Science.gov

Sample records for wastewater sludge treatments

  1. A Technology of Wastewater Sludge Treatment

    NASA Astrophysics Data System (ADS)

    Gizatulin, R. A.; Senkus, V. V.; Valueva, A. V.; Baldanova, A. S.; Borovikov, I. F.

    2016-04-01

    At many communities, industrial and agricultural enterprises, treatment and recycling of wastewater sludge is an urgent task as the sludge is poured and stored in sludge banks for many years and thus worsens the ecology and living conditions of the region. The article suggests a new technology of wastewater sludge treatment using water-soluble binder and heat treatment in microwave ovens.

  2. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  3. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant

    PubMed Central

    2012-01-01

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm). The effects of changes in dissolved oxygen (DO) concentration up to 3 mg/L (run 1) and up to 6 mg/L (run 2) were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1) and 33% (run 2) in worm reactor and 16% (run 1) and 12% (run 2) in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing. PMID:23369451

  4. Sludge reduction by lumbriculus variegatus in Ahvas wastewater treatment plant.

    PubMed

    Basim, Yalda; Farzadkia, Mahdi; Jaafarzadeh, Nematollah; Hendrickx, Tim

    2012-08-02

    Sludge production is an avoidable problem arising from the treatment of wastewater. The sludge remained after municipal wastewater treatment contains considerable amounts of various contaminants and if is not properly handled and disposed, it may produce extensive health hazards. Application of aquatic worm is an approach to decrease the amount of biological waste sludge produced in wastewater treatment plants. In the present research reduction of the amount of waste sludge from Ahvaz wastewater treatment plant was studied with the aquatic worm Lumbriculus variegatus in a reactor concept. The sludge reduction in the reactor with worm was compared to sludge reduction in a blank reactor (without worm). The effects of changes in dissolved oxygen (DO) concentration up to 3 mg/L (run 1) and up to 6 mg/L (run 2) were studied in the worm and blank reactors. No meaningful relationship was found between DO concentration and the rate of total suspended solids reduction. The average sludge reductions were obtained as 32% (run 1) and 33% (run 2) in worm reactor and 16% (run 1) and 12% (run 2) in the blank reactor. These results showed that the worm reactors may reduce the waste sludge between 2 and 2.75 times higher than in the blank conditions. The obtained results showed that the worm reactor has a high potential for use in large-scale sludge processing.

  5. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10(12) copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm.

  6. Method for lime stabilization of wastewater treatment plant sludges

    SciTech Connect

    Wurtz, W.O.

    1981-12-22

    A method for the lime stabilization of wastewater sludge, includes the steps of dewatering sludge so as to produce a sludge cake containing from about 10 to 60% by weight of dry solids and rapidly and intimately mixing and reacting the sludge cake with calcium oxide so as to produce stabilized sludge pellets. An apparatus for performing the process is also provided.

  7. Impact of secondary treatment types and sludge handling processes on estrogen concentration in wastewater sludge.

    PubMed

    Marti, Erica J; Batista, Jacimaria R

    2014-02-01

    Endocrine-disrupting compounds (EDCs), such as estrogen, are known to be present in the aquatic environment at concentrations that negatively affect fish and other wildlife. Wastewater treatment plants (WWTPs) are major contributors of EDCs into the environment. EDCs are released via effluent discharge and land application of biosolids. Estrogen removal in WWTPs has been studied in the aqueous phase; however, few researchers have determined estrogen concentration in sludge. This study focuses on estrogen concentration in wastewater sludge as a result of secondary treatment types and sludge handling processes. Grab samples were collected before and after multiple treatment steps at two WWTPs receiving wastewater from the same city. The samples were centrifuged into aqueous and solid phases and then processed using solid phase extraction. Combined natural estrogens (estrone, estradiol and estriol) were measured using an enzyme-linked immunosorbent assay (ELISA) purchased from a manufacturer. Results confirmed that activated sludge treatments demonstrate greater estrogen removal compared to trickling filters and mass concentration of estrogen was measured for the first time on trickling filter solids. Physical and mechanical sludge treatment processes, such as gravity thickeners and centrifuges, did not significantly affect estrogen removal based on mass balance calculations. Dissolved air flotation thickening demonstrated a slight decrease in estrogen concentration, while anaerobic digestion resulted in increased mass concentration of estrogen on the sludge and a high estrogen concentration in the supernatant. Although there are no state or federally mandated discharge effluent standards or sludge application standards for estrogen, implications from this study are that trickling filters would need to be exchanged for activated sludge treatment or followed by an aeration basin in order to improve estrogen removal. Also, anaerobic digestion may need to be replaced

  8. Toluene in sewage and sludge in wastewater treatment plants.

    PubMed

    Mrowiec, Bozena

    2014-01-01

    Toluene is a compound that often occurs in municipal wastewater ranging from detectable levels up to 237 μg/L. Before the year 2000, the presence of the aromatic hydrocarbons was assigned only to external sources. The Enhanced Biological Nutrients Removal Processes (EBNRP) work according to many different schemes and technologies. For high-efficiency biological denitrification and dephosphatation processes, the presence of volatile fatty acids (VFAs) in sewage is required. VFAs are the main product of organic matter hydrolysis from sewage sludge. However, no attention has been given to other products of the process. It has been found that in parallel to VFA production, toluene formation occurred. The formation of toluene in municipal anaerobic sludge digestion processes was investigated. Experiments were performed on a laboratory scale using sludge from primary and secondary settling tanks of municipal treatment plants. The concentration of toluene in the digested sludge from primary settling tanks was found to be about 42,000 μg/L. The digested sludge supernatant liquor returned to the biological dephosphatation and denitrification processes for sewage enrichment can contain up to 16,500 μg/L of toluene.

  9. Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch

    NASA Astrophysics Data System (ADS)

    Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao

    2016-10-01

    Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.

  10. Energy use and recovery strategies within wastewater treatment and sludge handling at pulp and paper mills.

    PubMed

    Stoica, Alina; Sandberg, Maria; Holby, Ola

    2009-07-01

    This paper presents an inclusive approach with focus on energy use and recovery in wastewater management, including wastewater treatment (WWT) and sludge handling. Process data from three Swedish mills and a mathematical model were used to evaluate seven sludge handling strategies. The results indicate that excess energy use in WWT processes counters the potential energy recovery in the sludge handling systems. Energy use in WWT processes is recommended to aim for sufficient effluent treatment, not for sludge reduction. Increased secondary sludge production is favourable from an energy point of view provided it is used as a substrate for heat, biogas or electricity production.

  11. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  12. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater...

  13. Integrated application of upflow anaerobic sludge blanket reactor for the treatment of wastewaters.

    PubMed

    Latif, Muhammad Asif; Ghufran, Rumana; Wahid, Zularisam Abdul; Ahmad, Anwar

    2011-10-15

    The UASB process among other treatment methods has been recognized as a core method of an advanced technology for environmental protection. This paper highlights the treatment of seven types of wastewaters i.e. palm oil mill effluent (POME), distillery wastewater, slaughterhouse wastewater, piggery wastewater, dairy wastewater, fishery wastewater and municipal wastewater (black and gray) by UASB process. The purpose of this study is to explore the pollution load of these wastewaters and their treatment potential use in upflow anaerobic sludge blanket process. The general characterization of wastewater, treatment in UASB reactor with operational parameters and reactor performance in terms of COD removal and biogas production are thoroughly discussed in the paper. The concrete data illustrates the reactor configuration, thus giving maximum awareness about upflow anaerobic sludge blanket reactor for further research. The future aspects for research needs are also outlined.

  14. Electro-coagulation treatment of oily wastewater with sludge analysis.

    PubMed

    Ibrahim, Dhorgham Skban; Sakthipriya, N; Balasubramanian, N

    2012-01-01

    Experiments were carried out in a batch reactor to treat the oily effluent by electro-coagulation. The influence of operating parameters such as applied current, type of electrode and electrolysis time on electro-coagulation efficiency has been critically examined. The maximum percentage removal of chemical oxygen demand (COD) was 94% under optimum experimental conditions of pH 6.7, current density 6 mA/cm², electrolysis time 40 min, and using mild steel as anode. The remaining sludge in the reactor was analyzed by energy disperse analysis of X-rays (EDAX) and scanning electron microscope (SEM) analysis. The analysis confirms that the oily pollutant was removed by electroflotation and adsorption of the oily particles of precipitate during the electro-coagulation process. Electro-coagulation can be used as an efficient treatment technique for oily wastewater.

  15. Evaluation of thickening and dewatering characteristics of SRC-I wastewater treatment sludges. Final technical report

    SciTech Connect

    Not Available

    1984-05-01

    The SRC-I Demonstration Plant in Newman, Kentucky, will generate several different sludges as a result of providing extensive wastewater treatment. Because construction of this plant has been postponed indefinitely, there has been an opportunity to generate additional data pertinent to waste treatment. Accordingly, this report presents the results of a study on the thickening and dewatering characteristics of several of the wastewater treatment sludges. The study included: evaluation of chemical conditioning agents; aerobic digestion of biological sludges; gravity thickening; and the relative effectiveness of dewatering by centrifuge, vacuum filter, belt filter, and pressure filter. Sludges were tested individually and in combination. The results indicated that the biological sludge could be best dewatered by pressure filtration. The chemical sludges should be combined prior to dewatering, which should be provided by a belt filter. The tar acid sludge will be kept separate, due to its low pH, and ultimate disposal will be by incineration. The tar acid sludge was more concentrated than had been expected. As a result, thickening, rather than centrifuging, is the recommended treatment for this sludge. All sludges were tested for leachate toxicity by the extraction procedure method. The results were negative, indicating the sludges are non-hazardous in heavy metal concentrations, according to RCRA classification. The test results have identified design changes for the proposed wastewater treatment facilities.

  16. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology.

  17. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  18. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater.

    PubMed

    Bal Krishna, K C; Aryal, Ashok; Jansen, Troy

    2016-09-15

    Alum- and iron-based sludge obtained from water treatment plant produced during a unit treatment process (coagulation and flocculation) have been widely tested as a low-cost adsorbent to remove phosphorous (P) from wastewater. However, the effectiveness of iron-based sludge generated from the oxidation of iron which naturally occurs in the ground water has not been investigated. Moreover, influences of dominant metals ions comprised in the treatment plants sludges on P adsorption capacity and rate from wastewater are not yet known. This study, therefore, employed four different groundwater treatment plants sludges iron-based (from the oxidation of iron) and alum-based (from coagulation and flocculation process) to determine their P adsorption capacities and adsorption rates from the synthetic wastewater (SWW) and secondary effluent wastewater (SEWW). Although metals ions concentrations were the highest in the iron-based sludge amongst the sludge used in this study, it appeared to have the lowest P adsorption capacity and adsorption rate. A good correlation between aluminium to iron mass ratio and adsorption capacity for both types of waters were noted. However, a poor relation between aluminium to iron mass ratio and adsorption rates for the SEWW was observed. Further, the tested sludges were found to have a better P removal efficiency and adsorption capacity from the SEWW than from the SWW. Thus, this study demonstrates the ground water treatment plants sludges could be a low cost and effective adsorbent in removing P from wastewater.

  19. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-01-13

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  20. How does the entering of copper nanoparticles into biological wastewater treatment system affect sludge treatment for VFA production.

    PubMed

    Chen, Hong; Chen, Yinguang; Zheng, Xiong; Li, Xiang; Luo, Jingyang

    2014-10-15

    Usually the studies regarding the effect of engineered nanoparticles (NPs), which are released to wastewater treatment plant, on sludge anaerobic treatment in the literature have been conducted by directly adding NPs to sludge treatment system. Actually, NPs must enter into the wastewater treatment facility from influent before sludge being treated. Thus, the documented results can not reflect the real situations. During sludge anaerobic treatment for producing volatile fatty acids (VFA, the preferred carbon source for wastewater biological nutrient removal), it was found in this study that the entering of CuNPs to biological wastewater treatment system had no significant effect on sludge-derived VFA generation, while direct addition of CuNPs to sludge fermentation reactor caused a much lower VFA production, when compared to the control test. Further investigation revealed that the entering of CuNPs into wastewater biological treatment system improved sludge solubilization due to the decline of sludge particle size and the increase of sludge microorganism cells breakage. In addition, there was no obvious influence on hydrolysis, while significant inhibition was observed on acidification, resulting in the final VFA production similar to the control. When CuNPs were directly added to the fermentation system, the solubilization was little influenced, however the hydrolysis and acidification were seriously inhibited, causing the ultimate VFA generation decreased. Therefore, selecting proper method close to the real situation is vital to accurately assess the toxicity of nanoparticles on sludge anaerobic fermentation.

  1. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm(-3) with the average value at 1.17 kWhm(-3). The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs.

  2. Fate of Malathion in an Activated Sludge Municipal Wastewater Treatment System

    DTIC Science & Technology

    2013-03-01

    1. The degradation of malathion by municipal WWTP AS a) The capacity for AS to degrade malathion b) Degradation kinetics of AS with respect to...abiotically. Sorption kinetics and isotherm experiments resulted in negligible malathion sorption to AS minimizing the potential for sludge...FATE OF MALATHION IN AN ACTIVATED SLUDGE MUNICIPAL WASTEWATER TREATMENT SYSTEM THESIS

  3. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    EPA Science Inventory

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  4. Pre-treatment of wastewater sludge--biodegradability and rheology study.

    PubMed

    Verma, M; Brar, Satinder K; Riopel, A R; Tyagi, R D; Surampalli, R Y

    2007-03-01

    This study investigates the changes in biodegradability, rheology and metal concentration of wastewater sludge--non-hydrolyzed (raw), sterilized, and hydrolyzed (thermal alkaline pre-treatment) at total solids concentration from 10-50 g l(-1) to ascertain the bioavailability of nutrients for subsequent fermentation. The dissolved solids concentration increased linearly with total solids. Irrespective of the wastewater sludge (raw or, pre-treated), percentage biodegradability in terms of total solids (26.5-44.5%), total COD (25.8-56.5%) and dissolved solids (41.9-66.9%) was maximum around 20 g l(-1) solids concentration. The pseudoplasticity of sludge decreased (consistency index decreased from 895.1 to 5.2 and flow behaviour index increased from 0.28 to 0.88, for all sludge types) with pre-treatment and increased with total solids concentration. The pre-treated sludge, namely, sterilized and hydrolyzed sludge showed higher microbial growth (1-2 log cycles increase in comparison to raw sludge) suggesting their susceptibility to microbial degradation. The C:N ratio decreased with pre-treatment (raw sludge > sterilized > hydrolyzed) during biodegradation. Although the metal concentration increased in incubated hydrolyzed sludge, the final concentration was within the regulatory norms for agriculture application. Thus, pretreatment of sludge resulted in increase in biodegradability making it an excellent proponent for fermented value-added products.

  5. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  6. Treatment of sewage sludge generated in municipal wastewater treatment plants.

    PubMed

    Tavares, Célia R G; Benatti, Cláudia T; Dias Filho, Benedito P

    2002-01-01

    This study was designed to evaluate the performance of a cylindrical anaerobic digester in treating secondary sewage sludge. A series of three independent batch experiments was performed for a total operation time of 60 d. The system of anaerobic digestion showed stability conditions, with no noticeable scum or foaming problems. The chemical oxygen demand reduction reached 29,21, and 45% in sludge and 95,85, and 82% in supernatant for the three experiments, respectively. Total coliform bacteria levels in the digester ranged from 10(4) to 10(5) in influent sludge and from 10(4) to 10(3) in effluent sludge, with an average reduction of 90%. Fecal coliforms of the order of 10(4) were enumerated in influent sludge and those of the order of 10(0) were enumerated in effluent sludge, with an average reduction of 99.9%. The studied system had satisfactory results, showing that both organic matter and indicator bacteria levels substantially decrease when the sludge is submitted to anaerobic digestion.

  7. [Microbial composition of the activated sludges of the Moscow wastewater treatment plants].

    PubMed

    Kallistova, A Iu; Pimenov, N V; Kozlov, M N; Nikolaev, Iu A; Dorofeev, A G; Aseeva, V G; Grachev, V A; Men'ko, E V; Berestovskaia, Iu Iu; Nozhevnikova, A N; Kevbrina, M V

    2014-01-01

    The contribution of the major technologically important microbial groups (ammonium- and nitrite-oxidizing, phosphate-accumulating, foam-inducing, and anammox bacteria, as well as planctomycetes and methanogenic archaea) was characterized for the aeration tanks of the Moscow wastewater treatment facilities. FISH investigation revealed that aerobic sludges were eubacterial communities; the metabolically active archaea contributed insignificantly. Stage II nitrifying microorganisms and planctomycetes were significant constituents of the bacterial component of activated sludge, with Nitrobacter spp. being the dominant nitrifier. No metabolically active anammox bacteria were revealed in the sludge from aeration tanks. The sludge from the aeration tanks using different wastewater treatment technologies were found to differ in characteristics. Abundance of the nitrifying and phosphate-accumulating bacteria in the sludges generally correlated with microbial activity, in microcosms and with efficiency of nitrogen and phosphorus removal from wastewater. The highest microbial numbers and activity were found in the sludges of the tanks operating according to the technologies developed in the universities of Hanover and Cape Town. The activated sludge from the Novokur yanovo facilities, where abundant growth of filamentous bacteria resulted in foam formation, exhibited the lowest activity The group of foaming bacteria included Gordonia spp. and Acinetobacter spp., utilizing petroleum and motor oils, Sphaerotilus spp. utilizing unsaturated fatty acids, and Candidatus 'Microthrix parvicella'. Thus, the data on abundance and composition of metabolically active microorganisms obtained by FISH may be used for the technological control of wastewater treatment.

  8. Two strategies for phosphorus removal from reject water of municipal wastewater treatment plant using alum sludge.

    PubMed

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2009-01-01

    In view of the well recognized need of reject water treatment in MWWTP (municipal wastewater treatment plant), this paper outlines two strategies for P removal from reject water using alum sludge, which is produced as by-product in drinking water treatment plant when aluminium sulphate is used for flocculating raw waters. One strategy is the use of the alum sludge in liquid form for co-conditioning and dewatering with the anaerobically digested activated sludge in MWWTP. The other strategy involves the use of the dewatered alum sludge cakes in a fixed bed for P immobilization from the reject water that refers to the mixture of the supernatant of the sludge thickening process and the supernatant of the anaerobically digested sludge. Experimental trials have demonstrated that the alum sludge can efficiently reduce P level in reject water. The co-conditioning strategy could reduce P from 597-675 mg P/L to 0.14-3.20 mg P/L in the supernatant of the sewage sludge while the organic polymer dosage for the conditioning of the mixed sludges would also be significantly reduced. The second strategy of reject water filtration with alum sludge bed has shown a good performance of P reduction. The alum sludge has P-adsorption capacity of 31 mg-P/g-sludge, which was tested under filtration velocity of 1.0 m/h. The two strategies highlight the beneficial utilization of alum sludge in wastewater treatment process in MWWTP, thus converting the alum sludge as a useful material, rather than a waste for landfill.

  9. The use of waterworks sludge for the treatment of vegetable oil refinery industry wastewater.

    PubMed

    Basibuyuk, M; Kalat, D G

    2004-03-01

    Water treatment works using coagulation/flocculation in the process stream will generate a waste sludge. This sludge is termed as ferric, alum, or lime sludge based on which coagulant was primarily used. The works in Adana, Turkey uses ferric chloride. The potential for using this sludge for the treatment of vegetable oil refinery industry wastewater by coagulation has been investigated. The sludge acted as a coagulant and excellent oil and grease, COD and TSS removal efficiencies were obtained. The optimum conditions were a pH of 6 and a sludge dose of 1100 mg SS l(-1). The efficiency of sludge was also compared with alum and ferric chloride for the vegetable oil refinery wastewater. At doses of 1300-1900 mg SS l(-1), the sludge was as effective as ferric chloride and alum at removing oil and grease, COD, and TSS. In addition, various combinations of ferric chloride and waterworks sludge were also examined. Under the condition of 12.5 mg l(-1) fresh ferric chloride and 1000 mg SS l(-1) sludge dose, 99% oil and grease 99% TSS and 83% COD removal efficiencies were obtained.

  10. Long term in-line sludge storage in wastewater treatment plants: the potential for phosphorus release.

    PubMed

    Johannessen, Erik; Eikum, Arild Schanke; Krogstad, Tore

    2012-12-01

    Phosphorus removal in on-site wastewater treatment plants is normally obtained by chemical precipitation. Aluminium-based chemicals are the favoured coagulants as they are not affected by redox potential. On-site wastewater treatment package plants do not have separate sludge treatment facilities, and sludge is normally collected on an annual basis. This can potentially increase the risk of phosphorus release into the water phase, subsequently reducing treatment efficiency. This study aimed to detect release of phosphorus as a result of chemical and biological processes. Variables in the study were time, aluminium dosage and pH. Wastewater sludge was monitored for 46 weeks to investigate the different mechanisms of phosphorus release and the longevity of the aluminium treatment involving varying aluminium dosages. Phosphorus compounds were analysed based on a modified Psenner sequential fractionation method. Both pH and aluminium dosage affect the longevity of the phosphorus retention of chemically precipitated wastewater sludge, where sufficient longevity is obtained with pH control and increased aluminium dosages. Chemical dosages similar to what is considered normal levels are sufficient to retain the phosphorus in the sludge for annual sludge collection intervals. Release of soluble phosphorus was attributed to microbial activity and crystallization of Al-hydroxide complexes.

  11. Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides.

    PubMed

    Montiel, M D; Tyagi, R D; Valero, J R

    2001-11-01

    Seven wastewater sludges of different origins and types were used as an alternate culture medium for producing Bacillus thuringiensis variety kurstaki HD-1. The sludge samples were used under three different preparations: without pre-treatment, with acid treatment (hydrolysed sludge) and the supernatant obtained after centrifugation of the hydrolysed sludge. The sludge composition varied widely with origin and the type of sludge. Growth and sporulation were evaluated by the total viable cell count and spore count of the preparations. Growth, sporulation and endotoxin production were affected by the sludge origin. Hydrolysed sludge gave the highest viable cell and spore counts while the liquid phase (supernatant) gave the lowest. Non-hydrolysed primary sludge from Valcartier was unable to sustain bacterial growth because of its low pH. Bioassays were conducted against larvae of spruce budworm to evaluate entomotoxic potential of the preparations obtained. In general, sludge hydrolysis increased the entomotoxicity yields. Similar entomotoxicity was observed in Black Lake secondary sludge (4100 IU/microL) as that obtained in the reference soya medium (3800 IU/microL). The use of the sludge supernatant (liquid phase) was not recommended due to the low entomotoxic potential obtained.

  12. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  13. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  14. Diversity and dynamics of Archaea in an activated sludge wastewater treatment plant

    PubMed Central

    2012-01-01

    Background The activated sludge process is one of the most widely used methods for treatment of wastewater and the microbial community composition in the sludge is important for the process operation. While the bacterial communities have been characterized in various activated sludge systems little is known about archaeal communities in activated sludge. The diversity and dynamics of the Archaea community in a full-scale activated sludge wastewater treatment plant were investigated by fluorescence in situ hybridization, terminal restriction fragment length polymorphism analysis and cloning and sequencing of 16S rRNA genes. Results The Archaea community was dominated by Methanosaeta-like species. During a 15 month period major changes in the community composition were only observed twice despite seasonal variations in environmental and operating conditions. Water temperature appeared to be the process parameter that affected the community composition the most. Several terminal restriction fragments also showed strong correlations with sludge properties and effluent water properties. The Archaea were estimated to make up 1.6% of total cell numbers in the activated sludge and were present both as single cells and colonies of varying sizes. Conclusions The results presented here show that Archaea can constitute a constant and integral part of the activated sludge and that it can therefore be useful to include Archaea in future studies of microbial communities in activated sludge. PMID:22784022

  15. Thermal sludge dryer demonstration: Bird Island Wastewater Treatment Plant, Buffalo, NY. Final report

    SciTech Connect

    1995-01-01

    The Buffalo Sewer Authority (BSA), in cooperation with the New York State Energy Research and Development Authority (Energy Authority), commissioned a demonstration of a full scale indirect disk-type sludge dryer at the Bird Island Wastewater Treatment Plant (BIWWTP). The purpose of the project was to determine the effects of the sludge dryer on the sludge incineration process at the facility. Sludge incineration is traditionally the most expensive, energy-intensive unit process involving solids handling at wastewater treatment plants; costs for incineration at the BIWWTP have averaged $2.4 million per year. In the conventional method of processing solids, a series of volume reduction measures, which usually includes thickening, digestion, and mechanical dewatering, is employed prior to incineration. Usually, a high level of moisture is still present within sewage sludge following mechanical dewatering. The sludge dryer system thermally dewaters wastewater sludge to approximately 26%, (and as high as 38%) dry solids content prior to incineration. The thermal dewatering system at the BIWWTP has demonstrated that it meets its design requirements. It has the potential to provide significant energy and other cost savings by allowing the BSA to change from an operation employing two incinerators to a single incinerator mode. While the long-term reliability of the thermal dewatering system has yet to be established, this project has demonstrated that installation of such a system in an existing treatment plant can provide the owner with significant operating cost savings.

  16. Production of biodegradable plastics from activated sludge generated from a food processing industrial wastewater treatment plant.

    PubMed

    Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T

    2004-12-01

    Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.

  17. Examination of the operator and compensator tank role in urban wastewater treatment using activated sludge method.

    PubMed

    Mokhtari Azar, Akbar; Ghadirpour Jelogir, Ali; Nabi Bidhendi, Gholam Reza; Zaredar, Narges

    2011-04-01

    No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are usable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.

  18. Bioavailable and biodegradable dissolved organic nitrogen in activated sludge and trickling filter wastewater treatment plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was carried out to understand the fate of biodegradable dissolved organic nitrogen (BDON) and bioavailable dissolved organic nitrogen (ABDON) along the treatment trains of a wastewater treatment facility (WWTF) equipped with an activated sludge (AS) system and a WWTF equipped with a two-stag...

