Sample records for wastewater sludge dewatering

  1. DESIGN MANUAL: DEWATERING MUNICIPAL WASTEWATER SLUDGES

    EPA Science Inventory

    This manual discusses the many factors involved in selecting and designing dewatering equipment for organic sludges produced during primary and secondary municipal wastewater treatment. ive-step approach is outlined for the selection and design of the dewatering equipment for eit...

  2. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  3. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  4. Deep dewatering process of sludge by chemical conditioning and its potential influence on wastewater treatment plants.

    PubMed

    Wang, Shuo; Ma, Cong; Zhu, Yin; Yang, Yangkun; Du, Guocheng; Li, Ji

    2018-06-15

    FeCl 3 , quick lime, and cationic polyacrylamide (CPAM) were used for excess sludge conditioning from wastewater treatment plant (WWTP) and the dewatering performance by different chemical conditioners was investigated. Experimental results showed that FeCl 3 could make small and concentrated sludge particles. Furthermore, new mineral phase structures for building a dewatering framework were obtained by the addition of quick lime, and the coagulation capacity was enhanced by the formation of colloid hydroxyl polymer, which was induced due to the alkaline environment. In addition, the floc particle size significantly increased after the CPAM dosage. The bound water could be released with the stripping of tightly bound extracellular polymeric substance (EPS). Therefore, the dewatering performance and efficiencies were improved and subsequently the hypothetical sludge deep dewatering process was depicted in accordance with the variation of EPS. However, high-strength refractory organics in sludge filtrates caused by quick lime pyrolysis could lead to the unstable operation of the WWTP, because the relatively high concentrations of organic compounds with benzene were dominant in sludge dewatering filtrates.

  5. Influence of process operating parameters on dryness level and energy saving during wastewater sludge electro-dewatering.

    PubMed

    Mahmoud, Akrama; Hoadley, Andrew F A; Conrardy, Jean-Baptiste; Olivier, Jérémy; Vaxelaire, Jean

    2016-10-15

    Electrically assisted mechanical dewatering, known as electro-dewatering (EDW), is an alternative emerging technology for energy-efficient liquid/solids separation in the dewatering of wastewater sludge. In this study, the performance of the electro-dewatering (EDW) process for activated wastewater sludge was investigated. The influence of the operating modes; being the timing of voltage (U-EDW) or current (I-EDW) application to either or both the filtration and compression stages, and the influence of the applied pressure (in successive 30 min pressure steps) were studied. The results showed that by delaying the application of the electric field to the filter cake compression stage, there was a potential saving in power consumption of around 10-12% in the case of U-EDW and about 30-46% in the case of I-EDW. The increase of the applied pressure from 0.5 to 12 bar during the filter cake compression stage leads to an increase in electro-dewatering kinetics. The results also reveal that at a low electric field level the increase of the processing pressure has a relatively pronounced effect on the dewatering process. At high levels of the electric field, a minimum processing pressure (4-6 bar) is required to improve the electrical contact between the electrode and the sludge and thus lower the energy consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Electro-dewatering of wastewater sludge: influence of the operating conditions and their interactions effects.

    PubMed

    Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A

    2011-04-01

    Electric field-assisted dewatering, also called electro-dewatering (EDW), is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. The application of these additional fields can be applied to either or both dewatering stages (filtration and/or compression), or as a pre-or post-treatment of the dewatering process. In this study, the performance of the EDW on wastewater sludge was investigated. Experiments were carried out on a laboratory filtration/compression cell, provided with electrodes, in order to apply an electrical field. The chosen operating conditions pressure (200-1200 kPa) and voltage (10-50 V) are sufficient to remove a significant proportion of the water that cannot be removed using mechanical dewatering technologies alone. A response surface methodology (RSM) was used to evaluate the effects of the processing parameters of EDW on (i) the final dry solids content, which is a fundamental dewatering parameter and an excellent indicator of the extent of EDW and (ii) the energy consumption calculated for each additional mass of water removed. A two-factor central composite design was used to establish the optimum conditions for the EDW of wastewater sludge. Experiments showed that the use of an electric field combined with mechanical compression requires less than 10 and 25% of the theoretical thermal drying energy for the low and moderate voltages cases, respectively. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  7. Model development and evaluation of methane potential from anaerobic co-digestion of municipal wastewater sludge and un-dewatered grease trap waste.

    PubMed

    Yalcinkaya, Sedat; Malina, Joseph F

    2015-06-01

    The performance of anaerobic co-digestion of municipal wastewater sludge with un-dewatered grease trap waste was assessed using modified biochemical methane potential tests under mesophilic conditions (35°C). Methane potentials, process inhibition and chemical behavior of the process were analyzed at different grease trap waste feed ratios on volatile solids basis. Nonlinear regression analyses of first order reaction and modified Gompertz equations were performed to assist in interpretation of the experimental results. Methane potential of un-dewatered grease trap waste was measured as 606 mL CH4/g VS(added), while methane potential of municipal wastewater sludge was only 223 mL CH4/g VS(added). The results indicated that anaerobic digestion of grease trap waste without dewatering yields less methane potential than concentrated/dewatered grease trap waste because of high wastewater content of un-dewatered grease trap waste. However, anaerobic co-digestion of municipal wastewater sludge and grease trap waste still yields over two times more methane potential and approximately 10% more volatile solids reduction than digestion of municipal wastewater sludge alone. The anaerobic co-digestion process inhibitions were reported at 70% and greater concentrated/dewatered grease trap waste additions on volatile solids basis in previous studies; however, no inhibition was observed at 100% un-dewatered grease trap waste digestion in the present study. These results indicate that anaerobic co-digestion of un-dewatered grease trap waste may reduce the inhibition risk compared to anaerobic co-digestion of concentrated/dewatered grease trap waste. In addition, a mathematical model was developed in this study for the first time to describe the relationship between grease trap waste feed ratio on volatile solids basis and resulting methane potential. Experimental data from the current study as well as previous biochemical methane potential studies were successfully fit to this

  8. Electrical field: a historical review of its application and contributions in wastewater sludge dewatering.

    PubMed

    Mahmoud, Akrama; Olivier, Jérémy; Vaxelaire, Jean; Hoadley, Andrew F A

    2010-04-01

    Electric field-assisted dewatering, also called electro-dewatering, is a technology in which a conventional dewatering mechanism such a pressure dewatering is combined with electrokinetic effects to realize an improved liquid/solids separation, to increase the final dry solids content and to accelerate the dewatering process with low energy consumption compared to thermal drying. Electro-dewatering is not a new idea, but the practical industrial applications have been limited to niche areas in soil mechanics, civil engineering, and the ceramics industry. Recently, it has received great attention, specially, in the fields of fine-particle sludge, gelatinous sludge, sewage sludge, pharmaceutical industries, food waste and bull kelp, which could not be successfully dewatered with conventional mechanical methods. This review focuses on the scientific and practical aspects of the application of an electrical field in laboratory/industrial dewatering, and discusses this in relation to conventional dewatering techniques. A comprehensive bibliography of research in the electro-dewatering of wastewater sludges is included. As the fine-particle suspensions possess a surface charge, usually negative, they are surrounded by a layer with a higher density of positive charges, the electric double layer. When an electric field is applied, the usually negative charged particles move towards the electrode of the opposite charge. The water, commonly with cations, is driven towards the negative electrode. Electro-dewatering thus involves the well-known phenomena of electrophoresis, electro-osmosis, and electromigration. Following a detailed outline of the role of the electric double layer and electrokinetic phenomena, an analysis of the components of applied voltage and their significance is presented from an electrochemical viewpoint. The aim of this elementary analysis is to provide a fundamental understanding of the different process variables and configurations in order to

  9. Anaerobic storage as a pretreatment for enhanced biodegradability of dewatered sewage sludge.

    PubMed

    Xu, Huacheng; He, Pinjing; Wang, Guanzhao; Shao, Liming; Lee, Duujong

    2011-01-01

    Dewatered sewage sludge is often stored still before further processing and final disposal. This study showed that anaerobic storage of dewatered sewage sludge could hydrolyze organic matter from the sludge matrix, and increase soluble organic acid content from 90 to 2400 mg/L and soluble organic carbon content from 220 to 1650 mg/L. Correspondingly, the contents of proteins, celluloses and hemicelluloses were reduced by 2-9%. Applying anaerobic storage markedly enhanced the efficiency of the subsequent bio-drying process on stored sludge. Correspondingly, biogas and odor gas were produced immediately after commencing the sludge storage. Anaerobic storage with odor control can be applied as a pretreatment process for dewatered sewage sludge in wastewater treatment plants. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. A review on sludge dewatering indices.

    PubMed

    To, Vu Hien Phuong; Nguyen, Tien Vinh; Vigneswaran, Saravanamuth; Ngo, Huu Hao

    2016-01-01

    Dewatering of sludge from sewage treatment plants is proving to be a significant challenge due to the large amounts of residual sludges generated annually. In recent years, research and development have focused on improving the dewatering process in order to reduce subsequent costs of sludge management and transport. To achieve this goal, it is necessary to establish reliable indices that reflect the efficiency of sludge dewatering. However, the evaluation of sludge dewaterability is not an easy task due to the highly complex nature of sewage sludge and variations in solid-liquid separation methods. Most traditional dewatering indices fail to predict the maximum cake solids content achievable during full-scale dewatering. This paper reviews the difficulties in assessing sludge dewatering performance, and the main techniques used to evaluate dewatering performance are compared and discussed in detail. Finally, the paper suggests a new dewatering index, namely the modified centrifugal index, which is demonstrated to be an appropriate indicator for estimating the final cake solids content as well as simulating the prototype dewatering process.

  11. Highly efficient secondary dewatering of dewatered sewage sludge using low boiling point solvents.

    PubMed

    He, Chao; Chena, Chia-Lung; Xu, Zhirong; Wang, Jing-Yuan

    2014-01-01

    Secondary dewatering of dewatered sludge is imperative to make conventional drying and incineration of sludge more economically feasible. In this study, a secondary dewatering of dewatered sludge with selected solvents (i.e. acetone and ethanol) followed by vacuum filtration and nature drying was investigated to achieve in-depth dewatering. After the entire secondary dewatering process, the sludge was shown to be odourless and the organic matter content was greatly retained. Increased mean particle size of sludge after solvent contact improved solid-liquid separation. With an acetone/sludge ratio of 3:1 (mL:g) in solvent contact and subsequent nature drying at ambient temperature after 24 h, the moisture content of sludge can be reduced to a level less than 20%. It is found that the polysaccharides were mainly precipitated by acetone, whereas the release ratios of protein and DNA were increased significantly as the added acetone volumes were elevated. During nature drying, accumulated evaporation rates of the sludge after solvent contact were 5-6 times higher than original dewatered sludge. Furthermore, sludge after acetone contact had better nature drying performance than ethanol. The two-stage dewatering involves solvent contact dewatering and solvent enhanced evaporation dewatering. Through selecting an appropriate solvent/sludge ratio as well as economical solvents and minimizing the solvent loss in a closed-pilot system, this dewatering process can be competitive in industrial applications. Therefore, this solvent-aided secondary dewatering is an energy-saving technology for effective in-depth dewatering of dewatered sludge and subsequent sludge utilization.

  12. Monitoring of sludge dewatering equipment by image classification

    NASA Astrophysics Data System (ADS)

    Maquine de Souza, Sandro; Grandvalet, Yves; Denoeux, Thierry

    2004-11-01

    Belt filter presses represent an economical means to dewater the residual sludge generated in wastewater treatment plants. In order to assure maximal water removal, the raw sludge is mixed with a chemical conditioner prior to being fed into the belt filter press. When the conditioner is properly dosed, the sludge acquires a coarse texture, with space between flocs. This information was exploited for the development of a software sensor, where digital images are the input signal, and the output is a numeric value proportional to the dewatered sludge dry content. Three families of features were used to characterize the textures. Gabor filtering, wavelet decomposition and co-occurrence matrix computation were the techniques used. A database of images, ordered by their corresponding dry contents, was used to calibrate the model that calculates the sensor output. The images were separated in groups that correspond to single experimental sessions. With the calibrated model, all images were correctly ranked within an experiment session. The results were very similar regardless of the family of features used. The output can be fed to a control system, or, in the case of fixed experiment conditions, it can be used to directly estimate the dewatered sludge dry content.

  13. Improving the compression dewatering of sewage sludge through bioacidification conditioning driven by Acidithiobacillus ferrooxidans: dewatering rate vs. dewatering extent.

    PubMed

    Lu, Yi; Zhang, Chunmei; Zheng, Guanyu; Zhou, Lixiang

    2018-04-22

    Prior to mechanical dewatering, sludge conditioning is indispensable to reduce the difficulty of sludge treatment and disposal. The effect of bioacidification conditioning driven by Acidithiobacillus ferrooxidans LX5 on the dewatering rate and extent of sewage sludge during compression dewatering process was investigated in this study. The results showed that the bioacidification of sludge driven by A. ferrooxidans LX5 simultaneously improved both the sludge dewatering rate and extent, which was not attained by physical/chemical conditioning approaches, including ultrasonication, microwave, freezing/thawing, or by adding the chemical conditioner cationic polyacrylamide (CPAM). During the bioacidification of sludge, the decrease in sludge pH induced the damage of sludge microbial cell structures, which enhanced the dewatering extent of sludge, and the added Fe 2+ and the subsequent bio-oxidized Fe 3+ effectively flocculated the damaged sludge flocs to improve the sludge dewatering rate. In the compression dewatering process consisting of filtration and expression stages, high removal of moisture and a short dewatering time were achieved during the filtration stage and the expression kinetics were also improved because of the high elasticity of sludge cake and the rapid creeping of the aggregates within the sludge cake. In addition, the usefulness of bioacidification driven by A. ferrooxidans LX5 in improving the compression dewatering of sewage sludge could not be attained by the chemical treatment of sludge through pH modification and Fe 3+ addition. Therefore, the bioacidification of sludge driven by A. ferrooxidans LX5 is an effective conditioning method to simultaneously improve the rate and extent of compression dewatering of sewage sludge.

  14. Isolation of indigenous enteroviruses from chemically treated and dewatered sludge samples.

    PubMed Central

    Goddard, M R; Bates, J; Butler, M

    1982-01-01

    Samples of wastewater sludge were examined for infectious enteroviruses before and after they had been chemically conditioned and dewatered. The least virus was recovered from the cake produced by filter pressing of sludge, which had a greatly increased solids content (39 to 45% [wt/vol]) relative to the untreated sludge (4.2 to 6.2% [wt/vol]) and in one plant was at pH 11 due to the lime conditioner used. Conditioning with a cationic polyelectrolyte before dewatering by centrifugation produced a watery sludge (2.7 to 5.3% [wt/vol]) from which high titers of infectious virus were recovered which were often greater than those isolated from the untreated sludge (0.6 to 1.4% [wt/vol]). This was thought to be due to saturation of virus and sludge floc adsorption sites by the polyelectrolyte, resulting in the liberation of virions from the sludge solids. PMID:6295275

  15. Co-conditioning and dewatering of chemical sludge and waste activated sludge.

    PubMed

    Chang, G R; Liu, J C; Lee, D J

    2001-03-01

    The conditioning and dewatering behaviors of chemical and waste activated sludges from a tannery were studied. Capillary suction time (CST), specific resistance to filtration (SRF), and bound water content were used to evaluate the sludge dewatering behaviors. Zeta potentials were also measured. Experiments were conducted on each sludge conditioned and dewatered separately, and on the sludge mixed at various ratios. Results indicate that the chemical sludge was relatively difficult to be dewatered, even in the presence of polyelectrolyte. When the waste activated sludge was mixed with the chemical sludge at ratios of 1:1 and 2:1, respectively, the dewaterability of chemical sludge improved remarkably while the relatively better dewaterability of the waste activated sludge deteriorated only to a limited extent. As the mixing ratios became 4:1 and 8:1, the dewaterability of the mixed sludge was equal to that of the waste activated sludge. The optimal polyelectrolyte dosage for the mixed sludge was equal to or less than that of the waste activated sludge. It is proposed that the chemical sludges act as skeleton builders that reduce the compressibility of the mixed sludge whose dewaterability is enhanced. Bound water contents of sludge decreased at low polyelectrolyte dosage and were not significantly affected as polyelectrolyte dosage increased. Advantages and disadvantages of co-conditioning and dewatering chemical sludge and waste activated sludge were discussed.

  16. Monitoring and optimizing the co-composting of dewatered sludge: a mixture experimental design approach.

    PubMed

    Komilis, Dimitrios; Evangelou, Alexandros; Voudrias, Evangelos

    2011-09-01

    The management of dewatered wastewater sludge is a major issue worldwide. Sludge disposal to landfills is not sustainable and thus alternative treatment techniques are being sought. The objective of this work was to determine optimal mixing ratios of dewatered sludge with other organic amendments in order to maximize the degradability of the mixtures during composting. This objective was achieved using mixture experimental design principles. An additional objective was to study the impact of the initial C/N ratio and moisture contents on the co-composting process of dewatered sludge. The composting process was monitored through measurements of O(2) uptake rates, CO(2) evolution, temperature profile and solids reduction. Eight (8) runs were performed in 100 L insulated air-tight bioreactors under a dynamic air flow regime. The initial mixtures were prepared using dewatered wastewater sludge, mixed paper wastes, food wastes, tree branches and sawdust at various initial C/N ratios and moisture contents. According to empirical modeling, mixtures of sludge and food waste mixtures at 1:1 ratio (ww, wet weight) maximize degradability. Structural amendments should be maintained below 30% to reach thermophilic temperatures. The initial C/N ratio and initial moisture content of the mixture were not found to influence the decomposition process. The bio C/bio N ratio started from around 10, for all runs, decreased during the middle of the process and increased to up to 20 at the end of the process. The solid carbon reduction of the mixtures without the branches ranged from 28% to 62%, whilst solid N reductions ranged from 30% to 63%. Respiratory quotients had a decreasing trend throughout the composting process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Enhanced sludge dewatering by electrofiltration. A feasibility study.

    PubMed

    Saveyn, H; Huybregts, L; Van der Meeren, P

    2001-01-01

    Sludge treatment is a major issue in today's waste water treatment. One of the problems encountered is the limiting dewaterability of mainly biological sludges, causing high final treatment costs for incineration or landfill. Although during recent years, improvements are realised in the field of dewatering, the actual dry solids content after dewatering remains at a maximum value of about 35%. In order to increase the dry solids content, the technique of electrofiltration was investigated. Electrofiltration is the combination of two known techniques, traditional pressure filtration and electroosmotic/electrophoretic dewatering. Pressure filtration is based on pressure as the driving force for dewatering a sludge. Limitations hereby lie in the clogging of the filter cloth due to the build-up of the filtercake. Electroosmotic/electrophoretic dewatering is based on an electric field to separate sludge colloid particles from the surrounding liquid by placing the sludge liquor between two oppositely charged electrodes. In this case, mobile sludge particles will move to one electrode due to their natural surface charge, and the liquid phase will be collected at the oppositely charged electrode. Combination of both techniques makes it possible to create a more homogeneous filter cake and prevent the filter from clogging, resulting in higher cake dry solids contents and shorter filtration cycles. To investigate the feasibility of this technique for the dewatering of activated sludge, a filter unit was developed for investigations on lab scale. Multiple dewatering tests were performed in which the electric parameters for electrofiltration were varied. It was derived from these experiments that very high filter cake dry solids contents (to more than 60%), and short filtration cycles were attainable by using a relatively small electric DC field. The power consumption was very low compared to the power needed to dewater sludge by thermal drying techniques. For this reason

  18. Synergetic pretreatment of waste activated sludge by hydrodynamic cavitation combined with Fenton reaction for enhanced dewatering.

    PubMed

    Cai, Meiqiang; Hu, Jianqiang; Lian, Guanghu; Xiao, Ruiyang; Song, Zhijun; Jin, Micong; Dong, Chunying; Wang, Quanyuan; Luo, Dewen; Wei, Zongsu

    2018-04-01

    The dewatering of waste activated sludge by integrated hydrodynamic cavitation (HC) and Fenton reaction was explored in this study. We first investigated the effects of initial pH, sludge concentration, flow rate, and H 2 O 2 concentration on the sludge dewaterability represented by water content, capillary suction time and specific resistance to filtration. The results of dewatering tests showed that acidic pH and low sludge concentration were favorable to improve dewatering performance in the HC/Fenton system, whereas optimal flow rate and H 2 O 2 concentration applied depended on the system operation. To reveal the synergism of HC/Fenton treatment, a suite of analysis were implemented: three-dimensional excitation emission matrix (3-DEEM) spectra of extracellular polymeric substances (EPS) such as proteins and polysaccharides, zeta potential and particle size of sludge flocs, and SEM/TEM imaging of sludge morphology. The characterization results indicate a three-step mechanism, namely HC fracture of different EPS in sludge flocs, Fenton oxidation of the released EPS, and Fe(III) re-flocculation, that is responsible for the synergistically enhanced sludge dewatering. Results of current study provide a basis to improve our understanding on the sludge dewatering performance by HC/Fenton treatment and possible scale-up of the technology for use in wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. Phyto-dewatering of sewage sludge using Panicum repens L.

    PubMed

    El-Gendy, A S; El-Kassas, H I; Razek, T M A; Abdel-Latif, H

    2017-04-01

    Experiments in the field environment have been conducted to study the growth of Panicum repens L., an aquatic plant, in the sewage sludge matrix. The experiments were also carried out to investigate the ability of this plant to dewater sewage sludge to increase the capacity of conventional drying beds. In addition, the ability of Panicum repens L. to reduce the sludge contents of certain elements (copper (Cu), Iron (Fe), Sodium (Na), lead (Pb), and Zinc (Zn)) was also investigated. All experiments were carried out in batch reactors. Different plant coverage densities were tested (0.00 to 27.3 kg/m 2 ). The liquid sewage sludge was collected from a wastewater treatment plant in Helwan city, Cairo Governorate, Egypt. The collected sludge represents a mixture of the primary sludge and waste activated sludge before discharging into drying beds.

  1. Full-scale performance of selected starch-based biodegradable polymers in sludge dewatering and recommendation for applications.

    PubMed

    Zhou, Kuangxin; Stüber, Johan; Schubert, Rabea-Luisa; Kabbe, Christian; Barjenbruch, Matthias

    2018-01-01

    Agricultural reuse of dewatered sludge is a valid route for sludge valorization for small and mid-size wastewater treatment plants (WWTPs) due to the direct utilization of nutrients. A more stringent of German fertilizer ordinance requires the degradation of 20% of the synthetic additives like polymeric substance within two years, which came into force on 1 January 2017. This study assessed the use of starch-based polymers for full-scale dewatering of municipal sewage sludge. The laboratory-scale and pilot-scale trials paved the way for full-scale trials at three WWTPs in Germany. The general feasibility of applying starch-based 'green' polymers in full-scale centrifugation was demonstrated. Depending on the sludge type and the process used, the substitution potential was up to 70%. Substitution of 20-30% of the polyacrylamide (PAM)-based polymer was shown to achieve similar total solids (TS) of the dewatered sludge. Optimization of operational parameters as well as machinery set up in WWTPs is recommended in order to improve the shear stability force of sludge flocs and to achieve higher substitution potential. This study suggests that starch-based biodegradable polymers have great potential as alternatives to synthetic polymers in sludge dewatering.

  2. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, L.W.

    1985-08-30

    This invention relates generally to the dewatering of sludge, and more particularly to the dewatering of a sewage sludge having a moisture content of about 50 to 80% in the form of small cellular micro-organism bodies having internally confined water.

  3. Drying characteristics of electro-osmosis dewatered sludge.

    PubMed

    Ma, Degang; Qian, Jingjing; Zhu, Hongmin; Zhai, Jun

    2016-12-01

    Electro-osmotic dewatering (EDW) is one of the effective deeply dewatering technologies that is suitable for treating sludge with 55-80% of moisture content. Regarding EDW as the pre-treatment process of drying or incinerating, this article investigated the drying characteristics of electro-osmosis-dewatered sludge, including shear stress test, drying curves analysis, model analysis, and energy balance calculation. After EDW pre-treatment, sludge adhesion was reduced. The sludge drying rate was higher compared to the non-pre-treated sludge, especially under high temperatures (80-120°C). In addition, it is better to place the sludge cake with cathode surface facing upward for improving the drying rate. An adjusted model based on the Logarithmic model could better describe the EDW sludge drying process. Using the energy balance calculation, EDW can save the energy consumed in the process of sludge incineration and electricity generation and enable the system to run without extra energy input.

  4. Electro-dewatering of wastewater sludge: An investigation of the relationship between filtrate flow rate and electric current.

    PubMed

    Olivier, Jérémy; Conrardy, Jean-Baptiste; Mahmoud, Akrama; Vaxelaire, Jean

    2015-10-01

    Compared to conventional dewatering techniques, electrical assisted mechanical dewatering, also called electro-dewatering (EDW) is an alternative and an effective technology for the dewatering of sewage sludge with low energy consumption. The objectives of this study were to evaluate the dewatering performance and to determine the influence of the process parameters (e.g. applied electric current, applied voltage, and the initial amount of dry solids) on the kinetics of EDW-process for activated urban sludge. Also significant efforts have been devoted herein to provide comprehensive information about the EDW mechanisms and to understand the relationship between these operating conditions with regards to develop a qualitative and quantitative understanding model of the electro-dewatering process and then produce a robust design methodology. The results showed a very strong correlation between the applied electric current and the filtrate flow rate and consequently the electro-dewatering kinetics. A higher applied electric current leads to faster EDW kinetics and a higher final dry solids content. In contrast, the results of this work showed a significant enhancement of the dewatering kinetics by decreasing the mass of the dry solids introduced into the cell (commonly known as the sludge loading). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A novel acrylamide-free flocculant and its application for sludge dewatering.

    PubMed

    Lu, Lianghua; Pan, Zhida; Hao, Nan; Peng, Wenqing

    2014-06-15

    In the present research, copolymers of methyl acrylate (MA) with anionic or cationic monomers were synthesized via emulsion polymerization, and used as sludge dewatering aids in wastewater treatment. The copolymerization of different stoichiometry of two monomers afforded a variety of water soluble copolymers with charge densities ranging from 40% to 80%, which align with the charge density of current flocculant products. These copolymers resemble current commercial products, but provide a greener solution by eliminating acrylamide monomer, which is a suspected carcinogen. High molecular weight copolymers were achieved by applying powder-like synthesis process with intrinsic viscosity of final products as high as 12.98 dl/g for anionic flocculant and 10.74 dl/g for cationic flocculant. The copolymers of methyl acrylate and [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) with 55% charge density exhibited comparable performance in clay settling test, real water jar test, and sludge dewatering, when compared to AM-based commercial product in the real wastewater treatment application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Monitoring and troubleshooting of non-filamentous settling and dewatering problems in an industrial activated sludge treatment plant.

    PubMed

    Kjellerup, B V; Keiding, K; Nielsen, P H

    2001-01-01

    A large industrial activated sludge wastewater treatment plant had temporary problems with settling and dewatering of the sludge. Microscopical investigations revealed that the poor settling properties were not due to presence of filamentous bacteria, but poor floc properties. In order to characterise the changes in floc properties that led to settling and dewatering problems and to find reasons for this taking place, a comprehensive monitoring program was conducted during more than one year. The monitoring program included various measurements of floc settleability, floc strength and sludge dewaterability. The monitoring program revealed that a deterioration of the floc strength and the settling properties in the process tanks was closely connected to downstream dewatering problems and poor effluent quality. Particularly severe problems were observed a few weeks after the production at the factory had started after summer closedown. Possible reasons for the changes in floc properties in the process tanks were found by a) analysing change in wastewater composition by evaluating the different production lines in the industrial plant, b) evaluating the operation of the plant, and c) performing short-term laboratory experiments testing factors that could potentially affect floc properties (absence of oxygen, presence of sulphide, detergents, etc). Among several measured parameters, the use of floc strength measurements in particular proved useful to monitor the activated sludge floc properties at this industrial plant. The described strategy can be useful in general to find and solve many solid/liquid separation problems in activated sludge wastewater treatment plants.

  7. Sludge dewatering and stabilization in drying reed beds: characterization of three full-scale systems in Catalonia, Spain.

    PubMed

    Uggetti, Enrica; Llorens, Esther; Pedescoll, Anna; Ferrer, Ivet; Castellnou, Roger; García, Joan

    2009-09-01

    Optimization of sludge management can help reducing sludge handling costs in wastewater treatment plants. Sludge drying reed beds appear as a new and alternative technology which has low energy requirements, reduced operating and maintenance costs, and causes little environmental impact. The objective of this work was to evaluate the efficiency of three full-scale drying reed beds in terms of sludge dewatering, stabilization and hygienisation. Samples of influent sludge and sludge accumulated in the reed beds were analysed for pH, Electrical Conductivity, Total Solids (TS), Volatile Solids (VS), Chemical Oxygen Demand, Biochemical Oxygen Demand, nutrients (Total Kjeldahl Nitrogen (TKN) and Total Phosphorus (TP)), heavy metals and faecal bacteria indicators (Escherichiacoli and Salmonella spp.). Lixiviate samples were also collected. There was a systematic increase in the TS concentration from 1-3% in the influent to 20-30% in the beds, which fits in the range obtained with conventional dewatering technologies. Progressive organic matter removal and sludge stabilization in the beds was also observed (VS concentration decreased from 52-67% TS in the influent to 31-49% TS in the beds). Concentration of nutrients of the sludge accumulated in the beds was quite low (TKN 2-7% TS and TP 0.04-0.7% TS), and heavy metals remained below law threshold concentrations. Salmonella spp. was not detected in any of the samples, while E. coli concentration was generally lower than 460MPN/g in the sludge accumulated in the beds. The studied systems demonstrated a good efficiency for sludge dewatering and stabilization in the context of small remote wastewater treatment plants.

  8. Improvement of sedimentation and dewatering of municipal sludge by radiation

    NASA Astrophysics Data System (ADS)

    Sawai, Teruko; Yamazaki, Masao; Shimokawa, Toshinari; Sekiguchi, Masayuki; Sawai, Takeshi

    As the promotion of sewerage system, the volume of municipal sludge in Tokyo has increased rapidly. Due to recent changes in the properties of the sludge, moreover, it has become difficult to thicken the liquid sewage sludge by sedimentation and to dewater the thickening sludge mechanically. The development of a new effective method for sludge treatment is necessary. Therefore, a study on the improvement of sedimentation and dewatering of sewage sludge by irradiation with 60Co gamma rays and electron beams was undertaken. Sedimentation tests and various dewatering tests were carried out for the waste activated sludge and anaerobically digested sludge. From the changes in the settling rate, capillary suction time, water content of the sludge cake, and the quality of separated water by irradiation, the optimum irradiation conditions for improving the sedimentation and dewatering of 2 types sludge were determined. The necessary dose for improving the sedimentation and dewatering was observed to be 1-3 kGy for the activated sludge and 5-10 kGy for the digested sludge. To confirm the cause of those changes by irradiation, the zeta potential and viscosity of the sludge were measured.

  9. Biodiesel from dewatered wastewater sludge: a two-step process for a more advantageous production.

    PubMed

    Pastore, Carlo; Lopez, Antonio; Lotito, Vincenzo; Mascolo, Giuseppe

    2013-07-01

    Alternative approaches for obtaining biodiesel from municipal sludge have been successfully investigated. In order to avoid the expensive conventional preliminary step of sludge drying, dewatered sludge (TSS: 15wt%) was used as starting material. The best performance in terms of yield of fatty acid methyl esters (18wt%) with the lowest energy demand (17MJkgFAME(-1)) was obtained by a new two-step approach based on hexane extraction carried out directly on dewatered acidified (H2SO4) sludge followed by methanolysis of extracted lipids. It was found that sulphuric acid plays a key role in the whole process not only for the transesterification of glycerides but also for the production of new free fatty acids from soaps and their esterification with methanol. In addition to biodiesel production, the investigated process allows valorization of primary sludge as it turns it into a valuable source of chemicals, namely sterols (2.5wt%), aliphatic alcohols (0.8wt%) and waxes (2.3wt%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Chitosan use in chemical conditioning for dewatering municipal-activated sludge.

    PubMed

    Zemmouri, H; Mameri, N; Lounici, H

    2015-01-01

    This work aims to evaluate the potential use of chitosan as an eco-friendly flocculant in chemical conditioning of municipal-activated sludge. Chitosan effectiveness was compared with synthetic cationic polyelectrolyte Sedipur CF802 (Sed CF802) and ferric chloride (FeCl₃). In this context, raw sludge samples from Beni-Messous wastewater treatment plant (WWTP) were tested. The classic jar test method was used to condition sludge samples. Capillary suction time (CST), specific resistance to filtration (SRF), cakes dry solid content and filtrate turbidity were analyzed to determine filterability, dewatering capacity of conditioned sludge and the optimum dose of each conditioner. Data exhibit that chitosan, FeCl₃and Sed CF802 improve sludge dewatering. Optimum dosages of chitosan, Sed CF802 and FeCl₃allowing CST values of 6, 5 and 9 s, were found, respectively, between 2-3, 1.5-3 and 6 kg/t ds. Both polymers have shown faster water removal with more permeable sludge. SRF values were 0.634 × 10¹², 0.932 × 10¹² and 2 × 10¹² m/kg for Sed CF802, chitosan and FeCl₃respectively. A reduction of 94.68 and 87.85% of the filtrate turbidity was obtained with optimal dosage of chitosan and Sed CF802, respectively. In contrast, 54.18% of turbidity abatement has been obtained using optimal dosage of FeCl₃.

  11. DEWATERING WASTEWATER TREATMENT SLUDGE BY CLATHRATE FREEZING: A BENCH-SCALE FEASIBILITY STUDY

    EPA Science Inventory

    Laboratory studies were performed to prove the concept and feasibility for a novel technology to dewater sludges. This involves the formation of solid hydrate crystals of water and specific clathrate-forming agents followed by separation of the hydrate crystal solids from the slu...

  12. Locally produced natural conditioners for dewatering of faecal sludge.

    PubMed

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-11-01

    In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400-500 kg M. oleifera/t TS, 300-800 kg lime/t TS and 25-50 kg polymer solution/t TS. In comparison, chitosan required 1.5-3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22-81% and reduce dewatering time with drying beds by 59-97%. This means that the area of drying beds could be reduced by 59-97% with end-use as soil conditioner, or 9-26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising.

  13. Application of electro acoustics for dewatering pharmaceutical sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golla, P.S.; Johnson, H.W.

    1992-02-01

    Application of electro acoustic principles for dewatering has been developed by Battelle Institute. The Department of Energy, Battelle Institute, and Ashbrook-Simon-Hartley, have jointly developed an Electro Acoustic Dewatering press (EAD press). The EAD press applies a combination of mechanical pressure, electrical current and ultrasonics. This press is utilized after conventional dewatering devices and can remove up to 50% water from filtered sludge cake at a fraction of the cost incurred in existing thermal drying devices. The dominant mechanism of sludge dewatering by EAD press is electro-osmosis due to the application of a direct current field. Electro-osmosis is caused by anmore » electrical double layer of oppositely charged ions formed at the solid liquid interface, which is characterized by zeta potential. The ultrasonic fields help electro-osmosis by consolidation of the filter cake and by release of inaccessible liquid. The EAD press has been tested successfully on a variety of materials including apple pomace, corn gluten, sewage sludge, and coal fines. A three week long full scale trial was conducted successfully at a pharmaceutical industry to determine the application of this technology for dewatering waste activated sludge.« less

  14. Effects of different sludge disintegration methods on sludge moisture distribution and dewatering performance.

    PubMed

    Jin, Lingyun; Zhang, Guangming; Zheng, Xiang

    2015-02-01

    A key step in sludge treatment is sludge dewatering. However, activated sludge is generally very difficult to be dewatered. Sludge dewatering performance is largely affected by the sludge moisture distribution. Sludge disintegration can destroy the sludge structure and cell wall, so as change the sludge floc structure and moisture distribution, thus affecting the dewatering performance of sludge. In this article, the disintegration methods were ultrasound treatment, K2FeO4 oxidation and KMnO4 oxidation. The degree of disintegration (DDCOD), sludge moisture distribution and the final water content of sludge cake after centrifuging were measured. Results showed that three disintegration methods were all effective, and K2FeO4 oxidation was more efficient than KMnO4 oxidation. The content of free water increased obviously with K2FeO4 and KMnO4 oxidations, while it decreased with ultrasound treatment. The changes of free water and interstitial water were in the opposite trend. The content of bounding water decreased with K2FeO4 oxidation, and increased slightly with KMnO4 oxidation, while it increased obviously with ultrasound treatment. The water content of sludge cake after centrifuging decreased with K2FeO4 oxidation, and did not changed with KMnO4 oxidation, but increased obviously with ultrasound treatment. In summary, ultrasound treatment deteriorated the sludge dewaterability, while K2FeO4 and KMnO4 oxidation improved the sludge dewaterability. Copyright © 2014. Published by Elsevier B.V.

  15. Locally produced natural conditioners for dewatering of faecal sludge

    PubMed Central

    Gold, Moritz; Dayer, Pauline; Faye, Marie Christine Amie Sene; Clair, Guillaume; Seck, Alsane; Niang, Seydou; Morgenroth, Eberhard; Strande, Linda

    2016-01-01

    ABSTRACT In urban areas of low-income countries, treatment of faecal sludge (FS) is insufficient or non-existent. This results in large amounts of FS being dumped into the environment. Existing treatment technologies for FS, such as settling-thickening tanks and drying beds, are land intensive which is limiting in urban areas. Enhanced settling and dewatering by conditioning was evaluated in order to reduce the treatment footprint (or increase treatment capacity). Conventional wastewater conditioners, such as commercially available lime and polymers, are expensive, and commonly rely on complex supply chains for use in low-income countries. Therefore, the treatment performance of five conditioners which could be produced locally was evaluated: Moringa oleifera seeds and press cake, Jatropha curcas seeds, Jatropha Calotropis leaves and chitosan. M. oleifera seeds and press cake, and chitosan improved settling and dewatering and had a similar performance compared to lime and polymers. Optimal dosages were 400–500 kg M. oleifera/t TS, 300–800 kg lime/t TS and 25–50 kg polymer solution/t TS. In comparison, chitosan required 1.5–3.75 kg/t TS. These dosages are comparable to those recommended for wastewater (sludge). The results indicate that conditioning of FS can reduce total suspended solids (TSS) in the effluent of settling-thickening tanks by 22–81% and reduce dewatering time with drying beds by 59–97%. This means that the area of drying beds could be reduced by 59–97% with end-use as soil conditioner, or 9–26% as solid fuel. Least expensive options and availability will depend on the local context. In Dakar, Senegal, chitosan produced from shrimp waste appears to be most promising. PMID:26984372

  16. Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles.

    PubMed

    Lakshmanan, Ramnath; Kuttuva Rajarao, Gunaratna

    2014-02-01

    The present work compares the use of three flocculants for sedimentation of sludge and sludge water content from sewage wastewater i.e. magnetic iron oxide nanoparticles (MION), ferrous sulfate (chemical) and Moringa crude extract (protein). Sludge water content, wet/dry weight, turbidity and color were performed for, time kinetics and large-scale experiment. A 30% reduction of the sludge water content was observed when the wastewater was treated with either protein or chemical coagulant. The separation of sludge from wastewater treated with MION was achieved in less than 5min using an external magnet, resulted in 95% reduction of sludge water content. Furthermore, MION formed denser flocs and more than 80% reduction of microbial content was observed in large volume experiments. The results revealed that MION is efficient in rapid separation of sludge with very low water content, and thus could be a suitable alternative for sludge sedimentation and dewatering in wastewater treatment processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Thermal conductivity characteristics of dewatered sewage sludge by thermal hydrolysis reaction.

    PubMed

    Song, Hyoung Woon; Park, Keum Joo; Han, Seong Kuk; Jung, Hee Suk

    2014-12-01

    The purpose of this study is to quantify the thermal conductivity of sewage sludge related to reaction temperature for the optimal design of a thermal hydrolysis reactor. We continuously quantified the thermal conductivity of dewatered sludge related to the reaction temperature. As the reaction temperature increased, the dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. Therefore, the bound water in the sludge cells comes out as free water, which changes the dewatered sludge from a solid phase to slurry in a liquid phase. As a result, the thermal conductivity of the sludge was more than 2.64 times lower than that of the water at 20. However, above 200, it became 0.704 W/m* degrees C, which is about 4% higher than that of water. As a result, the change in physical properties due to thermal hydrolysis appears to be an important factor for heat transfer efficiency. Implications: The thermal conductivity of dewatered sludge is an important factor the optimal design of a thermal hydrolysis reactor. The dewatered sludge is thermally liquefied under high temperature and pressure by the thermal hydrolysis reaction. The liquid phase slurry has a higher thermal conductivity than pure water.

  19. Measurement of additional shear during sludge conditioning and dewatering.

    PubMed

    Ormeci, Banu; Ahmad, Ayaz

    2009-07-01

    Optimum polymer dose is influenced both by the polymer demand of the sludge and the shear applied during conditioning. Sludge exposed to additional shear following conditioning will experience a decrease in cake solids concentration for the same polymer dose. Therefore, it is necessary to measure or quantify the additional shear in order to optimize the conditioning and dewatering. There is currently no direct or indirect method to achieve this. The main objective of this study was to develop a method based on torque rheology to measure the amount of shear that a sludge network experiences during conditioning and dewatering. Anaerobically digested sludge samples were exposed to increasing levels of mixing intensities and times, and rheological characteristics of samples were measured using a torque rheometer. Several rheological parameters were evaluated including the peak torque and totalized torque (area under the rheograms). The results of this study show that at the optimum polymer dose, a linear relationship exists between the applied shear and the area under the rheograms, and this relationship can be used to estimate an unknown amount of shear that the sludge was exposed to. The method is useful as a research tool to study the effect of shear on dewatering but also as an optimization tool in a dewatering automation system based on torque rheology.

  20. Occurrence and Fate of Trace Contaminants during Aerobic and Anaerobic Sludge Digestion and Dewatering.

    PubMed

    Guerra, Paula; Kleywegt, Sonya; Payne, Michael; Svoboda, M Lewina; Lee, Hing-Biu; Reiner, Eric; Kolic, Terry; Metcalfe, Chris; Smyth, Shirley Anne

    2015-07-01

    Digestion of municipal wastewater biosolids is a necessary prerequisite to their beneficial use in land application, in order to protect public health and the receiving environment. In this study, 13 pharmaceuticals and personal care products (PPCPs), 11 musks, and 17 polybrominated diphenyl ethers were analyzed in 84 samples including primary sludge, waste activated sludge, digested biosolids, dewatered biosolids, and dewatering centrate or filtrate collected from five wastewater treatment plants with aerobic or anaerobic digestion. Aerobic digestion processes were sampled during both warm and cold temperatures to analyze seasonal differences. Among the studied compounds, triclosan, triclocarban, galaxolide, and BDE-209 were the substances most frequently detected under different treatment processes at levels up to 30,000 ng/g dry weight. Comparing aerobic and anaerobic digestion, it was observed that the levels of certain PPCPs and musks were significantly higher in anaerobically digested biosolids, relative to the residues from aerobic digestion. Therefore, aerobic digestion has the potential advantage of reducing levels of PPCPs and musks. On the other hand, anaerobic digestion has the advantage of recovering energy from the biosolids in the form of combustible gases while retaining the nutrient and soil conditioning value of this resource. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch

    NASA Astrophysics Data System (ADS)

    Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao

    2016-10-01

    Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.

  2. Use of Alum for Odor Reduction in Sludge and Biosolids from Different Wastewater Treatment Processes.

    PubMed

    Gruchlik, Yolanta; Fouché, Lise; Joll, Cynthia A; Heitz, Anna

    2017-12-01

      Applicability of alum addition to wastewater sludge and biosolids produced from different treatment processes was evaluated as a means of odor reduction. Four water resource recovery facilities (WRRFs) were chosen for this study: two used mesophilic anaerobic digestion and two used oxidation ditch processes. The experiments were conducted on a laboratory scale and in all cases the alum was added prior to dewatering. This is the first report of the application of alum for odor reduction in oxidation ditch processes. Alum addition was effective in reducing odors in anaerobically digested biosolids. Addition of 4% alum to anaerobically digested liquid biosolids prior to dewatering resulted in a 60% reduction in the peak odor concentration in the laboratory dewatered cake, relative to the control sample. Alum addition did not reduce odors in dewatered sludge from oxidation ditch processes.

  3. Disposable sludge dewatering container and method

    DOEpatents

    Cole, Clifford M.

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  4. Effect of biopolymer on the dewatering characteristics of autothermal thermophilic aerobic digestion of sludges.

    PubMed

    Agarwal, S; Abu-Orf, M M; Novak, J T

    2006-03-01

    Autothermal thermophilic aerobic digestion of sludge is known to produce poorly dewatering sludges. Laboratory studies were conducted to investigate the reasons for the poor dewatering. It was found that, during digestion, proteins and polysaccharides were released into solution, and that these could be linked to the deterioration in dewatering. The biopolymer release was accompanied by an increase in the monovalent-to-divalent (M/D) cation ratio. The degree to which the M/D caused deterioration of the sludges depended on the presence of iron in sludge. When the iron content was high, the release of protein and polysaccharides was low. When iron was low, the release of protein and polysaccharides increased linearly with the M/D ratio. The dose of conditioning chemicals, cationic polymer or ferric chloride, was related to the amount of colloidal biopolymer present in solution. The findings suggest that the addition of iron during the digestion process has the potential to produce better dewatering sludges.

  5. Pressurised electro-osmotic dewatering of activated and anaerobically digested sludges: electrical variables analysis.

    PubMed

    Citeau, M; Olivier, J; Mahmoud, A; Vaxelaire, J; Larue, O; Vorobiev, E

    2012-09-15

    Pressurised electro-osmotic dewatering (PEOD) of two sewage sludges (activated and anaerobically digested) was studied under constant electric current (C.C.) and constant voltage (C.V.) with a laboratory chamber simulating closely an industrial filter. The influence of sludge characteristics, process parameters, and electrode/filter cloth position was investigated. The next parameters were tested: 40 and 80 A/m², 20, 30, and 50 V-for digested sludge dewatering; and 20, 40 and 80 A/m², 20, 30, and 50 V-for activated sludge dewatering. Effects of filter cloth electric resistance and initial cake thickness were also investigated. The application of PEOD provides a gain of 12 points of dry solids content for the digested sludge (47.0% w/w) and for the activated sludge (31.7% w/w). In PEOD processed at C.C. or at C.V., the dewatering flow rate was similar for the same electric field intensity. In C.C. mode, both the electric resistance of cake and voltage increase, causing a temperature rise by ohmic effect. In C.V. mode, a current intensity peak was observed in the earlier dewatering period. Applying at first a constant current and later on a constant voltage, permitted to have better control of ohmic heating effect. The dewatering rate was not significantly affected by the presence of filter cloth on electrodes, but the use of a thin filter cloth reduced remarkably the energy consumption compared to a thicker one: 69% of reduction energy input at 45% w/w of dry solids content. The reduction of the initial cake thickness is advantageous to increase the final dry solids content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    PubMed

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    PubMed

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  8. Use of a water treatment sludge in a sewage sludge dewatering process

    NASA Astrophysics Data System (ADS)

    Górka, Justyna; Cimochowicz-Rybicka, Małgorzata; Kryłów, Małgorzata

    2018-02-01

    The objective of the research study was to determine whether a sewage sludge conditioning had any impact on sludge dewaterability. As a conditioning agent a water treatment sludge was used, which was mixed with a sewage sludge before a digestion process. The capillary suction time (CST) and the specific filtration resistance (SRF) were the measures used to determine the effects of a water sludge addition on a dewatering process. Based on the CST curves the water sludge dose of 0.3 g total volatile solids (TVS) per 1.0 g TVS of a sewage sludge was selected. Once the water treatment sludge dose was accepted, disintegration of the water treatment sludge was performed and its dewaterability was determined. The studies have shown that sludge dewaterability was much better after its conditioning with a water sludge as well as after disintegration and conditioning, if comparing to sludge with no conditioning. Nevertheless, these findings are of preliminary nature and future studies will be needed to investigate this topic.

  9. Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge

    PubMed Central

    Sun, Yongjun; Fan, Wei; Zheng, Huaili; Zhang, Yuxin; Li, Fengting; Chen, Wei

    2015-01-01

    The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L-1 flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 1010 m∙kg-1. Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions. PMID:26121132

  10. Surplus activated sludge dewatering in pilot-scale sludge drying reed beds.

    PubMed

    Stefanakis, A I; Akratos, C S; Melidis, P; Tsihrintzis, V A

    2009-12-30

    A pilot-scale experiment on dewatering of surplus activated sludge (SAS) is presented, where two pilot-scale vertical flow, sludge drying reed beds (SDRBs), planted with Phragmites australis are used. The bottom of the beds is filled with cobbles, connected to the atmosphere through perforated PVC ventilation tubes, in order to achieve oxygen diffusion through the overlying porous medium that is colonized by roots and an abundant nitrifying biomass. Two layers of gravel, of decreasing size from bottom to top, make the drainage layer where the reeds are planted. The two beds were fed according to the following cycle: one week feeding with SAS at rates one 30 kg/m(2)/year and the other 75 kg/m(2)/year, and resting for three weeks. The results show that planted SDRBs can effectively dewater SAS from domestic sewage, the produced residual sludge presents a high dry weight content, the degree of volume reduction depends upon the initial SAS concentration and can be of the order of 90%, and decomposition of organic matter and high levels of mineralization can be achieved. Furthermore, the percolating water is not septic. The fertilizer value of the treated SAS, which contains no added chemicals, is comparable to that of SAS treated by other methods.

  11. Effects of Cationic Polyacrylamide Characteristics on Sewage Sludge Dewatering and Moisture Evaporation

    PubMed Central

    Pan, Chengyi

    2014-01-01

    The effects of the molecular weight (MW) and charge density (CD) of cationic polyacrylamide (CPAM) on sludge dewatering and moisture evaporation were investigated in this study. Results indicated that in sludge conditioning, the optimum dosages were 10, 6, 6, 4, and 4 mg g−1 CPAM with 5 million MW and 20% CD, 5 million MW and 40% CD, 3 million MW and 40% CD, 8 million MW and 40% CD, and 5 million MW and 60% CD, respectively. The optimum dosage of CPAM was negatively correlated with its CD or MW if the CD or MW of CPAM was above 20% or 5 million. In the centrifugal dewatering of sludge, the moisture content in the conditioned sludge gradually decreased with the extension of centrifugation time, and the economical centrifugal force was 400×g. The moisture evaporation rates of the conditioned sludge were closely related to sludge dewaterability, which was in turn significantly correlated either positively with the solid content of sludge particles that were >2 mm in size or negatively with that of particles measuring 1 mm to 2 mm in diameter. During treatment, sludge moisture content was reduced from 80% to 20% by evaporation, and the moisture evaporation rates were 1.35, 1.49, 1.62, and 2.24 times faster in the sludge conditioned using 4 mg g−1 CPAM with 5 million MW and 60% CD than in the sludge conditioned using 4 mg g−1 CPAM with 8 million MW and 40% CD, 6 mg g−1 CPAM with 5 million MW and 40% CD, 6 mg g−1 CPAM with 3 million MW and 40% CD, and 10 mg g−1 CPAM with 5 million MW and 20% CD, respectively. Hence, the CPAM with 5 million MW and 60% CD was ideal for sludge dewatering. PMID:24878582

  12. Effects of cationic polyacrylamide characteristics on sewage sludge dewatering and moisture evaporation.

    PubMed

    Zhou, Jun; Liu, Fenwu; Pan, Chengyi

    2014-01-01

    The effects of the molecular weight (MW) and charge density (CD) of cationic polyacrylamide (CPAM) on sludge dewatering and moisture evaporation were investigated in this study. Results indicated that in sludge conditioning, the optimum dosages were 10, 6, 6, 4, and 4 mg g(-1) CPAM with 5 million MW and 20% CD, 5 million MW and 40% CD, 3 million MW and 40% CD, 8 million MW and 40% CD, and 5 million MW and 60% CD, respectively. The optimum dosage of CPAM was negatively correlated with its CD or MW if the CD or MW of CPAM was above 20% or 5 million. In the centrifugal dewatering of sludge, the moisture content in the conditioned sludge gradually decreased with the extension of centrifugation time, and the economical centrifugal force was 400×g. The moisture evaporation rates of the conditioned sludge were closely related to sludge dewaterability, which was in turn significantly correlated either positively with the solid content of sludge particles that were >2 mm in size or negatively with that of particles measuring 1 mm to 2 mm in diameter. During treatment, sludge moisture content was reduced from 80% to 20% by evaporation, and the moisture evaporation rates were 1.35, 1.49, 1.62, and 2.24 times faster in the sludge conditioned using 4 mg g(-1) CPAM with 5 million MW and 60% CD than in the sludge conditioned using 4 mg g(-1) CPAM with 8 million MW and 40% CD, 6 mg g(-1) CPAM with 5 million MW and 40% CD, 6 mg g(-1) CPAM with 3 million MW and 40% CD, and 10 mg g(-1) CPAM with 5 million MW and 20% CD, respectively. Hence, the CPAM with 5 million MW and 60% CD was ideal for sludge dewatering.

  13. Enhancement of dewatering performance of digested paper mill sludge by chemical pretreatment

    NASA Astrophysics Data System (ADS)

    Lin, Y. Q.; Zeng, C.; Wu, H. H.; Zeng, B. X.

    2016-08-01

    The wide application of anaerobic digestion (AD) for waste sludge results in a huge amount of digested sludge, while the appropriate reuse of digested sludge depends on effective solid-liquid separation. Thus, chemical (acid/alkali) pretreatment effects on dewaterability of digested paper mill sludge (DPMS) for better downstream reuse based on enhanced solid- liquid separation were investigated in this research. The dewatering properties of paper mill sludge (PMS) were also investigated to elucidate the impact of AD on sludge dewaterability. The results indicated that a higher DPMS dewaterability was noted with acid pretreatment (pH5). A 41.37% moisture content and 74.41% dewatering efficiency were determined for DPMS after acid (pH5) pretreatment within 25 min. In addition, a 7.13 mg•g-1 VSS of extracellular polymeric substances (EPS) and 101.50 μm of average particle size were observed. It was also observed that both EPS concentrations and particle sizes were key parameters influencing DPMS dewaterability. Lower EPS concentrations with larger average particle sizes contributed to enhanced sludge dewaterability. Moreover, dewaterability of PMS was higher than that of DPMS, which illustrated that AD would decrease the sludge dewaterability.

  14. Evaluation of sludge management alternatives in Istanbul metropolitan area.

    PubMed

    Cakmakci, M; Erdim, E; Kinaci, C; Akca, L

    2005-01-01

    The main concern of this paper was to predict the sludge quantities generated from 18 wastewater treatment plants, which were stated to be established in the "Istanbul Water Supply, Sewerage and Drainage, Sewage Treatment and Disposal Master Plan", 10 of which are in operation at present. Besides this, obtaining the required data to compare various treatment schemes was another goal of the study. Especially, the estimation of the sludge quantity in the case of enhanced primary sedimentation was of importance. Wastewater sludge management strategies were discussed in order to develop suggestions for Istanbul Metropolitan city. Within this context, the wastewater treatment facilities, mentioned in the Master Plan that had been completed by 2000, were evaluated in terms of sludge production rates, locations and technical and management aspects. Disposal alternatives of the wastewater treatment sludge were also evaluated in this study. Using of the dewatered sludge as a landfill cover material seems the best alternative usage. Up to the year of 2040, the requirement of cover material for landfills in Istanbul will be met by the dewatered sludge originated from wastewater treatment plants in the region.

  15. Experimental rheological procedure adapted to pasty dewatered sludge up to 45 % dry matter.

    PubMed

    Mouzaoui, M; Baudez, J C; Sauceau, M; Arlabosse, P

    2018-04-15

    Wastewater sludge are characterized by complex rheological properties, strongly dependent on solids concentration and temperature. These properties are required for process hydrodynamic modelling but their correct measurement is often challenging at high solids concentrations. This is especially true to model the hydrodynamic of dewatered sludge during drying process where solids content (TS) increases with residence time. Indeed, until now, the literature mostly focused on the rheological characterization of sludge at low and moderate TS (between 4 and 8%). Limited attention was paid to pasty and highly concentrated sludge mainly because of the difficulties to carry out the measurements. Results reproducibility appeared to be poor and thus may not be always fully representative of the effective material properties. This work demonstrates that reproducible results can be obtained by controlling cracks and fractures which always take place in classical rotational rheometry. In that purpose, a well-controlled experimental procedure has been developed, allowing the exact determination of the surface effectively sheared. This surface is calculated by scattering a classical stress sweep with measurements at a reference strain value. The implementation of this procedure allows the correct determination of solid-like characteristics from 20 to 45% TS but also shows that pasty and highly concentrated sludge highlight normal forces caused by dilatancy. Moreover the surface correction appears to be independent of TS in the studied range. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride.

    PubMed

    Wu, Yan; Zhang, Panyue; Zhang, Haibo; Zeng, Guangming; Liu, Jianbo; Ye, Jie; Fang, Wei; Gou, Xiying

    2016-04-01

    Rice husk biochar modified by FeCl3 (MRB-Fe) was used to enhance sludge dewaterability in this study. MRB-Fe preparation conditions and dosage were optimized. Mechanisms of MRB-Fe improving sludge dewaterability were investigated. The optimal modification conditions were: FeCl3 concentration, 3mol/L; ultrasound time, 1h. The optimal MRB-Fe dosage was 60% DS. Compared with raw sludge, the sludge specific resistance to filtration (SRF) decreased by 97.9%, the moisture content of sludge cake decreased from 96.7% to 77.9% for 6min dewatering through vacuum filtration under 0.03MPa, the SV30% decreased from 96% to 60%, and the net sludge solids yield (YN) increased by 28 times. Positive charge from iron species on MRB-Fe surface counteracted negative charge of sludge flocs to promote sludge settleability and dewaterability. Meanwhile, MRB-Fe kept a certain skeleton structure in sludge cake, making the moisture pass through easily. Using MRB-Fe, therefore, for sludge conditioning and dewatering is promising. Copyright © 2016. Published by Elsevier Ltd.

  17. Coupled heating/acidification pretreatment of chemical sludge for dewatering by using waste sulfuric acid at low temperature.

