and ozonation are robust advanced oxidation processes for eliminating organic contaminants in wastewater. The combination of these two methods is carried out in order to enhance the overall mineralization of refractory organics. An apparent synergism between heterogeneous photocatalysis and ozonation has been demonstrated in many literatures, which gives rise to an improvement of total organic carbon removal. The present overview dissects the heterogeneous catalysts and the influences of different operational parameters, followed by the discussion on the kinetics, mechanism, economic feasibility and future trends of this integrated technology. The enhanced oxidation rate mainly results from a large amount of hydroxyl radicals generated from a synergistically induced decomposition of dissolved ozone, besides superoxide ion radicals and the photo-induced holes. Six reaction pathways possibly exist for the generation of hydroxyl radicals in the reaction mechanism of heterogeneous photocatalytic ozonation.

  19. Toxic organic compounds from energy production

    SciTech Connect

    Hites, R.A.

    1991-09-20

    The US Department of Energy's Office of Health and Environmental Research (OHER) has supported work in our laboratory since 1977. The general theme of this program has been the identification of potentially toxic organic compounds associated with various combustion effluents, following the fates of these compounds in the environment, and improving the analytical methodology for making these measurements. The projects currently investigation include: an improved sampler for semi-volatile compounds in the atmosphere; the wet and dry deposition of dioxins and furans from the atmosphere; the photodegradation and mobile sources of dioxins and furans; and the bioaccumulation of PAH by tree bark. These projects are all responsive to OHER's interest in the pathways and mechanisms by which energy-related agents move through and are modified by the atmosphere''. The projects on gas chromatographic and liquid chromatographic tandem mass spectrometry are both responsive to OHER's interest in new and more sensitive technologies for chemical measurements''. 35 refs., 9 figs.

  20. Handbook of data on organic compounds

    SciTech Connect

    Weast, R.C.

    1985-01-01

    This book is a compilation of data on approximately 24,000 organic compounds, presented in a number of useful formats. Volumes I and II contain an alphabetical listing of compounds, giving the following information, where applicable, for each: common names and synonyms, melting and boiling point, molecular formula and weight, line formula, refractive index, density, color, crystalline form, specific rotation, solubility (greater than 10%). Since Beilstein and CAS numbers are given wherever possible, these references will also serve as a means to more in depth research. In addition, Volume II contains separate tables which group the compounds by melting point, boiling point, emperical formula, and structural formula. A separate table lists the infrared, UV, NMR, and mass spectroscopy reference numbers for major sources of curve and other spectroscopic data.

  1. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas

    USGS Publications Warehouse

    Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.

    2010-01-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics

  2. Identification and quantification of volatile organic compounds from a dairy

    NASA Astrophysics Data System (ADS)

    Filipy, Jenny; Rumburg, Brian; Mount, George; Westberg, Hal; Lamb, Brian

    Volatile organic compounds (VOCs) that contribute to odor and air quality problems have been identified from the Washington State University Knott Dairy Farm using gas chromatography-mass spectroscopy (GC-MS). Eighty-two VOCs were identified at a lactating cow open stall and 73 were detected from a slurry wastewater lagoon. These compounds included alcohols, aldehydes, ketones, esters, ethers, aromatic hydrocarbons, halogenated hydrocarbons, terpenes, other hydrocarbons, amines, other nitrogen containing compounds, and sulfur-containing compounds. The concentration of VOCs directly associated with cattle waste increased with ambient air temperature, with the highest concentrations present during the summer months. Concentrations of most detected compounds were below published odor detection thresholds. Emission rates of ethanol (1026±513 μg cow -1 s -1) and dimethyl sulfide (DMS) (13.8±10.3 μg cow -1 s -1) were measured from the lactating stall area using an atmospheric tracer method and concentrations were plotted using data over a 2-year period. Emission rates of acetone (3.03±0.85 ng cow -1 s -1), 2-butanone (145±35 ng cow -1 s -1), methyl isobutyl ketone (3.46±1.11 ng cow -1 s -1), 2-methyl-3-pentanone (25.1±8.0 ng cow -1 s -1), DMS (2.19±0.92 ng cow -1 s -1), and dimethyl disulfide (DMDS) (16.1±3.9 ng cow -1 s -1) were measured from the slurry waste lagoon using a laboratory emission chamber.

  3. Predicting the octanol solubility of organic compounds.

    PubMed

    Admire, Brittany; Yalkowsky, Samuel H

    2013-07-01

    The molar octanol solubility of an organic nonelectrolytes can be reasonably predicted solely from its melting point provided that its liquid (or a hypothetical super-cooled liquid) form is miscible with octanol. The aim of this work is to develop criteria to determine if the real or hypothetical liquid form of a given compound will be miscible with octanol based on its molar volume and solubility parameter. Fortunately, most organic compounds (including most drugs) conform to the criteria for complete liquid miscibility, and therefore have solubilities that are proportional to their melting points. The results show that more than 95% of the octanol solubilities studied are predicted with an error of less than 1 logarithmic unit.

  4. Organic compounds in star forming regions.

    PubMed

    Kochina, O; Wiebe, D

    2014-09-01

    The influence of complex dust composition on the general chemical evolution of a prestellar core and the content of complex organic compounds is studied. It is shown that various component groups respond differently to the presence of a small dust population. At early stages the difference is determined primarily by changes in the balance of photo processes due to effective absorption of ultraviolet photons by small dust grains of the second population and collisional reactions with dust particles. At later stages differences are also caused by the growing dominance of additional reaction channels related to surface organic synthesis. PMID:25515345

  5. Organic compounds in star forming regions.

    PubMed

    Kochina, O; Wiebe, D

    2014-09-01

    The influence of complex dust composition on the general chemical evolution of a prestellar core and the content of complex organic compounds is studied. It is shown that various component groups respond differently to the presence of a small dust population. At early stages the difference is determined primarily by changes in the balance of photo processes due to effective absorption of ultraviolet photons by small dust grains of the second population and collisional reactions with dust particles. At later stages differences are also caused by the growing dominance of additional reaction channels related to surface organic synthesis.

  6. Compositional space boundaries for organic compounds.

    PubMed

    Lobodin, Vladislav V; Marshall, Alan G; Hsu, Chang Samuel

    2012-04-01

    An upper elemental compositional boundary for fossil hydrocarbons has previously been established as double-bond equivalents (i.e., DBE = rings plus double bonds) not exceeding 90% of the number of carbons. For heteroatom-containing fossil compounds, the 90% rule still applies if each N atom is counted as a C atom. The 90% rule eliminates more than 10% of the possible elemental compositions at a given mass for fossil database molecules. However, some synthetic compounds can fall outside the upper boundary defined for naturally occurring compounds. Their inclusion defines an "absolute" upper boundary as DBE (rings plus double bonds to carbon) equal to carbon number plus one, and applies to all organic compounds including fullerenes and other molecules containing no hydrogen. Finally, the DBE definition can fail for molecules with particular atomic valences. Therefore, we also present a generalized DBE definition that includes atomic valence to enable calculation of the correct total number of rings, double bonds, and triple bonds for heteroatom-containing compounds.

  7. Metabolic Reactions among Organic Sulfur Compounds

    NASA Technical Reports Server (NTRS)

    Schulte, M.; Rogers, K.

    2005-01-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. Numerous authors have addressed the energy available from a variety of inorganic sulfur redox pairs. Less attention has been paid, however, to the energy required or gained from metabolic reactions among organic sulfur compounds. Work in this area has focused on the oxidation of alkyl sulfide or disulfide to thiol and formaldehyde, e.g. (CH3)2S + H2O yields CH3SH + HCHO + H2, eventually resulting in the formation of CO2 and SO4(-2). It is also found that reactions among thiols and disulfides may help control redox disequilibria between the cytoplasm and the periplasm. Building on our earlier efforts for thiols, we have compiled and estimated thermodynamic properties for alkyl sulfides. We are investigating metabolic reactions among various sulfur compounds in a variety of extreme environments, ranging from sea floor hydrothermal systems to organic-rich sludge. Using thermodynamic data and the revised HKF equation of state, along with constraints imposed by the geochemical environments sulfur-metabolizing organisms inhabit, we are able to calculate the amount of energy available to these organisms.

  8. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India.

    PubMed

    Anumol, Tarun; Vijayanandan, Arya; Park, Minkyu; Philip, Ligy; Snyder, Shane A

    2016-01-01

    The presence of pharmaceuticals, hormones, pesticides and industrial contaminants collectively termed as trace organic compounds (TOrCs) in wastewater has been well-documented in USA, Europe, China and other regions. However, data from India, the second most populous country in the world is severely lacking. This study investigated the occurrence and concentrations of twenty-two indicator TOrCs at three wastewater treatment plants (WWTPs) in South India serving diverse communities across three sampling campaigns. Samples were collected after each WWTP treatment unit and removal efficiencies for TOrCs were determined. Eleven TOrCs were detected in every sample from every location at all sites, while only five TOrCs were detected consistently in effluent samples. Caffeine was present at greatest concentration in the influent of all three plants with average concentrations ranging between 56 and 65μg/L. In contrast, the x-ray contrast media pharmaceutical, iohexol, was the highest detected compound on average in the effluent at all three WWTPs (2.1-8.7μg/L). TOrCs were not completely removed in the WWTPs with removal efficiencies being compound specific and most of the attenuation being attributed to the biological treatment processes. Caffeine and triclocarban were well removed (>80%), while other compounds were poorly removed (acesulfame, sucralose, iohexol) or maybe even formed (carbamazepine) within the WWTPs. The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring. Diurnal trends indicated that variability is compound specific but trended within certain classes of compounds (artificial sweeteners, and pharmaceuticals). The data collected on TOrCs from this study can be used as a baseline to identify potential remediation and regulatory strategies in this understudied region of India.

  9. Occurrence and fate of emerging trace organic chemicals in wastewater plants in Chennai, India.

    PubMed

    Anumol, Tarun; Vijayanandan, Arya; Park, Minkyu; Philip, Ligy; Snyder, Shane A

    2016-01-01

    The presence of pharmaceuticals, hormones, pesticides and industrial contaminants collectively termed as trace organic compounds (TOrCs) in wastewater has been well-documented in USA, Europe, China and other regions. However, data from India, the second most populous country in the world is severely lacking. This study investigated the occurrence and concentrations of twenty-two indicator TOrCs at three wastewater treatment plants (WWTPs) in South India serving diverse communities across three sampling campaigns. Samples were collected after each WWTP treatment unit and removal efficiencies for TOrCs were determined. Eleven TOrCs were detected in every sample from every location at all sites, while only five TOrCs were detected consistently in effluent samples. Caffeine was present at greatest concentration in the influent of all three plants with average concentrations ranging between 56 and 65μg/L. In contrast, the x-ray contrast media pharmaceutical, iohexol, was the highest detected compound on average in the effluent at all three WWTPs (2.1-8.7μg/L). TOrCs were not completely removed in the WWTPs with removal efficiencies being compound specific and most of the attenuation being attributed to the biological treatment processes. Caffeine and triclocarban were well removed (>80%), while other compounds were poorly removed (acesulfame, sucralose, iohexol) or maybe even formed (carbamazepine) within the WWTPs. The effluent composition of the 22 TOrCs were similar within the three WWTPs but quite different to those seen in the US, indicating the importance of region-specific monitoring. Diurnal trends indicated that variability is compound specific but trended within certain classes of compounds (artificial sweeteners, and pharmaceuticals). The data collected on TOrCs from this study can be used as a baseline to identify potential remediation and regulatory strategies in this understudied region of India. PMID:27054837

  10. 40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection of Environment ENVIRONMENTAL... Wastewater Streams Chemical name CAS No. a Fm Acetaldehyde 75070 1.00 Acetonitrile 75058 0.99...

  11. 40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection of Environment ENVIRONMENTAL... Wastewater Streams Chemical name CAS No. a Fm Acetaldehyde 75070 1.00 Acetonitrile 75058 0.99...

  12. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation.

  13. Wastewater disinfection and organic matter removal using ferrate (VI) oxidation.

    PubMed

    Bandala, Erick R; Miranda, Jocelyn; Beltran, Margarita; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2009-09-01

    The use of iron in a +6 valence state, (Fe (VI), as FeO4(-2)) was tested as a novel alternative for wastewater disinfection and decontamination. The removal of organic matter (OM) and index microorganisms present in an effluent of a wastewater plant was determined using FeO4(-2) without any pH adjustment. It was observed that concentrations of FeO4(-2) ranging between 5 and 14 mg l(-1) inactivated up to 4-log of the index microorganisms (initial concentration c.a. 10(6) CFU/100 ml) and achieved OM removal up to almost 50%. The performance of FeO4(-2) was compared with OM oxidation and disinfection using hypochlorite. It was observed that hypochlorite was less effective in OM oxidation and coliform inactivation than ferrate. Results of this work suggest that FeO4(-2) could be an interesting oxidant able to deactivate pathogenic microorganisms in water with high OM content and readily oxidize organic matter without jeopardizing its efficiency on microorganism inactivation. PMID:19491501

  14. REMOVAL OF ORGANIC CHEMICALS FROM WASTEWATER BY SURFACTANT SEPARATION

    SciTech Connect

    Unknown

    2002-01-01

    This research presents a novel hybrid process for removing organic chemicals from contaminated water. The process uses surfactant to carry out two unit operations (1) Extraction; (2) Foam flotation. In the first step, surfactant is used to extract most of the amounts of organic contaminants in the stream. In the second step, foam flotation is used to further reduce organic contaminants and recover surfactant from the stream. The process combines the advantages of extraction and foam flotation, which allows the process not only to handle a wide range of organic contaminants, but also to effectively treat a wide range of the concentration of organic contaminants in the stream and reduce it to a very low level. Surfactant regeneration can be done by conventional methods. This process is simple and low cost. The wastes are recoverable. The objective of this research is to develop an environmentally innocuous process for the wastewater or reclaimed water treatment with the ability to handle a wide range of organic contaminants, also to effectively treat a wide range of the concentration of organic contaminants in contaminated water and reduce it to a very low level, finally, provides simpler, less energy cost and economically-practical process design. Another purpose is to promote the environmental concern in minority students and encourage minority students to become more involved in environmental engineering research.

  15. Methods for determination of toxic organic compounds in air

    SciTech Connect

    Winberry, W.T. Jr.

    1990-01-01

    This paper provides environmental regulatory agencies, industry, and other interested parties with specific, standardized sampling and analysis procedures for toxic organic compounds in air. Compounds include Volatile Organic Compounds, Organochlorine Pesticides and PCBs, Aldehydes and Ketones, Phosgene, N-Nitrosodimethylamine, Phenol and Methylphenols (Cresols), Polychlorinated Dibenzo-p-Dioxins (PCDDs), Formaldehyde, Non-Methane Organic Compounds (NMOCs) and Polynuclear Aromatic Hydrocarbons (PAHs).

  16. [FTIR and 13C NMR Analysis of Dissolved Organic Matter (DOM) in the Treatment Process of Tannery Wastewater].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Tang, Ze-heng; Wang, Jia-hong

    2015-05-01

    Nowadays, the wastewater quantity discharged yearly from tannery industry is around 0. 2 billion t in China. The contaminants of tannery wastewater include macromolecular organic matters, such as grease, fur scraps and collagen, and the alkaline wastewater appears to be of high content of salt and COD. The quality of tannery wastewater is monitored strictly among all kinds of industry wastewater. In the treatment process of tannery wastewater, the quality of inlet and outlet water is generally analyzed. In fact, the transformation behavior of contaminants should be additionally checked to optimize the treatment conditions. Dissolved organic matter (DOM) is commonly existed in water-bodies and helpful to understand the physicochemical characteristics, while the related work should be further studied on tannery wastewater. The approaches of elemental analysis, thermal gravimetric analysis (TG), Fourier infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (13C NMR) were used to reveal the characteristics of DOM in the treatment process of tannery wastewater. The results showed the carbon content of DOM samples increased gradually, atomic ratios of H/C increased firstly and then decreased, indicating the organic matters were decomposed into chain structures firstly, finally forming the component hard to degraded. The pyrolysis process of DOM mainly proceeded in the regions of 110~530 °C (aliphatic compound, protein, etc. ) and 530~800 °C (aromatic ring, single bond of C-C, etc. ). The functional groups of DOM included -OH, -NH2, C=O and so on, and the aromatic substances were detected, shown from FTIR figures, in the later period of the reaction, caused by the metabolism effect of micro-organism. The content of alkoxy-C increased to the maximum in the second biochemical pond, and the minimum content of aromatic-C appeared in the second biochemical pond, suggesting the transformation behavior of carbon functional groups. The investigation on DOM in tannery

  17. Fundamental study on magnetic separation of organic dyes in wastewater

    NASA Astrophysics Data System (ADS)

    Fang, M.; Mishima, F.; Akiyama, Y.; Nishijima, S.

    2010-11-01

    The objective of this study is to separate dyes in wastewater with high efficiency and speed using High Gradient Magnetic Separation with superconducting magnet. Two main technologies are necessary for magnetic separation; one is magnetic seeding technology to provide ferromagnetism to the substance, and the other is magnetic separation technology using superconducting magnet and magnetic filters. In order to separate organic dyes, it is necessary to clarify the mechanism of magnetic seeding, and to design a suitable magnetic seeding method depending on the kind of object dye. Six kinds of dyes which are widely used in industry were adopted to investigate the possibility of the magnetic seeding and interaction mechanism between dye and ferromagnetic particles. As a result, it was shown that electrostatic interaction is one of the main interactions between organic dye and ferromagnetic particles.

  18. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    PubMed

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1. PMID:25550739

  19. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene.

    PubMed

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T; Larsen, Kim L

    2014-01-01

    Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest-host complexes with ratios of up to 16:1.

  20. The Atmospheric Fate of Organic Nitrogen Compounds

    NASA Astrophysics Data System (ADS)

    Borduas, Nadine

    Organic nitrogen compounds are present in our atmosphere from biogenic and anthropogenic sources and have impacts on air quality and climate. Due to recent advances in instrumentation, these compounds are being detected in the gas and particle phases, raising questions as to their source, processing and sinks in the environment. With their recently identified role as contributors to aerosol formation and growth, their novel large scale use as solvents in carbon capture and storage (CCS) technology and their emissions from cigarette smoke, it is now important to address the gaps in our understanding of the fate of organic nitrogen. Experimentally and theoretically, I studied the chemical atmospheric fate of specific organic nitrogen compounds in the amine, amide and isocyanate families, yielding information that can be used in chemical transport models to assess the fate of this emerging class of atmospheric molecules. I performed kinetic laboratory studies in a smog chamber to measure the room temperature rate coefficient for reaction with the hydroxyl radical of monoethanolamine, nicotine, and five different amides. I employed online-mass spectrometry techniques to quantify the oxidation products. I found that amines react quickly with OH radicals with lifetimes of a few hours under sunlit conditions, producing amides as oxidation products. My studies on amides revealed that they have much longer lifetimes in the atmosphere, ranging from a few hours to a week. Photo-oxidation of amides produces isocyanates and I investigated these mechanisms in detail using ab initio calculations. Furthermore, I experimentally measured isocyanic acid's Henry's Law constant as well as its hydrolysis rate constants to better understand its sinks in the atmosphere. Finally, I re-examined the structure-activity relationship (SAR) of organic nitrogen molecules for improved model parameterizations.

  1. Self assembly properties of primitive organic compounds

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.

    1991-01-01

    A central event in the origin of life was the self-assembly of amphiphilic, lipid-like compounds into closed microenvironments. If a primitive macromolecular replicating system could be encapsulated within a vesicular membrane, the components of the system would share the same microenvironment, and the result would be a step toward true cellular function. The goal of our research has been to determine what amphiphilic molecules might plausibly have been available on the early Earth to participate in the formation of such boundary structures. To this end, we have investigated primitive organic mixtures present in carbonaceous meteorites such as the Murchison meteorite, which contains 1-2 percent of its mass in the form of organic carbon compounds. It is likely that such compounds contributed to the inventory of organic carbon on the prebiotic earth, and were available to participate in chemical evolution leading to the emergence of the first cellular life forms. We found that Murchison components extracted into non-polar solvent systems are surface active, a clear indication of amphiphilic character. One acidic fraction self-assembles into vesicular membranes that provide permeability barriers to polar solutes. Other evidence indicates that the membranes are bimolecular layers similar to those formed by contemporary membrane lipids. We conclude that bilayer membrane formation by primitive amphiphiles on the early Earth is feasible. However, only a minor fraction of acidic amphiphiles assembles into bilayers, and the resulting membranes require narrowly defined conditions of pH and ionic composition to be stable. It seems unlikely, therefore, that meteoritic infall was a direct source of membrane amphiphiles. Instead, the hydrocarbon components and their derivatives more probably would provide an organic stock available for chemical evolution. Our current research is directed at possible reactions which would generate substantial quantities of membranogenic

  2. Microbial cycling of volatile organic sulfur compounds.

    PubMed

    Lomans, B P; van der Drift, C; Pol, A; Op den Camp, H J M

    2002-04-01

    Microbial cycling of volatile organic sulfur compounds (VOSCs), especially dimethyl sulfide (DMS) and methanethiol (MT), is intensively studied because these compounds play an important role in the processes of global warming, acid precipitation, and the global sulfur cycle. VOSC concentrations in freshwater sediments are low due to the balance between the formation and degradation of these compounds. These reactions occur for the greater part at the oxic/anoxic interphase of sediment and water column. In contrast to marine ecosystems, where dimethylsulfoniopropionate is the main precursor of MT and DMS, in freshwater ecosystems, VOSCs are formed mainly by methylation of sulfide and to a lesser extent from the degradation of S-containing amino acids. One of the major routes for DMS and MT formation through sulfide methylation is anaerobic O-demethylation of methoxylated aromatic compounds. Inhibition studies have revealed that the major part of the endogenously produced MT and DMS is degraded anaerobically by methanogens. The major bacterial groups involved in formation and consumption of VOSCs are described. PMID:12022467

  3. Comparative Toxicity of Chlorinated Saline and Freshwater Wastewater Effluents to Marine Organisms.

    PubMed

    Yang, Mengting; Liu, Jiaqi; Zhang, Xiangru; Richardson, Susan D

    2015-12-15

    Toilet flushing with seawater results in saline wastewater, which may contain approximately 33-50% seawater. Halogenated disinfection byproducts (DBPs), especially brominated and iodinated DBPs, have recently been found in chlorinated saline wastewater effluents. With the occurrence of brominated and iodinated DBPs, the adverse effects of chlorinated saline wastewater effluents to marine ecology have been uncertain. By evaluating the developmental effects in the marine polychaete Platynereis dumerilii directly exposed to chlorinated saline/freshwater wastewater effluents, we found surprisingly that chlorinated saline wastewater effluents were less toxic than a chlorinated freshwater wastewater effluent. This was also witnessed by the marine alga Tetraselmis marina. The toxicity of a chlorinated wastewater effluent to the marine species was dominated by its relatively low salinity compared to the salinity in seawater. The organic matter content in a chlorinated wastewater effluent might be partially responsible for the toxicity. The adverse effects of halogenated DBPs on the marine species were observed pronouncedly only in the "concentrated" chlorinated wastewater effluents. pH and ammonia content in a wastewater effluent caused no adverse effects on the marine species. The results suggest that using seawater to replace freshwater for toilet flushing might mitigate the "direct" acute detrimental effect of wastewater to the marine organisms.

  4. Comparative Toxicity of Chlorinated Saline and Freshwater Wastewater Effluents to Marine Organisms.

    PubMed

    Yang, Mengting; Liu, Jiaqi; Zhang, Xiangru; Richardson, Susan D

    2015-12-15

    Toilet flushing with seawater results in saline wastewater, which may contain approximately 33-50% seawater. Halogenated disinfection byproducts (DBPs), especially brominated and iodinated DBPs, have recently been found in chlorinated saline wastewater effluents. With the occurrence of brominated and iodinated DBPs, the adverse effects of chlorinated saline wastewater effluents to marine ecology have been uncertain. By evaluating the developmental effects in the marine polychaete Platynereis dumerilii directly exposed to chlorinated saline/freshwater wastewater effluents, we found surprisingly that chlorinated saline wastewater effluents were less toxic than a chlorinated freshwater wastewater effluent. This was also witnessed by the marine alga Tetraselmis marina. The toxicity of a chlorinated wastewater effluent to the marine species was dominated by its relatively low salinity compared to the salinity in seawater. The organic matter content in a chlorinated wastewater effluent might be partially responsible for the toxicity. The adverse effects of halogenated DBPs on the marine species were observed pronouncedly only in the "concentrated" chlorinated wastewater effluents. pH and ammonia content in a wastewater effluent caused no adverse effects on the marine species. The results suggest that using seawater to replace freshwater for toilet flushing might mitigate the "direct" acute detrimental effect of wastewater to the marine organisms. PMID:26505276

  5. Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment.

    PubMed

    Arvaniti, Olga S; Stasinakis, Athanasios S

    2015-08-15

    Perfluorinated compounds (PFCs) consist of a fully fluorinated hydrophobic alkyl chain attached to a hydrophilic end group. Due to their wide use in several industrial and household applications, they have been detected in numerous Sewage Treatment Plants (STPs) during the last ten years. The present review reports the occurrence of 22 PFCs (C4-C14, C16, C18 carboxylates; C4-C8 and C10 sulfonates; 3 sulfonamides) in municipal or/and industrial wastewater, originating from 24 monitoring studies. PFCs levels in sewage sludge have also been reported using data from 12 studies. Most of the above monitoring data originate from the USA, North Europe and Asia and concern perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), while limited information is available from Mediterranean area, Canada and Australia. PFCs concentrations range up to some hundreds ng/L and some thousands ng/g dry weight in raw wastewater and sludge, respectively. They are not significantly removed during secondary biological treatment, while their concentrations in treated wastewater are often higher compared to raw sewage. Their biodegradation during wastewater treatment does not seem possible; whereas some recent studies have noted the potential transformation of precursor compounds to PFCs during biological wastewater treatment. PFCs sorption onto sludge has been studied in depth and seems to be an important mechanism governing their removal in STPs. Concerning tertiary treatment technologies, significant PFCs removal has been observed using activated carbon, nanofiltration, reverse osmosis or applying advanced oxidation and reduction processes. Most of these studies have been conducted using pure water, while in many cases the experiments have been performed under extreme laboratory conditions (high concentrations, high radiation source, temperature or pressure). Future efforts should be focused on better understanding of biotransformation processes occurred in aerobic and anaerobic

  6. Emission Characteristics and Factors of Selected Odorous Compounds at a Wastewater Treatment Plant

    PubMed Central

    Jeon, Eui-Chan; Son, Hyun-Keun; Sa, Jae-Hwan

    2009-01-01

    This study was initiated to explore the emission characteristics of Reduced Sulfur Compounds (RSCs: hydrogen sulfide, methyl mercaptan, dimethyl sulfide, dimethyl disulfide), ammonia and trimethylamine from a Wastewater Treatment Plant (WWTP) located at Sun-Cheon, Chonlanam-Do in South Korea. The study also evaluates flux profiles of the six selected odorous compounds and their flux rates (μg/m2/min) and compares their emission characteristics. A Dynamic Flux Chamber DFC was used to measure fluxes of pollutants from the treatment plant. Quality control of odor samples using a non-reactive sulfur dioxide gas determined the time taken for DFC concentration to reach equilibrium. The reduced sulfur compounds were analyzed by interfacing gas chromatography with a Pulsed Flame Photometric Detector (PFPD). Air samples were collected in the morning and afternoon on one day during summer (August) and two days in winter (December and January). Their emission rates were determined and it was observed that during summer relatively higher amounts of the selected odorous compounds were emitted compared to winter. Air samples from primary settling basin, aeration basin, and final settling basin were tested and the total amount of selected odorous compounds emitted per wastewater ton was found to be 1344 μg/m3 from the selected treatment processes. It was also observed that, in this study, the dominant odor intensity contribution was caused by dimethyl disulfide (69.1%). PMID:22389601

  7. Occurrence of earthy and musty odor compounds (geosmin, 2-methylisoborneol and 2,4,6-trichloroanisole) in biologically treated wastewater.