  19. A full scale worm reactor for efficient sludge reduction by predation in a wastewater treatment plant.

    PubMed

    Tamis, J; van Schouwenburg, G; Kleerebezem, R; van Loosdrecht, M C M

    2011-11-15

    Sludge predation can be an effective solution to reduce sludge production at a wastewater treatment plant. Oligochaete worms are the natural consumers of biomass in benthic layers in ecosystems. In this study the results of secondary sludge degradation by the aquatic Oligochaete worm Aulophorus furcatus in a 125 m(3) reactor and further sludge conversion in an anaerobic tank are presented. The system was operated over a period of 4 years at WWTP Wolvega, the Netherlands and was fed with secondary sludge from a low loaded activated sludge process. It was possible to maintain a stable and active population of the aquatic worm species A. furcatus during the full period. Under optimal conditions a sludge conversion of 150-200 kg TSS/d or 1.2-1.6 kg TSS/m(3)/d was established in the worm reactor. The worms grew as a biofilm on carrier material in the reactor. The surface specific conversion rate reached 140-180 g TSS/m(2)d and the worm biomass specific conversion rate was 0.5-1 g TSS sludge/g dry weight worms per day. The sludge reduction under optimal conditions in the worm reactor was 30-40%. The degradation by worms was an order of magnitude larger than the endogenous conversion rate of the secondary sludge. Effluent sludge from the worm reactor was stored in an anaerobic tank where methanogenic processes became apparent. It appeared that besides reducing the sludge amount, the worms' activity increased anaerobic digestibility, allowing for future optimisation of the total system by maximising sludge reduction and methane formation. In the whole system it was possible to reduce the amount of sludge by at least 65% on TSS basis. This is a much better total conversion than reported for anaerobic biodegradability of secondary sludge of 20-30% efficiency in terms of TSS reduction.

  20. Ubiquity of activated sludge ferricyanide-mediated BOD methods: a comparison of sludge seeds across wastewater treatment plants.

    PubMed

    Jordan, Mark A; Welsh, David T; Teasdale, Peter R

    2014-07-01

    Many studies have described alternatives to the BOD5 standard method, with substantial decreases in incubation time observed. However, most of these have not maintained the features that make the BOD5 assay so relevant - a high level of substrate bio-oxidation and use of wastewater treatment plant (WWTP) sludge as the biocatalyst. Two recently described ferricyanide-mediated (FM)-BOD assays, one for trade wastes and one for WWTP influents and treated effluents, satisfy these criteria and were investigated further here for their suitability for use with diverse biocatalysts. Both FM-BOD assays responded proportionately to increasing substrate concentration with sludges from 11 different WWTPs and temporally (months to years) using sludges from a single WWTP, confirming the broad applicability of both assays. Sludges from four WWTPs were selected as biocatalysts for each FM-BOD assay to compare FM-BOD equivalent values with BOD5 (three different sludge seeds) measurements for 12 real wastewater samples (six per assay). Strong and significant relationships were established for both FM-BOD assays. This study has demonstrated that sludge sourced from many WWTPs may be used as the biocatalyst in either FM-BOD assay, as it is in the BOD5 assay. The industry potential of these findings is substantial given the widespread use of the BOD5 assay, the dramatically decreased incubation period (3-6h) and the superior analytical range of both assays compared to the standard BOD5 assay.

  1. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants.

  2. Relationship between pollutant content and ecotoxicity of sewage sludges from Spanish wastewater treatment plants.

    PubMed

    Roig, Neus; Sierra, Jordi; Nadal, Martí; Martí, Esther; Navalón-Madrigal, Pedro; Schuhmacher, Marta; Domingo, José L

    2012-05-15

    Chemical and ecotoxicological properties of 28 sewage sludge samples from Spanish wastewater treatment plants were studied in order to assess their suitability for agricultural purposes. Sludge samples were classified into five categories according to specific treatment processes in terms of digestion (aerobic/anaerobic) and drying (mechanical/thermal). Composted samples, as indicative of the most refined process, were also considered. Sludges were subjected to physical-chemical characterization, being the sludge stabilization degree respirometrically assessed. The concentrations of seven metals (Cd, Cr, Cu, Pb, Zn, Ni, Hg) and organic substances (phenolic compounds, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polychlorinated naphthalenes, polybrominated diphenyl ethers, and perfluorinated compounds) were determined. Finally, two ecotoxicological tests were performed: i) Microtox® toxicity test with Vibrio fischeri, and ii) root elongation test with Allium cepa, Lolium perenne and Raphanus sativus seeds. Significant differences were found in the following parameters: dry matter, electrical conductivity, nitrogen, organic matter and its stability, phytotoxicity and ecotoxicity, depending on the sludge treatment. In turn, no significant differences were found between categories in the concentrations of most metals and organic pollutants, with the exception of free phenolic compounds. Furthermore, no correlation between total heavy metal burden and ecotoxicity was observed. However, a good correlation was found between phenolic compounds and most ecotoxicological tests. These results suggest that sludge stability (conditioned by sludge treatment) might have a greater influence on sludge ecotoxicity than the pollutant load. Composting was identified as the treatment resulting in the lowest toxicity.

  3. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    PubMed

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  4. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion.

    PubMed

    Wang, Dongbo; Chen, Yinguang

    2016-10-01

    Nanoparticles (NPs), with at least one dimension less than 100 nm, are substantially employed in consumer and industrial products due to their specific physical and chemical properties. The wide uses of engineered NPs inevitably cause their release into the environment, especially wastewater treatment plants. Therefore, it is essential to systematically assess their potential impact on biological wastewater treatment and subsequent sewage sludge digestion. This review aims to provide such support. First, this paper reviews the recent advances on the analytical developments and nano-bio interface of NPs in wastewater and sewage sludge treatment. The effects of NPs on biological wastewater treatment and sewage sludge digestion and related mechanisms are discussed in detail. Finally, the key questions that need to be answered in the future are pointed out, which include on-line revelation of the changes of NPs in sewage and sludge environments, in situ assessment of the variations of microorganisms involved in these biological systems after they are exposed to NPs. Differentiation of the contribution of individual toxicity mechanisms to these systems, and the identification of under what conditions the nanoparticle-induced toxicity will be increased or decreased are also considered.

  5. Influence of ultrasonication and Fenton oxidation pre-treatment on rheological characteristics of wastewater sludge.

    PubMed

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-01-01

    The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10-40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.

  6. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.

    PubMed

    De Vrieze, Jo; Smet, Davey; Klok, Jacob; Colsen, Joop; Angenent, Largus T; Vlaeminck, Siegfried E

    2016-10-01

    The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants.

  7. Co-conditioning of the anaerobic digested sludge of a municipal wastewater treatment plant with alum sludge: benefit of phosphorus reduction in reject water.

    PubMed

    Yang, Y; Zhao, Y Q; Babatunde, A O; Kearney, P

    2007-12-01

    In this study, alum sludge was introduced to co-conditioning and dewatering with an anaerobic digested sludge from a municipal wastewater treatment plant, to examine the role of the alum sludge in improving the dewaterbility of the mixed sludge and also in immobilizing phosphorus in the reject water. Experiments have demonstrated that the optimal mix ratio for the two sludges is 2:1 (anaerobic digested sludge:alum sludge: volume basis), and this can bring approximately 99% phosphorus reduction in the reject water through the adsorption of phosphorus by alum in the sludge. The phosphorus loading in wastewater treatment plants is itself derived from the recycling of reject water during the wastewater treatment process. Consequently, this co-conditioning and dewatering strategy can achieve a significant reduction in phosphorus loading in wastewater treatment plants. In addition, the use of the alum sludge has been shown to beneficially enhance the dewaterability of the resultant mixed sludge, by decreasing both the specific resistance to filtration and the capillary suction time. This is attributed to the alum sludge acting in charge neutralization and/or as adsorbent for phosphate in the aqueous phase of the sludge. Experiments have also demonstrated that the optimal polymer (Superfloc C2260, Cytec, Botlek, Netherlands) dose for the anaerobic digested sludge was 120 mg/L, while the optimal dose for the mixed sludge (mix ratio 2:1) was 15 mg/L, highlighting a huge savings in polymer addition. Therefore, from the technical perspective, the co-conditioning and dewatering strategy can be viewed as a "win-win" situation. However, for its full-scale application, integrated cost-effective analysis of process capabilities, sludge transport, increased cake disposal, additional administration, polymer saving, and so on, should be factored in.

  8. Options for reducing oil content of sludge from a petroleum wastewater treatment plant.

    PubMed

    Kwon, Tae-Soon; Lee, Jae-Young

    2015-10-01

    Wastewater treatment plants at petroleum refineries often produce substantial quantities of sludge with relatively high concentrations of oil. Disposal of this waste is costly, in part because the high oil content requires use of secure disposal methods akin to handling of hazardous wastes. This article examines the properties of oily sludge and evaluates optional methods for reducing the oil content of this sludge to enable use of lower cost disposal methods. To reduce the oil content or break the structure of oily sludge, preliminary lab-scale experiments involving mechanical treatment, surfactant extraction, and oxidation are conducted. By applying surfactants, approximately 36% to 45% of oils are extracted from oily sludge. Of this, about 33% of oils are rapidly oxidised via radiation by an electron beam within 10 s of exposure. The Fenton reaction is effective for destruction of oily sludge. It is also found that 56% of oils were removed by reacting oily sludge with water containing ozone of 0.5 mg l(-1) over a period of 24 h. Oxidation using ozone thus can also be effectively used as a pretreatment for oily sludge.

  9. An activated sludge model based on activated sludge model number 3 for full-scale wastewater treatment plant simulation.

    PubMed

    Fan, Ji; Lu, Shu-Guang; Qiu, Zhao-fu; Wang, Xiao-Xia; Li, Wen-Zhen

    2009-06-01

    A modified model based on the activated sludge model no. 3 was established to simulate a full-scale municipal wastewater treatment plant in Shanghai, China. The activated sludge model no. 3 was modified to describe the simultaneous storage and growth processes occurring in activated sludge systems under aerobic and anoxic conditions. The mechanism of soluble microbial product formation and degradation by microorganisms was considered in this proposed model. Three months simulation was conducted including soluble chemical oxygen demand, NH4(+)-N, NO(X)(-)-N and T-N parameters, and compared with measured data from the Quyang wastewater treatment plant. Results indicated that the calculated effluent chemical oxygen demand and NH4(+)-N using this proposed model were in good agreement with the measured data. Results also showed that besides inert soluble organic matter contributing to the effluent chemical oxygen demand, soluble microbial products played an important part in the effluent chemical oxygen demand and, therefore, demonstrated that these products composed an important portion of effluent soluble chemical oxygen demand in wastewater treatment plants and should not be neglected.

  10. Study on sludge expansion during treatment of salad oil manufacturing wastewater by yeast.

    PubMed

    Zheng, S; Yang, M; Lv, W; Liu, F

    2001-05-01

    Five yeast strains, namely Rhodotorula rubra, Candida tropicalis, Candida utilis, Candida boidinii, Trichosporon cutaneum, were isolated from soil spots of a salad oil factory, and applied for continuous treatment of salad oil manufacturing wastewater. The oil and COD removal performance of the mixed cultures were comparable to the results other researchers obtained. Sludge expansion, accompanied with sludge morphology change from pseudomycelia to true mycelia, occurred during continuous treatment of wastewater. The true mycelia dominated sludge had a much higher water content and SVI value than that of the yeast pure cultures, although the two kinds of sludge had similar oil removal performance. A mold, Geotrichum candidum, was isolated from the expanded sludge, and was suspected to be a reason for sludge expansion. Addition of 0.3% sodium propionate into batch cultures degraded SVI value from around 100 to 60. In a continuous running, addition of 10 mg l-1 sodium hypochlorite decreased SVI value from over 200 to below 100. The yeast activity, however, was weakened to a large extent at the same time.

  11. Engineering properties of water/wastewater-treatment sludge modified by hydrated lime, fly ash and loess.

    PubMed

    Lim, Sungjin; Jeon, Wangi; Lee, Jaebok; Lee, Kwanho; Kim, Namho

    2002-10-01

    The purpose of this research was to present engineering properties of modified sludge from water/wastewater treatment by modifiers such as hydrated lime, loess, and fly ash. The proper mixing ratio was determined to hold the pH of the modified sludge above 12.0 for 2 h. Laboratory tests carried out in this research included particle analysis, compaction and CBR, SEM and X-ray diffraction, unconfined compression test, permeability test, and TCLP test. The main role of lime was to sterilize microorganisms in the sludge. The unconfined strength of the modified sludge by fly ash and loess satisfied the criteria for construction materials, which was above 100 kPa. The permeability of all the mixtures was around 1.0 x 10(-7) cm/s. Extraction tests for hazardous components in modified sludge revealed below the regulated criteria, especially for cadmium, copper, and lead. The present study suggested that the use of lime, fly ash, and loess be an another alternative to modify or stabilize water/wastewater treatment sludge as construction materials in civil engineering.

  12. IASON - Intelligent Activated Sludge Operated by Nanotechnology - Hydrogel Microcarriers in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Fleit, E.; Melicz, Z.; Sándor, D.; Zrínyi, M.; Filipcsei, G.; László, K.; Dékány, I.; Király, Z.

    Performance of biological wastewater treatment depends to a large extent on mechanical strength, size distribution, permeability and other textural properties of the activated sludge flocs. A novel approach was developed in applying synthetic polymer materials to organize floc architecture instead of spontaneously formed activated sludge floc. Developed microcarrier polymer materials were used in our experiments to mitigate technological goals. Preliminary results suggest that the PVA-PAA (polyvinyl alcohol-polyacrylic acid copolymer) is a feasible choice for skeleton material replacing "traditional" activated sludge floc. Use of PVA-PAA hydrogel material as microreactors and methods for biofilm formation of wastewater bacteria on the carrier material are described. Laboratory scale experimental results with microscopic size bioreactors and their potential application for simultaneous nitrification and denitrification are presented.

  13. Mechanisms involved in Escherichia coli and Serratia marcescens removal during activated sludge wastewater treatment

    PubMed Central

    Orruño, Maite; Garaizabal, Idoia; Bravo, Zaloa; Parada, Claudia; Barcina, Isabel; Arana, Inés

    2014-01-01

    Wastewater treatment reduces environmental contamination by removing gross solids and mitigating the effects of pollution. Treatment also reduces the number of indicator organisms and pathogens. In this work, the fates of two coliform bacteria, Escherichia coli and Serratia marcescens, were analyzed in an activated sludge process to determine the main mechanisms involved in the reduction of pathogenic microorganisms during wastewater treatment. These bacteria, modified to express green fluorescent protein, were inoculated in an activated sludge unit and in batch systems containing wastewater. The results suggested that, among the different biological factors implied in bacterial removal, bacterivorous protozoa play a key role. Moreover, a representative number of bacteria persisted in the system as free-living or embedded cells, but their distribution into liquid or solid fractions varied depending on the bacterium tested, questioning the real value of bacterial indicators for the control of wastewater treatment process. Additionally, viable but nonculturable cells constituted an important part of the bacterial population adhered to solid fractions, what can be derived from the competition relationships with native bacteria, present in high densities in this environment. These facts, taken together, emphasize the need for reliable quantitative and qualitative analysis tools for the evaluation of pathogenic microbial composition in sludge, which could represent an undefined risk to public health and ecosystem functions when considering its recycling. PMID:25044599

  14. Increasing the sludge energy potential of wastewater treatment plants by introducing fine mesh sieves for primary treatment.

    PubMed

    Paulsrud, Bjarne; Rusten, Bjørn; Aas, Bjørn

    2014-01-01

    The objective of this study was to compare some basic characteristics of sludge from fine mesh sieves (sieve sludge) with sludge from primary clarifiers (primary sludge) regarding their energy potential with a focus on anaerobic digestion and/or incineration. Nineteen samples of sludge from fine mesh sieve plants (most of them without fine screens and grit chambers as pre-treatment) and 10 samples of primary sludge were analysed for the content of dry solids (DS), volatile solids (VS), chemical oxygen demand (COD), calorific value and methane potential. The results demonstrated that the sieve sludges have significantly higher VS content and higher methane potential than primary sludges, clearly indicating an increased sludge energy potential if fine mesh sieves are used for primary treatment instead of primary clarifiers at wastewater treatment plants with anaerobic digesters. If the sludges from primary treatment are to be incinerated or used as fuel in cement kilns, there is no significant difference in energy potential (given as calorific values) for the two types of primary treatment.

  15. [Diversity of culturable filamentous bacteria in the activated sludge from A2O wastewater treatment process].

    PubMed

    Gao, Sha; Jin, De-Cai; Zhao, Zhi-Rui; Qi, Rong; Peng, Xia-Wei; Bai, Zhi-Hui

    2013-07-01

    The anoxic-anaerobic-oxic (A2O) process is widely used in wastewater treatment plant, however, sludge bulking and foaming are the most frequent operational problems in this process. Activated sludge bulking is caused by the overgrowth of some types of filamentous bacteria, especially Microthrix parvicella. In the study, 17 strains of filamentous bacteria were isolated from the bulking sludge of A2O process using Gause's medium. The 16S rRNA genes of the 17 isolates were sequenced to analyze their diversity. The results showed all of the 17 isolates were Streptomyces. Further analysis of these strains by the repetitive sequence based on polymerase chain reaction (rep-PCR) technology showed that there was a high diversity in these isolated Streptomyces. The physiological properties of them were different from Microthrix parvicella. The settleability of activated sludge was improved when some of the isolates were inoculated.

  16. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    PubMed

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  17. Use of acid preconditioning for enhanced dewatering of wastewater treatment sludges from the pulp and paper industry.

    PubMed

    Mahmood, Talat; Elliott, Allan

    2007-02-01

    In municipal and industrial practices, wastewater treatment sludges are generally conditioned with organic polymers before dewatering. The dewatering polymers are expensive and contribute significantly to the overall sludge management cost. This paper discusses a preconditioning strategy that holds great promise for enhancing dewatering properties of wastewater treatment sludges, while reducing the cost. In this approach, the waste activated sludge (WAS) is briefly preconditioned with an acid before flocculating with an organic polymer. Experimental results showed that acid preconditioning significantly enhanced dewatering. Separately acidifying WAS and subsequently combining it with primary sludge produced higher presscake solids than acidifying the combined sludge to the same final pH. Acidification exhibited the added benefit of reducing Escherichia coli counts in sludge, thus improving its biological character. This may provide flexibility in choosing a beneficial use application.

  18. Disinfection of sludge using lime stabilisation and pasteurisation in a small wastewater treatment plant.

    PubMed

    Keller, R; Passamani-Franca, R F; Cassini, S T; Gonçalves, F R

    2004-01-01

    Removal efficiency of faecal coliforms and helminth eggs was evaluated in a small wastewater treatment plant (WWTP) serving a population of 1,000. This system was formed by the association in series of a UASB reactor and four submerged aerated biofilters. The density of faecal coliforms and the count of helminth eggs were estimated in the liquid and solid phases of the system. Two different methods of disinfecting sludge were investigated: (a) chemical treatment with lime and (b) a physical treatment by pasteurisation. As expected, the association UASB + BF was very efficient at removal of helminth eggs from the final tertiary effluent, but coliforms were still present at high densities. Lime treatment and pasteurisation of sludge were very effective methods of disinfection and produced a sludge safe for final disposal.

  19. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants.

    PubMed

    Wei, Xinchao; Viadero, Roger C; Bhojappa, Shilpa

    2008-07-01

    Acid mine drainage (AMD) sludge, a waste product from coal mine water treatment, was used in this study as an adsorbent to develop a cost-effective treatment approach to phosphorus removal from municipal secondary effluents. Batch tests were carried out to study the effects of pH, temperature, concentration, and contact time for phosphorus removal from wastewater. Batch tests were followed by continuous flow tests using a continuous stirred tank reactor (CSTR). Adsorption of orthophosphate onto AMD sludge particles followed the Freundlich isotherm model with an adsorption capacity ranging from 9.89 to 31.97 mg/g when the final effluent concentration increased from 0.21 to 13.61 mg P/L. P adsorption was found to be a rather rapid process and neutral or acidic pH enhanced phosphorus removal. Based on a thermodynamic assessment, P adsorption by AMD sludge was found to be endothermic; consequently, an increase in temperature could also favor phosphorus adsorption. Results from batch tests showed that leaching of metals common to AMD sludges was not likely to be a major issue of concern over the typical pH range (6-8) of secondary wastewater effluents. CSTR tests with three types of water (synthetic wastewater, river water, and municipal secondary effluent) illustrated that P adsorption by AMD sludge was relatively independent of the presence of other ionic species. In treating municipal secondary effluent, a phosphorus removal efficiency in excess of 98% was obtained. Results of this study indicated that it was very promising to utilize AMD sludge for phosphorus removal from secondary effluents and may be relevant to future efforts focused on the control of eutrophication in surface waters.

  20. Sludge population optimisation: a new dimension for the control of biological wastewater treatment systems.

    PubMed

    Yuan, Zhiguo; Blackall, Linda L

    2002-01-01

    The activated sludge comprises a complex microbiological community. The structure (what types of microorganisms are present) and function (what can the organisms do and at what rates) of this community are determined by external physico-chemical features and by the influent to the sewage treatment plant. The external features we can manipulate but rarely the influent. Conventional control and operational strategies optimise activated sludge processes more as a chemical system than as a biological one. While optimising the process in a short time period, these strategies may deteriorate the long-term performance of the process due to their potentially adverse impact on the microbial properties. Through briefly reviewing the evidence available in the literature that plant design and operation affect both the structure and function of the microbial community in activated sludge, we propose to add sludge population optimisation as a new dimension to the control of biological wastewater treatment systems. We stress that optimising the microbial community structure and property should be an explicit aim for the design and operation of a treatment plant. The major limitations to sludge population optimisation revolve around inadequate microbiological data, specifically community structure, function and kinetic data. However, molecular microbiological methods that strive to provide that data are being developed rapidly. The combination of these methods with the conventional approaches for kinetic study is briefly discussed. The most pressing research questions pertaining to sludge population optimisation are outlined.

  1. Integration of aerobic granular sludge and mesh filter membrane bioreactor for cost-effective wastewater treatment.

    PubMed

    Li, Wen-Wei; Wang, Yun-Kun; Sheng, Guo-Ping; Gui, Yong-Xin; Yu, Lei; Xie, Tong-Qing; Yu, Han-Qing

    2012-10-01

    Conventional MBR has been mostly based on floc sludge and the use of costly microfiltration membranes. Here, a novel aerobic granule (AG)-mesh filter MBR (MMBR) process was developed for cost-effective wastewater treatment. During 32-day continuous operation, a predominance of granules was maintained in the system, and good filtration performance was achieved at a low trans-membrane pressure (TMP) of below 0.025 m. The granules showed a lower fouling propensity than sludge flocs, attributed to the formation of more porous biocake layer at mesh surface. A low-flux and low-TMP filtration favored a stable system operation. In addition, the reactor had high pollutant removal efficiencies, with a 91.4% chemical oxygen demand removal, 95.7% NH(4)(+) removal, and a low effluent turbidity of 4.1 NTU at the stable stage. This AG-MMBR process offers a promising technology for low-cost and efficient treatment of wastewaters.

  2. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-02

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge.

  3. Concentrations of trace substances in sewage sludge from 28 wastewater treatment works in the UK.

    PubMed

    Jones, Vera; Gardner, Mike; Ellor, Brian

    2014-09-01

    Concentrations of trace substances in sewage sludge have been measured in a survey of 28 wastewater treatment works (WwTWs) in the UK carried out over a period of 12months. Approximately 250 samples were analysed for more than 40 trace contaminants, including trace metals, pharmaceuticals, polycyclic aromatic hydrocarbons (PAHs), 'emerging' and regulated organic pollutants. All substances investigated were found to be present in at least some of the sludges sampled. Concentrations were relatively homogenous across all the WwTWs, irrespective of the treatment process, influent and effluent concentrations, and the location of the sludge sampling point within each works. Analysis of the results against existing regulatory and proposed thresholds suggested that levels are mostly below the limits set in the Sewage Sludge Directive, and proposed new limits for sludge used in agriculture. Predicted soil concentrations after application of sewage sludge to land were below the predicted no effect concentrations (PNEC) for all determinands. Predicted concentrations of pharmaceuticals in soil were also below thresholds deemed to indicate negligible environmental risk.

  4. Bacillus licheniformis proteases as high value added products from fermentation of wastewater sludge: pre-treatment of sludge to increase the performance of the process.

    PubMed

    Drouin, M; Lai, C K; Tyagi, R D; Surampalli, R Y

    2008-01-01

    Wastewater sludge is a complex raw material that can support growth and protease production by Bacillus licheniformis. In this study, sludge was treated by different thermo-alkaline pre-treatment methods and subjected to Bacillus licheniformis fermentation in bench scale fermentors under controlled conditions. Thermo-alkaline treatment was found to be an effective pre-treatment process in order to enhance the proteolytic activity. Among the different pre-treated sludges tested, a mixture of raw and hydrolysed sludge caused an increase of 15% in the protease activity, as compared to the untreated sludge. The benefit of hydrolysis has been attributed to a better oxygen transfer due to decrease in media viscosity and to an increase in nutrient availability. Foam formation was a major concern during fermentation with hydrolysed sludge. The studies showed that addition of a chemical anti-foaming agent (polypropylene glycol) during fermentation to control foam could negatively influence the protease production by increasing the viscosity of sludge.

  5. Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems.

    PubMed

    Wang, Liang; Liu, Jinli; Zhao, Quanyu; Wei, Wei; Sun, Yuhan

    2016-07-01

    Algal-bacterial synergistic cultivation could be an optional wastewater treatment technology in temperate areas. In this study, a locally screened vigorous Chlorella strain was characterized and then it was used in a comparative study of wastewater treatment and nutrient recycle assessment via activated sludge (AS), microalgae and their combination systems. Chlorella sp. cultured with AS in light showed the best performance, in which case the removal efficiencies of COD, NH3-N and TP were 87.3%, 99.2% and 83.9%, respectively, within a short period of 1day. Algal-bacterial combination in light had the best settleability. Chlorella sp. contained biomass, could be processed to feed, fertilizer or fuel due to the improved quality (higher C/H/N) compared with sludge. PCR-DGGE analysis shows that two types of rhizobacteria, namely, Pseudomonas putida and Flavobacterium hauense were enriched in sludge when cultured with algae in light, serving as the basics for artificial consortium construction for improved wastewater treatment.

  6. Metaproteomics Provides Functional Insight into Activated Sludge Wastewater Treatment

    PubMed Central

    Wilmes, Paul; Wexler, Margaret; Bond, Philip L.