    PubMed

    Bian, Bo; Zhang, Limin; Zhang, Qin; Zhang, Shaopeng; Yang, Zhen; Yang, Weiben

    2018-08-01

    A cost-effective approach for pretreatment of chemical sludge for further dewatering, based on the idea of "using waste to treat waste", is provided. It is a coupled heating/acidification pretreatment method, where waste sulfuric acid is employed and relatively low temperatures (<100 °C) are applied. Effects of reaction time, temperature, and dosage of waste acid on dewatering performance (both dewatering speed and degree) are studied. Under the optimal conditions (reaction time: 30 min; temperature: 90 °C; waste acid dosage: 0.175 g/(g dried sludge)), the method of this work demonstrates three advantages compared to the conventional method using lime+polyacrylamide: lower moisture content of treated sludge; higher calorific value for incineration process; and lower cost. Detailed mechanism of the pretreatment for dewatering is investigated via characterizations and statistical analyses of various parameters, among which zeta potential, particle size, protein and polysaccharide contents, soluble chemical oxygen demand (SCOD), reduction of combined water and volatile suspended solid (VSS), are associated with dewatering performance. Both heating and acidification generate disintegration of cells in sludge, giving rise to two phenomena: more organic matters are released into solution and more bound water turns into free water. Meantime, the released organic polymers flocculate sludge particles, further accelerating the solid-liquid separation process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Combination of alkaline and microwave pretreatment for disintegration of meat processing wastewater sludge.

    PubMed

    Erden, G

    2013-01-01

    Meat processing wastewater sludge has high organic content but it is very slow to degrade in biological processes. Anaerobic digestion may be a good alternative for this type of sludge when the hydrolysis, known to be the rate-limiting step of biological sludge anaerobic degradation, could be eliminated by disintegration. This investigation deals with disintegration of meat processing wastewater sludge. Microwave (MW) irradiation and combined alkaline pretreatment and MW irradiation were applied to sludge for disintegration purposes. Disintegration performance of the methods was evaluated with disintegration degree based on total and dissolved organic carbon calculations (DD(TOC)), and the solubilization of volatile solids (S(VS)) in the pretreated sludge. Optimum conditions were found to be 140 degrees C and 30 min for MW irradiation using response surface methodology (RSM) and pH = 13 for combined pretreatment. While DD(TOC) was observed as 24.6% and 54.9, S(VS) was determined as 8.54% and 42.5% for MW pretreated and combined pretreated sludge, respectively. The results clearly show that pre-conditioning of sludge with alkaline pretreatment played an important role in enhancing the disintegration efficiency of subsequent MW irradiation. Disintegration methods also affected the anaerobic biodegradability and dewaterability of sludge. An increase of 23.6% in biogas production in MW irradiated sludge was obtained, comparing to the raw sludge at the end of the 35 days of incubation. This increase was observed as 44.5% combined pretreatment application. While MW pretreatment led to a little improvement of the dewatering performance of sludge, in combined pretreatment NaOH deteriorates the sludge dewaterability.

  19. Acceleration of organic removal and electricity generation from dewatered oily sludge in a bioelectrochemical system by rhamnolipid addition.

    PubMed

    Zhang, Yunshu; Zhao, Qingliang; Jiang, Junqiu; Wang, Kun; Wei, Liangliang; Ding, Jing; Yu, Hang

    2017-11-01

    Conversion of biomass energy of dewatered oily sludge to electricity is the rate-limiting process in bioelectrochemical system (BES). In this study, 2mgg -1 rhamnolipids were added to dewatered oily sludge, resulting in a significant enhancement in maximum power density from 3.84±0.37 to 8.63±0.81Wm -3 , together with an increase in total organic carbon (TOC) and total petroleum hydrocarbon (TPH) removal from 24.52±4.30 to 36.15±2.79mgg -1 and 29.51±3.30 to 39.80±2.47mgg -1 , respectively. Rhamnolipids can also enhance the solubilization and promote the hydrolysis of dewatered oily sludge with increases in SOCD from 14.93±2.44 to 18.40±0.08mgg -1 and VFAs from 1.02±0.07 to 1.39±0.12mgg -1 . Furthermore, bacteria related to substrate degradation were predominant in dewatered oily sludge, and bacteria related to the sulfate/sulfide cycle were significantly enriched by rhamnolipid addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Optimisation of extraction and sludge dewatering efficiencies of bio-flocculants extracted from Abelmoschus esculentus (okra).

    PubMed

    Lee, Chai Siah; Chong, Mei Fong; Robinson, John; Binner, Eleanor

    2015-07-01

    The production of natural biopolymers as flocculants for water treatment is highly desirable due to their inherent low toxicity and low environmental footprint. In this study, bio-flocculants were extracted from Hibiscus/Abelmoschus esculentus (okra) by using a water extraction method, and the extract yield and its performance in sludge dewatering were evaluated. Single factor experimental design was employed to obtain the optimum conditions for extraction temperature (25-90 °C), time (0.25-5 h), solvent loading (0.5-5 w/w) and agitation speed (0-225 rpm). Results showed that extraction yield was affected non-linearly by all experimental variables, whilst the sludge dewatering ability was only influenced by the temperature of the extraction process. The optimum extraction conditions were obtained at 70 °C, 2 h, solvent loading of 2.5 w/w and agitation at 200 rpm. Under the optimal conditions, the extract yield was 2.38%, which is comparable to the extraction of other polysaccharides (0.69-3.66%). The bio-flocculants displayed >98% removal of suspended solids and 68% water recovery during sludge dewatering, and were shown to be comparable with commercial polyacrylamide flocculants. This work shows that bio-flocculants could offer a feasible alternative to synthetic flocculants for water treatment and sludge dewatering applications, and can be extracted using only water as a solvent, minimising the environmental footprint of the extraction process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate.

    PubMed

    El Hayany, Bouchra; El Glaoui, Ghizlen El Mezouari; Rihanni, Mohammed; Ezzariai, Amine; El Faiz, Abdelouahed; El Gharous, Mohamed; Hafidi, Mohamed; El Fels, Loubna

    2018-04-01

    In this work, we assessed the drying and composting effectiveness of helminth eggs removal from sewage sludge of a lagoon wastewater treatment plant located in Chichaoua city. The composting was run after mixing sludge with green waste in different proportions: M1 (½ sludge + ½ green waste), M2 ([Formula: see text] sludge + [Formula: see text] green waste), and M3 ([Formula: see text] sludge + [Formula: see text] green waste) for 105 days. The analysis of the dewatered sewage sludge showed a load of 8-24 helminth eggs/g of fresh matter identified as Ascaris spp. eggs (5-19 eggs/g) followed by Toxocara spp. (0.2 to 2.4 eggs/g); Hookworm spp. and Capillaria spp. (0.4-1 egg/g); Trichuris spp., Taenia spp., and Shistosoma spp. (< 1 egg/g) in the untreated sludge. After 105 days of treatment by composting, we noted a total reduction of helminth eggs in the order of 97.5, 97.83, and 98.37% for mixtures M1, M2, and M3, respectively. The Ascaris spp. eggs were reduced by 98% for M1 and M3 treatments and by 97% for M 2 Treatment. Toxocara spp., Hookworm spp., Trichuris spp., Capillaria spp., and Shistosoma spp. eggs were totally eliminated (100% decrease) and the Taenia spp. was absent from the first stage of composting. These results confirm the effectiveness of both dehydrating and composting processes on the removal of helminth eggs.

  2. Dewatering and low-temperature pyrolysis of oily sludge in the presence of various agricultural biomasses.

    PubMed

    Zhao, Song; Zhou, Xiehong; Wang, Chuanyi; Jia, Hanzhong

    2017-08-24

    Pyrolysis is potentially an effective treatment of waste oil residues for recovery of petroleum hydrocarbons, and the addition of biomass is expected to improve its dewatering and pyrolysis behavior. In this study, the dewatering and low-temperature co-pyrolysis of oil-containing sludge in the presence of various agricultural biomasses, such as rice husk, walnut shell, sawdust, and apricot shell, were explored. As a result, the water content gradually decreases with the increase of biomass addition within 0-1.0 wt % in original oily sludge. Comparatively, the dewatering efficiency of sludge in the presence of four types of biomasses follows the order of apricot shell > walnut shell > rice husk > sawdust. On the other hand, rice husk and sawdust are relatively more efficient in the recovery of petroleum hydrocarbons compared with walnut shell and apricot shell. The recovery efficiency generally increased with the increase in the biomass content in the range of 0-0.2 wt %, then exhibited a gradually decreasing trend with the increase in the biomass content from 0.2 to 1.0 wt %. The results suggest that optimum amount of biomass plays an important role in the recovery efficiency. In addition, the addition of biomass (such as rice husk) also promotes the formation of C x H y and CO, increasing the calorific value of pyrolysis residue, and controlled the pollution components of the exhaust gas discharged from residue incineration. The present work implies that biomass as addictive holds great potential in the industrial dewatering and pyrolysis of oil-containing sludge.

  3. Comparing alkaline and thermal disintegration characteristics for mechanically dewatered sludge.

    PubMed

    Tunçal, Tolga

    2011-10-01

    Thermal drying is one of the advanced technologies ultimately providing an alternative method of sludge disposal. In this study, the drying kinetics of mechanically dewatered sludge (MDS) after alkaline and thermal disintegration have been studied. In addition, the effect of total organic carbon (TOC) on specific resistance to filtration and sludge bound water content were also investigated on freshly collected sludge samples. The combined effect of pH and TOC on the thermal sludge drying rate for MDS was modelled using the two-factorial experimental design method. Statistical assessment of the obtained results proposed that sludge drying potential has increased exponentially for both increasing temperature and lime dosage. Execution of curve fitting algorithms also implied that drying profiles for raw and alkaline-disintegrated sludge were well fitted to the Henderson and Pabis model. The activation energy of MDS decreased from 28.716 to 11.390 kJ mol(-1) after disintegration. Consequently, the unit power requirement for thermal drying decreased remarkably from 706 to 281 W g(-1) H2O.

  4. Insight into effects of electro-dewatering pretreatment on nitrous oxide emission involved in related functional genes in sewage sludge composting.

    PubMed

    Wang, Ke; Wu, Yiqi; Wang, Zhe; Wang, Wei; Ren, Nanqi

    2018-05-26

    Electro-dewatering (ED) pretreatment could improve sludge dewatering performance and remove heavy metal, but the effect of ED pretreatment on nitrous oxide (N 2 O) emission and related functional genes in sludge composting process is still unknown, which was firstly investigated in this study. The results revealed that ED pretreatment changed the physicochemical characteristics of sludge and impacted N 2 O related functional genes, resulting in the reduction of cumulative N 2 O emission by 77.04% during 60 days composting. The higher pH and NH 4 + -N, but lower moisture, ORP and NO 2 - -N emerged in the composting of ED sludge compared to mechanical dewatering (MD) sludge. Furthermore, ED pretreatment reduced amoA, hao, narG, nirK and nosZ in ED sludge on Day-10 and Day-60 of composting. It was found that nirK reduction was the major factor impacting N 2 O generation in the initial composting of ED sludge, and the decline of amoA restricted N 2 O production in the curing period. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  6. Investigation on extracellular polymeric substances, sludge flocs morphology, bound water release and dewatering performance of sewage sludge under pretreatment with modified phosphogypsum.

    PubMed

    Dai, Quxiu; Ma, Liping; Ren, Nanqi; Ning, Ping; Guo, Zhiying; Xie, Longgui; Gao, Haijun

    2018-06-06

    Modified phosphogypsum (MPG) was developed to improve dewaterability of sewage sludge, and dewatering performance, properties of treated sludge, composition and morphology distribution of EPS, dynamic analysis and multiple regression model on bound water release were investigated. The results showed that addition of MPG caused extracellular polymeric substances (EPS) disintegration through charge neutralization. Destruction of EPS promoted the formation of larger sludge flocs and the release of bound water into supernatant. Simultaneously, content of organics with molecular weight between 1000 and 7000 Da in soluble EPS (SB-EPS) increased with increasing of EPS dissolved into the liquid phase. Besides, about 8.8 kg•kg -1 DS of bound water was released after pretreatment with 40%DS MPG dosage. Additionally, a multiple linear regression model for bound water release was established, showing that lower loosely bond EPS (LB-EPS) content and specific resistance of filtration (SRF) may improve dehydration performance, and larger sludge flocs may be beneficial for sludge dewatering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal.

    PubMed

    Martín, J; Camacho-Muñoz, D; Santos, J L; Aparicio, I; Alonso, E

    2012-11-15

    The occurrence of sixteen pharmaceutically active compounds in influent and effluent wastewater and in primary, secondary and digested sludge in one-year period has been evaluated. Solid-water partition coefficients (Kd) were calculated to evaluate the efficiency of removal of these compounds from wastewater by sorption onto sludge. The ecotoxicological risk to aquatic and terrestrial ecosystems, due to wastewater discharges to the receiving streams and to the application of digested sludge as fertilizer onto soils, was also evaluated. Twelve of the pharmaceuticals were detected in wastewater at mean concentrations from 0.1 to 32 μg/L. All the compounds found in wastewater were also found in sewage sludge, except diclofenac, at mean concentrations from 8.1 to 2206 μg/kg dm. Ibuprofen, salicylic acid, gemfibrozil and caffeine were the compounds at the highest concentrations. LogKd values were between 1.17 (naproxen) and 3.48 (carbamazepine). The highest ecotoxicological risk in effluent wastewater and digested sludge is due to ibuprofen (risk quotient (RQ): 3.2 and 4.4, respectively), 17α-ethinylestradiol (RQ: 12 and 22, respectively) and 17β-estradiol (RQ: 12 and 359, respectively). Ecotoxicological risk after wastewater discharge and sludge disposal is limited to the presence of 17β-estradiol in digested-sludge amended soil (RQ: 2.7). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Sewage sludge drying method combining pressurized electro-osmotic dewatering with subsequent bio-drying.

    PubMed

    Li, Qian; Lu, Xuebin; Guo, Haigang; Yang, Zengjun; Li, Yingte; Zhi, Suli; Zhang, Keqiang

    2018-04-30

    In this study, pressurized electro-osmotic dewatering (PEOD) as a pretreatment process, instead of the conventional practice of adding bulking agents, for sewage sludge bio-drying was proposed. Initially, various parameters were optimized for obtaining dewatered sewage sludge (DSS), treated by an efficient, quick, and energy-saving PEOD process. The results show that the moisture content (MC) of sewage sludge could decrease from 83.41% to 60.0% within 7.5 min in the optimum conditions of the PEOD process. Subsequently, two DSS bio-drying tests were carried out to investigate the effects of inoculation. The highest temperature (68.1 °C) was obtained for T2 (inoculation), which was 3.6 °C higher than that for T1 (non- inoculation). The MC accumulative removal rate for T1 (41.49%) was slightly less than that for T2 (44.60%). Lastly, the volatile solid degradation dynamics model parameters were measured. The degradation rate constants (k) for T1 and T2 were 0.00501 and 0.00498, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Up-to-date modification of the anaerobic sludge digestion process introducing a separate sludge digestion mode.

    PubMed

    Sato, K; Ochi, S; Mizuochi, M

    2001-01-01

    Sewage treatment plants in Japan are subjected to advanced treatment to remove nutrients and hence control eutrophication problems in lakes and bays. This paper discusses the advantages and disadvantages of the separate digestion treatment mode for sludge generated from advanced wastewater treatment. In the separate digestion only primary sludge is digested and the excess activated sludge is directly dewatered. Separate digestion can reduce the return load of nutrients to approximately one third, and has major potential for the beneficial use of sludge.

  10. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids.

    PubMed

    Novak, John T; Sadler, Mary E; Murthy, Sudhir N

    2003-07-01

    Laboratory anaerobic and aerobic digestion studies were conducted using waste activated sludges from two municipal wastewater treatment plants in order to gain insight into the mechanisms of floc destruction that account for changes in sludge conditioning and dewatering properties when sludges undergo anaerobic and aerobic digestion. Batch digestion studies were conducted at 20 degrees C and the dewatering properties, solution biopolymer concentration and conditioning dose requirements measured. The data indicated that release of biopolymer from sludges occurred under both anaerobic and aerobic conditions but that the release was much greater under anaerobic conditions. In particular, the release of protein into solution was 4-5 times higher under anaerobic than under aerobic conditions. Both the dewatering rate, as characterized by the specific resistance to filtration and the amount of polymer conditioning chemicals required was found to depend directly on the amount of biopolymer (protein + polysaccharide) in solution. Little difference in dewatering properties and conditioning doses was seen between the two activated sludges from different plants. Differences in the cations released between anaerobic and aerobic digestion suggest that the digestion mechanisms differ for the two types of processes. Enzyme activity data showed that during aerobic digestion, polysaccharide degradation activity decreased to near zero and this was consistent with the accumulation of polysaccharides in aerobic digesters.

  11. Application of peroxymonosulfate-ozone advanced oxidation process for simultaneous waste-activated sludge stabilization and dewatering purposes: A comparative study.

    PubMed

    Badalians Gholikandi, Gagik; Zakizadeh, Nazanin; Masihi, Hamidreza

    2018-01-15

    In this study, the efficiency of the Peroxymonosulfate-ozone (PMS+O 3 ) advanced oxidation process in lab scale by the aim of stabilization and dewatering the biological excess sludge was investigated and the results were compared with persulfate-ozone (PS+O 3 ), hydrogen peroxide-ozone (H 2 O 2 +O 3 ) and ozonation (O 3 ) processes. The results show that the PMS+O 3 is more effective than other mentioned procedures. Therefore, under optimized conditions (pH = 11, PMS/O 3  = 0.06 and Dose O 3  = 12.5 mmol), VS (Volatile solids) and fecal coliforms reduced respectively 42% and 89% after 60 min and the stabilized sludge in term of pathogen reduction requirements was class B. Furthermore, time to filter (TTF) of sludge decreased 70% relative to the raw sludge. In order to demonstrate the dewatering conditions' improvement, the variations of particle size distribution, extracellular polymeric substances (EPS) and zeta potential were evaluated. Overall, the results show that the PMS+O 3 has the capability of stabilizing and dewatering the sludge simultaneously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Bioelectrochemical desalination and electricity generation in microbial desalination cell with dewatered sludge as fuel.

    PubMed

    Meng, Fanyu; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Guodong; Fan, Qingxin; Wei, Liangliang; Ding, Jing; Zheng, Zhen

    2014-04-01

    Microbial desalination cells (MDCs) with common liquid anodic substrate exhibit a slow startup and destructive pH drop, and abiotic cathodes have high cost and low sustainability. A biocathode MDC with dewatered sludge as fuel was developed for synergistic desalination, electricity generation and sludge stabilization. Experimental results indicated that the startup period was reduced to 3d, anodic pH was maintained between 6.6 and 7.6, and high stability was shown under long-term operation (300d). When initial NaCl concentrations were 5 and 10g/L, the desalinization rates during stable operation were 46.37±1.14% and 40.74±0.89%, respectively. The maximum power output of 3.178W/m(3) with open circuit voltage (OCV) of 1.118V was produced on 130d. After 300d, 25.71±0.15% of organic matter was removed. These results demonstrated that dewatered sludge was an appropriate anodic substrate to enhance MDC stability for desalination and electricity generation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies.

    PubMed

    Bertanza, Giorgio; Papa, Matteo; Canato, Matteo; Collivignarelli, Maria Cristina; Pedrazzani, Roberta

    2014-05-01

    A key issue in biological Waste Water Treatment Plants (WWTPs) operation is represented by the sludge management. Mechanical dewatering is a crucial stage for sludge volume reduction; though, being a costly operation, its optimization is required. We developed an original experimental methodology to evaluate the technical (dewatering efficiency) and financial (total treatment costs) performance of dewatering devices, which might be used as a DSS (Decision Support System) for WWTP managers. This tool was then applied to two real case studies for comparing, respectively, three industrial size centrifuges, and two different operation modes of the same machine (fixed installation vs. outsourcing service). In both the cases, the best option was identified, based jointly on economic and (site-specific) technical evaluations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Alkaline thermal sludge hydrolysis.

    PubMed

    Neyens, E; Baeyens, J; Creemers, C

    2003-02-28

    The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46

  15. Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates.

    PubMed

    Koné, Doulaye; Cofie, Olufunke; Zurbrügg, Christian; Gallizzi, Katharina; Moser, Daya; Drescher, Silke; Strauss, Martin

    2007-11-01

    This study investigates helminth eggs removal and inactivation efficiency in a treatment process combining faecal sludge (FS) dewatering and subsequent co-composting with organic solid waste as a function of windrow turning frequency. Fresh public toilet sludge and septage mixed at a 1:2 ratio were dewatered on a drying bed. Biosolids with initial loads of 25-83 helminth eggs/g total solids (TS) were mixed with solid waste as bulking material for co-composting at a 1:2 volume ratio. Two replicate sets of compost heaps were mounted in parallel and turned at different frequencies during the active composting period: (i) once every 3 days and (ii) once every 10 days. Turning frequency had no effect on helminth eggs removal efficiency. In both setups, helminth eggs were reduced to <1 viable egg/g TS, thereby complying with the WHO guidelines 2006 for the safe reuse of FS.

  16. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.

    PubMed

    Ongen, Atakan; Ozcan, H Kurtulus; Arayıcı, Semiha

    2013-12-15

    This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Wastewater and sludge management and research in Oman: An overview.

    PubMed

    Jaffar Abdul Khaliq, Suaad; Ahmed, Mushtaque; Al-Wardy, Malik; Al-Busaidi, Ahmed; Choudri, B S

    2017-03-01

    It is well recognized that management of wastewater and sludge is a critical environmental issue in many countries. Wastewater treatment and sludge production take place under different technical, economic, and social contexts, thus requiring different approaches and involving different solutions. In most cases, a regular and environmentally safe wastewater treatment and associated sludge management requires the development of realistic and enforceable regulations, as well as treatment systems appropriate to local circumstances. The main objective of this paper is to provide useful information about the current wastewater and sludge treatment, management, regulations, and research in Oman. Based on the review and discussion, the wastewater treatment and sludge management in Oman has been evolving over the years. Further, the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman. Wastewater treatment and sludge management in Oman have been evolving over the years. Sludge utilization has been a challenge due to its association with human waste. Therefore, composting of sewage sludge is the best option in agriculture activities. Sludge and wastewater utilization can add up positively in the economic aspects of the country in terms of creating jobs and improving annual income rate. The number of research projects done on wastewater reuse and other ongoing ones related to the land application of sewage sludge should encourage revision of existing standards, regulations, and policies for the management and beneficial use of sewage sludge in Oman.

  18. Bioelectrochemically-assisted anaerobic composting process enhancing compost maturity of dewatered sludge with synchronous electricity generation.

    PubMed

    Yu, Hang; Jiang, Junqiu; Zhao, Qingliang; Wang, Kun; Zhang, Yunshu; Zheng, Zhen; Hao, Xiaodi

    2015-10-01

    Bioelectrochemically-assisted anaerobic composting process (AnCBE) with dewatered sludge as the anode fuel was constructed to accelerate composting of dewatered sludge, which could increase the quality of the compost and harvest electric energy in comparison with the traditional anaerobic composting (AnC). Results revealed that the AnCBE yielded a voltage of 0.60 ± 0.02 V, and total COD (TCOD) removal reached 19.8 ± 0.2% at the end of 35 d. The maximum power density was 5.6 W/m(3). At the end of composting, organic matter content (OM) reduction rate increased to 19.5 ± 0.2% in AnCBE and to 12.9 ± 0.1% in AnC. The fuzzy comprehensive assessment (FCA) result indicated that the membership degree of class I of AnCBE compost (0.64) was higher than that of AnC compost (0.44). It was demonstrated that electrogenesis in the AnCBE could improve the sludge stabilization degree, accelerate anaerobic composting process and enhance composting maturity with bioelectricity generation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units.

    PubMed

    Lou, Jie-Chung; Lin, Yung-Chang

    2008-02-01

    Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35-99.68% and 24.15-99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH(3)-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH(3)-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.

  20. Utilization of urban sewage sludge: Chinese perspectives.

    PubMed

    Chen, H; Yan, S-H; Ye, Z-L; Meng, H-J; Zhu, Y-G

    2012-06-01

    Urbanization and industrialization in China has resulted in a dramatic increase in the volume of wastewater and sewage sludge produced from wastewater treatment plants. Problems associated with sewage sludge have attracted increasing attention from the public and urban planners. How to manage sludge in an economically and environmentally acceptable manner is one of the critical issues that modern societies are facing. Sludge treatment systems consist of thickening, dewatering, and several different alternative main treatments (anaerobic digestion, aerobic digestion, drying, composting, and incineration). Agricultural application, landfill, and incineration are the principal disposal methods for sewage sludge in China. However, sewage sludge disposal in the future should focus on resource recovery, reducing environmental impacts and saving economic costs. The reuse of biosolids in all scenarios can be environmentally beneficial and cost-effective. Anaerobic digestion followed by land application is the preferable options due to low economic and energy costs and material reuse. It is necessary to formulate a standard suitable for the utilization of sewage sludge in China.

  1. [Influence of non-ionic surfactants on sludge dewaterability].

    PubMed

    Hou, Hai-Pan; Pu, Wen-Hong; Shi, Ya-Fei; Yu, Wen-Hua; Fan, Ming-Ming; Liu, Huan; Yang, Chang-Zhu; Li, Ye; Yang, Jia-Kuan

    2012-06-01

    The water content of dewatered sludge cake decreases to about 80% by current sludge dewatering technologies, which hardly satisfies the stricter standards of sludge disposal. In order to evaluate the effects of non-ionic surfactants on sludge dewaterability, two kinds of non-ionic surfactants (OPEO and APG) were studied by using two evaluation indexes, i. e. , specific resistance to filtration (SRF) and dewatering efficiency. Moreover, morphologies of conditioned sewage sludge and raw sludge were comparatively investigated. Results showed that non-ionic surfactants can decrease the particle size of sewage sludge floc and generate more homogenous and regular shape, and then improve the dewatering efficiency. APG has better effect on sewage sludge dewatering than OPEO. SRF of conditioned sludge with APG dosage of 0.05% DS decreased to 42% of SRF of raw sludge, and its dewatering efficiency was as high as 93%. Plate-frame pressure filter experiment demonstrated that, the water content of dewatered cake conditioned with APG dosage of 0.05% DS was lower by about 10% than that of dewatered cake without APG, and its dewatering efficiency reached 97%. Therefore, this research provides some reference for the application of APG in sludge dewatering.

  2. Wastewater Sludge Used as Material for Bricks Fabrication

    NASA Astrophysics Data System (ADS)

    Jianu, N. R.; Moga, I. C.; Pricop, F.; Chivoiu, A.

    2018-06-01

    Current world trends related to wastewater sludges are: reuse in agriculture, utilization as retaining material for petroleum products or utilization in construction. Bricks from sand-cement or autoclaved cellular concrete are commonly used in construction. The authors propose innovative receipts for bricks and plasters based on textile wastewaters sludge. Centrifuged sludge is mixed with cement to obtain bricks and plaster. For bricks, the mixture is represented by 45% cement and 55% sludge. The paper presents the obtained results and the new materials used for bricks fabrication.

  3. Full-scale phosphorus recovery from digested waste water sludge in Belgium - part I: technical achievements and challenges.

    PubMed

    Marchi, A; Geerts, S; Weemaes, M; Schiettecatte, W; Wim, S; Vanhoof, C; Christine, V

    2015-01-01

    To date, phosphorus recovery as struvite in wastewater treatment plants has been mainly implemented on water phases resulting from dewatering processes of the sludge line. However, it is possible to recover struvite directly from sludge phases. Besides minimising the return loads of phosphorus from the sludge line to the water line, placing such a process within the sludge line is claimed to offer advantages such as a higher recovery potential, enhanced dewaterability of the treated sludge, and reduced speed of scaling in pipes and dewatering devices. In the wastewater treatment plant at Leuven (Belgium), a full-scale struvite recovery process from digested sludge has been tested for 1 year. Several monitoring campaigns and experiments provided indications of the efficiency of the process for recovery. The load of phosphorus from the sludge line returning to the water line as centrate accounted for 15% of the P-load of the plant in the reference situation. Data indicated that the process divides this phosphorus load by two. An improved dewaterability of 1.5% of dry solids content was achieved, provided a proper tuning of the installation. Quality analyses showed that the formed struvite was quite pure.

  4. A study on the dewatering of industrial waste sludge by fry-drying technology.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Kim, Jeong-Eun; Kim, Hee-Kyum; Moon, Seung-Hyun

    2009-08-30

    In sludge treatment, drying sludge using typical technology with high water content to a water content of approximately 10% is always difficult because of adhesive characteristics of sludge. Many methods have been applied, including direct and indirect heat drying, but these approaches of reducing water content to below 40% after drying is very inefficient in energy utilization of drying sludge. In this study, fry-drying technology with a high heat transfer coefficient of approximately 500 W/m(2) degrees C was used to dry industrial wastewater sludge. Also waste oil was used in the fry-drying process, and because the oil's boiling point is between 240 and 340 degrees C and the specific heat is approximately 60% of that of water. In the fry-drying system, the sludge is input by molding it into a designated form after heating the waste oil at temperatures between 120 and 170 degrees C. At these temperatures, the heated oil rapidly evaporates the water contained in the sludge, leaving the oil itself. After approximately 10 min, the water content of the sludge was less than 10%, and its heating value surpassed 5300 kcal/kg. Indeed, this makes the organic sludge appropriate for use as a solid fuel. The wastewater sludge used in this study was the designated waste discharged from chemical, leather and plating plants. These samples varied in characteristics, especially with regard to heavy metal concentration. After drying the three kinds of wastewater sludge at oil temperatures 160 degrees C for 10 min, it was found that the water content in the sludge from the chemical, leather, and plating plants reduced from 80.0 to 5.5%, 81.6 to 1.0%, and 65.4 to 0.8%, respectively. Furthermore, the heat values of the sludge from the chemical, leather, and plating plants prior to fry-drying were 217, 264, and 428 kcal/kg, respectively. After drying, these values of sludge increased to 5317, 5983 and 6031 kcal/kg, respectively. The heavy metals detected in the sludge after drying were

  5. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  6. Effect of activated sludge culture conditions on Waxberry wastewater

    NASA Astrophysics Data System (ADS)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Treated activated sludge is suitable for the treatment of wastewater. Biochemical method is used to treat the wastewater, and the influence of time on the COD index is investigated. The results showed that time had a significant effect on COD, and then affected the performance of activated sludge. Under different time, according to the order of time from short to long, COD decreases in turn. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after 25 h aeration for 96 h, the effect is better. Under this condition, the COD value was reduced at 72 mg/L, and the COD removal efficiency of myrica rubra wastewater was up to 93.39 %, and reached the two level discharge standard of municipal wastewater treatment.

  7. Addition of polyaluminiumchloride (PACl) to waste activated sludge to mitigate the negative effects of its sticky phase in dewatering-drying operations.

    PubMed

    Peeters, Bart; Dewil, Raf; Vernimmen, Luc; Van den Bogaert, Benno; Smets, Ilse Y

    2013-07-01

    This paper presents a new application of polyaluminiumchloride (PACl) as a conditioner for waste activated sludge prior its dewatering and drying. It is demonstrated at lab scale with a shear test-based protocol that a dose ranging from 50 to 150 g PACl/kg MLSS (mixed liquor suspended solids) mitigates the stickiness of partially dried sludge with a dry solids content between 25 and 60 %DS (dry solids). E.g., at a solids dryness of 46% DS the shear stress required to have the pre-consolidated sludge slip over a steel surface is reduced with 35%. The salient feature of PACl is further supported by torque data from a full scale decanter centrifuge used to dewater waste sludge. The maximal torque developed by the screw conveyor inside the decanter centrifuge is substantially reduced with 20% in the case the sludge feed is conditioned with PACl. The beneficial effect of waste sludge conditioning with PACl is proposed to be the result of the bound water associated with the aluminium polymers in PACl solutions which act as a type of lubrication for the intrinsically sticky sludge solids during the course of drying. It can be anticipated that PACl addition to waste sludge will become a technically feasible and very effective method to avoid worldwide fouling problems in direct sludge dryers, and to reduce torque issues in indirect sludge dryers as well as in sludge decanter centrifuges. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Two Devices for Removing Sludge From Bioreactor Wastewater

    NASA Technical Reports Server (NTRS)

    Archer, Shivaun; Hitchens, G. DUncan; Jabs, Harry; Cross, Jennifer; Pilkinton, Michelle; Taylor, Michael

    2007-01-01

    Two devices a magnetic separator and a special filter denoted a self-regenerating separator (SRS) have been developed for separating sludge from the stream of wastewater from a bioreactor. These devices were originally intended for use in microgravity, but have also been demonstrated to function in normal Earth gravity. The magnetic separator (see Figure 1) includes a thin-walled nonmagnetic, stainless-steel cylindrical drum that rotates within a cylindrical housing. The wastewater enters the separator through a recirculation inlet, and about 80 percent of the wastewater flow leaves through a recirculation outlet. Inside the drum, a magnet holder positions strong permanent magnets stationary and, except near a recirculation outlet, close to the inner drum surface. To enable magnetic separation, magnetite (a ferromagnetic and magnetically soft iron oxide) powder is mixed into the bioreactor wastewater. The magnetite becomes incorporated into the sludge by condensation, onto the powder particles, of microbe flocks that constitute the sludge. As a result, the magnets inside the drum magnetically attract the sludge onto the outer surface of the drum.

  9. Environmental assessment of different dewatering and drying methods on the basis of life cycle assessment.

    PubMed

    Stefaniak, J; Zelazna, A; Pawłowski, A

    2014-01-01

    Sewage sludge is an inevitable product of wastewater treatment in municipal wastewater plants and its amount has increased dramatically due to the growing number of sewage systems users. This sludge needs to be adequately treated in order to decrease its hazardous properties and any negative influence on the environment. In this paper, gate to gate analysis, on the basis of life cycle assessment (LCA), was carried out in order to compare the environmental impact of alternative ways of sludge processing employing a dewatering press and three different kinds of dryers - belt dryer, container dryer and batch dryer. SimaPro 7.2 software and Ecoinvent 2.2 database were used to estimate the carbon footprint and energy balance of these processes. The main energy consumption in the scenarios analyzed is caused by the drying process. The solution based on application of the batch dryer allows a saving of 39.6% of energy compared with the most energy-consuming solution using a belt dryer. Sludge processing using belt and container dryers cause greater environmental burdens.

  10. Silvicultural Use of Wastewater Sludge

    Treesearch

    J.B. Hart; P.V. Nguyen; D.H. Urie; Dale G. Brockway

    1988-01-01

    Generation of wastewater sludge in the United States has become a problem of increasing proportion, with annual production at 4 million tons in 1970 (Walsh 1976) and 7 million tons currently(Maness 1987). While population and industrial growth have contributed to this problem, legislation requiring higher standards of treatment for wastewater processed in the 15,378...

  11. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.

    PubMed

    Remy, C; Lesjean, B; Waschnewski, J

    2013-01-01

    This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO(2), CH(4), N(2)O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (-162 MJ/PE(COD) * a) and carbon footprint (-11.6 kg CO(2)-eq/PE(COD) * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general.

  13. [Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk].

    PubMed

    Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou

    2012-10-01

    Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with

  14. Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability.

    PubMed

    Guo, Junyuan; Chen, Cheng

    2017-10-01

    This study investigated the production of a bioflocculant by using rice stover and its potential in sludge dewatering. Production of the bioflocculant was positively associated with cell growth and highest value of 2.37 g L -1 was obtained with main backbone of polysaccharides. The bioflocculant showed good performances in sludge dewatering, after conditioned by this bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 19.3% and 4.8 × 10 12  m kg -1 , respectively, which were much better than the ones obtained with chemical flocculants. Sludge dewatering was further improved when the bioflocculant and polyaluminum chloride (PAC) were used simultaneously, and the optimized conditioning process by the composite was bioflocculant of 10.5 g kg -1 , PAC of 19.4 g kg -1 , and pH of 8.1. Under this optimal condition, DS and SRF of the sludge appeared as 24.1% and 3.0 × 10 12  m kg -1 , respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Effects of potassium ferrate on extracellular polymeric substances (EPS) and physicochemical properties of excess activated sludge.

    PubMed

    Ye, Fenxia; Liu, Xinwen; Li, Ying

    2012-01-15

    The activated sludge process of wastewater results in the generation of a considerable amount of excess activated sludge. In many wastewater treatment plants, the bottleneck of the sludge handling system is the dewatering operation. This paper investigated the effect of potassium ferrate pretreatment on the physicochemical properties of the excess activated sludge at various dosages of potassium ferrate. The particle size, extracellular polymeric substances (EPS) content and chemical components, and sludge disintegration degree were measured to explain the observed changes of physicochemical properties. It was expected that potassium ferrate could enhance the filterability and dewaterability of the sludge. However, the results showed that potassium ferrate had a negative effect on the filterability by measuring the capillary suction time (CST), but improved the settleability and dewaterability extent by determining the water content in the dewatered cake, although the flocs size reduced slightly. Loosely bound EPS (LB-EPS) content, polysaccharides (PS) and proteins (PN) contents in LB-EPS all increased with increasing the amount of potassium ferrate. However, Tightly bound EPS (TB-EPS) content, PS and PN contents in TB-EPS did not changed significantly at first, and decreased slightly under higher dosage of potassium ferrate. EPS, especially LB-EPS played more important role in the observed changes of the settleability and filterability than the sludge particle size. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Soil-transmitted helminth infections associated with wastewater and sludge reuse: A review of current evidence.

    PubMed

    Amoah, Isaac Dennis; Adegoke, Anthony Ayodeji; Stenström, Thor Axel

    2018-05-19

    To review current evidence on infections related to the concentration of soil-transmitted helminth (STH) eggs in wastewater, sludge and vegetables irrigated with wastewater or grown on sludge-amended soils. Search of Web of Science, Science Direct, PubMed and Google Scholar databases for publications reporting on STH egg concentration in wastewater, sludge and vegetables and for epidemiological studies on wastewater/sludge reuse and STH infections. STH egg concentrations were variable but high in wastewater and sludge especially in developing countries. They ranged from 6 to 16,000 eggs/L in wastewater and from 0 to 23,000 eggs/g in sludge and far exceed limits set in the WHO guideline for wastewater/sludge reuse. Numbers of STH eggs on vegetables ranged from 0 to 100 eggs/g. The concentration of STH eggs in wastewater, sludge and vegetables therefore relates to risks of infection through different exposure routes. Epidemiological evidence reveals an increased prevalence of STH infections associated with direct exposure to wastewater or sludge (farmers) and consumption of vegetables grown on soil treated with it. This calls for increased efforts to reduce the adverse health impact of wastewater and sludge reuse in line with the WHO multi-barrier approach. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. Economic assessment of biodiesel production from wastewater sludge.

    PubMed

    Chen, Jiaxin; Tyagi, Rajeshwar Dayal; Li, Ji; Zhang, Xiaolei; Drogui, Patrick; Sun, Feiyun

    2018-04-01

    Currently, there are mainly two pathways of the biodiesel production from wastewater sludge including 1) directly extracting the lipid in sludge and then converting the lipid to biodiesel through trans-esterification, and 2) employing sludge as medium to cultivate oleaginous microorganism to accumulate lipid and then transferring the lipid to biodiesel. So far, the study was still in research stage and its cost feasibility was not yet investigated. In this study, biodiesel production from wastewater sludge was designed and the cost was estimated with SuperPro Designer. With consideration of converting the lipid in raw sludge to biodiesel, the unit production cost was 0.67 US $/kg biodiesel (0.59 US $/L biodiesel). When the sludge was used as medium to grow oleaginous microorganism to accumulate lipid for producing biodiesel, the unit production cost was 1.08 US $/kg biodiesel (0.94 US $/L biodiesel). The study showed that sludge has great potential in biodiesel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of biodegradation on the consolidation properties of a dewatered municipal sewage sludge.

    PubMed

    O'Kelly, Brendan C

    2008-01-01

    The effect of biodegradation on the consolidation characteristics of an anaerobically digested, dewatered municipal sewage sludge was studied. Maintained-load oedometer consolidation tests that included measurement of the pore fluid pressure response were conducted on moderately degraded sludge material and saturated bulk samples that had been stored under static conditions and allowed to anaerobically biodegrade further (simulating what would happen in an actual sewage sludge monofill or lagoon condition). Strongly degraded sludge material was produced after a storage period of 13 years at ambient temperatures of 5-15 degrees C, with the total volatile solids reducing from initially 70% to 55%. The sludge materials were highly compressible, although impermeable for practical purposes. Primary consolidation generally occurred very slowly, which was attributed to the microstructure of the solid phase, the composition and viscosity of the pore fluid, ongoing biodegradation and the high organic contents. The coefficient of primary consolidation values decreased from initially about 0.35m2/yr to 0.003-0.03m2/yr with increasing effective stress (sigmav'=3-100kPa). Initially, the strongly degraded sludge material was slightly more permeable, although both the moderately and strongly degraded materials became impermeable for practical purposes (k=10(-9)-10(-12)m/s) below about 650% and 450% water contents, respectively. Secondary compression became more dominant with increasing effective stress with a mean secondary compression index (Calphae) value of 0.9 measured for both the moderately and strongly degraded materials.

  20. Transfer behavior of odorous pollutants in wastewater sludge system under typical chemical conditioning processes for dewaterability enhancement.

    PubMed

    Gao, Hongyu; Zhang, Weijun; Song, Zhenzhen; Yang, Xiaofang; Yang, Lian; Cao, Mengdi; Wang, Dongsheng; Liao, Guiying

    2017-06-13

    Chemical conditioning has been used for enhancing wastewater sludge dewaterability for many years, but the characteristics of odorous pollutants emission in sludge conditioning were still unclear. In this work, the transfer behavior of different odorous pollutants between air, liquid and solid phases under typical chemical conditioning processes for high-pressure dewatering was systematically investigated. The results indicated that that besides hydrogen sulfide (H 2 S) and ammonia (NH 3 ), 21 kinds of volatile organic contaminants (VOCs) were identified and quantified by gas chromatography-mass spectrometry (GC-MS), while the concentrations and composition of odorous pollutants varied greatly for different conditioning processes. VOCs were composed by three main constituents including benzenes, halogeno benzene and hydrocarbons. According to mass balance analysis, about 50% of VOCs adsorbed within sludge extracellular polymeric substances (EPS) fraction. Since EPS was damaged and/or flocculation in different chemical conditioning processes, VOCs distributed in solid phase transformed into liquid phase and then released into air. The discrepancies in mass of odorous pollutants before and after chemical conditioning were likely to be related to chemical conversion under acidification, oxidation and precipitation in the presence of ferric ions.

  1. Technologies for reducing sludge production in wastewater treatment plants: State of the art.

    PubMed

    Wang, Qilin; Wei, Wei; Gong, Yanyan; Yu, Qiming; Li, Qin; Sun, Jing; Yuan, Zhiguo

    2017-06-01

    This review presents the state-of-the-art sludge reduction technologies applied in both wastewater and sludge treatment lines. They include chemical, mechanical, thermal, electrical treatment, addition of chemical un-coupler, and predation of protozoa/metazoa in wastewater treatment line, and physical, chemical and biological pretreatment in sludge treatment line. Emphasis was put on their effect on sludge reduction performance, with 10% sludge reduction to zero sludge production in wastewater treatment line and enhanced TS (total solids) or volatile solids removal of 5-40% in sludge treatment line. Free nitrous acid (FNA) technology seems good in wastewater treatment line but it is only under the lab-scale trial. In sludge treatment line, thermal, ultrasonic (<4400kJ/kg TS), FNA pretreatment and temperature-phased anaerobic digestion (TPAD) are promising if pathogen inactivation is not a concern. However, thermal pretreatment and TPAD are superior to other pretreatment technologies when pathogen inactivation is required. The new wastewater treatment processes including SANI®, high-rate activated sludge coupled autotrophic nitrogen removal and anaerobic membrane bioreactor coupled autotrophic nitrogen removal also have a great potential to reduce sludge production. In the future, an effort should be put on the effect of sludge reduction technologies on the removal of organic micropollutants and heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characterization, modeling and application of aerobic granular sludge for wastewater treatment.

    PubMed

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    2009-01-01

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  3. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  4. Elemental transport and distribution in soils amended with incinerated sewage sludge.

    PubMed

    Paramasivam, S; Sajwan, K S; Alva, A K; VanClief, D; Hostler, K H

    2003-05-01

    Sewage sludge (SS) is the major solid waste of sewage and wastewater treatment plants in cities around the world. Even though treated effluent water from wastewater treatment plants are utilized for irrigation, disposal of sewage sludge is becoming a serious problem. This is due to its high content of certain heavy metals still posing threat of accumulation in plants and groundwater contamination when it is used as soil amendment or disposed in landfills. Water treatment plants incinerate the dewatered activated sewage sludge (ISS) and dissolve the ash in water to store in ash ponds for long-term storage (WISS). A study was undertaken to evaluate the transport and leaching potential of various elements and their distribution within soil columns amended with various rates of ISS. Results of this study indicates that ISS from wastewater treatment plants can be used as soil amendment on agricultural lands at low to medium rates (< or = 100 Mg ha(-1)) without causing potential loading of metals into groundwater.

  5. Biological sludge solubilisation for reduction of excess sludge production in wastewater treatment process.

    PubMed

    Yamaguchi, T; Yao, Y; Kihara, Y

    2006-01-01

    A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.

  6. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    PubMed

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  7. Stabilisation and dewatering of primary sludge using ferrate(VI) pre-treatment followed by freeze-thaw in simulated drainage beds.

    PubMed

    Diak, James; Örmeci, Banu

    2018-06-15

    This study evaluated the ability of potassium ferrate(VI) and freeze-thaw to stabilise and dewater primary sludge. Potassium ferrate(VI) additions of 0.5 and 5.0 g/L were used as a pre-treatment prior to freeze-thaw. Samples were frozen at -10, -20 and -30 °C, and were kept frozen for 1, 8 and 15 days. The samples were subsequently thawed at room temperature in a setup which allowed meltwater to be separated from the sludge cake via gravity drainage. The meltwater was characterised in terms of fecal coliform, soluble chemical oxygen demand (COD), soluble proteins, soluble carbohydrates, pH and turbidity. The sludge cake was characterised in terms of fecal coliform, total solids (TS) and volatile solids (VS). Freeze-thaw with gravity meltwater drainage reduced the sludge volume by up to 79%. After being frozen for only 1 day, the concentrations of fecal coliform in many of the primary sludge samples were reduced to <1000 MPN/g dry solids (DS), representing >3-log inactivation in some cases. However, pre-treatment of the primary sludge with ≤5.0 g/L potassium ferrate(VI) resulted in significant increases in soluble proteins, soluble carbohydrates, and sCOD, and reduced the effectiveness of stand-alone freeze-thaw. Follow-up experiments using higher doses ranging from 5.1 to 24.9 g/L of potassium ferrate(VI) demonstrated that >5-log inactivation of fecal coliform in raw primary sludge can be achieved within 15 min using 15 g/L of potassium ferrate(VI), and the resulting concentration of fecal coliform in the sludge was 1023 MPN/g DS. Pre-treatment with 22.0 g/L of potassium ferrate(VI), followed by freeze-thaw, with only 3 days frozen, reduced the concentration of fecal coliform to below the detection limit in the meltwater and the sludge cake. This demonstrates that potassium ferrate(VI) and freeze-thaw offers the flexibility to adjust the ferrate(VI) dose to meet treatment requirements for land application, and can be used as a stand-alone sludge

  8. Response of bacteria in wastewater sludge to moisture loss by evaporation and effect of moisture content on bacterial inactivation by ionizing radiation.

    PubMed Central

    Ward, R L; Yeager, J G; Ashley, C S

    1981-01-01

    Two studies were carried out to determine the influence of moisture content of the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. In comparison with the original sludge, this decrease reached about one-half to one order of magnitude in all dried samples except those containing Proteus mirabilis, which decreased about four orders of magnitude. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degrees by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels. The largest effect was found with Salmonella typhimurium, whose radiation resistance approximately doubled in dried sludge. However, no excessively large D10 values were found for any bacterial species tested. PMID:6789765

  9. Effect of activated sludge acclimation aeration time on bayberry wastewater

    NASA Astrophysics Data System (ADS)

    Shi, Liang; He, Lingfeng; Zhang, Yongli

    2018-03-01

    Taking the myrica rubra pickle wastewater of Chaozhou Kang Hui group as the water sample, biochemical method was used to treat the wastewater, after domestication, the biochemical treatment was carried out. The influence of time on COD index was investigated. The results showed that: tap water: sewage: sludge = 1:1:1, 900 mL each. Under the action of 30 min time, the supernatant was taken at 100 mL, and the wastewater was added to 900 mL,. Under the action of activated sludge, the degradation of myrica rubra wastewater samples, after domestication 84 h, the effect is better. Under this condition, the standard of SBR process for wastewater treatment is reached.

  10. Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms.

    PubMed

    Yan, S; Tyagi, R D; Surampalli, R Y

    2006-01-01

    Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.

  11. Emissions of volatile sulfur compounds (VSCs) throughout wastewater biosolids processing.

    PubMed

    Fisher, R M; Le-Minh, N; Alvarez-Gaitan, J P; Moore, S J; Stuetz, R M

    2018-03-01

    Volatile sulfur compounds (VSCs) are important contributors to nuisance odours from the processing of wastewater sludge and biosolids. However, emission characteristics are difficult to predict as they vary between sites and are likely to be affected by biosolids processing configuration and operation. VSC emissions from biosolids throughout 6 wastewater treatment plants (WWTPs) in Sydney, Australia were examined in this study. H 2 S was the VSC found at the highest concentrations throughout the WWTPs, with concentrations ranging from 7 to 39,000μg/m 3 . Based on odour activity values (OAVs), H 2 S was typically also the most dominant odorant. However, methyl mercaptan (MeSH) was also found to be sensorially important in the biosolids storage areas given its low odour detection threshold (ODT). High concentrations of VOSCs such as MeSH in the storage areas were shown to potentially interfere with H 2 S measurements using the Jerome 631-X H 2 S sensor and these interferences should be investigated in more detail. The VSC composition of emissions varied throughout biosolids processing as well as between the different WWTPs. The primary sludge and biosolids after dewatering and during storage, were key stages producing nuisance odours as judged by the determination of OAVs. Cluster analysis was used to group sampling locations according to VSC emissions. These groups were typically the dewatered and stored biosolids, primary and thickened primary sludge, and waste activated sludge (WAS), thickened WAS, digested sludge and centrate. Effects of biosolids composition and process operation on VSC emissions were evaluated using best subset regression. Emissions from the primary sludge were dominated by H 2 S and appeared to be affected by the presence of organic matter, pH and Fe content. While volatile organic sulfur compounds (VOSCs) emitted from the produced biosolids were shown to be correlated with upstream factors such as Fe and Al salt dosing, anaerobic digestion

  12. Characteristics of water obtained by dewatering cyanobacteria-containing sludge formed during drinking water treatment, including C-, N-disinfection byproduct formation.

    PubMed

    Xu, Hangzhou; Pei, Haiyan; Jin, Yan; Xiao, Hongdi; Ma, Chunxia; Sun, Jiongming; Li, Hongmin

    2017-03-15

    This is the first study to systematically investigate the characteristics of the water obtained by dewatering cyanobacteria-containing sludge generated in the drinking water treatment plant, including formation of C- and N-disinfection by-products (DBPs). Results showed that this 'dewatering water' (DW) had different properties when the sludge was stored at different times. The content of dissolved organic matter (DOM) and microcystins (MCs) in the DW were low when the sludge was treated or disposed of within 4 days; correspondingly, the C-, N-DBP production was also low. However, due to the damage of algal cells to some extent, the DOM and MC levels increased significantly for storage time longer than 4 days; the production of C-, N-DBPs also increased. There were also obvious differences in the characteristics of the DW from sludges generated with different coagulant species. Due to the better protective effect of FeCl 3 and polymeric aluminium ferric chloride (PAFC) flocs, the DOM and MC levels and the production of C-, N-DBPs in the DW with FeCl 3 and PAFC coagulation were lower than those with AlCl 3 coagulation, even though the sludges were stored for the same amount of time. Furthermore, because of the formation of Al and Fe hydroxides, precipitated onto the surface of flocs, the soluble Al and Fe in the DW decreased with increased storage time, especially in the first four days. Overall, this study revealed the trends in variation of DW quality for cyanobacteria-containing sludges formed with different coagulants, then FeCl 3 and PAFC coagulants are recommended and sludge should be treated or disposed of within 4 days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment.

    PubMed

    Alagöz, B Aylin; Yenigün, Orhan; Erdinçler, Ayşen

    2015-12-01

    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21 L CH4/g VS added, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VS added. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30 min microwave pre-treated wastewater sludges and olive pomace to be 0.46 L/g VS added and 0.32 L CH4/g VS added, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    PubMed

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge.

    PubMed

    Kuroda, Kyohei; Hatamoto, Masashi; Nakahara, Nozomi; Abe, Kenichi; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi

    2015-04-01

    Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.

  17. Key issues to consider when using alum sludge as substrate in constructed wetland.

    PubMed

    Zhao, Xiaohong; Zhao, Yaqian; Wang, Wenke; Yang, Yongzhe; Babatunde, Akintunde; Hu, Yuansheng; Kumar, Lordwin

    2015-01-01

    Globally, alum sludge is an easily, locally and largely available by-product from water treatment plants where aluminium sulphate is used as the coagulant for raw water purification. Owing to the high content of Al ions (29.7±13.3% dry weight) in alum sludge and the strong affinity of Al ions to adsorb various pollutants especially phosphorus (P), alum sludge (in the form of dewatered cakes) has been investigated in recent years as a low-cost alternative substrate in constructed wetland (CW) systems to enhance the treatment efficiency especially for high strength P-containing wastewater. Long-term trials in different scales have demonstrated that the alum sludge-based CW is a promising technique with a two-pronged feature of using 'waste' for wastewater treatment. Alum sludge cakes in CW can serve as a medium for wetland plant growth, as a carrier for biofilm development and as a porous material for wastewater infiltration. After the intensive studies of the alum sludge-based CW system, this paper aims to address the key issues and concerns pertaining to this kind of CW system. These include: (1) Is alum sludge suitable for reuse in CWs? (2) Is Al released from the sludge a concern? (3) What is the lifespan of the alum sludge in CWs? (4) How can P be recovered from the used alum sludge? (5) Does clogging happen in alum sludge-based CW systems and what is the solution?

  18. Control of C/N ratio for butyric acid production from textile wastewater sludge by anaerobic digestion.

    PubMed

    Fu, Bo; Zhang, Jingjing; Fan, Jinfeng; Wang, Jin; Liu, He

    2012-01-01

    Increasing textile wastewaters and their biotreatment byproduct-waste activated sludge are serious pollution problems. Butyric acid production from textile wastewater sludge by anaerobic digestion at different C/N ratios was investigated. Adding starch to textile wastewater sludge with a C/N ratio of 30 increased the butyric acid concentration and percentage accounting for total volatile fatty acids (TVFAs) to 21.42 g/L and 81.5%, respectively, as compared with 21.42 g/L and 10.6% of textile wastewater sludge alone. The maximum butyric acid yield (0.45 g/g VS), conversion rate (0.74 g/g VS(digest)) and production rate (2.25 g/L d) was achieved at a C/N ratio of 30. The biological toxicity of textile wastewater sludge also significantly decreased after the anaerobic digestion. The study indicated that the anaerobic co-digestion of textile wastewater sludge and carbohydrate-rich waste with appropriate C/N ratio is possible for butyric acid production.

  19. Design and development of decentralized water and wastewater technologies: a combination of safe wastewater disposal and fertilizer production.

    PubMed

    Fach, S; Fuchs, S

    2010-01-01

    Modern wastewater treatment plants are often inappropriate for communities in developing countries. Such communities lack the funding, resources and skilled labour required to implement, operate, and maintain these plants. This research was conducted to investigate and establish an appropriate wastewater treatment system for the district of Gunung Kidul, Indonesia. Due to its lack of water during the dry season, this district is considered one of the poorest areas in the nation. First, wastewater was stored in septic tank units for a retention time of 26 days. Anaerobic conditions occurred, resulting in an 80% reduction of initial COD. The retained sludge was well stabilized with great potential, if dewatered, for reuse as fertilizer. Consequently, supernatant was separated for experiments consisting of lab scale aerobic sand filtering unit. Through filtration, further removals of COD (about 30%) and pathogens were achieved. Rich in nitrogen, the resulting effluent could be used for irrigation and soil conditioning. With faecal sludge and also a mixture of septic sludge and food waste, the hydrolysis stage of anaerobic digestion was examined. This paper discusses the laboratory findings in Karlsruhe and the design and implementation of a treatment system in Glompong, Indonesia.

  20. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering.

    PubMed

    Feng, Li; Liu, Shuang; Zheng, Huaili; Liang, Jianjun; Sun, Yongjun; Zhang, Shixin; Chen, Xin

    2018-06-01

    In this study, the ultrasonic (US)-initiated template copolymerization was employed to synthesize a novel cationic polyacrylamide (CPAM) characterized by a microblock structure using dimethyldiallylammonium chloride (DMDAAC) and acrylamide (AM) as monomers, and sodium polyacrylate (NaPAA) as template. The polymers structure property was analyzed by Fourier transform infrared spectroscopy (FT-IR), 1 H nuclear magnetic resonance spectroscopy ( 1 H NMR) and thermogravimetric analysis (TGA). The results showed that a novel cationic microblock structure was successfully synthesized in the template copolymer of DMDAAC and AM (TPADM). Meanwhile, the analysis result of association constant (M K ) provided powerful support for a I Zip-up (ZIP) template polymerization mechanism and the formation of the microblock structure. The factors affecting the polymerization were investigated, including ultrasonic power, ultrasonic time, monomer concentration, initiator concentration, m AM :m DMDAAC and n NaPAA :n DMDAAC . The sludge dewatering performance of the polymers was evaluated in terms of specific resistance to filtration (SRF), filter cake moisture content (FCMC), floc size (d 50 ) and fractal dimension (D f ). Flocculation mechanism was also analyzed and discussed. The sludge dewatering results revealed that the polymer with the novel microblock structure showed a more excellent flocculation performance than those with randomly distributed cationic units. A desirable flocculation performance with a SRF of 4.5 × 10 12  m kg -1 , FCMC of 73.1%, d 50 of 439.156 µm and D f of 1.490 were obtained at pH of 7.0, dosage of 40 mg L -1 and the molecular weight of 5.0 × 10 6  Da. The cationic microblock extremely enhanced the polymer charge neutralization and bridging ability, thus obtaining the excellent sludge dewatering performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  2. Migration and distribution of sodium ions and organic matters during electro-dewatering of waste activated sludge at different dosages of sodium sulfate.