    PubMed

    Urase, T; Sasaki, Y

    2013-01-01

    The concentrations of earthy and musty odor compounds (2-methylisoborneol (2-MIB), geosmin and 2,4,6-trichloroanisole (TCA)) in treated wastewater were measured. Concentrations of 2,4,6-TCA (4.3-37.7 ng/L) and geosmin (3.7-42.2 ng/L) higher than their odor thresholds were detected for effluents from large-scale treatment plants. The effluent from a small-scale wastewater plant treating toilet and kitchen wastewater contained the target earthy and musty odor compounds below the odor thresholds. The ozonation applied as an advanced wastewater treatment process was considerably more effective for the removal of 2,4,6-TCA than for the removal of 2-MIB and geosmin. The measured concentrations of 2,4,6-TCA in river environments without the influence of large-scale wastewater effluents were less than the odor threshold.

  8. Biogenic volatile organic compounds - small is beautiful

    NASA Astrophysics Data System (ADS)

    Owen, S. M.; Asensio, D.; Li, Q.; Penuelas, J.

    2012-12-01

    While canopy and regional scale flux measurements of biogenic volatile organic compounds (bVOCs) are essential to obtain an integrated picture of total compound reaching the atmosphere, many fascinating and important emission details are waiting to be discovered at smaller scales, in different ecological and functional compartments. We concentrate on bVOCs below ground to <2m above ground level. Emissions at leaf scale are well documented and widely presented, and are not discussed here. Instead we describe some details of recent research on rhizosphere bVOCs, and bVOCs associated with pollination of flowers. Although bVOC emissions from soil surfaces are small, bVOCs are exuded by roots of some plant species, and can be extracted from decaying litter. Naturally occurring monoterpenes in the rhizosphere provide a specialised carbon source for micro-organisms, helping to define the micro-organism community structure, and impacting on nutrient cycles which are partly controlled by microorganisms. Naturally occurring monoterpenes in the soil system could also affect the aboveground structure of ecosystems because of their role in plant defence strategies and as mediating chemicals in allelopathy. A gradient of monoterpene concentration was found in soil around Pinus sylvestris and Pinus halepensis, decreasing with distance from the tree. Some compounds (α-pinene, sabinene, humulene and caryophyllene) in mineral soil were linearly correlated with the total amount of each compound in the overlying litter, indicating that litter might be the dominant source of these compounds. However, α-pinene did not fall within the correlation, indicating a source other than litter, probably root exudates. We also show that rhizosphere bVOCs can be a carbon source for soil microbes. In a horizontal gradient from Populus tremula trees, microbes closest to the tree trunk were better enzymatically equipped to metabolise labeled monoterpene substrate. Monoterpenes can also increase the

  9. Removal of sulfur compounds from petroleum refinery wastewater through adsorption on modified activated carbon.

    PubMed

    Ben Hariz, Ichrak; Al Ayni, Foued; Monser, Lotfi

    2014-01-01

    The adsorption of sulfur compounds from petroleum refinery wastewater on a chemically modified activated carbon (MAC) was investigated. The modification technique (nitric acid, hydrogen peroxide and thermal modification) enhanced the removal capacity of carbon and therefore decreases cost-effective removal of sulfide from refinery wastewater. Adsorption equilibrium and kinetics data were determined for sulfur removal from real refinery wastewater. The data were evaluated according to several adsorption isotherm and kinetics models. The Freundlich isotherm fitted well with the equilibrium data of sulfur on different adsorbents, whereas the kinetics data were best fitted by the pseudo-second-order model. Insights of sulfide removal mechanisms indicated that the sorption was controlled through the intraparticle diffusion mechanism with a significant contribution of film diffusion. The MAC adsorbent was found to have an effective removal capacity of approximately 2.5 times that of non-modified carbon. Using different MAC, sulfides were eliminated with a removal capacity of 52 mg g(-1). Therefore, MAC can be utilized as an effective and less expensive adsorbent for the reduction of sulfur in refinery wastewater.

  10. Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry.

    PubMed

    Schymanski, Emma L; Singer, Heinz P; Longrée, Philipp; Loos, Martin; Ruff, Matthias; Stravs, Michael A; Ripollés Vidal, Cristina; Hollender, Juliane

    2014-01-01

    Wastewater effluents contain a multitude of organic contaminants and transformation products, which cannot be captured by target analysis alone. High accuracy, high resolution mass spectrometric data were explored with novel untargeted data processing approaches (enviMass, nontarget, and RMassBank) to complement an extensive target analysis in initial "all in one" measurements. On average 1.2% of the detected peaks from 10 Swiss wastewater treatment plant samples were assigned to target compounds, with 376 reference standards available. Corrosion inhibitors, artificial sweeteners, and pharmaceuticals exhibited the highest concentrations. After blank and noise subtraction, 70% of the peaks remained and were grouped into components; 20% of these components had adduct and/or isotope information available. An intensity-based prioritization revealed that only 4 targets were among the top 30 most intense peaks (negative mode), while 15 of these peaks contained sulfur. Of the 26 nontarget peaks, 7 were tentatively identified via suspect screening for sulfur-containing surfactants and one peak was identified and confirmed as 1,3-benzothiazole-2-sulfonate, an oxidation product of a vulcanization accelerator. High accuracy, high resolution data combined with tailor-made nontarget processing methods (all available online) provided vital information for the identification of a wider range of heteroatom-containing compounds in the environment. PMID:24417318

  11. Wastewater indicator compounds in wastewater effluent, surface water, and bed sediment in the St. Croix National Scenic Riverway and implications for water resources and aquatic biota, Minnesota and Wisconsin, 2007-08

    USGS Publications Warehouse

    Tomasek, Abigail A.; Lee, Kathy E.; Hansen, Donald S.

    2012-01-01

    The results of this study indicate that aquatic biota in the St. Croix River are exposed to a wide variety of organic contaminants that originate from diverse sources including WWTP effluent. The data on wastewater indicator compounds indicate that exposures are temporally and spatially variable and that OWCs may accumulate in bed sediment. These results also indicate that OWCs in water and bed sediment increase downstream from discharges of wastewater effluent to the St. Croix River; however, the presence of OWCs in surface water and bed sediment at the Sunrise site indicates that potential sources of compounds, such as WWTPs or other sources, are upstream from the Taylors Falls-St. Croix Falls area.

  12. Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions

    USGS Publications Warehouse

    Kolpin, D.W.; Skopec, M.; Meyer, M.T.; Furlong, E.T.; Zaugg, S.D.

    2004-01-01

    During 2001, 76 water samples were collected upstream and downstream of select towns and cities in Iowa during high-, normal- and low-flow conditions to determine the contribution of urban centers to concentrations of pharmaceuticals and other organic wastewater contaminants (OWCs) in streams under varying flow conditions. The towns ranged in population from approximately 2000 to 200 000. Overall, one or more OWCs were detected in 98.7% of the samples collected, with 62 of the 105 compounds being found. The most frequently detected compounds were metolachlor (pesticide), cholesterol (plant and animal sterol), caffeine (stimulant), β-sitosterol (plant sterol) and 1,7-dimethylxanthine (caffeine degradate). The number of OWCs detected decreased as streamflow increased from low- (51 compounds detected) to normal- (28) to high-flow (24) conditions. Antibiotics and other prescription drugs were only frequently detected during low-flow conditions. During low-flow conditions, 15 compounds (out of the 23) and ten compound groups (out of 11) detected in more than 10% of the streams sampled had significantly greater concentrations in samples collected downstream than in those collected upstream of the urban centers. Conversely, no significant differences in the concentrations were found during high-flow conditions. Thus, the urban contribution of OWCs to streams became progressively muted as streamflow increased.

  13. A method of isolating organic compounds present in water

    NASA Technical Reports Server (NTRS)

    Calder, G. V.; Fritz, J.; Junk, G. A.

    1972-01-01

    Water sample is passed through a column containing macroreticular resin, which absorbs only nonionic organic compounds. These compounds are selectively separated using aqueous eluents of varying pH, or completely exuded with small amount of an organic eluent.

  14. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C.; Hu, Jianli; Hart, Todd R.; Neuenschwander, Gary G.

    2008-09-16

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  15. Palladium catalyzed hydrogenation of bio-oils and organic compounds

    DOEpatents

    Elliott, Douglas C [Kennewick, WA; Hu, Jianli [Richland, WA; Hart,; Todd, R [Kennewick, WA; Neuenschwander, Gary G [Burbank, WA

    2011-06-07

    The invention provides palladium-catalyzed hydrogenations of bio-oils and certain organic compounds. Experimental results have shown unexpected and superior results for palladium-catalyzed hydrogenations of organic compounds typically found in bio-oils.

  16. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-01

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation.

  17. The effects of adsorbing organic pollutants from super heavy oil wastewater by lignite activated coke.

    PubMed

    Tong, Kun; Lin, Aiguo; Ji, Guodong; Wang, Dong; Wang, Xinghui

    2016-05-01

    The adsorption of organic pollutants from super heavy oil wastewater (SHOW) by lignite activated coke (LAC) was investigated. Specifically, the effects of LAC adsorption on pH, BOD5/COD(Cr)(B/C), and the main pollutants before and after adsorption were examined. The removed organic pollutants were characterized by Fourier transform infrared spectroscopy (FTIR), Boehm titrations, gas chromatography-mass spectrometry (GC-MS), and liquid chromatography with organic carbon detection (LC-OCD). FTIR spectra indicated that organic pollutants containing -COOH and -NH2 functional groups were adsorbed from the SHOW. Boehm titrations further demonstrated that carboxyl, phenolic hydroxyl, and lactonic groups on the surface of the LAC increased. GC-MS showed that the removed main organic compounds are difficult to be degraded or extremely toxics to aquatic organisms. According to the results of LC-OCD, 30.37 mg/L of dissolved organic carbons were removed by LAC adsorption. Among these, hydrophobic organic contaminants accounted for 25.03 mg/L. Furthermore, LAC adsorption was found to increase pH and B/C ratio of the SHOW. The mechanisms of adsorption were found to involve between the hydrogen bonding and the functional groups of carboxylic, phenolic, and lactonic on the LAC surface. In summary, all these results demonstrated that LAC adsorption can remove bio-refractory DOCs, which is beneficial for biodegradation. PMID:26808249

  18. Volatile Organic Compound Analysis in Istanbul

    NASA Astrophysics Data System (ADS)

    Ćapraz, Ö.; Deniz, A.; Öztürk, A.; Incecik, S.; Toros, H.; Coşkun, M.

    2012-04-01

    Volatile Organic Compound Analysis in Istanbul Ö. Çapraz1, A. Deniz1,3, A. Ozturk2, S. Incecik1, H. Toros1 and, M. Coskun1 (1) Istanbul Technical University, Faculty of Aeronautics and Astronautics, Department of Meteorology, 34469, Maslak, Istanbul, Turkey. (2) Istanbul Technical University, Faculty of Chemical and Metallurgical, Chemical Engineering, 34469, Maslak, Istanbul, Turkey. (3) Marmara Clean Air Center, Ministry of Environment and Urbanization, Nişantaşı, 34365, İstanbul, Turkey. One of the major problems of megacities is air pollution. Therefore, investigations of air quality are increasing and supported by many institutions in recent years. Air pollution in Istanbul contains many components that originate from a wide range of industrial, heating, motor vehicle, and natural emissions sources. VOC, originating mainly from automobile exhaust, secondhand smoke and building materials, are one of these compounds containing some thousands of chemicals. In spite of the risks to human health, relatively little is known about the levels of VOC in Istanbul. In this study, ambient air quality measurements of 32 VOCs including hydrocarbons, halogenated hydrocarbons and carbonyls were conducted in Kağıthane (Golden Horn) region in Istanbul during the winter season of 2011 in order to develop the necessary scientific framework for the subsequent developments. Kağıthane creek valley is the source part of the Golden Horn and one of the most polluted locations in Istanbul due to its topographical form and pollutant sources in the region. In this valley, horizontal and vertical atmospheric motions are very weak. The target compounds most commonly found were benzene, toluene, xylene and ethyl benzene. Concentrations of total hydrocarbons ranged between 1.0 and 10.0 parts per billion, by volume (ppbv). Ambient air levels of halogenated hydrocarbons appeared to exhibit unique spatial variations and no single factor seemed to explain trends for this group of

  19. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents.

    PubMed

    Loos, Robert; Carvalho, Raquel; António, Diana C; Comero, Sara; Locoro, Giovanni; Tavazzi, Simona; Paracchini, Bruno; Ghiani, Michela; Lettieri, Teresa; Blaha, Ludek; Jarosova, Barbora; Voorspoels, Stefan; Servaes, Kelly; Haglund, Peter; Fick, Jerker; Lindberg, Richard H; Schwesig, David; Gawlik, Bernd M

    2013-11-01

    In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides

  20. Potential toxic effects of aircraft de-icers and wastewater samples containing these compounds.

    PubMed

    Mohiley, A; Franzaring, J; Calvo, O C; Fangmeier, A

    2015-09-01

    One of the major problems of airport operation is the impact of pollution caused by runoff waters. Runoff waters at an airport may contain high concentrations of different contaminants resulting from various activities of its operation. High quantities of aircraft de-icing/anti-icing fluids are used annually at airports worldwide. Aircraft de-icers and anti-icers may have negative environmental impacts, but their effects on aquatic organisms are virtually unknown. In order to address this issue, aircraft de-icers, pavement de-icers and wastewater samples were obtained from a regional airport. To evaluate the toxicity of wastewater samples and aircraft de-icing/anti-icing fluids (ADAFs), two bio-tests were performed: the Lemna growth inhibition test according to OECD guideline 221 and the luminescent bacteria test according to ISO guideline 11348-2. In the Lemna growth inhibition test, phytotoxicity was assessed using the endpoints frond number and frond area. The luminescent bacteria test involved the marine bacterium Vibrio fischeri. The estimates of effective concentrations (EC50) values were determined using the free software R and the "drc" library. Aquatic plants and marine bacteria showed a higher sensitivity towards ADAFs than to wastewater samples. Experiments showed that aircraft de-icing/anti-icing fluids and wastewater samples were relatively more toxic towards Lemna gibba L. in comparison to V. fischeri. PMID:25925142

  1. Potential toxic effects of aircraft de-icers and wastewater samples containing these compounds.

    PubMed

    Mohiley, A; Franzaring, J; Calvo, O C; Fangmeier, A

    2015-09-01

    One of the major problems of airport operation is the impact of pollution caused by runoff waters. Runoff waters at an airport may contain high concentrations of different contaminants resulting from various activities of its operation. High quantities of aircraft de-icing/anti-icing fluids are used annually at airports worldwide. Aircraft de-icers and anti-icers may have negative environmental impacts, but their effects on aquatic organisms are virtually unknown. In order to address this issue, aircraft de-icers, pavement de-icers and wastewater samples were obtained from a regional airport. To evaluate the toxicity of wastewater samples and aircraft de-icing/anti-icing fluids (ADAFs), two bio-tests were performed: the Lemna growth inhibition test according to OECD guideline 221 and the luminescent bacteria test according to ISO guideline 11348-2. In the Lemna growth inhibition test, phytotoxicity was assessed using the endpoints frond number and frond area. The luminescent bacteria test involved the marine bacterium Vibrio fischeri. The estimates of effective concentrations (EC50) values were determined using the free software R and the "drc" library. Aquatic plants and marine bacteria showed a higher sensitivity towards ADAFs than to wastewater samples. Experiments showed that aircraft de-icing/anti-icing fluids and wastewater samples were relatively more toxic towards Lemna gibba L. in comparison to V. fischeri.

  2. IRRADIATION METHOD OF CONVERTING ORGANIC COMPOUNDS

    DOEpatents

    Allen, A.O.; Caffrey, J.M. Jr.

    1960-10-11

    A method is given for changing the distribution of organic compounds from that produced by the irradiation of bulk alkane hydrocarbons. This method consists of depositing an alkane hydrocarbon on the surface of a substrate material and irradiating with gamma radiation at a dose rate of more than 100,000 rads. The substrate material may be a metal, metal salts, metal oxides, or carbons having a surface area in excess of 1 m/sup 2//g. The hydrocarbons are deposited in layers of from 0.1 to 10 monolayers on the surfaces of these substrates and irradiated. The product yields are found to vary from those which result from the irradiation of bulk hydrocarbons in that there is an increase in the quantity of branched hydrocarbons.

  3. Computational assessment of organic photovoltaic candidate compounds

    NASA Astrophysics Data System (ADS)

    Borunda, Mario; Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan

    2015-03-01

    Organic photovoltaic (OPV) cells are emerging as a possible renewable alternative to petroleum based resources and are needed to meet our growing demand for energy. Although not as efficient as silicon based cells, OPV cells have as an advantage that their manufacturing cost is potentially lower. The Harvard Clean Energy Project, using a cheminformatic approach of pattern recognition and machine learning strategies, has ranked a molecular library of more than 2.6 million candidate compounds based on their performance as possible OPV materials. Here, we present a ranking of the top 1000 molecules for use as photovoltaic materials based on their optical absorption properties obtained via time-dependent density functional theory. This computational search has revealed the molecular motifs shared by the set of most promising molecules.

  4. Microwave plasma conversion of volatile organic compounds.

    PubMed

    Ko, Youngsam; Yang, Gosu; Chang, Daniel P Y; Kennedy, Ian M

    2003-05-01

    A microwave-induced, steam/Ar/O2, plasma "torch" was operated at atmospheric pressure to determine the feasibility of destroying volatile organic compounds (VOCs) of concern. The plasma process can be coupled with adsorbent technology by providing steam as the fluid carrier for desorbing the VOCs from an adsorbent. Hence, N2 can be excluded by using a relatively inexpensive carrier gas, and thermal formation of oxides of nitrogen (NOx) is avoided in the plasma. The objectives of the study were to evaluate the technical feasibility of destroying VOCs from gas streams by using a commercially available microwave plasma torch and to examine whether significant byproducts were produced. Trichloroethene (TCE) and toluene (TOL) were added as representative VOCs of interest to a flow that contained Ar as a carrier gas in addition to O2 and steam. The O2 was necessary to ensure that undesirable byproducts were not formed in the process. Microwave power applied at 500-600 W was found to be sufficient to achieve the destruction of the test compounds, down to the detection limits of the gas chromatograph that was used in the analysis. Samples of the postmicrowave gases were collected on sorbent tubes for the analysis of dioxins and other byproducts. No hazardous byproducts were detected when sufficient O2 was added to the flow. The destruction efficiency at a fixed microwave power improved with the addition of steam to the flow that passed through the torch.

  5. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    ERIC Educational Resources Information Center

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  6. Volatile organic silicon compounds: the most undesirable contaminants in biogases.

    PubMed

    Ohannessian, Aurélie; Desjardin, Valérie; Chatain, Vincent; Germain, Patrick

    2008-01-01

    Recently a lot of attention has been focused on volatile organic silicon compounds (VOSiC) present in biogases. They induce costly problems due to silicate formation during biogas combustion in valorisation engine. The cost of converting landfill gas and digester gas into electricity is adversely affected by this undesirable presence. VOSiC in biogases spark off formation of silicate deposits in combustion chambers. They engender abrasion of the inner surfaces leading to serious damage, which causes frequent service interruptions, thus reducing the economic benefit of biogases. It is already known that these VOSiC originate from polydimethylsiloxanes (PDMS) hydrolysis. PDMS (silicones) are used in a wide range of consumer and industrial applications. PDMS are released into the environment through landfills and wastewater treatment plants. There is a lack of knowledge concerning PDMS biodegradation during waste storage. Consequently, understanding PDMS behaviour in landfill cells and in sludge digester is particularly important. In this article, we focused on microbial degradation of PDMS through laboratory experiments. Preliminary test concerning anaerobic biodegradation of various PDMS have been investigated. Results demonstrate that the biotic step has an obvious influence on PDMS biodegradation. PMID:19029718

  7. Identification of priority organic compounds in groundwater recharge of China.

    PubMed

    Li, Zhen; Li, Miao; Liu, Xiang; Ma, Yeping; Wu, Miaomiao

    2014-09-15

    Groundwater recharge using reclaimed water is considered a promising method to alleviate groundwater depletion, especially in arid areas. Traditional water treatment systems are inefficient to remove all the types of contaminants that would pose risks to groundwater, so it is crucial to establish a priority list of organic compounds (OCs) that deserve the preferential treatment. In this study, a comprehensive ranking system was developed to determine the list and then applied to China. 151 OCs, for which occurrence data in the wastewater treatment plants were available, were selected as candidate OCs. Based on their occurrence, exposure potential and ecological effects, two different rankings of OCs were established respectively for groundwater recharge by surface infiltration and direct aquifer injection. Thirty-four OCs were regarded as having no risks while the remaining 117 OCs were divided into three groups: high, moderate and low priority OCs. Regardless of the recharge way, nonylphenol, erythromycin and ibuprofen were the highest priority OCs; their removal should be prioritized. Also the database should be updated as detecting technology is developed.

  8. Ultrasonic process for remediation of organics-contaminated groundwater/wastewater

    SciTech Connect

    Wu, J.M.; Peters, R.W.

    1995-07-01

    A technology is being developed that employs ultrasonic-wave energy for remediation of groundwater/wastewater contaminated with volatile organic compounds such as carbon tetrachloride (CCl{sub 4}) and trichloroethylene (TCE). This paper presents the updated results of a laboratory investigation of ultrasonic groundwater remediation using synthetic groundwaters prepared with laboratory deionized water. Key process parameters investigated included steady-state temperature, contaminant concentration, solution pH, sonication time, and intensity of the applied ultrasonics-wave energy. High destruction efficiencies of the target contaminants were achieved, and the sonication time required for a given degree of destruction decreased with increasing intensity of the applied ultrasonic energy. The sonication time can be further reduced by adding a chemical oxidant such as hydrogen peroxide.

  9. Organic compounds in meteorites and their origins

    NASA Technical Reports Server (NTRS)

    Hayatsu, R.; Anders, E.

    1981-01-01

    The current investigation represents an extensively updated version of a review conducted by Anders et al. (1973). The investigation takes into account the literature through mid-1980. It is pointed out that Type 1 carbonaceous chondrites (C1) contain 6% of their cosmic complement of carbon, mainly in the form of organic matter. Most authors now agree that this material represents primitive prebiotic matter. The principal questions remaining are what abiotic processes formed the organic matter, and to what extent these processes took place in locales other than the solar nebula, such as interstellar clouds or meteorite parent bodes. The problem is approached in three stages. It is attempted to reconstruct the physical conditions during condensation from the clues contained in the inorganic matrix of the meteorite. The condensation behavior of carbon under these conditions is determined on the basis of thermodynamic calculations. Model experiments on the condensation of carbon are performed, and the synthesized compounds are compared with those actually found in meteorites.

  10. Perfluorinated compounds in sediment samples from the wastewater canal of Pančevo (Serbia) industrial area.

    PubMed

    Beškoski, Vladimir P; Takemine, Shusuke; Nakano, Takeshi; Slavković Beškoski, Latinka; Gojgić-Cvijović, Gordana; Ilić, Mila; Miletić, Srdjan; Vrvić, Miroslav M

    2013-06-01

    Perfluoroalkyl sulfonates (PFSAs) and perfluoroalkyl carboxylates (PFCAs) were analyzed in sediment samples from the wastewater canal draining the industrial complex of Pančevo, Serbia (oil refinery, petrochemical plant, and fertilizer factory). The canal is directly connected to Europe's second largest river, the Danube, which drains its water into the Black Sea. Perfluorooctane sulfonate (PFOS) up to 5.7ngg(-1) dry weight (dw) and total Perfluorinated compounds (PFCs) up to 6.3ngg(-1) dw were detected. Compared to other reports, high levels of PFOS were found, even though PFCs are not used in the industrial production associated with this canal. The PFOS concentration in water was recalculated using the adsorption coefficient, KOC from literature. Using the average output of wastewater from the canal, a mass load of 1.38kg PFOS per year discharged in the Danube River has been calculated, which undoubtedly points to the contribution to global persistent organic pollution of surface waters originating from this industrial place. PMID:23415492

  11. Biological treatment of mining wastewaters by fixed-bed bioreactors at high organic loading.

    PubMed

    Bratkova, Svetlana; Koumanova, Bogdana; Beschkov, Venko

    2013-06-01

    Acid wastewaters contaminated with Fe - 1000 mg L(-1) and Cu - 100 mg L(-1) were remediated by microbial sulfate-reduction at high organic loading (theoretical TOC/SO4(2-) ratio 1.1) in a laboratory installation. The installation design includes a fixed-bed anaerobic bioreactor for sulfate-reduction, a chemical reactor, a settler and a three-sectional bioreactor for residual organic compounds and hydrogen sulfide removal. Sulfate-reducing bacteria are immobilized on saturated zeolite in the fixed-bed bioreactor. The source of carbon and energy for bacteria was concentrated solution, containing ethanol, glycerol, lactate and citrate. Heavy metals removal was achieved by produced H2S at sulfate loading rate 88 mg L(-1)h(-1). The effluent of the anaerobic bioreactor was characterized with high concentrations of acetate and ethanol. The design of the second bioreactor (presence of two aerobic and an anoxic zones) makes possible the occurrence of nitrification and denitrification as well as the efficiently removal of residual organic compounds and H2S.

  12. Simultaneous removal of perchlorate and energetic compounds in munitions wastewater by zero-valent iron and perchlorate-respiring bacteria.

    PubMed

    Ahn, Se Chang; Hubbard, Brian; Cha, Daniel K; Kim, Byung J

    2014-01-01

    Ammonium perchlorate is one of the main constituents in Army's insensitive melt-pour explosive, PAX-21 in addition to RDX and 2,4-dinitroanisole (DNAN). The objective of this study is to develop an innovative treatment process to remove both perchlorate and energetic compounds simultaneously from PAX-21 production wastewater. It was hypothesized that the pretreatment of PAX-21 wastewater with zero-valent iron (ZVI) would convert energetic compounds to products that are more amenable for biological oxidation and that these products serve as electron donors for perchlorate-reducing bacteria. Results of batch ZVI reduction experiments showed that DNAN was completely reduced to 2,4-diaminoanisole and RDX was completely reduced to formaldehyde. Anaerobic batch biodegradation experiments showed that perchlorate (30 mg L(-1)) in ZVI-treated PAX-21 wastewater was decreased to an undetectable level after 5 days. Batch biodegradation experiments also confirmed that formaldehyde in ZVI-treated wastewater was the primary electron donor for perchlorate-respiring bacteria. The integrated iron-anaerobic bioreactor system was effective in completely removing energetic compounds and perchlorate from the PAX-21 wastewater without adding an exogenous electron donor. This study demonstrated that ZVI pretreatment not only removed energetic compounds, but also transformed energetic compounds to products that can serve as the source of electrons for perchlorate-respiring bacteria.

  13. Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater.

    PubMed

    Wert, Eric C; Rosario-Ortiz, Fernando L; Snyder, Shane A

    2009-03-01

    Three tertiary-treated wastewater effluents were evaluated to determine the impact of wastewater quality (i.e. effluent organic matter (EfOM), nitrite, and alkalinity) on ozone (O(3)) decomposition and subsequent removal of 31 organic contaminants including endocrine disrupting compounds, pharmaceuticals, and personal care products. The O(3) dose was normalized based upon total organic carbon (TOC) and nitrite to allow comparison between the different wastewaters with respect to O(3) decomposition. EfOM with higher molecular weight components underwent greater transformation, which corresponded to increased O(3) decomposition when compared on a TOC basis. Hydroxyl radical (()OH) exposure, measured by parachlorobenzoic acid (pCBA), showed that limited ()OH was available for contaminant destruction during the initial stage of O(3) decomposition (t<30s) due to the effect of the scavenging by the water quality. Advanced oxidation using O(3) and hydrogen peroxide did not increase the net production of ()OH compared to O(3) under the conditions studied. EfOM reactivity impacted the removal of trace contaminants when evaluated based on the O(3):TOC ratio. Trace contaminants with second order reaction rate constants with O(3)(k(O)(3))>10(5)M(-1)s(-1) and ()OH (k(OH))>10(9)M(-1)s(-1), including carbamazepine, diclofenac, naproxen, sulfamethoxazole, and triclosan, were >95% removed independent of water quality when the O(3) exposure (integralO(3)t) was measurable (0-0.8mgmin/L). O(3) exposure would be a conservative surrogate to assess the removal of trace contaminants that are fast-reacting with O(3). Removal of contaminants with k(O)(3) < 10M(-1)S(-1) , and k(OH)>10(9)M(-1)s(-1), including atrazine, iopromide, diazepam, and ibuprofen, varied when O(3) exposure could not be measured, and appeared to be dependent upon the compound specific k(OH). Atrazine, diazepam, ibuprofen and iopromide provided excellent linear correlation with pCBA (R(2)>0.86) making them good

  14. Tritium labeling of organic compounds deposited on porous structures

    DOEpatents

    Ehrenkaufer, Richard L. E.; Wolf, Alfred P.; Hembree, Wylie C.