    2008-01-01

    Background Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR). Methodology/Principal Findings A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected. Conclusions/Significance Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models. PMID:18392150

  7. Polychlorinated naphthalenes in sewage sludge from wastewater treatment plants in China.

    PubMed

    Zhang, Haiyan; Xiao, Ke; Liu, Jiyan; Wang, Thanh; Liu, Guorui; Wang, Yawei; Jiang, Guibin

    2014-08-15

    Polychlorinated naphthalenes (PCNs) were nominated as persistent organic pollutants candidate in the Stockholm Convention in 2011. In this study, the profiles, concentrations and spatial distributions of PCNs were analyzed in 30 sewage sludge samples from wastewater treatment plants (WWTPs) in China. Concentrations of Σ75PCNs in sludge samples were in the range of 1.05-10.9 ng/g dry weight (dw) with a mean value of 3.98 ng/g dw. The predominant homologues in the sludge were mono- to tetra-CNs, accounting for approximately 85% of total PCNs. The total toxic equivalent quantities (TEQs) of dioxin-like PCN congeners ranged from 0.04 to 2.28 pg/g dw with a mean value of 0.36 pg/g dw, which were lower than the maximum permissible TEQ concentrations in sludge for land application in China. Levels of PCNs and TEQs in sludge were relatively higher in samples from highly industrialized and developed cities in eastern China, implying a possible link between PCN contamination and the local economic development, but more studies are warranted to corroborate this. Industrial sources might be important contributors of PCNs to sewage sludge in China.

  8. Sludge valorization from wastewater treatment plant to its application on the ceramic industry.

    PubMed

    Martínez-García, C; Eliche-Quesada, D; Pérez-Villarejo, L; Iglesias-Godino, F J; Corpas-Iglesias, F A

    2012-03-01

    The main aim of this study is to assess the effect of incorporating waste sludge on the properties and microstructure of clay used for bricks manufacturing. Wastewater treatment plants produce annually a great volume of sludge. Replacing clay in a ceramic body with different proportions of sludge can reduce the cost due to the utilization of waste and, at the same time, it can help to solve an environmental problem. Compositions were prepared with additions of 1%, 2.5%, 5%, 7.5%, 10% and 15% wt% waste sludge in body clay. In order to determine the technological properties, such as bulk density, linear shrinkage, water suction, water absorption and compressive strength, press-moulded bodies were fired at 950 °C for coherently bonding particles in order to enhance the strength and the other engineering properties of the compacted particles. Thermal heating destroys organic remainder and stabilizes inorganic materials and metals by incorporating oxides from the elemental constituent into a ceramic-like material. Results have shown that incorporating up to 5 wt% of sludge is beneficial for clay bricks. By contrast, the incorporation of sludge amounts over 5 wt% causes deterioration on the mechanical properties, therefore producing low-quality bricks.

  9. Treatment of swine wastewater using chemically modified zeolite and bioflocculant from activated sludge.

    PubMed

    Guo, Junyuan; Yang, Chunping; Zeng, Guangming

    2013-09-01

    Sterilization, alkaline-thermal and acid-thermal treatments were applied to activated sludge and the pre-treated sludge was used as raw material for Rhodococcus R3 to produce polymeric substances. After 60 h of fermentation, bioflocculant of 2.7 and 4.2 g L(-1) were produced in sterilized and alkaline-thermal treated sludge as compared to that of 0.9 g L(-1) in acid-thermal treated sludge. Response surface methodology (RSM) was employed to optimize the treatment process of swine wastewater using the composite of bioflocculant and zeolite modified by calcining with MgO. The optimal flocculating conditions were bioflocculant of 24 mg L(-1), modified zeolite of 12 g L(-1), CaCl2 of 16 mg L(-1), pH of 8.3 and contact time of 55 min, and the corresponding removal rates of COD, ammonium and turbidity were 87.9%, 86.9%, and 94.8%. The use of the composite by RSM provides a feasible way to improve the pollutant removal efficiencies and recycle high-level of ammonium from wastewater.

  10. Occurrence of organotins in municipal wastewater and sewage sludge and behavior in a treatment plant

    SciTech Connect

    Fent, K. ); Mueller, M.D. )

    1991-03-01

    THe behavior of selected organotin species in a wastewater treatment plant of Zurich, Switzerland, was studied. In untreated wastewater, monobutyltin (MBT), dibutyltin (DBT), and tributyltin (TBT) were detected in the range of 136-564, 127-1,026, and 64-217 ng/L, respectively, of which 81-92% were associated with suspended solids. During treatment, the fraction of organotins in the particulate phase decreased with decreasing suspended solids concentration. All organotin species monitored were found to be efficiently removed from wastewater, mainly by sedimentation in the primary clarifier. In the secondary effluent, levels of different organotins were in the range of 7-47 ng/L. These compounds were transferred into sewage sludge, indicating that the most important process for the elimination of organotins was adsorption into sludge. Residues of MBT, DBT, and TBT in digested sludges were in the range of 0.10-0.97, 0.41-1.24, and 0.28-1.51 mg/kg (dry weight), respectively.

  11. Multimedia sampling for dioxin at a strip mine reclaimed with sludge from bleached kraft wastewater treatment

    SciTech Connect

    Krouskop, D.J.; Ayers, K.C. ); Proctor, J.L. )

    1991-04-01

    This paper reports that mead conducted a two-year dioxin testing program on strip-mined land being reclaimed with sludge from the wastewater treatment plant of its bleached kraft mill. Many different samples were analyzed for both 2,3,7,8-TCDD (or dioxin) and 2,3,7,8-TCDF (or furan). The study included biodiversity studies to determine the total environmental impact. The results indicate that the sludge is an excellent reclamation material that improves the biodiversity at the site. The tracer dioxin in the sludge does not exhibit any significant migration or bioavailability when used for reclaiming strip mines. These findings differ from assumptions sometimes used in assessing the environmental risks of dioxin.

  12. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.

    PubMed

    Cheng, Kai; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Chen, Qin; Pan, Keliang; Pu, Wenhong; Yang, Jiakuan; Wu, Xu; Yang, Changzhu

    2017-04-01

    Microbial consortiums aggregated on the anode surface of microbial fuel cells (MFCs) are critical factors for electricity generation as well as biodegradation efficiencies of organic compounds. Here in this study, aerobic granular sludge (AGS) was assembled on the surface of the MFC anode to form an AGS-MFC system with superior performance on epoxy reactive diluent (ERD) wastewater treatment. AGS-MFCs successfully shortened the startup time from 13d to 7d compared to the ones inoculated with domestic wastewater. Enhanced toxicity tolerance as well as higher COD removal (77.8% vs. 63.6%) were achieved. The higher ERD wastewater treatment efficiency of AGS-MFC is possibly attributed to the diverse microbial population on MFC biofilm, as well as the synergic degradation of contaminants by both the MFC anode biofilm and AGS granules.

  13. Occurrence, distribution and potential affecting factors of antibiotics in sewage sludge of wastewater treatment plants in China.

    PubMed

    Li, Wenhui; Shi, Yali; Gao, Lihong; Liu, Jiemin; Cai, Yaqi

    2013-02-15

    The occurrence and distribution of eight quinolones, nine sulfonamides, and five macrolides were investigated in sewage sludge from 45 wastewater treatment plants in 23 cities in China. Among all the antibiotics considered, quinolones were the dominant antibiotics detected in all samples [total concentrations up to 8905 μg/kg, dry weight (dw)], followed by macrolides (85.1 μg/kg, dw), and sulfonamides (22.7 μg/kg, dw). High concentrations of quinolones in sewage sludge indicated that antibiotics are widely used and extensive pollutants in China. Significant differences were observed for the total concentrations of antibiotics in sludge samples among the 45 WWTPs. To evaluate the potential factors affecting the antibiotic levels in sewage sludge, wastewater and sludge characteristics, as well as the operational conditions and treatment techniques in WWTPs were investigated. The results indicated that the antibiotic levels in sewage sludge depend to a great extent on wastewater characteristics. Significant correlation between total organic carbon (TOC) and total concentrations of antibiotics was also found in studied WWTPs, indicating that TOC could affect the sludge adsorption capability to the antibiotics to some extent. Moreover, the relation between treatment techniques and the total concentrations of antibiotics in sludge showed that antibiotic levels in sludge increased with longer solid retention time.

  14. Lifecycle analysis of renewable natural gas and hydrocarbon fuels from wastewater treatment plants’ sludge

    SciTech Connect

    Lee, Uisung; Han, Jeongwoo; Urgun Demirtas, Meltem; Wang, Michael; Tao, Ling

    2016-09-01

    Wastewater treatment plants (WWTPs) produce sludge as a byproduct when they treat wastewater. In the United States, over 8 million dry tons of sludge are produced annually just from publicly owned WWTPs. Sludge is commonly treated in anaerobic digesters, which generate biogas; the biogas is then largely flared to reduce emissions of methane, a potent greenhouse gas. Because sludge is quite homogeneous and has a high energy content, it is a good potential feedstock for other conversion processes that make biofuels, bioproducts, and power. For example, biogas from anaerobic digesters can be used to generate renewable natural gas (RNG), which can be further processed to produce compressed natural gas (CNG) and liquefied natural gas (LNG). Sludge can be directly converted into hydrocarbon liquid fuels via thermochemical processes such as hydrothermal liquefaction (HTL). Currently, the environmental impacts of converting sludge into energy are largely unknown, and only a few studies have focused on the environmental impacts of RNG produced from existing anaerobic digesters. As biofuels from sludge generate high interest, however, existing anaerobic digesters could be upgraded to technology with more economic potential and more environmental benefits. The environmental impacts of using a different anaerobic digestion (AD) technology to convert sludge into energy have yet to be analyzed. In addition, no studies are available about the direct conversion of sludge into liquid fuels. In order to estimate the energy consumption and greenhouse gas (GHG) emissions impacts of these alternative pathways (sludge-to-RNG and sludge-to-liquid), this study performed a lifecycle analysis (LCA) using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model. The energy uses and GHG emissions associated with the RNG and hydrocarbon liquid are analyzed relative to the current typical sludge management case, which consists of a single-stage mesophilic

  15. Feasibility studies on the treatment of dairy wastewaters with upflow anaerobic sludge blanket reactors.

    PubMed

    Ramasamy, E V; Gajalakshmi, S; Sanjeevi, R; Jithesh, M N; Abbasi, S A

    2004-06-01

    The feasibility of using upflow anaerobic sludge blanket (UASB) reactors for the treatment of dairy wastewaters was explored. Two types of UASBs were used--one operating on anaerobic sludge granules developed by us from digested cowdung slurry (DCDS) and the other on the granules obtained from the reactors of M/s EID Parry treating sugar industry wastewaters. The reactors were operated at HRT of 3 and 12 h and on COD loading rates ranging from 2.4 kg per m3 of digester volume, per day to 13.5 kg m(-3) d(-1). At the 3 h HRT, the maximum COD reduction in the DCDS-seeded and the industrial sludge-seeded reactors was 95.6% and 96.3%, respectively, better than at 12 h HRT (90% and 92%, respectively). In both the reactors, the maximum, the second best, and the third best COD reduction occurred at the loading rates of 10.8, 8.6 and 7.2 kg m3 d(-1), respectively. At loading rates higher than 10.8 kg, the reactor performance dropped precipitously. Whereas in the first few months the reactors operating on sludge from EID Parry achieved better biodegradation of the waste, compared to the reactors operated on DCDS, the performance of the latter gradually improved and matched with the performance of the former.

  16. Heavy metal extraction from PCB wastewater treatment sludge by sulfuric acid.

    PubMed

    Kuan, Yu-Chung; Lee, I-Hsien; Chern, Jia-Ming

    2010-05-15

    Heavy metals contaminated wastewater sludge is classified as hazardous solid waste and needs to be properly treated to prevent releasing heavy metals to the environment. In this study, the wastewater treatment sludge from a printed circuit board manufacturing plant was treated in a batch reactor by sulfuric acid to remove the contained heavy metals. The effects of sulfuric acid concentration and solid to liquid ratio on the heavy metal removal efficiencies were investigated. The experimental results showed that the total and individual heavy metal removal efficiencies increased with increasing sulfuric acid concentration, but decreased with increasing solid to liquid ratio. A mathematical model was developed to predict the residual sludge weights at varying sulfuric concentrations and solid to liquid ratios. The trivalent heavy metal ions, iron and chromium were more difficult to be removed than the divalent ions, copper, zinc, nickel, and cadmium. For 5 g/L solid to liquid ratio, more than 99.9% of heavy metals can be removed from the sludge by treating with 0.5M sulfuric acid in 2h.

  17. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs.

  18. Enhancement of anaerobic digestion efficiency of wastewater sludge and olive waste: Synergistic effect of co-digestion and ultrasonic/microwave sludge pre-treatment.

    PubMed

    Alagöz, B Aylin; Yenigün, Orhan; Erdinçler, Ayşen

    2015-12-01

    This study investigates the effect of ultrasonic and microwave pre-treatment on biogas production from the anaerobic co-digestion of olive pomace and wastewater sludges. It was found that co-digestion of wastewater sludge with olive pomace yielded around 0.21 L CH4/g VS added, whereas the maximum methane yields from the mono-digestion of olive pomace and un-pretreated wastewater sludges were 0.18 and 0.16L CH4/g VS added. In the same way, compared to mono-digestion of these substrates, co-digestion increased methane production by 17-31%. The microwave and ultrasonic pre-treatments applied to sludge samples prior to co-digestion process led to further increase in the methane production by 52% and 24%, respectively, compared to co-digestion with un-pretreated wastewater sludge. The highest biogas and methane yields were obtained from the co-digestion of 30 min microwave pre-treated wastewater sludges and olive pomace to be 0.46 L/g VS added and 0.32 L CH4/g VS added, respectively.

  19. A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems.

    PubMed

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  20. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    NASA Astrophysics Data System (ADS)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  1. Sludge management modeling to enhance P-recovery as struvite in wastewater treatment plants.

    PubMed

    Martí, N; Barat, R; Seco, A; Pastor, L; Bouzas, A

    2017-03-15

    Interest in phosphorus (P) recovery and reuse has increased in recent years as supplies of P are declining. After use, most of the P remains in wastewater, making Wastewater Treatment Plants (WWTPs) a vital part of P recycling. In this work, a new sludge management operation was studied by modeling in order to recover P in the form of struvite and minimize operating problems due to uncontrolled P precipitation in WWTPs. During the study, intensive analytical campaigns were carried out on the water and sludge lines. The results identified the anaerobic digester as a "hot spot" of uncontrolled P precipitation (9.5 gP/kg sludge) and highlighted possible operating problems due to the accumulation of precipitates. A new sludge line management strategy was simulated therefore using DESASS(©) software, consisting of the elutriation of the mixed sludge in the mixing chamber, to reduce uncontrolled P precipitation and to obtain a P-rich stream (primary thickener supernatant) to be used in a crystallization process. The key operating parameters were found to be: the elutriation flow from the mixing chamber to the primary thickener, the digestion flow and the sludge blanket height of the primary thickener, with optimized values between 70 and 80 m(3)/d, 90-100 m(3)/d and 1.4-1.5 m, respectively. Under these operating conditions, the preliminary results showed that P concentration in the primary thickener overflow significantly increased (from 38 to 100 mg PO4-P/L), which shows that this stream is suitable for use in a subsequent crystallization reactor to recover P in the form of struvite.

  2. Monitoring Precursor 16S rRNAs of Acinetobacter spp. in Activated Sludge Wastewater Treatment Systems

    PubMed Central

    Oerther, Daniel B.; Pernthaler, Jakob; Schramm, Andreas; Amann, Rudolf; Raskin, Lutgarde

    2000-01-01

    Recently, Cangelosi and Brabant used oligonucleotide probes targeting the precursor 16S rRNA of Escherichia coli to demonstrate that the levels of precursor rRNA were more sensitive to changes in growth phase than the levels of total rRNA (G. A. Cangelosi and W. H. Brabant, J. Bacteriol. 179:4457–4463, 1997). In order to measure changes in the levels of precursor rRNA in activated sludge systems, we designed oligonucleotide probes targeting the 3′ region of the precursor 16S rRNA of Acinetobacter spp. We used these probes to monitor changes in the level of precursor 16S rRNA during batch growth of Acinetobacter spp. in Luria-Bertani (LB) medium, filtered wastewater, and in lab- and full-scale wastewater treatment systems. Consistent with the previous reports for E. coli, results obtained with membrane hybridizations and fluorescence in situ hybridizations with Acinetobacter calcoaceticus grown in LB medium showed a more substantial and faster increase in precursor 16S rRNA levels compared to the increase in total 16S rRNA levels during exponential growth. Diluting an overnight culture of A. calcoaceticus grown in LB medium with filtered wastewater resulted in a pattern of precursor 16S rRNA levels that appeared to follow diauxic growth. In addition, fluorescence in situ hybridizations with oligonucleotide probes targeting total 16S rRNA and precursor 16S rRNA showed that individual cells of A. calcoaceticus expressed highly variable levels of precursor 16S rRNA when adapting from LB medium to filtered sewage. Precursor 16S rRNA levels of Acinetobacter spp. transiently increased when activated sludge was mixed with influent wastewater in lab- and full-scale wastewater treatment systems. These results suggest that Acinetobacter spp. experience a change in growth activity within wastewater treatment systems. PMID:10788395

  3. Continuous sulfidogenic wastewater treatment with iron sulfide sludge oxidation and recycle.

    PubMed

    Deng, Dongyang; Lin, Lian-Shin

    2017-05-01

    This study evaluated the technical feasibility of packed-bed sulfidogenic bioreactors dosed with ferrous chloride for continuous wastewater treatment over a 450-day period. In phase I, the bioreactors were operated under different combinations of carbon, iron, and sulfate mass loads without sludge recycling to identify optimal treatment conditions. A COD/sulfate mass ratio of 2 and a Fe/S molar ratio of 1 yielded the best treatment performance with COD oxidation rate of 786 ± 82 mg/(L⋅d), which resulted in 84 ± 9% COD removal, 94 ± 6% sulfate reduction, and good iron retention (99 ± 1%) under favorable pH conditions (6.2-7.0). In phase II, the bioreactors were operated under this chemical load combination over a 62-day period, during which 7 events of sludge collection, oxidation, and recycling were performed. The collected sludge materials contained both inorganic and organic matter with FeS and FeS2 as the main inorganic constituents. In each event, the sludge materials were oxidized in an oxidizing basin before recycling to mix with the wastewater influent. Sludge recycling yielded enhanced COD removal (90 ± 6% vs. 75 ± 7%), and better effluent quality in terms of pH (6.8 ± 0.1 vs. 6.5 ± 0.2), iron (0.7 ± 0.5 vs. 1.9 ± 1.7 mg/L), and sulfide-S (0.3 ± 0.1 vs. 0.4 ± 0.1 mg/L) removal compared to the baseline operation without sludge recycling during phase II. This process exhibited treatment stability with reasonable variations, and fairly consistent sludge content over long periods of operation under a range of COD/sulfate and Fe/S ratios without sludge recycling. The bioreactors were found to absorb recycling-induced changes efficiently without causing elevated suspended solids in the effluents.

  4. Treatment of low strength domestic wastewater by using upflow anaerobic sludge blanket process

    SciTech Connect

    Tang, N.H.; Torres, C.L.; Speece, R.E.

    1996-11-01

    The tropical environment of Puerto Rico offers great potential for using anaerobic treatment in place of conventional, aerobic activated sludge processes in the treatment of its warm, dilute municipal wastewaters. It will minimize the troublesome problem of land disposal of municipal sludges, achieve secondary effluent standards and not be an energy intensive form of treatment. When the infrastructure of sewage treatment needs to be improved, anaerobic sewage treatment may serve as one of the better alternatives. Anaerobic sewage treatment is a totally enclosed process. It has very little environmental impact on the surrounding areas of the treatment site. However, sometimes its effluent may cause serious odor problems. There are many small communities in Puerto Rico where the anaerobic process can be an ideal form of treatment for their sewage. This study is focused on using the upflow anaerobic sludge blanket (UASB) process for treating raw domestic sewage. The objectives of this study were to evaluate the performance and stability of the UASB process for treating raw sewage and to ascertain the effect on efficiency of hydraulic detention time of the UASB reactor. A further key objective was to evaluate the impact on process performance of a packed bed solids removals device following the UASB reactor.

  5. Microbial Community Structure of Activated Sludge in Treatment Plants with Different Wastewater Compositions

    PubMed Central

    Shchegolkova, Nataliya M.; Krasnov, George S.; Belova, Anastasia A.; Dmitriev, Alexey A.; Kharitonov, Sergey L.; Klimina, Kseniya M.; Melnikova, Nataliya V.; Kudryavtseva, Anna V.

    2016-01-01

    Activated sludge (AS) plays a crucial role in the treatment of domestic and industrial wastewater. AS is a biocenosis of microorganisms capable of degrading various pollutants, including organic compounds, toxicants, and xenobiotics. We performed 16S rRNA gene sequencing of AS and incoming sewage in three wastewater treatment plants (WWTPs) responsible for processing sewage with different origins: municipal wastewater, slaughterhouse wastewater, and refinery sewage. In contrast to incoming wastewater, the taxonomic structure of AS biocenosis was found to become stable in time, and each WWTP demonstrated a unique taxonomic pattern. Most pathogenic microorganisms (Streptococcus, Trichococcus, etc.), which are abundantly represented in incoming sewage, were significantly decreased in AS of all WWTPs, except for the slaughterhouse wastewater. Additional load of bioreactors with influent rich in petroleum products and organic matter was associated with the increase of bacteria responsible for AS bulking and foaming. Here, we present a novel approach enabling the prediction of the metabolic potential of bacterial communities based on their taxonomic structures and MetaCyc database data. We developed a software application, XeDetect, to implement this approach. Using XeDetect, we found that the metabolic potential of the three bacterial communities clearly reflected the substrate composition. We revealed that the microorganisms responsible for AS bulking and foaming (most abundant in AS of slaughterhouse wastewater) played a leading role in the degradation of substrates such as fatty acids, amino acids, and other bioorganic compounds. Moreover, we discovered that the chemical, rather than the bacterial composition of the incoming wastewater was the main factor in AS structure formation. XeDetect (freely available: https://sourceforge.net/projects/xedetect) represents a novel powerful tool for the analysis of the metabolic capacity of bacterial communities. The tool will

  6. Microbial Community Structure of Activated Sludge in Treatment Plants with Different Wastewater Compositions.

    PubMed

    Shchegolkova, Nataliya M; Krasnov, George S; Belova, Anastasia A; Dmitriev, Alexey A; Kharitonov, Sergey L; Klimina, Kseniya M; Melnikova, Nataliya V; Kudryavtseva, Anna V

    2016-01-01

    Activated sludge (AS) plays a crucial role in the treatment of domestic and industrial wastewater. AS is a biocenosis of microorganisms capable of degrading various pollutants, including organic compounds, toxicants, and xenobiotics. We performed 16S rRNA gene sequencing of AS and incoming sewage in three wastewater treatment plants (WWTPs) responsible for processing sewage with different origins: municipal wastewater, slaughterhouse wastewater, and refinery sewage. In contrast to incoming wastewater, the taxonomic structure of AS biocenosis was found to become stable in time, and each WWTP demonstrated a unique taxonomic pattern. Most pathogenic microorganisms (Streptococcus, Trichococcus, etc.), which are abundantly represented in incoming sewage, were significantly decreased in AS of all WWTPs, except for the slaughterhouse wastewater. Additional load of bioreactors with influent rich in petroleum products and organic matter was associated with the increase of bacteria responsible for AS bulking and foaming. Here, we present a novel approach enabling the prediction of the metabolic potential of bacterial communities based on their taxonomic structures and MetaCyc database data. We developed a software application, XeDetect, to implement this approach. Using XeDetect, we found that the metabolic potential of the three bacterial communities clearly reflected the substrate composition. We revealed that the microorganisms responsible for AS bulking and foaming (most abundant in AS of slaughterhouse wastewater) played a leading role in the degradation of substrates such as fatty acids, amino acids, and other bioorganic compounds. Moreover, we discovered that the chemical, rather than the bacterial composition of the incoming wastewater was the main factor in AS structure formation. XeDetect (freely available: https://sourceforge.net/projects/xedetect) represents a novel powerful tool for the analysis of the metabolic capacity of bacterial communities. The tool will

  7. Preparation of sludge-based activated carbon and its application in dye wastewater treatment.

    PubMed

    Wang, Xiaoning; Zhu, Nanwen; Yin, Bingkui

    2008-05-01

    A novel activation process was adopted to produce highly porous activated carbon from cyclic activated sludge in secondary precipitator in municipal wastewater treatment plant for dye removal from colored wastewater. The physical properties of activated carbon produced with the activation of 3M KOH solution in the atmosphere of steam were investigated. Adsorption removal of a dye, Acid Brilliant Scarlet GR, from aqueous solution onto the sludge-based activated carbon was studied under varying conditions of adsorption time, initial concentration, carbon dosage and pH. Adsorption equilibrium was obtained in 15 min for the dye initial concentration of 300 mg/L. Initial pH of solution had an insignificant impact on the dye removal. Results indicated that 99.7% coloration and 99.6% total organic carbon (TOC) were removed after 15 min adsorption in the synthetic solution of Acid Brilliant Scarlet GR with initial concentration of 300 mg/L of the dye and 20 g/L activated carbon. The Langmuir and Freundlich equilibrium isotherm models fitted the adsorption data well with R(2)=0.996 and 0.912, respectively. Accordingly, it is concluded that the procedure of developing activated carbon used in this study could be effective and practical for utilizing in dye wastewater treatment.

  8. Partitioning, persistence, and accumulation in digested sludge of the topical antiseptic triclocarban during wastewater treatment.