    PubMed

    Xiao, Jun; Wu, Xu; Yu, Wenbo; Liang, Sha; Yu, Jiangwei; Gu, Yueyuan; Deng, Huali; Hu, Jiukun; Xiao, Keke; Yang, Jiakuan

    2017-12-01

    In this study, the influence of Na 2 SO 4 on electro-dewatering (EDW) of waste activated sludge (WAS) was investigated. The highest water removal efficiency of 42.5% was achieved at the optimum Na 2 SO 4 dosage of 12.5 g kg -1 DS during EDW process at a constant voltage of 20 V. The migration and distribution of water, organic matters and Na + at different Na 2 SO 4 dosages were investigated through layered experiments. The results indicated the entire EDW process followed the S curve model, and it can be divided into three stages: (1) initial desalination stage: at the initial few min of EDW process, the rate of electroosmosis was extremely slow while electromigration of ions like Na + was intense, and the electromigration was more obvious with increased Na 2 SO 4 dosage; (2) dewatering stage: the dewatering efficiency increased dramatically via electroosmosis; (3) the dewaterability limit stage: the maximum value of dewatering efficiency has been achieved, while the water removal efficiency and dry solids content remained constant. During the EDW process, the possible electrolysis resulted in a pH gradient in the sludge cake. With the addition of Na 2 SO 4 in the EDW, the pH gradient was intensified, and the migration rate of organic matters moving from cathode to anode increased while compared with the raw WAS. This study provided insights into the mechanism of EDW process at different dosages of Na 2 SO 4 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  4. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA.

  5. Briquette fuel production from wastewater sludge of beer industry and biodiesel production wastes

    NASA Astrophysics Data System (ADS)

    Nusong, P.; Puajindanetr, S.

    2018-04-01

    The production of industrial wastes is increasing each year. Current methods of waste disposal are severely impacting the environment. Utilization of industrial wastes as an alternative material for fuel is gaining interest due to its environmental friendliness. Thus, the objective of this research was to study the optimum condition for fuel briquettes produced from wastewater sludge of the beer industry and biodiesel production wastes. This research is divided into two parts. Part I will study the effects of carbonization of brewery wastewater sludge for high fixed carbon. Part II will study the ratio between brewery wastewater sludge and bleaching earth for its high heating value. The results show that the maximum fixed carbon of 10.01% by weight was obtained at a temperature of 350 °C for 30 minutes. The appropriate ratio of brewery wastewater sludge and bleaching earth by weight was 95:5. This condition provided the highest heating value of approximately 3548.10 kcal/kg.

  6. 75 FR 51671 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... wastewater treatment plant (WWTP) sludge filter cake (called sludge hereinafter) generated by Tokusen in... brass coating. The facility generates F006 filter cake by the dewatering of wastewater sludge generated...

  7. Elimination of Cu(II) toxicity by powdered waste sludge (PWS) addition to an activated sludge unit treating Cu(II) containing synthetic wastewater.

    PubMed

    Pamukoglu, M Yunus; Kargi, Fikret

    2007-09-05

    Copper(II) ion toxicity onto activated sludge organisms was eliminated by addition of powdered waste sludge (PWS) to the feed wastewater for removal of Cu(II) ions by biosorption before biological treatment. The synthetic feed wastewater containing 14 or 22 mgl(-1) Cu(II) was mixed with PWS in a mixing tank where Cu(II) ions were adsorbed onto PWS and the mixture was fed to a sedimentation tank to separate Cu(II) containing PWS from the feed wastewater. The activated sludge unit fed with the effluent of the sedimentation tank was operated at a hydraulic residence time (HRT) of 10h and sludge age (SRT) of 10 days. To investigate Cu(II), COD and toxicity removal performance of the activated sludge unit at different PWS loadings, the system was operated at different PWS loading rates (0.1-1 gPWSh(-1)) while the Cu(II) loading rate was constant throughout the operation. Percent copper, COD and toxicity removals increased with increasing PWS loading rate due to increased adsorption of Cu(II) onto PWS yielding low Cu(II) contents in the feed. Biomass concentration in the aeration tank increased and the sludge volume index (SVI) decreased with increasing PWS loading rate due to elimination of Cu(II) from the feed wastewater by PWS addition. PWS addition to the Cu(II) containing wastewater was proven to be effective for removal of Cu(II) by biosorption before biological treatment. Approximately, 1 gPWSh(-1) should be added for 28 mgCuh(-1) loading rate for complete removal of Cu(II) from the feed wastewater to obtain high COD removals in the activated sludge unit.

  8. Parasitic contamination in wastewater and sludge samples in Tunisia using three different detection techniques.

    PubMed

    Khouja, Layla Ben Ayed; Cama, Vitaliano; Xiao, Lihua

    2010-06-01

    The limited availability of water results in the reuse of wastewater or sludge. The Tunisian wastewater regulatory guidelines have specific limits for ova of helminths (<1 egg/l) but none for protozoan parasites. We assessed the presence and loads of parasites in 20 samples of raw, treated wastewater and sludge collected from six wastewater treatment plants. Samples were tested by microscopy using the modified Bailenger method (MBM), immunomagnetic separation (IMS) followed by immunofluorescent assay microscopy, and PCR and sequence analysis for the protozoa Cryptosporidium and Giardia. The seven samples of raw wastewater had a high diversity of helminth and protozoa contamination. Giardia spp., Entamoeba histolytica/dispar, Entamoeba coli, Ascaris spp., Enterobius vermicularis, and Taenia saginata were detected by MBM, and protozoan loads were greater than helminth loads. Cryptosporidium and Giardia were also detected by IMS microscopy and PCR. Six of the eight samples of treated wastewater had parasites: helminths (n = 1), Cryptosporidium (n = 1), Giardia (n = 4), and Entamoeba (n = 4). Four of five samples of sludge had microscopically detectable parasites, and all had both Cryptosporidium and Giardia. The genotypes and subtypes of Cryptosporidium and Giardia were of both human and animal origin. These findings suggest that it may be important to monitor the presence of protozoan parasites in treated wastewater and sludge in Tunisia.

  9. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in

  10. Intensification of anaerobic digestion efficiency with use of mechanical excess sludge disintegration in the context of increased energy production in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Żubrowska-Sudoł, Monika; Podedworna, Jolanta; Bisak, Agnieszka; Sytek-Szmeichel, Katarzyna; Krawczyk, Piotr; Garlicka, Agnieszka

    2017-11-01

    The main goal of the study was to evaluate the effects of mechanical sludge disintegration for enhancing full scale anaerobic digestion of municipal sludge. Batch disintegration tests and lab dewatering tests were also performed aiming at determining the release of organic compounds and assessing the impact of disintegration of excess sludge before the fermentation process of mixed sludge on the dewaterability of post-fermented sludge, respectively. In the study a disc disintegrator driven by a motor with a power of 30 kW, revolutions n = 2950 rpm has been used. It was shown that with increase of energy consumed in the disintegration, the increased amounts of organic compounds were released from the sludge. It was also documented that the introduction of the excess sludge disintegration prior to fermentation tank, resulted in a significant increase in biogas production (by an average of 33.9%) and in increase in volatile total solids reduction in the fermented sludge (by an average of 22.7%). Moreover, the obtained results indicate the possibility of obtaining a higher degree of sludge dewatering, which was subjected to anaerobic stabilization with using disintegrated excess sludge.

  11. Municipal wastewater sludge as a sustainable bioresource in the United States

    DOE PAGES

    Seiple, Timothy E.; Coleman, André M.; Skaggs, Richard L.

    2017-04-20

    Within the United States and Puerto Rico, publicly owned treatment works (POTWs) process 130.5 Gl/d (34.5 Bgal/d) of wastewater, producing sludge as a waste product. Emerging technologies offer novel waste-to-energy pathways through whole sludge conversion into biofuels. Assessing the feasibility, scalability and tradeoffs of various energy conversion pathways is difficult in the absence of highly spatially resolved estimates of sludge production. In this study, average wastewater solids concentrations and removal rates, and site specific daily average influent flow are used to estimate site specific annual sludge production on a dry weight basis for >15,000 POTWs. Current beneficial uses, regional productionmore » hotspots and feedstock aggregation potential are also assessed. Analyses indicate 1) POTWs capture 12.56 Tg/y (13.84 MT/y) of dry solids; 2) 50% are not beneficially utilized, and 3) POTWs can support seven regions that aggregate >910 Mg/d (1000 T/d) of sludge within a travel distance of 100 km.« less

  12. Occurrence and fate of androgens, estrogens, glucocorticoids and progestagens in two different types of municipal wastewater treatment plants.

    PubMed

    Liu, Shan; Ying, Guang-Guo; Zhao, Jian-Liang; Zhou, Li-Jun; Yang, Bin; Chen, Zhi-Feng; Lai, Hua-Jie

    2012-02-01

    The occurrence and fate of fourteen androgens, four estrogens, five glucocorticoids and five progestagens were investigated in two different types of wastewater treatment plants (Plant A: activated sludge with chlorination, and Plant B: oxidation ditch with UV) of Guangdong province, China. 14, 14, and 10 of 28 target compounds were detected in the influent, effluent and dewatered sludge samples with the concentrations ranging from below 1.2 ± 0.0 ng L(-1) (stanozolol) to 1368 ± 283 ng L(-1) (epi-androsterone), below 1.0 ± 0.0 ng L(-1) (progesterone) to 23.1 ± 1.0 ng L(-1) (5α-dihydrotestosterone), 1.0 ± 0.1 ng g(-1) (estrone) to 460 ± 4.4 ng g(-1) (5α-dihydrotestosterone), respectively. The concentrations of total androgens (1554-1778 ng L(-1) in influent, 13.3-47.8 ng L(-1) in effluent, 377-923 ng g(-1) in dewatered sludge) were much higher than those of total estrogens (41.5-60.2 ng L(-1) in influent, 5.6-13.5 ng L(-1) in effluent, 13.9-57.8 ng g(-1) in dewatered sludge), glucocorticoids (171-192 ng L(-1) in influent, 2.2-6.3 ng L(-1) in effluent, N.D.-4.4 ng g(-1) in dewatered sludge), and progestagens (39.6-40.5 ng L(-1) in influent, 6.9-12.1 ng L(-1) in effluent, N.D. in dewatered sludge) in these two WWTPs. According to mass balance analysis, the removal rates of most target steroids in Plant A had exceeded 90%, while those in Plant B for nearly half of detected target steroids were lower than 80%. It is obvious that the treatment capacity of the activated sludge system (Plant A) is superior to the oxidation ditch (Plant B) in the degradation of steroids in sewage treatment systems. Androgens, estrogens and progestagens were mainly removed by sorption and degradation, while the reduction of glucocorticoids was primarily due to degradation.

  13. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    PubMed

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively.

  14. Helminth ova control in wastewater and sludge for advanced and conventional sanitation.

    PubMed

    Jiménez, B; Maya, C; Galván, M

    2007-01-01

    Worldwide, the most important reuse of wastewater, in volume, is agricultural irrigation. Therefore, there is a need to properly treat wastewater for such purpose, considering the removal of pathogens while leaving suitable amounts of nutrients and other compounds to increase productivity. Helminth ova are one of the main targeted pathogens in the new guidelines for water reuse in agriculture and aquaculture issued in 2006 by the World Health Organization. However, relatively little research has been done recently on how to remove and inactivate helminth ova from wastewater and sludge and recommendations given several decades ago are still used, but when put into practice, particularly in developing countries, produce unsatisfactory results. One problem is that these criteria were developed using inaccurate analytical techniques and the other is the large number and variety of helminth ova species found in wastewater and sludge from the developing world. In fact, the few technological options to remove and inactivate helminth ova come from research performed using wastewater and sludge with low helminth ova content, and refer almost only to Ascaris (one type of helminth). This paper summarises recent research work and results from practical experience concerning helminth ova control for advanced and conventional sanitation.

  15. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by bacterial community from propylene oxide saponification wastewater residual sludge.

    PubMed

    Wang, Yiwei; Zhu, Ying; Gu, Pengfei; Li, Yumei; Fan, Xiangyu; Song, Dongxue; Ji, Yan; Li, Qiang

    2017-05-01

    The saponification wastewater from the process of propylene oxide (PO) production is contaminated with high chemical oxygen demand (COD) and chlorine contents. Although the activated sludge process could treat the PO saponification wastewater effectively, the residual sludge was difficult to be disposed properly. In this research, microbes in PO saponification wastewater residual sludge were acclimated to produce poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from volatile fatty acids. Through Miseq Illumina highthroughput sequencing, the bacterial community discrepancy between the original and the acclimated sludge samples were analyzed. The proportions of Bacillus, Acinetobacter, Brevundimonas and Pseudomonas, the potential PHBV-producers in the residual sludge, were all obviously increased. In the batch fermentation, the production of PHBV could achieve 4.262g/L at 300min, with the content increased from 0.04% to 23.67% of mixed liquor suspended solid (MLSS) in the acclimated sludge, and the COD of the PO saponification wastewater was also decreased in the fermentation. This work would provide an effective solution for the utilization of PO saponification wastewater residual sludge. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Permanganate/bisulfite (PM/BS) conditioning-horizontal electro-dewatering (HED) of activated sludge: Effect of reactive Mn(III) species.

    PubMed

    Guo, Xinxin; Wang, Yili; Wang, Dongsheng

    2017-11-01

    A novel activated sludge (AS) conditioning method through permanganate/bisulfate (PM/BS) process was proposed. The method involved a new conditioner of reactive Mn(III) intermediate. Moreover, a Mn(III) conditioning-horizontal electro-dewatering (Mn(III) C-HED) process was established to improve AS dewatering performance. Underlying mechanisms were unraveled by investigating changes in physicochemical characteristics, scanning electron microscope (SEM) morphology, and transformation of water and organic matters. The optimum dewatering conditions for Mn(III) C-HED process with the final water content of 86.94% were determined as the combination of KMnO 4 0.01 mol/L AS and NaHSO 3 0.05 mol/L AS at 20 V for 120 min. Results showed that Mn(III) C-HED process effectively reduced free water and bound water with the corresponding removal ratios of 51.68% and 87.62% at the anode-side as well as 36.55% and 85.08% at the cathode-side, respectively. During the PM/BS process, the produced Mn(III), Mn 2+ , and MnO 2 exerted chemical and physical effects on AS conditioning and dewatering. Mn(III) disintegrated extracellular polymeric substances (EPS) fractions and cells in AS, as well as induced partial bound water release. Additionally, flocculation effect induced by Mn 2+ and MnO 2 skeleton building also benefited AS dewatering. AS cells were further disrupted under the effect of a horizontal electric field. Accordingly, EPS within the AS matrix was solubilized, tightly bound (TB)-EPS or loosely bound (LB)-EPS was converted to their corresponding outer EPS fractions, and AS dewaterability improved. Additionally, changes in pH and temperature at HED stage damaged the AS cells and changed the floc properties, thereby leading to easy separation of liquid and AS particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Demonstration of FBRM as process analytical technology tool for dewatering processes via CST correlation.

    PubMed

    Cobbledick, Jeffrey; Nguyen, Alexander; Latulippe, David R

    2014-07-01

    The current challenges associated with the design and operation of net-energy positive wastewater treatment plants demand sophisticated approaches for the monitoring of polymer-induced flocculation. In anaerobic digestion (AD) processes, the dewaterability of the sludge is typically assessed from off-line lab-bench tests - the capillary suction time (CST) test is one of the most common. Focused beam reflectance measurement (FBRM) is a promising technique for real-time monitoring of critical performance attributes in large scale processes and is ideally suited for dewatering applications. The flocculation performance of twenty-four cationic polymers, that spanned a range of polymer size and charge properties, was measured using both the FBRM and CST tests. Analysis of the data revealed a decreasing monotonic trend; the samples that had the highest percent removal of particles less than 50 microns in size as determined by FBRM had the lowest CST values. A subset of the best performing polymers was used to evaluate the effects of dosage amount and digestate sources on dewatering performance. The results from this work show that FBRM is a powerful tool that can be used for optimization and on-line monitoring of dewatering processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Disinfection of sewage wastewater and sludge by electron treatment

    NASA Astrophysics Data System (ADS)

    Trump, J. G.; Merrill, E. W.; Wright, K. A.

    The use of machine-accelerated electrons to disinfect sewage waterwaste and sludge is discussed. The method is shown to be practical and energy-efficient for the broad spectrum disinfection of pathogenic organisms in municipal wastewaters and sludge removed from them. Studies of biological, chemical and physical effects are reported. Electron treatment is suggested as an alternative to chlorination of municipal liquid wastes after electron treatment to provide disinfection. Disposal of sewage sludge is recommended as an agricultural resource by subsurface land injection, or as a nutrient for fish populations by widespread ocean dispersal.

  20. Use of wastewater ER sludges for the immobilization of heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, S.; Murray, D.; Urasa, I.T.

    1996-10-01

    The distribution, mobility, and bioavailability of heavy metals in soils, surface water, and ground water have been of major interest and concern from both environmental and geochemical standpoints. Wastewater sludges represent an important anthropogenic factor whose impact on these processes is not fully understood. In the past, incineration and landfilling were common practices for discarding wastewater sludges. However, as local and state laws governing the disposal of these materials have become more stringent, land application has been used as an alternative. Reported studies have shown that the impact of land application of sludges can vary widely and is influenced bymore » a number of factors, including the source of the sludge; the organic matter content of the sludge; the form in which the sludge is applied; and the prevailing conditions of the receiving soils. It has also been shown that sewage sludge can have solubilizing effects on solid-phase heavy metals, thereby causing geochemical shifts of the insoluble fractions of metals to the more soluble forms. The work presented in this paper utilized synthetic minerals, standard solutions, sludges, and agricultural soils obtained from different sources to determine the mechanisms involved in the mineralization of heavy metals by sludge; the influence of soil conditions; interelemental effects; the influence of natural organic matter; and possible microbial activity that may come into play. Several types of sludge were evaluated for lead binding capacity.« less

  1. Municipal wastewater sludge as a sustainable bioresource in the United States.

    PubMed

    Seiple, Timothy E; Coleman, André M; Skaggs, Richard L

    2017-07-15

    Within the United States and Puerto Rico, publicly owned treatment works (POTWs) process 130.5 Gl/d (34.5 Bgal/d) of wastewater, producing sludge as a waste product. Emerging technologies offer novel waste-to-energy pathways through whole sludge conversion into biofuels. Assessing the feasibility, scalability and tradeoffs of various energy conversion pathways is difficult in the absence of highly spatially resolved estimates of sludge production. In this study, average wastewater solids concentrations and removal rates, and site specific daily average influent flow are used to estimate site specific annual sludge production on a dry weight basis for >15,000 POTWs. Current beneficial uses, regional production hotspots and feedstock aggregation potential are also assessed. Analyses indicate 1) POTWs capture 12.56 Tg/y (13.84 MT/y) of dry solids; 2) 50% are not beneficially utilized, and 3) POTWs can support seven regions that aggregate >910 Mg/d (1000 T/d) of sludge within a travel distance of 100 km. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A uniaxial cyclic compression method for characterizing the rheological and textural behaviors of mechanically dewatered sewage sludge.

    PubMed

    Liang, Fenglin; Sauceau, Martial; Dusserre, Gilles; Arlabosse, Patricia

    2017-04-15

    The mechanically dewatered sewage sludge with total solid content around 20% on a weight basis is very similar to yield stress fluid, its complex transition between solid and fluid states is not perfectly reversible and especially challenging in terms of pumping, land spreading and drying. To characterize the rheological and textural properties of highly concentrated sludge, a specific methodology based on uniaxial single and cyclic compression tests is developed. Three types of sludge samples (fresh original, fresh premixed and aged original ones) are extruded into cylinders and pressed between two parallel plates using a material testing machine. In single compression, the bioyield point beyond which the sludge fractures is around 7.3 kPa with true strain equal to 0.21. The cyclic compression tests reveal that the sludge behaves as a viscoelastic body when the true strain is smaller than 0.05 and as a visco-elasto-plastic once exceeding the yield stress. The elastic module is around 78 kPa; the viscosity is deduced, in the order of magnitude 10 4 -10 5  Pa·s and the yield stress is estimated about 4 kPa. In the unloading phase, the sludge behaves again as a viscoelastic body with clear hysteresis. With the increase of compression speed, the viscosity declines, which confirms that the sludge is a shear-thinning material. The yield stress and the bioyield increase with compression speed, but it does not induce extra internal damage in the samples since the resilience and the cohesiveness are unaltered. The reliability and sensitivity of the method is justified by highlighting the changes of sludge behavior due to aging and premixing effects: both decrease the strain energy density, but do aggravate the adhesiveness of the sludge; the aging makes the sludge less cohesive, while the premixing does not modify its cohesiveness. In spite of changes in test conditions, the elastic module of sludge samples remains unchanged. Copyright © 2017 Elsevier Ltd. All rights

  3. TRANSPORT OF SEWAGE SLUDGE

    EPA Science Inventory

    This project was initiated with the overall objective of developing organized information pertaining to the costs of various sewage sludge transport systems. Transport of liquid and dewatered sludge by truck and rail and liquid sludge by barge and pipeline is included. The report...

  4. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.

    PubMed

    Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F

    2007-01-01

    A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.

  5. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater treatment...

  6. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater treatment...

  7. Analysis of Pharmaceutical and Personal Care Compounds in Wastewater Sludge and Aqueous Samples using GC-MS/MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Lirong; Mitroshkov, Alexandre V.; Gilmore, Tyler J.

    The Bioenergy Program at Pacific Northwest National Laboratory (PNNL) is evaluating the feasibility of converting wastewater sludge materials to fuels. Wastewater sludge from various municipalities will be used in the evaluation process and as with any municipal waste, there is the potential for residual contaminates to remain in the sludge following wastewater treatment. Many surveys and studies have confirmed the presence of pharmaceuticals in municipal wastewater and effluents (World Health Organization, 2011). Determination of the presence and concentrations of the contaminants is required to define the proper handling of this sludge. A list of targeted compounds was acquired from themore » literature and an analytical method was developed for the pharmaceutical and personal care compounds. The presence of organics complicated the analytical techniques and, in some cases, the precision of the results. However, residual concentrations of a range of compounds were detected in the wastewater sludge and the presence and concentrations of these compounds will be considered in identifying the appropriate handling of this material in conduct of research.« less

  8. Experimental study of using wastewater sludge as a new drag reduction agent.

    PubMed

    Mohamed, Hadj Djelloul; Mansour, Belhadri; Nasr-Eddine, Boudjenane

    2017-07-01

    Siltation is considering as a huge risk to the life and security of dams. Forced to preserve their useful volumes, managers use sediment dredging operations through different techniques. The aim of our work is to investigate the wastewater sludge derived from wastewater treatment as a new natural lubricating instrument during transport of sediment in the pipes and to reduce head losses. From an economic and environmental point of view, this technique is more effective than the use of industrial polymers. The rheological study is done using an RS600 rheometer. Head losses and friction reducing are measured on three horizontal pipes (30, 50 and 80 mm). The mud from the dam and sludge are added at different volumes concentrations. The results revealed that the mud follows the Herschel-Bulkley model at 10-20% volume concentration, even after adding wastewater sludge proportions from 0.1- 0.4%. The mud flow head losses in pipes increase with increasing solids concentration. A maximum reduction in yield stress and frictional head loss are observed at 0.25 to 0.35% of sludge concentration, which can be the most effective choice.

  9. Mesophilic and thermophilic anaerobic co-digestion of winery wastewater sludge and wine lees: An integrated approach for sustainable wine production.

    PubMed

    Da Ros, C; Cavinato, C; Pavan, P; Bolzonella, D

    2017-12-01

    In this work, winery wastes generated by a cellar producing approximately 300,000 hL of wine per year was monitored for a period of one year. On average, 196 L of wastewater, 0.1 kg of waste activated sludge (dry matter) and 1.6 kg of wine lees were produced per hectoliter of wine produced. Different winery wastes, deriving from different production steps, namely waste activated sludge from wastewater treatment and wine lees, were co-treated using an anaerobic digestion process. Testing was conducted on a pilot scale for both mesophilic and thermophilic conditions. The process was stable for a long period at 37 °C, with an average biogas production of 0.386 m 3 /kg COD fed . On the other hand, for thermophilic conditions, volatile fatty acids accumulated in the reactor and the process failed after one hydraulic retention time (23 days). In order to fix the biological process, trace elements (iron, cobalt and nickel) were added to the feed of the thermophilic reactor. Metals augmentation improved process stability and yields at 55 °C. The pH ranged between 7.8 and 8.0, and specific gas production was 0.450 m 3 /kg COD fed , which corresponded to dry matter and COD removals of 34% and 88%, respectively. Although the observed performances in terms of biogas production were good, the thermophilic process exhibited some limitations related to both the necessity of metals addition and the worse dewaterability properties. In fact, while the mesophilic digestates reached a good dewatering quality via the addition of 6.5 g of polymer per kg of dry matter, the required dosage for the thermophilic sludge was greater than 10 g/kg of dry matter. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review

    PubMed Central

    Gebreeyessus, Getachew D.; Jenicek, Pavel

    2016-01-01

    During advanced biological wastewater treatment, a huge amount of sludge is produced as a by-product of the treatment process. Hence, reuse and recovery of resources and energy from the sludge is a big technological challenge. The processing of sludge produced by Wastewater Treatment Plants (WWTPs) is massive, which takes up a big part of the overall operational costs. In this regard, anaerobic digestion (AD) of sewage sludge continues to be an attractive option to produce biogas that could contribute to the wastewater management cost reduction and foster the sustainability of those WWTPs. At the same time, AD reduces sludge amounts and that again contributes to the reduction of the sludge disposal costs. However, sludge volume minimization remains, a challenge thus improvement of dewatering efficiency is an inevitable part of WWTP operation. As a result, AD parameters could have significant impact on sludge properties. One of the most important operational parameters influencing the AD process is temperature. Consequently, the thermophilic and the mesophilic modes of sludge AD are compared for their pros and cons by many researchers. However, most comparisons are more focused on biogas yield, process speed and stability. Regarding the biogas yield, thermophilic sludge AD is preferred over the mesophilic one because of its faster biochemical reaction rate. Equally important but not studied sufficiently until now was the influence of temperature on the digestate quality, which is expressed mainly by the sludge dewateringability, and the reject water quality (chemical oxygen demand, ammonia nitrogen, and pH). In the field of comparison of thermophilic and mesophilic digestion process, few and often inconclusive research, unfortunately, has been published so far. Hence, recommendations for optimized technologies have not yet been done. The review presented provides a comparison of existing sludge AD technologies and the gaps that need to be filled so as to optimize

  11. Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants.

    PubMed

    Gray, Neil D; Miskin, Ian P; Kornilova, Oksana; Curtis, Thomas P; Head, Ian M

    2002-03-01

    The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.

  12. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  13. IASON - Intelligent Activated Sludge Operated by Nanotechnology - Hydrogel Microcarriers in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Fleit, E.; Melicz, Z.; Sándor, D.; Zrínyi, M.; Filipcsei, G.; László, K.; Dékány, I.; Király, Z.

    Performance of biological wastewater treatment depends to a large extent on mechanical strength, size distribution, permeability and other textural properties of the activated sludge flocs. A novel approach was developed in applying synthetic polymer materials to organize floc architecture instead of spontaneously formed activated sludge floc. Developed microcarrier polymer materials were used in our experiments to mitigate technological goals. Preliminary results suggest that the PVA-PAA (polyvinyl alcohol-polyacrylic acid copolymer) is a feasible choice for skeleton material replacing "traditional" activated sludge floc. Use of PVA-PAA hydrogel material as microreactors and methods for biofilm formation of wastewater bacteria on the carrier material are described. Laboratory scale experimental results with microscopic size bioreactors and their potential application for simultaneous nitrification and denitrification are presented.

  14. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  15. TECHNOLOGY TRANSFER ENVIRONMENTAL REGULATIONS AND TECHNOLOGY : CONTROL OF PATHOGENS IN MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This 71 - page Technology Transfer Environmental Regulations and echnology publication describes the Federal requirements promulgated in 1979 for reducing pathogens n wastewater sludge and provides guidance in determining whether individual sludge treatment andated or particular ...

  16. Simultaneous enhancement of sludge dewaterability and removal of sludge-borne heavy metals through a novel oxidative leaching induced by nano-CaO2.

    PubMed

    Wu, Boran; Dai, Xiaohu; Chai, Xiaoli

    2017-07-01

    The production of sewage sludge with the presence of various contaminants has been a serious issue for the operation of wastewater treatment plants on both the economical and environmental sides. To minimize the sludge volume to be handled and limit the potential environmental risk, this study developed a novel oxidative leaching process for enhanced sewage sludge dewatering and simultaneous removal of heavy metals based on nano-CaO 2 . Response surface methodology determined the following optimal conditioning parameters in terms of capillary suction time reduction: 0.0906 g/g dry solid (DS) nano-CaO 2 , 0.9969 mmol/g DS Fe 2+ , and pH of 5.59. The speciation partitioning analysis of the heavy metals pre and post nano-CaO 2 peroxidation indicated that the content of organically bound metals decreased and the percentage of soluble fraction increased substantially, which was beneficial for the removal of heavy metals through the dewatering unit. Nano-CaO 2 peroxidation could also induce the transformation of extracellular polymeric substances (EPS) from the tightly bound layers to the loosely bound layers of sewage sludge flocs. Through the decline of the Ryan-Weber constant of fluorescence titration and the pseudo-first-order kinetic constant of complexation, it was verified that the binding capacity of EPS with metal ions could be damaged by nano-CaO 2 peroxidation, which was the primary mechanism behind the substantial reduction of organically bound metals. This study is believed to provide novel insights into the application of nanotechnology in terms of the simultaneous volume and toxicity reduction of sewage sludge. Graphical abstract.

  17. The Ruhrverband sewage sludge disposal concept in the conflict between European and German standards and regulations.

    PubMed

    Evers, P; Schmitt, F; Albrecht, D R; Jardin, N

    2005-01-01

    The Ruhrverband, acting as a water association responsible for integrated water resources management within the entire natural river basin of the Ruhr, operates a network of 83 wastewater treatment plants (WWTPs) and connected sludge disposal facilities. According to German regulations, the disposal of sewage sludge containing more than 5% of organic dry solids will be prohibited as of 1 June 2005. In Germany, the only future alternative to incineration will be the agricultural utilization of sludge. However, this way of sludge disposal is presently the subject of critical discussions in Germany because of the organic and inorganic toxic substances, which may be contained in sewage sludge, despite the fact that very stringent standards are to be met by agricultural uses. On the other hand, application of sewage sludge to agricultural land is explicitly supported by the European Sewage Sludge Directive 86/278/EEC. In the face of this controversial situation the Ruhrverband has initiated, in 2000, the development of a comprehensive and sustainable sludge and waste disposal concept for all wastewater facilities it operates in the entire Ruhr River Basin. The concept includes de-central sludge digestion and dewatering and subsequent transport to two central sludge incineration plants. It is expected that in future not more than 5% of all sludges produced in Ruhrverband's WWTPs will be used in agriculture. That means, the major part of 95% will have to be incinerated.

  18. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology.

    PubMed

    Hong, Chen; Haiyun, Wu

    2010-07-01

    Central-composite design (CCD) and response surface methodology (RSM) were used to optimize the parameters of volatile fatty acid (VFA) production from food wastes and dewatered excess sludge in a semi-continuous process. The effects of four variables (food wastes composition in the co-substrate of food wastes and excess sludge, hydraulic retention time (HRT), organic loading rate (OLR), and pH) on acidogenesis were evaluated individually and interactively. The optimum condition derived via RSM was food wastes composition, 88.03%; HRT, 8.92 days; OLR, 8.31 g VSS/ld; and pH 6.99. The experimental VFA concentration was 29,099 mg/l under this optimum condition, which was well in agreement with the predicted value of 28,000 mg/l. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  19. Recovery opportunities for metals and energy from sewage sludges.

    PubMed

    Mulchandani, Anjali; Westerhoff, Paul

    2016-09-01

    Limitations on current wastewater treatment plant (WWTP) biological processes and solids disposal options present opportunities to implement novel technologies that convert WWTPs into resource recovery facilities. This review considered replacing or augmenting extensive dewatering, anaerobic digestion, and off-site disposal with new thermo-chemical and liquid extraction processes. These technologies may better recover energy and metals while inactivating pathogens and destroying organic pollutants. Because limited direct comparisons between different sludge types exist in the literature for hydrothermal liquefaction, this study augments the findings with experimental data. These experiments demonstrated 50% reduction in sludge mass, with 30% of liquefaction products converted to bio-oil and most metals sequestered within a small mass of solid bio-char residue. Finally, each technology's contribution to the three sustainability pillars is investigated. Although limiting hazardous materials reintroduction to the environment may increase economic cost of sludge treatment, it is balanced by cleaner environment and valuable resource benefits for society. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Dewaterability of five sewage sludges in Guangzhou conditioned with Fenton's reagent/lime and pilot-scale experiments using ultrahigh pressure filtration system.

    PubMed

    Liang, Jialin; Huang, Shaosong; Dai, Yongkang; Li, Lei; Sun, Shuiyu

    2015-11-01

    Sludge conditioning with Fenton's reagent and lime is a valid method for sludge dewatering. This study investigated the influence of different organic matter content sludge on sludge dewatering and discussed the main mechanism of sludge conditioning by combined Fenton's reagent and lime. The results indicated that the specific resistance to filterability (SRF) of sludge was reduced efficiently by approximately 90%, when conditioned with Fenton's reagent and lime. Through single factor experiments, the optimal conditioning combinations were found. In addition, the relationship between VSS% and consumption of the reagents was detected. Furthermore, it was also demonstrated that the SRF and filtrate TOC values had a significant correlation with VSS% of sludge (including raw and conditioned). The main mechanism of sludge dewatering was also investigated. Firstly, it revealed that the dewaterability of sludge was closely correlated to extracellular polymeric substances (EPS) and bound water contents. Secondly, the results of scanning electron microscopy (SEM) stated that sludge particles were to be smaller and thinner after conditioning. And this structure could easily form outflow channels for releasing free water. Additionally, with the ultrahigh pressure filtration system, the water content of sludge cake conditioned with Fenton's reagent and lime could be reduced to below 50%. Moreover, the economic assessment shows that Fenton's reagent and lime combined with ultrahigh pressure filtration system can be an economical and viable technology for sewage sludge dewatering. Finally, three types of sludge were classified: (1) Fast to dewater; (2) Moderately fast to dewater; (3) Slow to dewater sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Application of ATAD technology for digesting sewage sludge in small towns: Operation and costs.

    PubMed

    Martín, M A; Gutiérrez, M C; Dios, M; Siles, J A; Chica, A F

    2018-06-01

    In an economic context marked by increasing energy costs and stricter legislation regarding the landfill disposal of wastewater treatment plant (WWTP) sewage sludge, and where biomethanization is difficult to implement in small WWTPs, an efficient alternative is required to manage this polluting waste. This study shows that autothermal thermophilic aerobic digestion (ATAD) is a feasible technique for treating sewage sludge in small- and medium-sized towns. The experiments were carried out at pilot scale on a cyclical basis and in continuous mode for nine months. The main results showed an optimal hydraulic retention time of 7 days, which led to an organic matter removal of 34%. The sanitized sludge meets the microbial quality standards for agronomic application set out in the proposed European sewage sludge directive. An economic assessment for the operation of ATAD technology was carried out, showing a treatment cost of €6.5/ton for dewatered sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Wastewater and Sludge Nutrient Utilization in Forest Ecosystems

    Treesearch

    D.G. Brockway; D.H. Urie; P.V. Nguyen; J.B. Hart

    1986-01-01

    Although forest ecosystems have evolved efficient mechanisms to assimilate and retain modest levels of annual geochemical input, their productivity is frequently limited by low levels of available nutrients. A review of research studies conducted in the major U.S. forest regions indicates that the nutrients and organic matter in wastewater and sludge representa...

  4. Adsorption behavior of sulfamethazine in an activated sludge process treating swine wastewater.

    PubMed

    Ben, Weiwei; Qiang, Zhimin; Yin, Xiaowei; Qu, Jiuhui; Pan, Xun

    2014-08-01

    Swine wastewater is an important pollution source of antibiotics entering the aquatic environment. In this work, the adsorption behavior of sulfamethazine (SMN), a commonly-used sulfonamide antibiotic, on activated sludge from a sequencing batch reactor treating swine wastewater was investigated. The results show that the adsorption of SMN on activated sludge was an initially rapid process and reached equilibrium after 6hr. The removal efficiency of SMN from the water phase increased with an increasing concentration of mixed liquor suspended solids, while the adsorbed concentration of SMN decreased. Solution pH influenced both the speciation of SMN and the surface properties of activated sludge, thus significantly impacting the adsorption process. A linear partition model could give a good fit for the equilibrium concentrations of SMN at the test temperatures (i.e., 10, 20 and 30°C). The partition coefficient (Kd) was determined to be 100.5L/kg at 20°C, indicating a quite high adsorption capacity for SMN. Thermodynamic analysis revealed that SMN adsorption on activated sludge was an exothermic process. This study could help to clarify the fate and behavior of sulfonamide antibiotics in the activated sludge process and assess consequent environmental risks arising from sludge disposal as well. Copyright © 2014. Published by Elsevier B.V.

  5. Effects of total solids content on waste activated sludge thermophilic anaerobic digestion and its sludge dewaterability.

    PubMed

    Wang, Tianfeng; Chen, Jie; Shen, Honglang; An, Dong

    2016-10-01

    The role of total solids content on sludge thermophilic anaerobic digestion was investigated in batch reactors. A range of total solids content from 2% to 10% was evaluated with two replicates. The lowest inhibitory concentration for free ammonia and total ammonia of sludge thermophilic anaerobic digestion was 110.9-171.4mg/L and 1313.1-1806.7mg/L, respectively. The volumetric biogas production rate increased with increasing of total solids content, but the corresponding biogas yield per gram volatile solid decreased. The result of normalized capillary suction time indicated that the dewaterability of digested sludge at high total solids content was poor, while solid content of sediment obtained by centrifuging sludge at 2000g for 10min increased with increasing of total solids content of sludge. The results suggest that thickened sludge mixed with dewatered sludge at an appropriate ratio could get high organic loading rate, high biogas yield and adequate dewatering effort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP.

    PubMed

    Liu, Jun; Li, Jun; Wang, Xiaodong; Zhang, Qi; Littleton, Helen

    2017-01-01

    Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor (SBR) using piggery wastewater. Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2mm and SVI 30 of 20.3mL/g formed in SBR on day 18. High concentrations of Ca and Fe in the raw piggery wastewater and operating mode accelerated aerobic granulation, even though the seed sludge was from a municipal wastewater treatment plant (WWTP). Alpha diversity analysis revealed Operational Taxonomic Units, Shannon, ACE and Chao 1 indexes in aerobic granules were 2013, 5.51, 4665.5 and 3734.5, which were obviously lower compared to seed sludge. The percentages of major microbial communities, such as Proteobacteria, Bacteroidetes and Firmicutes were obviously higher in aerobic granules than seed sludge. Chloroflexi, Planctomycetes, Actinobacteria, TM7 and Acidobacteria showed much higher abundances in the inoculum. The main reasons might be the characteristics of raw piggery wastewater and granule structure. Copyright © 2016. Published by Elsevier B.V.

  7. Wastewater and sludge reuse in agriculture

    NASA Astrophysics Data System (ADS)

    Kalavrouziotis, Ioannis

    2016-04-01

    The reuse of Municipal wastewaters (TMWW) for irrigation of crops, and of sludge for the amendment of soils, is a multidimensional disposal practice aiming at: (i) minimizing the environmental problems by releasing the pressure exerted by these two inputs on the environment, (ii) providing the growing plants with water and nutrients and (ii) improving soil fertility and productivity, The research work conducted in our University in relation to accomplishing a safe reuse has been focused on the study of the following aspects of reuse: (i) heavy metal accumulation in soils and plants with emphasis on their edible part. This aspect has been studied by conducting a series of experiments aiming at the study of the accumulation of heavy metals in soils, and in plant roots, stalks, leaves and fruits. The conclusions drawn so far with regard to the order of accumulation of heavy metals are: Roots>leaves>stalks>fruits ( edible parts) (ii) interactions between heavy metals, plant nutrients and soil chemical and physical properties. After the examinations of hundreds of interactions, and the development of a quantification of the interactions contribution, it was found that considerable quantities of heavy metals and nutrients are contributed to the soil and to various plant parts , emphasizing the important role of the elemental interactions in plants.(iii) assessment of soil pollution with heavy metals based on pollution indices, Three pollution Indices have been established by our research team and were proposed internationally for application in actual practice for the prediction of soil pollution due to long term reuse of wastewater and sludge. These indices are as follows: (a) Elemental pollution Index (EPI), (b) Heavy Metal Load (HML), and (c) Total Concentration Factor (TCF) and (iv) construction of a computer program for the control of the reuse of TMWW and sludge, and forecasting soil pollution due to accumulation of heavy metal by means of pollution indices.

  8. Cultivation of activated sludge using sea mud as seed to treat industrial phenolic wastewater with high salinity.

    PubMed

    Tan, Songwen; Cui, Chunzhi; Hou, Yang; Chen, Xuncai; Xu, Aiqin; Li, Weiguo; You, Hong

    2017-01-30

    A technique is proposed to treat saline hazardous wastewater by using marine activated sludge, cultivated with sea mud as seed. Since the developed marine activated sludge had phenol-tolerant microorganisms (MAS-1, MAS-2 and MAS-3) which originated from the ocean, it was envisaged that these bacteria could survive and breakdown phenol in saline environments. In this work, typical phenol-tolerant microorganisms were isolated from the marine activated sludge and identified. After a hierarchical acclimation process, the marine activated sludge was used to treat the industrial phenolic wastewater with high salinity. The marine activated sludge was able to break down phenol and other organic components effectively and efficiently in treating the wastewater with salinity of 5.7% w/v. The results showed a high removal of phenol (99%), COD (80%) and NH 3 -N (68%). Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Sewage sludge dewatering using flowing liquid metals

    DOEpatents

    Carlson, Larry W.

    1986-01-01

    A method and apparatus for reducing the moisture content of a moist sewage sludge having a moisture content of about 50% to 80% and formed of small cellular micro-organism bodies having internally confined water is provided. A hot liquid metal is circulated in a circulation loop and the moist sewage sludge is injected in the circulation loop under conditions of temperature and pressure such that the confined water vaporizes and ruptures the cellular bodies. The vapor produced, the dried sludge, and the liquid metal are then separated. Preferably, the moist sewage sludge is injected into the hot liquid metal adjacent the upstream side of a venturi which serves to thoroughly mix the hot liquid metal and the moist sewage sludge. The venturi and the drying zone after the venturi are preferably vertically oriented. The dried sewage sludge recovered is available as a fuel and is preferably used for heating the hot liquid metal.

  10. Enhancing sewage sludge dewaterability by bioleaching approach with comparison to other physical and chemical conditioning methods.

    PubMed

    Liu, Fenwu; Zhou, Jun; Wang, Dianzhan; Zhou, Lixiang

    2012-01-01

    The sewage sludge conditioning process is critical to improve the sludge dewaterability prior to mechanical dewatering. Traditionally, sludge is conditioned by physical or chemical approaches, mostly with the addition of inorganic or organic chemicals. Here we report that bioleaching, an efficient and economical microbial method for the removal of sludge-borne heavy metals, also plays a significant role in enhancing sludge dewaterability. The effects of bioleaching and physical or chemical approaches on sludge dewaterability were compared. The conditioning result of bioleaching by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans on sludge dewatering was investigated and compared with the effects of hydrothermal (121 degrees C for 2 hr), microwave (1050 W for 50 sec), ultrasonic (250 W for 2 min), and chemical conditioning (24% ferric chloride and 68% calcium oxide; dry basis). The results show that the specific resistance to filtration (SRF) or capillary suction time (CST) of sludge is decreased by 93.1% or 74.1%, respectively, after fresh sludge is conditioned by bioleaching, which is similar to chemical conditioning treatment with ferric chloride and calcium oxide but much more effective than other conditioning approaches including hydrothermal, microwave, and ultrasonic conditioning. Furthermore, after sludge dewatering, bioleached sludge filtrate contains the lowest concentrations of chroma (18 times), COD (542 mg/L), total N (TN, 300 mg/L), NH4(+)-N (208 mg/L), and total P (TP, 2 mg/L) while the hydrothermal process resulted in the highest concentration of chroma (660 times), COD (18,155 mg/L), TN (472 mg/L), NH4(+)-N (381 mg/L), and TP (191 mg/L) among these selected conditioning methods. Moreover, unlike chemical conditioning, sludge bioleaching does not result in a significant reduction of organic matter, TN, and TP in the resulting dewatered sludge cake. Therefore, considering sludge dewaterability and the chemical properties of sludge

  11. Effects of wastewater irrigation and sewage sludge application on soil residues of chiral fungicide benalaxyl.

    PubMed

    Jing, Xu; Yao, Guojun; Liu, Donghui; Liang, Yiran; Luo, Mai; Zhou, Zhiqiang; Wang, Peng

    2017-05-01

    The effects of wastewater irrigation and sewage sludge on the dissipation behavior of the fungicide benalaxyl and its primary metabolite benalaxyl acid in soil were studied on an enantiomeric level during a 148-day exposure experiment. Chiral separation and analysis of the two pairs of enantiomers were achieved using HPLC-MS/MS with a chiralpak IC chiral column. Benalaxyl decreased with half-life of 16.1 days in soil under tap water irrigation with preferential residue of S-benalaxyl. Benalaxyl acid was formed with great preference of R-enantiomer before 21 days while enriched in S-enantiomer afterwards. The degradation of benalaxyl was restrained by both wastewater and treated wastewater irrigation, but the enantioselectivity in S-benalaxyl residue was enhanced. Benalaxyl acid was also formed with similar enantioselectivity as in tap water irrigation. Sewage sludge could accelerate benalaxyl degradation with shorter half-life. Surprisingly, the enantioselectivity with preference degradation of S-enantiomer in sewage sludge was opposite to that in soil. More benalaxyl acid was generated with EF values always lower than 0.5 and remained longer in sewage sludge than in soil. A sterilization experiment indicated that the conversion of benalaxyl to benalaxyl acid and the enantioselectivity were determined by the microorganisms in soil or sewage sludge. Farming practices like wastewater irrigation and sewage sludge application might not only influence the fate of pesticide, but also the enantioselectivity of chiral pesticide enantiomers and thus the risks of pesticide residues posed to the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Aerobic granular sludge: a promising technology for decentralised wastewater treatment.

    PubMed

    Li, Z H; Kuba, T; Kusuda, T

    2006-01-01

    In order to evaluate the characteristics of aerobic granular sludge, a sequencing batch reactor, feeding with synthetic wastewater at the organic loading rate of 8 kg COD/m3 d, was employed on the laboratory scale. Granules occurred in the reactor within 1 week after the inoculation from conventional flocculent sludge. Aerobic granular sludge was characterised by the outstanding settling properties and considerable contaminates removal efficiencies. The SVI30 values were in the range of 20 to 40 ml g(-1). However, the sludge volume index of short settling time (e.g. SVI10--10 min) is suggested to describe the fast settling properties of aerobic granular sludge. The potential application in the decentralised system is evaluated from the point view of footprint and high bioactivity. The occurrence of sloughing, resulting from the outgrowth of filamentous organisms, would be responsible for the instability of aerobic granules. The starvation phase should therefore be carefully controlled for the maintenance and stability of aerobic granular sludge system.

  13. Pretreatment of microbial sludges

    DOEpatents

    Rivard, Christopher J.; Nagle, Nicholas J.

    1995-01-01

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  14. Pretreatment of microbial sludges

    DOEpatents

    Rivard, C.J.; Nagle, N.J.

    1995-01-10

    Methods are described for pretreating microbial sludges to break cells and disrupt organic matter. One method involves the use of sonication, and another method involves the use of shear forces. The pretreatment of sludge enhances bioconversion of the organic fraction. This allows for efficient dewatering of the sludge and reduces the cost for final disposal of the waste.

  15. Heavy metal extractable forms in sludge from wastewater treatment plants.

    PubMed

    Alvarez, E Alonso; Mochón, M Callejón; Jiménez Sánchez, J C; Ternero Rodríguez, M

    2002-05-01

    The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is widely accepted that the determination of total elements does not give an accurate estimation of the potential environmental impact. So, it is necessary to apply sequential extraction techniques to obtain a suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the BCR's guidelines was applied to sludge samples collected from each sludge treatment step of five municipal activated sludge plants. Al. Cd, Co, Cu, Cr, Fe, Mn, Hg, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes none of metal concentrations exceeded maximum permitted levels. In most of the metal elements under considerations, results showed a clear rise along the sludge treatment in the proportion of two less-available fractions (oxidizable metal and residual metal).

  16. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources.

    PubMed

    Cho, Sunja; Lee, Nakyeong; Park, Seonghwan; Yu, Jaecheul; Luong, Thanh Thao; Oh, You-Kwan; Lee, Taeho

    2013-03-01

    In order to reduce input cost for microalgal cultivation, we investigated the feasibility of wastewater taken from a municipal WWTP in Busan, Korea as wastewater nutrients. The wastewaters used in this study were the effluent from a primary settling tank (PS), the effluent from an anaerobic digestion tank (AD), the conflux of wastewaters rejected from sludge-concentrate tanks and dewatering facilities (CR), and two combined wastewaters of AD:PS (10:90, v/v) and AD:CR (10:90, v/v). Chlorella sp. ADE5, which was isolated from the AD, was selected for the feasibility test. The highest biomass production (3.01 g-dry cell weight per liter) of the isolate was obtained with the combined wastewater ADCR, and it was 1.72 times higher than that with BG 11 medium. Interestingly, the cells cultivated with wastewater containing PS wastewater were easily separated from the culture and improved lipid content, especially oleic acid content, in their cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Environmental performance of wastewater reuse systems: impact of system boundaries and external conditions.

    PubMed

    Baresel, Christian; Dalgren, Lena; Almemark, Mats; Lazic, Aleksandra

    2016-01-01

    Wastewater reclamation will be a significant part of future water management and the environmental assessment of various treatment systems to reuse wastewater has become an important research field. The secondary treatment process and sludge handling on-site are, especially, electricity demanding processes due to aeration, pumping, mixing, dewatering, etc. used for operation and are being identified as the main contributor for many environmental impacts. This study discusses how the environmental performance of reuse treatment systems may be influenced by surrounding conditions. This article illustrates and discusses the importance of factors commonly treated as externalities and as such not being included in optimization strategies of reuse systems, but that are necessary to environmentally assess wastewater reclamation systems. This is illustrated by two up-stream and downstream processes; electricity supply and the use of sludge as fertilizer commonly practiced in regions considered for wastewater reclamation. The study shows that external conditions can have a larger impact on the overall environmental performance of reuse treatment systems than internal optimizations could compensate for. These results imply that a more holistic environmental assessment of reuse schemes could provide less environmental impacts as externalities could be included in measures to reduce the overall impacts.

  18. Sewage sludge conditioning with the application of ash from biomass-fired power plant

    NASA Astrophysics Data System (ADS)

    Wójcik, Marta; Stachowicz, Feliks; Masłoń, Adam

    2018-02-01

    During biomass combustion, there are formed combustion products. Available data indicates that only 29.1 % of biomass ashes were recycled in Poland in 2013. Chemical composition and sorptive properties of ashes enable their application in the sewage sludge treatment. This paper analyses the impact of ashes from biomass-combustion power plant on sewage sludge dewatering and higienisation. The results obtained in laboratory tests proved the possitive impact of biomass ashes on sewage sludge hydration reduction after dewatering and the increase of filtrate volume. After sludge conditioning with the use of biomass combustion by-products, the final moisture content decreased by approximatelly 10÷25 % in comparison with raw sewage sludge depending on the method of dewatering. The application of biomass combustion products in sewage sludge management could provide an alternative method of their utilization according to law and environmental requirements.

  19. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics.

    PubMed

    Zhang, Peng; Shen, Yu; Guo, Jin-Song; Li, Chun; Wang, Han; Chen, You-Peng; Yan, Peng; Yang, Ji-Xiang; Fang, Fang

    2015-07-10

    In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activity and binding activity. The results exhibited that the main roles of extracellular proteins in activated sludges were multivalence cations and organic molecules binding, as well as in catalysis and degradation. The catalytic activity proteins were more widespread in anaerobic sludge compared with those in anoxic and aerobic sludges. The structure difference between anaerobic and aerobic sludges could be associated with their catalytic activities proteins. The results also put forward a relation between the macro characteristics of activated sludges and micro functions of extracellular proteins in biological wastewater treatment process.

  20. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.

  1. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  2. Gas composition of sludge residue profiles in a sludge treatment reed bed between loadings.

    PubMed

    Larsen, Julie D; Nielsen, Steen M; Scheutz, Charlotte

    2017-11-01

    Treatment of sludge in sludge treatment reed bed systems includes dewatering and mineralization. The mineralization process, which is driven by microorganisms, produces different gas species as by-products. The pore space composition of the gas species provides useful information on the biological processes occurring in the sludge residue. In this study, we measured the change in composition of gas species in the pore space at different depth levels in vertical sludge residue profiles during a resting period of 32 days. The gas composition of the pore space in the sludge residue changed during the resting period. As the resting period proceeded, atmospheric air re-entered the pore space at all depth levels. The methane (CH 4 ) concentration was at its highest during the first part of the resting period, and then declined as the sludge residue became more dewatered and thereby aerated. In the pore space, the concentration of CH 4 often exceeded the concentration of carbon dioxide (CO 2 ). However, the total emission of CO 2 from the surface of the sludge residue exceeded the total emission of CH 4 , suggesting that CO 2 was mainly produced in the layer of newly applied sludge and/or that CO 2 was emitted from the sludge residue more readily compared to CH 4 .

  3. [Method for Simultaneous Determination of 11 Veterinary Antibiotics in Piggery Wastewater and Sludge and Its Application in Biological Treatment].

    PubMed

    Ding, Jia-li; Liu, Rui; Zheng, Wei; Yu, Wei-juan; Ye, Zhao-xia; Chen, Lu-jun; Zhang, Yong-ming

    2015-10-01

    In order to determine eleven commonly used veterinary antibiotics (including four tetracyclines, two sulfonamides, three quinolones and two macrolides) in piggery wastewater and activated sludge in the Yangtze River Delta region, the conditions of solid phase extraction and high performance liquid chromatography-tandem mass spectrometry were optimized. The recovery rate and relative standard deviations of the method were confirmed as 73% - 105.2%, 3.1% - 10.2% for piggery wastewater (n = 3) and 57.4% - 104.6%, 1.9% - 10.9% (n = 3) respectively for the activated sludge. Removal of antibiotics was then studied in a membrane bioreactor. The results showed that antibiotics of both tetracycline and sulfonamide species took a large portion in the wastewater, while tetracycline species were the dominant in the sludge. Tetracycline species in the wastewater were removed by 85.2%, mainly through biodegradation (51.9%) and secondly by sludge adsorption (33.2%). By comparison, sulfonamide species was removed by 95.8%, almost all through biodegradation while little by sludge adsorption. Flask tests suggested that the accumulated antibiotics in the sludge give no significant influence on the microbial removal of organics and ammonium.

  4. Performance Evaluation of Existing Wedgewater and Vacuum-Assisted Bed Dewatering Systems

    DTIC Science & Technology

    1992-01-01

    prior to dewatering by the wedgewater method. Of the 20 satisfied users, 11 preferred aerobic digestion , two employed anaerobic digestion, and seven...did not further process their sludge. Of the seven dissatisfied users, four used aerobic digestion and three employed anaerobic digestion. A meelic...queried, 11 employed aerobic digestion , two employed anaerobic digestion, and three did not process their sludge. Eight dissatisfied users employed

  5. Critical operational parameters for zero sludge production in biological wastewater treatment processes combined with sludge disintegration.

    PubMed

    Yoon, Seong-Hoon; Lee, Sangho

    2005-09-01

    Mathematical models were developed to elucidate the relationships among process control parameters and the effect of these parameters on the performance of anoxic/oxic biological wastewater processes combined with sludge disintegrators (A/O-SD). The model equations were also applied for analyses of activated sludge processes hybrid with sludge disintegrators (AS-SD). Solubilization ratio of sludge in the sludge disintegrator, alpha, hardly affected sludge reduction efficiencies if the biomass was completely destructed to smaller particulates. On the other hand, conversion efficiency of non-biodegradable particulates to biodegradable particulates, beta, significantly affected sludge reduction efficiencies because beta was directly related to the accumulation of non-biodegradable particulates in bioreactors. When 30% of sludge in the oxic tank was disintegrated everyday and beta was 0.5, sludge reduction was expected to be 78% and 69% for the A/O-SD and AS-SD processes, respectively. Under this condition, the sludge disintegration number (SDN), which is the amount of sludge disintegrated divided by the reduced sludge, was calculated to be around 4. Due to the sludge disintegration, live biomass concentration decreased while other non-biodegradable particulates concentration increased. As a consequence, the real F/M ratio was expected to be much higher than the apparent F/M. The effluent COD was maintained almost constant for the range of sludge disintegration rate considered in this study. Nitrogen removal efficiencies of the A/O-SD process was hardly affected by the sludge disintegration until daily sludge disintegration reaches 40% of sludge in the oxic tank. Above this level of sludge disintegration, autotrophic biomass concentration decreases overly and TKN in the effluent increases abruptly in both the A/O-SD and AS-SD processes. Overall, the trends of sludge reduction and effluent quality according to operation parameters matched well with experimental results

  6. Occurrence, distribution, and potential influencing factors of sewage sludge components derived from nine full-scale wastewater treatment plants of Beijing, China.

    PubMed

    Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui

    2016-07-01

    Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge. Copyright © 2016. Published by Elsevier B.V.