    1979-01-01

    An improved process for labeling organic compounds with tritium is carried out by depositing the selected compound on the extensive surface of a porous structure such as a membrane filter and exposing the membrane containing the compound to tritium gas activated by the microwave discharge technique. The labeled compound is then recovered from the porous structure.

  15. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States - I) Groundwater

    USGS Publications Warehouse

    Barnes, K.K.; Kolpin, D.W.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.; Barber, L.B.

    2008-01-01

    As part of the continuing effort to collect baseline information on the environmental occurrence of pharmaceuticals, and other organic wastewater contaminants (OWCs) in the Nation's water resources, water samples were collected from a network of 47 groundwater sites across 18 states in 2000. All samples collected were analyzed for 65 OWCs representing a wide variety of uses and origins. Site selection focused on areas suspected to be susceptible to contamination from either animal or human wastewaters (i.e. down gradient of a landfill, unsewered residential development, or animal feedlot). Thus, sites sampled were not necessarily used as a source of drinking water but provide a variety of geohydrologic environments with potential sources of OWCs. OWCs were detected in 81% of the sites sampled, with 35 of the 65 OWCs being found at least once. The most frequently detected compounds include N,N-diethyltoluamide (35%, insect repellant), bisphenol A (30%, plasticizer), tri(2-chloroethyl) phosphate (30%, fire retardant), sulfamethoxazole (23%, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19%, detergent metabolite). Although sampling procedures were intended to ensure that all groundwater samples analyzed were indicative of aquifer conditions it is possible that detections of some OWCs could have resulted from leaching of well-construction materials and/or other site-specific conditions related to well construction and materials. Future research will be needed to identify those factors that are most important in determining the occurrence and concentrations of OWCs in groundwater.

  16. Fractionation and characterization of organic matter in wastewater from a swine waste-retention basin

    USGS Publications Warehouse

    Leenheer, Jerry A.; Rostad, Colleen E.

    2004-01-01

    Organic matter in wastewater sampled from a swine waste-retention basin in Iowa was fractionated into 14 fractions on the basis of size (particulate, colloid, and dissolved); volatility; polarity (hydrophobic, transphilic, hydrophilic); acid, base, neutral characteristics; and precipitate or flocculates (floc) formation upon acidification. The compound-class composition of each of these fractions was determined by infrared and 13C-NMR spectral analyses. Volatile acids were the largest fraction with acetic acid being the major component of this fraction. The second most abundant fraction was fine particulate organic matter that consisted of bacterial cells that were subfractionated into extractable lipids consisting of straight chain fatty acids, peptidoglycans components of bacterial cell walls, and protein globulin components of cellular plasma. The large lipid content of the particulate fraction indicates that non-polar contaminants, such as certain pharmaceuticals added to swine feed, likely associate with the particulate fraction through partitioning interactions. Hydrocinnamic acid is a major component of the hydrophobic acid fraction, and its presence is an indication of anaerobic degradation of lignin originally present in swine feed. This is the first study to combine particulate organic matter with dissolved organic matter fractionation into a total organic matter fractionation and characterization.

  17. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment. PMID:25502693

  18. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment.

  19. Radiation Induced Degradation of Organic Pollutants in Waters and Wastewaters.

    PubMed

    Wojnárovits, László; Takács, Erzsébet

    2016-08-01

    In water treatment by ionizing radiation, and also in other advanced oxidation processes, the main goal is to destroy, or at least to deactivate harmful water contaminants: pharmaceutical compounds, pesticides, surfactants, health-care products, etc. The chemical transformations are mainly initiated by hydroxyl radicals, and the reactions of the formed carbon centered radicals with dissolved oxygen basically determine the rate of oxidation. The concentration of the target compounds is generally very low as compared to the concentration of such natural 'impurities' as chloride and carbonate/bicarbonate ions or the dissolved humic substances (generally referred to as dissolved organic carbon), which consume the majority of the hydroxyl radicals. The different constituents compete for reacting with radicals initiating the degradation. This manuscript discusses the radiation chemistry of this complex system. It includes the reactions of the primary water radiolysis intermediates (hydroxyl radical, hydrated electron/hydrogen atom), the reactions of radicals that form in radical transfer reactions (dichloride-, carbonate- and sulfate radical anions) and also the contribution to the degradation of organic compounds of such additives as hydrogen peroxide, ozone or persulfate. PMID:27573402

  20. Impact of solids retention time on dissolved organic nitrogen and its biodegradability in treated wastewater

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dissolved organic nitrogen (DON) and its biodegradability in treated wastewater have recently gained attention because DON potentially causes oxygen depletion and/or eutrophication in receiving waters. Laboratory scale chemostat experiments were conducted at 9 different solids retention times (SRTs)...

  1. DISTRIBUTION OF ORGANIC WASTEWATER CONTAMINANTS BETWEEN WATER AND SEDIMENT IN SURFACE WATERS OF THE UNITED STATES

    EPA Science Inventory

    Trace concentrations of pharmaceuticals and other organic wastewater contaminants have been determined in the surface waters of Europe and the United States. A preliminary report of substantially higher concentrations of pharmaceuticals in sediment suggests that bottom sediment ...

  2. A review of organic UV-filters in wastewater treatment plants.

    PubMed

    Ramos, Sara; Homem, Vera; Alves, Arminda; Santos, Lúcia

    2016-01-01

    UV-filters are a group of compounds which have been massively used in the past years due to the recent concerns with sunburns, premature skin ageing and the risk of developing skin cancer, related to sun exposure. At the moment, these compounds have been identified by the scientific community as emerging pollutants, due to their persistence in the environment, potential to accumulate in biota and potential threat as endocrine disruptors. At some point, the majority of sunscreens will find their way into wastewater (due to bathing and washing activities) and because wastewater treatment plants (WWTPs) are not able to remove and/or degrade them, consequently they find their way into rivers, lakes and ocean, so it is not surprising that UV-filters are found in the environment. Therefore, wastewater treatment plants should be the focus of the scientific community aiming to better understand the fate of the UV-filters and develop new technologies to remove them from wastewater and sludge. This review, aims to provide the current state of the art in the occurrence and fate of UV-filters in wastewater treatment plants and how the technologies that are being used are successfully removing these compounds from both wastewater and sludge.

  3. Breath measurements as volatile organic compound biomarkers.

    PubMed Central

    Wallace, L; Buckley, T; Pellizzari, E; Gordon, S

    1996-01-01

    A brief review of the uses of breath analysis in studies of environmental exposure to volatile organic compounds (VOCs) is provided. The U.S. Environmental Protection Agency's large-scale Total Exposure Assessment Methodology Studies have measured concentrations of 32 target VOCs in the exhaled breath of about 800 residents of various U.S. cities. Since the previous 12-hr integrated personal air exposures to the same chemicals were also measured, the relation between exposure and body burden is illuminated. Another major use of the breath measurements has been to detect unmeasured pathways of exposure; the major impact of active smoking on exposure to benzene and styrene was detected in this way. Following the earlier field studies, a series of chamber studies have provided estimates of several important physiological parameters. Among these are the fraction, f, of the inhaled chemical that is exhaled under steady-state conditions and the residence times. tau i in several body compartments, which may be associated with the blood (or liver), organs, muscle, and fat. Most of the targeted VOCs appear to have similar residence times of a few minutes, 30 min, several hours, and several days in the respective tissue groups. Knowledge of these parameters can be helpful in estimating body burden from exposure or vice versa and in planning environmental studies, particularly in setting times to monitor breath in studies of the variation with time of body burden. Improvements in breath methods have made it possible to study short-term peak exposure situations such as filling a gas tank or taking a shower in contaminated water. PMID:8933027

  4. Volatile Organic Compound Emissions by Agricultural Crops

    NASA Astrophysics Data System (ADS)

    Ormeno, E.; Farres, S.; Gentner, D.; Park, J.; McKay, M.; Karlik, J.; Goldstein, A.

    2008-12-01

    Biogenic Volatile Organic Compounds (BVOCs) participate in ozone and aerosol formation, and comprise a substantial fraction of reactive VOC emission inventories. In the agriculturally intensive Central Valley of California, emissions from crops may substantially influence regional air quality, but emission potentials have not been extensively studied with advanced instrumentation for many important crops. Because crop emissions may vary according to the species, and California emission inventories are constructed via a bottom-up approach, a better knowledge of the emission rate at the species-specific level is critical for reducing uncertainties in emission inventories and evaluating emission model performance. In the present study we identified and quantified the BVOCs released by dominant agricultural crops in California. A screening study to investigate both volatile and semivolatile BVOC fractions (oxygenated VOCs, isoprene, monoterepenes, sesquiterpenes, etc.) was performed for 25 crop species (at least 3 replicates plants each), including branch enclosures of woody species (e.g. peach, mandarin, grape, pistachio) and whole plant enclosures for herbaceous species (e.g. onion, alfalfa, carrot), through a dynamic cuvette system with detection by PTRMS, in-situ GCMS/FID, and collection on carbon-based adsorbents followed by extraction and GCMS analysis. Emission data obtained in this study will allow inclusion of these crops in BVOC emission inventories and air quality simulations.

  5. Volatile organic compound remedial action project

    SciTech Connect

    1991-12-01

    This Environmental Assessment (EA) reviews a proposed project that is planned to reduce the levels of volatile organic compound (VOC) contaminants present in the Mound domestic water supply. The potable and industrial process water supply for Mound is presently obtained from a shallow aquifer via on-site production wells. The present levels of VOCs in the water supply drawn from the on-site wells are below the maximum contaminant levels (MCLs) permissible for drinking water under Safe Drinking Water Act (SDWA; 40 CFR 141); however, Mound has determined that remedial measures should be taken to further reduce the VOC levels. The proposed project action is the reduction of the VOC levels in the water supply using packed tower aeration (PTA). This document is intended to satisfy the requirements of the National Environmental Policy Act (NEPA) of 1969 and associated Council on Environmental Quality regulations (40 CFR parts 1500 through 1508) as implemented through U.S. Department of Energy (DOE) Order 5440.1D and supporting DOE NEPA Guidelines (52 FR 47662), as amended (54 FR 12474; 55 FR 37174), and as modified by the Secretary of Energy Notice (SEN) 15-90 and associated guidance. As required, this EA provides sufficient information on the probable environmental impacts of the proposed action and alternatives to support a DOE decision either to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact (FONSI).

  6. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. PMID:26164853

  7. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work.

  8. Volatile Organic Compounds Contribute to Airway Hyperresponsiveness

    PubMed Central

    Jang, An-Soo; Choi, Inseon-S; Koh, Young-Il

    2007-01-01

    Background Volatile organic compounds (VOCs) in concentrations found in both the work and home environments may influence lung function. We investigated the prevalence of airway responsiveness in workers exposed to VOCs. Methods We used allergic skin tests, nonspecific airway hyperresponsiveness testing and questionnaires to study twenty exposed workers and twenty-seven control subjects. Atopy was defined as a reactor who showed >3+ response to one or more allergens on the skin prick tests. Airway hyperresponsiveness (BRindex) was defined as log [% fall of FEV1/ log (last concentration of methacholine) +10]. Results The VOC exposed workers, in comparison with the control subjects, tended to have a higher BRindex (1.19±0.07 vs. 1.15±0.08, respectively). Workers exposed to VOCs with atopy or smoker, as compared with the workers exposed to VOCs with non-atopy and who were non-smokers and the control subjects with non-atopy and who were non-smokers, had a significantly higher BRindex (1.20±0.05 vs. 1.14±0.06 vs. 1.10±0.03, respectively p<0.05). The BRindex was not correlated with atopy, the smoking status or the duration of VOC exposure. Conclusions These findings suggest that VOCs may act as a contributing factor of airway hyperresponsiveness in workers exposed to VOCs. PMID:17427638

  9. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands.

    PubMed

    Rossmann, Maike; Matos, Antonio Teixeira; Abreu, Edgar Carneiro; Silva, Fabyano Fonseca; Borges, Alisson Carraro

    2013-10-15

    The aim of the present study was to evaluate the influence of aeration and vegetation on the removal of organic matter in coffee processing wastewater (CPW) treated in 4 constructed wetlands (CWs), characterized as follows: (i) ryegrass (Lolium multiflorum) cultivated system operating with an aerated influent; (ii) non-cultivated system operating with an aerated influent, (iii) ryegrass cultivated system operating with a non-aerated influent; and (iv) non-cultivated system operating with a non-aerated influent. The lowest average chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of 87, 84 and 73%, respectively, were obtained in the ryegrass cultivated system operating with a non-aerated influent. However, ryegrass cultivation did not influence the removal efficiency of organic matter. Artificial aeration of the CPW, prior to its injection in the CW, did not improve the removal efficiencies of organic matter. On other hand it did contribute to increase the instantaneous rate at which the maximum COD removal efficiency was reached. Although aeration did not result in greater organic matter removal efficiencies, it is important to consider the benefits of aeration on the removal of the other compounds.

  10. Investigation of hydrophobic organic carbon (HOC) partitioning to 1 kDa fractionated municipal wastewater colloids.

    PubMed

    McPhedran, Kerry N; Seth, Rajesh; Drouillard, Ken G

    2013-03-19

    Natural organic matter from the aquatic environment passing a 1 kDa filter has been hypothesized to not contribute appreciably to hydrophobic organic compound (HOC) partitioning; however, to our knowledge this limit has not been verified experimentally for any sorbate/sorbent system. Presently, colloidal organic carbon (COC) < 1 kDa approached 70% of the total COC (<1.5 μm) mass in primary effluent (PE) from a municipal wastewater treatment plant. Partitioning of HOCs 1,2,4,5-tetrachlorobenzene, pentachlorobenzene, and hexachlorobenzene to COC for both 1.5 μm and 1 kDa filtrates of PE was investigated using the gas-stripping technique. Contrary to the hypothesis, significant HOC-COC partitioning to the 1 kDa filtrate was observed with organic carbon-normalized partitioning coefficients (logKCOC) of 4.30, 4.36, and 3.74 for 1,2,4,5-TeCB, PeCB, and HCB, respectively. Further, partitioning to COC < 1 kDa dominated the overall partitioning of the three chlorobenzenes in the 1.5 μm filtrate, and the partitioning behavior did not follow the trend based on hydrophobicity (KOW). The results show that significant partitioning of HOC may occur to OC < 1 kDa and highlights the need for further experiments with other HOCs and COC characterization to better understand and explain the observed partitioning.

  11. Organic Compounds in Truckee River Water Used for Public Supply near Reno, Nevada, 2002-05

    USGS Publications Warehouse

    Thomas, Karen A.

    2009-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including, in part, pesticides, solvents, gasoline hydrocarbons, personal care and domestic-use products, and refrigerants and propellants. Of 258 compounds measured, 28 were detected in at least 1 source water sample collected approximately monthly during 2002-05 at the intake of the Chalk Bluff Treatment Plant, on the Truckee River upstream of Reno, Nevada. The diversity of compounds detected indicate various sources and uses (including wastewater discharge, industrial, agricultural, domestic, and others) and different pathways (including point sources from treated wastewater outfalls upstream of the sampling location, overland runoff, and groundwater discharge) to drinking-water supply intakes. Three compounds were detected in more than 20 percent of the source-water intake samples at low concentrations (less than 0.1 microgram per liter), including caffeine, p-cresol (a wood preservative), and toluene (a gasoline hydrocarbon). Sixteen of the 28 compounds detected in source water also were detected in finished water (after treatment, but prior to distribution; 2004-05). Additionally, two disinfection by-products not detected in source water, bromodichloromethane and dibromochloromethane, were detected in all finished water samples. Two detected compounds, cholesterol and 3-beta-coprostanol, are among five naturally occurring biochemicals analyzed in this study. Concentrations for all detected compounds in source and finished water generally were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about one-half of the compounds. Seven compounds (toluene, chloroform, bromodichloromethane, dibromodichloromethane, bisphenol A, cholesterol, and 3-beta-coprostanol) were measured at concentrations greater than 0.1 microgram per liter. On the basis of this screening-level assessment, adverse effects to human health are

  12. Method and reaction pathway for selectively oxidizing organic compounds

    DOEpatents

    Camaioni, Donald M.; Lilga, Michael A.

    1998-01-01

    A method of selectively oxidizing an organic compound in a single vessel comprises: a) combining an organic compound, an acid solution in which the organic compound is soluble, a compound containing two oxygen atoms bonded to one another, and a metal ion reducing agent capable of reducing one of such oxygen atoms, and thereby forming a mixture; b) reducing the compound containing the two oxygen atoms by reducing one of such oxygen atoms with the metal ion reducing agent to, 1) oxidize the metal ion reducing agent to a higher valence state, and 2) produce an oxygen containing intermediate capable of oxidizing the organic compound; c) reacting the oxygen containing intermediate with the organic compound to oxidize the organic compound into an oxidized organic intermediate, the oxidized organic intermediate having an oxidized carbon atom; d) reacting the oxidized organic intermediate with the acid counter ion and higher valence state metal ion to bond the acid counter ion to the oxidized carbon atom and thereby produce a quantity of an ester incorporating the organic intermediate and acid counter ion; and e) reacting the oxidized organic intermediate with the higher valence state metal ion and water to produce a quantity of alcohol which is less than the quantity of ester, the acid counter ion incorporated in the ester rendering the carbon atom bonded to the counter ion less reactive with the oxygen containing intermediate in the mixture than is the alcohol with the oxygen containing intermediate.

  13. Disinfection. [Wastewater treatment

    SciTech Connect

    Haas, C.N.; McCreary, J.J.

    1982-06-01

    Methods of disinfection of wastewater including chlorination, ultraviolet radiation, ozone, and quaternary compounds are reviewed. Various analytical methods to detect residues of the disinfectants are described. The production of inorganic and nonvolatile organic compounds in conventional water treatment processes is reviewed. (KRM)

  14. Oceanic protection of prebiotic organic compounds from UV radiation

    NASA Technical Reports Server (NTRS)

    Cleaves, H. J.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1998-01-01

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  15. Oceanic protection of prebiotic organic compounds from UV radiation.

    PubMed

    Cleaves, H J; Miller, S L

    1998-06-23

    It is frequently stated that UV light would cause massive destruction of prebiotic organic compounds because of the absence of an ozone layer. The elevated UV flux of the early sun compounds this problem. This applies to organic compounds of both terrestrial and extraterrestrial origin. Attempts to deal with this problem generally involve atmospheric absorbers. We show here that prebiotic organic polymers as well as several inorganic compounds are sufficient to protect oceanic organic molecules from UV degradation. This aqueous protection is in addition to any atmospheric UV absorbers and should be a ubiquitous planetary phenomenon serving to increase the size of planetary habitable zones.

  16. Destination of organic pollutants during electrochemical oxidation of biologically-pretreated dye wastewater using boron-doped diamond anode.

    PubMed

    Zhu, Xiuping; Ni, Jinren; Wei, Junjun; Xing, Xuan; Li, Hongna

    2011-05-15

    Electrochemical oxidation of biologically-pretreated dye wastewater was performed in a boron-doped diamond (BDD) anode system. After electrolysis of 12h, the COD was decreased from 532 to 99 mg L(-1) (<100 mg L(-1), the National Discharge Standard of China). More importantly, the destination of organic pollutants during electrochemical oxidation process was carefully investigated by molecular weight distribution measurement, resin fractionation, ultraviolet-visible spectroscopy, HPLC and GC-MS analysis, and toxicity test. As results, most organic pollutants were completely removed by electrochemical oxidation and the rest was primarily degraded to simpler compounds (e.g., carboxylic acids and short-chain alkanes) with less toxicity, which demonstrated that electrochemical oxidation of biologically-pretreated dye wastewater with BDD anode was very effective and safe. Especially, the performance of BDD anode system in degradation of large molecular organics such as humic substances makes it very promising in practical applications as an advanced treatment of biologically-pretreated wastewaters. PMID:21377794

  17. Supercritical water oxidation of polyvinyl alcohol and desizing wastewater: influence of NaOH on the organic decomposition.

    PubMed

    Zhang, Jie; Wang, Shuzhong; Guo, Yang; Xu, Donghai; Gong, Yanmeng; Tang, Xingying

    2013-08-01

    Polyvinyl alcohol is a refractory compound widely used in industry. Here we report supercritical water oxidation of polyvinyl alcohol solution and desizing wastewater with and without sodium hydroxide addition. However, it is difficult to implement complete degradation of organics even though polyvinyl alcohol can readily crack under supercritical water treatment. Sodium hydroxide had a significant catalytic effect during the supercritical water oxidation of polyvinyl alcohol. It appears that the OH- ion participated in the C-C bond cleavage of polyvinyl alcohol molecules, the CO2-capture reaction and the neutralization of intermediate organic acids, promoting the overall reactions moving in the forward direction. Acetaldehyde was a typical intermediate product during reaction. For supercritical water oxidation of desizing wastewater, a high destruction rate (98.25%) based on total organic carbon was achieved. In addition, cases where initial wastewater was alkaline were favorable for supercritical water oxidation treatment, but salt precipitation and blockage issues arising during the process need to be taken into account seriously.

  18. A critical review on characterization strategies of organic matter for wastewater and water treatment processes.

    PubMed

    Tran, Ngoc Han; Ngo, Huu Hao; Urase, Taro; Gin, Karina Yew-Hoong

    2015-10-01

    The presence of organic matter (OM) in raw wastewater, treated wastewater effluents, and natural water samples has been known to cause many problems in wastewater treatment and water reclamation processes, such as treatability, membrane fouling, and the formation of potentially toxic by-products during wastewater treatment. This paper summarizes the current knowledge on the methods for characterization and quantification of OM in water samples in relation to wastewater and water treatment processes including: (i) characterization based on the biodegradability; (ii) characterization based on particle size distribution; (iii) fractionation based on the hydrophilic/hydrophobic properties; (iv) characterization based on the molecular weight (MW) size distribution; and (v) characterization based on fluorescence excitation emission matrix. In addition, the advantages, disadvantages and applications of these methods are discussed in detail. The establishment of correlations among biodegradability, hydrophobic/hydrophilic fractions, MW size distribution of OM, membrane fouling and formation of toxic by-products potential is highly recommended for further studies.

  19. Endocrine disrupting compounds reduction and water quality improvement in reclaimed municipal wastewater: A field-scale study along Jialu River in North China.

    PubMed

    Sun, Jie; Ji, Xiaowen; Zhang, Rui; Huang, Yu; Liang, Ying; Du, Jinhui; Xie, Xianchuan; Li, Aimin

    2016-08-01

    Several ecological restoration projects have been constructed along urban rivers in North China to purify reclaimed municipal wastewater and improve the water quality of urban rivers. These projects attempt to address several environmental issues, including treating water contamination that is not fully remediated through standard wastewater treatment. This study investigated the efficiency of reducing endocrine disrupting compounds (EDCs) and estrogenic activity in reclaimed municipal wastewater along an 18.5 km field-scale ecological restoration project in Jialu River. The river only receives reclaimed municipal wastewater without natural effluent in North China. Data show that the chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) of reclaimed municipal effluent improved when compared to the Chinese surface water standard, and natural estrogens, such as estrone (E1) and estradiol (E2), were effectively removed during ecological restoration purification processes. The estradiol activity based on measured EDCs concentrations (ΣEEQEDC) was less than 0.01 ng/L after the ecological purification of restoration river; however, synthetic endocrine disrupting compounds in reclaimed municipal wastewater, such as octylphenol (OP), bisphenol A (BPA), and dibutyl phthalate (DBP), were difficult to eliminate. The bioassays of MDA-kb2 cells and recombinant yeast in vitro showed no direct androgen response and estrogen effect in reclaimed municipal effluent after the purification processes. However, a chorionic long-term (21d) exposure in vivo test showed that exposure to the reclaimed municipal effluents, even after river purification, still significantly induced yolk protein vitellogenin (Vtg) in male zebrafish, leading to abnormal expression of testosterone (T) and E2. This indicates continued potent estrogenic activity to aquatic organisms, even after treatment and purification. PMID:27231882

  20. Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia.

    PubMed

    Al Qarni, Hamed; Collier, Philip; O'Keeffe, Juliette; Akunna, Joseph

    2016-07-01

    The concentrations of 12 pharmaceutical compounds (atenolol, erythromycin, cyclophosphamide, paracetamol, bezafibrate, carbamazepine, ciprofloxacin, caffeine, clarithromycin, lidocaine, sulfamethoxazole and N-acetylsulfamethoxazol (NACS)) were investigated in the influents and effluents of two hospital wastewater treatment plants (HWWTPs) in Saudi Arabia. The majority of the target analytes were detected in the influent samples apart from bezafibrate, cyclophosphamide, and erythromycin. Caffeine and paracetamol were detected in the influent at particularly high concentrations up to 75 and 12 ug/L, respectively. High removal efficiencies of the pharmaceutical compounds were observed in both HWWTPs, with greater than 90 % removal on average. Paracetamol, sulfamethoxazole, NACS, ciprofloxacin, and caffeine were eliminated by between >95 and >99 % on average. Atenolol, carbamazepine, and clarithromycin were eliminated by >86 % on average. Of particular interest were the high removal efficiencies of carbamazepine and antibiotics that were achieved by the HWWTPs; these compounds have been reported to be relatively recalcitrant to biological treatment and are generally only partially removed. Elevated temperatures and high levels of sunlight were considered to be the main factors that enhanced the removal of these compounds. PMID:26996911

  1. Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia.

    PubMed

    Al Qarni, Hamed; Collier, Philip; O'Keeffe, Juliette; Akunna, Joseph

    2016-07-01

    The concentrations of 12 pharmaceutical compounds (atenolol, erythromycin, cyclophosphamide, paracetamol, bezafibrate, carbamazepine, ciprofloxacin, caffeine, clarithromycin, lidocaine, sulfamethoxazole and N-acetylsulfamethoxazol (NACS)) were investigated in the influents and effluents of two hospital wastewater treatment plants (HWWTPs) in Saudi Arabia. The majority of the target analytes were detected in the influent samples apart from bezafibrate, cyclophosphamide, and erythromycin. Caffeine and paracetamol were detected in the influent at particularly high concentrations up to 75 and 12 ug/L, respectively. High removal efficiencies of the pharmaceutical compounds were observed in both HWWTPs, with greater than 90 % removal on average. Paracetamol, sulfamethoxazole, NACS, ciprofloxacin, and caffeine were eliminated by between >95 and >99 % on average. Atenolol, carbamazepine, and clarithromycin were eliminated by >86 % on average. Of particular interest were the high removal efficiencies of carbamazepine and antibiotics that were achieved by the HWWTPs; these compounds have been reported to be relatively recalcitrant to biological treatment and are generally only partially removed. Elevated temperatures and high levels of sunlight were considered to be the main factors that enhanced the removal of these compounds.

  2. Nitrated Secondary Organic Tracer Compounds in Biomass Burning Smoke

    NASA Astrophysics Data System (ADS)

    Iinuma, Y.; Böge, O.; Gräfe, R.; Herrmann, H.

    2010-12-01

    Natural and human-initiated biomass burning releases large amounts of gases and particles into the atmosphere, impacting climate, environment and affecting public health. Several hundreds of compounds are emitted from biomass burning and these compounds largely originate from the pyrolysis of biopolymers such as lignin, cellulose and hemicellulose. Some of compounds are known to be specific to biomass burning and widely recognized as tracer compounds that can be used to identify the presence of biomass burning PM. Detailed chemical analysis of biomass burning influenced PM samples often reveals the presence compounds that correlated well with levoglucosan, a known biomass burning tracer compound. In particular, nitrated aromatic compounds correlated very well with levoglucosan, indicating that biomass burning as a source for this class of compounds. In the present study, we present evidence for the presence of biomass burning originating secondary organic aerosol (BSOA) compounds in biomass burning influenced ambient PM. These BSOA compounds are typically nitrated aromatic compounds that are produced in the oxidation of precursor compounds in the presence of NOx. The precursor identification was performed from a series of aerosol chamber experiments. m-Cresol, which is emitted from biomass burning at significant levels, is found to be a major precursor compounds for nitrated BSOA compounds found in the ambient PM. We estimate that the total concentrations of these compounds in the ambient PM are comparable to biogenic SOA compounds in winter months, indicating the BSOA contributes important amounts to the regional organic aerosol loading.