    PubMed

    Heidler, Jochen; Sapkota, Amir; Halden, Rolf U

    2006-06-01

    The topical antiseptic agent triclocarban (TCC) is a common additive in many antimicrobial household consumables, including soaps and other personal care products. Long-term usage of the mass-produced compound and a lack of understanding of its fate during sewage treatment motivated the present mass balance analysis conducted at a typical U.S. activated sludge wastewater treatment plant featuring a design capacity of 680 million liters per day. Using automated samplers and grab sampling, the mass of TCC contained in influent, effluent, and digested sludge was monitored by isotope dilution liquid chromatography (tandem) mass spectrometry. The average mass of TCC (mean +/- standard deviation) entering and exiting the plant in influent (6.1 +/- 2.0 microg/L) and effluent (0.17 +/- 0.03 microg/ L) was 3737 +/- 694 and 127 +/- 6 g/d, respectively, indicating an aqueous-phase removal efficiency of 97 +/- 1%. Tertiary treatment by chlorination and sand filtration provided no detectable benefit to the overall removal. Due to strong sorption of TCC to wastewater particulate matter (78 +/- 11% sorbed), the majority of the TCC mass was sequestered into sludge in the primary and secondary clarifiers of the plant. Anaerobic digestion for 19 days did not promote TCC transformation, resulting in an accumulation of the antiseptic compound in dewatered, digested municipal sludge to levels of 51 +/- 15 mg/kg dry weight (2815 +/- 917 g/d). In addition to the biocide mass passing through the plant contained in the effluent (3 +/- 1%), 76 +/- 30% of the TCC input entering the plant underwent no net transformation and instead partitioned into and accumulated in municipal sludge. Based on the rate of beneficial reuse of sludge produced by this facility (95%), which exceeds the national average (63%), study results suggest that approximately three-quarters of the mass of TCC disposed of by consumers in the sewershed of the plant ultimately is released into the environment by application

  9. Mass and energy balances of sludge processing in reference and upgraded wastewater treatment plants.

    PubMed

    Mininni, G; Laera, G; Bertanza, G; Canato, M; Sbrilli, A

    2015-05-01

    This paper describes the preliminary assessment of a platform of innovative upgrading solutions aimed at improving sludge management and resource recovery in wastewater treatment plants. The effectiveness of the upgrading solutions and the impacts of their integration in model reference plants have been evaluated by means of mass and energy balances on the whole treatment plant. Attention has been also paid to the fate of nitrogen and phosphorus in sludge processing and to their recycle back to the water line. Most of the upgrading options resulted in reduced production of dewatered sludge, which decreased from 45 to 56 g SS/(PE × day) in reference plants to 14-49 g SS/(PE × day) in the upgraded ones, with reduction up to 79% when wet oxidation was applied to the whole sludge production. The innovative upgrades generally entail an increased demand of electric energy from the grid, but energy recovery from biogas allowed to minimize the net energy consumption below 10 kWh/(PE × year) in the two most efficient solutions. In all other cases the net energy consumption was in the range of -11% and +28% of the reference scenarios.

  10. Integral approaches to wastewater treatment plant upgrading for odor prevention: Activated Sludge and Oxidized Ammonium Recycling.

    PubMed

    Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R

    2015-11-01

    Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities.

  11. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  12. Effect of wastewater treatment processes on the pyrolysis properties of the pyrolysis tars from sewage sludges

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Xie, Li-Ping; Li, Xin-Yu; Dai, Xiao-Hong; Fei, Xue-Ning; Jiang, Yuan-Guang

    2011-06-01

    The pyrolysis properties of five different pyrolysis tars, which the tars from 1# to 5# are obtained by pyrolyzing the sewage sludges of anaerobic digestion and indigestion from the A2/O wastewater treatment process, those from the activated sludge process and the indigested sludge from the continuous SBR process respectively, were studied by thermal gravimetric analysis at a heating rate of 10 °C/min in the nitrogen atmosphere. The results show that the pyrolysis processes of the pyrolysis tars of 1#, 2#, 3# and 5# all can be divided into four stages: the stages of light organic compounds releasing, heavy polar organic compounds decomposition, heavy organic compounds decomposition and the residual organic compounds decomposition. However, the process of 4# pyrolysis tar is only divided into three stages: the stages of light organic compounds releasing, decomposition of heavy polar organic compounds and the residual heavy organic compounds respectively. Both the sludge anaerobic digestion and the "anaerobic" process in wastewater treatment processes make the content of light organic compounds in tars decrease, but make that of heavy organic compounds with complex structure increase. Besides, both make the pyrolysis properties of the tars become worse. The pyrolysis reaction mechanisms of the five pyrolysis tars have been studied with Coats-Redfern equation. It shows that there are the same mechanism functions in the first stage for the five tars and in the second and third stage for the tars of 1#, 2#, 3# and 5#, which is different with the function in the second stage for 4# tar. The five tars are easy to volatile.

  13. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    PubMed

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment.

  14. Anaerobic digestion and gasification coupling for wastewater sludge treatment and recovery.

    PubMed

    Lacroix, Nicolas; Rousse, Daniel R; Hausler, Robert

    2014-07-01

    Sewage sludge management is an energy intensive process. Anaerobic digestion contributes to energy efficiency improvement but is limited by the biological process. A review has been conducted prior to experimentation in order to evaluate the mass and energy balances on anaerobic digestion followed by gasification of digested sludge. The purpose was to improve energy recovery and reuse. Calculations were based on design parameters and tests that are conducted with the anaerobic digester of a local wastewater treatment plant and a small commercial gasification system. Results showed a very significant potential of energy recovery. More than 90% of the energy content from sludge was extracted. Also, approximately the same amount of energy would be transferred in both directions between the digester (biogas) and the gasifier (thermal energy). This extraction resulted in the same use of biogas as the reference scenario but final product was a totally dry biochar, which represented a fraction of the initial mass. Phosphorus was concentrated and significantly preserved. This analysis suggests that anaerobic digestion followed by dehydration, drying and gasification could be a promising and viable option for energy and nutrient recovery from municipal sludge in replacement of conventional paths.

  15. Sludge dewatering and conveying equipment expands wastewater treatment capabilities to solve refinery's oily waste problem

    SciTech Connect

    Klein, C.; Matlock, M.

    1986-09-01

    Twenty-four years ago, the Sun Refining and Marketing Company refinery in Tulsa, OK installed a large water collection basin to capture storm runoff. Since that time, the refinery has increased its daily capacity to 92,000 bbl - including 52,000 bbl of automotive fuels, 8000 bbl of lubricants, 23,000 bbl of heating oils and LPG products, 200 tons of petro-chemicals, and 110 tons of waxes - to become Oklahoma's second largest refinery. The expansion, coupled with gradual filling of the compartmentalized basin with sludges, required remedial action. In May, 1984, the oil laden basins caught fire. The flames, easily seen from downtown Tulsa (just across the river), were visible from a distance of approximately ten miles. At this point, there was an estimated 16 million gallons of oil sludge present in the 18 million gallon capacity basin complex. Composition was about 20% solids, 10% oil, and 70% water. The EPA immediately issued a cleanup order for the basins; Sun management responded quickly. Replacement of the original sludge treatment equipment, which was both old (installed in the mid-1940s) and too small to handle Sun's subsequent expansion, centered around two highly specialized continuous pressure belt filters and a three dimensional, 85' continuous path sludge transport conveyor. Oily waste from the collection basins is filtered and pumped to the new dewatering facility after an auger-equipped barge churns it into material suitable for pumping. The dewatering facility constructed for the cleanup operations will become the refinery's new sludge treatment plant and will replace the present facility that has been operating since 1945, giving the 73 year old refinery one of the most modern wastewater treatment plants of its type in the industry.

  16. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    SciTech Connect

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.; Hallen, Richard T.; Billing, Justin M.; Hart, Todd R.; Fox, Samuel P.; Maupin, Gary D.

    2016-06-08

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and upgrading

  17. Lime and fly ash stabilization of wastewater treatment sludge

    SciTech Connect

    Burns, H.; Gremminger, L.

    1994-01-11

    This invention provides a process meeting the EPA's PFRP standard for WWTS treatment thereby producing a readily usable end-product in either soil-like form or semi-impermeable low load bearing, mass form. The process includes mixing WWTS with lime and fly ash, to cause a temperature increase to above 70 C for at least 30 minutes and to cause the pH to exceed 12 for at least 2 hours. The end-product may be compacted to produce an semi-impermeable, durable mass or the soil-like product may be used as landfill cover material. 3 figs.

  18. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    PubMed

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment.

  19. Phosphorus extraction and sludge dissolution by acid and alkali treatments of polyaluminum chloride (PAC) treated wastewater sludge.

    PubMed

    Ali, Toor Umair; Kim, Dong-Jin

    2016-10-01

    Phosphorus (P) leaching characteristics of polyaluminium chlorides (PAC) treated wastewater sludge was investigated by wet chemicals (acid and alkali). Sludge fractionation showed non-apatite inorganic P was the dominant P (90.9% of TP) while apatite P only accounted for 3.7%. After 2h extraction with 1N NaOH or 2N HCl, 80.5% and 77.9% of total P was leached, while sludge dissolution reached 72.7% and 75.6%, respectively. Kinetic study with HCl and NaOH showed that P release and sludge dissolution follow first order reaction with rate constants of 0.50 and 0.35min(-1) (P release) and 0.47×10(-2) and 0.15×10(-2)min(-1) (sludge dissolution), respectively. Sequential extraction by NaOH/HCl leached 91.7% of the total P. This study will help in understanding the P release behavior of the PAC treated wastewater sludge.

  20. Toxicity of ammonia nitrogen to ciliated protozoa Stentor coeruleus and Coleps hirtus isolated from activated sludge of wastewater treatment plants.

    PubMed

    Klimek, Beata; Fyda, Janusz; Pajdak-Stós, Agnieszka; Kocerba, Wioleta; Fiałkowska, Edyta; Sobczyk, Mateusz

    2012-11-01

    We assessed the toxicity of ammonia ions to Stentor coeruleus and Coleps hirtus (Protozoa) isolated from activated sludge taken from two municipal wastewater treatment plants in southern Poland. Stentor coeruleus is a rarely occurring species in activated sludge, unlike the widespread Coleps hirtus. The mean LC50 values (concentration causing 50 % mortality) calculated for the 24 h tests differed hugely between the tested species: 43.03 mg NH(4+) dm(-3) for Stentor coeruleus and 441.12 mg NH(4+) dm(-3) for Coleps hirtus. The ammonia ion concentration apparently is an important factor in the occurrence of these protozoan species in activated sludge.

  1. Anaerobic Codigestion of Municipal Wastewater Treatment Plant Sludge with Food Waste: A Case Study

    PubMed Central

    Rajendram, William

    2016-01-01

    The aim of this study was to assess the effects of the codigestion of food manufacturing and processing wastes (FW) with sewage sludge (SS), that is, municipal wastewater treatment plant primary sludge and waste activated sludge. Bench scale mesophilic anaerobic reactors were fed intermittently with varying ratio of SS and FW and operated at a hydraulic retention time of 20 days and organic loading of 2.0 kg TS/m3·d. The specific biogas production (SBP) increased by 25% to 50% with the addition of 1%–5% FW to SS which is significantly higher than the SBP from SS of 284 ± 9.7 mLN/g VS added. Although the TS, VS, and tCOD removal slightly increased, the biogas yield and methane content improved significantly and no inhibitory effects were observed as indicated by the stable pH throughout the experiment. Metal screening of the digestate suggested the biosolids meet the guidelines for use as a soil conditioner. Batch biochemical methane potential tests at different ratios of SS : FW were used to determine the optimum ratio using surface model analysis. The results showed that up to 47-48% FW can be codigested with SS. Overall these results confirm that codigestion has great potential in improving the methane yield of SS. PMID:27689091

  2. Characterization of bioflocculants from biologically aerated filter backwashed sludge and its application in dying wastewater treatment.

    PubMed

    Liu, WeiJie; Yuan, HongLi; Yang, JinShui; Li, BaoZhen

    2009-05-01

    In this study, the feasibility of bioflocculant extraction from backwashing sludge to reduce its production costs was investigated. Results showed that ultrasound and base treatment could significantly enhance bioflocculant extraction efficiency, however, flocculating activity was affected. It was observed that bioflocculants extracted from sludge of pH 11.0 had no flocculating activity. In contrast, bioflocculants extracted from sludge of pH 5.0, named as M-1, had good flocculating activity. To further study the flocculating activity of M-1, factors such as bioflocculant dosage, temperature and pH of the reaction solution were tested. The optimal conditions were 6.0mg/l bioflocculant dosage and pH 5.0, at a temperature of 10 degrees C. Under these conditions, the flocculating rate of kaolin clay was 92.67%. The effectiveness of such bioflocculants in the decolorization of synthetically dyed wastewater was then examined. In flocculating methylene blue and fast blue in aqueous solutions, decolorization efficiency levels were 82.9% and 77.8%, respectively.

  3. Occurrence and analysis of parabens in municipal sewage sludge from wastewater treatment plants in Madrid (Spain).

    PubMed

    Albero, Beatriz; Pérez, Rosa Ana; Sánchez-Brunete, Consuelo; Tadeo, José Luis

    2012-11-15

    A rapid method for determination of seven parabens and two chlorinated by-products in sewage sludge was developed based on matrix solid-phase dispersion and gas chromatography-tandem mass spectrometry. The analytical procedure showed good recoveries that ranged from 80 to 125%, with relative standard deviations lower than 12% and low detection limits, ranging from 0.1 to 2.0 ng g(-1) dry weight. The developed method was applied to the analysis of sewage sludge collected during 2010 in 19 wastewater treatment plants (WWTPs) located in various urban, industrial or rural zones in Madrid (Spain). Methylparaben was found in most of the WWTPs sampled (95%) at levels between 5.1 and 26.2 ng g(-1) dry weight and propylparaben was detected in 74% of the WWTPs at levels up to 44.1 ng g(-1) dry weight. In order to study the temporal variation of parabens and two chlorinated parabens during a four-year period, sludge samples were collected from 3 selected WWTPs. The levels of methylparaben encountered were rather constant throughout the sampling period whereas propylparaben levels slightly increased. In one of the WWTPs monitored, isopropylparaben was found at the beginning of the sampling period but its content decreased and was not detected in the 2010 sampling.

  4. [Nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants in Beijing region].

    PubMed

    Bai, Li-Ping; Qi, Hong-Tao; Fu, Ya-Ping; Li, Ping

    2014-12-01

    Changes of nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants (as represented by CSS-A and CSS-B, respectively) in Beijing region were investigated. The results showed that the pH values, nutrient contents, trace elements and heavy metals in CSS-A and CSS-B depended on the sludge resources and particular years. The average of organic matter content in different years (203 338.0 mg x kg(-1)) from CSS-A met both the requirement of sludge quality standard for agricultural use (CJ/T 309-2009) and land improvement (GB/T 24600-2009) in China except the permitted limit of sludge quality standards for garden or park use (GB/T 23486-2009) in China. Moreover, the average of organic matter in different years (298531.5 mg x kg(-1)) from CSS-B and the averages of pH values (7.1 and 7.2, respectively) and NPK concentrations (41 111.7 mg x kg(-1) and 65 901.5 mg x kg(-1), respectively) in different years from CSS-A and CSS-B all met the requirements of sludge quality standards for the above-mentioned disposal types of sewage sludge from municipal wastewater treatment plants. The contents of heavy metals in CSS-A and CSS-B except Hg and Ni were below the permitted limits of the A-class sludge quality standard for agricultural use (CJ/T 309-2009) , being the most stringent standards in China. It was suggested that composted sewage sludge from different municipal wastewater treatment plants in Beijing region use as a fertilizer in agriculture, land improvement, and garden or park, but the top concern about potential environmental pollution of Hg and Ni should be considered.

  5. Cost estimation and economical evaluation of three configurations of activated sludge process for a wastewater treatment plant (WWTP) using simulation

    NASA Astrophysics Data System (ADS)

    Jafarinejad, Shahryar

    2016-07-01

    The activated sludge (AS) process is a type of suspended growth biological wastewater treatment that is used for treating both municipal sewage and a variety of industrial wastewaters. Economical modeling and cost estimation of activated sludge processes are crucial for designing, construction, and forecasting future economical requirements of wastewater treatment plants (WWTPs). In this study, three configurations containing conventional activated sludge (CAS), extended aeration activated sludge (EAAS), and sequencing batch reactor (SBR) processes for a wastewater treatment plant in Tehran city were proposed and the total project construction, operation labor, maintenance, material, chemical, energy and amortization costs of these WWTPs were calculated and compared. Besides, effect of mixed liquor suspended solid (MLSS) amounts on costs of WWTPs was investigated. Results demonstrated that increase of MLSS decreases the total project construction, material and amortization costs of WWTPs containing EAAS and CAS. In addition, increase of this value increases the total operation, maintenance and energy costs, but does not affect chemical cost of WWTPs containing EAAS and CAS.

  6. Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea.

    PubMed

    Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam

    2014-07-01

    Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95-6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8-2.5 and 1.0-3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 μg/capita/day, followed by sucralose (117 μg/capita/day), acesulfame (90 μg/capita/day), and saccharin (66μg/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 μg/capita/day) and analgesics (acetaminophen: 59 μg/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge.

  7. Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

    SciTech Connect

    Hullenbusch, Eric van; Farges, Francois; Lenz, Markus; Lens, Piet; Brown, Gordon E. Jr.

    2007-02-02

    Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinc red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

  8. Selenium Speciation in Biofilms from Granular Sludge Bed Reactors Used for Wastewater Treatment

    SciTech Connect

    van Hullenbusch, Eric; Farges, Francois; Lenz, Markus; Lens, Piet; Brown, Gordon E., Jr.; /Stanford U., Geo. Environ. Sci. /SLAC, SSRL

    2006-12-13

    Se K-edge XAFS spectra were collected for various model compounds of Se as well as for 3 biofilm samples from bioreactors used for Se-contaminated wastewater treatment. In the biofilm samples, Se is dominantly as Se(0) despite Se K-edge XANES spectroscopy cannot easily distinguish between elemental Se and Se(-I)-bearing selenides. EXAFS spectra indicate that Se is located within aperiodic domains, markedly different to these known in monoclinic red selenium. However, Se can well occur within nanodivided domains related to monoclinic red Se, as this form was optically observed at the rim of some sludges. Aqueous selenate is then efficiently bioreduced, under sulfate reducing and methanogenic conditions.

  9. Demonstration of vitrification of surrogate F006 waste-water treatment sludges

    SciTech Connect

    Bennert, D.M.; Overcamp, T.J.; Bickford, D.F.; Jantzen, C.M.; Cicero, C.A.

    1994-12-31

    A demonstration program with the focus on vitrification of surrogate formulations of Savannah River Site M-Area wastewater treatment sludges has been completed. The program utilized commercially available melting equipment, supplied by EnVitCo, Inc., and Stir Melter, Inc., located at the Clemson University Environmental Systems Engineering Laboratories. Over 2000 kg of glass was manufactured in a series of five separate tests with four formulations. Glasses were characterized by Toxicity Characteristic Leaching Procedure (TCLP) and the Product Consistency Test (PCT), with all glasses showing leach characteristics better than Land Disposal Requirements (LDR) for corresponding F006 waste (TCLP) and benchmark environmental assessment glasses (PCT). Offgas sampling by EPA Method 5 was conducted, including chemical analysis of filter residue and impinger solution. Data is presented on glass leaching, offgas sampling, phase separation, and melter performance.

  10. Integrated nanofiltration and upflow anaerobic sludge blanket treatment of textile wastewater for in-plant reuse.

    PubMed

    Gomes, Arlindo Canigo; Gonçalves, Isolina Cabral; de Pinho, Maria Norberta; Porter, John Jefferson

    2007-05-01

    The filtration characteristics of simulated dyeing effluents containing Acid Orange 7, sodium sulfate, and a pH buffer made of acetic acid and sodium acetate is described using a commercially available nanofiltration membrane. The original membrane filtration properties were characterized with deionized water to provide a baseline of membrane performance. At high volumetric concentration of the test solutions, greater than 98% rejection of dye and sodium sulfate were obtained. Rejection of buffering chemicals was approximately 50% in all experiments, giving a permeate water not suitable for reuse in most dyeing operations. The final composite concentrate had a chemical oxygen demand (COD) value > 2000 mg/L. No problems were encountered with anaerobic treatment of the concentrate obtained from the dyeing wastewater. Adjusting the sulfate concentration to give COD-to-sulfate ratios to 2.9, 5.4, and 18.2 in the reactor feed had no significant alterations in the performance of the upflow anaerobic sludge blanket reactor.

  11. Analysis of toxicity of leachates from coal liquefaction wastewater treatment sludge

    SciTech Connect

    Dahlberg, M.D.; Ruppel, T.C.

    1985-03-01

    The disposal requirements for wastewater treatment sludge from coal liquefaction plants will be determined by toxicity tests established by the Environmental Protection Agency (EPA) to enforce the Resource Conservation and Recovery Act (RCRA). Concentrations of eight elements in samples from a noncommercial plant were well below the standards used in the EP (extraction procedure) test of the EPA. Toxicity bioassays with Daphnia magna supported the results of the EP tests. Leachates generated according to the American Society for Testing and Materials extraction procedure (ASTM D-3987) were also tested. Concentrations of RCRA elements were frequently below the minimum detectable concentrations, and no differences in toxicity of the EP and ASTM extracts were evident. 17 references, 3 tables.

  12. Para-chlorophenol containing synthetic wastewater treatment in an activated sludge unit: effects of hydraulic residence time.

    PubMed

    Kargi, Fikret; Konya, Isil

    2007-07-01

    Due to the toxic nature of chlorophenol compounds present in some chemical industry effluents, biological treatment of such wastewaters is usually realized with low treatment efficiencies. Para-chlorophenol (4-chlorophenol, 4-CP) containing synthetic wastewater was treated in an activated sludge unit at different hydraulic residence times (HRT) varying between 5 and 30 h while the feed COD (2500 mg l(-1)), 4-CP (500 mg l(-1)) and sludge age (SRT, 10 days) were constant. Effects of HRT variations on COD, 4-CP, toxicity removals and on settling characteristics of the sludge were investigated. Percent COD removals increased and the effluent COD concentrations decreased when HRT increased from 5 to 15 h and remained almost constant for larger HRT levels. Nearly, 91% COD and 99% 4-CP removals were obtained at HRT levels above 15 h. Because of the highly concentrated microbial population at HRT levels of above 15 h, low effluent (reactor) 4-CP concentrations and almost complete toxicity removals were obtained. High biomass concentrations obtained at HRT levels above 15 h were due to low 4-CP contents in the aeration tank yielding negligible inhibition effects and low maintenance requirements. The sludge volume index (SVI) decreased with increasing HRT up to 15 h due to high biomass concentrations at high HRT levels resulting in well settling sludge with low SVI values. Hydraulic residence times above 15 h resulted in more than 90% COD and complete 4-CP and toxicity removals along with well settling sludge.

  13. Microalgae-activated sludge treatment of molasses wastewater in sequencing batch photo-bioreactor.

    PubMed

    Tsioptsias, Costas; Lionta, Gesthimani; Samaras, Petros

    2016-08-09

    The aim of this work was the examination of the treatment potential of molasses wastewater, by the utilization of activated sludge and microalgae. The systems used included a sequencing batch bioreactor and a similar photo-bioreactor, favoring microalgae growth. The microalgae treatment of molasses wastewater mixture resulted in a considerable reduction in the total nitrogen content. A reduction in the ammonium and nitrate content was observed in the photo-bioreactor, while the effluent's total nitrogen consisted mainly of 50% organic nitrogen. The transformation of the nitrogen forms in the photo-bioreactor was attributed to microalgae activity, resulting in the production of a better quality effluent. Lower COD removal was observed for the photo-bioreactor than the control, which however increased, by the replacement of the anoxic phase by a long aeration period. The mechanism of nitrogen removal included both the denitrification process during the anoxic stage and the microalgae activities, as the replacement of the anoxic stage resulted in low total nitrogen removal capacities. A decrease in the photobioreactor performance was observed after 35 days of operation due to biofilm formation on the light tube surface, while the operation at higher temperature accelerated microalgae growth, resulting thus in the early failure of the photoreactor.

  14. Improvement of activated sludge resistance to shock loading by fungal enzyme addition during textile wastewater treatment.

    PubMed

    Manai, Imène; Miladi, Baligh; El Mselmi, Abdellatif; Hamdi, Moktar; Bouallagui, Hassib

    2017-04-01

    The effects of the additions of the fungal enzymatic extract were investigated in relation to the treatment of real textile wastewater (RTW) by the activated sludge process (ASP). The used enzyme cocktail was produced by a new isolated fungal Chaetomium globosum IMA1. The system that was operated with enzyme addition showed a better chemical oxygen demand (COD) removal efficiency (95%) compared to the control system (75%). In addition, the improvement of color removal (OD620) efficiencies was around 15%, when the newly consortium fungal enzymes was added. As the organic loading rate (OLR) increased from 0.33 g to 0.66 g COD L(-1) d(-1), a decrease in the performance of the two reactors was observed by monitoring the quality of treated effluents. However, the ASP working with enzyme addition showed a strong resistance to shock loadings and restored after few days compared to the control system, which was strongly inhibited. In fact, the enzyme addition improved the sludge volume index (SVI) and the activity of microorganisms. A high activity of laccase (300 U.L(-1)) enzyme was observed throughout the decolorization process in the improved system.

  15. Occurrence, distribution, and potential influencing factors of sewage sludge components derived from nine full-scale wastewater treatment plants of Beijing, China.

    PubMed

    Wang, Xu; Li, Meiyan; Liu, Junxin; Qu, Jiuhui

    2016-07-01

    Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.

  16. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  17. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4;...

  18. Treatment of artificial soybean wastewater anaerobic effluent in a continuous aerobic-anaerobic coupled (CAAC) process with excess sludge reduction.

    PubMed

    Wang, Jun; Li, Xiaoxia; Fu, Weichao; Wu, Shihan; Li, Chun

    2012-12-01

    In this study, treatment of artificial soybean wastewater anaerobic effluent was studied in a continuous aerobic-anaerobic coupled (CAAC) process. The focus was on COD and nitrogen removal as well as excess sludge reduction. During the continuous operation without reflux, the COD removal efficiency was 96.5% at the optimal hydraulic retention time (HRT) 1.3 days. When HRT was shortened to 1.0 day, reflux from anaerobic zone to moving bed biofilm reactor (MBBR) was introduced. The removal efficiencies of COD and TN were 94.4% and 76.0% at the optimal reflux ratio 30%, respectively. The sludge yield coefficient of CAAC was 0.1738, the simultaneous removal of COD and nitrogen with in situ sludge reduction could be achieved in this CAAC process. The sludge reduction mechanism was discussed by soluble components variation along the water flow.

  19. Application of the upflow anaerobic sludge bed (UASB) process for treatment of complex wastewaters at low temperatures

    SciTech Connect

    Koster, I.W.; Lettinga, G.