  7. Ultrasound assisted biogas production from co-digestion of wastewater sludges and agricultural wastes: Comparison with microwave pre-treatment.

    PubMed

    Aylin Alagöz, B; Yenigün, Orhan; Erdinçler, Ayşen

    2018-01-01

    This study investigates the effect of ultrasonication and microwave sludge disintegration/pre-treatment techniques on the anaerobic co-digestion efficiency of wastewater sludges with olive and grape pomaces. The effects of both co-digestion and sludge pre-treatment techniques were evaluated in terms of the organic removal efficiency and the biogas production. The "co-digestion" of wastewater sludge with both types of pomaces was revealed to be a much more efficient way for the biogas production compared to the single (mono) sludge digestion. The ultrasonication and microwave pre-treatments applied to the sludge samples caused to a further increase in biogas and methane yields. Based on applied specific energies, ultrasonication pre-treatment was found much more effective than microwave irradiation. The specific energy applied in microwave pre-treatment (87,000kj/kgTS) was almost 9 times higher than that of used in ultrasonication (10,000kj/kgTS), resulting only 10-15% increases in biogas/methane yield. Co-digestion of winery and olive industry residues with pre-treated wastewater sludges appears to be a suitable technique for waste management and energy production. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Dynamic modeling of sludge compaction and consolidation processes in wastewater secondary settling tanks.

    PubMed

    Abusam, A; Keesman, K J

    2009-01-01

    The double exponential settling model is the widely accepted model for wastewater secondary settling tanks. However, this model does not estimate accurately solids concentrations in the settler underflow stream, mainly because sludge compression and consolidation processes are not considered. In activated sludge systems, accurate estimation of the solids in the underflow stream will facilitate the calibration process and can lead to correct estimates of particularly kinetic parameters related to biomass growth. Using principles of compaction and consolidation, as in soil mechanics, a dynamic model of the sludge consolidation processes taking place in the secondary settling tanks is developed and incorporated to the commonly used double exponential settling model. The modified double exponential model is calibrated and validated using data obtained from a full-scale wastewater treatment plant. Good agreement between predicted and measured data confirmed the validity of the modified model.

  9. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    EPA Science Inventory

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  10. Effects of 4-chlorophenol wastewater treatment on sludge acute toxicity, microbial diversity and functional genes expression in an activated sludge process.

    PubMed

    Zhao, Jianguo; Li, Yahe; Li, Yu; Yu, Zeya; Chen, Xiurong

    2018-05-31

    In this study, the effects of 4-chlorophenol (4-CP) wastewater treatment on sludge acute toxicity of luminescent bacteria, microbial diversity and functional genes expression of Pseudomonas were explored. Results showed that in the entire operational process, the sludge acute toxicity acclimated by 4-CP in a sequencing batch bioreactor (SBR) was significantly higher than the control SBR without 4-CP. The dominant phyla in acclimated SBR were Proteobacteria and Firmicutes, which also existed in control SBR. Some identified genera in acclimated SBR were responsible for 4-CP degradation. At the stable operational stages, the functional genes expression of Pseudomonas in acclimated SBR was down-regulated at the end of SBR cycle, and their expression mechanisms needed further research. This study provides a theoretical support to comprehensively understand the sludge performance in industrial wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Towards better environmental performance of wastewater sludge treatment using endpoint approach in LCA methodology.

    PubMed

    Alyaseri, Isam; Zhou, Jianpeng

    2017-03-01

    The aim of this study is to use the life cycle assessment method to measure the environmental performance of the sludge incineration process in a wastewater treatment plant and to propose an alternative that can reduce the environmental impact. To show the damages caused by the treatment processes, the study aimed to use an endpoint approach in evaluating impacts on human health, ecosystem quality, and resources due to the processes. A case study was taken at Bissell Point Wastewater Treatment Plant in Saint Louis, Missouri, U.S. The plant-specific data along with literature data from technical publications were used to build an inventory, and then analyzed the environmental burdens from sludge handling unit in the year 2011. The impact assessment method chosen was ReCipe 2008. The existing scenario (dewatering-multiple hearth incineration-ash to landfill) was evaluated and three alternative scenarios (fluid bed incineration and anaerobic digestion with and without land application) with energy recovery from heat or biogas were proposed and analyzed to find the one with the least environmental impact. The existing scenario shows that the most significant impacts are related to depletion in resources and damage to human health. These impacts mainly came from the operation phase (electricity and fuel consumption and emissions related to combustion). Alternatives showed better performance than the existing scenario. Using ReCipe endpoint methodology, and among the three alternatives tested, the anaerobic digestion had the best overall environmental performance. It is recommended to convert to fluid bed incineration if the concerns were more about human health or to anaerobic digestion if the concerns were more about depletion in resources. The endpoint approach may simplify the outcomes of this study as follows: if the plant is converted to fluid bed incineration, it could prevent an average of 43.2 DALYs in human life, save 0.059 species in the area from extinction

  12. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.

    PubMed

    Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J

    2015-09-09

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.

  13. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  14. Use of wastewater sludge on highway rights-of-way : phase II.

    DOT National Transportation Integrated Search

    1976-01-01

    The feasibility of using wastewater sludge on highway rights-of-way as a substitute for fertilizers was evaluated using the following constraints- (1) environmental restrictions; (2) public health restrictions; (3) programs that must be implemented t...

  15. Optimizing dewaterability of drinking water treatment sludge by ultrasound treatment: Correlations to sludge physicochemical properties.

    PubMed

    Meng, Zhili; Zhou, Zhiwei; Zheng, Dan; Liu, Lujian; Dong, Jun; Yang, Yanling; Li, Xing; Zhang, Tingting

    2018-07-01

    Sludge dewatering has proven to be an effective method to reduce the volume of sludge. In this study, drinking water treatment sludge (DWTS) was treated by ultra-sonication under variable conditions comparing two sonoreactor types (bath and probe), four frequencies (25, 40, 68, 160 kHz) and four energy density levels (0.03, 1, 3, 5 W/mL). The effects of these conditions were studied using specific resistance to filtration and capillary suction time as measures of dewaterability, and floc size, the Brunauer, Emmett and Teller (BET) specific surface area and Zeta potential to determine treated sludge characteristics. The results indicated that the dewaterability of sonicated sludge improved at relatively low energy densities of 0.03 and 1.0 W/mL, while an optimum for sonication duration (within 10 min) was also identified. Higher frequencies (tested up to 160 kHz) with acoustic energy density of 0.03 W/mL also reduced the dewatering property. At higher energy densities of 3.0 and 5.0 W/mL, dewaterability of sludge deteriorated regardless of ultra-sonication time, with an increase of solubilized organic matter content and severely changed floc characteristics. The deterioration of the dewatering capacity was closely related to the considerably reduced floc sizes, dissolution of proteins and polysaccharides, and to the Zeta potential of sonicated sludge flocs. The dewaterability was not correlated with BET specific surface area. Mechanistic explanations for the observations were discussed by analyzing corrosion patterns of aluminum foil as a measure for cavitation field distribution. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Cost comparison of centralized and decentralized wastewater management systems using optimization model.

    PubMed

    Jung, Youngmee Tiffany; Narayanan, N C; Cheng, Yu-Ling

    2018-05-01

    There is a growing interest in decentralized wastewater management (DWWM) as a potential alternative to centralized wastewater management (CWWM) in developing countries. However, the comparative cost of CWWM and DWWM is not well understood. In this study, the cost of cluster-type DWWM is simulated and compared to the cost of CWWM in Alibag, India. A three-step model is built to simulate a broad range of potential DWWM configurations with varying number and layout of cluster subsystems. The considered DWWM scheme consists of cluster subsystems, that each uses simplified sewer and DEWATS (Decentralized Wastewater Treatment Systems). We consider CWWM that uses conventional sewer and an activated sludge plant. The results show that the cost of DWWM can vary significantly with the number and layout of the comprising cluster subsystems. The cost of DWWM increased nonlinearly with increasing number of comprising clusters, mainly due to the loss in the economies of scale for DEWATS. For configurations with the same number of comprising cluster subsystems, the cost of DWWM varied by ±5% around the mean, depending on the layout of the cluster subsystems. In comparison to CWWM, DWWM was of lower cost than CWWM when configured with fewer than 16 clusters in Alibag, with significantly less operation and maintenance requirement, but with higher capital and land requirement for construction. The study demonstrates that cluster-type DWWM using simplified sewer and DEWATS may be a cost-competitive alternative to CWWM, when carefully configured to lower the cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Toluene in sewage and sludge in wastewater treatment plants.

    PubMed

    Mrowiec, Bozena

    2014-01-01

    Toluene is a compound that often occurs in municipal wastewater ranging from detectable levels up to 237 μg/L. Before the year 2000, the presence of the aromatic hydrocarbons was assigned only to external sources. The Enhanced Biological Nutrients Removal Processes (EBNRP) work according to many different schemes and technologies. For high-efficiency biological denitrification and dephosphatation processes, the presence of volatile fatty acids (VFAs) in sewage is required. VFAs are the main product of organic matter hydrolysis from sewage sludge. However, no attention has been given to other products of the process. It has been found that in parallel to VFA production, toluene formation occurred. The formation of toluene in municipal anaerobic sludge digestion processes was investigated. Experiments were performed on a laboratory scale using sludge from primary and secondary settling tanks of municipal treatment plants. The concentration of toluene in the digested sludge from primary settling tanks was found to be about 42,000 μg/L. The digested sludge supernatant liquor returned to the biological dephosphatation and denitrification processes for sewage enrichment can contain up to 16,500 μg/L of toluene.

  18. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.

    PubMed

    Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza

    2010-01-01

    The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.

  19. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    PubMed

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS 2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Biochar Production from Domestic Sludge: A Cost-effective, Recycled Product for Removal of Amoxicillin in Wastewater

    NASA Astrophysics Data System (ADS)

    Arun, Sija; Kothari, Kaushal; Mazumdar, Debayan; Mukhopadhyay, Moitraiyee; Chakraborty, Paromita

    2017-08-01

    Due to the broad spectrum, antimicrobial activity, Amoxicillin is one of the extensively used antibiotics. Amoxicillin ends up in the wastewater stream by direct or indirect disposal pathways which ultimately affect the aquatic ecosystem. Conventional wastewater treatment plant cannot remove it completely. Hence our objective was to produce sludge derived biochar and use it as an adsorbent for removal of amoxicillin. Effective biochar was obtained at 300°C produced from the sludge of the domestic wastewater treatment plant. 100 ppm amoxicillin solution spiked in biochar was kept for 180 mins in an orbital shaker and every 30 minutes the filtrate was checked in UV spectrophotometer. A steady decreasing gradient was obtained for absorbance of amoxicillin after 30 minutes. Further scanning electron microscopy showed significant morphological change in biochar obtained before and after spiking amoxicillin. Our preliminary assessment suggests that biochar can be exploited as an effective treatment technique to remove amoxicillin from wastewater. Moreover, we suggest that utilization of domestic sludge for commercial application in treatment plants can reduce the load of domestic waste in the open dumpsites.

  1. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant.

    PubMed

    Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T

    2004-12-01

    Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.

  2. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration.

    PubMed

    Lin, Xiaoqing; Li, Xiaodong; Lu, Shengyong; Wang, Fei; Chen, Tong; Yan, Jianhua

    2015-10-01

    Flocculants are widely used to improve the properties of sludge dewatering in industrial wastewater treatment. However, there have been no studies conducted on the influence of flocculants on the formation of polychlorinated dibenzo-p-dioxin and dibenzofurans (PCDD/Fs) during sewage sludge incineration. This paper selected three typical kinds of flocculants, including polyacrylamide (PAM), poly-ferric chloride (PFC), and polyaluminum chloride (PAC) flocculant, to study their influences on the formation of PCDD/Fs during sewage sludge incineration. The results indicated that PAM flocculant, which is an organic flocculant, inhibited the formation of PCDD/Fs in sewage sludge incineration, while inorganic flocculant, such as PFC and PAC flocculant, promoted the formation. The most probable explanation is that the amino content in the PAM flocculant acted as an inhibitor in the formation of PCDD/Fs, while the chlorine content, especially the metal catalyst in the PFC and PAC flocculants, increased the formation rate. The addition of flocculants nearly did not change the distribution of PCDD/F homologues. The PCDFs contributed the most toxic equivalent (TEQ) value, especially 2, 3, 4, 7, 8-PeCDF. Therefore, the use of inorganic flocculants in industrial wastewater treatment should be further assessed and possibly needs to be strictly regulated if the sludge is incinerated. From this aspect, a priority to the use of organic flocculants should be given.

  3. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    PubMed

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  4. Improvement of activated sludge dewaterability by humus soil induced bioflocculation.

    PubMed

    Choi, Young-Gyun; Kim, Seong-Hong; Kim, Hee-Jun; Kim, Gyu Dong; Chung, Tai-Hak

    2004-01-01

    Effects of humus soil particles on the dewaterability of activated sludge were investigated. Cations leaching increased proportionally with the dosage of humus soil, and the leaching was not significant after 2 h. Divalent cations, Ca2+ and Mg2+, leaching from the humus soil played an important role in improving dewaterability of the biological sludge. On the contrary, dewaterability was not affected or slightly deteriorated by the monovalent cations, K+ and Na+ leached from the humus soil. Improvement in dewaterability of the sludge by addition of humus soil was higher than that of equivalent cations mixture. It seemed that the decrease of supracolloidal bio-particles (1 to 100 microm in diameter) resulted in diminishing of the blinding effect on cake and filter medium. SRF (specific resistance to filtration) of the humus soil added sludge varied in parallel with the M/D (monovalent to divalent cation) ratio, and the M/D ratio could be utilized as a useful tool for evaluation of the sludge dewatering characteristics. Long-term effects of humus soil on the improvement of activated sludge dewaterability were clearly identified by continuous operation results of a bench-scale MLE (Modified Ludzack Ettinger) system combined with a humus soil contactor. On the other hand, dewaterability of the control sludge was only slightly improved by a decrease in M/D ratio of the wastewater influent.

  5. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  6. Human Enteropathogen Load in Activated Sewage Sludge and Corresponding Sewage Sludge End Products▿

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Miraflor, Allen

    2007-01-01

    This study demonstrated a significant reduction in the concentrations of Cryptosporidium parvum and Cryptosporidium hominis oocysts, Giardia lamblia cysts, and spores of human-virulent microsporidia in dewatered and biologically stabilized sewage sludge cake end products compared to those of the respective pathogens in the corresponding samples collected during the sludge activation process. PMID:17277215

  7. Technical, economic and environmental assessment of sludge treatment wetlands.

    PubMed

    Uggetti, Enrica; Ferrer, Ivet; Molist, Jordi; García, Joan

    2011-01-01

    Sludge treatment wetlands (STW) emerge as a promising sustainable technology with low energy requirements and operational costs. In this study, technical, economic and environmental aspects of STW are investigated and compared with other alternatives for sludge management in small communities (<2000 population equivalent). The performance of full-scale STW was characterised during 2 years. Sludge dewatering increased total solids (TS) concentration by 25%, while sludge biodegradation lead to volatile solids around 45% TS and DRI(24h) between 1.1 and 1.4 gO(2)/kgTS h, suggesting a partial stabilisation of biosolids. In the economic and environmental assessment, four scenarios were considered for comparison: 1) STW with direct land application of biosolids, 2) STW with compost post-treatment, 3) centrifuge with compost post-treatment and 4) sludge transport to an intensive wastewater treatment plant. According to the results, STW with direct land application is the most cost-effective scenario, which is also characterised by the lowest environmental impact. The life cycle assessment highlights that global warming is a significant impact category in all scenarios, which is attributed to fossil fuel and electricity consumption; while greenhouse gas emissions from STW are insignificant. As a conclusion, STW are the most appropriate alternative for decentralised sludge management in small communities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Direct quantification of bacterial biomass in influent, effluent and activated sludge of wastewater treatment plants by using flow cytometry.

    PubMed

    Foladori, P; Bruni, L; Tamburini, S; Ziglio, G

    2010-07-01

    A rapid multi-step procedure, potentially amenable to automation, was proposed for quantifying viable and active bacterial cells, estimating their biovolume using flow cytometry (FCM) and to calculate their biomass within the main stages of a wastewater treatment plant: raw wastewater, settled wastewater, activated sludge and effluent. Fluorescent staining of bacteria using SYBR-Green I + Propidium Iodide (to discriminate cell integrity or permeabilisation) and BCECF-AM (to identify enzymatic activity) was applied to count bacterial cells by FCM. A recently developed specific procedure was applied to convert Forward Angle Light Scatter measured by FCM into the corresponding bacterial biovolume. This conversion permits the calculation of the viable and active bacterial biomass in wastewater, activated sludge and effluent, expressed as Volatile Suspended Solids (VSS) or particulate Chemical Oxygen Demand (COD). Viable bacterial biomass represented only a small part of particulate COD in raw wastewater (4.8 +/- 2.4%), settled wastewater (10.7 +/- 3.1%), activated sludge (11.1 +/- 2.1%) and effluent (3.2 +/- 2.2%). Active bacterial biomass counted for a percentage of 30-47% of the viable bacterial biomass within the stages of the wastewater treatment plant. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    PubMed

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    PubMed

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  12. Bacterial pathogen indicators regrowth and reduced sulphur compounds' emissions during storage of electro-dewatered biosolids.

    PubMed

    Navab-Daneshmand, Tala; Enayet, Samia; Gehr, Ronald; Frigon, Dominic

    2014-10-01

    Electro-dewatering (ED) increases biosolids dryness from 10-15 to 30-50%, which helps wastewater treatment facilities control disposal costs. Previous work showed that high temperatures due to Joule heating during ED inactivate total coliforms to meet USEPA Class A biosolids requirements. This allows biosolids land application if the requirements are still met after the storage period between production and application. In this study, we examined bacterial regrowth and odour emissions during the storage of ED biosolids. No regrowth of total coliforms was observed in ED biosolids over 7d under aerobic or anaerobic incubations. To mimic on-site contamination during storage or transport, ED samples were seeded with untreated sludge. Total coliform counts decreased to detection limits after 4d in inoculated samples. Olfactometric analysis of ED biosolids odours showed that odour concentrations were lower compared to the untreated and heat-treated control biosolids. Furthermore, under anaerobic conditions, odorous reduced sulphur compounds (methanethiol, dimethyl sulphide and dimethyl disulphide) were produced by untreated and heat-treated biosolids, but were not detected in the headspaces above ED samples. The data demonstrate that ED provides advantages not only as a dewatering technique, but also for producing biosolids with lower microbial counts and odour levels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sewage sludge drying process integration with a waste-to-energy power plant.

    PubMed

    Bianchini, A; Bonfiglioli, L; Pellegrini, M; Saccani, C

    2015-08-01

    Dewatered sewage sludge from Waste Water Treatment Plants (WWTPs) is encountering increasing problems associated with its disposal. Several solutions have been proposed in the last years regarding energy and materials recovery from sewage sludge. Current technological solutions have relevant limits as dewatered sewage sludge is characterized by a high water content (70-75% by weight), even if mechanically treated. A Refuse Derived Fuel (RDF) with good thermal characteristics in terms of Lower Heating Value (LHV) can be obtained if dewatered sludge is further processed, for example by a thermal drying stage. Sewage sludge thermal drying is not sustainable if the power is fed by primary energy sources, but can be appealing if waste heat, recovered from other processes, is used. A suitable integration can be realized between a WWTP and a waste-to-energy (WTE) power plant through the recovery of WTE waste heat as energy source for sewage sludge drying. In this paper, the properties of sewage sludge from three different WWTPs are studied. On the basis of the results obtained, a facility for the integration of sewage sludge drying within a WTE power plant is developed. Furthermore, energy and mass balances are set up in order to evaluate the benefits brought by the described integration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Land Application of Wastewater Sludges: A National Science Foundation Student-Originated Studies Project.

    ERIC Educational Resources Information Center

    Bender, Timothy J.; Barnard, Walther M.

    1981-01-01

    Summarizes a student-originated studies project, funded by the National Science Foundation, on land application of wastewater sludges. Describes the students' proposal, research methods, and evaluation of the project. (DS)

  15. Influence of the reactant carbon-hydrogen-oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water.

    PubMed

    Gong, Miao; Zhu, Wei; Fan, Yujie; Zhang, Huiwen; Su, Ying

    2016-05-01

    The supercritical water gasification of ten different types of dewatered sewage sludges was investigated to understand the relationship between sludge properties and gasification products. Experiments were performed in a high-pressure autoclave at 400°C for 60 min. Results showed that gasification of sewage sludge in supercritical water consists mainly of a gasification reaction, a carbonization reaction and a persistent organic pollutants synthesis reaction. Changes in the reactant C/H/O composition have significant effects on the key gasification products. Total gas production increased with increasing C/H2O of the reactant. The char/coke content increased with increasing C/H ratio of the reactant. A decrease in the C/O ratio of the reactant led to a reduction in polycyclic aromatic hydrocarbon formation. This means that we can adjust the reactant C/H/O composition by adding carbon-, hydrogen-, and oxygen-containing substances such as coal, algae and H2O2 to optimize hydrogen production and to inhibit an undesired by-product formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. 75 FR 16037 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... delist) a wastewater treatment plant (WWTP) sludge filter cake (called just sludge hereinafter) generated... copper and zinc to produce a brass coating. The facility generates F006 filter cake by the dewatering of...

  17. Nitrogen removal from the saline sludge liquor by electrochemical denitrification.

    PubMed

    Xie, Z M; Li, X Y; Chan, K Y

    2006-01-01

    Sludge liquor from the sludge dewatering process has a high ammonia content. In the present study, a lab-scale electrochemical (EC) system with a pair of Ti electrode plates was used for treating the sludge centrate liquor of digested wastewater sludge with a NH4(+) - N content of around 500 mg/L. The sludge liquor had a high salinity due to seawater being used for toilet flushing in Hong Kong. The results show that the EC process is highly effective for denitrification of the saline sludge liquor. Complete nitrogen removal could be achieved within 1 hr or so. The rate of EC denitrification increased with the current intensity applied. The best current efficiency for nitrogen removal was obtained for a gap distance between the electrodes at 8 mm. Electro-chlorination was considered to be the major mechanism of EC denitrification. The formation of chlorination by-products (CBPs) appeared to be minimal with the total trihalomethanes (THM) detected at a level of 300 microg/L or lower. The power consumption for EC denitrification was around 23 kWh/kg N. Additional electro-flocculation with a pair of iron needle electrodes could enhance the flocculation and subsequent sedimentation of colloidal organics in the sludge liquor, increasing the organic removal from less than 30% to more than 70%. Therefore, the EC process including both electro-denitrification and electro-flocculation can be developed as the most cost-effective method for treatment of the saline sludge liquor.

  18. The thin-layer drying characteristics of sewage sludge by the appropriate foaming pretreatment.

    PubMed

    Wang, Hui-Ling; Yang, Zhao-Hui; Huang, Jing; Wang, Li-Ke; Gou, Cheng-Liu; Yan, Jing-Wu; Yang, Jian

    2014-01-01

    As dewatered sludge is highly viscous and sticky, the combination of foaming pretreatment and drying process seems to be an alternative method to improve the drying performance of dewatered sludge. In this study, CaO addition followed by mechanical whipping was employed for foaming the dewatered sludge. It was found that the foams were stable and the diameters of bubbles mainly ranged from 0.1 to 0.3 mm. The drying experiments were carried out in a drying oven in the convective mode. The results indicated that foamed sludge at 0.70 g/cm(3) had the best drying performance at each level of temperature, which could save 35-45% drying time to reach 20% moisture content compared with the non-foamed sludge. The drying rate of foamed sludge at 0.70 g/cm(3) was improved with the increasing of drying temperature. The impact of sample thickness on drying rate was not obvious when the sample thickness increased from 2 to 8 mm. Different mathematical models were used for the simulation of foamed sludge drying curves. The Wang and Singh model represented the drying characteristics better than other models with coefficient of determination values over 0.99.

  19. The sludge loading rate regulates the growth and release of heterotrophic bacteria resistant to six types of antibiotics in wastewater activated sludge.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.

  20. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with sequence batch reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2011-07-01

    To observe the bioleaching effect on sewage sludge dewaterability, three consecutive batch bioleaching experiments were conducted through a bioleaching bio-reactor with 700 L of working volume. Subsequently, the bioleached sludge was dewatered by using chamber filter press. The results show that the 1st batch bioleaching process can be finished within 90 hours if the aeration amount was 1.2 m3/h with the 1: 15 mixing ratio of bioleached sludge to raw sludge. The pH of sludge declines from initial 6.11 to 2.33 while ORP increased from initial -134 mV to finial 507 mV. The specific resistance to filtration (SRF) of the tested sludge was decreased from original 1.00 x 10(13) m/kg to final 0.09 x 10(13) m/kg after bioleaching. For the subsequent two batch trials, the bioleaching process can be finished in 40 hours and 46 hours, respectively. Likewise, sludge SRF is also significantly decreased to 0.19 x 10(13) m/kg and 0.36 x 10(13) m/kg if the mixing ratio of bioleached sludge to fresh sludge is 1:1 although the microbial nutrient substance dosage is reduced by 25% and 50% for 2nd, and 3rd batch experiments, respectively. The harvested bioleached sludge from three batch trails is dewatered by chamber filter press with 0.3-0.4 MPa working pressure for 2 hours. It is found that the moisture of dewatered sludge cake can be reduced to 58%, and that the dewatered sludge cake is of khaki appearance and didn't emit any offensive odor. In addition, it is also observes that sludge organic matter only changed a bit from 52.9% to 48.0%, but 58% of sludge-borne Cu and 88% of sludge-borne Zn can be removed from sludge by bioleaching process. Therefore, dual goals for sludge-borne heavy metal removal and sludge dewatering of high efficiency can be achieved simultaneously through the approach mentioned above. Therefore, bioleaching technique is of great engineering application for the treatment of sewage sludge.

  1. Technological Aspects of Waterworks Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Belkanova, M. Yu; Nikolaenko, E. V.; Gevel, D. A.

    2017-11-01

    The water yielding capacity of the sludge in water-supply network treatment facilities is determined by the water quality in a water source and its treatment technology. The paper studies the sludge of water-supply network treatment facilities formed in the conditions of low turbidity and average water colour index in the water source. Such sludge has a low water yielding capacity and is subject to conditioning. The paper shows the influence of seasonal variations of turbidity, water colour index and temperature of the feed water on the specific sludge filtration resistance. It considers the specific features of sludge formation in different settling basins influencing its water yielding capacity. It is shown that the washwater return performed at one of the blocks of the facilities increases the feed water turbidity and leads to the formation of the sludge easily susceptible to conditioning. The paper studies the following methods of the reagent sludge treatment: polyacrylamide-based flocculant treatment, joint treatment with flocculant and vermiculite filler, lime treatment. The use of vermiculite allows to reduce the required flocculant dose. The author determines optimum doses of reagents allowing to direct the sludge for further mechanical dewatering after conditioning. It is shown that, when the sludge is processed with lime, the filtrate formed at dewatering can be reused as an alkalifying agent, which will allow one to cut the costs for the acquisition of reagents.

  2. ENVIRONMENTAL REGULATIONS AND TECHNOLOGY - AUTOTHERMAL THERMOPHILIC AEROBIC DIGESTION OF MUNICIPAL WASTEWATER SLUDGE

    EPA Science Inventory

    This document describes a promising technology — autothermal thermophilic aerobic digestion — for meeting the current and proposed U.S. federal requirements for pathogen controJ and land application of municipal wastewater sludge. Autothermal thermophilic aerobic digestion, or AT...

  3. An Evaluation of Reed Bed Technology to Dewater Army Wastewater Treatment Plant Sludge

    DTIC Science & Technology

    1993-09-01

    speculated that the plants produced "root exudations" that were active against pathogens, and that the plants specifically showed an affinity for cadmium , zinc...Schwenksville, PA Topton Sewage Treatment Topton. PA Wabash WWTP Wabash . IN Wallingford Fire District #lWastewater Treatment Plant Wallingford. VT...Navy Group 06/88 Tom Severance Security 207-963-5534 Winter Harbour. ME Wabash WWTP. IN 09/91 Vincent J. Bauco 219-563-2941 20 Table 4 (Cont’d

  4. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?

    PubMed

    Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

    2013-01-01

    The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency.

  5. The sustainable utilization of malting industry wastewater biological treatment sludge

    NASA Astrophysics Data System (ADS)

    Vasilenko, T. A.; Svintsov, A. V.; Chernysh, I. V.

    2018-01-01

    The article deals with the research of using the sludge from malting industry wastewater’s biological treatment and the calcium carbonate slurry as organo-mineral fertilizing additives. The sludge, generated as a result of industrial wastewater biological treatment, is subject to dumping at solid domestic waste landfills, which has a negative impact on the environment, though its properties and composition allow using it as an organic fertilizer. The physical and chemical properties of both wastes have been studied; the recommendations concerning the optimum composition of soil mix, containing the above-mentioned components, have been provided. The phytotoxic effect on the germination capacity and sprouts of cress (Lepidium sativum), barley (Hordéum vulgáre) and oats (Avena sativa) in soil mixes has been determined. The heavy metals and arsenic contents in the sludge does not exceed the allowable level; it is also free of pathogenic flora and helminthes.

  6. Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Yuan, Xiangjuan; Qiang, Zhimin; Ben, Weiwei; Zhu, Bing; Liu, Junxin

    2014-09-01

    This work described the development, optimization and validation of an analytical method for rapid detection of multiple-class pharmaceuticals in both municipal wastewater and sludge samples based on ultrasonic solvent extraction, solid-phase extraction, and ultra high performance liquid chromatography-tandem mass spectrometry quantification. The results indicated that the developed method could effectively extract all the target pharmaceuticals (25) in a single process and analyze them within 24min. The recoveries of the target pharmaceuticals were in the range of 69%-131% for wastewater and 54%-130% for sludge at different spiked concentration levels. The method quantification limits in wastewater and sludge ranged from 0.02 to 0.73ng/L and from 0.02 to 1.00μg/kg, respectively. Subsequently, this method was validated and applied for residual pharmaceutical analysis in a wastewater treatment plant located in Beijing, China. All the target pharmaceuticals were detected in the influent samples with concentrations varying from 0.09ng/L (tiamulin) to 15.24μg/L (caffeine); meanwhile, up to 23 pharmaceuticals were detected in sludge samples with concentrations varying from 60ng/kg (sulfamethizole) to 8.55mg/kg (ofloxacin). The developed method demonstrated its selectivity, sensitivity, and reliability for detecting multiple-class pharmaceuticals in complex matrices such as municipal wastewater and sludge. Copyright © 2014. Published by Elsevier B.V.

  7. Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan.

    PubMed

    Hong, Jinglan; Hong, Jingmin; Otaki, Masahiro; Jolliet, Olivier

    2009-02-01

    Life cycle assessment for sewage sludge treatment was carried out by estimating the environmental and economic impacts of the six alternative scenarios most often used in Japan: dewatering, composting, drying, incineration, incinerated ash melting and dewatered sludge melting, each with or without digestion. Three end-of-life treatments were also studied: landfilling, agricultural application and building material application. The results demonstrate that sewage sludge digestion can reduce the environmental load and cost through reduced dry matter volume. The global warming potential (GWP) generated from incineration and melting processes can be significantly reduced through the reuse of waste heat for electricity and/or heat generation. Equipment production in scenarios except dewatering has an important effect on GWP, whereas the contribution of construction is negligible. In addition, the results show that the dewatering scenario has the highest impact on land use and cost, the drying scenario has the highest impact on GWP and acidification, and the incinerated ash melting scenario has the highest impact on human toxicity due to re-emissions of heavy metals from incinerated ash in the melting unit process. On the contrary, the dewatering, composting and incineration scenarios generate the lowest impact on human toxicity, land use and acidification, respectively, and the incinerated ash melting scenario has the lowest impact on GWP and cost. Heavy metals released from atmospheric effluents generated the highest human toxicity impact, with the effect of dioxin emissions being significantly lower. This study proved that the dewatered sludge melting scenario is an environmentally optimal and economically affordable method.

  8. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time.

    PubMed

    Amanatidou, Elisavet; Samiotis, Georgios; Trikoilidou, Eleni; Pekridis, George; Taousanidis, Nikolaos

    2015-02-01

    Zero net sludge growth can be achieved by complete retention of solids in activated sludge wastewater treatment, especially in high strength and biodegradable wastewaters. When increasing the solids retention time, MLSS and MLVSS concentrations reach a plateau phase and observed growth yields values tend to zero (Yobs ≈ 0). In this work, in order to evaluate sedimentation problems arised due to high MLSS concentrations and complete sludge retention operational conditions, two identical innovative slaughterhouse wastewater treatment plants were studied. Measurements of wastewaters' quality characteristics, treatment plant's operational conditions, sludge microscopic analysis and state point analysis were conducted. Results have shown that low COD/Nitrogen ratios increase sludge bulking and flotation phenomena due to accidental denitrification in clarifiers. High return activated sludge rate is essential in complete retention systems as it reduces sludge condensation and hydraulic retention time in the clarifiers. Under certain operational conditions sludge loading rates can greatly exceed literature limit values. The presented methodology is a useful tool for estimation of sedimentation problems encountered in activated sludge wastewater treatment plants with complete retention time. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Recovery of polyhydroxyalkanoates from municipal secondary wastewater sludge.

    PubMed

    Kumar, Manish; Ghosh, Pooja; Khosla, Khushboo; Thakur, Indu Shekhar

    2018-05-01

    In the current study, the feasibility of utilizing municipal secondary wastewater sludge for Polyhydroxyalkanoate (PHA) extraction was improved by optimization of various parameters (temperature, duration and concentration of sludge solids). Optimized process parameters resulted in PHA recovery of 0.605 g, significantly higher than un-optimized conditions. The characterization of PHA was carried out by GC-MS, FT-IR and NMR ( 1 H and 13 C) spectroscopy. The PHA profile was found to be dominated by mcl PHA (58%) along with other diverse PHA. The results of the present study show rich diversity of PHA extracted from a raw material which is readily available at minimal cost. In conclusion, exploring the potential of wastes for production of bioplastics not only reduces the cost of bioplastic production, but also provides a sustainable means for waste management. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. SBR treatment of tank truck cleaning wastewater: sludge characteristics, chemical and ecotoxicological effluent quality.

    PubMed

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Geuens, Luc; Blust, Ronny; Dries, Jan

    2017-08-02

    A lab-scale activated sludge sequencing batch reactor (SBR) was used to treat tank truck cleaning (TTC) wastewater with different operational strategies (identified as different stages). The first stage was an adaptation period for the seed sludge that originated from a continuous fed industrial plant treating TTC wastewater. The first stage was followed by a dynamic reactor operation based on the oxygen uptake rate (OUR). Thirdly, dynamic SBR control based on OUR treated a daily changing influent. Lastly, the reactor was operated with a gradually shortened fixed cycle. During operation, sludge settling evolved from nearly no settling to good settling sludge in 16 days. The sludge volume index improved from 200 to 70 mL gMLSS -1 in 16 days and remained stable during the whole reactor operation. The average soluble chemical oxygen demand (sCOD) removal varied from 87.0% to 91.3% in the different stages while significant differences in the food to mass ratio were observed, varying from 0.11 (stage I) to 0.37 kgCOD.(kgMLVSS day) -1 (stage III). Effluent toxicity measurements were performed with Aliivibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata. Low sensitivity of Aliivibrio was observed. A few samples were acutely toxic for Daphnia; 50% of the tested effluent samples showed an inhibition of 100% for Pseudokirchneriella.

  11. Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants.

    PubMed

    Martí, N; Barat, R; Seco, A; Pastor, L; Bouzas, A

    2017-07-01

    Interest in phosphorus (P) recovery and reuse has increased in recent years as supplies of P are declining. After use, most of the P remains in wastewater, making Wastewater Treatment Plants (WWTPs) a vital part of P recycling. In this work, a new sludge management operation was studied by modeling in order to recover P in the form of struvite and minimize operating problems due to uncontrolled P precipitation in WWTPs. During the study, intensive analytical campaigns were carried out on the water and sludge lines. The results identified the anaerobic digester as a "hot spot" of uncontrolled P precipitation (9.5 gP/kg sludge) and highlighted possible operating problems due to the accumulation of precipitates. A new sludge line management strategy was simulated therefore using DESASS © software, consisting of the elutriation of the mixed sludge in the mixing chamber, to reduce uncontrolled P precipitation and to obtain a P-rich stream (primary thickener supernatant) to be used in a crystallization process. The key operating parameters were found to be: the elutriation flow from the mixing chamber to the primary thickener, the digestion flow and the sludge blanket height of the primary thickener, with optimized values between 70 and 80 m 3 /d, 90-100 m 3 /d and 1.4-1.5 m, respectively. Under these operating conditions, the preliminary results showed that P concentration in the primary thickener overflow significantly increased (from 38 to 100 mg PO 4 -P/L), which shows that this stream is suitable for use in a subsequent crystallization reactor to recover P in the form of struvite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterization of Domestic Wastewater Sludge in Oman from Three Different Regions and Recommendations for Alternative Reuse Applications.

    PubMed

    Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S

    2014-02-01

    There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management.

  13. Utilization of AMD sludges from the anthracite region of Pennsylvania for removal of phosphorus from wastewater

    USGS Publications Warehouse

    Sibrell, P.L.; Cravotta, C.A.; Lehman, W.G.; Reichert, W.

    2010-01-01

    Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.

  14. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Screening of different adjuvants for wastewater/wastewater sludge-based Bacillus thuringiensis formulations.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2006-08-01

    Screening of different adjuvants, namely, suspending agents, phagostimulants, stickers, antimicrobial agents, and UV screens to develop aqueous biopesticidal suspensions of Bacillus thuringiensis (Bt) variety kurstaki HD-1 fermented broths, specifically, nonhydrolyzed sludge, hydrolyzed sludge, starch industry wastewater, and soya (commercial medium), were investigated. The selected suspending agents [20% (wt:vol)] included sorbitol, sodium monophosphate, and sodium metabisulfite with corresponding suspendibility of 74-92, 69-85, and 71-82%, respectively. Molasses [0.2% (wt:vol)] increased adherence by 84-90% for all fermented broths. The optimal phagostimulants [0.5% (wt:vol)], namely, soya and molasses, caused entomotoxicity increase of 3-13 and 7-13%, respectively. Sorbic and propionic acids showed high antimicrobial action [0.5% (wt:vol)], irrespective of fermentation medium. Sodium lignosulfonate, molasses, and Congo red, when used as UV screens [0.2% (wt:vol)], showed percent corresponding entomotoxicity losses of 3-5, 0.5-5 and 2-16, respectively. The Bt formulations, when exposed to UV radiation, showed higher half-lives (with and without UV screens) than the fermented broths or semisynthetic soya medium and commercial Bt formulation. UV screen-amended nonhydrolyzed, hydrolyzed, and starch industry wastewater formulations showed 1.3-1.5-fold higher half-lives than commercial Bt formulation. Thus, the recommended formulation comprises sorbitol, sodium monophosphate, sodium metabisulfite (suspending agents); molasses, soya flour (phagostimulants); molasses and skimmed milk powder (rainfasteners); sorbic and propionic acids (antimicrobial agents) and sodium lignosulfate; and molasses and Congo red (UV screens). These waste-based Bt formulations offer better UV resistance in comparison with commercial formulation.

  16. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    PubMed

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  17. Pilot scale study on the ex situ electrokinetic removal of heavy metals from municipal wastewater sludges.

    PubMed

    Kim, Soon-Oh; Moon, Seung-Hyeon; Kim, Kyoung-Woong; Yun, Seong-Taek

    2002-11-01

    In order to remove toxic heavy metals from municipal wastewater sludges, the ex situ electrokinetic technique was studied at pilot scale. This study focused on the feasibility of the electrokinetic removal of heavy metals from sludge and the effectiveness of this technique on the variations of abiotic (physicochemical) and biotic (intracellular and extracellular) speciations of heavy metals using several analytical methods. Even though the sludge used was taken from a municipal wastewater treatment plant, the sludge contained relatively high concentrations of target metal contaminants (Cd = 6.8 mg/kg, Cr = 115.6 mg/kg, Cu = 338.7 mg/kg, and Pb = 62.8 mg/kg). The removal efficiencies of heavy metals were significantly dependent on their speciations in the sludge matrices. The electrokinetic removal efficiencies of abiotic heavy metals exceeded 70% for the mobile and weakly bound fractions, such as, the exchangeable and carbonate fractions and were lower than 35% for the strongly bound fractions, such as, the organic/sulfide and residual fractions. In the case of the biotic heavy metals, the removal efficiencies of the extracellular fractions were slightly higher than those of the intracellular fractions.

  18. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR).

    PubMed

    Yuan, Yue; Liu, Jinjin; Ma, Bin; Liu, Ye; Wang, Bo; Peng, Yongzhen

    2016-12-01

    This study presents a novel strategy to improve the removal efficiency of nitrogen and phosphorus from municipal wastewater by feeding sequencing batch reactor (SBR) with sludge alkaline fermentation products as carbon sources. The performances of two SBRs treating municipal wastewater (one was fed with sludge fermentation products; F-SBR, and the other without sludge fermentation products; B-SBR) were compared. The removal efficiencies of total nitrogen (TN) and phosphorus (PO 4 3- -P) were found to be 82.9% and 96.0% in F-SBR, while the corresponding values in B-SBR were 55.9% (TN) and -6.1% (PO 4 3- -P). Illumina MiSeq sequencing indicated that ammonium-oxidizing bacteria (Nitrosomonadaceae and Nitrosomonas) and denitrifying polyphosphate accumulating organisms (Dechloromonas) were enriched in F-SBR, which resulted in NO 2 - -N accumulation and denitrifying phosphorus removal via nitrite (DPRN). Moreover, feeding of sludge fermentation products reduced 862.1mg VSS/d of sludge in the F-SBR system (volume: 10L). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with a continuous plug flow reaction model].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng

    2011-10-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was operationally divided into six sections along the direction of the sludge movement. Ten duration of continuous operation of sludge bioleaching with Acidibacillus spp. and 1.2 m3 x h(-1) aeration amount was conducted. In this system, sludge retention time was 2.5 d, and the added amount of microbial nutritional substance was 4 g x L(-1). During sludge bioleaching, the dynamic changes of pH, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections, the moisture content and moisture evaporation rate of dewatered bioleached sludge cake obtained by chamber filter press were investigated. The results showed that the SRF of sludge significantly decreased from initial 1.50 x 10(13) m x kg(-1) to the final 0.34 x 10(13) m x kg(-1). The wasted bioleached sludge was collected and dewatered by chamber filter press under the following pressures as 0.3 MPa for 4 h (2 h for feeding sludge, 2 h for holding pressure), 3 h (1.5 h for feeding sludge, 1.5 h for holding pressure), 2 h (1 h for feeding sludge, 1 h for holding pressure), and 1 h (0.5 h for feeding sludge, 0.5 h for holding pressure). Correspondingly, the moisture of dewatered sludge was reduced to 57.9%, 59.2%, 59.6%, and 63.4% of initial moisture, respectively. Moreover, the moisture content of bioleached sludge cake was reduced to about 45% and less than 10% if the cake was placed at 25 degrees C for 15 h and 96 h, respectively. Obviously, sludge bioleaching followed by sludge dewatering using chamber filter press is a promising attractive approach for sludge half-dryness treatment in engineering application.

  20. Removal optimization of heavy metals from effluent of sludge dewatering process in oil and gas well drilling by nanofiltration.

    PubMed

    Hedayatipour, Mostafa; Jaafarzadeh, Neemat; Ahmadmoazzam, Mehdi

    2017-12-01

    Oil and gas well drilling industries discharge large volumes of contaminated wastewater produced during oil and gas exploration process. In this study, the effect of different operational variables, including temperature, pH and transmembrane pressure on process performance of a commercially available nanofiltration membrane (JCM-1812-50N, USA) for removing Ba, Ni, Cr, NaCl and TDS from produced wastewater by dewatering unit of an oil and gas well drilling industry was evaluated. In optimum experimental conditions (T = 25 °C, P = 170 psi and pH = 4) resulted from Thaguchi method, 85.3, 77.4, 58.5, 79.6 and 56.3% removal efficiencies were achieved for Ba, Ni, Cr, NaCl and TDS, respectively. Also, results from a comparison of the Schuller and Wilcox diagrams revealed that the effluent of the membrane system is usable for drinking water, irrigating and agriculture purposes. Moreover, the process effluent quality showed a scaling feature, according to Langelier saturation index and illustrated that the necessary proceedings should be taken to prevent scaling for industrial application. The nanofiltration membrane process with an acceptable recovery rate of 47.17% represented a good performance in the wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    PubMed

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge. © The Author(s) 2015.

  2. Self-heating of dried industrial tannery wastewater sludge induced by pyrophoric iron sulfides formation.

    PubMed

    Bertani, R; Biasin, A; Canu, P; Della Zassa, M; Refosco, D; Simionato, F; Zerlottin, M

    2016-03-15

    Similarly to many powders of solids, dried sludge originated from tannery wastewater may result in a self-heating process, under given circumstances. In most cases, it causes a moderate heating (reaching 70-90°C), but larger, off-design residence times in the drier, in a suboxic atmosphere, extremely reactive solids can be produced. Tannery waste contains several chemicals that mostly end up in the wastewater treatment sludge. Unexpected and uncontrolled self heating could lead to a combustion and even to environmental problems. Elaborating on previous studies, with the addition of several analytical determinations, before and after the self-heating, we attempted to formulate a mechanism for the onset of heating. We demonstrated that the system Fe/S/O has been involved in the process. We proved that the formation of small quantities of pyrophoric iron sulfides is the key. They are converted to sulfated by reaction with water and oxygen with exothermic processes. The pyrite/pyrrhotite production depends on the sludge drying process. The oxidation of sulfides to oxides and sulfates through exothermic steps, reasonably catalyzed by metals in the sludge, occurs preferentially in a moist environment. The mechanism has been proved by reproducing in the laboratory prolonged heating under anoxic/suboxic atmosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Characterization of Domestic Wastewater Sludge in Oman from Three Different Regions and Recommendations for Alternative Reuse Applications

    PubMed Central

    BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.

    2014-01-01

    Abstract Background There are more than 350 wastewater treatment plants distributed across different parts of Oman. Some of them produce large quantities of domestic sewage sludge, particularly this study focused on characterizing domestic sludge of six treatment plants that may contain various pollutants, therefore the proper management of domestic sewage sludge is essential. Methods Samples of domestic sewage sludge were collected for each month over a period of one year in 2010. Samples of retained/recycled activated sludge (RAS) and waste activated sludge (WAS) were analyzed for elec-trical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content. All tests were conducted according to the Standard Method for the Examination of Water and Wastewater. Results Monitoring ofelectrical conductivity, nitrite and nitrate, the presence of chloride, sulfate and phosphate were higher than the other anions, the phosphate was found very high in all domestic STPs. The average obtained values of the cations in both domestic RAS and WAS samples were within the Omani Standards. Conclusion The study showed the very high concentration of phosphate, it might be worth to further investigate on the sources of phosphate. Cations in both domestic RAS and WAS samples were low and suggest that the domestic sludge can be re used in agriculture. A regular maintenance should be performed to prevent any accumulation of some harmful substances which may affect the sludge quality and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26060740

  4. Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge.

    PubMed

    Wang, Dongbo; Liu, Xuran; Zeng, Guangming; Zhao, Jianwei; Liu, Yiwen; Wang, Qilin; Chen, Fei; Li, Xiaoming; Yang, Qi

    2018-03-01

    Previous investigations showed that cationic polyacrylamide (cPAM), a flocculant widely used in wastewater pretreatment and waste activated sludge dewatering, deteriorated methane production during anaerobic digestion of sludge. However, details of how cPAM affects methane production are poorly understood, hindering deep control of sludge anaerobic digestion systems. In this study, the mechanisms of cPAM affecting sludge anaerobic digestion were investigated in batch and long-term tests using either real sludge or synthetic wastewaters as the digestion substrates. Experimental results showed that the presence of cPAM not only slowed the process of anaerobic digestion but also decreased methane yield. The maximal methane yield decreased from 139.1 to 86.7 mL/g of volatile suspended solids (i.e., 1861.5 to 1187.0 mL/L) with the cPAM level increasing from 0 to 12 g/kg of total suspended solids (i.e., 0-236.7 mg/L), whereas the corresponding digestion time increased from 22 to 26 d. Mechanism explorations revealed that the addition of cPAM significantly restrained the sludge solubilization, hydrolysis, acidogenesis, and methanogenesis processes. It was found that ∼46% of cAPM was degraded in the anaerobic digestion, and the degradation products significantly affected methane production. Although the theoretically biochemical methane potential of cPAM is higher than that of protein and carbohydrate, only 6.7% of the degraded cPAM was transformed to the final product, methane. Acrylamide, acrylic acid, and polyacrylic acid were found to be the main degradation metabolites, and their amount accounted for ∼50% of the degraded cPAM. Further investigations showed that polyacrylic acid inhibited all the solubilization, hydrolysis, acidogenesis, and methanogenesis processes while acrylamide and acrylic acid inhibited the methanogenesis significantly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biogasification products of water hyacinth wastewater reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chynoweth, D.P.; Biljetina, R.; Srivastava, V.J.

    1984-01-01

    This paper describes the results of research in progress to evaluate the use of water hyacinth for wastewater treatment and subsequent conversion of hyacinth and sludge to methane by anaerobic digestion. Laboratory studies have been directed toward evaluating advanced biogasification concepts and establishing a data base for the design and operation of an experimental test unit (ETU) located at the water hyacinth wastewater treatment facility at Walt Disney World (WDW) located in Kissimmee, Florida. Laboratory-scale kinetic experiments have been conducted using continuously-stirred tank reactors (CSTR) and a novel non-mixed upflow solids reactor (USR) receiving a hyacinth/sludge blend at retention timesmore » of 15 down to 2.1 days. The data suggest that best performance is achieved in the USR which has longer solids and organism retention. A larger-scale ETU (160 cu ft) was designed and installed at WDW in 1983 and started up in 1984. The purpose of this unit is to validate laboratory experiments and to evaluate larger-scale equipment used for chopping, slurry preparation, mixing, and effluent dewatering. The ETU includes a front end designed for multiple feed processing and storage, a fully instrumented USR digester, and tanks for effluent and gas storage. The ETU is currently being operated on a 2:1 blend (dry wt basis) of water hyacinth and primary sludge. Performance is good without major operational problems. Results of laboratory studies and start-up and operation of the ETU will be presented. 7 references, 4 figures, 1 table.« less

  6. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment.

    PubMed

    Ning, Xun-An; Wen, Weibin; Zhang, Yaping; Li, Ruijing; Sun, Jian; Wang, Yujie; Yang, Zuoyi; Liu, Jingyong

    2015-09-15

    The effects of micro-electrolysis treatment on textile dyeing sludge dewatering and its mechanisms were investigated in this study. Capillary suction time (CST) and settling velocity (SV) were used to evaluate sludge dewaterability. Extracellular polymeric substances (EPS) concentration and sludge disintegration degree (DDSCOD) were determined to explain the observed changes in sludge dewaterability. The results demonstrated that the micro-electrolysis could significantly improve sludge dewaterability by disrupting the sludge floc structure. The optimal conditions of sludge dewatering were the reaction time of 20 min, initial pH of 2.5, Fe/C mass ratio of 1/1, and the iron powder dosage of 2.50 g/L, which achieved good CST (from 34.1 to 27.8 s) and SV (from 75 to 60%) reduction efficiency. In addition, the scanning electron microscope (SEM) images revealed that the treated sludge floc clusters are broken up and that the dispersion degree is better than that of a raw sludge sample. The optimal EPS concentration and DDSCOD to obtain maximum sludge dewaterability was 43-46 mg/L and 4.2-4.9%, respectively. The destruction of EPS was one of the primary reasons for the improvement of sludge dewaterability during micro-electrolysis treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    PubMed Central

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  8. EMISSIONS OF METALS, CHROMIUM AND NICKEL SPECIES, AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

    EPA Science Inventory

    In order to provide data to support regulations on municipal wastewater sludge incineration, emissions of metals, hexavalent chromium, nickel subsulfide, polychlorinated dibenzo-dioxins and furans (PCDD/PCDFs), semivolatile and volatile organic compounds, carbon monoxide (CO)...

  9. The investigation of paper mill industry wastewater treatment and activated sludge properties in a submerged membrane bioreactor.

    PubMed

    Erkan, Hanife Sari; Engin, Guleda Onkal

    2017-10-01

    The paper mill industry produces high amounts of wastewater and, for this reason, stringent discharge limits are applied for sustainable reclamation and reuse of paper mill industry wastewater in many countries. Submerged membrane bioreactor (sMBR) systems can create new opportunities to eliminate dissolved substances present in paper mill wastewater including. In this study, a sMBR was operated for the treatment of paper mill industry wastewater at 35 h of hydraulic retention time (HRT) and 40 d of sludge retention time (SRT). The chemical oxygen demand (COD), NH 3 -N and total phosphorus (TP) removal efficiencies were found to be 98%, 92.99% and 96.36%. The results demonstrated that sMBR was a suitable treatment for the removal of organic matter and nutrients for treating paper mill wastewater except for the problem of calcium accumulation. During the experimental studies, it was noted that the inorganic fraction of the sludge increased as a result of calcium accumulation in the reactor and increased membrane fouling was observed on the membrane surface due to the calcification problem encountered. The properties of the sludge, such as extracellular polymeric substances (EPS) and soluble microbial products (SMP), relative hydrophobicity, zeta potential and floc size distribution were also monitored. According to the obtained results, the total EPS was found to be 43.93 mg/gMLSS and the average total SMP rejection by the membrane was determined as 66.2%.

  10. Bacterial survival and association with sludge flocs during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions.

    PubMed Central

    Farrah, S R; Bitton, G

    1983-01-01

    The fate of indicator bacteria, a bacterial pathogen, and total aerobic bacteria during aerobic and anaerobic digestion of wastewater sludge under laboratory conditions was determined. Correlation coefficients were calculated between physical and chemical parameters (temperature, dissolved oxygen, pH, total solids, and volatile solids) and either the daily change in bacterial numbers or the percentage of bacteria in the supernatant. The major factor influencing survival of Salmonella typhimurium and indicator bacteria during aerobic digestion was the temperature of sludge digestion. At 28 degrees C with greater than 4 mg of dissolved oxygen per liter, the daily change in numbers of these bacteria was approximately -1.0 log10/ml. At 6 degrees C, the daily change was less than -0.3 log10/ml. Most of the bacteria were associated with the sludge flocs during aerobic digestion of sludge at 28 degrees C with greater than 2.4 mg of dissolved oxygen per liter. Lowering the temperature or the amount of dissolved oxygen decreased the fraction of bacteria associated with the flocs and increased the fraction found in the supernatant. PMID:6401978

  11. Spent coffee ground as a new bulking agent for accelerated biodrying of dewatered sludge.

    PubMed

    Hao, Zongdi; Yang, Benqin; Jahng, Deokjin

    2018-07-01

    The feasibility of using spent coffee ground (SCG) as a new bulking agent for biodrying of dewatered sludge (DS) was investigated in comparison with two other frequently-used bulking agents, air-dried sludge (AS) and sawdust (SD). Results showed that the moisture contents (MC) of 16-day DS biodrying with AS (Trial A), SCG (Trial B) and SD (Trial C) decreased from 70.14 wt%, 68.25 wt% and 71.63 wt% to 59.12 wt%, 41.35 wt% and 57.69 wt%, respectively. In case of Trial B, the MC rapidly decreased to 46.16 wt% with the highest water removal (70.87%) within 8 days because of the longest high-temperature period (5.8 days). Further studies indicated that the abundant biodegradable volatile solids (BVS) and high dissolved organic matter (DOM) contents in SCG were the main driving forces for water removal. According to pyrosequencing data, Firmicutes, most of which were recognized as thermophiles, was rapidly enriched on Day 8 and became the dominant phylum in Trial B. Four thermophilic genera, Bacillus, Ureibacillus, Geobacillus and Thermobifida, which can produce thermostable hydrolytic extracellular enzymes, were the most abundant in Trial B, indicating that these thermophilic bacteria evolved during the long high-temperature period enhanced the biodegradation of BVS in SCG. The 8-day biodried product of Trial B was demonstrated to be an excellent solid fuel with low heating value (LHV) of 9284 kJ kg -1 , which was 2.1 and 1.8 times those of biodried products with AS and SD, respectively. Thus SCG was found to be an excellent bulking agent accelerating DS biodrying and producing a solid fuel with a high calorific value. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Evaluation of a biological wastewater treatment system combining an OSA process with ultrasound for sludge reduction.

    PubMed

    Romero-Pareja, P M; Aragon, C A; Quiroga, J M; Coello, M D

    2017-05-01

    Sludge production is an undesirable by-product of biological wastewater treatment. The oxic-settling-anaerobic (OSA) process constitutes one of the most promising techniques for reducing the sludge produced at the treatment plant without negative consequences for its overall performance. In the present study, the OSA process is applied in combination with ultrasound treatment, a lysis technique, in a lab-scale wastewater treatment plant to assess whether sludge reduction is enhanced as a result of mechanical treatment. Reported sludge reductions of 45.72% and 78.56% were obtained for the two regimes of combined treatment tested in this study during two respective stages: UO1 and UO2. During the UO1 stage, the general performance and nutrient removal improved, obtaining 47.28% TN removal versus 21.95% in the conventional stage. However, the performance of the system was seriously damaged during the UO2 stage. Increases in dehydrogenase and protease activities were observed during both stages. The advantages of the combined process are not necessarily economic, but operational, as US treatment acts as contributing factor in the OSA process, inducing mechanisms that lead to sludge reduction in the OSA process and improving performance parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Water reduction in waste-activated sludge by resettling and filtration in batch. Phase (1): pilot-scale experiments to optimize performance.