  3. Fossil organic carbon in wastewater and its fate in treatment plants.

    PubMed

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.

  4. Secondary organic aerosol from biogenic volatile organic compound mixtures

    NASA Astrophysics Data System (ADS)

    Hatfield, Meagan L.; Huff Hartz, Kara E.

    2011-04-01

    The secondary organic aerosol (SOA) yields from the ozonolysis of a Siberian fir needle oil (SFNO), a Canadian fir needle oil (CFNO), and several SOA precursor mixtures containing reactive and non-reactive volatile organic compounds (VOCs) were investigated. The use of precursor mixtures more completely describes the atmosphere where many VOCs exist. The addition of non-reactive VOCs such as bornyl acetate, camphene, and borneol had very little to no effect on SOA yields. The oxidation of VOC mixtures with VOC mass percentages similar to the SFNO produced SOA yields that became more similar to the SOA yield from SFNO as the complexity and concentration of VOCs within the mixture became more similar to overall SFNO composition. The SOA yield produced by the oxidation of CFNO was within the error of the SOA yield produced by the oxidation of SFNO at a similar VOC concentration. The SOA yields from SFNO were modeled using the volatility basis set (VBS), which predicts the SOA yields for a given mass concentration of mixtures containing similar VOCs.

  5. Organic Compounds in Clackamas River Water Used for Public Supply near Portland, Oregon, 2003-05

    USGS Publications Warehouse

    Carpenter, Kurt D.; McGhee, Gordon

    2009-01-01

    Organic compounds studied in this U.S. Geological Survey (USGS) assessment generally are man-made, including pesticides, gasoline hydrocarbons, solvents, personal care and domestic-use products, disinfection by-products, and manufacturing additives. In all, 56 compounds were detected in samples collected approximately monthly during 2003-05 at the intake for the Clackamas River Water plant, one of four community water systems on the lower Clackamas River. The diversity of compounds detected suggests a variety of different sources and uses (including wastewater discharges, industrial, agricultural, domestic, and others) and different pathways to drinking-water supplies (point sources, precipitation, overland runoff, ground-water discharge, and formation during water treatment). A total of 20 organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. Fifteen compounds were commonly detected in source water, and five of these compounds (benzene, m- and p-xylene, diuron, simazine, and chloroform) also were commonly detected in finished water. With the exception of gasoline hydrocarbons, disinfection by-products, chloromethane, and the herbicide diuron, concentrations in source and finished water were less than 0.1 microgram per liter and always less than human-health benchmarks, which are available for about 60 percent of the compounds detected. On the basis of this screening-level assessment, adverse effects to human health are assumed to be negligible (subject to limitations of available human-health benchmarks).

  6. 40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams 34 Table 34 to Subpart G of Part 63 Protection of...—Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams Chemical name...

  7. 40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams 34 Table 34 to Subpart G of Part 63 Protection of...—Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams Chemical name...

  8. 40 CFR Table 34 to Subpart G of... - Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams 34 Table 34 to Subpart G of Part 63 Protection of...—Fraction Measured (Fm) and Fraction Emitted (Fe) For HAP Compounds in Wastewater Streams Chemical name...

  9. Relative Stabilities of Organic Compounds Using Benson's Additivity Rules.

    ERIC Educational Resources Information Center

    Vitale, Dale E.

    1986-01-01

    Shows how the structure-energy principle can be presented in organic chemistry (without having to resort to quantum mechanics) by use of Benson's Additive Rules. Examples of the application to several major classes of organic compounds are given.

  10. Chlorinated organic compounds produced by Fusarium graminearum.

    PubMed

    Ntushelo, Khayalethu

    2016-06-01

    Fusarium graminearum, a pathogen of wheat and maize, not only reduces grain yield and degrades quality but also produces mycotoxins in the infected grain. Focus has been on mycotoxins because of the human and animal health hazards associated with them. In addition to work done on mycotoxins, chemical profiling of F. graminearum to identify other compounds produced by this fungus remains critical. With chemical profiling of F. graminearum the entire chemistry of this fungus can be understood. The focus of this work was to identify chlorinated compounds produced by F. graminearum. Various chlorinated compounds were detected and their role in F. graminearum is yet to be understood.

  11. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane.

    PubMed

    Ozaki, Hiroaki; Li, Huafang

    2002-01-01

    The introduction of ultra-low pressure reverse osmosis (ULPRO) membrane has widened the horizon of reverse osmosis (RO) in purification of surface water and wastewater as well as desalination of brackish water. The ULPRO membrane chemistry can provide a high water flux at low operating pressure, while maintaining a very good salt and organics rejection. This paper deals with the investigation on the rejection of low molecular weight organic compounds by ULPRO membrane. Laboratory scale experiments were carried out at a pressure of 3 kg/cm2 with a feed flow rate of 1.20 l/min. The rejection of undissociated organic compounds did not show a close relationship with the feed pH. The percentage removal of undissociated organic compounds increased linearly with the molecular weight as well as with the molecular width. The removal efficiency can be predicted by these relationships. But neither molecular weight nor molecular width can be considered as an absolute factor for rejection. The feed pH also influenced the removal efficiency of dissociated organic compounds. The efficiency decreased linearly with the increase in the dissociation constant.

  12. FIELD SCREENING FOR HALOGENATED VOLATILE ORGANIC COMPOUNDS

    SciTech Connect

    John F. Schabron; Joseph F. Rovani, Jr.; Theresa M. Bomstad

    2003-07-01

    Western Research Institute (WRI) is continuing work toward the development of new screening methodology and a test kit to measure halogenated volatile organic compounds (VOCs) in the field. Heated diode and corona discharge sensors are commonly used to detect leaks of refrigerants from air conditioners, freezers, and refrigerators. They are both selective to the presence of halogens. In prior work, the devices were tested for response to carbon tetrachloride, heptane, toluene, and water vapors. In the current work, sensor response was evaluated with sixteen halogenated VOCs relative to carbon tetrachloride. The results show that the response of the various chlorinated VOCs is within an order of magnitude of the response to carbon tetrachloride for each of the sensors. Thus, for field screening a single response factor can be used. Both types of leak detectors are being further modified to provide an on-board LCD signal readout, which is related to VOC concentration. The units will be fully portable and will operate with 115-V line or battery power. Signal background, noise level, and response data on the Bacharach heated diode detector and the TIF corona discharge detector show that when the response curves are plotted against the log of concentration, the plot is linear to the upper limit for the particular unit, with some curvature at lower levels. When response is plotted directly against concentration, the response is linear at the low end and is curved at the high end. The dynamic ranges for carbon tetrachloride of the two devices from the lower detection limit (S/N=2) to signal saturation are 4-850 vapor parts per million (vppm) for the corona discharge unit and 0.01-70 vppm for the heated diode unit. Additional circuit modifications are being made to lower the detection limit and increase the dynamic response range of the corona discharge unit. The results indicate that both devices show potential utility for future analytical method development work toward

  13. Volatile organic compound sources for Southern Finland

    NASA Astrophysics Data System (ADS)

    Patokoski, Johanna; Ruuskanen, Taina M.; Kajos, Maija K.; Taipale, Risto; Rantala, Pekka; Aalto, Juho; Ryyppö, Timo; Hakola, Hannele; Rinne, Janne

    2014-05-01

    Volatile organic compounds (VOCs) have several sources, both biogenic and anthropogenic. Emissions of biogenic VOCs in a global scale are estimated to be an order of magnitude higher than anthropogenic ones. However, in densely populated areas and during winter time the anthropogenic VOC emissions dominate over the biogenic ones. The aim of this study was to clarify potential local sources and source areas of VOCs in different seasons. Diurnal behaviour in winter and spring were also compared at two different sites in Finland: SMEAR II and III (Station for Measuring Ecosystem - Atmosphere Relations). SMEAR II is a rural site located in Hyytiälä in Southern Finland 220 km North-West from Helsinki whereas SMEAR III is background urban site located 5 km from the downtown of Helsinki. The volume mixing ratios of VOCs were measured with a proton-transfer-reaction mass spectrometer (PTR-MS, Ionicon Analytik GmbH, Austria) during years 2006-2011. Other trace gases such as CO, NOXand SO2 were also measured in both sites and used for source analysis. Source areas for long term VOC measurements were investigated with trajectory analysis and sources for local and regional concentrations were determined by Unmix multivariate receptor model. Forest fires affect air quality and the biggest smoke plumes can be seen in satellite images and even hinder visibility in the plume areas. They provide temporally and spatially well-defined sources that can be used to verify source area estimates. During the measurement periods two different forest fire episodes with several hotspots, happened in Russia. Forest fires which showed up in these measurements were in 2006 near the border of Finland in Vyborg area and 2010 in Moscow area. Forest fire episodes were clearly observed in trajectory analysis for benzene, toluene and methanol and also CO and NOX. In addition to event sources continuous source areas were determined. Anthropogenic local sources seemed to be dominant during winter in

  14. Immobilized soybean hull peroxidase for the oxidation of phenolic compounds in coffee processing wastewater.

    PubMed

    Chagas, Pricila Maria Batista; Torres, Juliana Arriel; Silva, Maria Cristina; Corrêa, Angelita Duarte

    2015-11-01

    Chitosan beads were prepared, using glutaraldehyde as a crosslinking agent for the immobilization of soybean hull peroxidase (SBP). The activity of free and immobilized SBP was studied. The optimum pH was 6.0 for both the free and immobilized enzyme; however, enzyme activity became more dependent on the temperature after immobilization. This study evaluated the potential use of immobilized and free enzyme in the oxidation of caffeic acid, of synthetic phenolic solution (SPS) and of total phenolic compounds in coffee processing wastewater (CPW). Some factors, such as reaction time, amount of H2O2 and caffeic acid were evaluated, in order to determine the optimum conditions for enzyme performance. Both enzymes showed a potential in the removal of caffeic acid, SPS and CPW, and immobilized SBP had the highest oxidation performance. The immobilized enzyme showed a potential of 50% in the oxidation of caffeic acid after 4 consecutive cycles.

  15. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  16. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  17. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  18. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  19. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  20. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  1. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  2. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  3. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  4. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  5. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  6. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  7. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  8. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  9. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  10. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  11. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  12. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  13. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  14. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  15. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  16. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  17. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  18. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  19. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  20. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  1. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  2. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  3. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  4. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  5. 40 CFR 60.492 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.492 Section 60.492 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Beverage Can Surface Coating Industry § 60.492 Standards for volatile organic compounds. On or after...

  6. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  7. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  8. 40 CFR 60.602 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.602 Section 60.602 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Synthetic Fiber Production Facilities § 60.602 Standard for volatile organic compounds. On and after...

  9. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  10. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  11. 40 CFR 60.712 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.712 Section 60.712 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Magnetic Tape Coating Facilities § 60.712 Standards for volatile organic compounds. Each owner or...

  12. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  13. 40 CFR 60.452 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.452 Section 60.452 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial Surface Coating: Large Appliances § 60.452 Standard for volatile organic compounds. On or...

  14. 40 CFR 60.722 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds. 60.722 Section 60.722 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... volatile organic compounds. (a) Each owner or operator of any affected facility which is subject to...

  15. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  16. 40 CFR 60.742 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.742 Section 60.742 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Polymeric Coating of Supporting Substrates Facilities § 60.742 Standards for volatile organic compounds....

  17. 40 CFR 60.622 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.622 Section 60.622 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Petroleum Dry Cleaners § 60.622 Standards for volatile organic compounds. (a) Each affected...

  18. 40 CFR 60.582 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.582 Section 60.582 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Flexible Vinyl and Urethane Coating and Printing § 60.582 Standard for volatile organic compounds. (a)...

  19. 40 CFR 60.462 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.462 Section 60.462 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Coil Surface Coating § 60.462 Standards for volatile organic compounds. (a) On and after the date...

  20. A Systematic Presentation of Organic Phosphorus and Sulfur Compounds.

    ERIC Educational Resources Information Center

    Hendrickson, James B.

    1985-01-01

    Because the names, interrelations, and oxidation levels of the organic compounds of phosphorus and sulfur tend to confuse students, a simple way to organize these compounds has been developed. The system consists of grouping them by oxidation state and extent of carbon substitution. (JN)

  1. 40 CFR Table 8 to Subpart Ggg of... - Fraction Measured (Fm) for HAP Compounds in Wastewater Streams

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Fraction Measured (Fm) for HAP Compounds in Wastewater Streams 8 Table 8 to Subpart GGG of Part 63 Protection of Environment ENVIRONMENTAL... Streams Chemical name CAS No. a Fm Acetaldehyde 75070 1.00 Acetonitrile 75058 0.99 Acetophenone 98862...

  2. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    PubMed

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (p<0.05). Removal efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. PMID:24370698

  3. Rate of biodegradiation of toxic organic compounds while in contact with organics which are actively composting. Final report

    SciTech Connect

    Not Available

    1982-03-01

    Results are presented of a study to biodegrade toxic organic wastes and to determine the degree of breakdown of compounds while in contact with high-rate composting. An artificial compost mixture consisting of shredded newspaper, manure, wastewater treatment plant sludge, sawdust, peat moss, soil, powdered milk, and fertilizer was prepared. Toxic organic chemicals were mixed with this actively composting mixture to obtain a concentration of about 500 mg/kg. Samples were analyzed after seven days of composting and again after 30 days. Thirty-two of the 59 chemicals tested were found to be moderately to highly susceptible to biodegradation. The potential for success is shown to be very high for using high-rate composting to degrade organic wastes. The possibility of accelerating the decomposition of toxic wastes in soils is suggested.

  4. Occurrence of pharmaceuticals and other organic wastewater constituents in selected streams in northern Arkansas, 2004

    USGS Publications Warehouse

    Galloway, Joel M.; Haggard, Brian E.; Meyers, Michael T.; Green, W. Reed

    2005-01-01

    The U.S. Geological Survey, in cooperation with the University of Arkansas and the U.S. Department of Agriculture, Agricultural Research Service, collected data in 2004 to determine the occurrence of pharmaceuticals and other organic wastewater constituents, including many constituents of emerging environmental concern, in selected streams in northern Arkansas. Samples were collected in March and April 2004 from 17 sites located upstream and downstream from wastewater- treatment plant effluent discharges on 7 streams in northwestern Arkansas and at 1 stream site in a relatively undeveloped basin in north-central Arkansas. Additional samples were collected at three of the sites in August 2004. The targeted organic wastewater constituents and sample sites were selected because wastewater-treatment plant effluent discharge provides a potential point source of these constituents and analytical techniques have improved to accurately measure small amounts of these constituents in environmental samples. At least 1 of the 108 pharmaceutical or other organic wastewater constituents was detected at all sites in 2004, except at Spavinaw Creek near Maysville, Arkansas. The number of detections generally was greater at sites downstream from municipal wastewater-treatment plant effluent discharges (mean = 14) compared to sites not influenced by wastewatertreatment plants (mean = 3). Overall, 42 of the 108 constituents targeted in the collected water-quality samples were detected. The most frequently detected constituents included caffeine, phenol, para-cresol, and acetyl hexamethyl tetrahydro naphthalene.

  5. WASTE TREATABILITY TESTS OF SPENT SOLVENT AND OTHER ORGANIC WASTEWATERS

    EPA Science Inventory

    Some commercial and industrial facilities treat RCRA spent solvent wastewaters by steam stripping, carbon adsorption, and/or biological processes. Thirteen facilities were visited by EPA's Office of Research and Development (ORD) from June 1985 to September 1986, to conduct sampl...

  6. Persistence and potential effects of complex organic contaminant mixtures in wastewater-impacted streams.

    PubMed

    Barber, Larry B; Keefe, Steffanie H; Brown, Greg K; Furlong, Edward T; Gray, James L; Kolpin, Dana W; Meyer, Michael T; Sandstrom, Mark W; Zaugg, Steven D

    2013-03-01

    Natural and synthetic organic contaminants in municipal wastewater treatment plant (WWTP) effluents can cause ecosystem impacts, raising concerns about their persistence in receiving streams. In this study, Lagrangian sampling, in which the same approximate parcel of water is tracked as it moves downstream, was conducted at Boulder Creek, Colorado and Fourmile Creek, Iowa to determine in-stream transport and attenuation of organic contaminants discharged from two secondary WWTPs. Similar stream reaches were evaluated, and samples were collected at multiple sites during summer and spring hydrologic conditions. Travel times to the most downstream (7.4 km) site in Boulder Creek were 6.2 h during the summer and 9.3 h during the spring, and to the Fourmile Creek 8.4 km downstream site times were 18 and 8.8 h, respectively. Discharge was measured at each site, and integrated composite samples were collected and analyzed for >200 organic contaminants including metal complexing agents, nonionic surfactant degradates, personal care products, pharmaceuticals, steroidal hormones, and pesticides. The highest concentration (>100 μg L(-1)) compounds detected in both WWTP effluents were ethylenediaminetetraacetic acid and 4-nonylphenolethoxycarboxylate oligomers, both of which persisted for at least 7 km downstream from the WWTPs. Concentrations of pharmaceuticals were lower (<1 μg L(-1)), and several compounds, including carbamazepine and sulfamethoxazole, were detected throughout the study reaches. After accounting for in-stream dilution, a complex mixture of contaminants showed little attenuation and was persistent in the receiving streams at concentrations with potential ecosystem implications. PMID:23398602

  7. Quantifying commuter exposures to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  8. Quantifying commuter exposures to volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kayne, Ashleigh

    Motor-vehicles can be a predominant source of air pollution in cities. Traffic-related air pollution is often unavoidable for people who live in populous areas. Commuters may have high exposures to traffic-related air pollution as they are close to vehicle tailpipes. Volatile organic compounds (VOCs) are one class of air pollutants of concern because exposure to VOCs carries risk for adverse health effects. Specific VOCs of interest for this work include benzene, toluene, ethylbenzene, and xylenes (BTEX), which are often found in gasoline and combustion products. Although methods exist to measure time-integrated personal exposures to BTEX, there are few practical methods to measure a commuter's time-resolved BTEX exposure which could identify peak exposures that could be concealed with a time-integrated measurement. This study evaluated the ability of a photoionization detector (PID) to measure commuters' exposure to BTEX using Tenax TA samples as a reference and quantified the difference in BTEX exposure between cyclists and drivers with windows open and closed. To determine the suitability of two measurement methods (PID and Tenax TA) for use in this study, the precision, linearity, and limits of detection (LODs) for both the PID and Tenax TA measurement methods were determined in the laboratory with standard BTEX calibration gases. Volunteers commuted from their homes to their work places by cycling or driving while wearing a personal exposure backpack containing a collocated PID and Tenax TA sampler. Volunteers completed a survey and indicated if the windows in their vehicle were open or closed. Comparing pairs of exposure data from the Tenax TA and PID sampling methods determined the suitability of the PID to measure the BTEX exposures of commuters. The difference between BTEX exposures of cyclists and drivers with windows open and closed in Fort Collins was determined. Both the PID and Tenax TA measurement methods were precise and linear when evaluated in the

  9. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  10. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased. PMID:21723581

  11. Kinetics of model high molecular weight organic compounds biodegradation in soil aquifer treatment.

    PubMed

    Fox, Peter; Makam, Roshan

    2011-10-01

    Soil Aquifer Treatment (SAT) is a process where treated wastewater is purified during transport through unsaturated and saturated zones. Easily biodegradable compounds are rapidly removed in the unsaturated zone and the residual organic carbon is comprised of primarily high molecular weight compounds. This research focuses on flow in the saturated zone where flow conditions are predictable and high molecular weight compounds are degraded. Flow through the saturated zone was investigated with 4 reactors packed with 2 different particle sizes and operated at 4 different flow rates. The objective was to evaluate the kinetics of transformation for high molecular weight organics during SAT. Dextran was used as a model compound to eliminate the complexity associated with studying a mixture of high molecular weight organics. The hydrolysis products of dextran are easily degradable sugars. Batch experiments with media taken from the reactors were used to determine the distribution of microbial activity in the reactors. Zero-order kinetics were observed for the removal of dextran in batch experiments which is consistent with hydrolysis of high molecular weight organics where extracellular enzymes limit the substrate utilization rate. Biomass and microbial activity measurements demonstrated that the biomass was independent of position in the reactors. A Monod based substrate/biomass growth kinetic model predicted the performance of dextran removal in the reactors. The rate limiting step appears to be hydrolysis and the overall rate was not affected by surface area even though greater biomass accumulation occurred as the surface area decreased.

  12. Study of a three-stage fluidized bed process treating acrylic synthetic-fiber manufacturing wastewater containing high-strength nitrogenous compounds.

    PubMed

    Cheng, S S; Chen, Y N; Wu, K L; Chuang, H P; Chen, S D

    2004-01-01

    Polyacrylonitrile (PAN) is one of the major synthetic fibers commonly used in the mass production of clothing. The chemical synthesis of PAN is carried out by polymerization of the acrylonitrile (AN) monomers with co-monomers such as vinyl acetate, methyl acrylate and cyclohexyl acrylate. Using water quality analysis of the PAN wastewater, high concentration of organic nitrogen was found and the TKN/COD ratios achieved were 0.15-0.26, indicating the complicated biodegradation characteristics for the PAN wastewater. In order to enhance biodegradation of nitrogenous compounds in PAN wastewater, a combined three-stage process of thermophilic anaerobic/anoxic denitrification/aerobic nitrification fluidized bed reactors was employed. The results indicated that the concentration of effluent in the three-stage process of OD and organic nitrogen was 175 mg/L and 13 mg/L, respectively. Furthermore, molecular biotechnology was applied to study the microbial population in the thermophilic anaerobic fluidized bed reactor. From the results of denaturing gradient gel electrophoresis, the diversity of PAN-degrading bacteria would change in different volumetric loading. Furthermore, the bacteria communities in the thermophilic anaerobic fluidized bed reactor were also studied by fluorescence in situ hybridization and confocal laser scanning microscopy. Alpha and delta-Proteobacteria were dominant in the bacteria population, and some high G+C content bacteria and Clostridium could be characterized in this system. PMID:15137414

  13. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters.

    PubMed

    Yan, Caixia; Nie, Minghua; Yang, Yi; Zhou, Junliang; Liu, Min; Baalousha, Mohammed; Lead, Jamie R

    2015-12-15

    The effect of colloids on the occurrence, phase distribution and photolysis of twenty-seven emerging organic contaminants (EOCs) was studied in domestic and livestock wastewaters (DW and LW), respectively. Filtered water (<1 μm) was separated into permeate (<1 kDa) and retentate (1 kDa-1 μm) by cross flow ultrafiltration. Results indicated that total concentration of EOCs ranged from 1220 ng L(-1) in permeate of DW to 5065 ng L(-1) in retentate of LW. The average EOC fraction associated with colloids was 13.5% and 14.4% in DW and LW. Most of the EOCs exhibited pseudo-first-order degradation kinetics in all water samples. Control experiments using glass and quartz reactors showed that UV light was more effective on the photolysis of most EOCs. The EOCs photolysis in the three fractions of DW and LW could be accelerated or inhibited compared to ultrapure water with the enhancement factor ranging from -0.94 to 7.33. The impact of colloids on the photolysis of EOCs depended on the compound and the source of water. The photolysis of most EOCs in permeates and filtrates was generally accelerated, while inhibited in the retentates, which could be attributed to the relatively high dissolved organic carbon contents in retentates.

  14. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays.

    PubMed

    Escher, Beate I; Allinson, Mayumi; Altenburger, Rolf; Bain, Peter A; Balaguer, Patrick; Busch, Wibke; Crago, Jordan; Denslow, Nancy D; Dopp, Elke; Hilscherova, Klara; Humpage, Andrew R; Kumar, Anu; Grimaldi, Marina; Jayasinghe, B Sumith; Jarosova, Barbora; Jia, Ai; Makarov, Sergei; Maruya, Keith A; Medvedev, Alex; Mehinto, Alvine C; Mendez, Jamie E; Poulsen, Anita; Prochazka, Erik; Richard, Jessica; Schifferli, Andrea; Schlenk, Daniel; Scholz, Stefan; Shiraishi, Fujio; Snyder, Shane; Su, Guanyong; Tang, Janet Y M; van der Burg, Bart; van der Linden, Sander C; Werner, Inge; Westerheide, Sandy D; Wong, Chris K C; Yang, Min; Yeung, Bonnie H Y; Zhang, Xiaowei; Leusch, Frederic D L

    2014-01-01

    Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring. PMID:24369993

  15. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays.

    PubMed

    Escher, Beate I; Allinson, Mayumi; Altenburger, Rolf; Bain, Peter A; Balaguer, Patrick; Busch, Wibke; Crago, Jordan; Denslow, Nancy D; Dopp, Elke; Hilscherova, Klara; Humpage, Andrew R; Kumar, Anu; Grimaldi, Marina; Jayasinghe, B Sumith; Jarosova, Barbora; Jia, Ai; Makarov, Sergei; Maruya, Keith A; Medvedev, Alex; Mehinto, Alvine C; Mendez, Jamie E; Poulsen, Anita; Prochazka, Erik; Richard, Jessica; Schifferli, Andrea; Schlenk, Daniel; Scholz, Stefan; Shiraishi, Fujio; Snyder, Shane; Su, Guanyong; Tang, Janet Y M; van der Burg, Bart; van der Linden, Sander C; Werner, Inge; Westerheide, Sandy D; Wong, Chris K C; Yang, Min; Yeung, Bonnie H Y; Zhang, Xiaowei; Leusch, Frederic D L

    2014-01-01

    Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.

  16. Organic Compounds in Circumstellar and Interstellar Environments

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  17. Organic compounds in circumstellar and interstellar environments.

    PubMed

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth. PMID:25720971

  18. Organic compounds in circumstellar and interstellar environments.

    PubMed

    Kwok, Sun

    2015-06-01

    Recent research has discovered that complex organic matter is prevalent throughout the Universe. In the Solar System, it is found in meteorites, comets, interplanetary dust particles, and planetary satellites. Spectroscopic signatures of organics with aromatic/aliphatic structures are also found in stellar ejecta, diffuse interstellar medium, and external galaxies. From space infrared spectroscopic observations, we have found that complex organics can be synthesized in the late stages of stellar evolution. Shortly after the nuclear synthesis of the element carbon, organic gas-phase molecules are formed in the stellar winds, which later condense into solid organic particles. This organic synthesis occurs over very short time scales of about a thousand years. In order to determine the chemical structures of these stellar organics, comparisons are made with particles produced in the laboratory. Using the technique of chemical vapor deposition, artificial organic particles have been created by injecting energy into gas-phase hydrocarbon molecules. These comparisons led us to believe that the stellar organics are best described as amorphous carbonaceous nanoparticles with mixed aromatic and aliphatic components. The chemical structures of the stellar organics show strong similarity to the insoluble organic matter found in meteorites. Isotopic analysis of meteorites and interplanetary dust collected in the upper atmospheres have revealed the presence of pre-solar grains similar to those formed in old stars. This provides a direct link between star dust and the Solar System and raises the possibility that the early Solar System was chemically enriched by stellar ejecta with the potential of influencing the origin of life on Earth.

  19. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  20. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  1. Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study.

    PubMed

    Matamoros, Víctor; Gutiérrez, Raquel; Ferrer, Ivet; García, Joan; Bayona, Josep M

    2015-05-15

    The effect of hydraulic retention time (HRT) and seasonality on the removal efficiency of 26 organic microcontaminants from urban wastewater was studied in two pilot high-rate algal ponds (HRAPs). The targeted compounds included pharmaceuticals and personal care products, fire retardants, surfactants, anticorrosive agents, pesticides and plasticizers, among others. The pilot plant, which was fed at a surface loading rate of 7-29 g of COD m(-2)d(-1), consisted of a homogenisation tank and two parallel lines, each one with a primary settler and an HRAP with a surface area of 1.5 m(2) and a volume of 0.5 m(3). The two HRAPs were operated with different HRTs (4 and 8 d). The removal efficiency ranged from negligible removal to more than 90% depending on the compound. Microcontaminant removal efficiencies were enhanced during the warm season, while the HRT effect on microcontaminant removal was only noticeable in the cold season. Our results suggest that biodegradation and photodegradation are the most important removal pathways, whereas volatilization and sorption were solely achieved for hydrophobic compounds (log Kow>4) with a moderately high Henry's law constant values (11-12 Pa m(-3)mol(-1)) such as musk fragrances. Whereas acetaminophen, ibuprofen and oxybenzone presented ecotoxicological hazard quotients (HQs) higher than 1 in the influent wastewater samples, the HQs for the effluent water samples were always below 1.