    1985-10-01

    The feasibility of the upflow anaerobic sludge bed (UASB) process for the treatment of potato starch wastewater at low ambient temperatures was demonstrated by operating two 5.65 l reactors at 14 degrees C and 20 degrees C, respectively. The organic space loading rates achieved in these laboratory-scale reactors were 3 kg COD/cubic m/day at 14 degrees C and 4-5 kg COD/cubic m/day at 20 degrees C. The corresponding sludge loading rates were 0.12 kg COD/kg VSS/day at 14 degrees C and 0.16-0.18 kg COD/kg VSS/day at 20 degrees C. These findings are of considerable practical importance because application of anaerobic treatment at low ambient temperatures will lead to considerable savings in energy needed for operating the process. As compared with various other anaerobic wastewater treatment processes, a granular sludge upflow process represents one of the best options developed so far. Although the overall sludge yield under psychrophilic conditions is slightly higher than under optimal mesophilic conditions, this doesn't seriously hamper the operation of the process. The extra sludge yield, due to accumulation of slowly hydrolyzing substrate ingredients, was 4.75% of the COD input at 14 degrees C and 1.22% of the COD input at 20 degrees C. 26 references.

  20. Treatment of direct blending dye wastewater and recycling of dye sludge.

    PubMed

    Xu, Xin-Hui; Li, Ming-Li; Yuan, Yuan

    2012-03-06

    A new sorbent material, barium sulfate-Direct Blending Yellow D-3RNL hybrid (BSD), was synthesized and characterized by various methods. Both the anionic dyes, Reactive Brilliant Red X-3B and Weak Acid Green GS were hardly adsorbed by the BSD material, while the sorption of Ethyl Violet (EV) and Victoria Blue B were extremely obvious. The sorption of cationic dyes obeyed the Langmuir isotherm model, which depended on the electric charge attraction. The saturation amount of EV adsorbed onto the BSD material approached to 39.36 mg/g. The sorption of EV changed little with pH from 3 to 12 while it increased with increasing levels of electrolyte. A dye wastewater sampled from Jinjiang Chemicals was treated, and the color removal rate was more than the COD removal rate. In addition, the cationic dye-BSD sludge was utilized as a colorant fill-in coating. The light stability and thermal stability of the colorant was measured and exhibited good features. This work provided a simple and eco-friendly method for dye wastewater treatment with recycling of waste.

  1. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  2. Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis.

    PubMed

    Liu, Hongbo; Zhao, Fang; Mao, Boyang; Wen, Xianghua

    2012-06-01

    An innovative adsorption/nitrification/denitrification/sludge-hydrolysis wastewater treatment process (ENRS) characterized by carbon source manipulation with a biological adsorption unit and a sludge hydrolysis unit was developed to enhance nitrogen removal and reduce sludge production for municipal wastewater treatment. The system presented good performance in pollutants removal, yielding the effluent with average COD, NH(4)(+)-N, TN and TP of 48.5, 0.6, 13.2 and 1.0 mg/L, respectively. Sixty percent of the total carbon source in the influent was concentrated and separated by the quick adsorption of activated sludge, providing the possibilities of reusing waste carbon source in the denitrification tank and accumulating nitrobacteria in the nitrification tank. Low temperature of 6-15 °C and high hydraulic loading rate of 3.0-15.0 m(3)/d did not affect NH(4)(+)-N removal performance, yielding the NH(4)(+)-N of lower 1.0 mg/L in the effluent. Furthermore, 50% of the residual sludge in the ENRS system could be transformed into soluble COD (SCOD) by alkaline thermal hydrolysis with temperature of 60 °C and pH of 11, and the hydrolyzed carbon could completely substitute methanol as a good quality carbon to support high efficient denitrification.

  3. GC/MS analysis of triclosan and its degradation by-products in wastewater and sludge samples from different treatments.

    PubMed

    Tohidi, Fatemeh; Cai, Zongwei

    2015-08-01

    A gas chromatography/mass spectrometry (GC/MS)-based method was developed for simultaneous determination of triclosan (TCS) and its degradation products including 2,4-dichlorophenol (2,4-DCP), 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD), and methyl triclosan (MTCS) in wastewater and sludge samples. The method provides satisfactory detection limit, accuracy, precision and recovery especially for samples with complicated matrix such as sewage sludge. Liquid-liquid extraction and accelerated solvent extraction (ASE) methods were applied for the extraction, and column chromatography was employed for the sample cleanup. Analysis was performed by GC/MS in the selected ion monitoring (SIM) mode. The method was successfully applied to wastewater and sludge samples from three different municipal wastewater treatment plants (WWTPs). Satisfactory mean recoveries were obtained as 91(±4)-106(±7)%, 82(±3)-87(±4)%, 86(±6)-87(±8)%, and 88(±4)-105(±3)% in wastewater and 88(±5)-96(±8)%, 84(±2)-87(±3)%, 84(±7)-89(±4)%, and 88(±3)-97(±5)% in sludge samples for TCS, 2,4-DCP, 2,8-DCDD, and MTCS, respectively. TCS degradation products were detected based on the type of the wastewater and sludge treatment. 2,8-DCDD was detected in the plant utilizing UV disinfection at the mean level of 20.3(±4.8) ng/L. 2,4-DCP was identified in chemically enhanced primary treatment (CEPT) applying chlorine disinfection at the mean level of 16.8(±4.5) ng/L). Besides, methyl triclosan (MTCS) was detected in the wastewater collected after biological treatment (10.7 ± 3.3 ng/L) as well as in sludge samples that have undergone aerobic digestion at the mean level of 129.3(±17.2) ng/g dry weight (dw).

  4. Dynamics of the microfauna community in a full-scale municipal wastewater treatment plant experiencing sludge bulking.

    PubMed

    Hu, Bo; Qi, Rong; An, Wei; Xu, Muqi; Zhang, Yu; Bai, Xue; Bao, Haipeng; Wen, Yang; Gu, Jian; Yang, Min

    2013-11-01

    We investigated the dynamics of the microfauna community in activated sludge, with special reference to sludge bulking, in two parallel municipal wastewater treatment systems in Beijing, China over a period of 14 months. Annual cyclic changes in microfauna community structures occurred in both systems. RELATE analysis based on Spearman's Rank correlation indicated that microfauna community structures were highly correlated with the sludge volume index (SVI) (p<0.001), which indicates sludge settleability. Nutrient conditions of raw sewage (p<0.01) and hydraulic retention time (HRT) (p<0.05) were also related to microfauna community structures. Abundances of the species Epistylis plicatilis and Vorticella striata increased significantly with an increase in SVI (p<0.001) and decrease in water temperature (p<0.001), suggesting that sludge bulking may have created favorable conditions for the two species, even under unfavorable temperature conditions. Sludge de-flocculation primarily due to the excessive growth of Microthrix parvicella-like filaments could be an important driving force for the microfauna community changes. The release of flocculated non-filamentous bacteria may represent a suitable food source for these species. The two species may be considered as potential bioindicators for sludge bulking.

  5. Studies on the survival of enterohemorrhagic and environmental Escherichia coli strains in wastewater and in activated sludges from dairy sewage treatment plants.

    PubMed

    Czajkowska, Danuta; Boszczyk-Maleszak, Hanka; Sikorska, I Rena; Sochaj, Agnieszka

    2008-01-01

    Survival of Escherichia coli O157:H7 strain isolated from milk in Poland and an environmental E. coli strain in wastewater from Garwolin and Łowicz dairies and in activated sludges from dairy sewage treatment plants as well as in dairy wastewater with activated sludges was examined. Environmental materials were contaminated with about 10(8) of target bacteria/ml of sample. The experiments were performed under temperature conditions typical of autumn-winter (6 degrees) and spring-summer (24 degrees C) seasons. It was found that the non-pathogenic E. coli strain survived longer in all media than the enterohemorrhagic serotype. E. coli O157:H7 bacteria were not detected (in direct plating method) in activated sludges after 21-28 days; in dairy wastewater as well as in wastewater with activated sludges after 21-25 days. These periods for environmental E. coli strain were 35-42 days (activated sludges), 25-28 days (wastewater with activated sludges). At higher temperature environmental E. coli were not detected in wastewater from Łowicz dairy sewage treatment plant after 25 days, but the bacteria were still present in wastewater from Garwolin dairy sewage tratment plant after 34 days. The obtained results show that the lack of environmental E. coli bacteria (as a indicator bacteria of fecal contamination) in dairy wastewater and in dairy wastewater with activated sludges could indicate the absence of pathogenic E. coli bacteria. Prolonged existence of the enterohemorrhagic serotype in activated sludges shows the need to treat activated sludges prior to the utilization of these materials as fertilizer.

  6. Fate and behaviour of copper and zinc in secondary biological wastewater treatment processes: II. Removal at varying sludge age.

    PubMed

    Santos, A; Barton, P; Cartmell, E; Coulon, F; Crane, R S; Hillis, P; Lester, J N; Stephenson, T; Judd, S J

    2010-06-01

    The mechanisms for the removal of heavy metals during secondary biological treatment of wastewater, with particular emphasis on the activated sludge process, are considered. It is concluded that the predominant mechanism is the entrapment and co-settlement of insoluble metal species in the mixed liquor (biomass). Secondary extracellular polymeric materials, particularly extracellular polysaccharides and other capsule-forming materials, may also play a role. In general, removal of both copper and zinc was superior at the higher sludge ages employed in this study, 4.3 and 8 days, and can in part be attributed to the superior removals of both biochemical oxygen demand and effluent suspended solids achieved at these sludge ages compared with the lowest sludge age studied, 3.6 days. For both copper and zinc there is an increase in soluble metal across the activated sludge process. However, significant removal of both metals occurs as a consequence of the removal of substantial amounts of insoluble metal. The presence of returned sludge liquors, high in settleable solids, to the mixed liquor appears to moderately enhance the percentage removal of copper and zinc. Membranes used in place of secondary sedimentation also enhance removal of both metals by reducing effluent suspended solids. It is concluded that there is potential for maximizing metal removal by optimization of secondary biological treatment in a sustainable manner, without recourse to energy-intensive or chemically-dependent tertiary treatment technologies.

  7. Limitation of sludge biotic index application for control of a wastewater treatment plant working with shock organic and ammonium loadings.

    PubMed

    Drzewicki, Adam; Kulikowska, Dorota

    2011-11-01

    This study aimed to determine the relationship between activated sludge microfauna, the sludge biotic index (SBI) and the effluent quality of a full-scale municipal wastewater treatment plant (WWTP) working with shock organic and ammonium loadings caused by periodic wastewater delivery from septic tanks. Irrespective of high/low effluent quality in terms of COD, BOD5, ammonium and suspended solids, high SBI values (8-10), which correspond to the first quality class of sludge, were observed. High SBI values were connected with abundant taxonomic composition and the domination of crawling ciliates with shelled amoebae and attached ciliates. High SBI values, even at a low effluent quality, limit the usefulness of the index for monitoring the status of an activated sludge system and the effluent quality in municipal WWTP-treated wastewater from septic tanks. It was shown that a more sensitive indicator of effluent quality was a change in the abundance of attached ciliates with a narrow peristome (Vorticella infusionum and Opercularia coarctata), small flagellates and crawling ciliates (Acineria uncinata) feeding on flagellates.

  8. Toxic influence of silver and uranium salts on activated sludge of wastewater treatment plants and synthetic activated sludge associates modeled on its pure cultures.

    PubMed

    Tyupa, Dmitry V; Kalenov, Sergei V; Skladnev, Dmitry A; Khokhlachev, Nikolay S; Baurina, Marina M; Kuznetsov, Alexander Ye

    2015-01-01

    Toxic impact of silver and uranium salts on activated sludge of wastewater treatment facilities has been studied. Some dominating cultures (an active nitrogen fixer Agrobacterium tumifaciens (A.t) and micromyces such as Fusarium nivale, Fusarium oxysporum, and Penicillium glabrum) have been isolated and identified as a result of selection of the activated sludge microorganisms being steadiest under stressful conditions. For these cultures, the lethal doses of silver amounted 1, 600, 50, and 300 µg/l and the lethal doses of uranium were 120, 1,500, 1,000, and 1,000 mg/l, respectively. A.tumifaciens is shown to be more sensitive to heavy metals than micromyces. Synthetic granular activated sludge was formed on the basis of three cultures of the isolated micromyces steadiest against stress. Its granules were much more resistant to silver than the whole native activated sludge was. The concentration of silver causing 50 % inhibition of synthetic granular activated sludge growth reached 160-170 μg/l as far as for the native activated sludge it came only to 100-110 μg/l.

  9. Towards better environmental performance of wastewater sludge treatment using endpoint approach in LCA methodology.

    PubMed

    Alyaseri, Isam; Zhou, Jianpeng

    2017-03-01

    The aim of this study is to use the life cycle assessment method to measure the environmental performance of the sludge incineration process in a wastewater treatment plant and to propose an alternative that can reduce the environmental impact. To show the damages caused by the treatment processes, the study aimed to use an endpoint approach in evaluating impacts on human health, ecosystem quality, and resources due to the processes. A case study was taken at Bissell Point Wastewater Treatment Plant in Saint Louis, Missouri, U.S. The plant-specific data along with literature data from technical publications were used to build an inventory, and then analyzed the environmental burdens from sludge handling unit in the year 2011. The impact assessment method chosen was ReCipe 2008. The existing scenario (dewatering-multiple hearth incineration-ash to landfill) was evaluated and three alternative scenarios (fluid bed incineration and anaerobic digestion with and without land application) with energy recovery from heat or biogas were proposed and analyzed to find the one with the least environmental impact. The existing scenario shows that the most significant impacts are related to depletion in resources and damage to human health. These impacts mainly came from the operation phase (electricity and fuel consumption and emissions related to combustion). Alternatives showed better performance than the existing scenario. Using ReCipe endpoint methodology, and among the three alternatives tested, the anaerobic digestion had the best overall environmental performance. It is recommended to convert to fluid bed incineration if the concerns were more about human health or to anaerobic digestion if the concerns were more about depletion in resources. The endpoint approach may simplify the outcomes of this study as follows: if the plant is converted to fluid bed incineration, it could prevent an average of 43.2 DALYs in human life, save 0.059 species in the area from extinction

  10. Sorption of ionized and neutral emerging trace organic compounds onto activated sludge from different wastewater treatment configurations.

    PubMed

    Hyland, Katherine C; Dickenson, Eric R V; Drewes, Jörg E; Higgins, Christopher P

    2012-04-15

    The objective of this study was to examine sorption of a suite of 19 trace organic contaminants (TOrCs) to activated sludge. Compounds examined in this study included neutral, nonionized TOrCs as well as acidic TOrCs which may carry a negative charge and basic TOrCs which may carry a positive charge at the pH of wastewater. These TOrCs were evaluated to examine how sorptive behavior might differ for TOrCs in different states of charge. Additionally, multiple sludges from geographically and operationally different wastewater treatment plants were studied to elicit how solid-phase characteristics influence TOrC sorption. Characterization of sludge solids from 6 full scale treatment facilities and 3 bench-scale reactors showed no significant difference in fraction organic carbon (f(oc)) and cation exchange capacity (CEC). Sorption experiments demonstrated that sorption of TOrCs also exhibits little variation between these different sludges. Organic carbon normalized partition coefficients (logK(oc)) were determined as a measure of sorption, and were found to correlate well with octanol-water partition coefficients (logK(ow)) for nonionized TOrCs, and logD(ow) for anionic TOrCs where logD(ow) is greater than 2. These data were used to construct a linear free energy relationship (LFER), which was comparable to existing LFERs for sorption onto sludge. No trend in sorption was apparent for the remaining anionic TOrCs or for the cationic TOrCs. These data suggest that predicting sorption to activated sludge based on K(ow) values is a reasonable approach for neutral TOrCs using existing LFERs, but electrostatic (and likely other) interactions may govern the sorptive behavior of the charged organic chemicals to sludge.

  11. Occurrence of PBDEs and other alternative brominated flame retardants in sludge from wastewater treatment plants in Korea.

    PubMed

    Lee, Sunggyu; Song, Geum-Ju; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2014-02-01

    Studies on the occurrence of polybrominated diphenyl ethers (PBDEs) and other alternative brominated flame retardants in the environment are scarce. In this study, PBDEs and non-PBDE brominated flame retardants (NBFRs), including decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), were measured in sludge collected from three types of wastewater treatment plants (WWTPs) in Korea. Total concentrations of PBDEs (∑PBDE) in sludge ranged from 298 to 48,000 (mean: 3240) ng/g dry weight. Among 10 NBFRs analyzed, DBDPE and BTBPE were the only ones detected in sludge samples. Concentrations of DBDPE and BTBPE ranged from sludge were higher than those reported in other countries. The highest concentrations of ∑PBDE and DBDPE were found in sludge samples originated from industrial-WWTPs (I-WWTPs), suggesting that industrial activities are a major source of these contaminants. Non-parametric multidimensional scaling ordination showed that congener profiles of PBDEs in sludge are dependent on the types of WWTPs. Almost all sludge samples contained a low ratio (mean: 0.18) of DBDPE/BDE 209, indicating an on-going contamination by PBDEs in Korea. However, the high ratios (>1) of DBDPE/BDE 209 were found in sludge from I-WWTPs, reflecting a shift in the usage pattern of BFRs by the Korean industry. The nationwide annual emission fluxes of ∑PBDE, DBDPE and BTBPE via WWTPs to the environment were estimated to be 7400, 480, and 3.7 kg/year, respectively. This is the first study on the occurrence of alternative brominated flame retardants in sludge from Korea.

  12. Empirical Model for Predicting Concentrations of Refractory Hydrophobic Organic Compounds in Digested Sludge from Municipal Wastewater Treatment Plants

    PubMed Central

    Deo, Randhir P.; Halden, Rolf U.

    2009-01-01

    An empirical model is presented allowing for the prediction of concentrations of hydrophobic organic compounds (HOCs) prone to accumulate and persist in digested sludge (biosolids) generated during conventional municipal wastewater treatment. The sole input requirements of the model are the concentrations of the individual HOCs entering the wastewater treatment plant in raw sewage, the compound’s respective pH-dependent octanol-water partitioning coefficient (DOW), and an empirically determined fitting parameter (pfit) that reflects persistence of compounds in biosolids after accounting for all potential removal mechanisms during wastewater treatment. The accuracy of the model was successfully confirmed at the 99% confidence level in a paired t test that compared predicted concentrations in biosolids to empirical measurements reported in the literature. After successful validation, the resultant model was applied to predict levels of various HOCs for which occurrence data in biosolids thus far are lacking. PMID:20161626

  13. Vermicomposting of sludge from animal wastewater treatment plant mixed with cow dung or swine manure using Eisenia fetida.

    PubMed

    Xie, Dan; Wu, Weibing; Hao, Xiaoxia; Jiang, Dongmei; Li, Xuewei; Bai, Lin

    2016-04-01

    Vermicomposting of animal wastewater treatment plant sludge (S) mixed with cow dung (CD) or swine manure (SM) employing Eisenia fetida was tested. The numbers, weights, clitellum development, and cocoon production were monitored for 60 days at a detecting interval of 15 days. The results indicated that 100 % of the sludge can be the suitable food for growth and fecundity of E. fetida, while addition of CD or SM in sludge significantly (P < 0.05) increased the worm biomass and reproduction. The sludge amended with 40 % SM can be a great medium for the growth of E. fetida, and the sludge amended with 40 % CD can be a suitable medium for the fecundity of E. fetida. The addition of CD in sludge provided a better environment for the fecundity of earthworm than SM did. Moreover, vermicomposts obtained in the study had lower pH value, lower total organic carbon (TOC), lower NH4 (+)-N, lower C/N ratio, higher total available phosphorous (TAP) contents, optimal stability, and maturity. NH4 (+)-N, pH and TAP of the initial mixtures explained high earthworm growth. The results provided the theory basic both for management of animal wastes and the production of earthworm proteins using E. fetida.

  14. Heavy metal concentration and speciation of seven representative municipal sludges from wastewater treatment plants in Northeast China.

    PubMed

    Tu, Jiangcheng; Zhao, Qingliang; Wei, Liangliang; Yang, Qianqian

    2012-03-01

    The analysis of heavy metals is very important for assessing the feasibility of the agricultural utilization for the municipal sludge. In this paper, a four-step sequential extraction method was applied to extract heavy metals (Cu, Zn, Mn, Cr, and Ni) in municipal sludges from seven individual wastewater treatment plants located in Jilin and Heilongjiang Province, China, for estimating the mobility and bioavailability of the metal ions in the agricultural application. The total concentrations of heavy metals and their chemical fractions after the sequential extraction were determined. Principal component analysis (PCA) was applied to analyze the relations of heavy metals fractions in the municipal sludges. Experimental results indicated that the total concentrations of Cu, Zn, Cr, and Ni in all sludge samples were below the threshold values set out by the Chinese legislation (GB18918-2002). Specially, Zn had a high bioavailability and mobility, Cu and Cr had potential bioavailability, while Mn mainly existed in the residual fraction of municipal sludge. On the other hand, Ni had different mobility in different municipal sludge. PCA results were confirmed by the environmental behavior of heavy metals.

  15. Fate of Zinc Oxide Nanoparticles during Anaerobic Digestion of Wastewater and Post-Treatment Processing of Sewage Sludge

    SciTech Connect

    Lombi, Enzo; Donner, Erica; Tavakkoli, Ehsan; Turney, Terence W.; Naidu, Ravi; Miller, Bradley W.; Scheckel, Kirk G.

    2013-01-14

    The rapid development and commercialization of nanomaterials will inevitably result in the release of nanoparticles (NPs) to the environment. As NPs often exhibit physical and chemical properties significantly different from those of their molecular or macrosize analogs, concern has been growing regarding their fate and toxicity in environmental compartments. The wastewater-sewage sludge pathway has been identified as a key release pathway leading to environmental exposure to NPs. In this study, we investigated the chemical transformation of two ZnO-NPs and one hydrophobic ZnO-NP commercial formulation (used in personal care products), during anaerobic digestion of wastewater. Changes in Zn speciation as a result of postprocessing of the sewage sludge, mimicking composting/stockpiling, were also assessed. The results indicated that 'native' Zn and Zn added either as a soluble salt or as NPs was rapidly converted to sulfides in all treatments. The hydrophobicity of the commercial formulation retarded the conversion of ZnO-NP. However, at the end of the anaerobic digestion process and after postprocessing of the sewage sludge (which caused a significant change in Zn speciation), the speciation of Zn was similar across all treatments. This indicates that, at least for the material tested, the risk assessment of ZnO-NP through this exposure pathway can rely on the significant knowledge already available in regard to other 'conventional' forms of Zn present in sewage sludge.

  16. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation.

    PubMed

    Yoshizawa, Tomoya; Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2014-11-01

    Wastewater can be treated in microbial fuel cells (MFCs) with the aid of microbes that oxidize organic compounds using anodes as electron acceptors. Previous studies have suggested the utility of cassette-electrode (CE) MFCs for wastewater treatment, in which rice paddy-field soil was used as the inoculum. The present study attempted to convert an activated-sludge (AS) reactor to CE-MFC and use aerobic sludge in the tank as the source of microbes. We used laboratory-scale (1 L in capacity) reactors that were initially operated in an AS mode to treat synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and detergents. After the organics removal became stable, the aeration was terminated, and CEs were inserted to initiate an MFC-mode operation. It was demonstrated that the MFC-mode operation treated the wastewater at similar efficiencies to those observed in the AS-mode operation with COD-removal efficiencies of 75-80%, maximum power densities of 150-200 mW m(-2) and Coulombic efficiencies of 20-30%. These values were similar to those of CE-MFC inoculated with the soil. Anode microbial communities were analyzed by pyrotag sequencing of 16S rRNA gene PCR amplicons. Comparative analyses revealed that anode communities enriched from the aerobic sludge were largely different from those from the soil, suggesting that similar reactor performances can be supported by different community structures. The study demonstrates that it is possible to construct wastewater-treatment MFCs by inserting CEs into water-treatment tanks.

  17. Gordonia malaquae sp. nov., isolated from sludge of a wastewater treatment plant.

    PubMed

    Yassin, A F; Shen, Fo-Ting; Hupfer, H; Arun, A B; Lai, Wei-An; Rekha, P D; Young, Chiu Chung

    2007-05-01

    The taxonomic status of a bacterial isolate from the sludge of a wastewater treatment plant was characterized by using a polyphasic taxonomic approach. Chemotaxonomic investigations revealed the presence of cell-wall chemotype IV, short-chain mycolic acids that co-migrated with those extracted from members of the genus Gordonia, fatty acids C(16 : 0) and C(18 : 0) (found by pyrolysis gas chromatography) and a dihydrogenated menaquinone with nine isoprene units [MK-9(H2)] as the predominant menaquinone. The genus assignment was confirmed by 16S rRNA gene sequencing. Comparative analysis of the 16S rRNA gene sequence showed that the novel isolate constitutes a hitherto unknown subline within the genus Gordonia, displaying 95.9 to 97.6 % gene sequence similarity to the recognized species of the genus. The novel isolate was distinguished from the type strains of phylogenetically related species by using a set of phenotypic features. The genotypic and phenotypic data show that the new strain merits classification as a novel species of the genus Gordonia, for which the name Gordonia malaquae sp. nov. is proposed. The type strain is IMMIB WWCC-22(T) (=DSM 45064(T)=CCUG 53555(T)).

  18. Stabilization of heavy metals in wastewater treatment sludge from power plants air heater washing.

    PubMed

    Saeedi, Mohsen; Amini, Hamid Reza

    2009-05-01

    In the present investigation, for the first time in Iran, dewatered sludge waste from the air heater washing wastewater treatment of a thermal power plant was subject to investigation with regard to cement-based stabilization in order to reduce the mobility of heavy metals. Studies of the chemical composition, mineralogy, morphology and leaching characteristics of the untreated and treated waste were conducted. The stabilization was done with two cement-based mix designs with different waste/cement ratios in different samples. In the cement stabilization process the leaching of V, Ni, Zn and Cr could be decreased from 314.1, 209.1, 24.8 and 5.5 mg L(-1), respectively, in the untreated waste to 6.02, 32.11, 3.57 and 3.68 mg L(-1) in a mixture with 20% waste/cement ratio, while during stabilization with cement + sand, the toxicity characteristic leaching procedure (TCLP) leachate contents of the mentioned metals were decreased to 4.24, 16.2, 2.51 and 2.2 mg L(-1) for the same waste/cement ratio. Stabilization with sand/cement seemed to be more efficient in reducing metal leaching from the waste. X-ray diffraction studies showed that portlandite, calcite, lime, larnite and quartz were produced during the stabilization process.