    PubMed

    Trapote, Arturo; Jover, Margarita; Cartagena, Pablo; El Kaddouri, Marouane; Prats, Daniel

    2014-08-01

    This article describes an effective procedure for reducing the water content of excess sludge production from a wastewater treatment plant by increasing its concentration and, as a consequence, minimizing the volume of sludge to be managed. It consists of a pre-dewatering sludge process, which is used as a preliminary step or alternative to the thickening. It is made up of two discontinuous sequential stages: the first is resettling and the second, filtration through a porous medium. The process is strictly physical, without any chemical additives or electromechanical equipment intervening. The experiment was carried out in a pilot-scale system, consisting of a column of sedimentation that incorporates a filter medium. Different sludge heights were tested over the filter to verify the influence ofhydrostatic pressure on the various final concentrations of each stage. The results show that the initial sludge concentration may increase by more than 570% by the end of the process with the final volume of sludge being reduced in similar proportions and hydrostatic pressure having a limited effect on this final concentration. Moreover, the value of the hydrostatic pressure at which critical specific cake resistance is reached is established.

  14. Quantitative mapping of suspended solids in wastewater sludge plumes in the New York Bight apex

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Duedall, I. W.; Glasgow, R. M.; Proni, J. R.; Nelsen, T. A.

    1977-01-01

    The purpose of this investigation was to apply the previously reported methodology to remotely sensed data that were collected over wastewater sludge plumes in the New York Bight apex on September 22, 1975. Spectral signatures were also determined during this study. These signatures may be useful in the specific identification of sludge plumes, as opposed to other plumes such as those created by the disposal of industrial acid wastes.

  15. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization and biodegradability of sludge from a high rate A-stage contact tank and B-stage membrane bioreactor of a pilot-scale AB system treating municipal wastewaters.

    PubMed

    Trzcinski, Antoine Prandota; Ganda, Lily; Kunacheva, Chinagarn; Zhang, Dong Qing; Lin, Li Leonard; Tao, Guihe; Lee, Yingjie; Ng, Wun Jern

    2016-10-01

    In light of global warming mitigation efforts, increasing sludge disposal costs, and need for reduction in the carbon footprint of wastewater treatment plants, innovation in treatment technology has been tailored towards energy self-sufficiency. The AB process is a promising technology for achieving maximal energy recovery from wastewaters with minimum energy expenditure and therefore inherently reducing excess sludge production. Characterization of this novel sludge and its comparison with the more conventional B-stage sludge are necessary for a deeper understanding of AB treatment process design. This paper presents a case study of a pilot-scale AB system treating municipal wastewaters as well as a bio- (biochemical methane potential and adenosine tri-phosphate analysis) and physico-chemical properties (chemical oxygen demand, sludge volume index, dewaterability, calorific value, zeta potential and particle size distribution) comparison of the organic-rich A-stage against the B-stage activated sludge. Compared to the B-sludge, the A-sludge yielded 1.4 to 4.9 times more methane throughout the 62-week operation.

  17. Turf soil enhances treatment efficiency and performance of phenolic wastewater in an up-flow anaerobic sludge blanket reactor.

    PubMed

    Chen, Chunmao; Yao, Xianyang; Li, Qing X; Wang, Qinghong; Liang, Jiahao; Zhang, Simin; Ming, Jie; Liu, Zhiyuan; Deng, Jingmin; Yoza, Brandon A

    2018-08-01

    Phenols are industrially generated intermediate chemicals found in wastewaters that are considered a class of environmental priority pollutants. Up-flow anaerobic sludge blanket (UASB) reactors are used for phenolic wastewater treatment and exhibit high volume loading capability, favorable granule settling, and tolerance to impact loads. Use of support materials can promote biological productivity and accelerate start-up period of UASB. In the present study, turf soil was used as a support material in a mesophilic UASB reactor for the removal of phenols in wastewater. During sludge acclimatization (45-96 days), COD and phenols in the treatments were both reduced by 97%, whereas these contents in the controls were decreased by 81% and 75%, respectively. The phenol load threshold for the turf soil UASB reactor was greater (1200 mg/L, the equivalent of COD 3000 mg/L) in comparison with the control UASB reactor (900 mg/L, the equivalent of COD 2250 mg/L) and the turf soil UASB reactor was also more resistant to shock loading. Improved sludge settling, shear resistance, and higher biological activity occurred with the turf soil UASB reactor due to the formation of large granular sludge (0.6 mm or larger) in higher relative percentages. Granular sludge size was further enhanced by the colonization of filamentous bacteria on the irregular surface of the turf soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. A field study of lignite as a drying aid in the superheated steam drying of anaerobically digested sludge.

    PubMed

    Hoadley, A F A; Qi, Y; Nguyen, T; Hapgood, K; Desai, D; Pinches, D

    2015-10-01

    Dried sludge is preferred when the sludge is either to be incinerated or used as a soil amendment. This paper focuses on superheated steam drying which has many benefits, because the system is totally enclosed, thereby minimising odours and particulate emissions. This work reports on field trials at a wastewater treatment plant where anaerobically digested sludge is dried immediately after being dewatered by belt press. The trials showed that unlike previous off-site tests, the sludge could be dried without the addition of a filter aid at a low production rate. However, the trials also confirmed that the addition of the lignite (brown coal) into the anaerobically digested sludge led to a more productive drying process, improved product quality and a greater fraction of the product being in the desired product size range. It is concluded that these results were achieved because the lignite helped to control the granule size in the dryer. Furthermore neither Salmonella spp or E coli were detected in the dried samples. Tests on spontaneous combustion show that this risk is increased in proportion to the amount of lignite used as a drying aid. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  19. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation.

    PubMed

    Yoshizawa, Tomoya; Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2014-11-01

    Wastewater can be treated in microbial fuel cells (MFCs) with the aid of microbes that oxidize organic compounds using anodes as electron acceptors. Previous studies have suggested the utility of cassette-electrode (CE) MFCs for wastewater treatment, in which rice paddy-field soil was used as the inoculum. The present study attempted to convert an activated-sludge (AS) reactor to CE-MFC and use aerobic sludge in the tank as the source of microbes. We used laboratory-scale (1 L in capacity) reactors that were initially operated in an AS mode to treat synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and detergents. After the organics removal became stable, the aeration was terminated, and CEs were inserted to initiate an MFC-mode operation. It was demonstrated that the MFC-mode operation treated the wastewater at similar efficiencies to those observed in the AS-mode operation with COD-removal efficiencies of 75-80%, maximum power densities of 150-200 mW m(-2) and Coulombic efficiencies of 20-30%. These values were similar to those of CE-MFC inoculated with the soil. Anode microbial communities were analyzed by pyrotag sequencing of 16S rRNA gene PCR amplicons. Comparative analyses revealed that anode communities enriched from the aerobic sludge were largely different from those from the soil, suggesting that similar reactor performances can be supported by different community structures. The study demonstrates that it is possible to construct wastewater-treatment MFCs by inserting CEs into water-treatment tanks. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-02

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge.

  1. Optimization and modeling of reduction of wastewater sludge water content and turbidity removal using magnetic iron oxide nanoparticles (MION).

    PubMed

    Hwang, Jeong-Ha; Han, Dong-Woo

    2015-01-01

    Economic and rapid reduction of sludge water content in sewage wastewater is difficult and requires special advanced treatment technologies. This study focused on optimizing and modeling decreased sludge water content (Y1) and removing turbidity (Y2) with magnetic iron oxide nanoparticles (Fe3O4, MION) using a central composite design (CCD) and response surface methodology (RSM). CCD and RSM were applied to evaluate and optimize the interactive effects of mixing time (X1) and MION concentration (X2) on chemical flocculent performance. The results show that the optimum conditions were 14.1 min and 22.1 mg L(-1) for response Y1 and 16.8 min and 8.85 mg L(-1) for response Y2, respectively. The two responses were obtained experimentally under this optimal scheme and fit the model predictions well (R(2) = 97.2% for Y1 and R(2) = 96.9% for Y2). A 90.8% decrease in sludge water content and turbidity removal of 29.4% were demonstrated. These results confirm that the statistical models were reliable, and that the magnetic flocculation conditions for decreasing sludge water content and removing turbidity from sewage wastewater were appropriate. The results reveal that MION are efficient for rapid separation and are a suitable alterative to sediment sludge during the wastewater treatment process.

  2. Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea.

    PubMed

    Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam

    2014-07-01

    Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95-6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8-2.5 and 1.0-3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 μg/capita/day, followed by sucralose (117 μg/capita/day), acesulfame (90 μg/capita/day), and saccharin (66μg/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 μg/capita/day) and analgesics (acetaminophen: 59 μg/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A novel approach of anaerobic co-digestion between organic fraction of food waste and waste sludge from municipal wastewater treatment plant: Effect of mixing ratio

    NASA Astrophysics Data System (ADS)

    Nga, Dinh Thi; Ngoc, Tran Thi Minh; Van Ty, Nguyen; Thuan, Van Tan

    2017-09-01

    The aim of this study was to investigate the effect of mixing ratio of co-anaerobic digestion between dewatered waste sludge from municipal wastewater treatment plant (DS) and organic fraction of food waste (FW). The experiment was carried out in 3L reactors for 16 days at ambient temperature. Four mixing ratios of DW and FW was investigated including 100 % DS : 0 % FW (Run S100); 75% DS : 25 % FW (Run S75); 50% DS : 50% FW (Run S50); and 25% DS : 75% FW (Run S25) in term of VS concentration. As a result, the Run S50 achieved best performance among the four funs indicated in biogas accumulation of 32.48 L biogas and methane yield of 358.9 400ml CH4/g VS removal after 16 days operation at ambient temperature. Biogas accumulation of Run S25 was higher than that of Run S75. Run S100 produced the lowest of biogas of all runs. It is concluded that co-anaerobic digestion of different organic sources could enhance the performance of methane fermentation.

  4. Effect of sludge features and extraction-esterification technology on the synthesis of biodiesel from secondary wastewater treatment sludges.

    PubMed

    Patiño, Yolanda; Mantecón, Laura G; Polo, Sara; Faba, Laura; Díaz, Eva; Ordóñez, Salvador

    2018-01-01

    Secondary sludge from municipal wastewater treatment plant is proposed as a promising alternative lipid feedstock for biodiesel production. A deep study combining different type of raw materials (sludge coming from the oxic, anoxic and anaerobic steps of the biological treatment) with different technologies (liquid-liquid and solid-liquid extractions followed by acid catalysed transesterification and in situ extraction-transesterification procedure) allows a complete comparison of available technologies. Different parameters - contact time, catalyst concentration, pretreatments - were considered, obtaining more than 17% FAMEs yield after 50min of sonication with the in situ procedure and 5% of H 2 SO 4 . This result corresponds to an increment of more than 65% respect to the best results reported at typical conditions. Experimental data were used to propose a mathematical model for this process, demonstrating that the mass transfer of lipids from the sludge to the liquid is the limiting step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  6. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Díaz-Granados, José Sánchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.

  7. Hydrogen sulfide formation control and microbial competition in batch anaerobic digestion of slaughterhouse wastewater sludge: Effect of initial sludge pH.

    PubMed

    Yan, Li; Ye, Jie; Zhang, Panyue; Xu, Dong; Wu, Yan; Liu, Jianbo; Zhang, Haibo; Fang, Wei; Wang, Bei; Zeng, Guangming

    2018-07-01

    High sulfur content in excess sludge impacts the production of biomethane during anaerobic digestion, meanwhile leads to hydrogen sulfide (H 2 S) formation in biogas. Effect of initial sludge pH on H 2 S formation during batch mesophilic anaerobic digestion of slaughterhouse wastewater sludge was studied in this paper. The results demonstrated that when the initial sludge pH increased from 6.5 to 8.0, the biogas production increased by 10.1%, the methane production increased by 64.1%, while the H 2 S content in biogas decreased by 44.7%. The higher initial sludge pH inhibited the competition of sulfate-reducing bacteria with methane-producing bacteria, and thus benefitted the growth of methanogens. Positive correlation was found between the relative abundance of Desulfomicrobium and H 2 S production, as well as the relative abundance of Methanosarcina and methane production. More sulfates and organic sulfur were transferred to solid and liquid rather than H 2 S formation at a high initial pH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  9. Efficiency of autothermal thermophilic aerobic digestion and thermophilic anaerobic digestion of municipal wastewater sludge in removing Salmonella spp. and indicator bacteria.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Růziciková, H; Vránová, A

    2003-01-01

    The study is focused on the comparison of autothermal thermophilic aerobic digestion, thermophilic and mesophilic anaerobic digestion, based on long-term monitoring of all processes in full-scale wastewater treatment plants, with an emphasis on the efficiency in destroying pathogens. The hygienisation effect was evaluated as a removal of counts of indicator bacteria, thermotolerant coliforms and enterococci as CFU/g total sludge solids and a frequency of a positive Salmonella spp. detection. Both thermophilic technologies of municipal wastewater sludge stabilisation had the capability of producing sludge A biosolids suitable for agricultural land application when all operational parameters (mainly temperature, mixing and retention time) were stable and maintained at an appropriate level.

  10. Examination of the operator and compensator tank role in urban wastewater treatment using activated sludge method.

    PubMed

    Mokhtari Azar, Akbar; Ghadirpour Jelogir, Ali; Nabi Bidhendi, Gholam Reza; Zaredar, Narges

    2011-04-01

    No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are usable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.

  11. Optimization of Ozonation Process for the Reduction of Excess Sludge Production from Activated Sludge Process of Sago Industry Wastewater Using Central Composite Design

    PubMed Central

    Subha, B.; Muthukumar, M.

    2012-01-01

    Sago industries effluent containing large amounts of organic content produced excess sludge which is a serious problem in wastewater treatment. In this study ozonation has been employed for the reduction of excess sludge production in activated sludge process. Central composite design is used to study the effect of ozone treatment for the reduction of excess sludge production in sago effluent and to optimise the variables such as pH, ozonation time, and retention time. ANOVA showed that the coefficient determination value (R 2) of VSS and COD reduction were 0.9689 and 0.8838, respectively. VSS reduction (81%) was achieved at acidic pH 6.9, 12 minutes ozonation, and retention time of 10 days. COD reduction (87%) was achieved at acidic pH 6.7, 8 minutes of ozonation time, and retention time of 6 days. Low ozonation time and high retention time influence maximum sludge reduction, whereas low ozonation time with low retention time was effective for COD reduction. PMID:22593666

  12. Silver Nanoparticles Entering Soils via the Wastewater-Sludge-Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability.

    PubMed

    Wang, Peng; Menzies, Neal W; Dennis, Paul G; Guo, Jianhua; Forstner, Christian; Sekine, Ryo; Lombi, Enzo; Kappen, Peter; Bertsch, Paul M; Kopittke, Peter M

    2016-08-02

    The widespread use of silver nanoparticles (Ag-NPs) results in their movement into wastewater treatment facilities and subsequently to agricultural soils via application of contaminated sludge. On-route, the chemical properties of Ag may change, and further alterations are possible upon entry to soil. In the present study, we examined the long-term stability and (bio)availability of Ag along the "wastewater-sludge-soil" pathway. Synchrotron-based X-ray absorption spectroscopy (XAS) revealed that ca. 99% of Ag added to the sludge reactors as either Ag-NPs or AgNO3 was retained in sludge, with ≥79% of this being transformed to Ag2S, with the majority (≥87%) remaining in this form even after introduction to soils at various pH values and Cl concentrations for up to 400 days. Diffusive gradients in thin films (DGT), chemical extraction, and plant uptake experiments indicated that the potential (bio)availability of Ag in soil was low but increased markedly in soils with elevated Cl, likely due to the formation of soluble AgClx complexes in the soil solution. Although high Cl concentrations increased the bioavailability of Ag markedly, plant growth was not reduced in any treatment. Our results indicate that Ag-NPs entering soils through the wastewater-sludge-soil pathway pose low risk to plants due to their conversion to Ag2S in the wastewater treatment process, although bioavailability may increase in saline soils or when irrigated with high-Cl water.

  13. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum).

    PubMed

    Hossain, Mustafa K; Strezov, Vladimir; Chan, K Yin; Nelson, Peter F

    2010-02-01

    This work presents agronomic values of a biochar produced from wastewater sludge through pyrolysis at a temperature of 550 degrees C. In order to investigate and quantify effects of wastewater sludge biochar on soil quality, growth, yield and bioavailability of metals in cherry tomatoes, pot experiments were carried out in a temperature controlled environment and under four different treatments consisting of control soil, soil with biochar; soil with biochar and fertiliser, and soil with fertiliser only. The soil used was chromosol and the applied wastewater sludge biochar was 10tha(-1). The results showed that the application of biochar improves the production of cherry tomatoes by 64% above the control soil conditions. The ability of biochar to increase the yield was attributed to the combined effect of increased nutrient availability (P and N) and improved soil chemical conditions upon amendment. The yield of cherry tomato production was found to be at its maximum when biochar was applied in combination with the fertiliser. Application of biochar was also found to significantly increase the soil electrical conductivity as well as phosphorus and nitrogen contents. Bioavailability of metals present in the biochar was found to be below the Australian maximum permitted concentrations for food. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  14. Reduction of sludge generation by the addition of support material in a cyclic activated sludge system for municipal wastewater treatment.

    PubMed

    Araujo, Moacir Messias de; Lermontov, André; Araujo, Philippe Lopes da Silva; Zaiat, Marcelo

    2013-09-01

    An innovative biomass carrier (Biobob®) was tested for municipal wastewater treatment in an activated sludge system to evaluate the pollutant removal performance and the sludge generation for different carrier volumes. The experiment was carried out in a pilot-scale cyclic activated sludge system (CASS®) built with three cylindrical tanks in a series: an anoxic selector (2.1 m(3)), an aerobic selector (2.5 m(3)) and the main aerobic reactor (25.1 m(3)). The results showed that by adding the Biobob® carrier decreased the MLVSS concentration, which consequently reduced the waste sludge production of the system. Having 7% and 18% (v/v) support material in the aerobic reactor, the observed biomass yield decreased 18% and 36%, respectively, relative to the reactor operated with suspended biomass. The addition of media did not affect the system's performance for COD and TSS removal. However, TKN and TN removal were improved by 24% and 14%, respectively, using 18% (v/v) carrier. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Effects of wastewater sludge and its detergents on the stability of rotavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus. The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus weremore » greatly altered by changes in the pH of the medium.« less

  16. Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants

    PubMed Central

    Zhai, Jun; Teng, Houkai; Zhao, Chun; Zhao, Chuanliang; Liao, Yong

    2014-01-01

    The effects of the cationic surfactant (cationic cetyl trimethyl ammonium bromide, CTAB) on the improvement of the sludge dewaterability using the cationic flocculant (cationic polyacrylamide, CPAM) were analyzed. Residual turbidity of supernatant, dry solid (DS) content, extracellular polymeric substances (EPS), specific resistance to filtration (SRF), zeta potential, floc size, and settling rate were investigated, respectively. The result showed that the CTAB positively affected the sludge conditioning and dewatering. Compared to not using surfactant, the DS and the settling rate increased by 8%–21.2% and 9.2%–15.1%, respectively, at 40 mg·L−1 CPAM, 10×10−3 mg·L−1 CTAB, and pH 3. The residual turbidities of the supernatant and SRF were reduced by 14.6%–31.1% and 6.9%–7.8% compared with turbidities and SRF without surfactant. Furthermore, the release of sludge EPS, the increases in size of the sludge flocs, and the sludge settling rate were found to be the main reasons for the CTAB improvement of sludge dewatering performance. PMID:25347394

  17. Infectious helminth ova in wastewater and sludge: A review on public health issues and current quantification practices.

    PubMed

    Gyawali, P

    2018-02-01

    Raw and partially treated wastewater has been widely used to maintain the global water demand. Presence of viable helminth ova and larvae in the wastewater raised significant public health concern especially when used for agriculture and aquaculture. Depending on the prevalence of helminth infections in communities, up to 1.0 × 10 3 ova/larvae can be presented per litre of wastewater and 4 gm (dry weight) of sludge. Multi-barrier approaches including pathogen reduction, risk assessment, and exposure reduction have been suggested by health regulators to minimise the potential health risk. However, with a lack of a sensitive and specific method for the quantitative detection of viable helminth ova from wastewater, an accurate health risk assessment is difficult to achieve. As a result, helminth infections are difficult to control from the communities despite two decades of global effort (mass drug administration). Molecular methods can be more sensitive and specific than currently adapted culture-based and vital stain methods. The molecular methods, however, required more and thorough investigation for its ability with accurate quantification of viable helminth ova/larvae from wastewater and sludge samples. Understanding different cell stages and corresponding gene copy numbers is pivotal for accurate quantification of helminth ova/larvae in wastewater samples. Identifying specific genetic markers including protein, lipid, and metabolites using multiomics approach could be utilized for cheap, rapid, sensitive, specific and point of care detection tools for helminth ova and larva in the wastewater.

  18. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), whichmore » can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single

  19. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.

    PubMed

    Martínez-García, C; Eliche-Quesada, D; Pérez-Villarejo, L; Iglesias-Godino, F J; Corpas-Iglesias, F A

    2012-03-01

    The main aim of this study is to assess the effect of incorporating waste sludge on the properties and microstructure of clay used for bricks manufacturing. Wastewater treatment plants produce annually a great volume of sludge. Replacing clay in a ceramic body with different proportions of sludge can reduce the cost due to the utilization of waste and, at the same time, it can help to solve an environmental problem. Compositions were prepared with additions of 1%, 2.5%, 5%, 7.5%, 10% and 15% wt% waste sludge in body clay. In order to determine the technological properties, such as bulk density, linear shrinkage, water suction, water absorption and compressive strength, press-moulded bodies were fired at 950 °C for coherently bonding particles in order to enhance the strength and the other engineering properties of the compacted particles. Thermal heating destroys organic remainder and stabilizes inorganic materials and metals by incorporating oxides from the elemental constituent into a ceramic-like material. Results have shown that incorporating up to 5 wt% of sludge is beneficial for clay bricks. By contrast, the incorporation of sludge amounts over 5 wt% causes deterioration on the mechanical properties, therefore producing low-quality bricks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  1. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment.

    PubMed

    Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao

    2017-11-01

    Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Distribution and characterization of anammox in a swine wastewater activated sludge facility.

    PubMed

    Yamagishi, Takao; Takeuchi, Mio; Wakiya, Yuichiro; Waki, Miyoko

    2013-01-01

    Anaerobic ammonium oxidation (anammox) is a novel biological nitrogen removal process that oxidizes NH4(+) to N2 with NO2(-) as an electron acceptor. The purpose of this study was to examine the potential activity and characteristics of anammox in a conventional swine wastewater treatment facility, which uses an activated sludge system consisting of three cascade aeration tanks equipped with ceramic support material. Anammox activity was estimated by a (15)N tracer assay method and was detected in all the sludge and biofilm samples in each aeration tank. Biofilm taken from the third aeration tank, in which the dissolved oxygen concentration was 7.5 mg/L and the wastewater included a high concentration of NO3(-), showed by far the highest anammox activity. A clone library analysis showed the existence of anammox bacteria closely related to 'Candidatus Jettenia asiatica' and 'Ca. Brocadia caroliniensis'. The optimum conditions for anammox activity were a pH of 6.7-7.2, a temperature of 35 °C, a NO2(-) concentration of 10 mmol/L or less, and an NH4(+) concentration of 32 mmol/L or less.

  3. Organic matter and heavy metals content modeling in sewage sludge treated with reed bed system

    NASA Astrophysics Data System (ADS)

    Boruszko, Dariusz; Dąbrowski, Wojciech; Malinowski, Paweł

    2017-11-01

    The long process of sludge stabilization (7-15 years) remarkably reduces the organic matter content and causes the process of sludge humifaction. This paper presents the results of using low-cost methods of sludge treatment in the wastewater treatment plant located in Zambrow, Podlaskie Province. The results of studies on the organic matter and heavy metals content in sewage sludge after treatment in a reed bed system are presented. The aim of the research was to evaluate and model organic matter and heavy metals concentrations during sewage stabilization in reed bed lagoons. The lowest concentration, below 1.3 mg/kg DM of the examined seven heavy metals was mercury (Hg). The highest concentration, exceeding 1300 mg/kg DM was zinc (Zn). The obtained results for the heavy metals in sewage sludge from the reed bed lagoons in Zambrow show that the average content of the analyzed heavy metals is approximately 1620 mg/kg DM. The results of the study demonstrate a high efficiency of low-cost methods used in Zambrów WWTP in terms of the quality of the processed sludge. Sewage sludge from the lowest layer of the reed lagoon (12-14 years of dewatering and transformation) is characterized by the lowest organic matter and heavy metals content. The higher a sediment layer lies, i.e. the shorter the time of processing, the higher is the heavy metals content. This indicates a great role of reeds in the accumulation of these compounds.

  4. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    PubMed

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  5. Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: case study of an on-farm wastewater treatment plant.

    PubMed

    Hirooka, Kayako; Asano, Ryoki; Yokoyama, Atsushi; Okazaki, Masao; Sakamoto, Akira; Nakai, Yutaka

    2009-06-01

    Nozzle-cavitation treatment was used to reduce excess sludge production in a dairy wastewater treatment plant. During the 450-d pilot-scale membrane bioreactor (MBR) operation, when 300 l of the sludge mixed liquor (1/10 of the MBR volume) was disintegrated per day by the nozzle-cavitation treatment with the addition of sodium hydrate (final concentration: 0.01% W/W) and returned to the MBR, the amount of excess sludge produced was reduced by 80% compared with that when sludge was not disintegrated. On the basis of the efficiency of CODCr removal and the ammonia oxidation reaction, it was concluded that the nozzle-cavitation treatment did not have a negative impact on the performance of the MBR. The estimation of the inorganic material balance showed that when the mass of the excess sludge was decreased, the inorganic content of the activated sludge increased and some part of the inorganic material was simultaneously solubilized in the effluent.

  6. Concentrations and inactivation of Ascaris eggs and pathogen indicator organisms in wastewater stabilization pond sludge.

    PubMed

    Nelson, K L

    2003-01-01

    During treatment in wastewater stabilization ponds (WSPs) many pathogens, in particular helminth eggs, are concentrated in the sludge layer. Because periodic removal of the sludge is often required, information is needed on the concentrations and inactivation of pathogens in the sludge layer to evaluate the public health risk they pose upon removal of the sludge. In this paper, previous reports on the sludge concentrations of various pathogen indicator organisms and helminth eggs are reviewed and results from our own recent experiments are reported. The advantages and disadvantages of several methods for studying inactivation in the sludge layer are discussed, as well as implications for the management of WSP sludge. In our recent experiments, which were conducted at three WSPs in central Mexico, sludge cores, dialysis chambers, and batch experiments were used to measure the inactivation rates of fecal coliform bacteria, fecal enterococci, F+ coliphage, somatic coliphage, and Ascaris eggs. The first-order inactivation rate constants were found to be approximately 0.1, 0.1, 0.01, 0.001, and 0.001 d(-1), respectively. The concentrations of all the organisms were found to vary both vertically and horizontally in the sludge layer; therefore, to determine the maximum and average concentration of organisms in the sludge layer of a WSP, complete sludge cores must be collected from representative locations throughout the pond.

  7. Fate and effect of naphthenic acids on oil refinery activated sludge wastewater treatment systems.

    PubMed

    Misiti, Teresa; Tezel, Ulas; Pavlostathis, Spyros G

    2013-01-01

    Naphthenic acids (NAs) are a complex group of alkyl-substituted acyclic, monocyclic and polycyclic carboxylic acids present in oil sands process waters, crude oil, refinery wastewater and petroleum products. Crude oil, desalter brine, influent, activated sludge mixed liquor and effluent refinery samples were received from six United States refineries. The total acid number (TAN) of the six crudes tested ranged from 0.12 to 1.5 mg KOH/g crude oil and correlated to the total NA concentration in the crudes. The total NA concentration in the desalter brine, influent, activated sludge mixed liquor and effluent samples ranged from 4.2 to 40.4, 4.5 to 16.6, 9.6 to 140.3 and 2.8 to 11.6 mg NA/L, respectively. The NAs in all wastewater streams accounted for less than 16% of the total COD, indicating that many other organic compounds are present and that NAs are a minor component in refinery wastewaters. Susceptibility tests showed that none of the activated sludge heterotrophic microcosms was completely inhibited by NAs up to 400 mg/L. Growth inhibition ranging from 10 to 59% was observed in all microcosms at and above 100 mg NA/L. NAs chronically-sorbed to activated sludge mixed liquor biomass and powdered activated carbon (PAC) were recalcitrant and persistent. More than 80% of the total NAs remained in the solid phase at the end of the 10-day desorption period (five successive desorption steps). Throughout a 90-day incubation period, the total NA concentration decreased by 33 and 51% in PAC-free and PAC-containing mixed liquor microcosms, respectively. The lower molecular weight fraction of NAs was preferentially degraded in both mixed liquors. The persistence of the residual, higher molecular weight NAs is likely a combination of molecular recalcitrance and decreased bioavailability when chronically-sorbed to the biomass and/or PAC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Promoting the bio-cathode formation of a constructed wetland-microbial fuel cell by using powder activated carbon modified alum sludge in anode chamber

    PubMed Central

    Xu, Lei; Zhao, Yaqian; Doherty, Liam; Hu, Yuansheng; Hao, Xiaodi

    2016-01-01

    MFC centered hybrid technologies have attracted attention during the last few years due to their compatibility and dual advantages of energy recovery and wastewater treatment. In this study, a MFC was integrated into a dewatered alum sludge (DAS)- based vertical upflow constructed wetland (CW). Powder activate carbon (PAC) was used in the anode area in varied percentage with DAS to explore its influences on the performance of the CW-MFC system. The trial has demonstrated that the inclusion of PAC improved the removal efficiencies of COD, TN and RP. More significantly, increasing the proportion of PAC from 2% to 10% can significantly enhance the maximum power densities from 36.58 mW/m2 to 87.79 mW/m2. The induced favorable environment for bio-cathode formation might be the main reason for this improvement since the content of total extracellular polymeric substances (TEPS) of the substrate in the cathode area almost doubled (from 44.59 μg/g wet sludge to 87.70 μg/g wet sludge) as the percentage of PAC increased to 10%. This work provides another potential usage of PAC in CW-MFCs with a higher wastewater treatment efficiency and energy recovery. PMID:27197845

  9. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    PubMed

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  10. [Characteristics of novel wastewater treatment technology by swimming bed combined with aerobic granular sludge].

    PubMed

    Zhang, Yan; Wang, Yong-sheng; Bai, Yu-hua; Chen, Chen; Lü, Jian; Zhang, Jie

    2007-10-01

    Swimming bed combined with aerobic granular sludge as a novel technology for wastewater treatment was developed, which was on the basis of the biofilm process and activated sludge process, and results demonstrated notable performance of high-efficiency treatment capability and sludge reduction. Even when hydraulic retention time (HRT) was only at 3.2 h with average COD volumetric loading of 2.03 kg/(m3 x d) and NH4(+)-N of 0.52 kg/(m3 X d), 90.9% of average COD removal rate and 98.3% of NH4(+)-N removal rate were achieved. Aerobic granular sludge appeared with spherical or rod shape after 16 days operation. Mixed liquor suspended solid (MLSS) concentrations in the reactor reached 5,640 mg/L at the highest during operation period, and the average ratio of mixed liquor volatile suspended solid (MLVSS) to MLSS reached 0.87. Furthermore, microscopic observation of biofilm and aerobic granules revealed much presence of protozoa and metazoa on the biofilm and suspended sludge, and this long food chain can contribute to the sludge reduction. Only 0. 175 5 of sludge yields (MLSS/ CODremoved) was obtained in the experiment, which was only about 50% of the conventional aerobic processes.

  11. Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride.

    PubMed

    Andrianisa, Harinaivo Anderson; Ito, Ayumi; Sasaki, Atsushi; Aizawa, Jiro; Umita, Teruyuki

    2008-12-01

    The potential of activated sludge to catalyse bio-oxidation of arsenite [As(III)] to arsenate [As(V)] and bio-reduction of As(V) to As(III) was investigated. In batch experiments (pH 7, 25 degrees C) using activated sludge taken from a treatment plant receiving municipal wastewater non-contaminated with As, As(III) and As(V) were rapidly biotransformed to As(V) under aerobic condition and As(III) under anaerobic one without acclimatisation, respectively. Sub-culture of the activated sludge using a minimal liquid medium containing 100mg As(III)/L and no organic carbon source showed that aerobic arsenic-resistant bacteria were present in the activated sludge and one of the isolated bacteria was able to chemoautotrophically oxidise As(III) to As(V). Analysis of arsenic species in a full-scale oxidation ditch plant receiving As-contaminated wastewater revealed that both As(III) and As(V) were present in the influent, As(III) was almost completely oxidised to As(V) after supply of oxygen by the aerator in the oxidation ditch, As(V) oxidised was reduced to As(III) in the anaerobic zone in the ditch and in the return sludge pipe, and As(V) was the dominant species in the effluent. Furthermore, co-precipitation of As(V) bio-oxidised by activated sludge in the plant with ferric hydroxide was assessed by jar tests. It was shown that the addition of ferric chloride to mixed liquor as well as effluent achieved high removal efficiencies (>95%) of As and could decrease the residual total As concentrations in the supernatant from about 200 microg/L to less than 5 microg/L. It was concluded that a treatment process combining bio-oxidation with activated sludge and coagulation with ferric chloride could be applied as an alternative technology to treat As-contaminated wastewater.

  12. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  13. Recyclable zero-valent iron activating peroxymonosulfate synchronously combined with thermal treatment enhances sludge dewaterability by altering physicochemical and biological properties.

    PubMed

    Li, Yifu; Yuan, Xingzhong; Wang, Dongbo; Wang, Hou; Wu, Zhibin; Jiang, Longbo; Mo, Dan; Yang, Guojing; Guan, Renpeng; Zeng, Guangming

    2018-04-21

    In this study, zero valent iron (ZVI) activated peroxymonosulfate (PMS) as novel technique (i.e. ZVI-PMS technology) was employed to enhance sludge dewatering. In optimal sludge dewatering conditions of ZVI and KHSO 5 dosages, the specific resistance to filtration (SRF) was reduced by 83.6%, which was further decreased to 90.6% after combination of ZVI-PMS with thermal treatment at 50 °C (i.e. ZVI-PMS-T technology). Subsequently, the ESR spectrum and quenching tests demonstrated that OH, rather than SO 4 - , was predominant radicals in ZVI-PMS conditioning. Thereafter, the variation of physicochemical properties and the distributions and compositions of extracellular polymeric substances (EPS) were further investigated to uncover the influence of these techniques on sludge bulk properties. The results indicated that sludge particles were disintegrated into smaller particles and surface charges were neutralized, sludge flowability were elevated obviously after treatments. In ZVI cycle experiment, the high dewatering efficiency was maintained by ZVI-PMS and ZVI-PMS-T pretreatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Potential of activated sludge disintegration.

    PubMed

    Boehler, M; Siegrist, H

    2006-01-01

    The disposal of sewage sludge and the agricultural use of stabilised sludge are decreasing due to more stringent regulations in Europe. An increasing fraction of sewage sludge must therefore be dewatered, dried, incinerated and the ashes disposed of in landfills. These processes are cost-intensive and also lead to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Disintegration of biological sludge by mechanical, thermal and physical methods could significantly reduce excess sludge production, improve the settling properties of the sludge and reduce bulking and scumming. The solubilised COD could also improve denitrification if the treated sludge is recycled to the anoxic zone. However, disintegration partly inhibits and kills nitrifiers and could therefore shorten their effective solid retention time, thus reducing the safety of the nitrification. This paper discusses the potential of disintegration on sludge reduction, the operating stability of nitrification, the improvement of denitrification and also presents an energy and cost evaluation.

  15. Fate of four phthalate plasticizers under various wastewater treatment processes.

    PubMed

    Armstrong, Dana L; Rice, Clifford P; Ramirez, Mark; Torrents, Alba

    2018-05-18

    The fate of four phthalate plasticizers during wastewater treatment processes at six different wastewater treatment plants (WWTPs) was investigated. Concentrations of benzyl butyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and diisodecyl phthalate (DiDP) were determined prior to either aerobic or anaerobic (conventional and advanced) treatment, after treatment, and in final, dewatered solids. Despite their elevated use worldwide, the fate of DiNP and DiDP during wastewater treatment have not been well characterized. DEHP was readily degraded during aerobic treatments while anaerobic digestion resulted in either no significant change in concentrations or an increase in concentration, in the case of more advanced anaerobic processes (thermal hydrolysis pretreatment and a two-phase acid/gas process). Impacts of the various treatment systems on DiNP, DiDP, and BBP concentrations were more varied - anaerobic digestion led to significant decreases, increases, or no significant change for these compounds, depending on the treatment facility, while aerobic treatment was generally effective at degrading the compounds. Additionally, thermal hydrolysis pretreatment of sludge prior to anaerobic digestion resulted in increases in DiNP, DiDP, and BBP concentrations. The predicted environmental concentrations for all four compounds in soils after a single biosolids application were calculated and the risk quotients for DEHP in soils were determined. The estimated toxicity risk for DEHP in soils treated with a single application of sludge from any of the six studied WWTPs is lower than the level of concern for acute and chronic risk, as defined by the US EPA.

  16. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.

    PubMed

    Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko

    2016-12-01

    After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low

  17. The effect of the feeding pattern of complex industrial wastewater on activated sludge characteristics and the chemical and ecotoxicological effluent quality.

    PubMed

    Caluwé, Michel; Dobbeleers, Thomas; Daens, Dominique; Blust, Ronny; Geuens, Luc; Dries, Jan

    2017-04-01

    Research has demonstrated that the feeding pattern of synthetic wastewater plays an important role in sludge characteristics during biological wastewater treatment. Although considerable research has been devoted to synthetic wastewater, less attention has been paid to industrial wastewater. In this research, three different feeding strategies were applied during the treatment of tank truck cleaning (TTC) water. This industry produces highly variable wastewaters that are often loaded with hazardous chemicals, which makes them challenging to treat with activated sludge (AS). In this study, it is shown that the feeding pattern has a significant influence on the settling characteristics. Pulse feeding resulted in AS with a sludge volume index (SVI) of 68 ± 15 mL gMLSS -1 . Slowly and continuously fed AS had to contend with unstable SVI values that fluctuated between 100 and 600 mL gMLSS -1 . These fluctuations were clearly caused by the feeding solution. The obtained settling characteristics are being supported by the microscopic analysis, which revealed a clear floc structure for the pulse fed AS. Ecotoxicological effluent assessment with bacteria, Crustacea and algae identified algae as the most sensitive organism for all effluents from all different reactors. Variable algae growth inhibitions were measured between the different reactors. The chemical and ecotoxicological effluent quality was comparable between the reactors.

  18. [Effect of different sludge retention time (SRT) on municipal sewage sludge bioleaching continuous plug flow reaction system].

    PubMed

    Liu, Fen-Wu; Zhou, Li-Xiang; Zhou, Jun; Jiang, Feng; Wang, Dian-Zhan

    2012-01-01

    A plug-flow bio-reactor of 700 L working volume for sludge bioleaching was used in this study. The reactor was divided into six sections along the direction of the sludge movement. Fourteen days of continuous operation of sludge bioleaching with different sludge retention time (SRT) under the condition of 1.2 m3 x h(-1) aeration amount and 4 g x L(-1) of microbial nutritional substance was conducted. During sludge bioleaching, the dynamic changes of pH, DO, dewaterability (specific resistance to filtration, SRF) of sewage sludge in different sections were investigated in the present study. The results showed that sludge pH were maintained at 5.00, 3.00, 2.90, 2.70, 2.60 and 2.40 from section 1 to section 6 and the SRF of sludge was drastically decreased from initial 0.64 x 10(13) m x kg(-1) to the final 0.33 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 72 with SRT 2.5d. In addition, the sludge pH were maintained at 5.10, 4.10, 3.20, 2.90, 2.70 and 2.60, the DO value were 0.43, 1.47, 3.29, 4.76, 5.75 and 5.88 mg x L(-1) from section 1 to section 6, and the SRF of sludge was drastically decreased from initial 0.56 x 10(13) to the final 0.20 x 10(13) m x kg(-1) when bioleaching system reached stable at hour 120 with SRT 2 d. The pH value was increased to 3.00 at section 6 at hour 48 h with SRT 1.25 d. The bioleaching system imbalanced in this operation conditions because of the utilization efficiency of microbial nutritional substance by Acidibacillus spp. was decreased. The longer sludge retention time, the easier bioleaching system reached stable. 2 d could be used as the optimum sludge retention time in engineering application. The bioleached sludge was collected and dewatered by plate-and-frame filter press to the moisture content of dewatered sludge cake under 60%. This study would provide the necessary data to the engineering application on municipal sewage sludge bioleaching.

  19. The mechanisms of granulation of activated sludge in wastewater treatment, its optimization, and impact on effluent quality.

    PubMed

    Wilén, Britt-Marie; Liébana, Raquel; Persson, Frank; Modin, Oskar; Hermansson, Malte

    2018-06-01

    Granular activated sludge has gained increasing interest due to its potential in treating wastewater in a compact and efficient way. It is well-established that activated sludge can form granules under certain environmental conditions such as batch-wise operation with feast-famine feeding, high hydrodynamic shear forces, and short settling time which select for dense microbial aggregates. Aerobic granules with stable structure and functionality have been obtained with a range of different wastewaters seeded with different sources of sludge at different operational conditions, but the microbial communities developed differed substantially. In spite of this, granule instability occurs. In this review, the available literature on the mechanisms involved in granulation and how it affects the effluent quality is assessed with special attention given to the microbial interactions involved. To be able to optimize the process further, more knowledge is needed regarding the influence of microbial communities and their metabolism on granule stability and functionality. Studies performed at conditions similar to full-scale such as fluctuation in organic loading rate, hydrodynamic conditions, temperature, incoming particles, and feed water microorganisms need further investigations.

  20. Anaerobic co-digestion of sludge with other organic wastes in small wastewater treatment plants: an economic considerations evaluation.

    PubMed

    Pavan, P; Bolzonella, D; Battistoni, E; Cecchi, F

    2007-01-01

    This paper deals with an economic comparison between costs and incomes in small wastewater treatment plants where the anaerobic co-digestion process of sludge and biowaste with energy recovery is operated. Plants in the size range 1,000-30,000 persons equivalent (pe) were considered in the study: typical costs, comprehensive of capital and operating costs, were in the range euro69-105 per person per year depending on the plant size: the smaller the size the higher the specific cost. The incomes deriving from taxes and fees for wastewater treatment are generally in the range euro36-54 per person per year and can only partially cover costs in small wastewater treatment plants. However, the co-treatment of biowaste and the use of produced energy for extra credits (green certificates) determine a clear improvement in the possible revenues from the plant. These were calculated to be euro23-25 per person per year; as a consequence the costs and incomes can be considered comparable for wastewater treatment plants (WWTPs) with size larger than 10,000 pe. Therefore, anaerobic co-digestion of biowaste and sludge can also be considered a sustainable solution for small wastewater treatment plants in rural areas where several different kinds of biowaste are available to enhance biogas production in anaerobic reactors.

  1. Effect of filter media thickness on the performance of sand drying beds used for faecal sludge management.

    PubMed

    Manga, M; Evans, B E; Camargo-Valero, M A; Horan, N J

    2016-12-01

    The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.

  2. [Detection of anaerobic processes and microorganisms in immobilized activated sludge of a wastewater treatment plant with intense aeration].

    PubMed

    Litti, Iu V; Nekrasova, V K; Kulikov, N I; Siman'kova, M V; Nozhevnikova, A N

    2013-01-01

    Attached activated sludge from the Krasnaya Polyana (Sochi) wastewater treatment plant was studied after the reconstruction by increased aeration and water recycle, as well as by the installation of a bristle carrier for activated sludge immobilization. The activated sludge biofilms developing under conditions of intense aeration were shown to contain both aerobic and anaerobic microorganisms. Activity of a strictly anaerobic methanogenic community was revealed, which degraded organic compounds to methane, further oxidized by aerobic methanotrophs. Volatile fatty acids, the intermediates of anaerobic degradation of complex organic compounds, were used by both aerobic and anaerobic microorganisms. Anaerobic oxidation of ammonium with nitrite (anammox) and the presence of obligate anammox bacteria were revealed in attached activated sludge biofilms. Simultaneous aerobic and anaerobic degradation of organic contaminants by attached activated sludge provides for high rates of water treatment, stability of the activated sludge under variable environmental conditions, and decreased excess sludge formation.

  3. Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment.

    PubMed

    Li, Wen-Wei; Wang, Yun-Kun; Sheng, Guo-Ping; Gui, Yong-Xin; Yu, Lei; Xie, Tong-Qing; Yu, Han-Qing

    2012-10-01

    Conventional MBR has been mostly based on floc sludge and the use of costly microfiltration membranes. Here, a novel aerobic granule (AG)-mesh filter MBR (MMBR) process was developed for cost-effective wastewater treatment. During 32-day continuous operation, a predominance of granules was maintained in the system, and good filtration performance was achieved at a low trans-membrane pressure (TMP) of below 0.025 m. The granules showed a lower fouling propensity than sludge flocs, attributed to the formation of more porous biocake layer at mesh surface. A low-flux and low-TMP filtration favored a stable system operation. In addition, the reactor had high pollutant removal efficiencies, with a 91.4% chemical oxygen demand removal, 95.7% NH(4)(+) removal, and a low effluent turbidity of 4.1 NTU at the stable stage. This AG-MMBR process offers a promising technology for low-cost and efficient treatment of wastewaters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Characteristics and performance of aerobic granular sludge treating rubber wastewater at different hydraulic retention time.

    PubMed

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Chelliapan, Shreeshivadasan; Md Din, Mohd Fadhil; Ujang, Zaini

    2014-06-01

    The influence of hydraulic retention time (HRT, 24, 12, and 6h) on the physical characteristics of granules and performance of a sequencing batch reactor (SBR) treating rubber wastewater was investigated. Results showed larger granular sludge formation at HRT of 6h with a mean size of 2.0±0.1mm, sludge volume index of 20.1mLg(-1), settling velocity of 61mh(-1), density of 78.2gL(-1) and integrity coefficient of 9.54. Scanning electron microscope analyses revealed different morphology of microorganisms and structural features of granules when operated at various HRT. The results also demonstrated that up to 98.4% COD reduction was achieved when the reactor was operated at low HRT (6h). Around 92.7% and 89.5% removal efficiency was noted for ammonia and total nitrogen in the granular SBR system during the treatment of rubber wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Reuse of wastewater sludge with marine clay as a new resource of construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Lee, D J; Hong, S Y

    2004-01-01

    The disposal of sludge from wastewater treatment presents highly complex problems to any municipality. Most of the sludge disposal methods have varying degrees of environmental impact. Hence, it is necessary to explore potential areas of reuse in order to alleviate sludge disposal problems and to conserve natural resources. Industrial sludge and marine clay are two forms of high-volume wastes. Using these wastes as a resource of raw materials to produce construction aggregates would enable large-scale sludge reuse. The aggregates were produced at various sludge-clay combinations containing 0, 20, 50, 80 and 100% clay contents, respectively. The pelletized aggregates displayed lower particle densities ranged between 1.48 and 2.25 g/cm3, compared to the density of granite at 2.56 g/cm3. Good 28-day concrete compressive strength of 38.5 N/mm2 achieved by the 100% sludge aggregate was comparable to the value of 38.0 N/mm2 achieved of the granite control specimens. The leachate contamination levels from the aggregates after 150 days were found acceptable when used in concrete, indicating insignificant environmental contamination. The heat flow study showed increases in heat flow at the temperatures of 480 degrees C and between 660 degrees C and 900 degrees C, indicating a need for the extension of heating time around these temperatures.

  6. Biomass production and nutrient removal by Chlorella sp. as affected by sludge liquor concentration.

    PubMed

    Åkerström, Anette M; Mortensen, Leiv M; Rusten, Bjørn; Gislerød, Hans Ragnar

    2014-11-01

    The use of microalgae for biomass production and nutrient removal from the reject water produced in the dewatering process of anaerobically digested sludge, sludge liquor, was investigated. The sludge liquor was characterized by a high content of total suspended solids (1590 mg L(-1)), a high nitrogen concentration (1210 mg L(-1)), and a low phosphorus concentration (28 mg L(-1)). Chlorella sp. was grown in sludge liquor diluted with wastewater treatment plant effluent water to different concentrations (12, 25, 40, 50, 70, and 100%) using batch mode. The environmental conditions were 25 °C, a continuous lightning of 115 μmol m(-2) s(-1), and a CO2 concentration of 3.0%. The highest biomass production (0.42-0.45 g dry weight L(-1) Day(-1)) was achieved at 40-50% sludge liquor, which was comparable to the production of the control culture grown with an artificial fertilizer. The biomass production was 0.12 and 0.26 g dry weight L(-1) Day(-1) at 12% and 100% sludge liquor, respectively. The percentage of nitrogen in the algal biomass increased from 3.6% in 12% sludge liquor and reached a saturation of ∼10% in concentrations with 50% sludge liquor and higher. The phosphorus content in the biomass increased linearly from 0.2 to 1.5% with increasing sludge liquor concentrations. The highest nitrogen removal rates by algal biosynthesis were 33.6-42.6 mg TN L(-1) Day(-1) at 40-70% sludge liquor, while the highest phosphorus removal rates were 3.1-4.1 mg TP L(-1) Day(-1) at 50-100% sludge liquor. Published by Elsevier Ltd.

  7. Economic Evaluation of Two Biological Processes for Treatment of Ball Powder Production Wastewater

    DTIC Science & Technology

    1989-02-01

    Collection and Equalization 2-1 2.2 System 200 - pH and Nutrient Control 2-1 2.3 System 300 - Extended Aeration and Aerobic Digestion 2-4 2.4 System...400 - Sequencing Batch Reactor and Aerobic Digestion 2-4 2.5 System 500 - Sludge Dewatering and Control Building 2-7 1 3.0 COST ESTIMATION AND...Extended Aeration and Aerobic Digestion 2-5 2.4 400 - Sequencing Batch Reactors and Aerobic Digestion 2-6 2.5 500 - Sludge Dewatering 2-8 Artur D Little

  8. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  9. Evaluation of an up-flow anaerobic sludge bed (UASB) reactor containing diatomite and maifanite for the improved treatment of petroleum wastewater.

    PubMed

    Chen, Chunmao; Liang, Jiahao; Yoza, Brandon A; Li, Qing X; Zhan, Yali; Wang, Qinghong

    2017-11-01

    Novel diatomite (R1) and maifanite (R2) were utilized as support materials in an up-flow anaerobic sludge bed (UASB) reactor for the treatment of recalcitrant petroleum wastewater. At high organic loadings (11kg-COD/m 3 ·d), these materials were efficient at reducing COD (92.7% and 93.0%) in comparison with controls (R0) (88.4%). Higher percentages of large granular sludge (0.6mm or larger) were observed for R1 (30.3%) and R2 (24.6%) compared with controls (22.6%). The larger portion of granular sludge provided a favorable habitat that resulted in greater microorganism diversity. Increased filamentous bacterial communities are believed to have promoted granular sludge formation promoting a conductive environment for stimulation methanogenic Archaea. These communities had enhanced pH tolerance and produced more methane. This study illustrates a new potential use of diatomite and maifanite as support materials in UASB reactors for increased efficiency when treating refractory wastewaters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Formation of aerobic granular sludge during the treatment of petrochemical wastewater.

    PubMed

    Caluwé, Michel; Dobbeleers, Thomas; D'aes, Jolien; Miele, Solange; Akkermans, Veerle; Daens, Dominique; Geuens, Luc; Kiekens, Filip; Blust, Ronny; Dries, Jan

    2017-08-01

    In this study, petrochemical wastewater from the port of Antwerp was used for the development of aerobic granular sludge. Two different reactor setups were used, (1) a completely aerated sequencing batch reactor (SBR ae ) with a feast/famine regime and (2) a sequencing batch reactor operated with an anaerobic feast/aerobic famine strategy (SBR an ). The seed sludge showed poor settling characteristics with a sludge volume index (SVI) of 285mL.gMLSS -1 and a median particle size by volume of 86.0µm±1.9µm. In both reactors, granulation was reached after 30days with a SVI of 71mL.gMLSS -1 and median granule size of 264.7µm in SBR an and a SVI of 56mL.gMLSS -1 and median granule size of 307.4µm in SBR ae . The chemical oxygen demand (COD) and dissolved organic carbon (DOC) removal was similar in both reactors and above 95%. The anaerobic DOC uptake increased from 0.13% to 43.2% in 60days in SBR an . Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of chemical sludge disintegration on the performances of wastewater treatment by membrane bioreactor.

    PubMed

    Oh, Young-Khee; Lee, Ki-Ryong; Ko, Kwang-Baik; Yeom, Ick-Tae

    2007-06-01

    A new wastewater treatment process combining a membrane bioreactor (MBR) with chemical sludge disintegration was tested in bench scale experiments. In particular, the effects of the disintegration treatment on the excess sludge production in MBR were investigated. Two MBRs were operated. In one reactor, a part of the mixed liquor was treated with NaOH and ozone gas consecutively and was returned to the bioreactor. The flow rate of the sludge disintegration stream was 1.5% of the influent flow rate. During the 200 days of operation, the MLSS level in the bioreactor with the disintegration treatment was maintained relatively constant at the range of 10,000-11,000 mg/L while it increased steadily up to 25,000 mg/L in the absence of the treatment. In the MBR with the sludge disintegration, relatively constant transmembrane pressures (TMPs) could be maintained for more than 6 months while the MBR without disintegration showed an abrupt increase of TMP in the later phase of the operation. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality and membrane performances.

  12. Monitoring of activated sludge settling ability through image analysis: validation on full-scale wastewater treatment plants.

    PubMed

    Mesquita, D P; Dias, O; Amaral, A L; Ferreira, E C

    2009-04-01

    In recent years, a great deal of attention has been focused on the research of activated sludge processes, where the solid-liquid separation phase is frequently considered of critical importance, due to the different problems that severely affect the compaction and the settling of the sludge. Bearing that in mind, in this work, image analysis routines were developed in Matlab environment, allowing the identification and characterization of microbial aggregates and protruding filaments in eight different wastewater treatment plants, for a combined period of 2 years. The monitoring of the activated sludge contents allowed for the detection of bulking events proving that the developed image analysis methodology is adequate for a continuous examination of the morphological changes in microbial aggregates and subsequent estimation of the sludge volume index. In fact, the obtained results proved that the developed image analysis methodology is a feasible method for the continuous monitoring of activated sludge systems and identification of disturbances.

  13. Sorption of Perfluorinated Compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment.

    PubMed

    Arvaniti, Olga S; Andersen, Henrik R; Thomaidis, Nikolaos S; Stasinakis, Athanasios S

    2014-09-01

    The distribution coefficient (Kd) and the organic carbon distribution coefficient (KOC) were determined for four Perfluorinated Compounds (PFCs) to three different types of sludge taken from a conventional Sewage Treatment Plant (STP). Batch experiments were performed in six different environmental relevant concentrations (200ngL(-1)to 5μgL(-1)) containing 1gL(-1) sludge. Kd values ranged from 330 to 6015, 329 to 17432 and 162 to 11770Lkg(-1) for primary, secondary and digested sludge, respectively. The effects of solution's pH, ionic strength and cation types on PFCs sorption were also evaluated. Sorption capacities of PFCs significantly decreased with increased pH values from 6 to 8. Furthermore, the divalent cation (Ca(2+)) enhanced PFCs sorption to a higher degree in comparison with the monovalent cation (Na(+)) at the same ionic strength. The obtained Kd values were applied to estimate the sorbed fractions of each PFC in different stages of a typical STP and to calculate their removal through treated wastewater and sludge. In primary settling tank, the predicted sorbed fractions ranged from 3% for Perfluorooctanoic Acid (PFOA) to 55% for Perfluoroundecanoic acid (PFUdA), while in activated sludge tank and anaerobic digester sorption was more than 50% for all target compounds. Almost 86% of initial PFOA load is expected to be detected in treated wastewater; while Perfluorodecanoic acid (PFDA), PFUdA and Perfluorooctanesulfonate (PFOS) can be significantly removed (>49%) via sorption to primary and excess secondary sludge. In anaerobic digester, the major part (>76%) of target PFCs is expected to be sorbed to sludge, while almost 3% of initial PFOA load will be detected in sludge leachates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Efficient Phosphorus Cycling in Food Production: Predicting the Phosphorus Fertilization Effect of Sludge from Chemical Wastewater Treatment.

    PubMed

    Falk Øgaard, Anne; Brod, Eva

    2016-06-22

    This study examined the P fertilization effects of 11 sewage sludges obtained from sewage treated with Al and/or Fe salts to remove P by a pot experiment with ryegrass (Lolium multiflorum) and a nutrient-deficient sand-peat mixture. Also it investigated whether fertilization effects could be predicted by chemical sludge characteristics and/or by P extraction. The mineral fertilizer equivalent (MFE) value varied significantly but was low for all sludges. MFE was best predicted by a negative correlation with ox-Al and ox-Fe in sludge, or by a positive correlation with P extracted with 2% citric acid. Ox-Al had a greater negative impact on MFE than ox-Fe, indicating that Fe salts are preferable as a coagulant when aiming to increase the plant availability of P in sludge. The results also indicate that sludge liming after chemical wastewater treatment with Al and/or Fe salts increases the P fertilization effect.

  15. Preparation and characteristics of bacterial polymer using pre-treated sludge from swine wastewater treatment plant.

    PubMed

    Guo, Junyuan; Yang, Chunping; Peng, Lanyan

    2014-01-01

    Sterilization, alkaline-thermal, and acid-thermal treatments were applied to different suspended sludge solids (SSS) concentrations and the pre-treated sludge was used as raw material for bioflocculant-producing bacteria R3 to produce bioflocculant. After 60 h of fermentation, three forms of bioflocculant (broth, capsular, and slime) were extracted, and maximum broth bioflocculant of 2.9 and 4.1 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 1.8 g L(-1) in acid-thermal treated sludge. Higher bioflocculant quantity was produced in SS of 15, 25, and 35 g L(-1) compared to that produced in SS of 45, 55, and 65 g L(-1). Bioflocculant combined with 0.5 g Ca(2+) in 1.0 L kaolin suspension acted as conditioning agent, and maximum flocculating activity of 94.5% and 92.8% was achieved using broth and slime bioflocculant, respectively. The results demonstrated that wastewater sludge could be used as sources to prepare bioflocculants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Low-temperature limitation of bioreactor sludge in anaerobic treatment of domestic wastewater.