  2. Improving quality of textile wastewater with organic materials as multi soil layering

    NASA Astrophysics Data System (ADS)

    Supriyadi; Widijanto, H.; Pranoto; Dewi, AK

    2016-02-01

    On agricultural land, fresh water is needed especially for irrigation. Alternative ways to fulfill needs of fresh water is by utilizing wastewater from industry. Wastewater that produced in the industry in Surakarta is over flowing especially textile wastewater. Wastewater that produced from industry has many pollutants that affected decreasing fresh water quality for irrigation. Multi Soil Layering (MSL) is one of method that utilize the soil ability as main media by increasing its function of soil structure to purify wastewater, so it does not contaminate the environment and reusable. This research was purposed to know affectivity of organic materials (such as rice straw, baggase, sawdust, coconut fibre, and corncob) and dosage (5%, 10% and 25%) in MSL, also get alternative purification ways with easy and cheaper price as natural adsorbent. This study using field and laboratory experiment. The result shows that MSL can be an alternative method of purification of wastewater. The appropriate composition of organic materials that can be used as adsorbent is MSL with wood sawdust 10% dosage because it can increase pH, decrease the number of Cr, ammonia, and phosphate but less effective to decrease BOD and COD.

  3. Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry.

    PubMed

    Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael

    2015-09-15

    Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon.

  4. Effect of irradiation for recovery of organic wastes from potato starch wastewater with chitosan

    NASA Astrophysics Data System (ADS)

    Kume, Tamikazu; Takehisa, Masaaki

    The irradiation effect on recovery of organic substances from potato starch wastewater with aid of chitosan and disinfection were investigated for recycling the organic wastes into animal feeds. Chitosan was effective as a coagulant for suspended solids in the wastewater and the optimum concentration was 8-10 x 10 -30/0. The irradiation promotes the coagulation of the organic wastes. Especially, the coagulation of the proteins with chitosan increased by irradiation since the soluble proteins became insoluble by irradiation. The numbers of total aerobic bacteria in the wastewater and in the coagulum with chitosan were 8.0 x 10 7 and 3.5 x 10 8counts/ ml, respectively, and decreased to 11 and 45 counts/ml by 1.0 Mrad irradiation.

  5. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  6. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  7. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  8. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  9. 40 CFR 60.542 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic... Rubber Tire Manufacturing Industry § 60.542 Standards for volatile organic compounds. (a) On and after...) For each green tire spraying operation where both water-based and organic solvent-based sprays...

  10. Removal of volatile organic compounds using amphiphilic cyclodextrin-coated polypropylene

    PubMed Central

    Lumholdt, Ludmilla; Fourmentin, Sophie; Nielsen, Thorbjørn T

    2014-01-01

    Summary Polypropylene nonwovens were functionalised using a self-assembled, amphiphilic cyclodextrin coating and the potential for water purification by removal of pollutants was studied. As benzene is one of the problematic compounds in the Water Framework Directive, six volatile organic compounds (benzene and five benzene-based substances) were chosen as model compounds. The compounds were tested as a mixture in order to provide a more realistic situation since the wastewater will be a complex mixture containing multiple pollutants. The volatile organic compounds are known to form stable inclusion complexes with cyclodextrins. Six different amphiphilic cyclodextrin derivatives were synthesised in order to elucidate whether or not the uptake abilities of the coating depend on the structure of the derivative. Headspace gas chromatography was used for quantification of the uptake exploiting the volatile nature of benzene and its derivatives. The capacity was shown to increase beyond the expected stoichiometries of guest–host complexes with ratios of up to 16:1. PMID:25550739

  11. Environmental assessment of a site contaminated by organic compounds.

    PubMed

    Riccardi, C; Berardi, S; Di Basilio, M; Gariazzo, C; Giardi, P; Villarini, M

    2001-01-01

    This paper presents a study on environmental assessment of an abandoned industrial area located in central Italy. Main production was refractory materials and compounds for treatment of industrial wastewater. The present work deals with a methodology for development of a sound sampling design, chemical characterization of soil samples, definition of the degree of site contamination according to law limits and evaluation of the fate and transport of contaminants by EPA simulation model (VLEACH 2.2a). Results indicate that toxic compounds (polycyclic aromatic hydrocarbons and plasticizers) are uniformly distributed in the contaminated site and only in one sampling point their concentrations exceed law limits. Modeling results confirm that contaminants migration to groundwater can be excluded, addressing for a site remediation limited to the surface layer.

  12. Attenuation of trace organic compounds (TOrCs) in bioelectrochemical systems.

    PubMed

    Werner, Craig M; Hoppe-Jones, Christiane; Saikaly, Pascal E; Logan, Bruce E; Amy, Gary L

    2015-04-15

    Microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) are two types of microbial bioelectrochemical systems (BESs) that use microorganisms to convert chemical energy in wastewaters into useful energy products such as (bio)electricity (MFC) or hydrogen gas (MEC). These two systems were evaluated for their capacity to attenuate trace organic compounds (TOrCs), commonly found in municipal wastewater, under closed circuit (current generation) and open circuit (no current generation) conditions, using acetate as the carbon source. A biocide was used to evaluate attenuation in terms of biotransformation versus sorption. The difference in attenuation observed before and after addition of the biocide represented biotransformation, while attenuation after addition of a biocide primarily indicated sorption. Attenuation of TOrCs was similar in MFCs and MECs for eight different TOrCs, except for caffeine and trimethoprim where slightly higher attenuation was observed in MECs. Electric current generation did not enhance attenuation of the TOrCs except for caffeine, which showed slightly higher attenuation under closed circuit conditions in both MFCs and MECs. Substantial sorption of the TOrCs occurred to the biofilm-covered electrodes, but no consistent trend could be identified regarding the physico-chemical properties of the TOrCs tested and the extent of sorption. The octanol-water distribution coefficient at pH 7.4 (log DpH 7.4) appeared to be a reasonable predictor for sorption of some of the compounds (carbamazepine, atrazine, tris(2-chloroethyl) phosphate and diphenhydramine) but not for others (N,N-Diethyl-meta-toluamide). Atenolol also showed high levels of sorption despite being the most hydrophilic in the suite of compounds studied (log DpH 7.4 = -1.99). Though BESs do not show any inherent advantages over conventional wastewater treatment, with respect to TOrC removal, overall removals in BESs are similar to that reported for conventional wastewater

  13. Removal of dissolved organic matter in water-hyacinth waste-water treatment lagoons

    SciTech Connect

    Victoria-Rueda, C.H.

    1991-01-01

    Secondary treatment of domestic wastewater in water hyacinth lagoons was evaluated under experimental conditions to assess the role of the roots' bacterial biofilm in the removal of dissolved organic matter (DOM). Research was conducted to (1) quantify removal rates by the biofilm as a function of bulk DOM concentration, (2) formulate an analytical model of DOM removal incorporating biofilm activity, and (3) test the model response to variable organic loads in a pilot-scale plant. Removal of DOM by the biofilm was quantified in continuous-flow water hyacinth tanks at ten concentrations ranging from 45 to 330 g COD m {sup {minus}3} . Total DOM removal in the denitrifying, acetate-based experimental system was measured and partitioned into two fractions associated with the activity of biofilm and suspended bacteria. Calculated DOM removal by the biofilm was adjusted for the release of organic compounds by debris decomposition. Values of DOM removal were used to calculate oxygen transfer rates from the water hyacinth roots. A model of DOM removal in water hyacinth lagoons was formulated. The model, composed of four differential equations, was solved at steady-state conditions and the validity of its simulation results was tested in pilot-scale tanks. Hydraulic detection times ranging from 2 to 28 days were evaluated using biofilm density and concentrations of DOM and particulate organics as monitoring parameters of the model response. The observed decrease of suspended bacterial biomass along the tank was correctly simulated by the model, but predictions of effluent concentrations were not always consistent. Predicted values of biofilm bacterial mass were similar to those measured in the tanks, except when large algal populations were present in the film.

  14. Enantiomeric and Isotopic Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2004-01-01

    Carbonaceous meteorites are relatively enriched in soluble organic compounds. The Murchison and Murray meteorites contain numerous compounds of interest in the study of early solar system organic chemistry and organic compounds of potential importance for the origin of life. These include: amino acids, amides, carboxylic acids, and polyols. This talk will focus on the enantiomeric and isotopic analysis of individual meteoritic compounds - primarily polyol acids. The analyses will determine if, in addition to certain amino acids from Murchison, another potentially important class of prebiotic compounds also contains enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life. Preliminary enantiomeric and isotopic (C- 13) measurements of Murchison glyceric acid show that it is indeed extraterrestrial. C-13 and D isotope analysis of meteoritic sugar alcohols (glycerol, threitol, ribitol, etc.) has shown that they are also indigenous to the meteorite.

  15. A dispersive liquid-liquid micellar microextraction for the determination of pharmaceutical compounds in wastewaters using ultra-high-performace liquid chromatography with DAD detection.

    PubMed

    Montesdeoca-Esponda, Sarah; Mahugo-Santana, Cristina; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2015-03-01

    A dispersive liquid-liquid micellar microextraction (DLLMME) method coupled with ultra-high-performance liquid chromatography (UHPLC) using Diode Array Detector (DAD) detector was developed for the analysis of five pharmaceutical compounds of different nature in wastewaters. A micellar solution of a surfactant, polidocanol, as extraction solvent (100 μL) and chloroform as dispersive solvent (200 μL) were used to extract and preconcentrate the target analytes. Samples were heated above critical temperature and the cloudy solution was centrifuged. After removing the chloroform, the reduced volume of surfactant was then injected in the UHPLC system. In order to obtain high extraction efficiency, the parameters affecting the liquid-phase microextraction, such as time and temperature extraction, ionic strength and surfactant and organic solvent volume, were optimized using an experimental design. Under the optimized conditions, this procedure allows enrichment factors of up to 47-fold. The detection limit of the method ranged from 0.1 to 2.0 µg/L for the different pharmaceuticals. Relative standard deviations were <26% for all compounds. The procedure was applied to samples from final effluent collected from wastewater treatment plants in Las Palmas de Gran Canaria (Spain), and two compounds were measured at 67 and 113 µg/L in one of them. PMID:25056775

  16. Natural production of organic bromine compounds in Berlin Lakes.

    PubMed

    Hütteroth, Alexandra; Putschew, Anke; Jekel, Martin

    2007-05-15

    Berlin surface waters are characterized by elevated concentrations of organic bound bromine (up to 35 microg/L) in late summer. Organic bromine compounds in lakes are of significant importance because human life is closely connected to fresh water. Apart from recreational use, fresh water is frequently used for the production of drinking water, e.g., after bank filtration. Therefore the source, particularly the mechanism responsible for the formation is studied. Field studies indicate that the organic bromine compounds, measured as adsorbable organic bromine (AOBr), are autochthonous. Staggered maxima concentrations of chlorophyll-a, DOC and AOBr indicate that phototrophic organisms might contribute to the AOBr after death. The involvement of phototrophic organisms was established in the laboratory using surface water and/or cultures of organisms. Light and the presence of phototrophic organisms are essential for an AOBr production. Phototrophic organisms incorporate bromide, which is released randomly and after cell death. A part of the incorporated bromide is used for the formation of organic bromine compounds in the cell. After death of the organisms the brominated compounds and the incorporated bromide are released into the water phase, and an extracellular AOBr production can lead to a further formation of AOBr, most probably due to the parallel release of haloperoxidases.

  17. Comparative toxicity of SRC-I wastewater to aquatic organisms. Final technical report

    SciTech Connect

    Bailey, H.C.

    1984-01-01

    SRI International performed a series of acute and chronic toxicity studies on SRC-I wastewaters using fish, zooplankton, and algae as test organisms. The tests were designed to determine the toxicity of SRC-I wastewaters to quatic organisms and based on differences in toxicity of the various water samples, to evaluate the efficacy of various wastewater treatment methods. Survival data from acute and chronic daphnid studies indicate that phenol recovery markedly reduced wastewater toxicity. In treatment processes that did not include phenol recovery, powdered activated carbon reduced toxicity more effectively than granulated activated carbon. All treated water supported algal growth in excess of that in controls, particularly those waters subjected to phenol recovery. The toxicity of each SRC-I wastewater sample was compared with that of a corresponding synthetic salt solution to determine whether the salt load was the toxic element. The wastewaters typically exhibited higher toxicity than their associated salt solutions. The effect was greatest in the daphnid chronic studies. The aquatic ecotoxicity tests were performed as part of ICRC's post-Base-line environmental R and D program. One objective of the program was to evaluate the impact of phenol recovery on effluent quality. Another objective was to assess the potential impact of wastewater discharge on aquatic organisms. The results of this study have been integrated with results from the rest of the R and D program, and are documented in ICRC's Integration Report for SRC-I Post-Baseline Environmental R and D. 7 references, 10 figures and 22 tables.

  18. Improving biodegradation potential of domestic wastewater by manipulating the size distribution of organic matter.

    PubMed

    Liu, Xiang; Chen, Qiuwen; Zhu, Liang

    2016-09-01

    Carbon source is a critical constraint on nutrient removal in domestic wastewater treatment. However, the functions of particulate organic matter (POM) and some organics with high molecular weight (HMW) are overlooked in the conventional process, as they cannot be directly assimilated into cells during microbial metabolism. This further aggravates the problem of carbon source shortage and thus affects the effluent quality. Therefore, to better characterize organic matter (OM) based MW distribution, microfiltration/ultrafiltration/nanofiltration (MF/UF/NF) membranes were used in parallel to fractionate OM, which obtained seven fractions. Hydrolysis acidification (HA) was adopted to manipulate the MW distribution of dissolved organic matter (DOM) and further explore the correlation between molecular size and biodegradability. Results showed that HA pretreatment of wastewater not only promoted transformation from POM to DOM, but also boosted biodegradability. After 8hr of HA, the concentration of dissolved organic carbon (DOC) increased by 65%, from the initial value of 20.25 to 33.48mg/L, and the biodegradability index (BOD5 (biochemical oxygen demand)/SCOD (soluble chemical oxygen demand)) increased from 0.52 to 0.74. Using MW distribution analysis and composition optimization, a new understanding on the characteristics of organics in wastewater was obtained, which is of importance to solving low C/N wastewater treatment in engineering practice. PMID:27593284

  19. Improving biodegradation potential of domestic wastewater by manipulating the size distribution of organic matter.

    PubMed

    Liu, Xiang; Chen, Qiuwen; Zhu, Liang

    2016-09-01

    Carbon source is a critical constraint on nutrient removal in domestic wastewater treatment. However, the functions of particulate organic matter (POM) and some organics with high molecular weight (HMW) are overlooked in the conventional process, as they cannot be directly assimilated into cells during microbial metabolism. This further aggravates the problem of carbon source shortage and thus affects the effluent quality. Therefore, to better characterize organic matter (OM) based MW distribution, microfiltration/ultrafiltration/nanofiltration (MF/UF/NF) membranes were used in parallel to fractionate OM, which obtained seven fractions. Hydrolysis acidification (HA) was adopted to manipulate the MW distribution of dissolved organic matter (DOM) and further explore the correlation between molecular size and biodegradability. Results showed that HA pretreatment of wastewater not only promoted transformation from POM to DOM, but also boosted biodegradability. After 8hr of HA, the concentration of dissolved organic carbon (DOC) increased by 65%, from the initial value of 20.25 to 33.48mg/L, and the biodegradability index (BOD5 (biochemical oxygen demand)/SCOD (soluble chemical oxygen demand)) increased from 0.52 to 0.74. Using MW distribution analysis and composition optimization, a new understanding on the characteristics of organics in wastewater was obtained, which is of importance to solving low C/N wastewater treatment in engineering practice.

  20. Effect of organic load on phosphorus and bacteria removal from wastewater using alkaline filter materials.

    PubMed

    Nilsson, Charlotte; Renman, Gunno; Westholm, Lena Johansson; Renman, Agnieszka; Drizo, Aleksandra

    2013-10-15

    The organic matter released from septic tanks can disturb the subsequent step in on-site wastewater treatment such as the innovative filters for phosphorus removal. This study investigated the effect of organic load on phosphorus (P) and bacteria removal by reactive filter materials under real-life treatment conditions. Two long-term column experiments were conducted at very short hydraulic residence times (average ~5.5 h), using wastewater with high (mean ~120 mg L(-1)) and low (mean ~20 mg L(-1)) BOD7 values. Two alkaline filter materials, the calcium-silicate material Polonite and blast furnace slag (BFS), were tested for the removal capacity of total P, total organic carbon (TOC) and Enterococci. Both experiments showed that Polonite removed P significantly (p < 0.01) better than BFS. An increase in P removal efficiency of 29.3% was observed for the Polonite filter at the lower concentration of BOD7 (p < 0.05). Polonite was also better than BFS with regard to removal of TOC, but there were no significant differences between the two filter materials with regard to removal of Enterococci. The reduction in Enterococci was greater in the experiment using wastewater with high BOD7, an effect attributable to the higher concentration of bacteria in that wastewater. Overall, the results demonstrate the importance of extensive pre-treatment of wastewater to achieve good phosphorus removal in reactive bed filters and prolonged filter life. PMID:24001604

  1. Removal of total organic carbon from sewage wastewater using poly(ethylenimine)-functionalized magnetic nanoparticles.

    PubMed

    Lakshmanan, Ramnath; Sanchez-Dominguez, Margarita; Matutes-Aquino, Jose A; Wennmalm, Stefan; Kuttuva Rajarao, Gunaratna

    2014-02-01

    The increased levels of organic carbon in sewage wastewater during recent years impose a great challenge to the existing wastewater treatment process (WWTP). Technological innovations are therefore sought that can reduce the release of organic carbon into lakes and seas. In the present study, magnetic nanoparticles (NPs) were synthesized, functionalized with poly(ethylenimine) (PEI), and characterized using TEM (transmission electron microscopy), X-ray diffraction (XRD), FTIR (Fourier transform infrared spectroscopy), CCS (confocal correlation spectroscopy), SICS (scattering interference correlation spectroscopy), magnetism studies, and thermogravimetric analysis (TGA). The removal of total organic carbon (TOC) and other contaminants using PEI-coated magnetic nanoparticles (PEI-NPs) was tested in wastewater obtained from the Hammarby Sjöstadsverk sewage plant, Sweden. The synthesized NPs were about 12 nm in diameter and showed a homogeneous particle size distribution in dispersion by TEM and CCS analyses, respectively. The magnetization curve reveals superparamagnetic behavior, and the NPs do not reach saturation because of surface anisotropy effects. A 50% reduction in TOC was obtained in 60 min when using 20 mg/L PEI-NPs in 0.5 L of wastewater. Along with TOC, other contaminants such as turbidity (89%), color (86%), total nitrogen (24%), and microbial content (90%) were also removed without significant changes in the mineral ion composition of wastewater. We conclude that the application of PEI-NPs has the potential to reduce the processing time, complexity, sludge production, and use of additional chemicals in the WWTP.

  2. Effect of organic load on phosphorus and bacteria removal from wastewater using alkaline filter materials.

    PubMed

    Nilsson, Charlotte; Renman, Gunno; Westholm, Lena Johansson; Renman, Agnieszka; Drizo, Aleksandra

    2013-10-15

    The organic matter released from septic tanks can disturb the subsequent step in on-site wastewater treatment such as the innovative filters for phosphorus removal. This study investigated the effect of organic load on phosphorus (P) and bacteria removal by reactive filter materials under real-life treatment conditions. Two long-term column experiments were conducted at very short hydraulic residence times (average ~5.5 h), using wastewater with high (mean ~120 mg L(-1)) and low (mean ~20 mg L(-1)) BOD7 values. Two alkaline filter materials, the calcium-silicate material Polonite and blast furnace slag (BFS), were tested for the removal capacity of total P, total organic carbon (TOC) and Enterococci. Both experiments showed that Polonite removed P significantly (p < 0.01) better than BFS. An increase in P removal efficiency of 29.3% was observed for the Polonite filter at the lower concentration of BOD7 (p < 0.05). Polonite was also better than BFS with regard to removal of TOC, but there were no significant differences between the two filter materials with regard to removal of Enterococci. The reduction in Enterococci was greater in the experiment using wastewater with high BOD7, an effect attributable to the higher concentration of bacteria in that wastewater. Overall, the results demonstrate the importance of extensive pre-treatment of wastewater to achieve good phosphorus removal in reactive bed filters and prolonged filter life.

  3. Hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil.

    PubMed

    Gao, Hongxia; Liu, Yingli; Guan, Weijun; Li, Qingzhao; Liu, Nan; Gao, Zhenjie; Fan, Jianjun

    2015-03-01

    The objective of this study is to investigate the hepatotoxicity and nephrotoxicity of organic contaminants in wastewater-irrigated soil using in vivo and in vitro experiments on mice and rat. Soil samples were collected from a wastewater-irrigated area and groundwater-irrigated area, i.e. clean water-irrigated area as control group. The organic contaminants were extracted using an ultrasonic oscillator. In vivo experiment was performed by contamination of hepatocytes of rat using the organic extract, and comet assay was used to analyse the DNA damage of hepatocytes. For in vitro experiment, mice were first gavaged with extracts, and then the indicators for kidney functions, liver functions and oxidative damage of tissues were investigated. The result shows, for in vitro experiments, compared with clean water-irrigated area groups, the average DNA tailing length for the wastewater-irrigated area group is larger, and for the wastewater-irrigated area groups with extract concentration 0.6 g/ml and 0.9 g/ml, the tailing rate increases significantly (P < 0.05). For in vivo experiments, the change of weight across each group shows no significant difference (P < 0.05). Compared with clean water-irrigated groups, the liver indices have decreased for all groups of the wastewater-irrigated area, while both kidney and liver indices decreased for wastewater-irrigated area high-dose group (P < 0.05 or P < 0.01). The total proteins for wastewater-irrigated low-dose group and Gamma-glutamyl transpeptidase, creatinine for high-dose group all increased (P < 0.01). Compared with the reagent control group, total superoxide dismutase activity of liver for wastewater-irrigated groups and glutathione peroxidase activity for high-dose group, malondialdehyde content all decreased (P < 0.05 or P < 0.01); glutathione peroxidase activity of kidney tissue for wastewater-irrigated high-dose group decreased (P < 0.01). The result shows that the joint toxicity in

  4. SYNTHESIZING ORGANIC COMPOUNDS USING LIGHT-ACTIVATED TIO2

    EPA Science Inventory

    High-value organic compounds have been synthesized successfully from linear and cyclic hydrocarbons, by photocatalytic oxidation using a semiconductor material, titanium dioxide (TiO2). Various hydrocarbons were partially oxgenated in both liquid and gaseous phase reactors usi...

  5. SEPARATION OF VOLATILE ORGANIC COMPOUNDS FROM SURFACTANT SOLUTIONS BY PERVAPORATION

    EPA Science Inventory

    Pervaporation is gradually becoming an accepted and practical method for the recovery of volatile organic compounds (VOCs) from aqueous process and waste streams. As the technolog has matured, new applications for pervaporation have emerged. One such application is the separati...

  6. ESTIMATION OF PHYSIOCHEMICAL PROPERTIES OF ORGANIC COMPOUNDS BY SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  7. Synthesis of fluorinated organic compounds using oxygen difluoride

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1971-01-01

    Oxygen difluoride synthesis is a much simpler, higher-yield procedure than reactions originally followed to synthesize various fluorinated organic compounds. Extreme care is taken in working with oxygen difluoride as its reactions present severe explosion hazard.

  8. Estimation of melting points of organic compounds-II.

    PubMed

    Jain, Akash; Yalkowsky, Samuel H

    2006-12-01

    A model for calculation of melting points of organic compounds from structure is described. The model utilizes additive, constitutive and nonadditive, constitutive molecular properties to calculate the enthalpy of melting and the entropy of melting, respectively. Application of the model to over 2200 compounds, including a number of drugs with complex structures, gives an average absolute error of 30.1 degrees.

  9. VOLATILE ORGANIC COMPOUNDS MEASURED IN DEARS PASSIVE SAMPLERS

    EPA Science Inventory

    A suite of 27 volatile organic compounds (VOCs) were monitored in personal exposures, indoors and outdoors of participant's residences, and at a central community site during the DEARS summer 2004 monitoring season. The list of VOCs focused on compounds typically associated with ...

  10. Predicting the emission of volatile organic compounds from silage systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a precursor to smog, emission of volatile organic compounds (VOCs) to the atmosphere is an environmental concern in some regions. The major VOC emission source from farms is silage, with emissions coming from the silo face, mixing wagon, and feed bunk. The major compounds emitted are alcohols wit...

  11. INDOOR AIR QUALITY DATA BASE FOR ORGANIC COMPOUNDS

    EPA Science Inventory

    The report gives results of the compilation of a data base for concentrations of organic compounds measured indoors. ased on a review of the literature from 1979 through 1990, the data base contains information on over 220 compounds ranging in molecular weight from 30 to 446. he ...

  12. Molecular and Enantiomeric Analysis of Organic Compounds in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Cooper, George

    2003-01-01

    Carbonaceous meteorites are relatively enriched in carbon. Much of this carbon is in the form of soluble organic compounds. The Murchison and Murray meteorites are the best-characterized carbonaceous meteorites with respect to organic chemistry. Their content of organic compounds has led to an initial understanding of early solar system organic chemistry as well as what compounds may have played a role in the origin of life (Cronin and Chang, 1993). Reported compounds include: amino acids, amides, carboxylic acids, sulfonic acids, and polyols. This talk will focus on the molecular and enantiomeric analysis of individual meteoritic compounds: polyol acids; and a newly identified class of meteorite compounds, keto acids, i.e., acetoacetic acid, levulinic acid, etc. Keto acids (including pyruvic) are critically important in all contemporary organisms. They are key intermediates in metabolism and processes such as the citric acid cycle. Using gas chromatography-mass spectrometry we identified individual meteoritic keto acids after derivatization to one or more of the following forms: isopropyl ester (ISP), trimethyIsiIy1 (TMS), tert-butyldimethylsilyl (BDMS). Ongoing analyses will determine if, in addition to certain amino acids from Murchison (Cronin and Pizzarello, 1997), other potentially important prebiotic compounds also contain enantiomeric excesses, i.e., excesses that could have contributed to the current homochirality of life.

  13. Shock Modifications of Organic Compounds in Carbonaceous Chondrite Parent Bodies

    NASA Technical Reports Server (NTRS)

    Cooper, George W.

    1998-01-01

    Impacts among asteroidal objects would have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. To begin filling a knowledge gap on the shock metamorphism of organic compounds, we are studying the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach is to subject mixtures of organic compounds, embedded in the matrix of the Murchison meteorite, to simulated hypervelocity impacts by firing them into targets at various pressures. The mixtures are then analyzed to determine the amount of each compound that survives as well as to determine if new compounds are being synthesized. The initial compounds added to the matrix (with the exception of thiosulfate). The sulfonic acids were chosen in part because they are relatively abundant in Murchison, relatively stable, and because they and the phosphonic acids are the first well-characterized homologous series of organic sulfur and phosphorus compounds identified in an extraterrestrial material. Experimental procedures were more fully described in the original proposal. A 20 mm gun, with its barrel extending into a vacuum chamber (10(exp -2) torr), was used to launch the projectile containing the sample at approx. 1.6 km/sec (3,600 mi/hr) into the target material. Maximum pressure of impact depend on target/projectile materials. The target was sufficiently thin to assure minimum pressure decay over the total sample thickness.

  14. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, Robert A.; Laugal, James A.; Rappa, Angela

    1985-01-01

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about -10.degree. C. to about 30.degree. C. or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  15. Process for reducing organic compounds with calcium, amine, and alcohol

    DOEpatents

    Benkeser, R.A.; Laugal, J.A.; Rappa, A.