  19. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    ERIC Educational Resources Information Center

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  20. Ion exchange extraction of heavy metals from wastewater sludges.

    PubMed

    Al-Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Heavy metals are common contaminants of some industrial wastewater. They find their way to municipal wastewaters due to industrial discharges into the sewerage system or through household chemicals. The most common heavy metals found in wastewaters are lead, copper, nickel, cadmium, zinc, mercury, arsenic, and chromium. Such metals are toxic and pose serious threats to the environment and public health. In recent years, the ion exchange process has been increasingly used for the removal of heavy metals or the recovery of precious metals. It is a versatile separation process with the potential for broad applications in the water and wastewater treatment field. This article summarizes the results obtained from a laboratory study on the removal of heavy metals from municipal wastewater sludges obtained from Ardhiya plant in Kuwait. Data on heavy metal content of the wastewater and sludge samples collected from the plant are presented. The results obtained from laboratory experiments using a commercially available ion exchange resin to remove heavy metals from sludge were discussed. A technique was developed to solubilize such heavy metals from the sludge for subsequent treatment by the ion exchange process. The results showed high efficiency of extraction, almost 99.9%, of heavy metals in the concentration range bound in wastewater effluents and sludges. Selective removal of heavy metals from a contaminated wastewater/sludge combines the benefits of being economically prudent and providing the possibility of reuse/recycle of the treated wastewater effluents and sludges.

  1. Engineered nanoparticles in wastewater and wastewater sludge - Evidence and impacts

    SciTech Connect

    Brar, Satinder K.; Verma, Mausam; Tyagi, R.D.; Surampalli, R.Y.

    2010-03-15

    Nanotechnology has widespread application in agricultural, environmental and industrial sectors ranging from fabrication of molecular assemblies to microbial array chips. Despite the booming application of nanotechnology, there have been serious implications which are coming into light in the recent years within different environmental compartments, namely air, water and soil and its likely impact on the human health. Health and environmental effects of common metals and materials are well-known, however, when the metals and materials take the form of nanoparticles - consequential hazards based on shape and size are yet to be explored. The nanoparticles released from different nanomaterials used in our household and industrial commodities find their way through waste disposal routes into the wastewater treatment facilities and end up in wastewater sludge. Further escape of these nanoparticles into the effluent will contaminate the aquatic and soil environment. Hence, an understanding of the presence, behavior and impact of these nanoparticles in wastewater and wastewater sludge is necessary and timely. Despite the lack of sufficient literature, the present review attempts to link various compartmentalization aspects of the nanoparticles, their physical properties and toxicity in wastewater and wastewater sludge through simile drawn from other environmental streams.

  2. Levels and distribution patterns of short chain chlorinated paraffins in sewage sludge of wastewater treatment plants in China.

    PubMed

    Zeng, Lixi; Wang, Thanh; Ruan, Ting; Liu, Qian; Wang, Yawei; Jiang, Guibin

    2012-01-01

    Short chain chlorinated paraffins (SCCPs) are listed as persistent organic pollutant candidates in the Stockholm Convention and are receiving more and more attentions worldwide. In general, concentrations of contaminants in sewage sludge can give an important indication on their pollution levels at a local/regional basis. In this study, SCCPs were investigated in sewage sludge samples collected from 52 wastewater treatment plants in China. Concentrations of total SCCPs (ΣSCCPs) in sludge were in the range of 0.80-52.7 μg/g dry weight (dw), with a mean value of 10.7 μg/g dw. Most of SCCPs in the sludge samples showed a similar congener distribution patterns, and C(11) and Cl(7,8) were identified as the dominant carbon and chlorine congener groups. Significant linear relationships were found among different SCCP congener groups (r(2) ≥ 0.9). High concentrations of SCCPs in sewage sludge imply that SCCPs are widely present in China.

  3. Biomethanization of mixtures of fruits and vegetables solid wastes and sludge from a municipal wastewater treatment plant.

    PubMed

    Gomez-Lahoz, C; Fernández-Giménez, B; Garcia-Herruzo, F; Rodriguez-Maroto, J M; Vereda-Alonso, C

    2007-03-01

    The possible management of Fruit and Vegetable Solid Wastes (FVSWs) through their simultaneous digestion with the primary sludge of Municipal Wastewater Treatment plants is investigated. This alternative allows the recovery of energy and a solid product that can be used as an amendment for soils that generated the residue, while is not expensive. Results indicate that the ratio of FVSWs to sludge and the pH control are the main variables determining the methane production and concentration. NaHCO3 was selected to achieve the pH control. The results for a ratio of 50% sludge together with 10 g NaHCO3/kg of residue are among the best obtained, with a methane yield of about 90 L per kg of volatile solids, and a methane concentration of 40% (v/v) of the biogas. A 50% reduction of the total solids; 21% reduction of the volatile solids (in terms of total solids); and a pH value of the sludge, which is 6.9 indicate that the digested sludge can be a good material for soil amendment.

  4. Treatment of saline wastewaters from marine-products processing factories by activated sludge reactor.

    PubMed

    Khannous, L; Souissi, N; Ghorbel, B; Jarboui, R; Kallel, M; Nasri, M; Gharsallah, N

    2003-10-01

    An activated sludge reactor, operated at room temperature (20-30 degrees C) was used to treat saline wastewaters generated by marine-products industries. The system was operated continuously and the influence of the organic loading rates (OLRs), varying from 250 to 1000 mg COD l(-1) day(-1), on chemical oxygen demand (COD) removal was investigated. The system, inoculated with NaCl-acclimated culture, removed up to 98% and 88% of the influent COD concentrations at OLRs of 250 and 1000 mg COD L(-1) day(-1), respectively. Since the organic pollution is essentially composed of proteins, microorganisms, which produced proteolytic enzymes, were isolated from the activated sludge culture. One bacterium with the highest protease activity, identified as Bacillus cereus, was chosen for protease production in fishery wastewaters of different concentrations containing combined heads and viscera powder. Protease synthesis was strongly enhanced when cells were cultivated in two times diluted fishery wastewaters. The enhancement of protease synthesis could have been due to the presence in effluent of organic matters or salts, which stimulated the growth of the strain and protease production.

  5. PAH removal from spiked municipal wastewater sewage sludge using biological, chemical and electrochemical treatments.

    PubMed

    Zheng, Xue-Jing; Blais, Jean-François; Mercier, Guy; Bergeron, Mario; Drogui, Patrick

    2007-06-01

    Polycyclic aromatic hydrocarbons (PAHs) have been widely studied due to their presence in all the environmental media and toxicity to life. These molecules are strongly adsorbed on the particulate matters of soils, sludges or sediments because of their strong hydrophobicity which makes them less bioavailability, thus limiting their bioremediation. Different sludge treatment processes were tested to evaluate their performances for PAH removal from sludge prealably doped with 11 PAHs (5.5mg each PAH kg(-1) of dry matter (DM)): two biological processes (mesophilic aerobic digestion (MAD) and simultaneous sewage sludge digestion and metal leaching (METIX-BS)) were tested to evaluate PAH biodegradation in sewage sludge. In parallel, two chemical processes (quite similar Fenton processes: chemical metal leaching (METIX-AC) and chemical stabilization (STABIOX)) and one electrochemical process (electrochemical stabilization (ELECSTAB)) were tested to measure PAH removal by these oxidative processes. Moreover, PAH solubilisation from sludge by addition of a nonionic surfactant Tween 80 (Tw80) was also tested. The best yields of PAH removal were obtained by MAD and METIX-BS with more than 95% 3-ring PAH removal after a 21-day treatment period. Tw80 addition during MAD treatment increased 4-ring PAHs removal rate. In addition, more than 45% of 3-ring PAHs were removed from sludge by METIX-AC and during ELECSTAB process were quiet good with approximately 62% of 3-ring PAHs removal. However, little weaker removal of 3-ring PAHs (<35%) by STABIOX. None of the tested processes were efficient for the elimination of high molecular weight (> or = 5-ring) PAHs from sludge.

  6. Enhancement of bioseparation and dewaterability of domestic wastewater sludge by fungal treated dewatered sludge.

    PubMed

    Fakhru'l-Razi, Ahmadun; Molla, Abul Hossain

    2007-08-17

    A promising biological, sustainable, non-hazardous, safe and environmental friendly management and disposal technique of domestic wastewater sludge is global expectation. Fungal entrapped biosolids as a result of prior fungal treated raw wastewater sludge was recycled to evaluate its performance as inoculum for bioseparation/bioconversion of supplemented sludge in view of continuous as well as scale up wastewater sludge treatment. Encouraging results were achieved in bioseparation of suspended solids and in dewaterability/filterability of treated domestic wastewater sludge. Fungal entrapped biosolids offered 98% removal of total suspended solids (TSS) in supplemented sludge treatment at 6-day without nutrient (wheat flour, WF) supply. Consequently, 99% removal of turbidity and 87% removal of chemical oxygen demand (COD) were achieved in supernatant of treated sludge. The lowest value (1.75 x 10(12)m/kg) of specific resistance to filtration (SRF) was observed at 6-day after treatment, which was equivalent to the 70% decrease of SRF. The all results except SRF were not influenced further in treatments accompanied with WF supplementation. The present treatments offered significant (Pwastewater sludge compared to the control. Furthermore, the present result is addressing a potential avenue of probable solution for expected management and disposal of domestic wastewater sludge in future.

  7. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    PubMed

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  8. Biological wastewater treatment by a bioreactor with repeated coupling of aerobes and anaerobes aiming at on-site reduction of excess sludge.

    PubMed

    Yu, Anfeng; Feng, Quan; Liu, Zehua; Zhou, Yunan; Xing, Xin-Hui

    2006-01-01

    Activated sludge has been widely used in wastewater treatment throughout the world. However, the biggest disadvantage of this method is the by-production of excess sludge in a large amount, resulting in difficulties in operation and high costs for wastewater treatment. Technological innovations for wastewater treatment capable of reducing excess sludge have thus become research topics of interest in recent years. In our present research, we developed a new biological wastewater treatment process by repeated coupling of aerobes and anaerobes (rCAA) to reduce the excess sludge during the treatment of wastewater. During 460-day continuous running, COD (300-700 mg/L) and TOC (100-350 mg/L) were effectively removed, of which the removal rate was above 80 and 90%, respectively. SS in the effluent was 13 mg/L on average in the rCAA bioreactor without a settling tank. The on-site reduction of the excess sludge in the rCAA might be contributed by several mechanisms. The degradation of the grown aerobes after moving into the anaerobic regions was considered to be one of the most important factors. Besides, the repeatedly coupling of aerobes and anaerobes could also result in a complex microbial community with more metazoans and decoupling of the microbial anabolism and catabolism.

  9. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    PubMed

    Radovanović, Dragana Đ; Kamberović, Željko J; Korać, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.

  10. [Feasibility study on coke wastewater treatment using membrane bioreactor (MBR) system with complete sludge retention].

    PubMed

    Zhao, Wen-Tao; Huang, Xia; Lee, Duu-Jong; He, Miao; Yuan, Yuan

    2009-11-01

    A laboratory-scale submerged anaerobic-anoxic-oxic membrane bioreactor (A1/A2/O-MBR) system was used to treat real coke wastewater and operated continuously for 160 d with complete sludge retention. Pollutants removal performance of the system was investigated through long-term operation. The characteristics of dissolved organic matters (DOMs) in influent and effluent coke wastewater were analyzed using hydrophilic/hydrophobic fractionation, and further discussed based on fluorescence excitation-emission-matrix (EEM). The results showed that A1/A2/O-MBR system could stably remove 88.0% +/- 1.6% of COD, > 99.9% of volatile phenol, 99.4% +/- 0.2% of turbidity, and 98.3% +/- 1.9% of NH4(+) -N, with individual average effluent concentrations of 249 mg/L +/- 44 mg/L, 0.18 mg/L +/- 0.05 mg/L, 1.0 NTU +/- 0.2 NTU and 4.1 mg/L +/- 4.3 mg/L, respectively; moreover, the maximum TN removal rate also reached 74.9%. During the whole operation period, the MLVSS/MLSS appeared to be constant as 90.2% +/- 1.0% and no inorganic matters accumulation occurred. The observed sludge production (MLVSS/COD) decreased with time and stabilized at 0.035 kg/kg. DOMs in coke wastewater were fractionated as hydrophobic acids (HOA), hydrophobic neutrals (HON), hydrophobic bases (HOB) and hydrophilic substances (HIS); HOA was found to be the most abundant constituent in terms of DOC and color intensity both in influent and effluent, which accounted for 70% and 67% of total DOC, and 75% and 76% of total color intensity, respectively. Humic-like substances were suggested to be the major refractory organic and color-causing compounds coke wastewater effluent according to EEM analysis.

  11. Land treatment field studies. Volume 5. Wastewater treatment sludge from batch organic chemical synthesis. Final report Sep 77-Feb 81

    SciTech Connect

    Berkowitz, J.B.; Bysshe, S.E.; Goodwin, B.E.; Harris, J.C.; Land, D.B.

    1983-07-01

    This report presents the results of field measurements and observations of a land treatment operation using a sludge generated from organic chemical manufacture. The sludge is applied to a turf farm which contains acidic soil; the sludge reduces the lime addition requirements for pH adjustment. The sub-soils are porous and the quality of the groundwater located at 20-30' below the ground surface is pristine.

  12. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.

    PubMed

    Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann

    2016-01-01

    A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.

  13. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis, Rev.1

    SciTech Connect

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.; Hallen, Richard T.; Billing, Justin M.; Hart, Todd R.; Fox, Samuel P.; Maupin, Gary D.

    2016-09-01

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received

  14. Optimization of Fenton oxidation pre-treatment for B. thuringiensis - based production of value added products from wastewater sludge.

    PubMed

    Pham, T T H; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-08-01

    Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H(2)O(2)/g SS, 150 [H(2)O(2)](0)/[Fe(2+)](0), 25 g/L TS, at 25 degrees C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 x 10(9)CFU ml(-1) and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 x 10(8)CFU ml(-1) with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.

  15. Nitrogen fixation in the activated sludge treatment of thermomechanical pulping wastewater: effect of dissolved oxygen.

    PubMed

    Slade, A H; Anderson, S M; Evans, B G

    2003-01-01

    N-ViroTech, a novel technology which selects for nitrogen-fixing bacteria as the bacteria primarily responsible for carbon removal, has been developed to treat nutrient limited wastewaters to a high quality without the addition of nitrogen, and only minimal addition of phosphorus. Selection of the operating dissolved oxygen level to maximise nitrogen fixation forms a key component of the technology. Pilot scale activated sludge treatment of a thermomechanical pulping wastewater was carried out in nitrogen-fixing mode over a 15 month period. The effect of dissolved oxygen was studied at three levels: 14% (Phase 1), 5% (Phase 2) and 30% (Phase 3). The plant was operated at an organic loading of 0.7-1.1 kg BOD5/m3/d, a solids retention time of approximately 10 d, a hydraulic retention time of 1.4 d and a F:M ratio of 0.17-0.23 mg BOD5/mg VSS/d. Treatment performance was very stable over the three dissolved oxygen operating levels. The plant achieved 94-96% BOD removal, 82-87% total COD removal, 79-87% soluble COD removal, and >99% total extractives removal. The lowest organic carbon removals were observed during operation at 30% DO but were more likely to be due to phosphorus limitation than operation at high dissolved oxygen, as there was a significant decrease in phosphorus entering the plant during Phase 3. Discharge of dissolved nitrogen, ammonium and oxidised nitrogen were consistently low (1.1-1.6 mg/L DKN, 0.1-0.2 mg/L NH4+-N and 0.0 mg/L oxidised nitrogen). Discharge of dissolved phosphorus was 2.8 mg/L, 0.1 mg/L and 0.6 mg/L DRP in Phases 1, 2 and 3 respectively. It was postulated that a population of polyphosphate accumulating bacteria developed during Phase 1. Operation at low dissolved oxygen during Phase 2 appeared to promote biological phosphorus uptake which may have been affected by raising the dissolved oxygen to 30% in Phase 3. Total nitrogen and phosphorus discharge was dependent on efficient secondary clarification, and improved over the course of

  16. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions.

  17. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge.

    PubMed

    Chen, Wei-Hsiang; Yang, Jun-Hong; Yuan, Chung-Shin; Yang, Ying-Hsien

    2016-10-01

    Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N2O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N2O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m(2)-day). The total emission in the WWTP (including carbon dioxide, methane, and N2O) would decrease by 46 % (from 0.67 to 0.36 kg CO2-equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  18. Treatment of coke-oven wastewater with the powdered activated carbon-contact stabilization activated sludge process. Final report

    SciTech Connect

    Suidan, M.T.; Deady, M.A.; Gee, C.S.

    1983-11-01

    The objective of the study was to determine optimum parameters for the operation of an innovative process train used in the treatment of coke-over wastewater. The treatment process train consisted of a contact-stabilization activated sludge system with powdered activated carbon (PAC) addition, followed by activated sludge nitrification, followed by denitrification in an anoxic filter. The control and operating parameters evaluated during the study were: (a) the average mixed-liquor PAC concentration maintained in the contact-stabilization system, (b) the solids retention time practiced in the contact-stabilization system, and (c) the hydraulic detention time maintained in the contact aeration tank. Three identical treatement process trains were constructed and employed in this study. The coke-oven wastewater used for this investigation was fed to the treatment units at 30% strength. The first part of the study was devoted to determining the interactions between the mixed liquor PAC concentration and the solids retention time in the contact-stabilization tanks. Results showed that optimum overall system performance is attainable when the highest sludge age (30 day) and highest mixed liquor PAC concentration were practiced. During the second phase of the study, all three systems were operated at a 30 day solids retention time while different detention times of 1, 2/3 and 1/3 day were evaluated in the contact tank. PAC addition rates were maintained at the former levels and, consequently, reduced contact times entailed higher mixed liquor carbon concentrations. Once again, the system receiving the highest PAC addition rate of PAC exhibited the best overall performance. This system exhibited no deterioration in process performance as a result of decreased contact detention time. 72 references, 41 figures, 24 tables.

  19. Investigation of nonylphenol and nonylphenol ethoxylates in sewage sludge samples from a metropolitan wastewater treatment plant in Turkey.

    PubMed

    Ömeroğlu, Seçil; Murdoch, Fadime Kara; Sanin, F Dilek

    2015-01-01

    Nonylphenol ethoxylates (NPEOs) have drawn significant attention within the last decade for both scientific and legislative reasons. In Turkey, the Regulation Regarding the Use of Domestic and Urban Sludges on Land states a limit value for the sum of nonylphenol (NP), nonylphenol monoethoxylate (NP1EO) and nonylphenol diethoxylate (NP2EO) as NPE (NPE=NP+NP1EO+NP2EO). Unfortunately a standard method for the determination of these chemicals has not been yet set by the authorities and no data exists about the concentrations of NP and NPEOs in sewage sludge in Turkey. The aim of this study is to propose simple and easily applicable extraction and measurement techniques for 4-n-nonylphenol (4-n-NP), NP, NP1EO and NP2EO in sewage sludge samples and investigate the year round concentrations in a Metropolitan Wastewater Treatment Plant (WWTP) in Turkey. Different extraction techniques and GC/MS methods for sewage sludge were tested. The best extraction method for these compounds was found to be ultrasonication (5 min) using acetone as the solvent with acceptable recovery of analytes suggested by USEPA and other studies. The optimized extraction method showed good repeatability with relative standard deviations (RSDs) less than 6%. The recovery of analytes were within acceptable limits suggested by USEPA and other studies. The limits of detection (LODs) were 6 µg kg(-1) for NP and NP1EO, 12 µg kg(-1) for NP2EO and 0.03 µg kg(-1) for 4-n-NP. The developed method was applied to sewage sludge samples obtained from the Central WWTP in Ankara, Turkey. The sum NPE (NP+NP1EO+NP2EO) was found to be in between 5.5 µg kg(-1) and 19.5 µg kg(-1), values which are in compliance with Turkish and European regulations.

  20. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    PubMed

    Kumar, Vinod; Chopra, A K

    2017-02-22

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD5), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na(+)), potassium (K(+)), calcium (Ca(2+)), magnesium (Mg(2+)), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  1. Heavy metals content of municipal wastewater and sludges in Kuwait.

    PubMed

    Al Enezi, G; Hamoda, M F; Fawzi, N

    2004-01-01

    Municipal wastewater may contain heavy metals, which are hazardous to the environment and humans. With stringent regulations concerning water reuse and sludge utilization in agriculture, there is a great need to determine levels of heavy metals in liquid wastes, sludges and agricultural crops. The state of Kuwait has programs to utilize waste sludge produced at wastewater treatment plants as soil conditioner and fertilizer for greenery and agricultural development projects and to reuse treated wastewater effluents in irrigation. The common metals found in Kuwait's raw wastewater and sludge are Cd, Cr, Cu, Hg, Ni, Pb, and Zn. The effects of accumulation of heavy metals in soil are long lasting and even permanent. In this study, the variations in the concentration levels of heavy metals were measured in wastewater and sludge produced at Ardiya municipal wastewater treatment plant in Kuwait. A relationship was observed between the concentrations of heavy metals in treated wastewater and sludge used for agriculture and the level of accumulated heavy metals found in residual tissues of some crops.

  2. Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area.

    PubMed

    Yan, Qing; Gao, Xu; Chen, You-Peng; Peng, Xu-Ya; Zhang, Yi-Xin; Gan, Xiu-Mei; Zi, Cheng-Fang; Guo, Jin-Song

    2014-02-01

    The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from "negative removal" to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological

  3. Occurrence and distribution of organophosphate flame retardants/plasticizers in wastewater treatment plant sludges from the Pearl River Delta, China.

    PubMed

    Zeng, Xiangying; He, Lixiong; Cao, Shuxia; Ma, Shengtao; Yu, Zhiqiang; Gui, Hongyan; Sheng, Guoying; Fu, Jiamo

    2014-08-01

    Organophosphate esters (OPs) are widely used as flame retardants or plasticizers and are ubiquitously distributed in the environment. In the present study, the occurrence and distribution of 7 widely used OPs were analyzed in sludge samples collected from 19 municipal wastewater treatment plants in the Pearl River Delta, South China. All analytes were detected in these samples, and the total concentration of OPs ranged from 96.7 µg/kg to 1312.9 µg/kg dry weight, with a mean value of 420.1 µg/kg dry weight. In most sludge samples OPs exhibited a similar distribution pattern, for example, tris(2-butoxyethyl) phosphate (TBEP) and triphenyl phosphate (TPhP) were identified as the dominant compounds. However, the results also indicated significantly higher levels of OPs in specific sludges, such as tri-n-butyl phosphate (804.9 µg/kg), TBEP (783.7 µg/kg), TPhP (656.7 µg/kg), and tritolyl phosphate (265.0 µg/kg), which implied different discharge sources in the studied areas.

  4. Effect of aluminium and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment.

    PubMed

    Cabirol, N; Barragán, E J; Durán, A; Noyola, A

    2003-01-01

    The combined and individual effects of aluminium and sulphate at concentrations of 1,000 mg/l as Al(OH)3, and 150 mgSO4(2-)/L as K2SO4, respectively, on the anaerobic digestion of sludge from enhanced primary treatment (EPT) were evaluated in 1 L capacity semi continuous reactors. It was found that at 59 days, aluminium inhibits the specific methanogenic activity (SMA) of methanogenic and acetogenic bacteria resulting in a 50% to 72% decrease. Sulphate also inhibits (48% to 65%) the SMA of the same type of bacteria. Methanogenic and acetogenic bacteria were able to adapt, to a different extent, to the assayed concentrations of aluminium and sulphate. However, the combination of aluminium and sulphate resulted in a higher inhibition, especially of the hydrogenophilic methanogenic bacteria. Indeed, this effect remained during the time of the experiment, maintaining an inhibition of 44% at 114 days. Feeding with EPT sludge led to a bigger decrease in SMA of each bacterial group, with respect to the other treatments with time. It is concluded that the acidification of anaerobic reactors fed with EPT sludge is due, among other causes, to the concurrent presence of aluminium and sulphate.

  5. Research on sludge-fly ash ceramic particles (SFCP) for synthetic and municipal wastewater treatment in biological aerated filter (BAF).

    PubMed

    Zhao, Yaqin; Yue, Qinyan; Li, Renbo; Yue, Min; Han, Shuxin; Gao, Baoyu; Li, Qian; Yu, Hui

    2009-11-01

    Sludge-fly ash ceramic particles (SFCP) and clay ceramic particles (CCP) were employed in two lab-scale up-flow biological aerated filters (BAF) for wastewater treatment to investigate the availability of SFCP used as biofilm support compared with CCP. For synthetic wastewater, under the selected hydraulic retention times (HRT) of 1.5, 0.75 and 0.37 h, respectively, the removal efficiencies of chemical oxygen demand (COD(Cr)) and ammonium nitrogen (NH(4)(+)-N) in SFCP reactor were all higher than those of CCP reactor all through the media height. Moreover, better capabilities responding to loading shock and faster recovery after short intermittence were observed in the SFCP reactor compared with the CCP reactor. For municipal wastewater treatment, which was carried out under HRT of 0.75 h, air-liquid ratio of 7.5 and backwashing period of 48 h, the SFCP reactor also performed better than the CCP reactor, especially for the removal of NH(4)(+)-N.

  6. Particulate and colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants.

    PubMed

    Johnson, Andrew C; Jürgens, Monika D; Lawlor, Alan J; Cisowska, Iwona; Williams, Richard J

    2014-10-01

    Differential filtration was used to measure silver (>2 nm) entering and leaving nine sewage treatment plants (STPs). The mean concentration of colloidal (2-450 nm) silver, which includes nanosilver, was found to be 12 ng L(-1) in the influent and 6 ng L(-1) in the effluent. For particulate silver (>450 nm) the mean values were 3.3 μg L(-1) for influent and 0.08 μg L(-1) for effluent. Thus, removal was around 50% and 98% for colloidal and particulate silver respectively. There was no significant difference in performance between the different types of STP investigated (three examples each of activated sludge, biological filter and biological filter with tertiary treatment located across England, UK). In addition, treated sewage sludge samples (biosolids) were taken from several STPs to measure the total silver likely to be discharged to soils. Total silver was 3-14 mg kg(-1) DW in the sludge (median 3.6), which if the sludge were added at the recommended rate to soil, would add 11 μg kg(-1) yr(-1) to the top 20 cm soil layer. Predicted concentrations using the LF2000-WQX model for all the rivers of England and Wales for nanosilver were typically in the 0-1 ng L(-1) range but levels up to 4 ng L(-1) are possible in a high discharge and low flow scenario. Predicted concentrations for the total particulate forms were mostly below 50 ng L(-1) except for a high discharge and low flow scenario where concentrations could reach 135 ng L(-1).