    PubMed

    Bowen, Emma J; Dolfing, Jan; Davenport, Russell J; Read, Fiona L; Curtis, Thomas P

    2014-01-01

    Two strategies exist for seeding low-temperature anaerobic reactors: the use of specialist psychrophilic biomass or mesophilic bioreactor sludge acclimated to low temperature. We sought to determine the low-temperature limitation of anaerobic sludge from a bioreactor acclimated to UK temperatures (<15 °C). Anaerobic incubation tests using low-strength real domestic wastewater (DWW) and various alternative soluble COD sources were conducted at 4, 8 and 15 °C; methanogenesis and acidogenesis were monitored separately. Production of methane and acetate was observed; decreasing temperature resulted in decreased yields and increased 'start-up' times. At 4 °C methanogenesis not hydrolysis/acidogenesis was rate-limiting. The final methane yields at 4 °C were less than 35% of the theoretical potential whilst at 8 and 15 °C more than 75 and 100% of the theoretical yield was achieved respectively. We propose that the lower temperature limit for DWW treatment with anaerobic bioreactor sludge lies between 8 and 4 °C and that 8 °C is the threshold for reliable operation.

  17. Case study II: application of the divalent cation bridging theory to improve biofloc properties and industrial activated sludge system performance-using alternatives to sodium-based chemicals.

    PubMed

    Higgins, Matthew J; Sobeck, David C; Owens, Steven J; Szabo, Lynn M

    2004-01-01

    The objective of this study was to investigate the application of the divalent cation bridging theory (DCBT) as a tool in the chemical selection process at an activated sludge plant to improve settling, dewatering, and effluent quality. According to the DCBT, to achieve improvements, the goal of chemical selection should be to reduce the ratio of monovalent-to-divalent (M/D) cations. A study was conducted to determine the effect of using magnesium hydroxide [Mg(OH)2] as an alternative to sodium hydroxide (NaOH) at a full-scale industrial wastewater treatment plant. Floc properties and treatment plant performance were measured for approximately one year during two periods of NaOH addition and Mg(OH)2 addition. A cost analysis of plant operation during NaOH and Mg(OH)2 use was also performed. During NaOH addition, the M/D ratio was 48, while, during Mg(OH)2 addition, this ratio was reduced to an average of approximately 0.1. During the Mg(OH)2 addition period, the sludge volume index, effluent total suspended solids, and effluent chemical oxygen demand were reduced by approximately 63, 31, and 50%, respectively, compared to the NaOH addition period. The alum and polymer dose used for clarification was reduced by approximately 50 and 60%, respectively, during Mg(OH)2 addition. The dewatering properties of the activated sludge improved dewatering as measured by decreased capillary suction time and specific resistance to filtration (SRF), along with an increase in cake solids from the SRF test. This corresponded to a reduction in the volume of solids thickened by centrifuges at the treatment plant, which reduced the disposal costs of solids. Considering the costs for chemicals and solids disposal, the annual cost of using Mg(OH)2 was approximately 30,000 dollars to 115,000 dollars less than using NaOH, depending on the pricing of NaOH. The results of this study confirm that the DCBT is a useful tool for assessing chemical-addition strategies and their potential effect

  18. When Research Turns to Sludge

    ERIC Educational Resources Information Center

    Wing, Steve

    2010-01-01

    Sewage sludge is composed of residuals removed from wastewater that comes from homes, hospitals, and industries. Wastewater-treatment systems are designed to remove pollutants that could contaminate public waterways. Sludge--called "biosolids" by those who produce it, spread it, and regulate it--includes these pollutants as well as…

  19. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas).

    PubMed

    Escolà Casas, Mònica; Chhetri, Ravi Kumar; Ooi, Gordon; Hansen, Kamilla M S; Litty, Klaus; Christensson, Magnus; Kragelund, Caroline; Andersen, Henrik R; Bester, Kai

    2015-10-15

    Hospital wastewater contributes a significant input of pharmaceuticals into municipal wastewater. The combination of suspended activated sludge and biofilm processes, as stand-alone or as hybrid process (hybrid biofilm and activated sludge system (Hybas™)) has been suggested as a possible solution for hospital wastewater treatment. To investigate the potential of such a hybrid system for the removal of pharmaceuticals in hospital wastewater a pilot plant consisting of a series of one activated sludge reactor, two Hybas™ reactors and one moving bed biofilm reactor (MBBR) has been established and adapted during 10 months of continuous operation. After this adaption phase batch and continuous experiments were performed for the determination of degradation of pharmaceuticals. Removal of organic matter and nitrification mainly occurred in the first reactor. Most pharmaceuticals were removed significantly. The removal of pharmaceuticals (including X-ray contrast media, β-blockers, analgesics and antibiotics) was fitted to a single first-order kinetics degradation function, giving degradation rate constants from 0 to 1.49 h(-1), from 0 to 7.78 × 10(-1)h(-1), from 0 to 7.86 × 10(-1)h(-1) and from 0 to 1.07 × 10(-1)h(-1) for first, second, third and fourth reactors respectively. Generally, the highest removal rate constants were found in the first and third reactors while the lowest were found in the second one. When the removal rate constants were normalized to biomass amount, the last reactor (biofilm only) appeared to have the most effective biomass in respect to removing pharmaceuticals. In the batch experiment, out of 26 compounds, 16 were assessed to degrade more than 20% of the respective pharmaceutical within the Hybas™ train. In the continuous flow experiments, the measured removals were similar to those estimated from the batch experiments, but the concentrations of a few pharmaceuticals appeared to increase during the first treatment step. Such increase

  20. Treatment of real wastewater using co-culture of immobilized Chlorella vulgaris and suspended activated sludge.

    PubMed

    Mujtaba, Ghulam; Lee, Kisay

    2017-09-01

    The use of algal-bacterial symbiotic association establishes a sustainable and cost-effective strategy in wastewater treatment. Using municipal wastewater, the removal performances of inorganic nutrients (nitrogen and phosphorus) and organic pollutants were investigated by the co-culture system having different inoculum ratios (R) of suspended activated sludge to alginate-immobilized microalgae Chlorella vulgaris. The co-culture reactors with lower R ratios obtained more removal of nitrogen than in pure culture of C. vulgaris. The reactor with R = 0.5 (sludge/microalgae) showed the highest performance representing 66% removal after 24 h and 95% removal after 84 h. Phosphorus was completely eliminated (100%) in the co-culture system with inoculum ratios of 0.5 and 1.0 after 24 h and in the pure C. vulgaris culture after 36 h. The COD level was greatly reduced in the activated sludge reactor, while, it was increasing in pure C. vulgaris culture after 24 h of incubation. However, COD was almost stabilized after 24 h in the reactors with high R ratios such as 2.0, 5.0, and 10 due to the higher concentration of activated sludge. The growth of C. vulgaris was promoted from 0.03 g/L/d to 0.05 g/L/d in the co-culture of low inoculum ratios such as R = 0.5, implying that there exist an optimum inoculum ratio in the co-culture system in order to achieve efficient removal of nutrients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Energy saving control strategies for Haliscomenobacter hydrossis filamentous sludge bulking in the A/O process treating real low carbon/nitrogen domestic wastewater.

    PubMed

    Jiao, Erlong; Gao, Chundi; Li, Renfei; Tian, Ye; Peng, Yongzhen

    2017-07-16

    The control strategies of energy saving for filamentous sludge bulking were investigated in the A/O process under low dissolved oxygen (DO) with low carbon/nitrogen (C/N) ratio, and the dominant filamentous bacteria were identified by using fluorescent in situ hybridization. Initially, the sludge volume index reached nearly 500 mL/g and serious bulking occurred when the DO value was 0.5 mg/L, with Haliscomenobacter hydrossis as the major filamentous bacteria in the bulking sludge. Later on, the compartment number increased in the aerobic zone, increasing by this way DO, to control serious bulking. Increasing DO to 1 mg/L based on the increase of compartment number in the aerobic zone was the favorable controlling method, which solved the sludge loss, improved the effluent quality to the national discharge standard and allowed for energy costs saving. As a result, the effective control method for H. hydrossis filamentous sludge bulking provided the economical, convenient and longstanding method for most municipal wastewater treatment plants treating real low C/N domestic wastewater.

  2. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    ERIC Educational Resources Information Center

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  3. Modelling carbon oxidation in pulp mill activated sludge systems: calibration of Activated Sludge Model No 3.

    PubMed

    Barañao, P A; Hall, E R

    2004-01-01

    Activated Sludge Model No 3 (ASM3) was chosen to model an activated sludge system treating effluents from a mechanical pulp and paper mill. The high COD concentration and the high content of readily biodegradable substrates of the wastewater make this model appropriate for this system. ASM3 was calibrated based on batch respirometric tests using fresh wastewater and sludge from the treatment plant, and on analytical measurements of COD, TSS and VSS. The model, developed for municipal wastewater, was found suitable for fitting a variety of respirometric batch tests, performed at different temperatures and food to microorganism ratios (F/M). Therefore, a set of calibrated parameters, as well as the wastewater COD fractions, was estimated for this industrial wastewater. The majority of the calibrated parameters were in the range of those found in the literature.

  4. Distribution, mass load and environmental impact of multiple-class pharmaceuticals in conventional and upgraded municipal wastewater treatment plants in East China.

    PubMed

    Yuan, Xiangjuan; Qiang, Zhimin; Ben, Weiwei; Zhu, Bing; Qu, Jiuhui

    2015-03-01

    The occurrence, fate and environmental impact of 30 pharmaceuticals including sulfonamides, fluoroquinolones, tetracyclines, macrolides, dihydrofolate reductase inhibitors, β-blockers, antiepileptics, lipid regulators, and stimulants were studied in two municipal wastewater treatment plants (WWTPs) located in Wuxi City, East China. A total of 23 pharmaceuticals were detected in wastewater samples, with a maximum concentration of 16.1 μg L(-1) (caffeine) in the influent and 615.5 ng L(-1) (azithromycin) in the effluent; 19 pharmaceuticals were detected in sludge samples at concentrations up to 12.13 mg kg(-1), with ofloxacin, azithromycin and norfloxacin being the predominant species. Mass balance analysis showed that biodegradation primarily accounted for the removal of sulfonamides, most of the macrolides, and other miscellaneous pharmaceuticals, while adsorption onto the sludge was the primary removal pathway for fluoroquinolones, tetracylines, and azithromycin during biological treatment. The total mass loads of target pharmaceuticals per capita in the two WWTPs were in the ranges of 2681.8-4333.3, 248.0-416.6 and 214.6-374.5 μg per day per inhabitant in the influent, effluent and dewatered sludge, respectively. The upgraded Plant A adopting the combined anaerobic/anoxic/oxic and moving bed biofilm process exhibited a much higher removal of target pharmaceuticals than the conventional Plant B adopting the C-Orbal oxidation ditch process. The concentration levels of sulfamethoxazole, ofloxacin, ciprofloxacin and clarithromycin in the effluent, ofloxacin in the sludge, and the mixture of all target pharmaceuticals in both effluent and sludge posed a high risk to algae in aquatic environments.

  5. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater

    NASA Astrophysics Data System (ADS)

    Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian

    2014-06-01

    Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.

  6. Belt Filtration. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    ERIC Educational Resources Information Center

    Broste, Dale

    This lesson, an introduction to belt management, was developed for a course in sludge treatment and disposal. Fundamental principles of belt filter operation are described. Chemical conditioning and the effect on sludge characteristics are discussed, and a detailed description of the different zones of dewatering is presented. Information on…

  7. Modelling the structure of sludge aggregates

    PubMed Central

    Smoczyński, Lech; Ratnaweera, Harsha; Kosobucka, Marta; Smoczyński, Michał; Kalinowski, Sławomir; Kvaal, Knut

    2016-01-01

    ABSTRACT The structure of sludge is closely associated with the process of wastewater treatment. Synthetic dyestuff wastewater and sewage were coagulated using the PAX and PIX methods, and electro-coagulated on aluminium electrodes. The processes of wastewater treatment were supported with an organic polymer. The images of surface structures of the investigated sludge were obtained using scanning electron microscopy (SEM). The software image analysis permitted obtaining plots log A vs. log P, wherein A is the surface area and P is the perimeter of the object, for individual objects comprised in the structure of the sludge. The resulting database confirmed the ‘self-similarity’ of the structural objects in the studied groups of sludge, which enabled calculating their fractal dimension and proposing models for these objects. A quantitative description of the sludge aggregates permitted proposing a mechanism of the processes responsible for their formation. In the paper, also, the impact of the structure of the investigated sludge on the process of sedimentation, and dehydration of the thickened sludge after sedimentation, was discussed. PMID:26549812

  8. Inter-stage thermophilic aerobic digestion may increase organic matter removal from wastewater sludge without decreasing biogas production.

    PubMed

    Hafner, Sasha D; Madsen, Johan T; Pedersen, Johanna M; Rennuit, Charlotte

    2018-02-01

    Combining aerobic and anaerobic digestion in a two-stage system can improve the degradation of wastewater sludge over the use of either technology alone. But use of aerobic digestion as a pre-treatment before anaerobic digestion generally reduces methane production due to loss of substrate through oxidation. An inter-stage configuration may avoid this reduction in methane production. Here, we evaluated the use of thermophilic aerobic digestion (TAD) as an inter-stage treatment for wastewater sludge using laboratory-scale semi-continuous reactors. A single anaerobic digester was compared to an inter-stage system, where a thermophilic aerobic digester (55 °C) was used between two mesophilic anaerobic digesters (37 °C). Both systems had retention times of approximately 30 days, and the comparison was based on measurements made over 97 days. Results showed that the inter-stage system provided better sludge destruction (52% volatile solids (VS) removal vs. 40% for the single-stage system, 44% chemical oxygen demand (COD) removal vs. 34%) without a decrease in total biogas production (methane yield per g VS added was 0.22-0.24 L g -1 for both systems).

  9. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  10. Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system*

    PubMed Central

    Zhang, Hong-zi; Long, Xu-wei; Sha, Ru-yi; Zhang, Guo-liang; Meng, Qin

    2009-01-01

    Oily wastewater generated by various industries creates a major ecological problem throughout the world. The traditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of petroleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 °C, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rhamnolipids) to 63%. At 25 °C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20 °C significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater. PMID:19882761

  11. Shotgun Metagenomic Profiles Have a High Capacity To Discriminate Samples of Activated Sludge According to Wastewater Type

    PubMed Central

    Ibarbalz, Federico M.; Orellana, Esteban; Figuerola, Eva L. M.

    2016-01-01

    ABSTRACT This study was conducted to investigate whether functions encoded in the metagenome could improve our ability to understand the link between microbial community structures and functions in activated sludge. By analyzing data sets from six industrial and six municipal wastewater treatment plants (WWTPs), covering different configurations, operational conditions, and geographic regions, we found that wastewater influent composition was an overriding factor shaping the metagenomic composition of the activated sludge samples. Community GC content profiles were conserved within treatment plants on a time scale of years and between treatment plants with similar influent wastewater types. Interestingly, GC contents of the represented phyla covaried with the average GC contents of the corresponding WWTP metagenome. This suggests that the factors influencing nucleotide composition act similarly across taxa and thus the variation in nucleotide contents is driven by environmental differences between WWTPs. While taxonomic richness and functional richness were correlated, shotgun metagenomics complemented taxon-based analyses in the task of classifying microbial communities involved in wastewater treatment systems. The observed taxonomic dissimilarity between full-scale WWTPs receiving influent types with varied compositions, as well as the inferred taxonomic and functional assignment of recovered genomes from each metagenome, were consistent with underlying differences in the abundance of distinctive sets of functional categories. These conclusions were robust with respect to plant configuration, operational and environmental conditions, and even differences in laboratory protocols. IMPORTANCE This work contributes to the elucidation of drivers of microbial community assembly in wastewater treatment systems. Our results are significant because they provide clear evidence that bacterial communities in WWTPs assemble mainly according to influent wastewater

  12. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.

    PubMed

    Cheng, Kai; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Chen, Qin; Pan, Keliang; Pu, Wenhong; Yang, Jiakuan; Wu, Xu; Yang, Changzhu

    2017-04-01

    Microbial consortiums aggregated on the anode surface of microbial fuel cells (MFCs) are critical factors for electricity generation as well as biodegradation efficiencies of organic compounds. Here in this study, aerobic granular sludge (AGS) was assembled on the surface of the MFC anode to form an AGS-MFC system with superior performance on epoxy reactive diluent (ERD) wastewater treatment. AGS-MFCs successfully shortened the startup time from 13d to 7d compared to the ones inoculated with domestic wastewater. Enhanced toxicity tolerance as well as higher COD removal (77.8% vs. 63.6%) were achieved. The higher ERD wastewater treatment efficiency of AGS-MFC is possibly attributed to the diverse microbial population on MFC biofilm, as well as the synergic degradation of contaminants by both the MFC anode biofilm and AGS granules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    NASA Astrophysics Data System (ADS)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  14. Effect of Cambi Thermal Hydrolysis Process-Anaerobic digestion treatment on concentrations on phthalate plasticisers in wastewater sludge

    USDA-ARS?s Scientific Manuscript database

    The impact of the recently implemented Cambi Thermal Hydrolysis Process™-Anaerobic Digestion (TH-AD) solids treatment method on concentrations of 4 phthalate plasticisers in wastewater sludge samples was explored in this study. Samples were analysed for diisononyl phthalate (DiNP), diisodecyl phthal...

  15. Interpretation of the characteristics of ocean-dumped sewage sludge related to remote sensing

    NASA Technical Reports Server (NTRS)

    Pagoria, P. S.; Kuo, C. Y.

    1979-01-01

    Wastewater sludge characteristics in general, and characteristics of wastewater sludges generated by the City of Philadelphia in particular, were addressed. The types and sources of wastewater sludges, a description of sludge treatment and disposal processes, examination of sludge generation and management for the City of Philadelphia, and definition of characteristics for typical east coast sludges undergoing ocean disposal were discussed. Specific differences exist between the characteristics of primary and secondary wastewater sludges, especially with the nature and size distribution of the solids particles. The sludges from the City of Philadelphia monitored during remote sensing experiments were mixtures of various sludge types and lacked distinguishing characteristics. In particular, the anaerobic digestion process exerted the most significant influence on sludge characteristics for the City of Philadelphia. The sludges generated by the City of Philadelphia were found to be typical and harbor no unique features.

  16. Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora.

    PubMed

    Kraas, Marco; Schlich, Karsten; Knopf, Burkhard; Wege, Franziska; Kägi, Ralf; Terytze, Konstantin; Hund-Rinke, Kerstin

    2017-12-01

    The use of silver nanoparticles (AgNPs) in consumer products such as textiles leads to their discharge into wastewater and consequently to a transfer of the AgNPs to soil ecosystems via biosolids used as fertilizer. In urban wastewater systems (e.g., sewer, wastewater treatment plant [WWTP], anaerobic digesters) AgNPs are efficiently converted into sparingly soluble silver sulfides (Ag 2 S), mitigating the toxicity of the AgNPs. However, long-term studies on the bioavailability and effects of sulfidized AgNPs on soil microorganisms are lacking. Thus we investigated the bioavailability and long-term effects of AgNPs (spiked in a laboratory WWTP) on soil microorganisms. Before mixing the biosolids into soil, the sludges were either anaerobically digested or directly dewatered. The effects on the ammonium oxidation process were investigated over 140 d. Transmission electron microscopy (TEM) suggested an almost complete sulfidation of the AgNPs analyzed in all biosolid samples and in soil, with Ag 2 S predominantly detected in long-term incubation experiments. However, despite the sulfidation of the AgNPs, soil ammonium oxidation was significantly inhibited, and the degree of inhibition was independent of the sludge treatment. The results revealed that AgNPs sulfidized under environmentally relevant conditions were still bioavailable to soil microorganisms. Consequently, Ag 2 S may exhibit toxic effects over the long term rather than the short term. Environ Toxicol Chem 2017;36:3305-3313. © 2017 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.

  17. Economic feasibility of irradiation-composting plant of sewage sludge

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Nishimura, K.; Machi, S.

    Design and cost analysis were made for a sewage sludge treatment plant (capacity 25 - 200 ton sludge/day) with an electron accelerator. Dewatered sludge is spreaded on a rolling drum through a flat nozzle and disinfected by electron irradiation with a dose of 5 kGy. Composting of the irradiated sludge is also made at the optimum temperature for 3 days. The accelerating voltage of electron and capacity of the accelerator are 1.5 MV and 15 kW, respectively. Total volume of the fermentor is about one third of that of conventional composting process because the irradiation makes the time of composting shorter. The cost of sludge treatment is almost the same as that of conventional method.

  18. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants.

    PubMed

    Mao, Daqing; Yu, Shuai; Rysz, Michal; Luo, Yi; Yang, Fengxia; Li, Fengxiang; Hou, Jie; Mu, Quanhua; Alvarez, P J J

    2015-11-15

    The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. Copyright © 2015 Elsevier Ltd. All

  19. Wastewater treatment--adsorption of organic micropollutants on activated HTC-carbon derived from sewage sludge.

    PubMed

    Kirschhöfer, Frank; Sahin, Olga; Becker, Gero C; Meffert, Florian; Nusser, Michael; Anderer, Gilbert; Kusche, Stepan; Klaeusli, Thomas; Kruse, Andrea; Brenner-Weiss, Gerald

    2016-01-01

    Organic micropollutants (MPs), in particular xenobiotics and their transformation products, have been detected in the aquatic environment and the main sources of these MPs are wastewater treatment plants. Therefore, an additional cleaning step is necessary. The use of activated carbon (AC) is one approach to providing this additional cleaning. Industrial AC derived from different carbonaceous materials is predominantly produced in low-income countries by polluting processes. In contrast, AC derived from sewage sludge by hydrothermal carbonization (HTC) is a regional and sustainable alternative, based on waste material. Our experiments demonstrate that the HTC-AC from sewage sludge was able to remove most of the applied MPs. In fact more than 50% of sulfamethoxazole, diclofenac and bezafibrate were removed from artificial water samples. With the same approach carbamazepine was eliminated to nearly 70% and atrazine more than 80%. In addition a pre-treated (phosphorus-reduced) HTC-AC was able to eliminate 80% of carbamazepine and diclofenac. Atrazine, sulfamethoxazole and bezafibrate were removed to more than 90%. Experiments using real wastewater samples with high organic content (11.1 g m(-3)) succeeded in proving the adsorption capability of phosphorus-reduced HTC-AC.

  20. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  1. Nitrous oxide and methane emissions during storage of dewatered digested sewage sludge.

    PubMed

    Willén, Agnes; Rodhe, Lena; Pell, Mikael; Jönsson, Håkan

    2016-12-15

    This study investigated the effect on greenhouse gas emissions during storage of digested sewage sludge by using a cover during storage or applying sanitisation measures such as thermophilic digestion or ammonia addition. In a pilot-scale storage facility, nitrous oxide and methane emissions were measured on average twice monthly for a year, using a closed chamber technique. The thermophilically digested sewage sludge (TC) had the highest cumulative emissions of nitrous oxide (1.30% of initial total N) followed by mesophilically digested sewage sludge stored without a cover (M) (0.34%) and mesophilically digested sewage sludge stored with a cover (MC) (0.19%). The mesophilically digested sewage sludge sanitised with ammonia and stored with a cover (MAC) showed negligible cumulative emissions of nitrous oxide. Emissions of methane were much lower from TC and MAC than from M and MC. These results indicate that sanitisation by ammonia treatment eliminates the production of nitrous oxide and reduces methane emissions from stored sewage sludge, and that thermophilic digestion has the potential to reduce the production of methane during storage compared with mesophilic digestion. The results also indicate a tendency for lower emissions of nitrous oxide and higher emissions of methane from covered sewage sludge compared with non-covered. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An integrated AMBBR and IFAS-SBR process for municipal wastewater treatment towards enhanced energy recovery, reduced energy consumption and sludge production.

    PubMed

    Gu, Jun; Xu, Guangjing; Liu, Yu

    2017-03-01

    The conventional activated sludge (CAS) process has been widely employed for wastewater treatment for more than one hundred years. Recently, more and more concerns have been raised on the CAS process due to its high energy consumption and production of huge amount of waste activated sludge, which are inevitably linked to the issue of environmental sustainability and global climate change. Facing to such emerging and challenging situation, this study reported a novel A-B process in which an anaerobic moving bed biofilm reactor (AMBBR) served a lead A-stage for COD capture towards biogas production and an integrated fixed-biofilm and activated sludge sequencing batch reactor (IFAS-SBR) was employed as B-stage for biological nitrogen removal. Results showed that about 85% of wastewater COD was removed in the steady-state AMBBR with a total energy production rate of 0.28 kWh/m 3 wastewater treated, while 85% of N-removal was achieved when the stable nitrite shunt was established in the IFAS-SBR. Moreover, 90% of dissolved methane in the AMBBR effluent could be removed by the proposed flash chamber at the lower energy demand of 0.12 kWh/m 3 which could be offset by the potential energy harvested from produced methane. Compared to the CAS process, the production of waste sludge was reduced by about 75% in the proposed A-B process due to the efficient COD capture at the A-stage, leading to significant energy savings from aeration for COD oxidation and post-treatment of waste sludge at the B-stage. Consequently, this study offers in-depth insights into A-B process which should be considered as an ideal candidate for achieving the energy-neutral or even energy positive operation of a municipal wastewater treatment. Given the complex situation in A-B process, future study is needed to look into the system optimization towards the operational synergy between A- and B-stage in terms of energy recovery and nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste.

    PubMed

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-10-10

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO₂, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates.

  4. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    PubMed Central

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-01-01

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates. PMID:27735859

  5. Evaluation of Autothermal Thermophilic Aerobic Digester Performance for the Stabilization of Municipal Wastewater Sludge.

    PubMed

    Shokoohi, Reza; Rahmani, Alireza; Asgari, Ghorban; Dargahi, Abdollah; Vaziri, Yaser; Abbasi, Mohammad Attar

    2017-01-01

    Sludge stabilization process in terms of operational, environmental and economic indexes is the most important stage of treatment and its disposal. This study was aimed to determine the performance of Autothermal Thermophilic Aerobic Digestion (ATAD) system as one of the low-cost and biocompatible methods of sludge treatment. This study has been done using a laboratory scale Autothermal Thermophilic Aerobic Digestion (ATAD). The reactor was consisted of two polyethylene tanks with a final capacity of 100 L for each tank. Both tanks with all fittings were installed on a metal frame. The variables of study were temperature, dissolved oxygen, pH, volatile organic compounds, total solids, COD and the number of Ascaris eggs and fecal coliforms per gram of dry matter of the sludge. The temperature was measured hourly and the pH and dissolved oxygen were measured and controlled twice per day. One-way ANNOVA was applied to analyze reasults. According to the results, the temperature of sludge increased from 11.7-61.2°C by biological reactions. Pathogen organisms were reduced from 80×106 to 503 in number during 72 h. After 6 days pathogen organisms and Ascaris eggs were removed completely. Volatile organic compounds and COD were reduced 42 and 38.3% respectively during the 6 days. It is concluded that the performance of ATAD in removing organic compounds from wastewater sludge were desirable. Resulted sludge from stabilization process were appropriate for use in agriculture as a soil supplement and met the indexes of class A sludge according to EPA's standards (CFR 40 Part 503).

  6. Enhanced nitrogen removal in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant.

    PubMed

    Jobbágy, A; Tardy, G M; Literáthy, B

    2004-01-01

    In 1999 the existing activated sludge unit of the Southpest Wastewater Treatment Plant was supplemented by a two-stage biofilter system aiming for nitrification and post-denitrification. In this arrangement excess biomass of the filters is wasted through the activated sludge unit, facilitating backseeding, and recirculation of the nitrate-rich effluent of the N-filter serves for decreasing the methanol demand of the DN-filter and for saving aeration energy at the same time. The paper reports on the development of an ASM1-based mathematical model that proved to be adequate for describing the interactions in the combined system and was used to compare the efficiency of different treatment options. Full-scale results verified that backseeding may considerably improve performance. However, nitrification ability of the activated sludge unit depends on the treatment temperature and, if unexpected, can be limited by insufficient oxygen supply. The upgrading possibilities outlined may serve as a new perspective for implementation of combined activated sludge-biofilter systems.

  7. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as amore » result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.« less

  8. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  9. Decide, design, and dewater de waste: A blueprint from Fitzpatrick

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, D.E.

    1994-04-01

    Using a different process to clean concentrated waste tanks at the James A. FitzPatrick nuclear power plant in New York saved nearly half million dollars. The plan essentially allowed processing concentrator bottoms as waste sludge (solidification versus dewatering) that could still meet burial ground requirements. The process reduced the volume from 802.2 to 55 cubic feet. This resin throwaway system eliminated chemicals in the radwaste systems and was designed to ease pressure on the pradwaste processing system, reduce waste and improve plant chemistry. This article discusses general aspects of the process.

  10. [Enhanced nitrogen and phosphorus removal of wastewater by using sludge anaerobic fermentation liquid as carbon source in a pilot-scale system].

    PubMed

    Luo, Zhe; Zhou, Guang-Jie; Liu, Hong-Bo; Nie, Xin-Yu; Chen, Yu; Zhai, Li-Qin; Liu, He

    2015-03-01

    In order to explore the possibility of enhanced nitrogen and phosphorus removal in wastewater using sludge anaerobic fermentation liquid as external carbon source, the present study proposed an A2/O reactor system with a total effective volume of 4 660 L and real municipal wastewater for treatment. The results showed that under the conditions of the influent COD at 243.7 mg x L(-1), NH4(+) -N at 30. 9 mg x L(-1), TN at 42.9 mg'L- , TP at 2.8 mg x L(-1), the backflow ratio of nitrification liquid at 200% and recycle ratio of sludge at 100%, the addition of acetic acid into anoxic tank could enhance the removal efficiency of nitrogen and phosphorus, and the optimal influent quantity and SCOD incremental of carbon were 7 500 L x d(-1) and 50 mg L(-1), respectively. When the sludge fermentation liquid was used as external carbon source and the average effluent COD, NH4(+) -N, TN, TP removal efficiency were 81.60%, 88.91%, 64.86% and 87.61%, the effluent concentrations were 42.18, 2.77, 11.92 and 0.19 mg x L(-1), respectively, which met China's first Class (A) criteria specified in the Discharge Standard Urban Sewage Treatment Plant Pollutant (GB 18918-2002). The results of the present study demonstrated that the addition of sludge anaerobic fermented liquid as external carbon source was a feasible way to enhance the removal of nitrogen and phosphorous in municipal wastewater, providing a new feasible strategy for the reuse and recycle of sewage sludge in China.

  11. Progress report Waste Resources Utilization Program period ending March 31, 1976. [Radiosterilization of sewage sludge for safe application as fertilizer or animal feed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-06-01

    This report describes the work on the Waste Resources Utilization Program for the quarter ending March 31, 1976. The purpose of this program is to develop technologies to utilize a /sup 137/Cs ..gamma.. source to modify sewage sludge for safe application as a fertilizer or an animal feed supplement. Results are reported from studies in microbiology, virology, and physical-chemical studies. Determinations were made of inactivation rates for Salmonella species, coliforms, and fecal strep in sewage sludge when radiation and thermoradiation were applied while bubbling oxygen through the sludge. Virology studies were continued investigating virucidal characteristics of anaerobically digested sludge. Anothermore » area of study was the dewatering of sewage sludge to reduce the drying time of the sewage sludge in the drying beds. A centrifuge was also installed to dewater treated sludge to approximately 30 percent solids. (auth)« less

  12. Utilization of alum sludge as chromium removal

    NASA Astrophysics Data System (ADS)

    Zahari, Nazirul Mubin; Sidek, Lariyah Mohd; Zulkifli, Muhammad Azmeer Asyraf; Hua, Chua Kok; Jalil, Nurulhidayah Abdul

    2017-09-01

    The amount of alum sludge produced at water treatment plant has become a problem where it is highly costly in order to dispose them. Various research was conducted to find the most suitable and economic alternative to recycle and reused of alum sludge. In this study, alum sludge was retrieved from Waterworks where it was dewatered, dried, grounded and sieved to obtain smallest particle sizes of alum sludge. The synthetic water was prepared at the laboratory in as it was used to imitate the properties of real water contaminated with chromium. This study was conducted to determine the percentage reduction of chromium concentration in synthetic water by using alum sludge as absorbent. The percentage reduction of chromium was observed under the effect of initial concentration of chromium and the height of alum sludge. The result indicates that chromium concentration reduction was the highest at the lowest initial concentration and at the highest height of alum sludge and vice versa.

  13. Implications of changes in solids retention time on long term evolution of sludge filterability in anaerobic membrane bioreactors treating high strength industrial wastewater.

    PubMed

    Dereli, Recep Kaan; Grelot, Aurelie; Heffernan, Barry; van der Zee, Frank P; van Lier, Jules B

    2014-08-01

    Long-term experiments were conducted to assess the impact of changing the solids retention time (SRT) on sludge filterability in anaerobic membrane bioreactors (AnMBRs), treating corn-based bioethanol thin stillage. Well established parameters, such as capillary suction time (CST) and specific resistance to filtration (SRF), developed for sludge dewatering, were used to evaluate the SRT effect on sludge filterability. Our results clearly demonstrated that SRT is one of the most important factors influencing sludge filterability in AnMBRs. SRT effects the accumulation of fine particles and solutes, which were found to affect attainable flux and fouling, in reactor broth. A better filterability was observed at a SRT of 20 days compared to elevated SRTs, i.e. 50 days. A clear correlation between sludge filtration characteristics and membrane filtration resistance could not be established especially at short SRTs, whereas many parameters such as total suspended solids (TSS), CST, soluble microbial products (SMP) and supernatant filterability were found to be mutually correlated. Net membrane fluxes between 9 and 13 L m(-2) h(-1) were obtained at 0.5 m s(-1) cross-flow velocity and the long term fouling was controlled by using frequent filtration and backwash cycles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells.

    PubMed

    Yuan, Pengyi; Kim, Younggy

    2017-01-01

    Microbial electrolysis cells (MECs) use bioelectrochemical reactions to remove organic contaminants at the bioanode and produce hydrogen gas at the cathode. High local pH conditions near the cathode can also be utilized to produce struvite from nutrient-rich wastewater. This beneficial aspect was investigated using lab-scale MECs fed with dewatering centrate collected at a local wastewater treatment plant. The main objective was to improve phosphorus recovery by examining various cathode configurations and electric current conditions. The stainless steel mesh (SSM) cathode was relatively inefficient to achieve complete phosphorus recovery because struvite crystals were smaller (a few to tens of micrometers) than the open space between mesh wires (80 µm). As a result, the use of multiple pieces of SSM also showed a limited improvement in the phosphorus recovery up to only 68% with 5 SSM pieces. Readily available organic substrates were not sufficient in the dewatering centrate, resulting in relatively low electric current density (mostly below 0.2 A/m 2 ). The slow electrode reaction did not provide sufficiently high pH conditions near the cathode for complete recovery of phosphorus as struvite. Based on these findings, additional experiments were conducted using stainless steel foil (SSF) as the cathode and acetate (12 mM) as an additional organic substrate for exoelectrogens at the bioanode. With the high electric current (>2 A/m 2 ), a thick layer of struvite crystals was formed on the SSF cathode. The phosphorus recovery increased to 96% with the increasing MEC operation time from 1 to 7 days. With the high phosphorus recovery, estimated energy requirement was relatively low at 13.8 kWh (with acetate) and 0.30 kWh (without acetate) to produce 1 kg struvite from dewatering centrate. For efficient phosphorus recovery from real wastewater, a foil-type cathode is recommended to avoid potential losses of small struvite crystals. Also, presence of readily

  15. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    PubMed

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  16. Biosolids accumulation and biodegradation of domestic wastewater treatment plant sludge by developed liquid state bioconversion process using a batch fermenter.

    PubMed

    Alam, Md Zahangir; Fakhru'l-Razi, A; Molla, Abul H

    2003-09-01

    The biosolids accumulation and biodegradation of domestic wastewater treatment plant (DWTP) sludge by filamentous fungi have been investigated in a batch fermenter. The filamentous fungi Aspergillus niger and Penicillium corylophilum isolated from wastewater and DWTP sludge was used to evaluate the treatment performance. The optimized mixed inoculum (A. niger and P. corylophilum) and developed process conditions (co-substrate and its concentration, temperature, initial pH, inoculum size, and aeration and agitation rate) were incorporated to accelerate the DWTP sludge treatment process. The results showed that microbial treatment of higher strength of DWTP sludge (4% w/w of TSS) was highly influenced by the liquid state bioconversion (LSB) process. In developed bioconversion processes, 93.8 g/kg of biosolids was enriched with fungal biomass protein of 30 g/kg. Enrichment of nutrients such as nitrogen (N), phosphorous (P), potassium (K) in biosolids was recorded in 6.2% (w/w), 3.1% (w/w) and 0.15% (w/w) from its initial values of 4.8% (w/w), 2.0% (w/w) and 0.08% (w/w) respectively after 10 days of fungal treatment. The biodegradation results revealed that 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of COD in treated DWTP sludge supernatant were removed after 8 days of microbial treatment. The specific resistance to filtration (SRF) in treated sludge (1.4x10(12) m/kg) was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation compared to untreated sample (85x10(12) m/kg).

  17. Human enteric viruses in a wastewater treatment plant: evaluation of activated sludge combined with UV disinfection process reveals different removal performances for viruses with different features.

    PubMed

    Lizasoain, A; Tort, L F L; García, M; Gillman, L; Alberti, A; Leite, J P G; Miagostovich, M P; Pou, S A; Cagiao, A; Razsap, A; Huertas, J; Berois, M; Victoria, M; Colina, R

    2018-03-01

    This study assess the quality of wastewater through the detection and quantification of important viruses causing gastroenteritis at different stages of the wastewater treatment process in an activated-sludge wastewater treatment plant with ultraviolet disinfection. Ten sampling events were carried out in a campaign along a period of 18 months collecting wastewater samples from the influent, after the activated-sludge treatment, and after the final disinfection with UV radiation. Samples were concentrated through ultracentrifugation and analysed using retro-transcription, PCR and real time quantitative PCR protocols, for detection and quantification of Group A Rotavirus (RVA), Human Astrovirus (HAstV), Norovirus Genogroup II (NoV GII) and Human Adenovirus (HAdV). HAdV (100%), NoV GII (90%), RVA (70%) and HAstV (60%) were detected in influent samples with concentration from 1·4 (NoV GII) to 8·0 (RVA) log 10  gc l -1 . Activated-sludge treatment reached well quality effluents with low organic material concentration, although nonstatistical significant differences were registered among influent and postactivated sludge treatment samples, regarding the presence and concentration for most viruses. All post-UV samples were negative for NoV GII and HAstV, although RVA and HAdV were detected in 38% and 63% of those samples respectively, with concentration ranging from 2·2 to 5·5 and 3·1 to 3·4 log 10  gc l -1 . This study demonstrates that an activated-sludge wastewater treatment plant with UV disinfection reduces to levels below the detection limit those single-stranded RNA viruses as noroviruses and astroviruses and reach significant lower levels of rotaviruses and adenoviruses after the complete treatment process. © 2017 The Society for Applied Microbiology.

  18. Heat inactivation of poliovirus in wastewater sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.; Ashley, C.S.; Moseley, R.H.

    1976-09-01

    The effect of raw and anaerobically digested sludge on heat inactivation of poliovirus was investigated. Raw sludge was found to be very protective of poliovirus plaque-forming ability at all temperatures studied, but digested sludge had variable effects that were highly dependent upon the experimental conditions. In low concentrations and at relatively low inactivation temperatures, digested sludge is nearly as protective of poliovirus as raw sludge. However, at higher temperatures and concentrations, digested sludge caused a significant acceleration of poliovirus inactivation. The difference between the protective capability of raw and digested sludge is not due to loss of protective material, becausemore » this component is present in the solids of digested sludge as well as in those of raw sludge. Instead, the difference is due to a virucidal agent acquired during digestion. Addition of this agent to the solids of either raw or digested sludge reverses the protective potential of these solids during heat treatment of poliovirus.« less

  19. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China.

    PubMed

    Pang, Long; Yuan, Yiting; He, Han; Liang, Kang; Zhang, Hongzhong; Zhao, Jihong

    2016-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants. In this study, the occurrence and distribution of six OPEs were investigated in sewage sludge from 24 wastewater treatment plants (WWTPs) in 18 cities of Henan province, Central China. The results indicated that all target OPEs were detected in the sludge samples with the detection rate of 95.8%, except tris(dichloropropyl)phosphate (TDCP). The total concentration of the six OPEs ranged from 38.6 to 508 μg kg(-1). Tris(2-chloroethyl)phosphate (TCEP), tris(2-butoxyethyl)phosphate (TBEP), and tris(2-chloroiso-propyl)phosphate (TCPP) were found to be predominant, with concentrations ranging from 2.50 to 203, 1.60 to 383, and 6.70-161 μg kg(-1), respectively. The potential factors affecting OPE levels in sewage sludge, such as wastewater source, sludge characteristics, operational conditions, treatment techniques, and total organic carbon (TOC) of sludge in WWTPs were investigated. The results indicated that the total concentration of OPEs in sewage sludge has no significant relationship with the individual parameters (p > 0.05). However, significant correlations were found between triphenyl phosphate (TPhP) level and treatment capacity (R = 0.484, p < 0.05), processing volume (R = 0.495, p < 0.05), and serving population (R = 0.591, p < 0.05). Furthermore, the relationship between treatment techniques and the total concentration of OPEs in sewage sludge was also investigated in this study, and the results illustrated that the levels of OPEs in sludge were independent of the solid retention time (SRT). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Rheological properties of disintegrated sewage sludge

    NASA Astrophysics Data System (ADS)

    Wolski, Paweł

    2017-11-01

    The rheology of the sludge provides information about the capacity and the flow, which in the case of project tasks for the hydraulic conveying installation is an important control parameter. Accurate knowledge of the rheological properties of sludge requires the designation of rheological models. Models single and multiparameter (Ostwald, Bingham, Herschel-Bulkley'a, and others) allow an approximation of flow curves, and the determination of the boundaries of the flow of modified sludge allows you to control the process compaction or are dewatered sludge undergoing flow. The aim of the study was to determine the rheological parameters and rheological models of sludge conditioned by physical methods before and after the process of anaerobic digestion. So far, studies have shown that the application of conditioning in the preparation of sewage sludge increases shear stress, viscosity as well as the limits of flow in relation to the untreated sludge. Offset yield point by the application of a conditioning agent is associated with decreased flowability tested sludge, which has also been observed by analyzing the structure of the prepared samples. Lowering the yield point, and thus the shear stress was recorded as a result of the fermentation test of disintegrated sludge.

  1. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China.

    PubMed

    Zeng, Lixi; Wang, Thanh; Ruan, Ting; Liu, Qian; Wang, Yawei; Jiang, Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80-52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C(11) and Cl(7,8) were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r(2) ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Mechanism of red mud combined with Fenton's reagent in sewage sludge conditioning.

    PubMed

    Zhang, Hao; Yang, Jiakuan; Yu, Wenbo; Luo, Sen; Peng, Li; Shen, Xingxing; Shi, Yafei; Zhang, Shinan; Song, Jian; Ye, Nan; Li, Ye; Yang, Changzhu; Liang, Sha

    2014-08-01

    Red mud was evaluated as an alternative skeleton builder combined with Fenton's reagent in sewage sludge conditioning. The results show that red mud combined with Fenton's reagent showed good conditioning capability with the pH of the filtrate close to neutrality, indicating that red mud acted as a neutralizer as well as a skeleton builder when jointly used with Fenton's reagent. Through response surface methodology (RSM), the optimal dosages of Fe(2+), H2O2 and red mud were proposed as 31.9, 33.7 and 275.1 mg/g DS (dry solids), respectively. The mechanism of the composite conditioner could be illuminated as follows: (1) extracellular polymeric substances (EPS), including loosely bound EPS and tightly bound EPS, were degraded into dissolved organics, e.g., proteins and polysaccharides; (2) bound water was released and converted into free water due to the degradation of EPS; and (3) morphology of the conditioned sludge exhibited a porous structure in contrast with the compact structure of raw sludge, and the addition of red mud formed new mineral phases and a rigid lattice structure in sludge, allowing the outflow of free water. Thus, sludge dewatering performance was effectively improved. The economic assessment for a wastewater treatment plant of 370,000 equivalent inhabitants confirms that using red mud conditioning, combined with Fenton's reagent, leads to a saving of approximately 411,000 USD/y or 50.8 USD/t DS comparing with using lime and ordinary Portland cement combined with Fenton's reagent, and approximately 612,000 USD/y or 75.5 USD/t DS comparing with the traditional treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry.

    PubMed

    Liu, Shan; Ying, Guang-Guo; Zhao, Jian-Liang; Chen, Feng; Yang, Bin; Zhou, Li-Jun; Lai, Hua-Jie

    2011-03-11

    A sensitive rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS) method, combined with solid-phase extraction, ultrasonic extraction and silica gel cartridge cleanup, was developed for 28 steroids including 4 estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynyl estradiol (EE2), diethylstilbestrol (DES)), 14 androgens (androsta-1,4-diene-3,17-dione (ADD), 17α-trenbolone, 17β-trenbolone, 4-androstene-3,17-dione, 19-nortestoserone, 17β-boldenone, 17α-boldenone, testosterone (T), epi-androsterone (EADR), methyltestosterone (MT), 4-hydroxy-androst-4-ene-17-dione (4-OHA), 5α-dihydrotestosterone (5α-DHT), androsterone (ADR), stanozolol (S)), 5 progestagens (progesterone (P), ethynyl testosterone (ET), 19-norethindrone, norgestrel, medroxyprogesterone (MP)), and 5 glucocorticoids (cortisol, cortisone, prednisone, prednisolone, dexamethasone) in surface water, wastewater and sludge samples. The recoveries of surface water, influents, effluents and sludge samples were 90.6-119.0% (except 5α-DHT was 143%), 44.0-200%, 60.7-123% and 62.6-138%, respectively. The method detection limits for the 28 analytes in surface water, influents, effluents and freeze-dried sludge samples were 0.01-0.24 ng/L, 0.02-1.44 ng/L, 0.01-0.49 ng/L and 0.08-2.06 ng/g, respectively. This method was applied in the determination of the residual steroidal hormones in two surface water of Danshui River, 12 wastewater and 8 sludge samples from two wastewater treatment plants (Meihu and Huiyang WWTPs) in Guangdong (China). Ten analytes were detected in surface water samples with concentrations ranging between 0.4 ng/L (17β-boldenone) and 55.3 ng/L (5α-DHT); twenty analytes in the wastewater samples with concentrations ranging between 0.3 ng/L (P) and 621 ng/L (5α-DHT); and 12 analytes in the sludge samples with concentrations ranging between 1.6 ng/g (E1) and 372 ng/g (EADR). Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Health risk assessment along the wastewater and faecal sludge management and reuse chain of Kampala, Uganda: a visualization.

    PubMed

    Fuhrimann, Samuel; Winkler, Mirko S; Schneeberger, Pierre H H; Niwagaba, Charles B; Buwule, Joseph; Babu, Mohammed; Medlicott, Kate; Utzinger, Jürg; Cissé, Guéladio

    2014-11-01

    Reuse of wastewater in agriculture is a common feature in the developing world. While this strategy might contribute to the livelihood of farming communities, there are health risks associated with the management and reuse of wastewater and faecal sludge. We visualise here an assessment of health risks along the major wastewater channel in Kampala, Uganda. The visualization brings to bear the context of wastewater reuse activities in the Nakivubo wetlands and emphasises interconnections to disease transmission pathways. The contextual features are complemented with findings from environmental sampling and a cross-sectional epidemiological survey in selected exposure groups. Our documentation can serve as a case study for a step-by-step implementation of risk assessment and management as described in the World Health Organization's 2006 guidelines for the safe use of wastewater, greywater and excreta in light of the forthcoming sanitation safety planning approach.

  5. Biomethanization of mixtures of fruits and vegetables solid wastes and sludge from a municipal wastewater treatment plant.

    PubMed

    Gomez-Lahoz, C; Fernández-Giménez, B; Garcia-Herruzo, F; Rodriguez-Maroto, J M; Vereda-Alonso, C

    2007-03-01

    The possible management of Fruit and Vegetable Solid Wastes (FVSWs) through their simultaneous digestion with the primary sludge of Municipal Wastewater Treatment plants is investigated. This alternative allows the recovery of energy and a solid product that can be used as an amendment for soils that generated the residue, while is not expensive. Results indicate that the ratio of FVSWs to sludge and the pH control are the main variables determining the methane production and concentration. NaHCO3 was selected to achieve the pH control. The results for a ratio of 50% sludge together with 10 g NaHCO3/kg of residue are among the best obtained, with a methane yield of about 90 L per kg of volatile solids, and a methane concentration of 40% (v/v) of the biogas. A 50% reduction of the total solids; 21% reduction of the volatile solids (in terms of total solids); and a pH value of the sludge, which is 6.9 indicate that the digested sludge can be a good material for soil amendment.

  6. Recovering and recycling Hg from chlor-alkali plant wastewater sludge

    NASA Astrophysics Data System (ADS)

    Twidwell, L. G.; Thompson, R. J.

    2001-01-01

    Montana Tech of the University of Montana and Universal Dynamics of British Columbia have developed a hydrometallurgical process for recovering and recycling mercury from chlorine plant wastewater sludge materials (U.S. Environmental Protection Agency [EPA]hazardous-waste classification K106). The hydrometallurgical process is also applicable for the treatment of mercury-contaminated soils (EPA hazardous waste classification D009) and other mercury-bearing waste materials. The process, which is capable of lowering the mercury content in the K106 solids from 10% to <50 mg/kg Hg, has been commercialized and utilized at three U.S. plants. This paper describes the fundamental chemistry of the process, the flowsheet being used, and operating plant case histories.

  7. Presence and fate of coliphages and enteric viruses in three wastewater treatment plants effluents and activated sludge from Tunisia.

    PubMed

    Jebri, Sihem; Jofre, Juan; Barkallah, Insaf; Saidi, Mouldi; Hmaied, Fatma

    2012-07-01

    The role of water in the transmission of infectious diseases is well defined; it may act as a reservoir of different types of pathogens. Enteric viruses can survive and persist for a long time in water, maintaining infectivity in many instances. This suggests the need to include virus detection in the evaluation of the microbiological quality of waters. In this study, enteric viruses (enteroviruses and hepatitis A virus (HAV)) were investigated by RT-PCR and coliphages (known as indicators of viral contamination) were enumerated with the double-layer technique agar in effluents and sewage sludge from three Tunisian wastewater treatment plants. The molecular detection of enteric viruses revealed 7.7% of positive activated sludge samples for enteroviruses. None of the samples was positive for HAV. Molecular virus detection threshold was estimated to be 10(3) PFU/100 ml. All samples contained high concentrations of coliphages except those of dry sludge. Reductions in the concentrations of bacteriophages attained by the wastewater treatment plants are of the order of magnitude as reductions described elsewhere. Peak concentrations in raw wastewater were associated with winter rains and suspended materials rate in analysed samples. Our data which is the first in North Africa showed that similar trends of coliphages distribution to other studies in other countries. No clear correlation between studied enteric viruses and coliphages concentration was proved. Coliphages abundance in collected samples should raise concerns about human enteric viruses transmission as these residues are reused in agricultural fields.

  8. A full scale worm reactor for efficient sludge reduction by predation in a wastewater treatment plant.

    PubMed

    Tamis, J; van Schouwenburg, G; Kleerebezem, R; van Loosdrecht, M C M

    2011-11-15

    Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m(3) reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m(3)/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m(2)d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms' activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Effect of seed sludge on characteristics and microbial community of aerobic granular sludge.

    PubMed

    Song, Zhiwei; Pan, Yuejun; Zhang, Kun; Ren, Nanqi; Wang, Aijie

    2010-01-01

    Aerobic granular sludge was cultivated by using different kinds of seed sludge in sequencing batch airlift reactor. The influence of seed sludge on physical and chemical properties of granular sludge was studied; the microbial community structure was probed by using scanning electron microscope and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that seed sludge played an important role on the formation of aerobic granules. Seed sludge taken from beer wastewater treatment plant (inoculum A) was more suitable for cultivating aerobic granules than that of sludge from municipal wastewater treatment plant (inoculum B). Cultivated with inoculum A, large amount of mature granules formed after 35 days operation, its SVI reached 32.75 mL/g, and SOUR of granular sludge was beyond 1.10 mg/(g x min). By contrast, it needed 56 days obtaining mature granules using inoculum B. DGGE profiles indicated that the dominant microbial species in mature granules were 18 and 11 OTU when inoculum A and B were respectively employed as seed sludge. The sequencing results suggested that dominant species in mature granules cultivated by inoculum A were Paracoccus sp., Devosia hwasunensi, Pseudoxanthomonas sp., while the dominant species were Lactococcus raffinolactis and Pseudomonas sp. in granules developed from inoculum B.

  10. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation.

    PubMed

    Chen, Zhan; Zhang, Weijun; Wang, Dongsheng; Ma, Teng; Bai, Runying; Yu, Dezhong

    2016-10-15

    The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Dewatered sewage biosolids provide a productive larval habitat for stable flies and house flies (Diptera: Muscidae)

    USDA-ARS?s Scientific Manuscript database

    Species diversity and seasonal abundance of muscoid flies (Diptera: Muscidae) developing in biosolid cake (dewatered biosolids) stored at a wastewater treatment facility in northeastern Kansas was evaluated. Emergence traps were deployed 19 May-20 Oct 2009 (22 wk) and 27 May-18 Nov 2010 (25 wk). A t...

  12. Evaluation of solar sludge drying alternatives by costs and area requirements.

    PubMed

    Kurt, Mayıs; Aksoy, Ayşegül; Sanin, F Dilek

    2015-10-01

    Thermal drying is a common method to reach above 90% dry solids content (DS) in sludge. However, thermal drying requires high amount of energy and can be expensive. A greenhouse solar dryer (GSD) can be a cost-effective substitute if the drying performance, which is typically 70% DS, can be increased by additional heat. In this study feasibility of GSD supported with solar panels is evaluated as an alternative to thermal dryers to reach 90% DS. Evaluations are based on capital and O&M costs as well as area requirements for 37 wastewater treatment plants (WWTPs) with various sludge production rates. Costs for the supported GSD system are compared to that of conventional and co-generation thermal dryers. To calculate the optimal costs associated with the drying system, an optimization model was developed in which area limitation was a constraint. Results showed that total cost was minimum when the DS in the GSD (DS(m,i)) was equal to the maximum attainable value (70% DS). On average, 58% of the total cost and 38% of total required area were associated with the GSD. Variations in costs for 37 WWTPs were due to differences in initial DS (DS(i,i)) and sludge production rates, indicating the importance of dewatering to lower drying costs. For large plants, GSD supported with solar panels provided savings in total costs especially in long term when compared to conventional and co-generation thermal dryers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Inactivation of Indigenous Viruses in Raw Sludge by Air Drying

    PubMed Central

    Brashear, David A.; Ward, Richard L.

    1983-01-01

    Air drying of raw sludge caused inactivation of indigenous viruses. A gradual loss of infectivity occurred with the loss of water until the solids content reached about 80%. A more rapid decline of viral infectivity occurred with further dewatering. PMID:6309080

  14. Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations.

    PubMed

    Fux, C; Siegrist, H

    2004-01-01

    In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.

  15. Co-digestion of municipal sludge and external organic wastes for enhanced biogas production under realistic plant constraints.

    PubMed

    Tandukar, Madan; Pavlostathis, Spyros G

    2015-12-15

    A bench-scale investigation was conducted to select external organic wastes and mixing ratios for co-digestion with municipal sludge at the F. Wayne Hill Water Resources Center (FWHWRC), Gwinnett County, GA, USA to support a combined heat and power (CHP) project. External wastes were chosen and used subject to two constraints: a) digester retention time no lower than 15 d; and b) total biogas (methane) production not to exceed a specific target level based on air permit constraints on CO2 emissions. Primary sludge (PS), thickened waste activated sludge (TWAS) and digested sludge collected at the FWHWRC, industrial liquid waste obtained from a chewing gum manufacturing plant (GW) and dewatered fat-oil-grease (FOG) were used. All sludge and waste samples were characterized and their ultimate digestibility was assessed at 35 °C. The ultimate COD to methane conversion of PS, TWAS, municipal sludge (PS + TWAS; 40:60 w/w TS basis), GW and FOG was 49.2, 35.2, 40.3, 72.7, and 81.1%, respectively. Co-digestion of municipal sludge with GW, FOG or both, was evaluated using four bench-scale, mesophilic (35 °C) digesters. Biogas production increased significantly and additional degradation of the municipal sludge between 1.1 and 30.7% was observed. Biogas and methane production was very close to the target levels necessary to close the energy deficit at the FWHWRC. Co-digestion resulted in an effluent quality similar to that of the control digester fed only with the municipal sludge, indicating that co-digestion had no adverse effects. Study results prove that high methane production is achievable with the addition of concentrated external organic wastes to municipal digesters, at acceptable higher digester organic loadings and lower retention times, allowing the effective implementation of CHP programs at municipal wastewater treatment plants, with significant cost savings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. [Feasibility study on coke wastewater treatment using membrane bioreactor (MBR) system with complete sludge retention].

    PubMed

    Zhao, Wen-Tao; Huang, Xia; Lee, Duu-Jong; He, Miao; Yuan, Yuan

    2009-11-01

    A laboratory-scale submerged anaerobic-anoxic-oxic membrane bioreactor (A1/A2/O-MBR) system was used to treat real coke wastewater and operated continuously for 160 d with complete sludge retention. Pollutants removal performance of the system was investigated through long-term operation. The characteristics of dissolved organic matters (DOMs) in influent and effluent coke wastewater were analyzed using hydrophilic/hydrophobic fractionation, and further discussed based on fluorescence excitation-emission-matrix (EEM). The results showed that A1/A2/O-MBR system could stably remove 88.0% +/- 1.6% of COD, > 99.9% of volatile phenol, 99.4% +/- 0.2% of turbidity, and 98.3% +/- 1.9% of NH4(+) -N, with individual average effluent concentrations of 249 mg/L +/- 44 mg/L, 0.18 mg/L +/- 0.05 mg/L, 1.0 NTU +/- 0.2 NTU and 4.1 mg/L +/- 4.3 mg/L, respectively; moreover, the maximum TN removal rate also reached 74.9%. During the whole operation period, the MLVSS/MLSS appeared to be constant as 90.2% +/- 1.0% and no inorganic matters accumulation occurred. The observed sludge production (MLVSS/COD) decreased with time and stabilized at 0.035 kg/kg. DOMs in coke wastewater were fractionated as hydrophobic acids (HOA), hydrophobic neutrals (HON), hydrophobic bases (HOB) and hydrophilic substances (HIS); HOA was found to be the most abundant constituent in terms of DOC and color intensity both in influent and effluent, which accounted for 70% and 67% of total DOC, and 75% and 76% of total color intensity, respectively. Humic-like substances were suggested to be the major refractory organic and color-causing compounds coke wastewater effluent according to EEM analysis.