    1985-08-06

    Olefins are produced by contacting an organic compound having at least one benzene ring with calcium metal, ethylenediamine, a low molecular weight aliphatic alcohol, and optionally a low molecular weight aliphatic primary amine, and/or an inert, abrasive particulate substance. The reduction is conducted at temperatures ranging from about [minus]10 C to about 30 C or somewhat higher. Substantially all of the organic compounds are converted to corresponding cyclic olefins, primarily diolefins.

  16. Temperature dependent redox zonation and attenuation of wastewater-derived organic micropollutants in the hyporheic zone.

    PubMed

    Burke, Victoria; Greskowiak, Janek; Asmuß, Tina; Bremermann, Rebecca; Taute, Thomas; Massmann, Gudrun

    2014-06-01

    The hyporheic zone - a spatially fluctuating ecotone connecting surface water and groundwater - is considered to be highly reactive with regard to the attenuation of organic micropollutants. In the course of the presented study an undisturbed sediment core was taken from the infiltration zone of a bank filtration site in Berlin and operated under controlled laboratory conditions with wastewater-influenced surface water at two different temperatures, simulating winter and summer conditions. The aim was to evaluate the fate of site-relevant micropollutants, namely metoprolol, iopromide, diclofenac, carbamazepine, acesulfame, tolyltriazole, benzotriazole, phenazone and two phenazone type metabolites, within the first meter of infiltration dependent on the prevailing temperature. A change in temperature resulted in a development of significantly distinct redox conditions. Both temperature dependencies and related redox dependencies were identified for all micropollutants except for benzotriazole and carbamazepine, which behaved persistent under all conditions. For the remaining compounds degradation rate constants generally decreased from warm and oxic/penoxic/suboxic over cold and oxic/penoxic to warm and manganese reducing (transition zone). Individual degradation rate constants ranged from 0 (e.g. diclofenac, acesulfame and tolyltriazole in the transition zone) to 1.4×10(-4)s(-1) for metoprolol under warm conditions within the oxic to suboxic zone. PMID:24642095

  17. Thermodynamics of Organic Compound Alteration in Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Shock, E. L.

    2005-12-01

    Organic compounds enter hydrothermal systems through infiltrating surface waters, zones of microbial productivity in the subsurface, extracts of organic matter in surrounding host rocks, and abiotic synthesis. Owing to variations in pH, oxidation state, composition, temperature, and pressure throughout the changing pathways of fluid migration over the duration of the system, organic compounds from all of these sources are introduced to conditions where their relative stabilities and reactivities can be dramatically transformed. If those transformations were predictable, then the extent to which organic alteration reactions have occurred could be used to reveal flowpaths and histories of hydrothermal systems. Speciation and mass transfer calculations permit some insight into the underlying thermodynamic driving forces that result in organic compound alteration. As an example, the speciation of many geochemist's canonical organic matter: CH2O depends strongly on oxidation state, temperature, and total concentration of dissolved organic matter. Calculations show that at oxidation states buffered by iron-bearing mineral assemblages, organic acids dominate the speciation of CH2O throughout hydrothermal systems, with acetic acid (itself equivalent to 2 CH2O by bulk composition) and propanoic acid generally the most abundant compounds. However, at more reduced conditions, which may prevail in organic-rich iron-poor sediments, the drive is to form ketones and especially alcohols at the expense of organic acids. The distribution of organic carbon among the various members of these compound classes is strongly dependent on the total concentration of dissolved organic matter. As an example, at a bulk concentration equivalent to average dissolved organic matter in seawater (45μm), the dominant alcohols at 100°C are small compounds like ethanol and 1-propanol. In contrast, at a higher bulk concentration of 500μm, there is a drive to shift large percentages of dissolved

  18. Combining passive samplers and biomonitors to evaluate endocrine disrupting compounds in a wastewater treatment plant by LC/MS/MS and bioassay analyses.

    PubMed

    Liscio, C; Magi, E; Di Carro, M; Suter, M J-F; Vermeirssen, E L M

    2009-10-01

    Two types of integrative sampling approaches (passive samplers and biomonitors) were tested for their sampling characteristics of selected endocrine disrupting compounds (EDCs). Chemical analyses (LC/MS/MS) were used to determine the amounts of five EDCs (nonylphenol, bisphenol A, estrone, 17beta-estradiol and 17alpha-ethinylestradiol) in polar organic chemical integrative samplers (POCIS) and freshwater mussels (Unio pictorum); both had been deployed in the influent and effluent of a municipal wastewater treatment plant (WWTP) in Genoa, Italy. Estrogenicity of the POCIS samples was assessed using the yeast estrogen screen (YES). Estradiol equivalent values derived from the bioassay showed a positive correlation with estradiol equivalents calculated from chemical analyses data. As expected, the amount of estrogens and EEQ values in the effluent were lower than those in the influent. Passive sampling proved to be the preferred method for assessing the presence of these compounds since employing mussels had several disadvantages both in sampling efficiency and sample analyses.

  19. Biodegradation of toxic organic compounds using electrolytic respirometry

    SciTech Connect

    Desai, S.M.

    1991-01-01

    There are a number of physical, chemical and biological processes that may affect the concentration of a chemical in an aquatic system. Of all these mechanisms, biodegradation is the most important because it can mineralize toxic pollutants and render them harmless. Experiments have been conducted using an electrolytic respirometer to collect oxygen uptake data of 56 toxic compounds. Biokinetic parameters; maximum specific rate constant, {mu}m, half saturation constant, K{sub s} and yield coefficient, Y were determined for 27 compounds which degraded under experimental conditions. The effect of different factors; temperature, compound concentration, biomass concentration and biomass source, on kinetic constant have been studied for benzene, toluene, ethyl benzene, phenol, 2,4-dimethyl phenol, resorcinol and dimethyl, diethyl, dibutyl and butyl benzyl phthalates. The results obtained will help in design of wastewater treatment plant and in determining the fate of these toxic compounds in natural and engineered environments. A method based on group contribution, to predict first-order biodegradation rate constant and Monod constants is developed and validated. More kinetic data is required to further extend this prediction method.

  20. Analysis of volatile organic compounds from illicit cocaine samples

    SciTech Connect

    Robins, W.H.; Wright, B.W.

    1994-07-01

    Detection of illicit cocaine hydrochloride shipments can be improved if there is a greater understanding of the identity and quantity of volatile compounds present. This study provides preliminary data concerning the volatile organic compounds detected in a limited Set of cocaine hydrochloride samples. In all cases, cocaine was one of the major volatile compounds detected. Other tropeines were detected in almost all samples. Low concentrations of compounds that may be residues of processing solvents were observed in some samples. The equilibrium emissivity of. cocaine from cocaine hydrochloride was investigated and a value of 83 parts-per-trillion was determined.

  1. Recent advances in trifluoromethylation of organic compounds using Umemoto's reagents.

    PubMed

    Zhang, Cai

    2014-09-14

    The incorporation of fluorine-containing moieties into organic compounds is of great importance in pharmaceutical, agricultural, and materials science. Within these organofluorides, the trifluoromethyl group is one of the most important motifs. In recent years, the trifluoromethyl group has attracted more and more attention, and many trifluoromethylated compounds have been found to possess special activities. However, until now, only a few methods have been developed to achieve this efficiently using Umemoto's reagents. This review highlights recent developments in the direct introduction of a trifluoromethyl group into organic compounds with Umemoto's reagents. Seven approaches to the trifluoromethylation of organic compounds are summarized: (i) trifluoromethylation of arenes, (ii) trifluoromethylation of alkenes, (iii) trifluoromethylation of terminal alkynes, (iv) deoxygenative trifluoromethylation of benzylic xanthates, (v) trifluoromethylation of ketoesters, (vi) trifluoromethylation of aryl boronic acids and aromatic amines (synthesis of ArCF3) and (vii) trifluoromethylation of biphenyl isocyanide derivatives. PMID:25011917

  2. Characterizations of organic compounds in diesel exhaust particulates.

    PubMed

    Lim, Jaehyun; Lim, Cheolsoo; Kim, Sangkyun; Hong, Jihyung

    2015-08-01

    To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter (PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine (34-94 nm) and accumulation (94-1000 nm) modes ranged from 2.9 to 5.7 μg/m(3) and 9.5 to 16.4 μg/m(3), respectively. As a function of driving conditions, the non-oxygen-containing organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers, nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions, alkane class consistently showed the highest concentration (8.3 to 18.0 μg/m(3)) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons (PAHs) were identified with a total concentration ranging from 37.9 to 174.8 ng/m(3). In addition, nine nitrogen-containing polycyclic aromatic compounds (NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m(3). The most abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure under the highest engine speed and engine load. PMID:26257360

  3. Characterizations of organic compounds in diesel exhaust particulates.

    PubMed

    Lim, Jaehyun; Lim, Cheolsoo; Kim, Sangkyun; Hong, Jihyung

    2015-08-01

    To characterize how the speed and load of a medium-duty diesel engine affected the organic compounds in diesel particle matter (PM) below 1 μm, four driving conditions were examined. At all four driving conditions, concentration of identifiable organic compounds in PM ultrafine (34-94 nm) and accumulation (94-1000 nm) modes ranged from 2.9 to 5.7 μg/m(3) and 9.5 to 16.4 μg/m(3), respectively. As a function of driving conditions, the non-oxygen-containing organics exhibited a reversed concentration trend to the oxygen-containing organics. The identified organic compounds were classified into eleven classes: alkanes, alkenes, alkynes, aromatic hydrocarbons, carboxylic acids, esters, ketones, alcohols, ethers, nitrogen-containing compounds, and sulfur-containing compounds. At all driving conditions, alkane class consistently showed the highest concentration (8.3 to 18.0 μg/m(3)) followed by carboxylic acid, esters, ketones and alcohols. Twelve polycyclic aromatic hydrocarbons (PAHs) were identified with a total concentration ranging from 37.9 to 174.8 ng/m(3). In addition, nine nitrogen-containing polycyclic aromatic compounds (NPACs) were identified with a total concentration ranging from 7.0 to 10.3 ng/m(3). The most abundant PAH (phenanthrene) and NPACs (7,8-benzoquinoline and 3-nitrophenanthrene) comprise a similar molecular (3 aromatic-ring) structure under the highest engine speed and engine load.

  4. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    PubMed

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem.

  5. Combined organic matter and nitrogen removal from a chemical industry wastewater in a two-stage MBBR system.

    PubMed

    Cao, S M S; Fontoura, G A T; Dezotti, M; Bassin, J P

    2016-01-01

    Pesticide-producing factories generate highly polluting wastewaters containing toxic and hazardous compounds which should be reduced to acceptable levels before discharge. In this study, a chemical industry wastewater was treated in a pre-denitrification moving-bed biofilm reactor system subjected to an increasing internal mixed liquor recycle ratio from 2 to 4. Although the influent wastewater characteristics substantially varied over time, the removal of chemical oxygen demand (COD) and dissolved organic carbon was quite stable and mostly higher than 90%. The highest fraction of the incoming organic matter was removed anoxically, favouring a low COD/N environment in the subsequent aerobic nitrifying tank and thus ensuring stable ammonium removal (90-95%). However, during pH and salt shock periods, nitrifiers were severely inhibited but gradually restored their full nitrifying capability as non-stressing conditions were reestablished. Besides promoting an increase in the maximum nitrification potential of the aerobic attached biomass from 0.34 to 0.63 mg [Formula: see text], the increase in the internal recycle ratio was accompanied by an increase in nitrogen removal (60-78%) and maximum specific denitrification rate (2.7-3.3 mg NOx(-)--N). Total polysaccharides (PS) and protein (PT) concentrations of attached biomass were observed to be directly influenced by the influent organic loading rate, while the PS/PT ratio mainly ranged from 0.3 to 0.5. Results of Microtox tests showed that no toxicity was found in the effluent of both the anoxic and aerobic reactors, indicating that the biological process was effective in removing residual substances which might adversely affect the receiving waters' ecosystem. PMID:26086717

  6. Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

    Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model

  7. A laboratory batch reactor test for assessing nonspeciated volatile organic compound biodegradation in activated sludge.

    PubMed

    Cano, M L; Saterbak, A; van Compernolle, R; Williams, M P; Huot, M E; Rhodes, I A; Allen, C C

    2003-01-01

    The relative rates of biodegradation and stripping and volatilization of nonspeciated volatile organic compounds (VOCs) in wastewater treated with aerobic activated-sludge processes can be quantified using a newly developed procedure. This method was adapted from the original aerated draft tube reactor test that was developed to measure biodegradation rate constants for specific volatile pollutants of interest. The original batch test has been modified to include solid-phase microextraction (SPME) fibers for sampling in the gas phase. The experimental procedure using SPME fibers does not require specific identification and quantitation of individual pollutants and can be used to evaluate wastewater with multiple VOCs. To illustrate use of this procedure, laboratory experiments were conducted using biomass and wastewater or effluent from three activated-sludge treatment systems. Each experiment consisted of two trials: a stripping-only trial without biomass and a stripping plus biodegradation trial using biomass from the activated-sludge unit of interest. Data from the two trials were used to quantify the rates of biodegradation by difference. The activated-sludge systems tested were a laboratory diffused-air reactor treating refinery wastewater, a full-scale surface aerated reactor treating a petrochemical wastewater, and a full-scale diffused-air reactor treating a variety of industrial effluents. The biodegradation rate constant data from each laboratory batch experiment were used in model calculations to quantify the fraction emitted (fe) and the fraction biodegraded (fbio) for each system. The fe values ranged from a maximum of 0.01 to a maximum of 0.32, whereas fbio values ranged from a minimum of 0.40 to a minimum 0.95. Two of these systems had been previously tested using a more complicated experimental approach, and the current results were in good agreement with previous results. These results indicate that biodegradation rate constant data from this

  8. A laboratory batch reactor test for assessing nonspeciated volatile organic compound biodegradation in activated sludge.

    PubMed

    Cano, M L; Saterbak, A; van Compernolle, R; Williams, M P; Huot, M E; Rhodes, I A; Allen, C C

    2003-01-01

    The relative rates of biodegradation and stripping and volatilization of nonspeciated volatile organic compounds (VOCs) in wastewater treated with aerobic activated-sludge processes can be quantified using a newly developed procedure. This method was adapted from the original aerated draft tube reactor test that was developed to measure biodegradation rate constants for specific volatile pollutants of interest. The original batch test has been modified to include solid-phase microextraction (SPME) fibers for sampling in the gas phase. The experimental procedure using SPME fibers does not require specific identification and quantitation of individual pollutants and can be used to evaluate wastewater with multiple VOCs. To illustrate use of this procedure, laboratory experiments were conducted using biomass and wastewater or effluent from three activated-sludge treatment systems. Each experiment consisted of two trials: a stripping-only trial without biomass and a stripping plus biodegradation trial using biomass from the activated-sludge unit of interest. Data from the two trials were used to quantify the rates of biodegradation by difference. The activated-sludge systems tested were a laboratory diffused-air reactor treating refinery wastewater, a full-scale surface aerated reactor treating a petrochemical wastewater, and a full-scale diffused-air reactor treating a variety of industrial effluents. The biodegradation rate constant data from each laboratory batch experiment were used in model calculations to quantify the fraction emitted (fe) and the fraction biodegraded (fbio) for each system. The fe values ranged from a maximum of 0.01 to a maximum of 0.32, whereas fbio values ranged from a minimum of 0.40 to a minimum 0.95. Two of these systems had been previously tested using a more complicated experimental approach, and the current results were in good agreement with previous results. These results indicate that biodegradation rate constant data from this

  9. New Aspects of Zirconium Containing Organic Compounds

    NASA Astrophysics Data System (ADS)

    Marek, Ilan

    Metal carbene complexes have made their way from organometallic curiosities to valuable reagents and catalysts. They offer novel synthetic opportunities in carbon-carbon bond formation based on either carbene-centered reactions or on metal-templated processes which makes them indispensable in modern synthetic methodology. The most prominent metal carbenes are now either commercially available or easy to synthesize and handle with modern laboratory techniques. This volume organized in eight chapters written by the leading scientists in the field illustrates the theoretical background, non-classical nucleophilic and cycloaddition patterns, chromium-templated benzannulation and photo-induced reactions, rhodium-catalyzed carbene transfer as well as the principles and applications of olefin metathesis which has coined the progress in synthetic methodology over the past decade.

  10. Scaffold of Asymmetric Organic Compounds - Magnetite Plaquettes

    NASA Technical Reports Server (NTRS)

    Chan, Q. H. S.; Zolensky, M. E.; Martinez, J.

    2015-01-01

    Life on Earth shows preference towards the set of organics with particular spatial configurations, this 'selectivity' is a crucial criterion for life. With only rare exceptions, life prefers the left- (L-) form over the right- (D-) form of amino acids, resulting in an L-enantiomeric excess (L-ee). Recent studies have shown Lee for alpha-methyl amino acids in some chondrites. Since these amino acids have limited terrestrial occurrence, the origin of their stereoselectivity is nonbiological, and it seems appropriate to conclude that chiral asymmetry, the molecular characteristic that is common to all terrestrial life form, has an abiotic origin. A possible abiotic mechanism that can produce chiral asymmetry in meteoritic amino acids is their formation with the presence of asymmetric catalysts, as mineral crystallization can produce spatially asymmetric structures. Magnetite is shown to be an effective catalyst for the formation of amino acids that are commonly found in chondrites. Magnetite 'plaquettes' (or 'platelets'), first described by Jedwab, show an interesting morphology of barrel-shaped stacks of magnetite disks with an apparent dislocation-induced spiral growth that seem to be connected at the center. A recent study by Singh et al. has shown that magnetites can self-assemble into helical superstructures. Such molecular asymmetry could be inherited by adsorbed organic molecules. In order to understand the distribution of 'spiral' magnetites in different meteorite classes, as well as to investigate their apparent spiral configurations and possible correlation to molecular asymmetry, we observed polished sections of carbonaceous chondrites (CC) using scanning electron microscope (SEM) imaging. The sections were also studied by electron backscattered diffraction (EBSD) in order to reconstruct the crystal orientation along the stack of magnetite disks.

  11. Can volatile organic compounds be markers of sea salt?

    PubMed

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt. PMID:25236204

  12. Can volatile organic compounds be markers of sea salt?

    PubMed

    Silva, Isabel; Coimbra, Manuel A; Barros, António S; Marriott, Philip J; Rocha, Sílvia M

    2015-02-15

    Sea salt is a handmade food product that is obtained by evaporation of seawater in saltpans. During the crystallisation process, organic compounds from surroundings can be incorporated into sea salt crystals. The aim of this study is to search for potential volatile markers of sea salt. Thus, sea salts from seven north-east Atlantic Ocean locations (France, Portugal, Continental Spain, Canary Islands, and Cape Verde) were analysed by headspace solid-phase microextraction combined with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. A total of 165 compounds were detected, ranging from 32 to 71 compounds per salt. The volatile composition revealed the variability and individuality of each salt, and a set of ten compounds were detected in all samples. From these, seven are carotenoid-derived compounds that can be associated with the typical natural surroundings of ocean hypersaline environment. These ten compounds are proposed as potential volatile markers of sea salt.

  13. Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis.

    PubMed

    Hancock, Nathan T; Xu, Pei; Heil, Dean M; Bellona, Christopher; Cath, Tzahi Y

    2011-10-01

    Forward osmosis (FO) is a membrane separation technology that has been studied in recent years for application in water treatment and desalination. It can best be utilized as an advanced pretreatment for desalination processes such as reverse osmosis (RO) and nanofiltration (NF) to protect the membranes from scaling and fouling. In the current study the rejection of trace organic compounds (TOrCs) such as pharmaceuticals, personal care products, plasticizers, and flame-retardants by FO and a hybrid FO-RO system was investigated at both the bench- and pilot-scales. More than 30 compounds were analyzed, of which 23 nonionic and ionic TOrCs were identified and quantified in the studied wastewater effluent. Results revealed that almost all TOrCs were highly rejected by the FO membrane at the pilot scale while rejection at the bench scale was generally lower. Membrane fouling, especially under field conditions when wastewater effluent is the FO feed solution, plays a substantial role in increasing the rejection of TOrCs in FO. The hybrid FO-RO process demonstrated that the dual barrier treatment of impaired water could lead to more than 99% rejection of almost all TOrCs that were identified in reclaimed water.

  14. Chemical reactions of organic compounds on clay surfaces

    SciTech Connect

    Soma, Yuko; Soma, Mitsuyuki )

    1989-11-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Broensted or Lewis acidity of clay minerals.

  15. INTERACTIONS BETWEEN ORGANIC COMPOUNDS AND CYCLODEXTRIN-CLAY SYSTEMS

    EPA Science Inventory

    Computational and experimental techniques are combined in order to better understand interactions involving organic compounds and cyclodextrin (CD)-clay systems. CD-clay systems may have great potential in the containment of organic contaminants in the environment. This study w...

  16. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  17. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  18. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  19. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  20. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  1. 40 CFR 60.392 - Standards for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for volatile organic compounds. 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  2. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  3. 40 CFR 60.392 - Standards for volatile organic compounds

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for volatile organic compounds 60.392 Section 60.392 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Automobile and Light Duty Truck Surface Coating Operations § 60.392 Standards for volatile organic...

  4. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  5. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  6. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  7. 40 CFR 60.432 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.432 Section 60.432 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Graphic Arts Industry: Publication Rotogravure Printing § 60.432 Standard for volatile organic...

  8. Leveraging the beneficial compounds of organic and pasture milk

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much discussion has arisen over the possible benefits of organic food, including milk. Organic milk comes from cows that are on pasture during the growing season, and would be expected to contain some compounds that are not found in animals receiving conventional feed, or at higher concentrations. ...

  9. Students' Understanding of Molecular Structure and Properties of Organic Compounds.

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen

    The purpose of this study was to investigate senior high school students' difficulties predicting the existence of hydrogen bridge bonds between organic molecules, investigate students' difficulties predicting the relative boiling points of simple organic compounds, and develop test questions that enable teachers to quickly get information about…

  10. Emission of volatile organic compounds to the atmosphere in the solvent sublation process. II. Volatile chlorinated organic compounds

    SciTech Connect

    Ososkov, V.; Kebbekus, B.; Chou, C.C.

    1996-06-01

    The mass of trichloroethylene, chlorobenzene, and 1,3-dichlorobenzene removed from an aqueous solution and emitted to the atmosphere during solvent sublation was determined experimentally. It was shown that the emission of these compounds in solvent sublation was reduced by 30 to 85% over air stripping under the same experimental conditions. The efficiency of removal of these compounds from water was also studied. The reduction of emissions over air stripping was more effective for the more hydrophobic and less volatile compounds. Emissions are reduced as the thickness of organic layer on the top of the column is increased. The use of decyl alcohol as the layer compound decreases emissions to a greater extent than does paraffin oil. Removal of these chlorinated volatile organic compounds from water by solvent sublation at an elevated temperature of 45{degrees}C is significantly faster than at room temperature. However, the emissions to the atmosphere are also increased.

  11. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment.

    PubMed

    Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S; Licha, Tobias

    2016-04-01

    Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L(-1) and 6.1/522 ng L(-1), respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two sampling

  12. Evaluation of polar organic micropollutants as indicators for wastewater-related coastal water quality impairment.

    PubMed

    Nödler, Karsten; Tsakiri, Maria; Aloupi, Maria; Gatidou, Georgia; Stasinakis, Athanasios S; Licha, Tobias

    2016-04-01

    Results from coastal water pollution monitoring (Lesvos Island, Greece) are presented. In total, 53 samples were analyzed for 58 polar organic micropollutants such as selected herbicides, biocides, corrosion inhibitors, stimulants, artificial sweeteners, and pharmaceuticals. Main focus is the application of a proposed wastewater indicator quartet (acesulfame, caffeine, valsartan, and valsartan acid) to detect point sources and contamination hot-spots with untreated and treated wastewater. The derived conclusions are compared with the state of knowledge regarding local land use and infrastructure. The artificial sweetener acesulfame and the stimulant caffeine were used as indicators for treated and untreated wastewater, respectively. In case of a contamination with untreated wastewater the concentration ratio of the antihypertensive valsartan and its transformation product valsartan acid was used to further refine the estimation of the residence time of the contamination. The median/maximum concentrations of acesulfame and caffeine were 5.3/178 ng L(-1) and 6.1/522 ng L(-1), respectively. Their detection frequency was 100%. Highest concentrations were detected within the urban area of the capital of the island (Mytilene). The indicator quartet in the gulfs of Gera and Kalloni (two semi-enclosed embayments on the island) demonstrated different concentration patterns. A comparatively higher proportion of untreated wastewater was detected in the gulf of Gera, which is in agreement with data on the wastewater infrastructure. The indicator quality of the micropollutants to detect wastewater was compared with electrical conductivity (EC) data. Due to their anthropogenic nature and low detection limits, the micropollutants are superior to EC regarding both sensitivity and selectivity. The concentrations of atrazine, diuron, and isoproturon did not exceed the annual average of their environmental quality standards (EQS) defined by the European Commission. At two sampling

  13. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere.

    PubMed

    Ahrens, Lutz; Shoeib, Mahiba; Harner, Tom; Lee, Sum Chi; Guo, Rui; Reiner, Eric J

    2011-10-01

    Polyfluoroalkyl compounds (PFCs) were determined in air around a wastewater treatment plant (WWTP) and two landfill sites using sorbent-impregnated polyurethane foam (SIP) disk passive air samplers in summer 2009. The samples were analyzed for five PFC classes (i.e., fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides (FOSAs), sulfonamidoethanols (FOSEs), perfluoroalkyl sulfonic acids (PFSAs), and perfluoroalkyl carboxylic acids (PFCAs)) to investigate their concentration in air, composition and emissions to the atmosphere. ∑PFC concentrations in air were 3-15 times higher within the WWTP (2280-24 040 pg/m(3)) and 5-30 times higher at the landfill sites (2780-26 430 pg/m(3)) compared to the reference sites (597-1600 pg/m3). Variations in the PFC pattern were observed between the WWTP and landfill sites and even within the WWTP site. For example, FTOHs were the predominant PFC class in air for all WWTP and landfill sites, with 6:2 FTOH as the dominant compound at the WWTP (895-12 290 pg/m(3)) and 8:2 FTOH dominating at the landfill sites (1290-17 380 pg/m(3)). Furthermore, perfluorooctane sulfonic acid (PFOS) was dominant within the WWTP (43-171 pg/m(3)), followed by perfluorobutanoic acid (PFBA) (55-116 pg/m(3)), while PFBA was dominant at the landfill sites (101-102 pg/m(3)). It is also noteworthy that the PFCA concentrations decreased with increasing chain length and that the emissions for the even chain length PFCAs outweighed emissions for the odd chain length compounds. Furthermore, highly elevated PFC concentrations were found near the aeration tanks compared to the other tanks (i.e., primary and secondary clarifier) and likely associated with increased volatilization during aeration that may be further enhanced through aqueous aerosol-mediated transport. ∑PFC yearly emissions estimated using a simplified dispersion model were 2560 g/year for the WWTP, 99 g/year for landfill site 1, and 1000 g/year for landfill site 2. These results

  14. PBDE and PCB accumulation in benthos near marine wastewater outfalls: the role of sediment organic carbon.

    PubMed

    Dinn, Pamela M; Johannessen, Sophia C; Ross, Peter S; Macdonald, Robie W; Whiticar, Michael J; Lowe, Christopher J; van Roodselaar, Albert

    2012-12-01

    Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured in sediments and benthic invertebrates near submarine municipal outfalls in Victoria and Vancouver, B.C., Canada, two areas with contrasting receiving environments. PBDE concentrations in wastewater exceeded those of the legacy PCBs by eight times at Vancouver and 35 times at Victoria. Total PBDE concentrations in benthic invertebrates were higher near Vancouver than Victoria, despite lower concentrations in sediments, and correlated with organic carbon-normalized concentrations in sediment. Principal Components Analysis indicated uptake of individual PBDE congeners was determined by sediment properties (organic carbon, grain size), while PCB congener uptake was governed by physico-chemical properties (octanol-water partitioning coefficient). Results suggest the utility of sediment quality guidelines for PBDEs and likely PCBs benefit if based on organic carbon-normalized concentrations. Also, where enhanced wastewater treatment increases the PBDEs to particulate organic carbon ratio in effluent, nearfield benthic invertebrates may face increased PBDE accumulation.

  15. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis.