  7. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  8. Self-heating of dried wastewater sludge.

    PubMed

    Zerlottin, M; Refosco, D; Della Zassa, M; Biasin, A; Canu, P

    2013-01-01

    We experimentally studied the occurrence of spontaneous self-heating of sludge after drying, to understand its nature, course and remediation. The sludge originates from primary and biological treatment of both municipal and industrial wastewater, the latter largely dominant (approx. 90% total organic carbon, mainly from local tanneries). Dried sludge is collected into big-bags (approx. 1.5m(3)) and landfilled in a dedicated site. After several years of regular operation of the landfill, without any management or environmental issue, indications of local warming emerged, together with smoke and smelling emissions, and local subsidence. During a two year monitoring activity, temperatures locally as high as 80°C have been detected, 6-10 m deep. Experiments were carried out on large quantities of dried sludge (≈ 1t), monitoring the temperature of the samples over long periods of time (months), aiming to reproduce the spontaneous self-heating, under different conditions, to spot enhancing and damping factors. Results demonstrate that air is a key factor to trigger and modulate the self-heating. Water, in addition to air, supports and emphasizes the heating. Unusual drying operation was found to affect dramatically the self-heating activity, up to spontaneous combustion, while ordinary drying conditions yield a sludge with a moderate self-heating inclination. Temperature values as well as heating time scales suggest that the exothermic process nature is mainly chemical and physical, while microbiological activity might be a co-factor.

  9. Monitoring of total metal concentration in sludge samples: case study for the mechanical-biological wastewater treatment plant in Velika Gorica, Croatia.

    PubMed

    Filipović, Josip; Grčić, Ivana; Bermanec, Vladimir; Kniewald, Goran

    2013-03-01

    In this paper, monitoring of total metal concentration in sludge samples from wastewater treatment process is elaborated. The presented results summarize the analyses of sludge samples in a period from 2008 to 2012. Possible sources of pollutions are given. Primarily, waste solid samples were collected from different pretreatment steps: (A) coarse grid, (B) fine grid and (C) aerated sand grease grid. Samples of A and B followed a repeatable pattern in 2008 and 2010. According to the results from 2008, samples of C contained measurable concentration of the following metals (mg/kg dry matter): Zn (21), Ni (1.05) and Ba (14.9). Several types of sludge samples were analyzed: fresh raw sludge (PS; 6-12 hour old), the sludge from the digester for anaerobic sludge treatment (DS; 48-72 hour old), samples from lagoons where the sludge is temporarily deposited (DOS and DOSold; 30-120 days) and sludge samples from agricultural areas (AA; aged over 180 days). Additionally, samples of dehydrated sludge (DEHS and DEHSold; 90-180 days) were collected upon construction of equipment for sludge dehydration in 2011. An analysis of total metal concentrations for Cu, Zn, Cr, Pb, Ni, Hg, Cd, Ba, As, Se, Sb, Co, Mo, Fe and Mn was performed by flame atomic absorption spectrometry (FAAS) and inductively coupled plasma-optical emission spectrometry (ICP-OES). The most recent results (year 2011) indicated a high concentration of heavy metals in PS samples, exceeding the MCLs (mg/kg dry matter): Cu (2122), Zn (5945), Hg (13.67) and Cd (6.29). In 2012 (until July), only a concentration of Cu exceeded MCL (928.75 and 1230.5 in DS and DEHS, respectively). A composition of sludge was variable through time, offering the limited possibility for future prediction. The sludge is being considered as a hazardous waste and a subject of discussion regarding disposal.

  10. Effects of dried wastewater-treatment sludge application on ground-water quality in South Dade County, Florida

    USGS Publications Warehouse

    Howie, Barbara

    1992-01-01

    Four test fields in the south Dade agricultural area were studied to determine the effects of sludge application on ground-water quality. Two fields had been cultivated for 10 years or more, and two had not been farmed for at least 10 years. The fields were representative of the area's two soil types (Rockdale and Perrine marl) and two major crop types (row crops and groves). Before the application of sludge, wells upgradient of, within, and downgradient of each field were sampled for possible sludge contaminants at the end of wet and dry seasons. Municipal wastewater treatment sludge from the Dade County Water and Sewe Authority Department was then applied to the fields at varying application rates. The wells at each field were sampled over a 2-year period under different hydrologic conditions for possible sludge-related constituents (specific conductance, pH, alkalinity, nitrogen, phosphorus, total organic carbon, copper, iron, magnesium, manganese, potassium, zinc, arsenic, cadmium, chloride, chromium, lead, mercury, nickel, and sodium). Comparisons were made between water quality in the vicinity of the test fields and Florida Department of Environmental Regulation primary and secondary drinking-water regulations, an between water quality upgradient of, beneath, and downgradient of the fields. Comparisons between presludge and postsludge water quality did not indicate any improvement because of retention of agrichemicals by the sludge nor did they indicate any deterioration because of leaching from the sludge. Comparisons of water quality upgradient of the fields to water quality beneath and downgradient of the fields also did not indicate any changes related to sludge. Florida Department of Environmental Regulation primary and secondary drinking-water regulations wer exceeded at the Rockdale maximum-application field by mercury (9.5 ug/L (micrograms per liter)), and the Perrine marl maximum-application field by manganese (60 ug/L) and lead (85 ug/L), and at the

  11. [Amelioration effects of wastewater sludge biochars on red soil acidity and their environmental risk].

    PubMed

    Lu, Zai-Liang; Li, Jiu-Yu; Jiang, Jun; Xu, Ren-Kou

    2012-10-01

    Biochars were prepared from wastewater sludge from two wastewater treatment plants in Nanjing using a pyrolysis method at 300, 500 and 700 degrees C. The properties of the biochars were measured, and their amelioration effects on the acidity of a red soil and environmental risk of application of sludge biochars were examined to evaluate the possibility of agricultural application of wastewater sludge biochars in red soils. Results indicated that incorporation of both sludge and sludge biochar increased soil pH due to the alkalinity of sludge and sludge biochar, and the mineralization of organic N and nitrification of ammonium N from wastewater sludge induced soil pH fluctuated during incubation. The amelioration effects of biochars generated at 500 and 700 degrees C on the soil were significantly greater than that of sludge significantly. Sludge and sludge biochar contain ample base cations of Ca2+, Mg2+, K+ and Na+ and thus incorporation of sludge and sludge biochar increased the contents of soil exchangeable base cations and decreased soil exchangeable aluminum and H+. Contents of heavy metals in sludge biochars were greater than these in their feedstock sludge, while the contents of Cu, Pb, Ni and As in sludge biochars were lower than the standard values of heavy metals were wastewater sludge for agricultural use in acid soils in China except for Zn and Cd. The contents of available forms of heavy metals in the biochars generated from sludge from Chengdong wastewater treatment plant was lower than these in the corresponding sludge, suggesting that pyrolysis proceed decreased the activity of heavy metals in wastewater sludge. After 90-day incubation of the soil with sludge and sludge biochar, the differences in the contents of soil available heavy metals were not significant between the biochars and their feedstock sludge from Jiangxizhou wastewater treatment plant, and the contents in the treatments with biochars added was lower than these in the treatments with

  12. A study of the relationship among sludge retention time, bacterial communities, and hydrolytic enzyme activities in inclined plate membrane bioreactors for the treatment of municipal wastewater.

    PubMed

    Ittisupornrat, Suda; Tobino, Tomohiro; Yamamoto, Kazuo

    2014-11-01

    Inclined plate membrane bioreactors (ip-MBRs) have been proposed as a highly effective method in wastewater treatment. With the help of settling enhancer inclined plates, dense excess sludge can be kept in the mainstream of the process, and consequently, suitable sludge mass can be maintained in the membrane tank. In this study, the relationship among sludge retention time (SRT), bacterial communities, and hydrolytic enzyme activities was investigated. Two identical bench-scale ip-MBRs were operated 1 year in real municipal wastewater treatment. Multidimensional scaling (MDS) plots of terminal restriction fragment length polymorphism (T-RFLP) fingerprints showed similar changes in the bacterial communities in terms of bacterial members and abundance over time in both the reactors, which was primarily caused by the changes of wastewater composition. However, the impact of SRT revealed significant differences in the dominant bacterial communities when both the reactors were operated with a largely different SRT (infinite SRT and SRT of 20 days). The sequences of bacterial 16S rRNA gene were classified into six libraries of A-F. The largest group of sequences belonged to the phylum Proteobacteria. The phylum Bacteroidetes was dominant in the seed sludge retrieved from the conventional activated sludge (CAS) as Flavobacterium-like bacterium was dominantly observed. Under the MBR operation (libraries B-F), bacterial communities belonging to the phyla Proteobacteria and Chloroflexi were dominant. Most of them may be responsible for protein degradation because aminopeptidase activity increased in proportion with the abundance of these bacteria.

  13. Analysis of sludge aggregates produced during electrocoagulation of model wastewater.

    PubMed

    Załęska-Chróst, B; Wardzyńska, R

    2016-01-01

    This paper presents the results of the study of sludge aggregates produced during electrocoagulation of model wastewater of a composition corresponding to the effluents from the cellulose and paper industry. Wastewater was electrocoagulated statically using aluminium electrodes with a current density of 31.25 A m(-2) and 62.50 A m(-2). In subsequent stages of the treatment, sludge flocs were collected, their size was studied and their floc settling velocity (30-520 μm s(-1)) and fractal dimension (D) were determined. The values of D ranged from 1.53 to 1.95 and were directly proportional to the degree of wastewater treatment. Higher values of D were determined for sludge with lower water content (after 24 hours' settling). Fractal dimension can therefore be used as an additional parameter of wastewater treatment control.

  14. Removal of a broad range of surfactants from municipal wastewater--comparison between membrane bioreactor and conventional activated sludge treatment.

    PubMed

    González, Susana; Petrovic, Mira; Barceló, Damià

    2007-02-01

    Elimination of alkylphenol ethoxylates (APEO) and their degradation products (alkylphenols and alkylphenoxy carboxylates), as well as linear alkylbenzene sulfonates (LAS) and coconut diethanol amides (CDEA), was studied in a pilot plant membrane bioreactor (MBR) working in parallel to a full-scale wastewater treatment plant (WWTP) using conventional activated sludge (CAS). In the CAS system 87% of parent long ethoxy chain NPEOs were eliminated, but their decomposition yielded persistent acidic and neutral metabolites which were poorly removed. The elimination of short ethoxy chain NPEOs (NP(1)EO and NP(2)EO) averaged 50%, whereas nonylphenoxy carboxylates (NPECs) showed an increase in concentrations with respect to the ones measured in influent samples. Nonylphenol (NP) was the only nonylphenolic compound efficiently removed (96%) in the CAS treatment. On the other hand, MBR showed good performance in removing nonylphenolic compounds with an overall elimination of 94% for the total pool of NPEO derived compounds (in comparison of 54%-overall elimination in the CAS). The elimination of individual compounds in the MBR was as follows: 97% for parent, long ethoxy chain NPEOs, 90% for short ethoxy chain NPEOs, 73% for NPECs, and 96% for NP. Consequently, the residual concentrations were in the low mug/l level or below it. LAS and CDEA showed similar elimination in the both wastewater treatment systems that were investigated, and no significant differences were observed between the two treatment processes. Nevertheless, for all studied compounds the MBR effluent concentrations were consistently lower and independent of the influent concentrations. Additionally, MBR effluent quality in terms of chemical oxygen demand (COD), NH(4)(+) concentration and total suspended solids (TSS) was always superior to the ones of the CAS and also independent of the influent quality, which demonstrates high potential of MBRs in the treatment of municipal wastewaters.

  15. Improving the biotreatment of hydrocarbons-contaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery.

    PubMed

    Juteau, Pierre; Bisaillon, Jean-Guy; Lépine, François; Ratheau, Valérie; Beaudet, Réjean; Villemur, Richard

    2003-01-01

    Addition of activated sludge taken from the wastewater treatment facilities of an oil refinery to a soil contaminated with oily sludge stimulated hydrocarbon biodegradation in microcosms, bioreactors and biopile. Microcosms containing 50 g of soil to which 0.07% (w/w) of activated sludge was added presented a higher degradation of alkanes (80% vs 24%) and polycyclic aromatic hydrocarbons (PAHs) (77% vs 49%) as compared to the one receiving only water, after 30 days of incubation at room temperature. Addition of ammonium nitrate or sterile sludge filtrate instead of activated sludge resulted in a similar removal of PAHs but not of alkanes suggesting that the nitrogen contained in the activated sludge plays a major role in the degradation of PAHs while microorganisms of the sludge are active against alkanes. Addition of sludge also stimulated hydrocarbon biodegradation in 10-kg bioreactors operated during 60 days and in a 50-m3 biopile operated during 126 days. This biopile treatment allowed the use of the soil for industrial purpose based on provincial regulation ("C" criteria). In contrast, the soil of the control biopile that received only water still exceeded C criteria for C10-C50 hydrocarbons, total PAHs, chrysene and benzo[a]anthracene. The stimulation effect of sludge was stronger on the 4-rings than on 2-rings PAHs. The soil of the biopile that received sludge was 4-5 times less toxic than the control. These results suggest that this particular type of activated sludge could be used to increase the efficiency of the treatment of hydrocarbon-contaminated soils in a biopile.

  16. Probabilistic assessment of environmental exposure to the polycyclic musk, HHCB and associated risks in wastewater treatment plant mixing zones and sludge amended soils in the United States.

    PubMed

    Federle, Thomas; Sun, Ping; Dyer, Scott; Kiel, Brian

    2014-09-15

    The objective of this work was to conduct an environmental risk assessment for the consumer use of the polycyclic musk, HHCB (CAS No. 1222-05-5) in the U.S. focusing on mixing zones downstream from municipal wastewater treatment plants (WWTPs) and sludge amended soils. A probabilistic exposure approach was utilized combining statistical distributions of effluent and sludge concentrations for the U.S. WWTPs with distributions of mixing zone dilution factors and sludge loading rates to soil to estimate HHCB concentrations in surface waters and sediments below WWTPs and sludge amended soils. These concentrations were then compared to various toxicity values. Measured concentrations of HHCB in effluent and sludge from a monitoring program of 40 WWTPs across the U.S. formed the basis for estimating environmental loadings. Based upon a Monte Carlo analysis, the probability of HHCB concentrations being below the PNEC (predicted no effect concentration) for pelagic freshwater organisms was greater than or equal to 99.87% under both mean and low flow regimes. Similarly, the probability of HHCB concentrations being less than the PNEC for freshwater sediment organisms was greater than or equal to 99.98%. Concentrations of HHCB in sludge amended soils were estimated for single and repeated annual sludge applications with tilling of the sludge into the soil, surface application without tilling and a combination reflecting current practice. The probability of soil HHCB concentrations being below the PNEC for soil organisms after repeated sludge applications was 94.35% with current sludge practice. Probabilistic estimates of HHCB exposures in surface waters, sediments and sludge amended soils are consistent with the published values for the U.S. In addition, the results of these analyses indicate that HHCB entering the environment in WWTP effluent and sludge poses negligible risk to aquatic and terrestrial organisms in nearly all exposure scenarios.

  17. Evaluation of waste activated sludge as a coagulant aid for the treatment of industrial wastewater containing mixed surfactants.

    PubMed

    Sriwiriyarat, Tongchai; Jangkorn, Siriprapha

    2009-04-01

    Wastewater generated by the industry manufacturing detergents and various kinds of consumer products normally contains very high contents of mixed surfactants, organic matters expressed as chemical oxygen demand (COD), and phosphates that must be treated prior to discharge to the aquatic environment. In this study, jar-test experiments were conducted to evaluate the waste activated sludge (WAS) as a coagulation aid in the coagulation-flocculation process with ferric chloride or aluminum sulfate as a coagulant for the treatment of wastewater collected from the aforementioned industry. The WAS was selected because of its adsorption capability of anionic surfactants and its availability from the wastage stream of biological wastewater treatment process. The effective dosages of both coagulants with and without the WAS additions were determined in this study. Without the WAS addition, the concentrations of 800 mg/L aluminum sulfate at the optimum pH value of 8 and 2208 mg/L ferric chloride at the optimum pH value of 12 were the optimum chemical dosages. It appears that aluminum sulfate was more effective than ferric chloride based on the chemical dosage and removal efficiency. The turbidity, suspended particles, anionic surfactants, COD, and phosphates removal efficiencies of aluminum sulfate and ferric chloride under the optimum dosage were 95.6, 88.2, 78.4, 73.5, 47.3% and 98.8, 92.0, 72.7, 67.5, 53.1%, respectively. The addition of 200 mg/L WAS was sufficient to reduce the optimum dosages of both chemicals by 200 mg/L. The cationic surfactant existing in the wastewater worked as a flocculating agent leading to the flocculation of waste activated sludge resulting in the enmeshment of the suspended particles and colloids on which the COD, anionic surfactants, and phosphates were adsorbed. However, the substances removal efficiencies of ferric chloride and aluminum sulfate were slightly enhanced and reduced, respectively. It is possibly explained that the settling time

  18. Characteristics of adsorbents made from biological, chemical and hybrid sludges and their effect on organics removal in wastewater treatment.

    PubMed

    Pan, Zhi-hui; Tian, Jia-yu; Xu, Guo-ren; Li, Jun-jing; Li, Gui-bai

    2011-01-01

    Meso-macropore adsorbents were prepared from biological sludge, chemical sludge and hybrid sludge of biological and chemical sludges, by chemically activating with 18.0 M H(2)SO(4) in the mass ratio of 1:3, and then pyrolyzing at 550 °C for 1 h in anoxic atmosphere. The physical and chemical characteristics of the sludge-based adsorbents were examined in terms of surface physical morphology, specific surface area and pore size distribution, aluminum and iron contents, surface functional groups and crystal structure. Furthermore, the adsorption effect of these adsorbents on the organic substances in wastewater was also investigated. The results indicated that the adsorption capacities of the sludge-based adsorbents for UV(254) were lower than that of commercial activated carbon (AC), whereas the adsorption capacities of the adsorbents prepared from hybrid sludge (HA) and chemical sludge (CA) for soluble COD(Cr) (SCOD(Cr)) were comparable or even higher than that of the commercial AC. The reasons might be that the HA and CA possessed well-developed mesopore and macropore structure, as well as abundant acidic surface functional groups. However, the lowest adsorption efficiency was observed for the biological sludge-based adsorbent, which might be due to the lowest metal content and overabundance of surface acidic functional groups in this adsorbent.

  19. The re-use of Waste-Activated Sludge as part of a "zero-sludge" strategy for wastewater treatments in the pulp and paper industry.

    PubMed

    Kaluža, Leon; Suštaršič, Matej; Rutar, Vera; Zupančič, Gregor D

    2014-01-01

    The possibility of introducing the thermo-alkali hydrolysis of Waste-Activated Sludge (WAS) was investigated, in order to enable the use of its solid residue as a raw material in cardboard production and the use of its liquid portion for anaerobic digestion in an UASB reactor. The evaluation of the hydrolysis at pH>12 and T=70°C showed that the microbe cells were disrupted with more than 90% efficiency in less than 2h. The solid portion was hygienised, therefore making it possible to integrate it into the cardboard production as a raw material for less demanding cardboards. Up to 6% addition of the liquid portion of hydrolysed WAS to wastewater decreased the specific biogas production in a pilot-scale UASB from 0.236 to 0.212 m(3)/kg(COD), while the efficiency of the COD removal decreased from 80.4% to 76.5%. These values still guarantee an adequate treatment of the wastewater and an increased biogas production by 16%.

  20. Occurrence, distribution, and potential affecting factors of organophosphate flame retardants in sewage sludge of wastewater treatment plants in Henan Province, Central China.

    PubMed

    Pang, Long; Yuan, Yiting; He, Han; Liang, Kang; Zhang, Hongzhong; Zhao, Jihong

    2016-06-01

    Organophosphate esters (OPEs) are widely used as flame retardants. In this study, the occurrence and distribution of six OPEs were investigated in sewage sludge from 24 wastewater treatment plants (WWTPs) in 18 cities of Henan province, Central China. The results indicated that all target OPEs were detected in the sludge samples with the detection rate of 95.8%, except tris(dichloropropyl)phosphate (TDCP). The total concentration of the six OPEs ranged from 38.6 to 508 μg kg(-1). Tris(2-chloroethyl)phosphate (TCEP), tris(2-butoxyethyl)phosphate (TBEP), and tris(2-chloroiso-propyl)phosphate (TCPP) were found to be predominant, with concentrations ranging from 2.50 to 203, 1.60 to 383, and 6.70-161 μg kg(-1), respectively. The potential factors affecting OPE levels in sewage sludge, such as wastewater source, sludge characteristics, operational conditions, treatment techniques, and total organic carbon (TOC) of sludge in WWTPs were investigated. The results indicated that the total concentration of OPEs in sewage sludge has no significant relationship with the individual parameters (p > 0.05). However, significant correlations were found between triphenyl phosphate (TPhP) level and treatment capacity (R = 0.484, p < 0.05), processing volume (R = 0.495, p < 0.05), and serving population (R = 0.591, p < 0.05). Furthermore, the relationship between treatment techniques and the total concentration of OPEs in sewage sludge was also investigated in this study, and the results illustrated that the levels of OPEs in sludge were independent of the solid retention time (SRT).

  1. Modelling of the temperature-phased batch anaerobic digestion of raw sludge from an urban wastewater treatment plant.

    PubMed

    Riau, Víctor; De la Rubia, M Angeles; Pérez, Montserrat; Martín, Antonio; Borja, Rafael

    2012-01-01

    The disposal of excess sludge from wastewater treatment plants is a serious problem that needs to be addressed. Temperature-phased anaerobic digestion (TPAD) which combines thermophilic and mesophilic processes in one, brings together the advantages of both systems. The aim of the present work was to develop a simple kinetic model to describe the TPAD of sewage sludge in batch completely stirred tank reactors (CSTRs) and to determine the kinetic parameters of both thermophilic and mesophilic stages. A zero-order kinetic equation described the thermophilic step after 2, 4 and 6 days of digestion time (experiment 1, 2 and 3, respectively), yet a first-order equation was found to be adequate to correlate the methane gas accumulated with time in the mesophilic step, the kinetic constant being 0.21 days(-1). The methane yield coefficient obtained was found to be almost proportional to the digestion time used in the thermophilic step with values of 0.067, 0.132 and 0.193 L CH(4) STP/g VS(added) for experiments 1, 2 and 3, respectively. By contrast, the kinetic constant of the mesophilic stage was not influenced by the digestion time used in the thermophilic phase.

  2. Long-term analysis of a full-scale activated sludge wastewater treatment system exhibiting seasonal biological foaming.

    PubMed

    Frigon, Dominic; Guthrie, R Michael; Bachman, G Timothy; Royer, James; Bailey, Barbara; Raskin, Lutgarde

    2006-03-01

    The seasonal accumulation of biological foam on the activated sludge system of the Urbana-Champaign Sanitary District Northeast (UCSD-NE) wastewater treatment plant was investigated over an 8-year period by statistical analyses including path analysis, multivariate regression, and principal component analysis. Results of these analyses suggested that variation in the activated sludge reactor temperature and the use of a stream bypassing the primary clarifier were the two main factors determining the observed temporal foam profile. Characterization of the primary clarifier influent and effluent suggested the involvement of high lipid loading rates from the bypass stream in foam accumulation. In light of these results, it is hypothesized that increasing temperatures and lipid loading rates are responsible for foam formation through the same mechanism: the foam-forming microbial population is specialized in consuming lipids, substrates classified as slowly degradable. When the temperature increases, the rate of lipid hydrolysis becomes sufficiently high for this population to become abundant, accumulate on the surfaces of the aeration basins, and cause biological foaming.

  3. Phylogeny, physiology and distribution of 'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewater treatment plants.

    PubMed

    Levantesi, Caterina; Rossetti, Simona; Thelen, Karin; Kragelund, Caroline; Krooneman, Janneke; Eikelboom, Dick; Nielsen, Per Halkjaer; Tandoi, Valter

    2006-09-01

    Twelve strains of filamentous bacteria morphologically identified as 'Microthrix parvicella' were isolated from industrial activated sludge wastewater treatment plants. 16S rRNA gene sequences analysis showed that these strains were all closely related to 'Candidatus Microthrix parvicella'. Six of them, however, had a 16S rRNA gene similarity of only 95.7% and 96.7% to 'Candidatus Microthrix parvicella' suggesting the presence of a new species. The name 'Candidatus Microthrix calida' is proposed for this new microorganism. The physiological properties of these six isolates supported the description of a new taxon. The 'Candidatus Microthrix calida' strains produced thin filaments (0.3-0.7 microm diameter), they did not grow on the media supporting the growth of 'Candidatus Microthrix parvicella' and could be cultivated at higher temperature (up to 36.5 degrees C). Preliminary data on substrate uptake were obtained by microautoradiography on pure culture. Two new fluorescence in situ hybridization (FISH) probes, Mpa-T1-1260 specific for 'Candidatus Microthrix calida' and Mpa-all-1410 targeting both Microthrix species, were designed. The presence of Microthrix spp. was investigated in 114 activated sludge plants. 'Microthrix parvicella' morphotype was detected in 23% of the analysed samples and FISH analysis revealed that 'Candidatus Microthrix calida' was present in 5% of them. The remaining 'M. parvicella' filaments were positive with probe Mpa-all-1410 but could not all be identified as 'Candidatus Microthrix parvicella' suggesting the presence of more hitherto undescribed biodiversity within this morphotype.