  17. Study on cement mortar and concrete made with sewage sludge ash.

    PubMed

    Chang, F C; Lin, J D; Tsai, C C; Wang, K S

    2010-01-01

    This study investigated the feasibility of reusing wastewater sludge ash in construction materials to replace partial materials. Wastewater sludge sampled from thermal power plant was burned into sludge ash at 800°C in the laboratory. The sludge incineration ash has low heavy metal including Pb, Cd, Cr and Cu, so it belongs to general enterprise waste. The chemical composition of sludge incineration ash was summed up in SiO₂, CaO, Fe₂O₃ and MgO. Then the wastewater sludge ash is also found to be a porous material with irregular surface. When the sludge ash was used to replace mortar or concrete cement, its water-adsorption capability will result in the reduction of mortar workability and compressive strength. Cement is being substituted for sludge ash, and 10 percent of sludge ash is more appropriate. Sludge ash is reused to take the place of construction materials and satisfies the requests of standard specification except for higher water absorption.

  18. Nonoxidative removal of organics in the activated sludge process

    PubMed Central

    Modin, Oskar; Persson, Frank; Wilén, Britt-Marie; Hermansson, Malte

    2016-01-01

    ABSTRACT The activated sludge process is commonly used to treat wastewater by aerobic oxidation of organic pollutants into carbon dioxide and water. However, several nonoxidative mechanisms can also contribute to removal of organics. Sorption onto activated sludge can remove a large fraction of the colloidal and particulate wastewater organics. Intracellular storage of, e.g., polyhydroxyalkanoates (PHA), triacylglycerides (TAG), or wax esters can convert wastewater organics into precursors for high-value products. Recently, several environmental, economic, and technological drivers have stimulated research on nonoxidative removal of organics for wastewater treatment. In this paper, we review these nonoxidative removal mechanisms as well as the existing and emerging process configurations that make use of them for wastewater treatment. Better utilization of nonoxidative processes in activated sludge could reduce the wasteful aerobic oxidation of organic compounds and lead to more resource-efficient wastewater treatment plants. PMID:27453679

  19. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ischia, Marco, E-mail: marco.ischia@ing.unitn.it; Maschio, Roberto Dal; Grigiante, Maurizio

    2011-01-15

    Wastewater sewage sludge was co-pyrolyzed with a well characterized clay sample, in order to evaluate possible advantages in the thermal disposal process of solid waste. Characterization of the co-pyrolysis process was carried out both by thermogravimetric-mass spectrometric (TG-MS) analysis, and by reactor tests, using a lab-scale batch reactor equipped with a gas chromatograph for analysis of the evolved gas phase (Py-GC). Due to the presence of clay, two main effects were observed in the instrumental characterization of the process. Firstly, the clay surface catalyzed the pyrolysis reaction of the sludge, and secondly, the release of water from the clay, atmore » temperatures of approx. 450-500 deg. C, enhanced gasification of part of carbon residue of the organic component of sludge following pyrolysis. Moreover, the solid residue remaining after pyrolysis process, composed of the inorganic component of sludge blended with clay, is characterized by good features for possible disposal by vitrification, yielding a vitreous matrix that immobilizes the hazardous heavy metals present in the sludge.« less

  20. Water Treatment Plant Sludges--An Update of the State of the Art: Part 2.

    ERIC Educational Resources Information Center

    American Water Works Association Journal, 1978

    1978-01-01

    This report outlines the state of the art with respect to nonmechanical and mechanical methods of dewatering water treatment plant sludge, ultimate solids disposal, and research and development needs. (CS)

  1. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge.

    PubMed

    Chen, Wei-Hsiang; Yang, Jun-Hong; Yuan, Chung-Shin; Yang, Ying-Hsien

    2016-10-01

    Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N 2 O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N 2 O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m 2 -day). The total emission in the WWTP (including carbon dioxide, methane, and N 2 O) would decrease by 46 % (from 0.67 to 0.36 kg CO 2 -equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  2. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    NASA Astrophysics Data System (ADS)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  3. A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems.

    PubMed

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  4. Application of Sludges and Wastewaters on Agricultural Land: A Planning and Educational Guide, MCD-35. Research Bulletin 1090.

    ERIC Educational Resources Information Center

    Knezek, Bernard D., Ed.; Miller, Robert H., Ed.

    This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…

  5. Characterization of Industrial Wastewater Sludge in Oman from Three Different Regions and Recommendations for Alternate Reuse Applications.

    PubMed

    Baawain, Mahad S; Al-Jabri, Mohsin; Choudri, B S

    2015-11-01

    Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management.

  6. Characterization of Industrial Wastewater Sludge in Oman from Three Different Regions and Recommendations for Alternate Reuse Applications

    PubMed Central

    BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.

    2015-01-01

    Background: Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Methods: Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). Results: The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. Conclusion: The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26744704

  7. Enrichment of anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system.

    PubMed

    Li-dong, Shen; An-hui, Hu; Ren-cun, Jin; Dong-qing, Cheng; Ping, Zheng; Xiang-yang, Xu; Bao-lan, Hu

    2012-01-15

    Three activated sludges from a landfill leachate treatment plant (S1), a municipal sewage treatment plant (S2) and a monosodium glutamate (MSG) wastewater treatment plant (S3) were used as inocula to enrich anaerobic ammonium oxidation (anammox) bacteria for the startup of MSG industrial wastewater treatment system. After 360 days of cultivation using MSG wastewater, obvious anammox activity was observed in all three cultures. The maximum specific anammox activities of cultures S1, S2 and S3 were 0.11 kg N kg(-1) VSS day(-1), 0.09 kg N kg(-1) VSS day(-1) and 0.16 kg N kg(-1) VSS day(-1), respectively. Brownish-red anammox granules having diameters in the range of 0.2-1.0mm were visible in cultures S1 and S2, and large red granules having diameters in the range of 0.5-2.5mm were formed in culture S3 after 420 days of cultivation. Phylogenetic analysis of 16S rRNA genes showed that Kuenenia organisms were the dominant anammox species in all three cultures. The copy numbers of 16S rRNA genes of anammox bacteria in cultures S1, S2 and S3 were 6.8 × 10(7) copies mL(-1), 9.4 × 10(7) copies mL(-1) and 7.5 × 10(8) copies mL(-1), respectively. The results of this study demonstrated that anammox cultivation from conventional activated sludges was highly possible using MSG wastewater. Thus the anammox process has possibility of applying to the nitrogen removal from MSG wastewater. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Removal of phosphorus from wastewater using ferroxysorb sorption media produced from amd sludge

    USGS Publications Warehouse

    Sibrell, P.L.; Tucker, T.W.; Kehler, T.; Fletcher, J.W.

    2008-01-01

    Treatment of acid mine drainage (AMD), whether with lime, limestone, caustic or simple aeration, nearly always results in generation of a metal hydroxide sludge. Disposal of the sludge often constitutes a significant fraction of the operating cost for the AMD treatment plant. Research at the USGS - Leetown Science Center has shown that AMD sludge, with its high content of aluminum and iron oxides, has a high affinity of phosphorus (P). Anthropogenic sources of P are associated with eutrophication and degradation of aquatic environments, resulting in anoxic dead zones in certain sensitive waterways. In this paper, we describe a method of converting the AMD sludge from a liability into an asset - Ferroxysorb P removal media - which can be used to remove excess P from wastewater. Three different Ferroxysorb media samples were produced from differing AMD sources and tested for P removal. Adsorption isotherms confirmed that the media had a high sorption capacity for P, as high as 19,000 mg/kg. The technology was demonstrated at an active fish hatchery, where the media remained in service for over three months without stripping or regeneration. Over that period of time, the calculated P removal was 50%, even at a very low influent P concentration of 60 parts per billion. In summary, use of the AMD-derived Ferroxysorb sorption media will reduce AMD treatment costs while at the same time helping to resolve the pressing environmental issue of eutrophication and degradation of sensitive waterways.

  9. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater.

    PubMed

    Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak

    2017-03-01

    In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.

  10. Effect of gamma-ray irradiation on the dewaterability of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu

    2017-01-01

    The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.

  11. Estimation of amount of selected pharmaceuticals sorbed onto digested sludge from wastewater treatment plant Bratislava-Petržalka.

    PubMed

    Ivanová, Lucia; Fáberová, Milota; Mackuľak, Tomáš; Grabic, Roman; Bodík, Igor

    2017-05-01

    Antibiotics and antidepressants are among the most successful drugs used for human therapy. Their concentration in influent on WWTP is relative high and there can be removed by biodegradation or sorption. The aim of this study was to define the amounts of sorbed pharmaceuticals on digested sludge from WWTP Bratislava - Petržalka. The amounts of sorbed pharmaceuticals were calculated from knowing partition coefficients for selected pharmaceuticals and from analytically measured pharmaceutical´s concentrations in sludge liquor. From this calculation were estimated the one-year sorbed amount of pharmaceutical onto sludge from wastewater treatment plant Petržalka (26,066g/y for ciprofloxacin, 756g/y for azithromycin, 647g/y for clarithromycin, 445g/y for venlafaxine and 148g/y for citalopram). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    PubMed

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  13. Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor.

    PubMed

    Romano, Rowena T; Zhang, Ruihong

    2008-02-01

    The co-digestion of onion juice and aerobic wastewater sludge produced from an onion processor using an anaerobic mixed biofilm reactor (AMBR) was investigated for biogas energy production potential and waste treatment. Two experiments were conducted to study the performance of an AMBR at different organic loading rates (OLRs) using different mixtures of onion juice and aerobic sludge. In the first experiment, the OLR was increased from 1.24 to 4.37 gVS/L/d by increasing the amount of onion juice in the feed mixture while maintaining a constant amount of aerobic sludge. When the OLR reached 4.37 gVS/L/d, the AMBR failed as indicated by decreased biogas production and pH. Increase of carbon to nitrogen ratio (C/N) from 13.7 to 20.3 and lack of proper alkalinity were suspected to be the causes for the failure. In the second experiment, the C/N of the feed mixture was maintained at about 15 while the OLR was increased from 1.40 to 3.60 gVS/L/d. The digester showed stable performance. The average biogas and methane yields of the two experiments were 0.62 +/- 0.05 L/gVS and 0.37 +/- 0.08 L/gVS, respectively. It was concluded that the C/N of about 15 was recommended for treating the mixture of onion juice and aerobic sludge.

  14. Full scale fluidized bed anaerobic reactor for domestic wastewater treatment: performance, sludge production and biofilm.

    PubMed

    Mendonça, N M; Niciura, C L; Gianotti, E P; Campos, J R

    2004-01-01

    This paper describes the performance, sludge production and biofilm characteristics of a full scale fluidized bed anaerobic reactor (32 m3) for domestic wastewater treatment. The reactor was operated with 10.5 m x h(-1) upflow velocity, 3.2 h hydraulic retention time, and recirculation ratio of 0.85 and it presented removal efficiencies of 71+/-8% of COD and 77+/-14% of TSS. During the apparent steady-state period, specific sludge production and sludge age in the reactor were (0.116+/-0.033) kgVSS. kgCOD(-1) and (12+/-5)d, respectively. Biofilm formed in the reactor presented two different patterns: one of them at the beginning of the colonization and the other of mature biofilm. These different colonization patterns are due to bed stratification in the reactor, caused by the difference in local-energy dissipation rates along the reactor's height, and density, shape, etc. of the bioparticles. The biofilm population is formed mainly of syntrophic consortia among sulfate reducing bacteria, methanogenic archaea such as Methanobacterium and Methanosaeta-like cells.

  15. On the understanding and control of the spontaneous heating of dried tannery wastewater sludge.

    PubMed

    Biasin, A; Della Zassa, M; Zerlottin, M; Refosco, D; Bertani, R; Canu, P

    2014-04-01

    We studied the spontaneous heating of dried sludge produced by treating wastewater mainly originating from tanneries. Heating up to burning has been observed in the presence of air and moisture, starting at ambient temperature. To understand and prevent the process we combined chemical and morphological analyses (ESEM) with thermal activity monitoring in insulated vessels. Selective additions of chemicals, either to amplify or depress the reactivity, have been used to investigate and identify both the chemical mechanism causing the sludge self-heating, and a prevention or a mitigation strategy. FeS additions accelerate the onset of reactivity, while S sustains it over time. On the contrary, Ca(OH)2, Na2CO3, NaHCO3, FeCl2, EDTA, NaClO can limit, up to completely preventing, the exothermic activity. All the experimental evidences show that the reactions supporting the dried sludge self-heating involve the Fe/S/O system. The total suppression of the reactivity requires amounts of additives that are industrially incompatible with waste reduction and economics. The best prevention requires reduction or removal of S and Fe from the dried solid matrix. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Multifractality analysis of crack images from indirect thermal drying of thin-film dewatered sludge

    NASA Astrophysics Data System (ADS)

    Wang, Weiyun; Li, Aimin; Zhang, Xiaomin; Yin, Yulei

    2011-07-01

    Crack formation is inevitable during sludge drying because of the existence of uneven thermal stress. Experiments have been conducted to study crack pattern formation in thin film sludge. Crack images show that the thinner the sewage sludge film, the more even the crack distribution. The crack changes from a flaky texture to a banded structure with increasing thickness. Multifractal methods are proposed to analyze the crack image of four different thicknesses of dried sludge. Several parameters are conducted for quantification of the crack image and the results indicate that the width of spectra increases with thicker sludge film, that is to say, nonunifromity of crack distribution increases with increasing thickness, which proves that the multifractal method is sensitive enough to quantify the crack distribution and can be seen as a new approach for the changing research of crack images of sewage sludge drying.

  17. Deciphering the factors influencing the discrepant fate of antibiotic resistance genes in sludge and water phases during municipal wastewater treatment.

    PubMed

    Zhang, Junya; Yang, Min; Zhong, Hui; Liu, Mengmeng; Sui, Qianwen; Zheng, Libing; Tong, Juan; Wei, Yuansong

    2018-06-09

    The discrepant fate of antibiotic resistance genes (ARGs) in sludge and water phases was investigated in a municipal wastewater treatment plant, and a lab-scale A 2 O-MBR was operated to provide background value of ARGs. The influencing factors of ARGs including microbial community, co-selection from heavy metals, biomass and horizontal gene transfer were concerned. Results showed that iA 2 O (inversed A 2 O) showed better ARGs reduction, and longer SRT (sludge retention time) increased ARGs relative abundance while reduced the gene copies of ARGs in the effluent, but significantly increased the ARGs in sludge phase. Compared to background value, the most enriched ARG was tetX in water phase, while it was intI1 in sludge phase. There existed higher abundance of multi-resistant bacteria in sludge phase, and microbial community determined the fate of ARGs in both water and sludge phase, while the direct effects from horizontal gene transfer should not be overlooked especially in water phase. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2014-02-01

    Pharmaceutically active compounds (PhACs) are considered as emerging environmental problem due to their continuous input and persistence to the aquatic ecosystem even at low concentrations. Among them, carbamazepine (CBZ) has been detected at the highest frequency, which ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of CBZ in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the toxicity of treated effluent discharged into the environment. Furthermore, WWS has been subjected for re-use either in agricultural application or for the production of value-added products through the route of bioconversion. However, this field application is disputable due to the presence of these organic compounds and in order to protect the ecosystem or end users, data concerning the concentration, fate, behavior as well as the perspective of simultaneous degradation of these compounds is urgently necessary. Many treatment technologies, including advanced oxidation processes (AOPs) have been developed in order to degrade CBZ in WW and WWS. AOPs are technologies based on the intermediacy of hydroxyl and other radicals to oxidize recalcitrant, toxic and non-biodegradable compounds to various by-products and eventually to inert end products. The purpose of this review is to provide information on persistent pharmaceutical compound, carbamazepine, its ecological effects and removal during various AOPs of WW and WWS. This review also reports the different analytical methods available for quantification of CBZ in different contaminated media including WW and WWS. © 2013 Elsevier B.V. All rights reserved.

  20. Decolorization and biodegradation of the Congo red by Acinetobacter baumannii YNWH 226 and its polymer production's flocculation and dewatering potential.

    PubMed

    Li, Ruijing; Ning, Xun-an; Sun, Jian; Wang, Yujie; Liang, Jieying; Lin, Meiqing; Zhang, Yaping

    2015-10-01

    The strain Acinetobacter baumannii YNWH 226 was utilized to degrade Congo red (CR) under aerobic conditions. CR was employed as the sole carbon source to produce extracellular polymeric substances (EPS) used as potent bioflocculants in this strain. A total of 98.62% CR was removed during the 48-h decoloration experiments using CR (100 mg/L). A total of 83% bioadsorption and 65% biodegradation were responsible for the decoloration and degradation of CR through the strain. The bioflocculant showed high flocculation activity and dewaterability on textile dyeing sludge. A maximum flocculation of 78.62% with a minimum SBF of 3.07×10(9) s(2)/g and a CST of 58.4 s were achieved. We investigated the internal relationship between the decolorization efficiency of YNWH 226 and the flocculation activity and dewatering capacity of its EPS. The components and structure of the EPS highly influenced the decolorization efficiency of CR and the flocculation activity and dewatering capacity on sludge. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sorption and Release of Organics by Primary, Anaerobic, and Aerobic Activated Sludge Mixed with Raw Municipal Wastewater

    PubMed Central

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215–230 nm were also rapidly removed. PMID:25768429

  2. Prediction of dimethyl disulfide levels from biosolids using statistical modeling.

    PubMed

    Gabriel, Steven A; Vilalai, Sirapong; Arispe, Susanna; Kim, Hyunook; McConnell, Laura L; Torrents, Alba; Peot, Christopher; Ramirez, Mark

    2005-01-01

    Two statistical models were used to predict the concentration of dimethyl disulfide (DMDS) released from biosolids produced by an advanced wastewater treatment plant (WWTP) located in Washington, DC, USA. The plant concentrates sludge from primary sedimentation basins in gravity thickeners (GT) and sludge from secondary sedimentation basins in dissolved air flotation (DAF) thickeners. The thickened sludge is pumped into blending tanks and then fed into centrifuges for dewatering. The dewatered sludge is then conditioned with lime before trucking out from the plant. DMDS, along with other volatile sulfur and nitrogen-containing chemicals, is known to contribute to biosolids odors. These models identified oxidation/reduction potential (ORP) values of a GT and DAF, the amount of sludge dewatered by centrifuges, and the blend ratio between GT thickened sludge and DAF thickened sludge in blending tanks as control variables. The accuracy of the developed regression models was evaluated by checking the adjusted R2 of the regression as well as the signs of coefficients associated with each variable. In general, both models explained observed DMDS levels in sludge headspace samples. The adjusted R2 value of the regression models 1 and 2 were 0.79 and 0.77, respectively. Coefficients for each regression model also had the correct sign. Using the developed models, plant operators can adjust the controllable variables to proactively decrease this odorant. Therefore, these models are a useful tool in biosolids management at WWTPs.

  3. Chlorella vulgaris cultivation in sludge extracts from 2,4,6-TCP wastewater treatment for toxicity removal and utilization.

    PubMed

    Wang, Lu; Chen, Xiurong; Wang, Hualin; Zhang, Yuying; Tang, Qingjie; Li, Jiahui

    2017-02-01

    Chlorella vulgaris was cultivated in different proportions of activated sludge extracts, which was from the treatment of the synthetic wastewater containing 2,4,6-trichlorophenol (2,4,6-TCP). The nutrients, total nitrogen (TN) and total phosphorus (TP), were removed over 45% and 90%, respectively. The maximum reduction amount of ecotoxicity and total organic carbon (TOC) occurred in the 100% sludge group on the 8th day (68%; 86.2 mg L -1 ). The variations of Excitation-emission matrix spectra (EEMs) and TOC indicated that extracellular organic matters (EOM) produced by algae led to TOC increase in the medium. The cell density was close to each other for groups with sludge extract proportion below 50%; sludge extracts (below 75% addition) had a stimulating effect on the accumulation of chlorophyll-a in per unit algal cell. Superoxide dismutase (SOD) variation demonstrated that C. vulgaris response positively to sludge extracts addition. Lipid content in C. vulgaris was up to its maximum value on the 8th day. Considering the performance on nutrients removal, toxicity reduction and algal growth, the optimal cultivation period for C. vulgaris before harvesting was around 8 days with sludge extracts proportion below 50%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida.

    PubMed

    Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin

    2016-04-01

    Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida.

  5. Ferrrate(VI) and freeze-thaw treatment for oxidation of hormones and inactivation of fecal coliforms in sludge.

    PubMed

    Diak, James; Örmeci, Banu

    2017-04-01

    This study examined the individual and combined effects of potassium ferrate(VI) additions and freeze-thaw conditioning for the treatment and dewatering of wastewater sludge in cold climates, with particular focus on the inactivation of fecal coliforms and oxidation of estrogens, androgens, and progestogens. The first phase of the study evaluated the effects of potassium ferrate(VI) pre-treatment followed by freeze-thaw at -20 °C using a low (0.5 g/L) and high (5.0 g/L) dose of potassium ferrate(VI). The results showed that pre-treatment of anaerobically digested sludge with 5 g/L of potassium ferrate(VI) reduced the concentration of fecal coliforms in the sludge cake to below 100 MPN/g DS. The second phase evaluated the ability of ferrate(VI) to oxidise selected hormones in sludge. Anaerobically digested sludge samples were spiked with 10 different hormones: estrone (E1), 17α-estradiol, 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), equilin, mestranol, testosterone, norethindrone and norgestrel in two groups of low (3-75 ng/mL) and high (12-300 ng/L) concentration ranges of hormones. The samples were treated with either 0.5 or 1.0 g/L of potassium ferrate(VI), and hormone concentrations were measured again after treatment. Potassium ferrate(VI) additions as low as 1.0 g/L reduced the concentration of estrogens in sludge. Potassium ferrate(VI) additions of 0.5 and 1.0 g/L were less effective at reducing the concentrations of androgens and progestogens. Increasing ferrate(VI) dose would likely result in more substantial decreases in the concentrations of fecal coliforms and hormones. The results of this study indicate that the combined use of freeze-thaw and ferrate(VI) has the potential to provide a complete sludge treatment solution in cold regions.

  6. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    PubMed

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  7. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from thismore » effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and

  8. Sludge Treatment, Utilization, and Disposal.

    ERIC Educational Resources Information Center

    Dick, Richard I.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers such areas: (1) industrial and hazardous sludges; (2) chemical sludges; (3) stabilization and combustion; (4) ocean disposal; and (5) land application. A list of 411 references is also presented. (HM)

  9. Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution.

    PubMed

    Agar, David A; Kwapinska, Marzena; Leahy, James J

    2018-02-26

    Sludge from municipal wastewater treatment plants and organic fines from mechanical sorting of municipal solid waste (MSW) are two common widespread waste streams that are becoming increasingly difficult to utilise. Changing perceptions of risk in food production has limited the appeal of sludge use on agricultural land, and outlets via landfilling are diminishing rapidly. These factors have led to interest in thermal conversion technologies whose aim is to recover energy and nutrients from waste while reducing health and environmental risks associated with material re-use. Pyrolysis yields three output products: solid char, liquid oils and gas. Their relative distribution depends on process parameters which can be somewhat optimised depending on the end use of product. The potential of pyrolysis for the conversion of wastewater sludge (SS) and organic fines of MSW (OF) to a combustion gas and a carbon-rich char has been investigated. Pyrolysis of SS and OF was done using a laboratory fixed-bed reactor. Herein, the physical characterisation of the reactor is described, and results on pyrolysis yields are presented. Feedstock and chars have been characterised using standard laboratory methods, and the composition of pyrolysis gases was analysed using micro gas chromatography. Product distribution (char/liquid/gas) from the pyrolysis of sewage sludge and composted MSW fines at 700°C for 10 min were 45/26/29 and 53/14/33%, respectively. The combustible fractions of pyrolysis gases range from 36 to 54% for SS feedstock and 62 to 72% from OF. The corresponding lower heating value range of sampled gases were 11.8-19.1 and 18.2-21.0 MJ m -3 , respectively.

  10. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    PubMed

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p < 0.001), with a significant interaction effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria.

    PubMed

    Korzeniewska, Ewa; Harnisz, Monika

    2018-05-20

    Biological treatment processes at wastewater treatment plants (WWTPs), which are the most common methods of sewage treatment, could cause selective elimination and/or changes in the proportions of phenotypes/genotypes within bacterial populations in effluent. Therefore, WWTPs based on activated sludge used in sewage treatment constitute an important reservoir of enteric bacteria which harbour potentially transferable resistance genes. Together with treated wastewater, these microorganisms can penetrate the soil, surface water, rural groundwater supplies and drinking water. Because of this, the aim of this study was to determine the impact of various modification of sewage treatment (the conventional anaerobic/anoxic/oxic (A2/O) process, mechanical-biological (MB) system, sequencing batch reactors (SBR), mechanical-biological system with elevated removal of nutrients (MB-ERN)) on the amount of antibiotic resistant bacteria (ARB) (including E. coli) and antibiotic resistance genes (ARGs) in sewage flowing out of the 13 treatment plants using activated sludge technology. There were no significant differences in ARB and ARGs regardless of time of sampling and type of treated wastewater (p > 0.05). The highest percentage of reduction (up to 99.9%) in the amount of ARB and ARGs was observed in WWTPs with MB and MB-ERN systems. The lowest reduction was detected in WWTPs with SBR. A significant increase (p < 0.05) in the percentage of bacteria resistant to the new generation antibiotics (CTX and DOX) in total counts of microorganisms was observed in effluents (EFF) from WWTPs with A2/O system and with SBR. Among all ARGs analyzed, the highest prevalence of ARGs copies in EFF samples was observed for sul1, tet(A) and qepA, the lowest for bla TEM and bla SHV . Although, the results of presented study demonstrate high efficiency of ARB and ARGs removal during the wastewater treatment processes, especially by WWTPs with MB and MB-ERN systems, EFF is still an important

  12. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan.

    PubMed

    Munir, Mariya; Wong, Kelvin; Xagoraraki, Irene

    2011-01-01

    The purpose of this study was to quantify the occurrence and release of antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) into the environment through the effluent and biosolids of different wastewater treatment utilities including an MBR (Membrane Biological Reactor) utility, conventional utilities (Activated Sludge, Oxidative Ditch and Rotatory Biological Contactors-RBCs) and multiple sludge treatment processes (Dewatering, Gravity Thickening, Anaerobic Digestion and Lime Stabilization). Samples of raw wastewater, pre- and post-disinfected effluents, and biosolids were monitored for tetracycline resistant genes (tetW and tetO) and sulfonamide resistant gene (Sul-I) and tetracycline and sulfonamide resistant bacteria. ARGs and ARB concentrations in the final effluent were found to be in the range of ND(non-detectable)-2.33 × 10(6) copies/100 mL and 5.00 × 10(2)-6.10 × 10(5) CFU/100 mL respectively. Concentrations of ARGs (tetW and tetO) and 16s rRNA gene in the MBR effluent were observed to be 1-3 log less, compared to conventional treatment utilities. Significantly higher removals of ARGs and ARB were observed in the MBR facility (range of removal: 2.57-7.06 logs) compared to that in conventional treatment plants (range of removal: 2.37-4.56 logs) (p < 0.05). Disinfection (Chlorination and UV) processes did not contribute in significant reduction of ARGs and ARB (p > 0.05). In biosolids, ARGs and ARB concentrations were found to be in the range of 5.61 × 10(6)-4.32 × 10(9) copies/g and 3.17 × 10(4)-1.85 × 10(9) CFU/g, respectively. Significant differences (p < 0.05) were observed in concentrations of ARGs (except tetW) and ARB between the advanced biosolid treatment methods (i.e., anaerobic digestion and lime stabilization) and the conventional dewatering and gravity thickening methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Metabolic adaptation of microbial communities to ammonium stress in a high solid anaerobic digester with dewatered sludge

    PubMed Central

    Dai, Xiaohu; Yan, Han; Li, Ning; He, Jin; Ding, Yueling; Dai, Lingling; Dong, Bin

    2016-01-01

    A high solid digester with dewatered sludge was operated for 110 days to ascertain the interactions between bacterial and archaeal communities under ammonium stress, as well as the corresponding changes in bio-degradation mechanisms. The volatile solids reduction (95% confidence intervals in mean) changed from 31.6 ± 0.9% in the stable period (day 40–55) to 21.3 ± 1.5% in the last period (day 71–110) when ammonium concentration was elevated to be within 5,000–6,000 mgN/L. Biogas yield dropped accordingly from 11.9 ± 0.3 to 10.4 ± 0.2 L/d and carbon dioxide increased simultaneously from 35.2% to 44.8%. Anaerobranca better adapted to the ammonium stress, while the initially dominant protein-degrading microbes-Tepidimicrobium and Proteiniborus were suppressed, probably responsible for the increase of protein content in digestate. Meanwhile, Methanosarcina, as the dominant Archaea, was resistant to ammonium stress with the constant relative abundance of more than 92% during the whole operation. Nonmetric Multidimensional Scaling (NMDS) analysis was thus conducted which indicated that the gradually increased TAN dictated the bacterial clusters. The dominant Methanosarcina and the increased carbon dioxide content under ammonium stress suggested that, rather than the commonly acknowledged syntrophic acetate oxidation (SAO) with hydrogenotrophic methanogenesis, only SAO pathway was enhanced during the initial ‘ammonium inhibition’. PMID:27312792

  14. Simultaneous sonication-assisted extraction, and determination by gas chromatography-mass spectrometry, of di-(2-ethylhexyl)phthalate, nonylphenol, nonylphenol ethoxylates and polychlorinated biphenyls in sludge from wastewater treatment plants.

    PubMed

    Aparicio, I; Santos, J L; Alonso, E

    2007-02-19

    Di-(2-ethyl-hexyl)phthalate (DEHP), nonylphenol, nonylphenol mono- and diethoxylates (NPEs) and polychlorinated biphenyls (PCBs) are organic pollutants in sewage sludge which have to be monitored in the European Union according to a future Sludge Directive. In the present work, an analytical method for the simultaneous extraction and determination of DEHP, NPEs and PCBs is proposed for the routine analysis of these compounds in sludge from wastewater treatment plants. All the compounds were simultaneously extracted by sonication with hexane and analysed by gas chromatography-mass spectrometry (GC-MS) in electronic impact mode. Recoveries achieved were 105% for DEHP, 61.4-88.6% for NPEs and 55.8-108.3% for PCBs with relative standard deviation bellow 10%. Limits of quantification were 65 microg kg(-1) for DEHP, from 630 to 2504 microg kg(-1) for NPEs and from 5.4 to 10.6 microg kg(-1) for PCBs in dried sludge. The applicability of the proposed method was evaluated by the determination of these compounds in sludge from wastewater treatment plants in Seville (South Spain).

  15. Regeneration and reuse of iron catalyst for Fenton-like reactions.

    PubMed

    Cao, Guo-min; Sheng, Mei; Niu, Wen-feng; Fei, Yu-lei; Li, Dong

    2009-12-30

    Fenton and Fenton-like reactions employed for oxidative treatment of a typical industrial wastewater generate a large amount of ferric hydroxide sludge which has to be properly disposed at a high cost. This paper presents a simple and cost-effective method for recovering the iron catalyst from the iron hydroxide sludge for oxidative treatment of industrial wastewaters. The sludge was dewatered, dried and baked at 350-400 degrees C for 20-30 min; the residual solids were dissolved in sulfuric acid to form the reusable catalyst for Fenton and Fenton-like reactions. The recovered catalyst was highly effective for the oxidative pretreatment of a fine chemical wastewater to improve its biodegradability; the resulting COD removal and BOD(5)/COD ratio of the treated stream remained nearly unchanged during the time period when the regenerated catalyst was reused six times. The simple and effective catalyst regeneration method will make Fenton and Fenton-like oxidation a more cost-effective wastewater treatment alternative.

  16. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control.

    PubMed

    Balogh, Steven J; Nollet, Yabing H

    2008-01-15

    Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

  17. Effect of heat recovery from raw wastewater on nitrification and nitrogen removal in activated sludge plants.

    PubMed

    Wanner, Oskar; Panagiotidis, Vassileios; Clavadetscher, Peter; Siegrist, Hansruedi

    2005-11-01

    By recovery of heat from the raw wastewater in the sewer system, the influent temperature of a wastewater treatment plant (WWTP) is reduced. This can have a negative effect on nitrification in the WWTP, since this process strongly depends on temperature. The analysis of the temperature regime in the WWTP of Zurich, Switzerland, revealed that in the cold season, the effluent temperature is about 0.7 degrees C higher than the influent temperature and that nitrification is not affected by a decrease of the influent wastewater temperature lasting for a couple of hours only, but is significantly affected by a longer lasting temperature decrease. Three diagrams were developed with a steady-state model, from which the consequences of a permanent temperature decrease on the nitrification safety factor, aerobic sludge retention time and total nitrogen removal can be evaluated. Using simulations with a dynamic model, calibrated for the Zurich WWTP, a quantitative relationship between the wastewater temperature and the ammonium effluent concentration was established. This relationship can, in combination with measured effluent concentrations of an existing WWTP, be used to predict the increase of the ammonium effluent concentration in this plant resulting from a permanent decrease of the wastewater influent temperature.

  18. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea.

    PubMed

    Lee, Sunggyu; Song, Geum-Ju; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2014-02-01

    Studies on the occurrence of polybrominated diphenyl ethers (PBDEs) and other alternative brominated flame retardants in the environment are scarce. In this study, PBDEs and non-PBDE brominated flame retardants (NBFRs), including decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), were measured in sludge collected from three types of wastewater treatment plants (WWTPs) in Korea. Total concentrations of PBDEs (∑PBDE) in sludge ranged from 298 to 48,000 (mean: 3240) ng/g dry weight. Among 10 NBFRs analyzed, DBDPE and BTBPE were the only ones detected in sludge samples. Concentrations of DBDPE and BTBPE ranged from sludge were higher than those reported in other countries. The highest concentrations of ∑PBDE and DBDPE were found in sludge samples originated from industrial-WWTPs (I-WWTPs), suggesting that industrial activities are a major source of these contaminants. Non-parametric multidimensional scaling ordination showed that congener profiles of PBDEs in sludge are dependent on the types of WWTPs. Almost all sludge samples contained a low ratio (mean: 0.18) of DBDPE/BDE 209, indicating an on-going contamination by PBDEs in Korea. However, the high ratios (>1) of DBDPE/BDE 209 were found in sludge from I-WWTPs, reflecting a shift in the usage pattern of BFRs by the Korean industry. The nationwide annual emission fluxes of ∑PBDE, DBDPE and BTBPE via WWTPs to the environment were estimated to be 7400, 480, and 3.7 kg/year, respectively. This is the first study on the occurrence of alternative brominated flame retardants in sludge from Korea. © 2013 Elsevier B.V. All rights reserved.

  19. Performance and activated sludge characteristics at short solid retention time in a submerged MBR: effects of C/N ratio of wastewater.

    PubMed

    Sari Erkan, Hanife; Onkal Engin, Guleda

    2018-02-22

    This study investigated the effect of carbon to nitrogen (C/N) ratio of influent wastewater on performance and activated sludge properties at a sludge retention time of 5 d in a submerged membrane bioreactor. The chemical oxygen demand and ammonia-Nitrogen (NH 3 -N) removal efficiencies were found to be over 96.3% and 86.9% in the sMBRs having different C/N ratios. It was found that total extracellular polymeric substances and total soluble microbial products increased with an increase in C/N ratio. It was also observed that critical flux, relative hydrophobicity and zeta potential values decreased, and capillary suction time, particle size and viscosity of sludge increased as the C/N ratio increased.

  20. Rheological characterisation of municipal sludge: a review.

    PubMed

    Eshtiaghi, Nicky; Markis, Flora; Yap, Shao Dong; Baudez, Jean-Christophe; Slatter, Paul

    2013-10-01

    Sustainable sludge management is becoming a major issue for wastewater treatment plants due to increasing urban populations and tightening environmental regulations for conventional sludge disposal methods. To address this problem, a good understanding of sludge behaviour is vital to improve and optimize the current state of wastewater treatment operations. This paper provides a review of the recent experimental works in order for researchers to be able to develop a reliable characterization technique for measuring the important properties of sludge such as viscosity, yield stress, thixotropy, and viscoelasticity and to better understand the impact of solids concentrations, temperature, and water content on these properties. In this context, choosing the appropriate rheological model and rheometer is also important. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater.

    PubMed

    Tao, Hu-Chun; Zhang, He-Ran; Li, Jin-Bo; Ding, Wen-Yi

    2015-09-01

    Sewage sludge and bagasse were used as raw materials to produce cheap and efficient adsorbent with great adsorption capacity of Pb(2+). By pyrolysis at 800 °C for 0.5 h, the largest surface area (806.57 m(2)/g) of the adsorbent was obtained, enriched with organic functional groups. The optimal conditions for production of the adsorbent and adsorption of Pb(2+) were investigated. The results of adsorb-ability fitted the Langmuir isotherm and pseudo-second-order model well. The highest Pb(2+) (at pH = 4.0) adsorption capacity was achieved by treating with 60% (v/v) HNO3. This is a promising approach for metal removal from wastewater, as well as recycling sewage sludge and bagasse to ease their disposal pressure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Organics removal, nitrogen removal and N2O emission in subsurface wastewater infiltration systems amended with/without biochar and sludge.

    PubMed

    Sun, Yafei; Qi, Shiyue; Zheng, Fanping; Huang, Linli; Pan, Jing; Jiang, Yingying; Hou, Wanyuan; Xiao, Lu

    2018-02-01

    Organics removal, nitrogen removal, N 2 O emission and nitrogen removal functional gene abundances in four subsurface wastewater infiltration systems (SWISs), named SWIS A (no intermittent aeration without biochar and sludge), SWIS B (no intermittent aeration with biochar and sludge), SWIS C (intermittent aeration without biochar and sludge), SWIS D (intermittent aeration with biochar and sludge) were investigated. Intermittent aeration enhanced chemical oxygen demand (COD), ammonia nitrogen (NH 4 + -N), total nitrogen (TN) removal and the abundances of nitrogen removal functional genes (amoA, nxrA, napA, narG, nirS, nirK, qnorB and nosZ) compared to non-aerated SWISs. High COD (95.4 ± 0.2%), NH 4 + -N (96.2 ± 0.6%), TN (86.4 ± 0.5%) removal efficiencies and low N 2 O emission rate (18.4 mg/(m 2  d)) were obtained simultaneously in intermittent aerated SWIS amended with biochar and sludge. The results suggested that intermittent aerated SWISs amended with biochar and sludge could be an effective and appropriate method for improving treatment performance and reducing N 2 O emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interlaboratory study for the validation of an ecotoxicological procedure to monitor the quality of septic sludge received at a wastewater treatment plant.

    PubMed

    Robidoux, P Y; Choucri, A; Bastien, C; Sunahara, G I; López-Gastey, J

    2001-01-01

    Septic tank sludge is regularly hauled to the Montreal Urban Community (MUC) wastewater treatment plant. It is then discharged and mixed with the wastewater inflow before entering the primary chemical treatment process. An ecotoxicological procedure integrating chemical and toxicological analyses has been recently developed and applied to screen for the illicit discharge of toxic substances in septic sludge. The toxicity tests used were the Microtox, the bacterial-respiration, and the lettuce (Lactuca sativa) root elongation tests. In order to validate the applicability of the proposed procedure, a two-year interlaboratory study was carried out. In general, the results obtained by two independent laboratories (MUC and the Centre d'expertise en analyse environnementale du Quebec) were comparable and reproducible. Some differences were found using the Microtox test. Organic (e.g., phenol and formaldehyde) and inorganic (e.g., nickel and cyanide) spiked septic sludge were detected with good reliability and high efficiency. The relative efficiency to detect spiked substances was > 70% and confirms the results of previous studies. In addition, the respiration test was the most efficient toxicological tool to detect spiked substances, whereas the Microtox was the least efficient (< 15%). Efficiencies to detect spiked contaminants were also similar for both laboratories. These results support previous data presented earlier and contribute to the validation of the ecotoxicological procedure used by the MUC to screen toxicity in septic sludge.

  4. Bioleached sludge composting drastically reducing ammonia volatilization as well as decreasing bulking agent dosage and improving compost quality: A case study.

    PubMed

    Hu, Weitong; Zheng, Guanyu; Fang, Di; Cui, Chunhong; Liang, Jianru; Zhou, Lixiang

    2015-10-01

    Sludge bioleaching technology with Acidithiobacillus species has been commercially adopted for improving advanced dewatering of sludge in China since 2010. However, up to now, little information on bioleached dewatered sludge (BS) composting is available. Here, we report the changes of physicochemical and biological properties in BS composting and evaluate compost product quality compared to conventional dewatered sludge (CS) composting in an engineering scale composting facility. The results showed that the amount of bulking agents required in BS composting was only about 10% of CS composting to obtain optimum moisture content, reducing about 700 kg bulking agents per ton fresh sludge. pH of BS composting mixture was slightly lower consistently by about 0.2-0.3 pH units than that in CS mixture in the first 30 days. Organic matter biodegradation in BS system mainly occurred in the first 9 days of composting. In spite of higher content of NH4(+)-N was found in BS mixture in related to CS mixture; unexpectedly the cumulative ammonia volatilization in the former was only 51% of the latter, indicating that BS composting drastically reduced nitrogen loss. Compared to CS composting system, the relative lower pH, the higher intensity of microbial assimilation, and the presence of water soluble Fe in BS system might jointly reduce ammonia volatilization. Consequently, BS compost product exhibited higher fertilizer values (N+P2O5+K2O=8.38%) as well as lower heavy metal levels due to the solubilization of sludge-borne heavy metals during bioleaching process. Therefore, composting of BS possesses more advantages over the CS composting process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor.

    PubMed

    Han, Wei; Wang, Bing; Zhou, Yan; Wang, De-Xin; Wang, Yan; Yue, Li-Ran; Li, Yong-Feng; Ren, Nan-Qi

    2012-04-01

    A novel continuous mixed immobilized sludge reactor (CMISR) containing activated carbon as support carrier was used for fermentative hydrogen production from molasses wastewater. When the CMISR system operated at the conditions of influent COD of 2000-6000mg/L, hydraulic retention time (HRT) of 6h and temperature of 35°C, stable ethanol type fermentation was formed after 40days operation. The H(2) content in biogas and chemical oxygen demand (COD) removal were estimated to be 46.6% and 13%, respectively. The effects of organic loading rates (OLRs) on the CMISR hydrogen production system were also investigated. It was found that the maximum hydrogen production rate of 12.51mmol/hL was obtained at OLR of 32kg/m(3)d and the maximum hydrogen yield by substrate consumed of 130.57mmol/mol happened at OLR of 16kg/m(3)d. Therefore, the continuous mixed immobilized sludge reactor (CMISR) could be a promising immobilized system for fermentative hydrogen production. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Kinetics of nitrification in a fixed biofilm reactor using dewatered sludge-fly ash composite ceramic particle as a supporting medium.

    PubMed

    Lee, Mong-Chuan; Lin, Yen-Hui; Yu, Huang-Wei

    2014-11-01

    A mathematical model system was derived to describe the kinetics of ammonium nitrification in a fixed biofilm reactor using dewatered sludge-fly ash composite ceramic particle as a supporting medium. The model incorporates diffusive mass transport and Monod kinetics. The model was solved using a combination of the orthogonal collocation method and Gear's method. A batch test was conducted to observe the nitrification of ammonium-nitrogen ([Formula: see text]-N) and the growth of nitrifying biomass. The compositions of nitrifying bacterial community in the batch kinetic test were analyzed using PCR-DGGE method. The experimental results show that the most staining intensity abundance of bands occurred on day 2.75 with the highest biomass concentration of 46.5 mg/L. Chemostat kinetic tests were performed independently to evaluate the biokinetic parameters used in the model prediction. In the column test, the removal efficiency of [Formula: see text]-N was approximately 96 % while the concentration of suspended nitrifying biomass was approximately 16 mg VSS/L and model-predicted biofilm thickness reached up to 0.21 cm in the steady state. The profiles of denaturing gradient gel electrophoresis (DGGE) of different microbial communities demonstrated that indigenous nitrifying bacteria (Nitrospira and Nitrobacter) existed and were the dominant species in the fixed biofilm process.

  7. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system.

    PubMed

    Silva, Cynthia C; Hayden, Helen; Sawbridge, Tim; Mele, Pauline; Kruger, Ricardo H; Rodrigues, Marili Vn; Costa, Gustavo Gl; Vidal, Ramon O; Sousa, Maíra P; Torres, Ana Paula R; Santiago, Vânia Mj; Oliveira, Valéria M

    2012-03-27

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation.

  8. Efficiency of a pilot-scale integrated sludge thickening and digestion reactor in treating low-organic excess sludge.

    PubMed

    He, Qiang; Li, Jiang; Liu, Hongxia; Tang, Chuandong; de Koning, Jaap; Spanjers, Henri

    2012-06-01

    The sludge production from medium- and small-scale wastewater treatment plants in the Three Gorges Reservoir Region is low and non-stable; especially, the organic content in this sludge is low (near 40% of VS/TS). An integrated thickening and digestion (ISTD) reactor was developed to treat this low-organic excess sludge. After a flow test and start-up experiment of the reactor, a running experiment was used to investigate the excess sludge treatment efficiency under five different excess sludge inflows: 200, 300, 400, 500 and 400 L/d (a mixture of excess sludge and primary sludge in a volume ratio of 9:1). This trial was carried out in the wastewater treatment plant in Chongqing, which covers 80% of the Three Gorges Reservoir Region, under the following conditions: (1) sludge was heated to 38-40 degrees C using an electrical heater to maintain anaerobic mesophilic digestion; (2) the biogas produced was recirculated to mix raw sludge with anaerobic sludge in the reactor under the flow rate of 12.5 L/min. There were three main results. Firstly, the flow pattern of the inner reactor was almost completely mixed under the air flow of 12.0 L/min using clear water. Secondly, under all the different sludge inflows, the water content in the outlet sludge was below 93%. Thirdly, the organic content in the outlet sludge was decreased from 37% to 30% and from 24% to 20%, whose removal ratio was in relation to the organic content of the inlet sludge. The excess sludge treatment capacity of the ISTD reactor was according to the organic content in the excess sludge.

  9. Lipid profiling in sewage sludge.

    PubMed

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    NASA Astrophysics Data System (ADS)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  11. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    PubMed

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  12. Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks.

    PubMed

    Ibarbalz, Federico M; Figuerola, Eva L M; Erijman, Leonardo

    2013-07-01

    Biological degradation of domestic and industrial wastewater by activated sludge depends on a common process of separation of the diverse self-assembled and self-sustained microbial flocs from the treated wastewater. Previous surveys of bacterial communities indicated the presence of a common core of bacterial phyla in municipal activated sludge, an observation consistent with the concept of ecological coherence of high taxonomic ranks. The aim of this work was to test whether this critical feature brings about a common pattern of abundance distribution of high bacterial taxa in industrial and domestic activated sludge, and to relate the bacterial community structure of industrial activated sludge with relevant operational parameters. We have applied 454 pyrosequencing of 16S rRNA genes to evaluate bacterial communities in full-scale biological wastewater treatment plants sampled at different times, including seven systems treating wastewater from different industries and one plant that treats domestic wastewater, and compared our datasets with the data from municipal wastewater treatment plants obtained by three different laboratories. We observed that each industrial activated sludge system exhibited a unique bacterial community composition, which is clearly distinct from the common profile of bacterial phyla or classes observed in municipal plants. The influence of process parameters on the bacterial community structure was evaluated using constrained analysis of principal coordinates (CAP). Part of the differences in the bacterial community structure between industrial wastewater treatment systems were explained by dissolved oxygen and pH. Despite the ecological relevance of floc formation for the assembly of bacterial communities in activated sludge, the wastewater characteristics are likely to be the major determinant that drives bacterial composition at high taxonomic ranks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Behavioral responses of freshwater mussels to experimental dewatering

    USGS Publications Warehouse

    Galbraith, Heather S.; Blakeslee, Carrie J.; Lellis, William A.

    2015-01-01

    Understanding the effects of flow alteration on freshwater ecosystems is critical for predicting species responses and restoring appropriate flow regimes. We experimentally evaluated the effects of 3 dewatering rates on behavior of 6 freshwater mussel species in the context of water-removal rates observed in 21 Atlantic Coast rivers. Horizontal movement differed significantly among species and dewatering rates, but a significant species × dewatering interaction suggested that these factors influence movement in complex ways. Species differences in movement were evident only in controls and under slow dewatering rates, but these differences disappeared at moderate and fast dewatering rates. Burrowing behavior did not differ with respect to species identity or dewatering rate. The proportion of individuals that became stranded did not differ among species, but most individuals became stranded under low and moderate dewatering, and all individuals became stranded under fast dewatering. Mortality after stranding differed strongly among species along a gradient from 25% inPyganodon cataracta to 92% in Alasmidonta marginata. Together, these results suggest that species behavior may differ under gradual dewatering, but all species in our study are poorly adapted for rapid dewatering. Most of the 21 rivers we assessed experienced dewatering events comparable to our moderate rate, and several experienced events comparable to our fast rate. Dewatering events that exceed the movement or survival capability of most mussel species can be expected to result in assemblage-wide impacts. Consequently, the rate of water level change may be important in refining target flow conditions for restoration.

  14. Quantification of hookworm ova from wastewater matrices using quantitative PCR.

    PubMed

    Gyawali, Pradip; Ahmed, Warish; Sidhu, Jatinder P; Jagals, Paul; Toze, Simon

    2017-07-01

    A quantitative PCR (qPCR) assay was used to quantify Ancylostoma caninum ova in wastewater and sludge samples. We estimated the average gene copy numbers for a single ovum using a mixed population of ova. The average gene copy numbers derived from the mixed population were used to estimate numbers of hookworm ova in A. caninum seeded and unseeded wastewater and sludge samples. The newly developed qPCR assay estimated an average of 3.7×10 3 gene copies per ovum, which was then validated by seeding known numbers of hookworm ova into treated wastewater. The qPCR estimated an average of (1.1±0.1), (8.6±2.9) and (67.3±10.4) ova for treated wastewater that was seeded with (1±0), (10±2) and (100±21) ova, respectively. The further application of the qPCR assay for the quantification of A. caninum ova was determined by seeding a known numbers of ova into the wastewater matrices. The qPCR results indicated that 50%, 90% and 67% of treated wastewater (1L), raw wastewater (1L) and sludge (~4g) samples had variable numbers of A. caninum gene copies. After conversion of the qPCR estimated gene copy numbers to ova for treated wastewater, raw wastewater, and sludge samples, had an average of 0.02, 1.24 and 67 ova, respectively. The result of this study indicated that qPCR can be used for the quantification of hookworm ova from wastewater and sludge samples; however, caution is advised in interpreting qPCR generated data for health risk assessment. Copyright © 2017. Published by Elsevier B.V.

  15. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  16. Sludge Retention Time as a Suitable Operational Parameter to Remove Both Estrogen and Nutrients in an Anaerobic–Anoxic–Aerobic Activated Sludge System

    PubMed Central

    Zeng, Qingling; Li, Yongmei; Yang, Shijia

    2013-01-01

    Abstract Estrogen in wastewater are responsible for a significant part of the endocrine-disrupting effects observed in the aquatic environment. The effect of sludge retention time (SRT) on the removal and fate of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) in an anaerobic–anoxic–oxic activated sludge system designed for nutrient removal was investigated by laboratory-scale experiments using synthetic wastewater. With a hydraulic retention time of 8 h, when SRT ranged 10–25 days, E2 was almost completely removed from water, and EE2 removal efficiency was 65%–81%. Both estrogens were easily sorbed onto activated sludge. Distribution coefficients (Kd) of estrogens on anaerobic sludge were greater than those on anoxic and aerobic sludges. Mass balance calculation indicated that 99% of influent E2 was degraded by the activated sludge process, and 1% remained in excess sludge; of influent EE2, 62.0%–80.1% was biodegraded; 18.9%–34.7% was released in effluent; and 0.88%–3.31% remained in excess sludge. Optimal SRT was 20 days for both estrogen and nutrient removal. E2 was almost completely degraded, and EE2 was only partly degraded in the activated sludge process. Residual estrogen on excess sludge must be considered in the sludge treatment and disposal processes. The originality of the work is that removal of nutrients and estrogens were linked, and optimal SRT for both estrogen and nutrient removal in an enhanced biological phosphorus removal system was determined. This has an important implication for the design and operation of full-scale wastewater treatment plants. PMID:23633892

  17. Biodegradation of a Real Dye Wastewater Containing High Concentration of Total Dissolved Inorganic Salts (TDIS) in a Lab-Scale Activated Sludge Unit

    NASA Astrophysics Data System (ADS)

    Patel, Upendra D.; Ruparelia, Jayesh; Patel, Margi

    2017-11-01

    Biodegradation studies on Dye wastewater (DW) are normally conducted on simulated wastewaters or aqueous dyes solutions supported by growth medium, and often, an easy carbon source such as glucose. This rarely resembles actual DW which is characterized by the presence of complex organic compounds, and a high concentration of Total Dissolved Inorganic Salts (TDIS). Biodegradation of real Direct Dyes Wastewater (DDW), and a mixed-waste stream (MWS) consisting of equal volumes of Direct and Acid dyes wastewaters, was carried out using a lab-scale activated sludge unit. The DDW and MWS had TDIS and COD concentrations of 105 and 4.5 g/L, and 54 and 4.1 g/L, respectively. After acclimatization process of 70 days, 67% COD removal was achieved at influent TDIS and COD concentrations of 79.6 g/L and 4320 mg/L, respectively, for the DDW at HRT of 3 days and MLVSS concentration of 2000 mg/L. Although no sludge wastage was done, initially increased concentration of MLVSS ( 2400 mg/L) decreased to 1700 mg/L with increase in TDIS. Using the biomass acclimatized for DDW for treatment of MWS, consistent COD removal of 70% was achieved at HRT of 4.3 days and an MLVSS concentration of 1600 mg/L. Results suggest that significant COD removal can be achieved in real DW if biomass is gradually acclimatized to increasing TDIS concentrations.

  18. Aerobic Sludge Granulation in a Full-Scale Sequencing Batch Reactor

    PubMed Central

    Li, Jun; Ding, Li-Bin; Cai, Ang; Huang, Guo-Xian; Horn, Harald

    2014-01-01

    Aerobic granulation of activated sludge was successfully achieved in a full-scale sequencing batch reactor (SBR) with 50,000 m3 d−1 for treating a town's wastewater. After operation for 337 days, in this full-scale SBR, aerobic granules with an average SVI30 of 47.1 mL g−1, diameter of 0.5 mm, and settling velocity of 42 m h−1 were obtained. Compared to an anaerobic/oxic plug flow (A/O) reactor and an oxidation ditch (OD) being operated in this wastewater treatment plant, the sludge from full-scale SBR has more compact structure and excellent settling ability. Denaturing gradient gel electrophoresis (DGGE) analysis indicated that Flavobacterium sp., uncultured beta proteobacterium, uncultured Aquabacterium sp., and uncultured Leptothrix sp. were just dominant in SBR, whereas uncultured bacteroidetes were only found in A/O and OD. Three kinds of sludge had a high content of protein in extracellular polymeric substances (EPS). X-ray fluorescence (XRF) analysis revealed that metal ions and some inorganics from raw wastewater precipitated in sludge acted as core to enhance granulation. Raw wastewater characteristics had a positive effect on the granule formation, but the SBR mode operating with periodic feast-famine, shorter settling time, and no return sludge pump played a crucial role in aerobic sludge granulation. PMID:24822190

  19. Recent developments in the Sandia Laboratories' sewage sludge irradiation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivinski, H.D.; Brandon, J.R.; Morris, M.E.

    1977-11-01

    Pathogen reduction studies have shown that a 1 Mrad treatment (or less at elevated temperatures) is very effective in eliminating pathogenic bacteria and viable parasite ova in liquid sludges. Heat is effective in reducing levels not only of pathogenic bacteria and Ascaris ova, but viruses as well. Ammonia has been shown to be virucidal to poliovirus and several other enteric viruses. Sludge processing costs are seen to be marginally competitive with heat treatment for liquid sludges and relatively economical for composted or dried sludges. Physical/chemical effects studies have shown that the effects of irradiation of sludges on dewatering properties aremore » not significant when compared to polymers, nor is the combined effect synergistic. Dried, irradiated undigested sludge has been shown to be of significant nutritional value when used as a feed supplement for sheep and cattle, as well as in agronomic uses. No significant harmful effects have been demonstrated in the feeding program thus far. Product enhancement studies are currently under way, including schemes for removing nitrogen from effluent streams for addition as ammonium salts to sludges.« less

  20. [Helminth prevalence in a waste-water plant at El Rosal, Cundinamarca].

    PubMed

    Ortiz, Carolina; López, Myriam C; Rivas, Favio A

    2012-01-01

    Assessing helminth egg prevalence in sludge and raw and treated wastewater from a wastewater treatment system located in the village of El Rosal, Cundinamarca. 30 wastewater and 10 sludge samples from the El Rosal plant were taken during a 10-week period. The sludge and water samples were processed according to the Bailinger and the official Mexican standard methodology, respectively. Egg viability was determined by the method described by Victórica & Galván and the Mexican official standard. Descriptive statistics were used for analysing data. 100 % of the untreated wastewater samples showed the presence of eggs and at least one viable helminth egg/litre was found in 90 % of them. 90 % of the treated wastewater samples were positive for the presence of eggs, finding that 70 % had at least one viable egg. All raw wastewater samples being dumped directly into the stream were positive for helminths; the same situation was found at the time of the viability test. All sludge samples were positive for helminths, finding that 100 % of these had at least one viable egg. Using this water for crop irrigation and using the sludge as fertiliser is a potential risk for public health. The sludge can only be used in forestry activities, as long as it does not come into contact with humans.