    PubMed

    Saikia, Indranirekha; Borah, Arun Jyoti; Phukan, Prodeep

    2016-06-22

    Bromination is one of the most important transformations in organic synthesis and can be carried out using bromine and many other bromo compounds. Use of molecular bromine in organic synthesis is well-known. However, due to the hazardous nature of bromine, enormous growth has been witnessed in the past several decades for the development of solid bromine carriers. This review outlines the use of bromine and different bromo-organic compounds in organic synthesis. The applications of bromine, a total of 107 bromo-organic compounds, 11 other brominating agents, and a few natural bromine sources were incorporated. The scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc. has been described briefly to highlight important aspects of the bromo-organic compounds in organic synthesis. PMID:27199233

  16. Use of Bromine and Bromo-Organic Compounds in Organic Synthesis.

    PubMed

    Saikia, Indranirekha; Borah, Arun Jyoti; Phukan, Prodeep

    2016-06-22

    Bromination is one of the most important transformations in organic synthesis and can be carried out using bromine and many other bromo compounds. Use of molecular bromine in organic synthesis is well-known. However, due to the hazardous nature of bromine, enormous growth has been witnessed in the past several decades for the development of solid bromine carriers. This review outlines the use of bromine and different bromo-organic compounds in organic synthesis. The applications of bromine, a total of 107 bromo-organic compounds, 11 other brominating agents, and a few natural bromine sources were incorporated. The scope of these reagents for various organic transformations such as bromination, cohalogenation, oxidation, cyclization, ring-opening reactions, substitution, rearrangement, hydrolysis, catalysis, etc. has been described briefly to highlight important aspects of the bromo-organic compounds in organic synthesis.

  17. Catalytic combustion of volatile organic compounds.

    PubMed

    Everaert, K; Baeyens, J

    2004-06-18

    Despite the success of adsorption and thermal incineration of (C)VOC emissions, there is still a need for research on techniques which are both economically more favorable and actually destroy the pollutants rather than merely remove them for recycling elsewhere in the biosphere. The catalytic destruction of (C)VOC to CO2, H2O and HCl/Cl2 appears very promising in this context and is the subject of the present paper. The experiments mainly investigate the catalytic combustion of eight target compounds, all of which are commonly encountered in (C)VOC emissions and/or act as precursors for the formation of PCDD/F. Available literature on the different catalysts active in the oxidation of (C)VOC is reviewed and the transition metal oxide complex V2O5-WO3/TiO2 appears most suitable for the current application. Different reactor geometries (e.g. fixed pellet beds, honeycombs, etc.) are also described. In this research a novel catalyst type is introduced, consisting of a V2O5-WO3/TiO2 coated metal fiber fleece. The conversion of (C)VOC by thermo-catalytic reactions is governed by both reaction kinetics and reaction equilibrium. Full conversion of all investigated VOC to CO2, Cl2, HCl and H2O is thermodynamically feasible within the range of experimental conditions used in this work (260-340 degrees C, feed concentrations 30-60 ppm). A first-order rate equation is proposed for the (C)VOC oxidation reactions. The apparent rate constant is a combination of reaction kinetics and mass transfer effects. The oxidation efficiencies were measured with various (C)VOC in the temperature range of 260-340 degrees C. Literature data for oxidation reactions in fixed beds and honeycomb reactors are included in the assessment. Mass transfer resistances are calculated and are generally negligible for fleece reactors and fixed pellet beds, but can be of importance for honeycomb monoliths. The experimental investigations demonstrate: (i) that the conversion of the hydrocarbons is

  18. DEMONSTRATION BULLETIN: ZENOGEM™ WASTEWATER TREATMENT PROCESS - ZENON ENVIRONMENTAL SYSTEMS

    EPA Science Inventory

    Zenon Environmental Systems (Zenon) has developed the ZenoGem™ process to remove organic compounds from wastewater by integrating biological treatment and membrane-based ultrafiltration. This innovative system combines biological treatment to remove biodegradable organic compou...

  19. Pilot-scale study on nitrogen and aromatic compounds removal in printing and dyeing wastewater by reinforced hydrolysis-denitrification coupling process and its microbial community analysis.

    PubMed

    Li, Chao; Ren, Hongqiang; Yin, Erqin; Tang, Siyuan; Li, Yi; Cao, Jiashun

    2015-06-01

    Aiming to efficiently dispose printing and dyeing wastewater with "high organic nitrogen and aromatic compounds, but low carbon source quality", the reinforced anaerobic hydrolysis-denitrification coupling process, based on improved UASB reactors and segregated collection-disposition strategy, was designed and applied at the pilot scale. Results showed that the coupling process displayed efficient removal for these two kinds of pollutants (nitrogen and aromatics), since the concentration of NH3-N (shortened as ρ (NH3-N)) < 8 mg/L, ρ (TN) < 15 mg/L with long-term stability for the effluent, and both species and abundances of aromatics reduced greatly by UASBs according to GC-MS. Microbial community analysis by PCR-DGGE showed that Bacteroidetes and Alphaproteobacteria were the dominant communities in the bioreactors and some kinds of VFAs-producing, denitrifying and aromatic ring opening microorganisms were discovered. Further, the nirK and bcrA genes quantification also indicated the coupling process owned outstanding denitrification and aromatic compound-degrading potential, which demonstrates that the coupling process owns admirable applicability for this kind of wastewater treatment.

  20. Improving rubber concrete by waste organic sulfur compounds.

    PubMed

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly. PMID:19710121

  1. Composition and major sources of organic compounds in urban aerosols

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo

    Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.

  2. Improving rubber concrete by waste organic sulfur compounds.

    PubMed

    Chou, Liang-Hisng; Lin, Chun-Nan; Lu, Chun-Ku; Lee, Cheng-Haw; Lee, Maw-Tien

    2010-01-01

    In this study, the use of crumb tyres as additives to concrete was investigated. For some time, researchers have been studying the physical properties of concrete to determine why the inclusion of rubber particles causes the concrete to degrade. Several methods have been developed to improve the bonding between rubber particles and cement hydration products (C-S-H) with the hope of creating a product with an improvement in mechanical strength. In this study, the crumb tyres were treated with waste organic sulfur compounds from a petroleum refining factory in order to modify their surface properties. Organic sulfur compounds with amphiphilic properties can enhance the hydrophilic properties of the rubber and increase the intermolecular interaction forces between rubber and C-S-H. In the present study, a colloid probe of C-S-H was prepared to measure these intermolecular interaction forces by utilizing an atomic force microscope. Experimental results showed that rubber particles treated with waste organic sulfur compounds became more hydrophilic. In addition, the intermolecular interaction forces increased with the adsorption of waste organic sulfur compounds on the surface of the rubber particles. The compressive, tensile and flexural strengths of concrete samples that included rubber particles treated with organic sulfur compound also increased significantly.

  3. Nutrients, organic compounds, and mercury in the Meduxnekeag River watershed, Maine, 2003

    USGS Publications Warehouse

    Schalk, Charles W.; Tornes, Lan

    2005-01-01

    In 2003, the U.S. Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, sampled streambed sediments and surface water of the Meduxnekeag River watershed in northeastern Maine under various hydrologic conditions for nutrients, hydrophobic organic compounds, and mercury. Nutrients were sampled to address concerns related to summer algal blooms, and organic compounds and mercury were sampled to address concerns about regional depositional patterns and overall watershed quality. In most surface-water samples, phosphorus was not detected or was detected at concentrations below the minimum reporting limit. Nitrate and organic nitrogen were detected in every surface-water sample for which they were analyzed; the highest concentration of total nitrogen was 0.75 milligrams per liter during low flow. Instantaneous nitrogen loads and yields were calculated at four stations for two sampling events. These data indicate that the part of the watershed that includes Houlton, its wastewater-treatment plant, and four small urban brooks may have contributed high concentrations of nitrate to Meduxnekeag River during the high flows on April 23-24 and high concentrations of both organic and nitrate nitrogen on June 2-3. Mercury was detected in all three bed-sediment samples for which it was analyzed; concentrations were similar to those reported from regional studies. Notable organic compounds detected in bed sediments included p,p'-DDE and p,p'-DDT (pesticides of the DDT family) and several polycyclic aromatic hydrocarbons. Polychlorinated biphenyls (PCBs) and phthalates were not detected in any sample, whereas p-cresol was the only phenolic compound detected. Phosphorus was detected at concentrations below 700 milligrams per kilogram in each bed-sediment sample for which it was analyzed. Data were insufficient to establish whether the lack of large algal blooms in 2003 was related to low concentrations of phosphorus.

  4. Reduction in toxicity of coking wastewater to aquatic organisms by vertical tubular biological reactor.

    PubMed

    Zhou, Siyun; Watanabe, Haruna; Wei, Chang; Wang, Dongzhou; Zhou, Jiti; Tatarazako, Norihisa; Masunaga, Shigeki; Zhang, Ying

    2015-05-01

    We conducted a battery of toxicity tests using photo bacterium, algae, crustacean and fish to evaluate acute toxicity profile of coking wastewater, and to evaluate the performance of a novel wastewater treatment process, vertical tubular biological reactor (VTBR), in the removal of toxicity and certain chemical pollutants. A laboratory scale VTBR system was set up to treat industrial coking wastewater, and investigated both chemicals removal efficiency and acute bio-toxicity to aquatic organisms. The results showed that chemical oxygen demand (COD) and phenol reductions by VTBR were approximately 93% and 100%, respectively. VTBR also reduced the acute toxicity of coking wastewater significantly: Toxicity Unit (TU) decreased from 21.2 to 0.4 for Photobacterium phosphoreum, from 9.5 to 0.6 for Isochrysis galbana, from 31.9 to 1.3 for Daphnia magna, and from 30.0 to nearly 0 for Danio rerio. VTBR is an efficient treatment method for the removal of chemical pollutants and acute bio-toxicity from coking wastewater.

  5. Determination of Wastewater Compounds in Sediment and Soil by Pressurized Solvent Extraction, Solid-Phase Extraction, and Capillary-Column Gas Chromatography/Mass Spectrometry

    USGS Publications Warehouse

    Burkhardt, Mark R.; Zaugg, Steven D.; Smith, Steven G.; ReVello, Rhiannon C.

    2006-01-01

    A method for the determination of 61 compounds in environmental sediment and soil samples is described. The method was developed in response to increasing concern over the effects of endocrine-disrupting chemicals in wastewater and wastewater-impacted sediment on aquatic organisms. This method also may be used to evaluate the effects of combined sanitary and storm-sewer overflow on the water and sediment quality of urban streams. Method development focused on the determination of compounds that were chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Sediment and soil samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from interfering matrix components by high-pressure water/isopropyl alcohol extraction. The compounds were isolated using disposable solid-phase extraction (SPE) cartridges containing chemically modified polystyrene-divinylbenzene resin. The cartridges were dried with nitrogen gas, and then sorbed compounds were eluted with methylene chloride (80 percent)-diethyl ether (20 percent) through Florisil/sodium sulfate SPE cartridge, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-sand samples fortified at 4 to 72 micrograms averaged 76 percent ?13 percent relative standard deviation for all method compounds. Initial method reporting levels for single-component compounds ranged from 50 to 500 micrograms per kilogram. The concentrations of 20 out of 61 compounds initially will be reported as estimated with the 'E' remark code for one of three reasons: (1) unacceptably low-biased recovery (less than 60 percent) or highly variable method performance

  6. Bioremediation of Petrochemical Wastewater Containing BTEX Compounds by a New Immobilized Bacterium Comamonas sp. JB in Magnetic Gellan Gum.

    PubMed

    Jiang, Bei; Zhou, Zunchun; Dong, Ying; Wang, Bai; Jiang, Jingwei; Guan, Xiaoyan; Gao, Shan; Yang, Aifu; Chen, Zhong; Sun, Hongjuan

    2015-05-01

    In this study, we investigated the bioremediation of petrochemical wastewater containing BTEX compounds by immobilized Comamonas sp. JB cells. Three kinds of magnetic nanoparticles were evaluated as immobilization supports for strain JB. After comparison with Fe3O4 and a-Fe2O3 nanoparticles, r-Fe2O3 nanoparticle was selected as the optimal immobilization support. The highest biodegradation activity of r-Fe2O3-magnetically immobilized cells was obtained when the concentration of r-Fe2O3 nanoparticle was 120 mg L(-1). Additionally, the recycling experiments demonstrated that the degradation activity of r-Fe2O3-magnetically immobilized cells was still high and led to less toxicity than untreated wastewater during the eight recycles. qPCR suggested the concentration of strain JB in r-Fe2O3-magnetically immobilized cells was evidently increased after eight cycles of degradation experiments. These results supported developing efficient biocatalysts using r-Fe2O3-magnetically immobilized cells and provided a promising technique for improving biocatalysts used in the bioremediation of not only petrochemical wastewater but also other hazardous wastewater.

  7. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    NASA Astrophysics Data System (ADS)

    George, Ingrid J.; Black, Robert R.; Geron, Chris D.; Aurell, Johanna; Hays, Michael D.; Preston, William T.; Gullett, Brian K.

    2016-05-01

    In this study, volatile and semi-volatile organic compound (VOCs and SVOCs) mass emission factors were determined from laboratory peat fire experiments. The peat samples originated from two National Wildlife Refuges on the coastal plain of North Carolina, U.S.A. Gas- and particle-phase organic compounds were quantified by gas chromatography-mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (∼60%) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. In the fine particle mass (PM2.5), the following organic compound classes were dominant: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for the organic acids in PM2.5 including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12%) of all speciated compound classes measured in this work. Levoglucosan contributed to 2-3% of the OC mass, while methoxyphenols represented 0.2-0.3% of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon (PAH). Total HAP VOC and particulate PAH emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions.

  8. GROUNDWATER TRANSPORT OF HYDROPHOBIC ORGANIC COMPOUNDS IN THE PRESENCE OF DISSOLVED ORGANIC MATTER

    EPA Science Inventory

    The effects of dissolved organic matter (DOM) on the transport of hydrophobic organic compounds in soil columns were investigated. Three compounds (naphthalene, phenanthrene and DDT) that spanned three orders of magnitude in water solubility were used. Instead of humic matter, mo...

  9. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, T.

    1987-07-14

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique. 7 figs.

  10. Dosimeter for monitoring vapors and aerosols of organic compounds

    DOEpatents

    Vo-Dinh, Tuan

    1987-01-01

    A dosimeter is provided for collecting and detecting vapors and aerosols of organic compounds. The dosimeter comprises a lightweight, passive device that can be conveniently worn by a person as a badge or placed at a stationary location. The dosimeter includes a sample collector comprising a porous web treated with a chemical for inducing molecular displacement and enhancing phosphorescence. Compounds are collected onto the web by molecular diffusion. The web also serves as the sample medium for detecting the compounds by a room temperature phosphorescence technique.

  11. Effect of ionizing radiation on antioxidant compounds present in cork wastewater.

    PubMed

    Madureira, J; Melo, R; Botelho, M L; Leal, J P; Fonseca, I M

    2013-01-01

    A preliminary study of the gamma radiation effects on the antioxidant compounds present in cork cooking water was carried out. Radiation studies were performed using radiation between 20 and 50 kGy at 0.4 and 2.4 kGy h(-1). The radiation effects on organic matter content were evaluated by chemical oxygen demand. The antioxidant activity was measured by ferric reducing power assay. The total phenolic content was studied using the Folin-Ciocalteau method. Results show that gamma radiation increases both the amount of phenolic compounds and antioxidant capacity of cork cooking water. These results highlight the potential of this technology for increasing the added value of cork waters.

  12. Simplified Production of Organic Compounds Containing High Enantiomer Excesses

    NASA Technical Reports Server (NTRS)

    Cooper, George W. (Inventor)

    2015-01-01

    The present invention is directed to a method for making an enantiomeric organic compound having a high amount of enantiomer excesses including the steps of a) providing an aqueous solution including an initial reactant and a catalyst; and b) subjecting said aqueous solution simultaneously to a magnetic field and photolysis radiation such that said photolysis radiation produces light rays that run substantially parallel or anti-parallel to the magnetic field passing through said aqueous solution, wherein said catalyst reacts with said initial reactant to form the enantiomeric organic compound having a high amount of enantiomer excesses.

  13. Load and distribution of organic matter and nutrients in a separated household wastewater stream.

    PubMed

    Todt, Daniel; Heistad, Arve; Jenssen, Petter D

    2015-01-01

    Wastewater from a source-separated sanitation system connected to 24 residential flats was analysed for the content of organic matter and nutrients and other key parameters for microbiological processes used in the treatment and reuse of wastewater. Black water (BW) was the major contributor to the total load of organic matter and nutrients in the wastewater, accounting for 69% of chemical oxygen demand (COD), 83% of total nitrogen (N) and 87% of phosphorus (P). With a low COD/N ratio and high content of free ammonia, treating BW alone is a challenge in traditional biological nitrogen removal approaches. However, its high nitrogen concentration (1.4-1.7 g L(-1)) open up for nutrient reuse as well as for novel, more energy efficient N-removal technologies. Grey water (GW) contained low amounts of nutrients relative to organic matter, and this may limit biological treatment processes under certain conditions. GW contains a higher proportion of soluble, readily degradable organic substances compared with BW, which facilitates simple, decentralized treatment approaches. The concentration of organic matter and nutrients varied considerably between our study and other studies, which could be related to different toilet flushing volumes and water use habits. The daily load per capita, on the other hand, was found to be in line with most of the reported studies.

  14. Load and distribution of organic matter and nutrients in a separated household wastewater stream.

    PubMed

    Todt, Daniel; Heistad, Arve; Jenssen, Petter D

    2015-01-01

    Wastewater from a source-separated sanitation system connected to 24 residential flats was analysed for the content of organic matter and nutrients and other key parameters for microbiological processes used in the treatment and reuse of wastewater. Black water (BW) was the major contributor to the total load of organic matter and nutrients in the wastewater, accounting for 69% of chemical oxygen demand (COD), 83% of total nitrogen (N) and 87% of phosphorus (P). With a low COD/N ratio and high content of free ammonia, treating BW alone is a challenge in traditional biological nitrogen removal approaches. However, its high nitrogen concentration (1.4-1.7 g L(-1)) open up for nutrient reuse as well as for novel, more energy efficient N-removal technologies. Grey water (GW) contained low amounts of nutrients relative to organic matter, and this may limit biological treatment processes under certain conditions. GW contains a higher proportion of soluble, readily degradable organic substances compared with BW, which facilitates simple, decentralized treatment approaches. The concentration of organic matter and nutrients varied considerably between our study and other studies, which could be related to different toilet flushing volumes and water use habits. The daily load per capita, on the other hand, was found to be in line with most of the reported studies. PMID:25495947

  15. Water-Quality Data for Pharmaceuticals and Other Organic Wastewater Contaminants in Ground Water and in Untreated Drinking Water Sources in the United States, 2000-01

    USGS Publications Warehouse

    Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael

    2008-01-01

    The five most frequently detected compounds in samples collected from ambient ground-water sites are N,N-diethyltoluamide (35 percent, insect repellant), bisphenol A (30 percent, plasticizer), tri(2-chloroethy) phosphate (30 percent, fire retardant), sulfamethoxazole (23 percent, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19 percent, detergent metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from surface-water sources are cholesterol (59 percent, natural sterol), metolachlor (53 percent, herbicide), cotinine (51 percent, nicotine metabolite), β-sitosterol (37 percent, natural plant sterol), and 1,7-dimethylxanthine (27 percent, caffeine metabolite). The five most frequently detected organic wastewater contaminants in samples of untreated drinking water from ground-water sources are tetrachloroethylene (24 percent, solvent), carbamazepine (20 percent, pharmaceutical), bisphenol A (20 percent, plasticizer), 1,7-dimethylxanthine (16 percent, caffeine metabolite), and tri(2-chloroethyl) phosphate (12 percent, fire retardant).

  16. Determination of dissolved organic matter removal efficiency in wastewater treatment works using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Carstea, Elfrida M.; Bridgeman, John

    2015-04-01

    Fluorescence spectroscopy was used to investigate the removal efficiency of dissolved organic matter (DOM) in several wastewater treatment works, at different processing stages. The correlation between fluorescence values and biochemical oxygen demand (BOD), chemical oxygen demand (COD) and total organic carbon (TOC) has been examined. Fluorescence was measured for unfiltered and filtered (0.45 and 0.20 μm) samples of crude, settled and secondary treated wastewater (activated sludge), and final effluent. Moreover, the potential of using portable fluorimeters has been explored in a laboratory scale activated sludge process. Good correlations were observed for filtered and unfiltered wastewater samples between protein-like fluorescence intensity (excitation 280 nm, emission 350 nm) and BOD (r = 0.78), COD (r = 0.90) and TOC (r = 0.79). BOD displayed a higher correlation at the 0.20 μm filtered samples compared to COD and TOC. Slightly better relation was seen between fluorescence and conventional parameters at the portable fluorimeters compared to laboratory-based instruments. The results indicated that fluorescence spectroscopy, in particular protein-like fluorescence, could be used for continuous, real-time assessment of DOM removal efficiency in wastewater treatment works.

  17. Organic and detergent degradation in combined O3/UF for domestic laundry wastewater reclamation.

    PubMed

    Seo, G T; Lee, T S; Kim, J T; Yoon, C H; Park, H G; Hong, S C

    2004-01-01

    This paper focuses on the evaluation of organic and detergent degradation in a combined Ozone/UF system for domestic laundry wastewater reclamation. Formation of by-product was investigated by GC/MS for the reclaimed water. Ozone was injected into the raw wastewater in a 10 L contact tank and the wastewater was circulated through the membrane module for inner pressurized cross-flow filtration. The concentrate was returned back to the contact tank. The membrane used in this experiment was hollow fiber polysulfone UF membrane with MWCO 10,000. It has an effective filtration area of 0.06 m2. The experiment was carried out with intermittent ozone injection, 5 min injection and 10 min idling. Ozone was dosed at the concentration of 1.5 mg/L. The flux of the UF could be maintained at 0.24 m/d under filtration pressure 40-45 kPa and water temperature, 20-22 degrees C. The organic removal efficiency by the system was 90% in terms of COD. Ozone was considerably effective to degrade organics in the wastewater. Molecular weight of organics in the raw waste was mostly greater than 10,000 (72% of 950 mgCOD/L). However 86% of effluent COD (94-100 mg/L) was composed of organics smaller than MWCO 500 by ozone injection. No harmful by-products by ozone contact were detected from the analysis of treated water using GC/MS. It was identified that residual organics in the treated water were 1,1'-Oxybisbenzene, Octadecanoic acid, Squalene and Benzenmethanol, etc., which were additives contained originally in the detergent. Consequently the reclaimed water quality could be estimated safe enough to recycle for the rinsing cycle in a washing machine.

  18. Organic compounds assessed in Neuse River water used for public supply near Smithfield, North Carolina, 2002-2005

    USGS Publications Warehouse

    Moorman, Michelle C.

    2012-01-01

    Organic compounds studied in a U.S. Geological Survey (USGS) assessment of water samples from the Neuse River and the public supply system for the Town of Smithfield, North Carolina, generally are manmade and include pesticides, gasoline hydrocarbons, solvents, personal-care and domestic-use products, disinfection by-products, and manufacturing additives. Of the 277 compounds assessed, a total of 113 compounds were detected in samples collected approximately monthly during 2002–2005 at the drinking-water intake for the town's water-treatment plant on the Neuse River. Fifty-two organic compounds were commonly detected (in at least 20 percent of the samples) in source water and (or) finished water. The diversity of compounds detected suggests a variety of sources and uses, including wastewater discharges, industrial, agricultural, domestic, and others. Only once during the study did an organic compound concentration exceed a human-health benchmark (benzo[a]pyrene). A human-health benchmark is a chemical concentration specific to water above which there is a risk to humans, however, benchmarks were available for only 18 of the 42 compounds with detected concentrations greater than 0.1 micrograms per liter. On the basis of this assessment, adverse effects to human health are assumed to be negligible.

  19. Evaluating the treatment of a synthetic wastewater containing a pharmaceutical and personal care product chemical cocktail: compound removal efficiency and effects on juvenile rainbow trout.

    PubMed

    Osachoff, Heather L; Mohammadali, Mehrnoush; Skirrow, Rachel C; Hall, Eric R; Brown, Lorraine L Y; van Aggelen, Graham C; Kennedy, Christopher J; Helbing, Caren C

    2014-10-01

    Pharmaceutical and personal care products (PPCPs) can evade degradation in sewage treatment plants (STPs) and can be chronically discharged into the environment, causing concern for aquatic organisms, wildlife, and humans that may be exposed to these bioactive chemicals. The ability of a common STP process, conventional activated sludge (CAS), to remove PPCPs (caffeine, di(2-ethylhexyl)phthalate, estrone, 17α-ethinylestradiol, ibuprofen, naproxen, 4-nonylphenol, tonalide, triclocarban and triclosan) from a synthetic wastewater was evaluated in the present study. The removal of individual PPCPs by the laboratory-scale CAS treatment plant ranged from 40 to 99.6%. While the efficiency of removal for some compounds was high, remaining quantities have the potential to affect aquatic organisms even at low concentrations. Juvenile rainbow trout (Oncorhynchus mykiss) were exposed to influent recreated model wastewater with methanol (IM, solvent control) or with PPCP cocktail (IC), or CAS-treated effluent wastewater with methanol (EM, treated control) or with PPCP cocktail (EC). Alterations in hepatic gene expression (evaluated using a quantitative nuclease protection plex assay) and plasma vitellogenin (VTG) protein concentrations occurred in exposed fish. Although there was partial PPCP removal by CAS treatment, the 20% lower VTG transcript levels and 83% lower plasma VTG protein concentration found in EC-exposed fish compared to IC-exposed fish were not statistically significant. Thus, estrogenic activity found in the influent was retained in the effluent even though typical percent removal levels were achieved raising the issue that greater reduction in contaminant load is required to address hormone active agents. PMID:24963889

  20. Bioavailability of Dissolved Organic Nitrogen Originating From Natural Sources and Wastewater Effluent in the Truckee River

    NASA Astrophysics Data System (ADS)

    Bertrando, N.; Qualls, R. G.; Dean, K. L.; Springer, M.; Brisbin, M.

    2008-12-01

    It has been suggested that implementation of the Clean Water Act might be further refined to recognize differences in biological availability of Nitrate-N, Ammonium-N, and Dissolved Organic-N (DON) in the regulation of Total Nitrogen (TN) Total Maximum Daily Loads (TMDL). This study was conducted to assess whether wastewater DON has a different bioavailable fraction than natural DON and how the bioavailable fraction of DON in river water varies seasonally across an urban gradient. Since the variety of constituents in DON have not been thoroughly identified and may vary based on source, 67 day bioassays were performed to measure the fraction of DON that is mineralized or converted to particulate matter. To assess the importance of N additions to the Truckee River, algal nutrient limitation assays were performed across the urban gradient. Seasonal bioassays in 2007 demonstrated that wastewater derived DON consistently had a higher bioavailable fraction (23-51 %) than naturally derived DON (~ 0 %). However during summer 2007 the fraction of bioavailable DON was similar for wastewater and natural sources (40 % and 43 %, respectively). DON derived from urban runoff had the highest degree of variation in bioavailability (3-70 %) as opposed to the more consistent bioavailability of wastewater DON. Downstream from the wastewater infall, the bioavailable fraction of DON varied seasonally (0-42 %). Algal nutrient limitation assays demonstrated significant N+P limitation across the urban gradient during the spring and summer but no limitation was observed for winter. A significant N limitation was seen for sites below the urban gradient during the summer season. It appears that wastewater DON consistently has a bioavailable fraction and a recalcitrant fraction (minimum 48 %) which suggests TMDLs could be altered to regulate the bioavailable fraction of TN. The occurrence of N limitation for in-river algal production during the summer season suggests that appropriate N TMDLs

  1. [Spectral Analysis of Dissolved Organic Matter of Tannery Wastewater in the Treatment Process].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Du, Bo; Song, Juan; Huai, Cui-qian; Wang, Jia-hong

    2015-06-01

    Tannery industry is one of the major traditional industries and important wastewater sources in China. The existing research mainly focus on the quality of inlet and outlet water, rather than the purification and transformation behavior of dissolved organic matter (DOM) in the treatment process of tannery wastewater. The UV spectra and fluorescence spectroscopy were used to detect the spectral characteristics of water samples in the treatment process, and it is analyzed that the formation process and the linear relationships between total fluorescence intensity and parameters. The results showed: the UV absorbance of DOM in wastewater increased firstly and then decreased with longer wavelength, and the wave peaks were found around the wavelength of 230 nr. The values of A253 /A203 and SUVA254 increased firstly and then decreased, indicating the complex reaction process related to free substituent and aromatic rings. The fluorescence peaks appeared at the regions of λ(ex/em) = 320-350/440- 460 and λ(ex/em) = 270-300/390-420, referred as visible humic-like and visible fulvic-like fluorescence, respectively. With the treatment process of tannery wastewater, the following fluorescence phenomenon were monitored, such as the blue-shift of humic-like fluorescence peak in the hydrolytic acidification tank, the appearance of tryptophan fluorescence peak in the second biochemical pond (λ(ex/em) = 290/340), the weak fluorescence peak in the fourth biochemical pond (λ(ex/em) = 350/520) and the stabilized fluorescence characteristics in the secondary sedimentation tank and water outlet. The achievements are helpful to investigate the degradation and formation behavior of water components, and significant for the fluorescence variation analysis in the treatment system. The removal rate of total fluorescence intensity of tannery wastewater fit better the removal rate of TOC with coefficient of r 0.835 5. The UV spectra and 3D-EEMs are effective to reveal the purification

  2. [Variation characteristics and removal rate of fluorescence organic matter in the petrochemical wastewater treatment process].

    PubMed

    Zhou, Jing-Ling; Xi, Hong-Bo; Zhou, Yue-Xi; Xu, Ji-Xian; Song, Guang-Qing

    2014-03-01

    Petrochemical wastewater is of huge quantity released during the production and complicated contaminants of petrochemical wastewater will have immense negative impact on ecology environment. Three-dimensional excitation-emission matrix fluorescence(3D-EEM) was used to investigate the characteristic fluorescence of influent and effluent from each processing unit of Hydrolysis-acidification +A/O+ Contact-oxidation Process in a typical petrochemical wastewater treatment plant . The results showed that there were 4 fluorescence peaks named Peak A, Peak B, Peak D, Peak E in the spectrum chart of influent, they are around lambda(ex/lambda(em) = 220/300, 225/340, 270/300, 275/340 nm, the primary source of fluorescence organic matter(FOM) is industrial wastewater. The fluorescence intensity of each fluorescence peak was decreased, while location was unchanged in the effluent of Hydrolysis-acidification. Peak C appeared from the effluent of anaerobic tank at lambda(ex)/lambda(em) = 250/425 nm, then the fluorescence intensity of Peak C was enhanced in the effluent of aerobic tank. Peak A disappeared from the effluent of secondary sedimentation tank. The spectrum chart of the wastewater had no obvious variation after secondary sedimentation tank. The removal rate of FOM was expressed with the degradation percentage of the fluorescence intensity, the total FOM was reduced by 92.0% after processing, and the removal rate of the FOM fluoresce around Peak A, Peak B, Peak D, Peak E were 100.0%, 91.2%, 80.3%, 92.0% respectively. A volatile I(Peak B)/I(Peak E) value of influent but a relatively stable value of effluent demonstrated that the wastewater treatment plant operated steadily and the process has higher capacity in resistance to shock loading.

  3. Biodegradation of wastewater nitrogen compounds in fractures: Laboratory tests and field observations

    NASA Astrophysics Data System (ADS)

    Masciopinto, Constantino

    2007-07-01

    Throughout several coastal regions in the Mediterranean where rainfalls rarely exceed 650 mm per year municipal treated wastewater can be conveniently reused for soil irrigation. Where the coastal aquifer supplies large populations with freshwater in such area, an assessment of ground water quality around spreading sites is needed. In this study, the efficacy of natural filtration on nitrogen degradation in wastewater spreads on the soil covering the Salento (Southern Italy) fractured limestone was quantified by using laboratory tests and field measurements. In the laboratory, effluent from municipal wastewater treatment plants was filtered through a package of fractures made by several slabs of limestone. An analysis of wastewater constituent concentrations over time allowed the decay rates and constants for nitrogen transformation during natural filtration to be estimated in both aerated and non-aerated (i.e., saturated) soil fractures. A simulation code, based on biodegradation decay constants defined in the laboratory experiments, was then used to quantify the total inorganic nitrogen removal from wastewater injected in an aquifer in the Salento region (Nardò). Here the water sampled in two monitoring wells at 320 m and 500 m from the wastewater injection site and downgradient with respect to groundwater flow was used to verify the laboratory nitrification and denitrification rates.

  4. Chemical reactions of organic compounds on clay surfaces.

    PubMed Central

    Soma, Y; Soma, M

    1989-01-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

  5. Volatile organic compounds in polyethylene bags-A forensic perspective.

    PubMed

    Borusiewicz, Rafał; Kowalski, Rafał

    2016-09-01

    Polyethylene bags, though not recommended, are sometimes used in some countries as improvised packaging for items sent to be analysed for the presence of volatile organic compounds, namely ignitable liquids residues. Sometimes items made of polyethylene constitute the samples themselves. It is well known what kind of volatile organic compounds are produced as a result of polyethylene thermal decomposition, but there is a lack of information relating to if some volatile compounds are present in unheated/unburned items made of polyethylene in detectable amounts and, if so, what those compounds are. The aim of this presented research was to answer these questions. 28 different bags made of polyethylene, representing 9 brands, were purchased in local shops and analysed according to the procedure routinely used for fire debris. The results proved that in almost all bags a distinctive mixture of compounds is present, comprising of n-alkanes and n-alkenes with an even number of carbon atoms in their molecules. Some other compounds (e.g., limonene, 2,2,4,6,6-pentamethylheptane) are also often present, but the presence of even n-alkanes and n-alkenes constitutes the most characteristic feature. PMID:27458996

  6. Volatile organic compounds in polyethylene bags-A forensic perspective.

    PubMed

    Borusiewicz, Rafał; Kowalski, Rafał

    2016-09-01

    Polyethylene bags, though not recommended, are sometimes used in some countries as improvised packaging for items sent to be analysed for the presence of volatile organic compounds, namely ignitable liquids residues. Sometimes items made of polyethylene constitute the samples themselves. It is well known what kind of volatile organic compounds are produced as a result of polyethylene thermal decomposition, but there is a lack of information relating to if some volatile compounds are present in unheated/unburned items made of polyethylene in detectable amounts and, if so, what those compounds are. The aim of this presented research was to answer these questions. 28 different bags made of polyethylene, representing 9 brands, were purchased in local shops and analysed according to the procedure routinely used for fire debris. The results proved that in almost all bags a distinctive mixture of compounds is present, comprising of n-alkanes and n-alkenes with an even number of carbon atoms in their molecules. Some other compounds (e.g., limonene, 2,2,4,6,6-pentamethylheptane) are also often present, but the presence of even n-alkanes and n-alkenes constitutes the most characteristic feature.

  7. Anaerobic transformations of complex organic compounds in subsurface soils

    SciTech Connect

    Proctor, B.L. )

    1988-09-01

    This study was initiated following increased observations of man-made organic chemicals in groundwater. In the US, over 40% of the population depends on groundwater for drinking purposes. Soil is often the receptacle for organic chemicals, and there is a danger that they may reach the groundwater in a toxic form. Once contamination of the soil and vadose water has occurred, the compound may not be detected and/or degraded for decades. Limited, if any, information is available on the biotic-abiotic transformations of complex organic compounds in subsurface soils. The purpose of this study was to determine for each test compound (phenothiazine, 1-chloronaphthalene, 2-trifluoromethyl phenothiazine, 2-chloro-5 trifluoromethyl benzophenone and 2,2{prime},4,4{prime} tetrachlorobiphenyl) the following: (A) the soil sorption capacity for untreated subsurface soil, acid-treated, base-treated, mercuric chloride-treated, and calcium chloride treated subsurface soil; (B) transformation of the test compound in EPA soft water under anaerobic biotic and abiotic conditions; (C) transformation of the test compound in subsurface soils microcosms under anaerobic biotic and abiotic conditions; and (D) comparison of the results form the soil and water anaerobic biotic and abiotic studies.

  8. Preconcentration and detection of chlorinated organic compounds and benzene.

    PubMed

    Hobson, Stephen T; Cemalovic, Sabina; Patel, Sanjay V

    2012-03-01

    Remote and automated detection of organic compounds in subsurface aquifers is crucial to superfund monitoring and environmental remediation. Current monitoring techniques use expensive laboratory instruments and trained personnel. The use of a filled tubular preconcentrator combined with a chemicapacitive detector array presents an attractive option for the unattended monitoring of these compounds. Five preconcentrator materials were exposed to common target compounds of subsurface remediation projects (1,1,2-trichloroethane, trichloroethylene, t-1,2-dichloroethylene, benzene, and perchloroethylene). Rapid heating of the tube caused the collected, concentrated effluent to pass over the surface of a chemicapacitive detector array coated with four different sorbent polymers. A system containing a porous ladder polymer and the sensor array was subsequently used to sample the analytes injected onto sand in a laboratory test, simulating a subsurface environment. With extended collection times, effective detection limits of 5 ± 3 ppbV for 1,1,2-trichloroethane and 145 ± 60 ppbV for benzene were achieved. Effects of the preconcentrator material structure, the collection time, and sensor material on the system performance were observed. The resultant system presents a solution for remote, periodic monitoring of chlorinated organic compounds and other volatile organic compounds in a soil matrix.

  9. Analysis of Organic Compounds in Mars Analog Samples

    NASA Technical Reports Server (NTRS)

    Mahaffy, P. R.; Brinckerhoff, W. B.; Buch, A.; Cabane, M.; Coll, P.; Demick, J.; Glavin, D. P.

    2004-01-01

    The detailed characterization of organic compounds that might be preserved in rocks, ices, or sedimentary layers on Mars would be a significant step toward resolving the question of the habitability and potential for life on that planet. The fact that the Viking gas chromatograph mass spectrometer (GCMS) did not detect organic compounds should not discourage further investigations since (a) an oxidizing environment in the near surface fines analyzed by Viking is likely to have destroyed many reduced carbon species; (b) there are classes of refractory or partially oxidized species such as carboxylic acids that would not have been detected by the Viking GCMS; and (c) the Viking landing sites are not representative of Mars overall. These factors motivate the development of advanced in situ analytical protocols to carry out a comprehensive survey of organic compounds in martian regolith, ices, and rocks. We combine pyrolysis GCMS for analysis of volatile species, chemical derivatization for transformation of less volatile organics, and laser desorption mass spectrometry (LDMS) for analysis of elements and more refractory, higher-mass organics. To evaluate this approach and enable a comparison with other measurement techniques we analyze organics in Mars simulant samples.

  10. 40 CFR Table 15 to Subpart G of... - Wastewater-Information on Table 8 and/or Table 9 Compounds To Be Submitted With Notification of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Wastewater-Information on Table 8 and... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 15 Table 15 to Subpart G of Part...

  11. 40 CFR Table 15 to Subpart G of... - Wastewater-Information on Table 8 and/or Table 9 Compounds To Be Submitted With Notification of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Wastewater-Information on Table 8 and... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 15 Table 15 to Subpart G of Part...

  12. 40 CFR Table 15 to Subpart G of... - Wastewater-Information on Table 8 and/or Table 9 Compounds To Be Submitted With Notification of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Wastewater-Information on Table 8 and... From the Synthetic Organic Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater Pt. 63, Subpt. G, Table 15 Table 15 to Subpart G of Part...

  13. Seasonal occurrence, removal efficiencies and preliminary risk assessment of multiple classes of organic UV filters in wastewater treatment plants.

    PubMed

    Tsui, Mirabelle M P; Leung, H W; Lam, Paul K S; Murphy, Margaret B

    2014-04-15

    Organic ultraviolet (UV) filters are applied widely in personal care products (PCPs), but the distribution and risks of these compounds in the marine environment are not well known. In this study, the occurrence and removal efficiencies of 12 organic UV filters in five wastewater treatment plants (WWTPs) equipped with different treatment levels in Hong Kong, South China, were investigated during one year and a preliminary environmental risk assessment was carried out. Using a newly developed simultaneous multiclass quantification liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, butyl methoxydibenzoylmethane (BMDM), 2,4-dihydroxybenzophenone (BP-1), benzophenone-3 (BP-3), benzophenone-4 (BP-4) and 2-ethyl-hexyl-4-trimethoxycinnamate (EHMC) were frequently (≥80%) detected in both influent and effluent with mean concentrations ranging from 23 to 1290 ng/L and 18-1018 ng/L, respectively; less than 2% of samples contained levels greater than 1000 ng/L. Higher concentrations of these frequently detected compounds were found during the wet/summer season, except for BP-4, which was the most abundant compound detected in all samples in terms of total mass. The target compounds behaved differently depending on the treatment level in WWTPs; overall, removal efficiencies were greater after secondary treatment when compared to primary treatment with >55% and <20% of compounds showing high removal (defined as >70% removal), respectively. Reverse osmosis was found to effectively eliminate UV filters from effluent (>99% removal). A preliminary risk assessment indicated that BP-3 and EHMC discharged from WWTPs may pose high risk to fishes in the local environment.

  14. Highly stable meteoritic organic compounds as markers of asteroidal delivery

    NASA Astrophysics Data System (ADS)

    Cooper, George; Horz, Friedrich; Spees, Alanna; Chang, Sherwood

    2014-01-01

    Multiple missions to search for water-soluble organic compounds on the surfaces of Solar System bodies are either current or planned and, if such compounds were found, it would be desirable to determine their origin(s). Asteroid or comet material is likely to have been components of all surface environments throughout Solar System history. To simulate the survival of meteoritic compounds both during impacts with planetary surfaces and under subsequent (possibly) harsh ambient conditions, we subjected known meteoritic compounds to comparatively high impact-shock pressures (>30 GPa) and/or to extremely oxidizing/corrosive acid solution. Consistent with past impact experiments, α-amino acids survived only at trace levels above ∼18 GPa. Polyaromatic hydrocarbons (PAHs) survived at levels of 4-8% at a shock pressure of 36 GPa. Lower molecular weight sulfonic and phosphonic acids (S&P) had the highest degree of impact survival of all tested compounds at higher pressures. Oxidation of compounds was done with a 3:1 mixture of HCl:HNO3, a solution that generates additional strong oxidants such as Cl2 and NOCl. Upon oxidation, keto acids and α-amino acids were the most labile compounds with proline as a significant exception. Some fraction of the other compounds, including non-α amino acids and dicarboxylic acids, were stable during 16-18 hours of oxidation. However, S&P quantitatively survived several months (at least) under the same conditions. Such results begin to build a profile of the more robust meteoritic compounds: those that may have survived, i.e., may be found in, the more hostile Solar System environments. In the search for organic compounds, one current mission, NASA's Mars Science Laboratory (MSL), will use analytical procedures similar to those of this study and those employed previously on Earth to identify many of the compounds described in this work. The current results may thus prove to be directly relevant to potential findings of MSL and other

  15. Method for predicting photocatalytic oxidation rates of organic compounds.

    PubMed

    Sattler, Melanie L; Liljestrand, Howard M

    2003-01-01

    In designing a photocatalytic oxidation (PCO) system for a given air pollution source, destruction rates for volatile organic compounds (VOCs) are required. The objective of this research was to develop a systematic method of predicting PCO rate constants by correlating rate constants with physical-chemical characteristics of compounds. Accordingly, reaction rate constants were determined for destruction of volatile organics over a titanium dioxide (TiO2) catalyst in a continuous mixed-batch reactor. It was found that PCO rate constants for alkanes and alkenes vary linearly with gas-phase ionization potential (IP) and with gas-phase hydroxyl radical reaction rate constant. The correlations allow rates of destruction of compounds not tested in this research to be predicted based on physical-chemical characteristics. PMID:12568248

  16. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    PubMed

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds. PMID:27266255

  17. [Binding of Volatile Organic Compounds to Edible Biopolymers].

    PubMed

    Misharina, T A; Terenina, M B; Krikunova, N I; Medvedeva, I B

    2016-01-01

    Capillary gas chromatography was used to study the influence of the composition and structure of different edible polymers (polysaccharides, vegetable fibers, and animal protein gelatin) on the binding of essential oil components. The retention of volatile organic compounds on biopolymers was shown to depend on their molecule structure and the presence, type, and position of a functional group. The maximum extent of the binding was observed for nonpolar terpene and sesquiterpene hydrocarbons, and the minimum extent was observed for alcohols. The components of essential oils were adsorbed due mostly to hydrophobic interactions. It was shown that the composition and structure of a compound, its physico-chemical state, and the presence of functional groups influence the binding. Gum arabic and guar gum were found to bind nonpolar compounds to a maximum and minimum extent, respectively. It was demonstrated the minimum adsorption ability of locust bean gum with respect to all studied compounds.

  18. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Photochemical smog is a major air pollution problem and a significant cause of premature death in the U.S. Smog forms in the presence of volatile organic compounds (VOCs), which are emitted primarily from industry and motor vehicles in the U.S. However, dairy farms may be an important source in so...

  19. The Survival of Meteorite Organic Compounds with Increasing Impact Pressure

    NASA Technical Reports Server (NTRS)

    Cooper, George; Horz, Friedrich; Oleary, Alanna; Chang, Sherwood; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The majority of carbonaceous meteorites studied today are thought to originate in the asteroid belt. Impacts among asteroidal objects generate heat and pressure that may have altered or destroyed pre-existing organic matter in both targets and projectiles to a greater or lesser degree depending upon impact velocities. Very little is known about the shock related chemical evolution of organic matter relevant to this stage of the cosmic history of biogenic elements and compounds. The present work continues our study of the effects of shock impacts on selected classes of organic compounds utilizing laboratory shock facilities. Our approach was to subject mixtures of organic compounds, embedded in a matrix of the Murchison meteorite, to a simulated hypervelocity impact. The molecular compositions of products were then analyzed to determine the degree of survival of the original compounds. Insofar as results associated with velocities < 8 km/sec may be relevant to impacts on planetary surfaces (e.g., oblique impacts, impacts on small outer planet satellites) or grain-grain collisions in the interstellar medium, then our experiments will be applicable to these environments as well.

  20. MICROBIAL VOLATILE ORGANIC COMPOUND EMISSION RATES AND EXPOSURE MODEL

    EPA Science Inventory

    This paper presents the results from a study that examined microbial volatile organic compound (MVOC) emissions from six fungi and one bacterial species (Streptomyces spp.) commonly found in indoor environments. Data are presented on peak emission rates from inoculated agar plate...

  1. MEASUREMENT OF ORGANIC COMPOUND EMISSIONS USING SMALL TEST CHAMBERS

    EPA Science Inventory

    Organic compounds emitted from a variety of indoor materials have been measured using small (166 L) environmental test chambers. The paper discusses: a) factors to be considered in small chamber testing; b) parameters to be controlled; c) the types of results obtained. The follow...

  2. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  3. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  4. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  5. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  6. 40 CFR 60.442 - Standard for volatile organic compounds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for volatile organic compounds. 60.442 Section 60.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Pressure Sensitive Tape and Label Surface Coating Operations § 60.442 Standard for volatile...

  7. Influence of volatile organic compounds on Fusarium graminearum mycotoxin production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs) are involved in a diverse range of ecological interactions. Due to their low molecular weight, lipophilic nature, and high vapor pressure at ambient temperatures, they can serve as airborne signaling molecules that are capable of mediating inter and intraspecies com...

  8. Modeling emissions of volatile organic compounds from silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compounds (VOCs), necessary reactants for photochemical smog formation, are emitted from numerous sources. Limited available data suggest that dairy farms emit VOCs with cattle feed, primarily silage, being the primary source. Process-based models of VOC transfer within and from si...

  9. Measuring Emissions of Volatile Organic Compounds from Silage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Volatile organic compound (VOC) emissions are considered to be important precursors to smog and ozone production. An experimental protocol was developed to obtain undisturbed silage samples from silage storages. Samples were placed in a wind tunnel where temperature, humidity, and air flow were cont...

  10. Volatile organic compound emissions from dairy facilities in central California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emissions of volatile organic compounds (VOCs) from dairy facilities are thought to be an important contributor to high ozone levels in central California, but emissions inventories from these sources contain significant uncertainties. In this work, VOC emissions were measured at two central Califor...

  11. Energies of organic compounds. [Polyoxygenated methanes, ketals, orthoesters, cyclopropane derivatives

    SciTech Connect

    Wiberg, K. B.

    1980-07-01

    Automatic reaction calorimeters were developed. Enthalpies of hydration or hydrolysis were determined for polyoxygenated methanes, ketals, acetals, orthoesters, and alkenes. Trifluoroacetolysis of alkenes was carried out. Enthalpies of acetolysis and combustion of cyclopropane derivatives were also determined. Molecular mechanics calculations were carried out for ketones and ketals. Charge distribution in organic compounds were studied. 31 references. (DLC)

  12. Instrument for Analysis of Organic Compounds on Other Planets

    NASA Technical Reports Server (NTRS)

    Daulton, Riley M.; Hintze, Paul E.

    2016-01-01

    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  13. LEAVES AS INDICATORS OF EXPOSURE TO AIRBORNE VOLATILE ORGANIC COMPOUNDS

    EPA Science Inventory

    The concentration of volatile organic compounds (VOCs) in leaves is primarily a product of airborne exposures and dependent upon bioconcentration factors and release rates. The bioconcentration factors for VOCs in grass are found to be related to their partitioning between octan...

  14. Stripping volatile organic compounds and petroleum hydrocarbons from water

    SciTech Connect

    LaBranche, D.F.; Collins, M. R.

    1996-05-01

    Volatile organic compounds (VOCs) and petroleum products are ubiquitous groundwater contaminants. Petroleum products, for example, diesel fuel, contain a wide array of volatile, semivolatile, and large-chain hydrocarbon compounds. This research sought to determine whether air stripping can provide a site-specific treatment solution for petroleum-contaminated groundwaters and to document the abilities and limitations of tray-type (ShallowTray{sup TM}) air-stripping technology. Full factorial experimental trials were conducted to determine the influence of inlet water flow rate and temperature on trichloroethylene (TCE), perchloroethylene (PCE), and total petroleum hydrocarbon (TPH) removal. As expected, TPH removal controlled air stripper performance, and liquid temperature affected removal more than flow rate. The mass-transfer rate of TCE and PCE from water to air was controlled by the compound`s volatility, whereas the TPH mass-transfer rate was controlled by the compound`s concentration gradient. Results indicate that economical air stripping of VOC and TPH compounds can be achieved using low liquid flow rates (20 to 75 L/min), high air/water ratios (225 to 898), and medium liquid temperatures (16{degree}C to 28{degree}C) in tray-type air strippers. 19 refs., 7 figs., 6 tabs.

  15. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States--I) groundwater.

    PubMed

    Barnes, Kimberlee K; Kolpin, Dana W; Furlong, Edward T; Zaugg, Steven D; Meyer, Michael T; Barber, Larry B

    2008-09-01

    As part of the continuing effort to collect baseline information on the environmental occurrence of pharmaceuticals, and other organic wastewater contaminants (OWCs) in the Nation's water resources, water samples were collected from a network of 47 groundwater sites across 18 states in 2000. All samples collected were analyzed for 65 OWCs representing a wide variety of uses and origins. Site selection focused on areas suspected to be susceptible to contamination from either animal or human wastewaters (i.e. down gradient of a landfill, unsewered residential development, or animal feedlot). Thus, sites sampled were not necessarily used as a source of drinking water but provide a variety of geohydrologic environments with potential sources of OWCs. OWCs were detected in 81% of the sites sampled, with 35 of the 65 OWCs being found at least once. The most frequently detected compounds include N,N-diethyltoluamide (35%, insect repellant), bisphenol A (30%, plasticizer), tri(2-chloroethyl) phosphate (30%, fire retardant), sulfamethoxazole (23%, veterinary and human antibiotic), and 4-octylphenol monoethoxylate (19%, detergent metabolite). Although sampling procedures were intended to ensure that all groundwater samples analyzed were indicative of aquifer conditions it is possible that detections of some OWCs could have resulted from leaching of well-construction materials and/or other site-specific conditions related to well construction and materials. Future research will be needed to identify those factors that are most important in determining the occurrence and concentrations of OWCs in groundwater.

  16. [The qualitative analysis method of the dissolved organic matter (DOM) for ABS wastewater].

    PubMed

    Lai, Bo; Zhou, Yue-xi; Song, Yu-dong; Xi, Hong-bo; Sun, Li-dong; Chen, Jia-yun

    2011-03-01

    The dissolved organic matter (DOM) of acrylonitrile-butadiene-styrene (ABS) resin wastewater was qualitatively analysed by gas chromatography with mass spectrometry(GC-MS), Fourier transform infrared spectrometer(FTIR) and three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy. The detected results shows that the GC-MS qualitatively analysed 21 dissolved organic pollutants, such as acetophenone, styrene, alpha, alpha-dimethyl-benzenemethanol, 3,3'oxybis-propanenitrile, 3, 3'-iminobis-propanenitrile, 3,3'-thiobis-propanenitrile, 3-(dimethylamino)-propanenitrile and 2-propenenitrile. The results of Fourier transform infrared spectrometer (FTIR) and three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy could examine and certify the accuracy and integrity for the qualitative analysis of GC-MS. The results of this study provides an important guiding role for the development of wastewater treatment process.

  17. Recovery strategies for tackling the impact of phenolic compounds in a UASB reactor treating coal gasification wastewater.

    PubMed

    Wang, Wei; Han, Hongjun

    2012-01-01

    The impact of phenolic compounds (around 3.2 g/L) resulted in a completely failed performance in a mesophilic UASB reactor treating coal gasification wastewater. The recovery strategies, including extension of HRT, dilution, oxygen-limited aeration, and addition of powdered activated carbon were evaluated in batch tests, in order to obtain the most appropriate way for the quick recovery of the failed reactor performance. Results indicated that addition of powdered activated carbon and oxygen-limited aeration were the best recovery strategies in the batch tests. In the UASB reactor, addition of powdered activated carbon of 1 g/L shortened the recovery time from 25 to 9 days and oxygen-limited aeration of 0-0.5 mgO2/L reduced the recovery time to 17 days. Reduction of bioavailable concentration of phenolic compounds and recovery of sludge activity were the decisive factors for the recovery strategies to tackle the impact of phenolic compounds in anaerobic treatment of coal gasification wastewater. PMID:22033369

  18. Emission of volatile organic compounds from silage: compounds, sources, and implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Silage, fermented cattle feed, has recently been identified as a significant source of volatile organic compounds (VOCs) emitted to the atmosphere. A small number of studies have measured VOC emission from silage, but not enough is known about the processes involved to accurately quantify emission r...

  19. Analysis of organic compounds in returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Cronin, J. R.

    1989-01-01

    Techniques for analysis of organic compounds in returned comet nucleus samples are described. Interstellar, chondritic and transitional organic components are discussed. Appropriate sampling procedures will be essential to the success of these analyses. It will be necessary to return samples that represent all the various regimes found in the nucleus, e.g., a complete core, volatile components (deep interior), and crustal components (surface minerals, rocks, processed organics such as macromolecular carbon and polymers). Furthermore, sampling, storage, return, and distribution of samples must be done under conditions that preclude contamination of the samples by terrestrial matter.

  20. Reduction of COD in wastewater from an organized tannery industrial region by Electro-Fenton process.

    PubMed

    Kurt, Ugur; Apaydin, Omer; Gonullu, M Talha

    2007-05-01

    Advanced oxidation processes (AOPs) have led the way in the treatment of aqueous waste and are rapidly becoming the chosen technology for many applications. In this paper, COD reduction potential of leather tanning industry wastewaters by Electro-Fenton (EF) oxidation, as one of the AOPs, was experimentally evaluated. The wastewater sample was taken from an outlet of an equalization basin in a common treatment plant of an organized tannery industrial region in Istanbul, Turkey. Treatment of the wastewater was carried out by an electrochemical batch reactor equipped with two iron electrodes, which were connected parallel to each other. The oxidation process was studied for optimization of H(2)O(2) and the electricity consumptions were observed at different contact times under different pH conditions (3.0, 5.0 and 7.2). In each case, electricity consumption for decreased COD mass was estimated. In this process, COD was reduced by 60-70% within 10 min. By taking into consideration the local sewerage discharge limit, applicability of EF process for the tannery wastewaters was evaluated.