  1. Performance intensification of Prague wastewater treatment plant.

    PubMed

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  2. Speciation and isotope dilution analysis of gadolinium-based contrast agents in wastewater.

    PubMed

    Telgmann, Lena; Wehe, Christoph A; Birka, Marvin; Künnemeyer, Jens; Nowak, Sascha; Sperling, Michael; Karst, Uwe

    2012-11-06

    The fate of Gadolinium (Gd)-based contrast agents for magnetic resonance imaging (MRI) during sewage treatment was investigated. The total concentration of Gd in influent and effluent 2 and 24 h composite samples was determined by means of isotope dilution analysis. The balancing of Gd input and output of a sewage plant over seven days indicated that approximately 10% of the Gd is removed during treatment. Batch experiments simulating the aeration tank of a sewage treatment plant confirmed the Gd complex removal during activated sludge treatment. For speciation analysis of the Gd complexes in wastewater samples, high performance liquid chromatography (HPLC) was hyphenated to inductively coupled plasma sector field mass spectrometry (ICP-SFMS). Separation of the five predominantly used contrast agents was carried out on a new hydrophilic interaction liquid chromatography stationary phase in less than 15 min. A limit of detection (LOD) of 0.13 μg/L and a limit of quantification of 0.43 μg/L could be achieved for the Gd chelates without having to apply enrichment techniques. Speciation analysis of the 24 h composite samples revealed that 80% of the Gd complexes are present as Gd-BT-DO3A in the sampled treatment plant. The day-of-week dependent variation of the complex load followed the variation of the total Gd load, indicating a similar behavior. The analysis of sewage sludge did not prove the presence of anthropogenic Gd. However, in the effluent of the chamber filter press, which was used for sludge dewatering, two of the contrast agents and three other unknown Gd species were observed. This indicates that species transformation took place during anaerobic sludge treatment.

  3. Biodegradability of tannin-containing wastewater from leather industry.

    PubMed

    He, Qiang; Yao, Kai; Sun, Danhong; Shi, Bi

    2007-08-01

    Tannins occur commonly in the wastewaters from forestry, plant medicine, paper and leather industries. The treatment of this kind of wastewaters, including settling and biodegradation, is usually difficult because tannins are highly soluble in water and would inhibit the growth of microorganisms in activated sludge. The objective of this study is to investigate biodegradability of tannin-containing wastewaters, so as to characterize the pollution properties of such wastewaters and provide a reference for their biological treatment in wastewater treatment plants. The research was typified by using the wastewater collected from vegetable tanning process in leather industry. A model was developed to describe the activated sludge process, and the biodegradation kinetics of vegetable tanning wastewater (VET wastewater) was studied. It was found that the biodegradability of tannin-containing wastewater varies heavily with the content of tannins in wastewater. The biodegradation of VET wastewater with tannin content around 4,900 mg/l occurred inefficiently due to the inhibition of tannins to the activated sludge process, and only 34.7% of biodegradation extent was reached in 14 days of incubation. The optimal biodegradability of VET wastewater was observed when its tannin content was diluted to 490 mg/l, where the COD and tannin removals reached 51.3% and 45.1% respectively in 6 days. Hence, it is suggested that a proper control of tannin content is necessary to achieve an effective biodegradation of tannin-containing wastewaters in wastewater treatment plants.

  4. Characterization of antibiotic resistance genes in representative organic solid wastes: Food waste-recycling wastewater, manure, and sewage sludge.

    PubMed

    Lee, Jangwoo; Shin, Seung Gu; Jang, Hyun Min; Kim, Young Beom; Lee, Joonyeob; Kim, Young Mo

    2017-02-01

    In this research, the distribution of antibiotic resistance genes (ARGs) was characterized in representative organic solid waste (OSW) in Korea: food waste-recycling wastewater (FRW), manure, and sewage sludge. The amounts of total ARG (gene copies/16S rRNA gene copies) was greatest in manure followed by sewage sludge and FRW. Interestingly, there were significantly different patterns in the diversity and mechanisms of ARGs. For example, a significant proportion of ARGs were tetracycline resistant genes in all the OSW (40.4-78.2%). β-lactam antibiotics resistant genes were higher in the FRW samples than in other types of OSW but sulfonamides resistant genes represented the greatest proportion in sludge. Regarding the characteristics of antibiotic resistance mechanisms, there was a relatively higher proportion of the ribosomal protection mechanism to tetracycline observed in the FRW and manure samples. However, tetracycline resistant genes with direct interaction were relatively higher in the sewage sludge samples. sul1 was the dominant subtype in all the OSW types and detection of ermB was observed although there was no ermC detected in sewage sludge. There were significant correlations between the occurrences of ARG subtypes: tetB and tetG in all OSW (P<0.01); tetE and tetQ only in sludge (P<0.01). The Class 1 integron-integrase gene (intI1) was significantly correlated with total ARGs only in manure and sludge (P<0.05), revealing potential horizontal gene transfer in these OSW. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. OCCURRENCE OF PATHOGENS IN MUNICIPAL WASTEWATER AND THEIR SURVIVAL DURING WASTEWATER TREATMENT

    EPA Science Inventory

    Pathogens can enter municipal wastewaters from several sources including homes, hospitals and slaughter houses. They are identified, typical levels found in sludges are given along with infectious doses, and their survival on crops and in the soil presented. As wastewater is clea...

  6. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries.

    PubMed

    Kelessidis, Alexandros; Stasinakis, Athanasios S

    2012-06-01

    Municipal wastewater treatment results to the production of large quantities of sewage sludge, which requires proper and environmentally accepted management before final disposal. In European Union, sludge management remains an open and challenging issue for the Member States as the relative European legislation is fragmentary and quite old, while the published data concerning sludge treatment and disposal in different European countries are often incomplete and inhomogeneous. The main objective of the current study was to outline the current situation and discuss future perspectives for sludge treatment and disposal in EU countries. According to the results, specific sludge production is differentiated significantly between European countries, ranging from 0.1 kg per population equivalent (p.e.) and year (Malta) to 30.8 kg per p.e. and year (Austria). More stringent legislations comparing to European Directive 86/278/EC have been adopted for sludge disposal in soil by several European countries, setting lower limit values for heavy metals as well as limit values for pathogens and organic micropollutants. A great variety of sludge treatment technologies are used in EU countries, while differences are observed between Member States. Anaerobic and aerobic digestion seems to be the most popular stabilization methods, applying in 24 and 20 countries, respectively. Mechanical sludge dewatering is preferred comparing to the use of drying beds, while thermal drying is mainly applied in EU-15 countries (old Member States) and especially in Germany, Italy, France and UK. Regarding sludge final disposal, sludge reuse (including direct agricultural application and composting) seems to be the predominant choice for sludge management in EU-15 (53% of produced sludge), following by incineration (21% of produced sludge). On the other hand, the most common disposal method in EU-12 countries (new Member States that joined EU after 2004) is still landfilling. Due to the obligations

  7. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge.

    PubMed

    Wang, Liping; Li, Aimin; Chang, Yuzhi

    2017-04-01

    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Elevational characteristics of the archaeal community in full-scale activated sludge wastewater treatment plants at a 3,660-meter elevational scale.

    PubMed

    Niu, Lihua; Zhang, Xue; Li, Yi; Wang, Peifang; Zhang, Wenlong; Wang, Chao; Wang, Qing

    2017-07-01

    Due to the important roles of archaea in wastewater treatment processes, archaeal communities have been studied extensively in various anaerobic reactors, but the knowledge of archaeal communities in full-scale activated sludge wastewater treatment plants (WWTPs) remains quite poor. In this study, 454-pyrosequencing was for the first time employed to investigate archaeal communities from 20 full-scale activated sludge WWTPs distributed at a 3,660-meter elevational scale in China. Results showed that archaeal communities from WWTPs were dominated by Methanosarcinales (84.6%). A core archaeal population (94.5%) composed of Methanosaeta, Methanosarcina, Methanogenium and Methanobrevibacter was shared among WWTPs. The elevational pattern of archaeal communities was observed in WWTPs, with an elevational threshold associated with archaeal community richness and structures at approximately 1,500 meters above sea level (masl). A declining trend in community richness with increasing elevation was observed at higher elevations, whereas no trend was presented at lower elevations. Spearman correlation analysis indicated that the archaeal community richness at higher elevations was associated with more environmental variables than that at lower elevations. Redundancy analysis indicated that wastewater variables were the dominant contributors to the variation of community structures at higher elevations, followed by operational variables and elevation.

  9. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.

    PubMed

    Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann

    2016-01-01

    A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.

  10. Utilisation of energy from digester gas and sludge incineration at Hamburg's Köhlbrandhöft WWTP.

    PubMed

    Thierbach, R D; Hanssen, H

    2002-01-01

    At Hamburg's Köhlbrandhöft WWTP the demand for external energy supply is minimised by state of the art sludge treatment. The sludge is subjected to thickening, anaerobic digestion, dewatering, drying and incineration. The digester gas is used in a combined gas and steam turbine process. The sludge incineration also produces steam, which is also used in the steam turbine that follows the gas turbine. The turbines produce electricity, partially expanded steam is used for the sludge drying process. Heat from the condensation of vapours from sludge drying is used to heat the anaerobic digesters. The overall process requires no external heat or fuel and produces 60% of the WWTP's electricity demand.

  11. Investigating the performance of three modified activated sludge processes treating municipal wastewater in organic pollutants removal and toxicity reduction.

    PubMed

    Han, Xue; Zuo, Yu-Ting; Hu, Yu; Zhang, Jie; Zhou, Meng-Xuan; Chen, Mo; Tang, Fei; Lu, Wen-Qing; Liu, Ai-Lin

    2018-02-01

    This study investigated the treatment performance of three types of modified activated sludge processes, i.e., anoxic/oxic (A/O), anaerobic/anoxic/oxic (A2/O) and oxidation ditch process, in treating municipal wastewater by measuring physicochemical and spectroscopic parameters, and the toxicity of the influents and effluents collected from 8 full-scale municipal wastewater treatment plants (MWTPs). The relationships between spectroscopic and physicochemical parameters of the wastewater samples and the applicability of the nematode Caenorhabditis elegans (C. elegans) bioassays for the assessment of the toxic properties of municipal wastewater were also evaluated. The results indicated that the investigated MWTPs employing any of A/O, A2/O and oxidation ditch processes could effectively control the discharge of major wastewater pollutants including biochemical oxygen demand (BOD), chemical oxygen demand, nitrogen and phosphorus. The oxidation ditch process appeared to have the advantage of removing tyrosine-like substances and presented slightly better removal efficiency of tryptophan-like fluorescent (peak T) substances than the A/O and A2/O processes. Both ultraviolet absorbance at 254nm and peak T may be used to characterize the organic load of municipal wastewater, and peak T can be adopted as a gauge of the BOD removal efficacy of municipal wastewater treatment. Using C. elegans-based oxygen consumption rate assay for monitoring municipal wastewater toxicity deserves further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Phylogenetic and functional diversity of metagenomic libraries of phenol degrading sludge from petroleum refinery wastewater treatment system

    PubMed Central

    2012-01-01

    In petrochemical refinery wastewater treatment plants (WWTP), different concentrations of pollutant compounds are received daily in the influent stream, including significant amounts of phenolic compounds, creating propitious conditions for the development of particular microorganisms that can rapidly adapt to such environment. In the present work, the microbial sludge from a refinery WWTP was enriched for phenol, cloned into fosmid vectors and pyrosequenced. The fosmid libraries yielded 13,200 clones and a comprehensive bioinformatic analysis of the sequence data set revealed a complex and diverse bacterial community in the phenol degrading sludge. The phylogenetic analyses using MEGAN in combination with RDP classifier showed a massive predominance of Proteobacteria, represented mostly by the genera Diaphorobacter, Pseudomonas, Thauera and Comamonas. The functional classification of phenol degrading sludge sequence data set generated by MG-RAST showed the wide metabolic diversity of the microbial sludge, with a high percentage of genes involved in the aerobic and anaerobic degradation of phenol and derivatives. In addition, genes related to the metabolism of many other organic and xenobiotic compounds, such as toluene, biphenyl, naphthalene and benzoate, were found. Results gathered herein demonstrated that the phenol degrading sludge has complex phylogenetic and functional diversities, showing the potential of such community to degrade several pollutant compounds. This microbiota is likely to represent a rich resource of versatile and unknown enzymes which may be exploited for biotechnological processes such as bioremediation. PMID:22452812

  13. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    PubMed

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  14. The role and control of sludge age in biological nutrient removal activated sludge systems.

    PubMed

    Ekama, G A

    2010-01-01

    The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.

  15. Waste management in the meat processing industry: Conversion of paunch and DAF sludge into solid fuel.

    PubMed

    Hamawand, Ihsan; Pittaway, Pam; Lewis, Larry; Chakrabarty, Sayan; Caldwell, Justin; Eberhard, Jochen; Chakraborty, Arpita

    2017-02-01

    This article addresses the novel dewatering process of immersion-frying of paunch and dissolved air flotation (DAF) sludge to produce high energy pellets. Literature have been analysed to address the feasibility of replacing conventional boiler fuel at meat processing facilities with high energy paunch-DAF sludge pellets (capsules). The value proposition of pelleting and frying this mixture into energy pellets is based on a Cost-Benefit Analysis (CBA). The CBA is based on information derived from the literature and consultation with the Australian Meat Processing Industry. The calorific properties of a mixture of paunch cake solids and DAF sludge were predicted from literature and industry consultation to validate the product. This study shows that the concept of pelletizing and frying paunch is economically feasible. The complete frying and dewatering of the paunch and DAF sludge mixture produces pellets with energy content per kilogram equivalent to coal. The estimated cost of this new product is half the price of coal and the payback period is estimated to be between 1.8 and 3.2years. Further research is required for proof of concept, and to identify the technical challenges associated with integrating this technology into existing meat processing plants. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  16. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis, Rev.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data frommore » this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received

  17. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time.

    PubMed

    Esparza-Soto, M; Arzate-Archundia, O; Solís-Morelos, C; Fall, C

    2013-01-01

    The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m(3)/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59-78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m(3) of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700-4,800 mg/L) and high effluent VSS (177-313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater.

  18. Post-anaerobic digestion thermal hydrolysis of sewage sludge and food waste: Effect on methane yields, dewaterability and solids reduction.

    PubMed

    Svensson, Kine; Kjørlaug, Oda; Higgins, Matthew J; Linjordet, Roar; Horn, Svein J

    2018-04-01

    Post-anaerobic digestion (PAD) treatment technologies have been suggested for anaerobic digestion (AD) to improve process efficiency and assure hygenization of organic waste. Because AD reduces the amount of organic waste, PAD can be applied to a much smaller volume of waste compared to pre-digestion treatment, thereby improving efficiency. In this study, dewatered digestate cakes from two different AD plants were thermally hydrolyzed and dewatered, and the liquid fraction was recirculated to a semi-continuous AD reactor. The thermal hydrolysis was more efficient in relation to methane yields and extent of dewaterability for the cake from a plant treating waste activated sludge, than the cake from a plant treating source separated food waste (SSFW). Temperatures above 165 °C yielded the best results. Post-treatment improved volumetric methane yields by 7% and the COD-reduction increased from 68% to 74% in a mesophilic (37 °C) semi-continuous system despite lowering the solid retention time (from 17 to 14 days) compared to a conventional system with pre-treatment of feed substrates at 70 °C. Results from thermogravimetric analysis showed an expected increase in maximum TS content of dewatered digestate cake from 34% up to 46% for the SSFW digestate cake, and from 17% up to 43% in the sludge digestate cake, after the PAD thermal hydrolysis process (PAD-THP). The increased dewatering alone accounts for a reduction in wet mass of cake leaving the plant of 60% in the case of sludge digestate cake. Additionaly, the increased VS-reduction will contribute to further reduce the mass of wet cake. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Actual Waste Demonstration of the Nitric-Glycolic Flowsheet for Sludge Batch 9 Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. D. Newell; Pareizs, J. M.; Martino, C. J.

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Testing performed by the Savannah River National Laboratory has shown glycolic acid to be effective in replacing the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the catalytic generation of hydrogen and ammonia which could allow purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allowsmore » for effective rheology adjustment, and is favorable with respect to melter flammability. In order to implement the new flowsheet, SRAT and SME cycles, designated SC-18, were performed using a Sludge Batch (SB) 9 slurry blended from SB8 Tank 40H and Tank 51H samples. The SRAT cycle involved adding nitric and glycolic acids to the sludge, refluxing to steam strip mercury, and dewatering to a targeted solids concentration. Data collected during the SRAT cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. The SME cycle demonstrated the addition of glass frit and the replication of six canister decontamination additions. The demonstration concluded with dewatering to a targeted solids concentration. Data collected during the SME cycle included offgas analyses, process temperatures, heat transfer, and pH measurements. Slurry and condensate samples were collected for subsequent analysis« less

  20. [Effects of ultrasonic pretreatment on drying characteristics of sewage sludge].

    PubMed

    Li, Run-Dong; Yang, Yu-Ting; Li, Yan-Long; Niu, Hui-Chang; Wei, Li-Hong; Sun, Yang; Ke, Xin

    2009-11-01

    The high water content of sewage sludge has engendered many inconveniences to its treatment and disposal. While ultrasonic takes on unique advantages on the sludge drying because of its high ultrasonic power, mighty penetrating capability and the ability of causing cavitations. Thus this research studies the characteristics influences of ultrasonic bring to the sludge drying and effects of the exposure time, ultrasonic generator power, temperatures of ultrasonic and drying temperature on the drying characteristics of dewatered sludge. Results indicate that ultrasonic pretreatment could speed up evaporation of the free water in sludge surface and help to end the drying stage with constant speed. In addition, ultrasonic treatment can effectively improve the sludge drying efficiency which could be more evident with the rise of the ultrasonic power (100-250 W), ultrasonic temperature and drying temperature. If dried under low temperature such as 105 degrees C, sludge will have premium drying characteristics when radiated under ultrasound for a shorter time such as 3 min. In the end, the ultrasonic treatment is expected to be an effective way to the low-cost sludge drying and also be an important reference to the optimization of the sludge drying process because of its effects on the increase of sludge drying efficiency.

  1. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China.

    PubMed

    Dai, Jiayin; Xu, Muqi; Chen, Jiping; Yang, Xiangping; Ke, Zhenshan

    2007-01-01

    In order to better understand land application of sewage sludge, the characterization of heavy metals, PCDD/F and PAHs in sewage sludge was investigated from six different wastewater treatment plants (WWTP) in Beijing City, China. It was found that the total concentrations of Zn in Wujiacun (WJC) sewage sludge, and Cd and Hg in sewage sludge generated from all of the six different places are higher than Chinese regulation limit of pollutants for sludge to be used for agriculture (GB18918-2002). The levels of 16 PAHs that have been categorized as priority pollutants by US EPA in the sewage sludge samples varied from 2467 to 25923 microg/kg (dry weight), the highest values of 25923 microg/kg being found in WJC WWTP. The concentrations of Benzo[a]pyrene were as high as 6.1mg/kg dry weight in WJC sewage sludge, exceeding the maximum permitted content by GB18918-2002. Individual PAH content varies considerably with sewage samples. The ratios of anthracene to anthracene plus phenanthrene (An/178), benz[a]anthracene to benz[a]anthracene plus chrysene (BaA/228), indene[1,2,3-cd]pyrene to indene[1,2,3-cd]pyrene plus benzo[g,h,i]perylene (In/In+BP), and fluoranthene to fluoranthene plus pyrene (Fl/Fl+Py) suggest that petroleum and combustion of fossil fuel were the dominant contributions for the PAHs in sewage sludge. The concentrations of total PCDD/F in the sewage sludge ranged from 330 to 4245 pg/g d.w. The toxicity equivalent concentrations is between 3.47-88.24 pg I-TEQ according to NATO/CCMS, which is below Chinese legislation limit value proposed for land application. The PCDD/F congener/homologue profiles found in the Beijing samples indicated that the high chlorinated PCDD/F contamination might originate mainly from PCP-related source and depositional sources while the low chlorinated PCDD/F homologues could be originating from incineration or coal combustion. The major source of PCDD/Fs in Beijing sludge is still unclear.

  2. Treating an aged pentachlorophenol- (PCP-) contaminated soil through three sludge handling processes, anaerobic sludge digestion, post-sludge digestion and sludge land application.

    PubMed

    Chen, S T; Berthouex, P M

    2001-01-01

    The extensive pentachlorophenol (PCP) contamination and its increasing treatment costs motivate the search for a more competitive treatment alternative. In a municipal wastewater treatment plant, anaerobic sludge-handling processes comprises three bio-processes, namely the anaerobic sludge digestion, post-sludge digestion and sludge land application, which reduce sludge organic content and make sludge a good fertilizer for land application. Availability and effectiveness make the anaerobic sludge handling processes potential technologies to treat PCP-contaminated soil. The technical feasibility of using anaerobic sludge bioprocesses was studied by treating PCP soil in two pilot digesters to simulate the primary sludge digestion, in serum bottles to mimic the post-sludge digestion, and in glass pans to represent the on-site sludge application. For primary digestion, the results showed that up to 0.98 and 0.6 mM of chemical and soil PCP, respectively, were treated at nearly 100% and 97.5% efficiencies. The PCP was transformed 95% to 3-MCP, 4.5% to 3,4-DCP, and 0.5% to 3,5-DCP. For post-digestion, 100% pure chemical PCP and greater than 95% soil PCP were removed in less than 6 months with no chlorophenol residues of any kind. Complete removal of PCP by-products makes this process a good soil cleanup method. For on-site treatment, PCP was efficiently treated by multiple sludge application; however, the PCP residue was observed due to the high initial PCP content in soil. Overall, more mass PCP per unit sludge per day was processed using the primary sludge digestion than the on-site soil treatment or post-sludge digestion. And, sludge acclimation resulted in better PCP treatment efficiencies with all three processes.

  3. Purified terephthalic acid wastewater biodegradation and toxicity.

    PubMed

    Zhang, Xu-xiang; Wan, Yu-qiu; Cheng, Shu-pei; Sun, Shi-lei; Zhu, Cheng-jun; Li, Wei-xin; Zhang, Xiao-chun; Wang, Gui-lin; Lu, Jian-hua; Luo, Xiang; Gu, Ji-dong

    2005-01-01

    The biodegradation and toxicity of the purified terephthalic acid (PTA) processing wastewater was researched at NJYZ pilot with the fusant strain Fhhh in the carrier activated sludge process (CASP). Sludge loading rate (SLR) for Fhhh to COD of the wastewater was 1.09 d(-1) and to PTA in the wastewater was 0.29 d(-1). The results of bioassay at the pilot and calculation with software Ebis3 showed that the 48h-LC50 (median lethal concentration) to Daphnia magna for the PTA concentration in the wastewater was only 1/10 of that for the chemical PTA. There were 5 kinds of benzoate pollutants and their toxicities existing in the wastewater at least. The toxicity parameter value of the pure chemical PTA cannot be used to predicate the PTA wastewater toxicity. The toxicity of the NJYZ PTA wastewater will be discussed in detail in this paper.

  4. Prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated sewage sludges.

    PubMed

    Amorós, Inmaculada; Moreno, Yolanda; Reyes, Mariela; Moreno-Mesonero, Laura; Alonso, Jose L

    2016-11-01

    Treated sludge from wastewater treatment plants (WWTPs) is commonly used in agriculture as fertilizers and to amend soils. The most significant health hazard for sewage sludge relates to the wide range of pathogenic microorganisms such as protozoa parasites.The objective of this study was to collect quantitative data on Cryptosporidium oocysts and Giardia cysts in the treated sludge in wastewater treatment facilities in Spain. Sludge from five WWTPs with different stabilization processes has been analysed for the presence of Cryptosporidium and Giardia in the raw sludge and after the sludge treatment. A composting plant (CP) has also been assessed. After a sedimentation step, sludge samples were processed and (oo)cysts were isolated by immunomagnetic separation (IMS) and detected by immunofluorescence assay (IFA). Results obtained in this study showed that Cryptosporidium oocysts and Giardia cysts were present in 26 of the 30 samples (86.6%) of raw sludge samples. In treated sludge samples, (oo)cysts have been observed in all WWTP's analysed (25 samples) with different stabilization treatment (83.3%). Only in samples from the CP no (oo)cysts were detected. This study provides evidence that (oo)cysts are present in sewage sludge-end products from wastewater treatment processes with the negative consequences for public health.

  5. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater.

    PubMed

    Liu, He; Han, Peng; Liu, Hongbo; Zhou, Guangjie; Fu, Bo; Zheng, Zhiyong

    2018-07-01

    A full-scale project of thermal-alkaline pretreatment and alkaline fermentation of sewage sludge was built to produce volatile fatty acids (VFAs) which was then used as external carbon source for improving biological nitrogen and phosphorus removals (BNPR) in wastewater plant. Results showed this project had efficient and stable performances in VFA production, sludge reduce and BNPR. Hydrolysis rate in pretreatment, VFAs yield in fermentation and total VS reduction reached 68.7%, 261.32 mg COD/g VSS and 54.19%, respectively. Moreover, fermentation liquid with VFA presented similar efficiency as acetic acid in enhancing BNPR, obtaining removal efficiencies of nitrogen and phosphorus up to 72.39% and 89.65%, respectively. Finally, the project also presented greater economic advantage than traditional processes, and the net profits for VFAs and biogas productions are 9.12 and 3.71 USD/m 3 sludge, respectively. Long-term operation indicated that anaerobic alkaline fermentation for VFAs production is technically and economically feasible for sludge carbon recovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...

  7. Enrichment and activity of methanotrophic microorganisms from municipal wastewater sludge.

    PubMed

    Siniscalchi, Luciene Alves Batista; Vale, Isabel Campante; Dell'Isola, Jéssica; Chernicharo, Carlos Augusto; Calabria Araujo, Juliana

    2015-01-01

    In this study, methanotrophic microorganisms were enriched from a municipal wastewater sludge taken from an Upflow Anaerobic Sludge Blanket reactor. The enrichment was performed in a sequencing batch reactor (SBR) with an autotrophic medium containing nitrite and nitrate. The microbial community composition of the inoculum and of the enrichment culture after 100 days of SBR operation was investigated and compared with the help of data obtained from 454 pyrosequencing analyses. The nitrite and nitrate removal efficiencies were 68% and 53%, respectively, probably due to heterotrophic denitrification. Archaeal cells of the anaerobic methanotrophic Archaic (ANME)-I and ANME-II groups were detected by polymerase chain reaction throughout the whole cultivation period. Pyrosequencing analysis showed that community composition was different among the two samples analysed. The dominant phyla found in the inoculum were Synergistestes, Firmicutes and Euryarchaeota, while Planctomycetes, Verrucomicrobia, Chloroflexi and Proteobacteria prevailed in the enriched biomass. The cultivation conditions decreased Methanobacterium abundance from 8% to 1%, and enriched for methanotrophic bacteria such as Methylocaldum, Methylocistis and Methylosinus. Sequences of Methylocaldum sp. accounted for 2.5% of the total reads. The presence and high predominance of Verrucomicrobia in the enriched biomass suggested that other unknown methanotrophic species related to that phylum might also have occurred in the reactor. Anaerobic methane oxidation activity was measured for both samples, and showed that the activity of the enrichment culture was nearly three times higher than the activity of the inoculum. Taken together, these results showed that the inoculum type and cultivation conditions were properly suited for methanotrophic enrichment.

  8. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.

    PubMed

    Radjenović, Jelena; Petrović, Mira; Barceló, Damià

    2009-02-01

    case of loratidine the experimentally determined sorption coefficients (Kds) were in the range 2214-3321 L/kg (mean). The results obtained for the solid phase indicated that MBR wastewater treatment yielding higher biodegradation rate could reduce the load of pollutants in the sludge. Also, the overall output load in the aqueous and solid phase of the investigated WWTP was calculated, indicating that none of the residual pharmaceuticals initially detected in the sewage sludge were degraded during the anaerobic digestion. Out of the 26 pharmaceutical residues passing through the WWTP, 20 were ultimately detected in the treated sludge that is further applied on farmland.

  9. Lipid-enhancement of activated sludges obtained from conventional activated sludge and oxidation ditch processes.

    PubMed

    Revellame, Emmanuel D; Hernandez, Rafael; French, W Todd; Holmes, William E; Forks, Allison; Callahan, Robert

    2013-11-01

    Lipid-enhancement of activated sludges was conducted to increase the amount of saponifiable lipids in the sludges. The sludges were obtained from a conventional activated sludge (CAS) and an oxidation ditch process (ODP). Results showed 59-222% and 150-250% increase in saponifiable lipid content of the sludges from CAS and ODP, respectively. The fatty acid methyl ester (FAMEs) obtained from triacylglycerides was 57-67% (of total FAMEs) for enhanced CAS and 55-73% for enhanced ODP, a very significant improvement from 6% to 10% (CAS) and 4% to 8% (ODP). Regardless of the source, the enhancement resulted in sludges with similar fatty acid profile indicating homogenization of the lipids in the sludges. This study provides a potential strategy to utilize existing wastewater treatment facilities as source of significant amount of lipids for biofuel applications. Published by Elsevier Ltd.

  10. Indirect methods of dried sewage sludge contamination assessments.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz; Grübel, Klaudiusz

    2016-07-28

    Thermal conversion (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for sewage sludge management in the future. Nevertheless, safe and ecological usage of sewage sludge as a fuel requires information about their contamination. The aim of this paper is to present the photoacoustic spectroscopy (PAS) as a good method for contamination assessments of dried sewage sludge. Two types of granular sewage sludge: Sewage sludge 1 (SS1) taken from Polish wastewater treatment plant operating in the mechanical-biological system and sewage sludge 2 (SS2) taken from mechanical-biological-chemical wastewater treatment plant with phosphorus precipitation were analysed. The spectrophotometer FTIR Nicolet 6700 equipped with photoacoustic cell (Model 300, MTEC, USA) was used. The comparison with the most popular analytical methods (GC-MS) was also done. The results of PAS studies confirm the difference between the SS1 and SS2 which is in agreement with the GC-MS analysis. Higher absorbance was observed at each wavelength characteristics for the oscillator of chemical moieties for the SS1 with respect to the SS2.

  11. Feedstock and process influence on biodiesel produced from waste sewage sludge.

    PubMed

    Capodaglio, Andrea G; Callegari, Arianna

    2018-06-15

    Disposal of sewage sludge is one of the most important issues in wastewater treatment throughout Europe, as EU sludge production, estimated at 9.5 million tons dry weight in 2005, is expected to approach 13 million tons in 2020. While sludge disposal costs may constitute 30-50% of the total operation costs of wastewater treatment processes, waste sewage sludge still contains resources that may be put to use, like nutrients and energy, that can be recovered through a variety of approaches. Research has shown that waste sewage sludge can be a valuable and very productive feedstock for biodiesel generation, containing lipids (the fats from which biofuels are extracted) in amounts that would require large areas cultivated with typical biodiesel feedstock, to produce, and at a much lower final cost. Several methods have been tested for the production of biodiesel from sewage sludge. To date, among the most efficient such process is pyrolysis, and in particular Microwave-Assisted Pyrolysis (MAP), under which process conditions are more favorable in energetic and economic terms. Sludge characteristics are very variable, depending on the characteristics of the wastewater-generating service area and on the wastewater treatment process itself. Each sludge can be considered a unique case, and as such experimental determination of the optimal biodiesel yields must be conducted on a case-by-case basis. In addition to biodiesel, other pyrolysis products can add to the energetic yield of the process (and not only). This paper discusses how feedstock properties and process characteristics may influence biodiesel (and other products) yield from pyrolytic (and in particular, MAP) processes, and discusses future possible technological developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Performance comparison of biofilm and suspended sludge from a sequencing batch biofilm reactor treating mariculture wastewater under oxytetracycline stress.

    PubMed

    Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo

    2016-09-01

    The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge.

  13. Sludge fertilization of State Forest land in northern Michigan

    Treesearch

    D.G. Brockway

    1991-01-01

    A five-year research-demonstration project to examine the logistic, economic, environmental and sociological aspects of municipal wastewater sludge application was conducted on State Forest land occupied by forest types of major commercial importance in northern Michigan. The procedures utilized for site preparation, sludge transportation and sludge application proved...

  14. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  15. Reducing capacities and redox potentials of humic substances extracted from sewage sludge.

    PubMed

    Yang, Zhen; Du, Mengchan; Jiang, Jie

    2016-02-01

    Humic substances (HS) are redox active organic materials that can be extracted from sewage sludge generated in wastewater treatment processes. Due to the poor understanding of reducing capacity, redox potentials and redox active functional groups of HS in sewage sludge, the potential contribution of sludge HS in transformation of wastewater contaminants is unclear. In the present study, the number of electrons donated or accepted by sewage sludge HS were quantified before and after reduction by iron compounds that possess different redox potentials and defined as the reducing capacity of the sewage sludge. In contrast to previous studies of soil and commercial humic acids (HA), reduced sludge HA showed a lower reducing capacity than that of native HA, which implies formation of semiquinone radicals since the semiquinone radical/hydroquinone pair has a much higher redox potential than the quinone/hydroquinone pair. It is novel that reducing capacities of sludge HA were determined in the redox potential range from -314 to 430 mV. The formation of semiquinone radicals formed during the reduction of quinone moieties in sludge HA is shown by three-dimensional excitation/emission matrix fluorescence spectroscopies information, increasing fluorescence intensities and blue-shifting of the excitation/emission peak of reduced sludge HA. Knowledge of sludge HS redox potentials and corresponding reducing capacities makes it possible to predict the transformation of redox active pollutants and facilitate manipulation and optimization of sludge loading wastewater treatment processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Removal of helminth eggs by centralized and decentralized wastewater treatment plants in South Africa and Lesotho: health implications for direct and indirect exposure to the effluents.

    PubMed

    Amoah, Isaac Dennis; Reddy, Poovendhree; Seidu, Razak; Stenström, Thor Axel

    2018-05-01

    Wastewater may contain contaminants harmful to human health; hence, there is the need for treatment before discharge. Centralized wastewater treatment systems are the favored treatment options globally, but these are not necessarily superior in reduction of pathogens as compared to decentralized wastewater treatment systems (collectively called DEWATS). This study was therefore undertaken to assess the soil-transmitted helminth (STH) and Taenia sp. egg reduction efficiency of selected anaerobic baffled reactors and planted gravel filters compared to centralized wastewater treatment plants in South Africa and Lesotho. The risk of ascariasis with exposure to effluents from the centralized wastewater treatment plants was also assessed using the quantitative microbial risk assessment (QMRA) approach. Eggs of Ascaris spp., hookworm, Trichuris spp., Taenia spp., and Toxocara spp. were commonly detected in the untreated wastewater. The DEWATS plants removed between 95 and 100% of the STH and Taenia sp. eggs, with centralized plants removing between 67 and 100%. Helminth egg concentrations in the final effluents from the centralized wastewater treatment plants were consistently higher than those in the WHO recommended guideline (≤ 1 helminth egg/L) for agricultural use resulting in higher risk of ascariasis. Therefore, in conclusion, DEWATS plants may be more efficient in reducing the concentration of helminth eggs in wastewater, resulting in lower risks of STH infections upon exposure.

  17. Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2011-09-01

    Degradation of bisphenol A (BPA), an endocrine disruptor, from wastewater sludge (WWS) has attracted great interest recently. In the present study, the effects of different pre-treatment methods, including ultrasonication (US), Fenton's oxidation (FO) and ferro-sonication (FS) was assessed in terms of increase in solubilization of WWS and simultaneous degradation of BPA. Among US, FO and FS pre-treatment, higher suspended solids (SS), volatile suspended solids (VSS), chemical oxygen demand (COD) and soluble organic carbon (SOC) solubilization (39.7%, 51.2%, 64.5% and 17.6%, respectively) was observed during a ferro-sonication pre-treatment process carried out for 180 min, resulting in higher degradation of BPA (82.7%). In addition, the effect of rheological parameters (viscosity and particle size) and zeta potential on the degradation of BPA in raw and different pre-treated sludges were also investigated. The results showed that a decrease in viscosity and particle size and an increase in zeta potential resulted in higher degradation of BPA. BPA degradation by laccases produced by Sinorhizobium meliloti in raw and pre-treated sludge was also determined. Higher activity of laccases (207.9 U L(-1)) was observed in ferro-sonicated pre-treated sludge (180 min ultrasonic time), resulting in higher removal of BPA (0.083 μg g(-1)), suggesting concomitant biological degradation of BPA. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor.

    PubMed

    Tsioptsias, Costas; Lionta, Gesthimani; Samaras, Petros

    2017-05-01

    The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.

  19. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    PubMed

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm -3 d -1 . Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    PubMed

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Responses of a non N-limited forest plantation to the application of alkaline-stabilized dewatered dairy factory sludge.

    PubMed

    Omil, Beatriz; Mosquera-Losada, Rosa; Merino, Agustín

    2007-01-01

    Amendment of forest soils with dewatered dairy factory sludge (DDFS), characterized by low heavy metal contents and high amounts of degradable C, can prevent the depletion of soil nutrients that results from intensive harvesting in forest plantations. However, this practice involves environmental risks when N supplies exceed the demand of plants or when the strong acidity of the soil favors the mobility of trace metals. These aspects were assessed in a young radiata pine plantation growing in a sandy, acidic, and organic N-rich soil for the 7 yr after application of a DDFS. The supply of limiting nutrients (mainly P, Mg, and Ca) provided by application of the DDFS, along with control of the ground vegetation, improved the nutritional status of the stand and led to increases in timber volume of more than 60 to 100%. Increases in soil inorganic N were observed during the first months after amendment. Data from soil incubation experiments revealed that some of the additional N was immobilized and, to a lesser extent, denitrified due to the readily available organic C content of the DDFS. Leaching and increased plant uptake of N were prevented by a combination of the latter processes and the low rate of nitrification. The strong acidity of the soil enhanced the availability of Mn and Zn to plants, although the maximum concentrations did not reach levels harmful to organisms. We conclude that although application of DDFS has positive effects on tree nutrition and growth and the environmental risks are low, repeated application may favor mobility of N and availability of heavy metals.

  2. Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20°C.

    PubMed

    Kampman, Christel; Temmink, Hardy; Hendrickx, Tim L G; Zeeman, Grietje; Buisman, Cees J N

    2014-06-15

    Simultaneous nitrogen and methane removal by the slow growing denitrifying methanotrophic bacterium 'Candidatus Methylomirabilis oxyfera' offers opportunities for a new approach to wastewater treatment. However, volumetric nitrite consumption rates should be increased by an order of magnitude before application in wastewater treatment becomes possible. A maximum volumetric nitrite consumption rate of 36 mg NO2(-)-N/L d was achieved in a membrane bioreactor inoculated with wastewater sludge and operated at 20°C. This rate is similar to maximum rates reported in literature, though it was thought that by strict biomass retention using membranes, higher rates would be achieved. In experiments lasting several years, growth was not stable: every experiment showed a decrease in activity after 1-2 years. The cause remains unknown. Rates increased after addition of copper and operating a membrane bioreactor at shorter hydraulic retention times. Further research should focus on long-term effects of copper addition and operation at hydraulic retention times in the order of hours using membrane bioreactors. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Predicting the degradability of waste activated sludge.

    PubMed

    Jones, Richard; Parker, Wayne; Zhu, Henry; Houweling, Dwight; Murthy, Sudhir

    2009-08-01

    The objective of this study was to identify methods for estimating anaerobic digestibility of waste activated sludge (WAS). The WAS streams were generated in three sequencing batch reactors (SBRs) treating municipal wastewater. The wastewater and WAS properties were initially determined through simulation of SBR operation with BioWin (EnviroSim Associates Ltd., Flamborough, Ontario, Canada). Samples of WAS from the SBRs were subsequently characterized through respirometry and batch anaerobic digestion. Respirometry was an effective tool for characterizing the active fraction of WAS and could be a suitable technique for determining sludge composition for input to anaerobic models. Anaerobic digestion of the WAS revealed decreasing methane production and lower chemical oxygen demand removals as the SRT of the sludge increased. BioWin was capable of accurately describing the digestion of the WAS samples for typical digester SRTs. For extended digestion times (i.e., greater than 30 days), some degradation of the endogenous decay products was assumed to achieve accurate simulations for all sludge SRTs.

  4. Forest land application of municipal sludge.

    Treesearch

    D.G. Brockway

    1988-01-01

    In Michigan, 199 municipal and numerous industrial wastewater treatment facilities annually generate 222,750 dry tons of sludge, most of which is recycled on farmland. Substantial potential exists, however, to increase application on forest land in the northern two-thirds of the state (Brockway and Nguyen 1986). Although sludge application on agricultural land has...

  5. Short-term Influence of Two Types of Drilling Fluids on Wastewater Treatment Rate and Eukaryotic Organisms of Activated Sludge in Sequencing Batch Reactors.

    PubMed

    Babko, Roman; Jaromin-Gleń, Katarzyna; Łagód, Grzegorz; Danko, Yaroslav; Kuzmina, Tatiana; Pawłowska, Małgorzata; Pawłowski, Artur

    2017-07-01

    This work presents the results of studies on the impact of spent drilling fluids cotreated with municipal wastewater on the rate of the wastewater treatment process and the structure of the community of eukaryotic organisms inhabiting an activated sludge. The studies were conducted under laboratory conditions in sequencing batch reactors. The effect of added polymer-potassium drilling fluid (DF1) and polymer drilling fluid (DF2) at dosages of 1 and 3% of wastewater volume on the rate of removal of total suspended solids, turbidity, chemical oxygen demand, and the content of total and ammonium nitrogen were analyzed, taking into account the values of these parameters measured at the end of each operating cycle. In addition to the impacts on the aforementioned physicochemical indices, the influence of drilling fluid on the biomass of various groups of eukaryotes in activated sludge was analyzed. The impact of the drilling fluid was highly dependent on its type and dosage. A noticeable slowdown in the rate of the wastewater treatment process and a negative effect on the organisms were observed after the addition of DF2. This effect intensified after an increase in fluid dose. However, no statistically significant negative changes were observed after the introduction of DF1. Conversely, the removal rate of some of the analyzed pollutant increased. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  6. Manufacturing ceramic bricks with polyaluminum chloride (PAC) sludge from a water treatment plant.

    PubMed

    da Silva, E M; Morita, D M; Lima, A C M; Teixeira, L Girard

    2015-01-01

    The objective of this research work is to assess the viability of manufacturing ceramic bricks with sludge from a water treatment plant (WTP) for use in real-world applications. Sludge was collected from settling tanks at the Bolonha WTP, which is located in Belém, capital of the state of Pará, Brazil. After dewatering in drainage beds, sludge was added to the clay at a local brickworks at different mass percentages (7.6, 9.0, 11.7, 13.9 and 23.5%). Laboratory tests were performed on the bricks to assess their resistance to compression, water absorption, dimensions and visual aspects. Percentages of 7.6, 9.0, 11.7 and 13.9% (w/w) of WTP sludge presented good results in terms of resistance, which indicates that technically, ceramic bricks can be produced by incorporating up to 13.9% of WTP sludge.

  7. The re-use of Waste-Activated Sludge as part of a "zero-sludge" strategy for wastewater treatments in the pulp and paper industry.

    PubMed

    Kaluža, Leon; Suštaršič, Matej; Rutar, Vera; Zupančič, Gregor D

    2014-01-01

    The possibility of introducing the thermo-alkali hydrolysis of Waste-Activated Sludge (WAS) was investigated, in order to enable the use of its solid residue as a raw material in cardboard production and the use of its liquid portion for anaerobic digestion in an UASB reactor. The evaluation of the hydrolysis at pH>12 and T=70°C showed that the microbe cells were disrupted with more than 90% efficiency in less than 2h. The solid portion was hygienised, therefore making it possible to integrate it into the cardboard production as a raw material for less demanding cardboards. Up to 6% addition of the liquid portion of hydrolysed WAS to wastewater decreased the specific biogas production in a pilot-scale UASB from 0.236 to 0.212 m(3)/kg(COD), while the efficiency of the COD removal decreased from 80.4% to 76.5%. These values still guarantee an adequate treatment of the wastewater and an increased biogas production by 16%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  9. Bioflocculation of mesophilic and thermophilic activated sludge.

    PubMed

    Vogelaar, J C T; De Keizer, A; Spijker, S; Lettinga, G

    2005-01-01

    Thermophilic activated sludge treatment is often hampered by a turbid effluent. Reasons for this phenomenon are so far unknown. Here, the hypothesis of the temperature dependency of the hydrophobic interaction as a possible cause for diminished thermophilic activated sludge bioflocculation was tested. Adsorption of wastewater colloidal particles was monitored on different flat surfaces as a function of temperature. Adsorption on a hydrophobic surface varied with temperature between 20 and 60 degrees C and no upward or downward trend could be observed. This makes the hydrophobic interaction hypothesis unlikely in explaining the differences in mesophilic and thermophilic activated sludge bioflocculation. Both mesophilic and thermophilic biomass did not flocculate with wastewater colloidal particles under anaerobic conditions. Only in the presence of oxygen, with biologically active bacteria, the differences in bioflocculation behavior became evident. Bioflocculation was shown only to occur with the combination of wastewater and viable mesophilic biomass at 30 degrees C, in the presence of oxygen. Bioflocculation did not occur in case the biomass was inactivated or when oxygen was absent. Thermophilic activated sludge hardly showed any bioflocculation, also under mesophilic conditions. Despite the differences in bioflocculation behavior, sludge hydrophobicity and sludge zetapotentials were almost similar. Theoretical calculations using the DLVO (Derjaguin, Landau, Verweij and Overbeek) theory showed that flocculation is unlikely in all cases due to long-range electrostatic forces. These calculations, combined with the fact that bioflocculation actually did occur at 30 degrees C and the unlikelyness of the hydrophobic interaction, point in the direction of bacterial exo-polymers governing bridging flocculation. Polymer interactions are not included in the DLVO theory and may vary as a function of temperature.

  10. Evaluation of sample preparation methods for the detection of total metal content using inductively coupled plasma optical emission spectrometry (ICP-OES) in wastewater and sludge

    NASA Astrophysics Data System (ADS)

    Dimpe, K. M.; Ngila, J. C.; Mabuba, N.; Nomngongo, P. N.

    Heavy metal contamination exists in aqueous wastes and sludge of many industrial discharges and domestic wastewater, among other sources. Determination of metals in the wastewater and sludge requires sample pre-treatment prior to analysis because of certain challenges such as the complexity of the physical state of the sample, which may lead to wrong readings in the measurement. This is particularly the case with low analyte concentration to be detected by the instrument. The purpose of this work was to assess and validate the different sample preparation methods namely, hot plate and microwave-assisted digestion procedures for extraction of metal ions in wastewater and sludge samples prior to their inductively coupled plasma optical emission spectrometric (ICP-OES) determination. For the extraction of As, Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn, three acid mixtures, that is, HNO3/H2O2, HNO3/HClO4/H2O2 and aqua regia + H2O2, were evaluated. Influent wastewater spiked with the SRM (CWW-TM-B) was used for the optimization of acid mixtures affecting the extraction procedure. After sample digestion, the filtration capabilities of cellulose-acetate filter paper and the acrodisc syringe filter with the pore size of 0.45 μm were compared. In terms of performance, acrodisc syringe filter in terms of the improved recoveries obtained, was found to be the best filtration method compared to the filter paper. Based on the analytical results obtained, microwave-assisted digestion (MAD) using aqua regia + H2O2 mixture was found to be the most suitable method for extraction of heavy metals and major elements in all the sample matrices. Therefore, MAD using aqua regia + H2O2 mixture was used for further investigations. The precision of the developed MAD method expressed in terms of relative standard deviations (% RSD) for different metals was found to be <5%. The limits of detection (LOD) and limits of quantification (LOQ) ranged from 0.12% to 2.18 μg L-1 and 0.61% to 3.43 μg L-1

  11. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF).

    PubMed

    Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui

    2009-11-01

    Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.

  12. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.

    PubMed

    Collard, Marie; Teychené, Benoit; Lemée, Laurent

    2017-12-01

    Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Acclimatization process of tofu wastewater on hybrid upflow anaerobic sludge blanket reactor using polyvinyl chloride rings as a growth medium

    NASA Astrophysics Data System (ADS)

    Yanqoritha, Nyimas; Turmuzi, Muhammad; Derlini

    2017-05-01

    The appropriate process to resolve sewage contamination which have a high organic using anaerobic technology. Hybrid Upflow Anaerobic Sludge Blanket reactor is one of the anaerobic process which consists of a suspended growth media and attached growth media. The reactor has the ability to work at high load rate, sludge produced easily settles, high biomass and the separation of gas, solid and liquid excelent. The purpose of research is to study the acclimatization process in the reactor of Hybrid Upflow Anaerobic Sludge Blanket using a polyvinl chloride ring as the attached growth medium. Reactor of Hybrid Upflow Anaerobic Sludge Blanket use a working volume of 8.6 L. The operation consisting of 3 L suspended reactor and 5.6 L attached reactor. Acclimatization is conducted by providing the substrate from the smallest concentration of COD up to a concentration that will be processed. During the 50th day, acclimatization process assumed the bacteria begin to work, indicated by the dissolved COD and VSS decrease and biogas production. Due to the wastewater containing the high of protein in consequence operational parameters should be controlled and some precautions should be taken to prevent process partially or totally inhibited.

  14. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Enhancement of activated sludge disintegration and dewaterability by Fenton process

    NASA Astrophysics Data System (ADS)

    Heng, G. C.; Isa, M. H.

    2016-06-01

    Municipal and industrial wastewater treatment plants produce large amounts of sludge. This excess sludge is an inevitable drawback inherent to the activated sludge process. In this study, the waste activated sludge was obtained from the campus wastewater treatment plant at Universiti Teknologi PETRONAS (UTP), Malaysia. Fenton pretreatment was optimized by using the response surface methodology (RSM) to study the effects of three operating conditions including the dosage of H2O2 (g H2O2/kg TS), the molar ratio of H2O2/Fe2+ and reaction time. The optimum operating variables to achieve MLVSS removal 65%, CST reduction 28%, sCOD 11000 mg/L and EPS 500 mg/L were: 1000 g H2O2/kg TS, H2O2/Fe2+ molar ratio 70 and reaction time 45 min. Fenton process was proved to be able to enhance the sludge disintegration and dewaterability.

  16. Solidification and stabilization of the incinerated wastewater sludge from textile industry

    NASA Astrophysics Data System (ADS)

    Aziz, Hamidi Abdul; Ghazali, Miskiah Fadzilah; Omran, Abdelnaser; Umar, Muhammad

    2017-10-01

    This paper describes the investigation of solidification and stabilization (S/S) process for the safe disposal of incinerated wastewater sludge produced from a textile industry in Penang, Malaysia. Physical and chemical properties of the samples were first characterized. Various ratios of ordinary Portland cement (OPC) as a binder were used to immobilize the metals. The leachability of metals in these cement-based waste materials was studied by standard toxicity characteristic leaching procedure (TCLP) and the mechanical strength was tested by a compressive strength test. TCLP results showed the ability of OPC to immobilize various metals such as Zn, Cu, Fe, Al, Ti, and K within the limits set by USEPA and Malaysia Environment Quality Act, 1974. However, the strength of the solidified matrixes was generally lower than the control specimens, ranging from 1-23 Mpa, which was well above the specified limit of 414 kPa for such matrices for their disposal in landfills.

  17. Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge.

    PubMed

    Zhang, Liang; Liu, Miaomiao; Zhang, Shujun; Yang, Yandong; Peng, Yongzhen

    2015-12-01

    A pilot-scale activated sludge bioreactor was filled with immobile carrier to treat high ammonium wastewater. Autotrophic nitrogen elimination occurred rapidly by inoculating nitrifying activated sludge and anammox biofilm. As the ammonium loading rate increased, nitrogen removal rate of 1.2kgNm(-3)d(-1) was obtained with the removal efficiency of 80%. Activated sludge diameter distribution profiles presented two peak values, indicating simultaneous existence of flocculent and granular sludge. Red granular sludge was observed in the reactor. Furthermore, the results of morphological and molecular analysis showed that the characteristics of granular sludge were similar to that of biofilm, while much different from the flocculent sludge. It was assumed granular sludge was formed through the continuous growth and detachment of anammox biofilm. The mechanism of granular sludge formation was discussed and the procedure model was proposed. According to the experimental results, the integrated fixed-biofilm activated sludge reactor provided an alternative to nitrogen removal based on anammox. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Upflow anaerobic sludge blanket and aerated constructed wetlands for swine wastewater treatment: a pilot study.

    PubMed

    Masi, F; Rizzo, A; Martinuzzi, N; Wallace, S D; Van Oirschot, D; Salazzari, P; Meers, E; Bresciani, R

    2017-07-01

    Swine wastewater management is often affected by two main issues: a too high volume for optimal reuse as a fertilizer and a too high strength for an economically sustainable treatment by classical solutions. Hence, an innovative scheme has been tested to treat swine wastewater, combining a low cost anaerobic reactor, upflow anaerobic sludge blanket (UASB), with intensified constructed wetlands (aerated CWs) in a pilot scale experimental study. The swine wastewater described in this paper is produced by a swine production facility situated in North Italy. The scheme of the pilot plant consisted of: (i) canvas-based thickener; (ii) UASB; (iii) two intensified aerated vertical subsurface flow CWs in series; (iv) a horizontal flow subsurface CW. The influent wastewater quality has been defined for total suspended solids (TSS 25,025 ± 9,323 mg/l), organic carbon (chemical oxygen demand (COD) 29,350 ± 16,983 mg/l), total reduced nitrogen and ammonium (total Kjeldahl nitrogen (TKN) 1,783 ± 498 mg/l and N-NH 4 + 735 ± 251 mg/l) and total phosphorus (1,285 ± 270 mg/l), with nitrates almost absent. The overall system has shown excellent performances in terms of TSS, COD, N-NH 4 + and TKN removal efficiencies (99.9%, 99.6%, 99.5%, and 99.0%, respectively). Denitrification (N-NO 3 - effluent concentration equal to 614 ± 268 mg/l) did not meet the Italian quality standards for discharging in water bodies, mainly because the organic carbon was almost completely removed in the intensified CW beds.

  19. Risk of Intestinal Parasitic Infections in People with Different Exposures to Wastewater and Fecal Sludge in Kampala, Uganda: A Cross-Sectional Study.

    PubMed

    Fuhrimann, Samuel; Winkler, Mirko S; Kabatereine, Narcis B; Tukahebwa, Edridah M; Halage, Abdulla A; Rutebemberwa, Elizeus; Medlicott, Kate; Schindler, Christian; Utzinger, Jürg; Cissé, Guéladio

    2016-03-01

    There are health risks associated with wastewater and fecal sludge management and use, but little is known about the magnitude, particularly in rapidly growing urban settings of low- and middle-income countries. We assessed the point-prevalence and risk factors of intestinal parasite infections in people with different exposures to wastewater and fecal sludge in Kampala, Uganda. A cross-sectional survey was carried out in September and October 2013, enrolling 915 adults from five distinct population groups: workers maintaining wastewater facilities; workers managing fecal sludge; urban farmers; slum dwellers at risk of flooding; and slum dwellers without risk of flooding. Stool samples were subjected to the Kato-Katz method and a formalin-ether concentration technique for the diagnosis of helminth and intestinal protozoa infections. A questionnaire was administered to determine self-reported signs and symptoms, and risk factors for intestinal parasite infections. Univariate and multivariate analyses, adjusted for sex, age, education, socioeconomic status, water, sanitation, and hygiene behaviors, were conducted to estimate the risk of infection with intestinal parasites and self-reported health outcomes, stratified by population group. The highest point-prevalence of intestinal parasite infections was found in urban farmers (75.9%), whereas lowest point-prevalence was found in workers managing fecal sludge (35.8%). Hookworm was the predominant helminth species (27.8%). In urban farmers, the prevalence of Trichuris trichiura, Schistosoma mansoni, Ascaris lumbricoides, and Entamoeba histolytica/E. dispar was 15% and above. For all investigated parasites, we found significantly higher odds of infection among urban farmers compared to the other groups (adjusted odds ratios ranging between 1.6 and 12.9). In general, female participants had significantly lower odds of infection with soil-transmitted helminths and S. mansoni compared to males. Higher educational

  20. Risk of Intestinal Parasitic Infections in People with Different Exposures to Wastewater and Fecal Sludge in Kampala, Uganda: A Cross-Sectional Study

    PubMed Central

    Fuhrimann, Samuel; Winkler, Mirko S.; Kabatereine, Narcis B.; Tukahebwa, Edridah M.; Halage, Abdulla A.; Rutebemberwa, Elizeus; Medlicott, Kate; Schindler, Christian; Utzinger, Jürg; Cissé, Guéladio

    2016-01-01

    Background There are health risks associated with wastewater and fecal sludge management and use, but little is known about the magnitude, particularly in rapidly growing urban settings of low- and middle-income countries. We assessed the point-prevalence and risk factors of intestinal parasite infections in people with different exposures to wastewater and fecal sludge in Kampala, Uganda. Methodology A cross-sectional survey was carried out in September and October 2013, enrolling 915 adults from five distinct population groups: workers maintaining wastewater facilities; workers managing fecal sludge; urban farmers; slum dwellers at risk of flooding; and slum dwellers without risk of flooding. Stool samples were subjected to the Kato-Katz method and a formalin-ether concentration technique for the diagnosis of helminth and intestinal protozoa infections. A questionnaire was administered to determine self-reported signs and symptoms, and risk factors for intestinal parasite infections. Univariate and multivariate analyses, adjusted for sex, age, education, socioeconomic status, water, sanitation, and hygiene behaviors, were conducted to estimate the risk of infection with intestinal parasites and self-reported health outcomes, stratified by population group. Principal Findings The highest point-prevalence of intestinal parasite infections was found in urban farmers (75.9%), whereas lowest point-prevalence was found in workers managing fecal sludge (35.8%). Hookworm was the predominant helminth species (27.8%). In urban farmers, the prevalence of Trichuris trichiura, Schistosoma mansoni, Ascaris lumbricoides, and Entamoeba histolytica/E. dispar was 15% and above. For all investigated parasites, we found significantly higher odds of infection among urban farmers compared to the other groups (adjusted odds ratios ranging between 1.6 and 12.9). In general, female participants had significantly lower odds of infection with soil-transmitted helminths and S. mansoni