  4. Occurrence and removal of free and conjugated estrogens in wastewater and sludge in five sewage treatment plants.

    PubMed

    Xu, Yifeng; Xu, Nan; Llewellyn, Neville R; Tao, Huchun

    2014-02-01

    The occurrence and fate of free and conjugated estrogens were investigated in wastewater and sludge from five sewage treatment plants (STPs) in Guangdong Province, China. Estrone (E1) and 17β-estradiol (E2) were found in all influent samples at concentrations of 69.3-280 ng L(-1) and 1.3-30 ng L(-1), respectively. The concentrations of conjugated estrogens were from ND (not detected) to 7.6 ng L(-1). High concentrations (27.6-235 ng g(-1)) of E1 were found in sludge of some STPs indicating that sorption was an important estrogen removal mechanism. According to the mass flux analyses for estrogens in STP-A, E2 was mainly removed in the anaerobic process and E1 removal was the combined efforts of biodegradation and sorption. Abnormally high concentrations of EE2 (42.6-246 ng L(-1)), detected with gas chromatography-mass spectrometry, were found in all influent samples of the STPs, therefore interlaboratory analysis with liquid chromatography-tandem mass spectrometry was conducted for confirmation, which detected no EE2 at all. In consideration of the rather lower estimated EE2 concentration than the measured value, it was speculated that the presence of interfering substances like tetracosanic acid in the matrix could lead to overestimation of EE2 concentration. Overall, the effluents still pose potential estrogenic effect to the downstream aquatic organisms.

  5. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    PubMed

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids.

  6. The effect of bioaugmentation on the performance of sequencing batch reactor and sludge characteristics in the treatment process of papermaking wastewater.

    PubMed

    Hailei, Wang; Guosheng, Liu; Ping, Li; Feng, Pan

    2006-12-01

    In this paper, the differences between reinforced sequencing batch reactor, which was inoculated with superior mixed flora, and conventional sequencing batch reactor were compared in the process of treating papermaking wastewater under similar conditions. The results showed that the addition of superior mixed flora could not only shorten the sludge acclimation time, but also improve the treatment efficiency of reactor as well as make the reactor have higher ability to withstand high volume loading rate; the phenomenon of aerobic granulation only occurred in reinforced sequencing batch reactor, and superior mixed flora were the key reason that aerobic granular sludge could shape; aerobic granular sludge had many advantages over conventional activated sludge such as it possessed compacter microbial structure, better settling performance, and lower water content.

  7. MWIP: Surrogate formulations for thermal treatment of low-level mixed waste. Part 4, Wastewater treatment sludges

    SciTech Connect

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.; Richmond, A.A.; Bickford, D.F.

    1994-01-01

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludges that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.

  8. Basis for the development of sustainable optimisation indicators for activated sludge wastewater treatment plants in the Republic of Ireland.

    PubMed

    Gordon, G T; McCann, B P

    2015-01-01

    This paper describes the basis of a stakeholder-based sustainable optimisation indicator (SOI) system to be developed for small-to-medium sized activated sludge (AS) wastewater treatment plants (WwTPs) in the Republic of Ireland (ROI). Key technical publications relating to best practice plant operation, performance audits and optimisation, and indicator and benchmarking systems for wastewater services are identified. Optimisation studies were developed at a number of Irish AS WwTPs and key findings are presented. A national AS WwTP manager/operator survey was carried out to verify the applied operational findings and identify the key operator stakeholder requirements for this proposed SOI system. It was found that most plants require more consistent operational data-based decision-making, monitoring and communication structures to facilitate optimised, sustainable and continuous performance improvement. The applied optimisation and stakeholder consultation phases form the basis of the proposed stakeholder-based SOI system. This system will allow for continuous monitoring and rating of plant performance, facilitate optimised operation and encourage the prioritisation of performance improvement through tracking key operational metrics. Plant optimisation has become a major focus due to the transfer of all ROI water services to a national water utility from individual local authorities and the implementation of the EU Water Framework Directive.

  9. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  10. Constructed wetlands for wastewater and activated sludge treatment in north Greece: a review.

    PubMed

    Tsihrintzis, V A; Gikas, G D

    2010-01-01

    Constructed wetlands used for the treatment of urban, industrial and agricultural wastewater have become very popular treatment systems all over the world. In Greece, these systems are not very common, although the climate is favourable for their use. During recent years, there have been several attempts for the implementation of these systems in Greece, which include, among others, pilot-scale systems used for research, and full-scale systems designed and/or constructed to serve settlements or families. The purpose of this paper is the presentation of systems operating in Northern Greece, which have been studied by the Laboratory of Ecological Engineering and Technology of Democritus University of Thrace and others. A comparison is made of different system types, and the effect of various design and operational parameters is presented. Current research shows the good and continuous performance of these systems.

  11. Climate change impacts on activated sludge wastewater treatment: a case study from Norway.

    PubMed

    Plósz, Benedek Gy; Liltved, Helge; Ratnaweera, Harsha

    2009-01-01

    We present an investigation on climate change effects on a wastewater treatment system that receive sewage collected in a combined sewer system in Oslo, Norway, during winter operation. Results obtained, by contrasting meteorological data with sewage data, show that wastewater treatment plant (WWTP) influent flow rates are significantly increased during temporary snow melting periods above a critical daily air mean temperature of approx. -1.5 degrees C degree (T(Crit)) identified in the area. In order to assess melting patterns, the number of days above and below T(Crit) was assessed, and the annual number of melting periods was additionally evaluated using meteorological data obtained in the last decade. A striking thing about the daily air temperature pattern is that, despite the progressively warmer winter temperatures in the last decade, an increasing number of days with temperatures below -1.5 degrees C could be observed. The frequency of melting periods is shown to increase in wintertime, and it is identified as an additional climate change related factor in the Oslo region. We demonstrate that these impacts can deteriorate the WWTP operation through progressively increasing the relative frequencies of very high influent flow rate and of the very low influent sewage temperature. Such climate change related effects on sewage treatment processes can be characterised as shock-conditions, i.e. significant changes in a system's boundary conditions, occurring in a relatively short period of time. In the six year period examined, biological nitrogen removal and secondary clarification processes are shown to be significantly affected by the climate factors. A striking thing about using the state-of-the-art mathematical models of wastewater treatment processes in decision support systems is their inability of describing, and thus predicting the effects of such shock-loading events, as they have not been studied so far. Adaptation and optimisation of process models

  12. Pilot-scale test of an advanced, integrated wastewater treatment process with sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal (SIPER).

    PubMed

    Yan, Peng; Ji, Fangying; Wang, Jing; Fan, Jianping; Guan, Wei; Chen, Qingkong

    2013-08-01

    Sludge reduction technologies are increasingly important in wastewater treatment, but have some defects. In order to remedy them, a novel, integrated process including sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal was developed. The pilot-scale system was operated steadily at a treatment scale of 10 m(3)/d for 90 days. The results showed excellent nutrient removal, with average removal efficiencies for NH4(+)-N, TN, TP, and COD reaching 98.2 ± 1.34%, 75.5 ± 3.46%, 95.3 ± 1.65%, and 92.7 ± 2.49%, respectively. The ratio of mixed liquor volatile suspended solids (MLVSS) to mixed liquor suspended solids (MLSS) in the system gradually increased, from 0.33 to 0.52. The process effectively prevented the accumulation of inert or inorganic solids in activated sludge. Phosphorus was recovered as a crystalline product with aluminum ion from wastewater. The observed sludge yield Yobs of the system was 0.103 gVSS/g COD, demonstrating that the system's sludge reduction potential is excellent.

  13. Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants.

    PubMed

    Pastor, L; Marti, N; Bouzas, A; Seco, A

    2008-07-01

    The influence of separate and mixed thickening of primary and secondary sludge on struvite recovery was studied. Phosphorus precipitation in the digester was reduced from 13.7 g of phosphorus per kg of treated sludge in the separate thickening experiment to 5.9 in the mixed thickening experiment. This lessening of the uncontrolled precipitation means a reduction of the operational problems and enhances the phosphorus availability for its later crystallization. High phosphorus precipitation and recovery efficiencies were achieved in both crystallization experiments. However, mixed thickening configuration showed a lower percentage of phosphorus precipitated as struvite due to the presence of high calcium concentrations. In spite of this low percentage, the global phosphorus mass balance showed that mixed thickening experiment produces a higher phosphorus recovery as struvite per kg of treated sludge (i.e., 3.6 gP/kg sludge vs. 2.5 gP/kg sludge in separate thickening).

  14. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Hou, Haobo

    2015-01-01

    A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment.

  15. Enhanced nitrogen and phosphorus removal by an advanced simultaneous sludge reduction, inorganic solids separation, phosphorus recovery, and enhanced nutrient removal wastewater treatment process.

    PubMed

    Yan, Peng; Guo, Jin-Song; Wang, Jing; Chen, You-Peng; Ji, Fang-Ying; Dong, Yang; Zhang, Hong; Ouyang, Wen-juan

    2015-05-01

    An advanced wastewater treatment process (SIPER) was developed to simultaneously decrease sludge production, prevent the accumulation of inorganic solids, recover phosphorus, and enhance nutrient removal. The feasibility of simultaneous enhanced nutrient removal along with sludge reduction as well as the potential for enhanced nutrient removal via this process were further evaluated. The results showed that the denitrification potential of the supernatant of alkaline-treated sludge was higher than that of the influent. The system COD and VFA were increased by 23.0% and 68.2%, respectively, after the return of alkaline-treated sludge as an internal C-source, and the internal C-source contributed 24.1% of the total C-source. A total of 74.5% of phosphorus from wastewater was recovered as a usable chemical crystalline product. The nitrogen and phosphorus removal were improved by 19.6% and 23.6%, respectively, after incorporation of the side-stream system. Sludge minimization and excellent nutrient removal were successfully coupled in the SIPER process.

  16. Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant.

    PubMed

    Rosa, A P; Conesa, J A; Fullana, A; Melo, G C B; Borges, J M; Chernicharo, C A L

    2016-01-01

    This work assessed the energy potential and alternative usages of biogas and sludge generated in upflow anaerobic sludge blanket reactors at the Laboreaux sewage treatment plant (STP), Brazil. Two scenarios were considered: (i) priority use of biogas for the thermal drying of dehydrated sludge and the use of the excess biogas for electricity generation in an ICE (internal combustion engine); and (ii) priority use of biogas for electricity generation and the use of the heat of the engine exhaust gases for the thermal drying of the sludge. Scenario 1 showed that the electricity generated is able to supply 22.2% of the STP power demand, but the thermal drying process enables a greater reduction or even elimination of the final volume of sludge to be disposed. In Scenario 2, the electricity generated is able to supply 57.6% of the STP power demand; however, the heat in the exhaust gases is not enough to dry the total amount of dehydrated sludge.

  17. Effective water content reduction in sewage wastewater sludge using magnetic nanoparticles.

    PubMed

    Lakshmanan, Ramnath; Kuttuva Rajarao, Gunaratna

    2014-02-01

    The present work compares the use of three flocculants for sedimentation of sludge and sludge water content from sewage wastewater i.e. magnetic iron oxide nanoparticles (MION), ferrous sulfate (chemical) and Moringa crude extract (protein). Sludge water content, wet/dry weight, turbidity and color were performed for, time kinetics and large-scale experiment. A 30% reduction of the sludge water content was observed when the wastewater was treated with either protein or chemical coagulant. The separation of sludge from wastewater treated with MION was achieved in less than 5min using an external magnet, resulted in 95% reduction of sludge water content. Furthermore, MION formed denser flocs and more than 80% reduction of microbial content was observed in large volume experiments. The results revealed that MION is efficient in rapid separation of sludge with very low water content, and thus could be a suitable alternative for sludge sedimentation and dewatering in wastewater treatment processes.

  18. Comparison of bioleaching and electrokinetic remediation processes for removal of heavy metals from wastewater treatment sludge.

    PubMed

    Xu, Ying; Zhang, Chaosheng; Zhao, Meihua; Rong, Hongwei; Zhang, Kefang; Chen, Qiuli

    2017-02-01

    Heavy metals prevent the growing amount of sewage sludge from being disposed as fertilizeron land. The electrokinetic remediation and bioleaching technology are the promising methods to remove heavy metals. In recent years, some innovation has been made to achieve better efficiency, including the innovation of processes and agents. This paper reviews the development of the electrokinetic remediation and bioleaching technology and analyses their advantages and limitation, pointing out the need of the future research for the heavy metals-contaminated sewage sludge.

  19. The contribution of thermophilic anaerobic digestion to the stable operation of wastewater sludge treatment.

    PubMed

    Zábranská, J; Dohányos, M; Jenícek, P; Zaplatílková, P; Kutil, J

    2002-01-01

    Thermophilic anaerobic digestion of sewage sludge has been successfully operated in full-scale tanks almost three years. The higher loading capacity and specific biogas production rate in comparison with mesophilic digestion was proved. Thermophilic anaerobic sludge is also more resistant against foaming problems. Biogas from thermophilic tanks contains less hydrogen sulphide and other malodorous substances. Pathogens removal rate is apparently more efficient in the thermophilic process.

  20. Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling.

    PubMed

    Su, Xinying; Tian, Yu; Sun, Zhicai; Lu, Yaobin; Li, Zhipeng

    2013-11-15

    A novel combined system of sludge microbial fuel cell (S-MFC) stack and membrane bioreactor (MBR) was proposed in this study. The non-consumed sludge in the MBR sludge-fed S-MFC was recycled to the MBR. In the combined system, the COD and ammonia treatment efficiencies were more than 90% and the sludge reduction was 5.1% higher than that of the conventional MBR. It's worth noting that the energy recovery and fouling mitigation were observed in the combined system. In the single S-MFC, about 75 mg L(-1) COD could be translated to electricity during one cycle. The average voltage and maximum power production of the single S-MFC were 430 mV and 51 mWm(-2), respectively. Additionally, the combined system was able to mitigate membrane fouling by the sludge modification. Except for the content decrease (22%), S-MFC destroyed simple aromatic proteins and tryptophan protein-like substances in loosely bound extracellular polymeric substances (LB-EPS). These results indicated that effective wastewater treatment, sludge reduction, energy recovery and membrane fouling mitigation could be obtained in the combined system.

  1. An integrated approach for monitoring efficiency and investments of activated sludge-based wastewater treatment plants at large spatial scale.

    PubMed

    De Gisi, Sabino; Sabia, Gianpaolo; Casella, Patrizia; Farina, Roberto

    2015-08-01

    WISE, the Water Information System for Europe, is the web-portal of the European Commission (EU) that disseminates the quality state of the receiving water bodies and the efficiency of the municipal wastewater treatment plants (WWTPs) in order to monitor advances in the application of both the Water Framework Directive (WFD) as well as the Urban Wastewater Treatment Directive (UWWTD). With the intention to develop WISE applications, the aim of the work was to define and apply an integrated approach capable of monitoring the efficiency and investments of activated sludge-based WWTPs located in a large spatial area, providing the following outcomes useful to the decision-makers: (i) the identification of critical facilities and their critical processes by means of a Performance Assessment System (PAS), (ii) the choice of the most suitable upgrading actions, through a scenario analysis. (iii) the assessment of the investment costs to upgrade the critical WWTPs and (iv) the prioritization of the critical facilities by means of a multi-criteria approach which includes the stakeholders involvement, along with the integration of some technical, environmental, economic and health aspects. The implementation of the proposed approach to a high number of municipal WWTPs highlighted how the PAS developed was able to identify critical processes with a particular effectiveness in identifying the critical nutrient removal ones. In addition, a simplified approach that considers the cost related to a basic-configuration and those for the WWTP integration, allowed to link the critical processes identified and the investment costs. Finally, the questionnaire for the acquisition of data such as that provided by the Italian Institute of Statistics, the PAS defined and the database on the costs, if properly adapted, may allow for the extension of the integrated approach on an EU-scale by providing useful information to water utilities as well as institutions.

  2. Impact of aluminum chloride on process performance and microbial community structure of granular sludge in an upflow anaerobic sludge blanket reactor for natural rubber processing wastewater treatment.

    PubMed

    Thanh, Nguyen Thi; Watari, Takahiro; Thao, Tran Phuong; Hatamoto, Masashi; Tanikawa, Daisuke; Syutsubo, Kazuaki; Fukuda, Masao; Tan, Nguyen Minh; Anh, To Kim; Yamaguchi, Takashi; Huong, Nguyen Lan

    In this study, granular sludge formation was carried out using an aluminum chloride supplement in an upflow anaerobic sludge blanket (UASB) reactor treating natural rubber processing wastewater. Results show that during the first 75 days after the start-up of the UASB reactor with an organic loading rate (OLR) of 2.65 kg-COD·m(-3)·day(-1), it performed stably with a removal of 90% of the total chemical oxygen demand (COD) and sludge still remained in small dispersed flocs. However, after aluminum chloride was added at a concentration of 300 mg·L(-1) and the OLR range was increased up to 5.32 kg-COD·m(-3)·day(-1), the total COD removal efficiency rose to 96.5 ± 2.6%, with a methane recovery rate of 84.9 ± 13.4%, and the flocs began to form granules. Massively parallel 16S rRNA gene sequencing of the sludge retained in the UASB reactor showed that total sequence reads of Methanosaeta sp. and Methanosarcina sp., reported to be the key organisms for granulation, increased after 311 days of operation. This indicates that the microbial community structure of the retained sludge in the UASB reactor at the end of the experiment gave a good account of itself in not only COD removal, but also granule formation.

  3. Alum recovery and wastewater sludge stabilization with sulfuric acid.

    PubMed

    Jiménez, B; Martínez, M; Vaca, M

    2007-01-01

    Coagulation-flocculation is used to remove helminth ova from wastewater intended for agricultural reuse. Nevertheless, it has the drawback of producing a large amount of sludge which together with the chemicals used to treat the wastewater increases the operating cost. This can be overcome by recovering and recycling the aluminium contained in the sludge. This paper presents how an acid recovery process was applied to an Advanced Primary Treatment (APT) sludge to partially treat it and to reduce its quantity. This is a method applied several decades ago in water sludge that has not been used in secondary wastewater sludge to recover aluminium and to inactivate microorganisms. By adding sulphuric acid to a 6%TS sludge, more than 70% of the aluminium added during the coagulation flocculation process was recovered when a pH of 2 was maintained during 30 minutes and at 300 rpm of mixing conditions. This way the sludge was reduced by 45% in volume and by 63% by mass, inactivating 5 logs of faecal coliforms and 68% of helminth ova. Due to the lower alum consumption, the operating cost of the APT is reduced by 3.78 US$/1,000 m(3).

  4. Preparation of ceramic filler from reusing sewage sludge and application in biological aerated filter for soy protein secondary wastewater treatment.

    PubMed

    Wu, Suqing; Qi, Yuanfeng; Yue, Qinyan; Gao, Baoyu; Gao, Yue; Fan, Chunzhen; He, Shengbing

    2015-01-01

    Dehydrated sewage sludge (DSS) and clay used as raw materials for preparation of novel media-sludge ceramic filler (SCF) and SCF employed in a lab-scale up-flow biological aerated filter (BAF) were investigated for soy protein secondary wastewater treatment. Single factor experiments were designed to investigate the preparation of SCF, and the characteristics (microstructure properties, toxic metal leaching property and other physical properties) of SCF prepared under the optimum conditions were examined. The influences of media height, hydraulic retention time (HRT) and air-liquid ratio (A/L) on chemical oxygen demand (CODcr) and ammonia nitrogen (NH4(+)-N) removal rate were studied. The results showed that the optimum addition of DSS was approximately 25.0 wt% according to the physical properties of SCF (expansion ratio of 53.0%, v/v, water absorption of 8.24 wt%, bulk density of 350.4 kg m(-3) and grain density of 931.5 kg m(-3)), and the optimum conditions of BAF system were media height of 75.0 cm, HRT of 10.0 h and A/L of 15:1 in terms of CODcr and NH4(+)-N removal rate (91.02% and 90.48%, respectively). Additionally, CODcr and NH4(+)-N (81.6 and 15.3 mg L(-1), respectively) in the final effluent of BAF system met the national standard (CODcr ≤ 100 mg L(-1), NH4(+)-N ≤ 25.0 mg L(-1), GB 18918-2002, secondary standard).

  5. Production of polyhydroxyalkanoates (PHA) using sludge from different wastewater treatment processes and the potential for medical and pharmaceutical applications.

    PubMed

    Lam, Wai; Wang, Yujie; Chan, Pui Ling; Chan, Shun Wan; Tsang, Yiu Fai; Chua, Hong; Yu, Peter Hoi Fu

    2017-04-07

    In this study, seven strains of bacteria with polyhydroxyalkanoates (PHA)-producing ability (i.e., Bacillus cereus, Pseudomonas putida, Bacillus pumilus, Pseudomona-huttiensis, Yersinia-frederiksenii, Aeromonas ichthiosmia and Sphingopyxis terrae) were isolated from various waste treatment plants in Hong Kong. Simultaneous wastewater treatment and PHA accumulation were successfully achieved in the bioreactors using isolated bacteria from different sludges. At the organic loading less than 13000 ppm, more than 95% of COD was removed by the isolated strains before the decrease of PHA accumulation. In addition, more than 95% of nitrogen removal was achieved by all isolated strains. In the bioreactors inoculated with single strains, the highest yields of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxyvalerate) (PHV) were obtained in A. ichthiosmia (84 mg PHB/g) and B. cereus (69 mg/g), respectively. For the mixed culture, the highest yields of PHB and PHV were increased by 55% and 45% in the system inoculated with B. pumilus and A. ichthiosmia. The biologically synthesized PHA also showed the potential applications in drug delivery and tissue engineering. PHA-nanoparticles loaded with pyrene were successfully prepared by recombinant E. coli. The results of in vitro drug release and biocompatibility tests revealed that nanoparticles could be used as safer dray carriers with high loading capacity and efficiency. After 20 days, the cells successfully grew on 90% of the PHA-aortic valve.

  6. Co-digestion of press liquids of source-sorted municipal organic waste in anaerobic sludge treatment of municipal wastewater treatment plants.

    PubMed

    Effenberger, Johannes; Jahn, Lydia; Kuehn, Volker

    2016-01-01

    This paper describes a semi-continuous laboratory-scale investigation of a potential co-substrate for mesophilic anaerobic sludge digestion in a municipal wastewater treatment plant. A feed liquid produced from source-sorted municipal organic waste by pretreatment with a screw press was subjected to the investigation. Quantities produced in press trials as well as the composition of the feed liquid are presented. Mass balances for N, P and chemical oxygen demand are given in order to verify the methane production of the feed liquid in co-digestion with sewage sludge at mesophilic conditions. Hydraulic retention time of the reactors were 14.7 to 16 d and organic loading rates were 1.5 to 2.7 kg volatile solids (VS) per cubic metre per day. The pretreatment by screw press is compared to the production of feed liquids with pulper-based pretreatment processes. While the addition of the feed liquid increased methane production by about 345 ml CH(4)/g VS(in), total solids of the feed liquid were reduced to about 63%. With respect to co-digestion at municipal wastewater treatment plants, several risks associated with the investigated feed liquid are outlined.

  7. Treating both wastewater and excess sludge with an innovative process.

    PubMed

    He, Sheng-bing; Wang, Bao-zhen; Wang, Lin; Jiang, Yi-feng

    2003-11-01

    The innovative process consists of biological unit for wastewater treatment and ozonation unit for excess sludge treatment. An aerobic membrane bioreactor (MBR) was used to remove organics and nitrogen, and an anaerobic reactor was added to the biological unit for the release of phosphorus contained at aerobic sludge to enhance the removal of phosphorus. For the excess sludge produced in the MBR, which was fed to ozone contact column and reacted with ozone, then the ozonated sludge was returned to the MBR for further biological treatment. Experimental results showed that this process could remove organics, nitrogen and phosphorus efficiently, and the removals for COD, NH3-N, TN and TP were 93.17%, 97.57%, 82.77% and 79.5%, respectively. Batch test indicated that the specific nitrification rate and specific denitrification rate of the MBR were 1.03 mg NH3-N/(gMLSS x h) and 0.56 mg NOx-N/(gMLSS x h), and denitrification seems to be the rate-limiting step. Under the test conditions, the sludge concentration in the MBR was kept at 5000-6000 mg/L, and the wasted sludge was ozonated at an ozone dosage of 0.10 kgO3/kgSS. During the experimental period of two months, no excess sludge was wasted, and a zero withdrawal of excess sludge was implemented. Through economic analysis, it was found that an additional ozonation operating cost for treatment of both wastewater and excess sludge was only 0.045 RMB Yuan (USD 0.0054)/m3 wastewater.

  8. A pilot-scale study on PVA gel beads based integrated fixed film activated sludge (IFAS) plant for municipal wastewater treatment.

    PubMed

    Kumar Singh, Nitin; Singh, Jasdeep; Bhatia, Aakansha; Kazmi, A A

    2016-01-01

    In the present study, a pilot-scale reactor incorporating polyvinyl alcohol gel beads as biomass carrier and operating in biological activated sludge mode (a combination of moving bed biofilm reactor (MBBR) and activated sludge) was investigated for the treatment of actual municipal wastewater. The results, during a monitoring period of 4 months, showed effective removal of chemical oxygen demand (COD), biological oxygen demand (BOD) and NH3-N at optimum conditions with 91%, ∼92% and ∼90% removal efficiencies, respectively. Sludge volume index (SVI) values of activated sludge varied in the range of 25-72 mL/g, indicating appreciable settling characteristics. Furthermore, soluble COD and BOD in the effluent of the pilot plant were reduced to levels well below discharge limits of the Punjab Pollution Control Board, India. A culture dependent method was used to enrich and isolate abundant heterotrophic bacteria in activated sludge. In addition to this, 16S rRNA genes analysis was performed to identify diverse dominant bacterial species in suspended and attached biomass. Results revealed that Escherichia coli, Pseudomonas sp. and Nitrosomonas communis played a significant role in biomass carrier, while Acinetobactor sp. were dominant in activated sludge of the pilot plant. Identification of ciliated protozoa populations rendered six species of ciliates in the plant, among which Vorticella was the most dominant.

  9. Study of the viscosity behaviour of glasses obtained from urban wastewater treatment sludges from Egypt using hot stage microscopy

    NASA Astrophysics Data System (ADS)

    Garcia-Valles, M.

    2012-04-01

    The volume of sludge produced in wastewater treatment plants in Egypt is becoming more important; this paper studied the chemical composition of sludge from four treatment plants located around Nile delta and valley: El-Sadat City (E-01), Alexandria (E-02), Abo-Rawash (E-03) and Minufiya (E-04), and is suggested as a possible solution, the vitrification of these sludges. Another important objective for obtaining correct this glass is to know the viscosity temperature curve, including developing a prototype of hot stage microscopy (HSM) and development of software suitable for the analysis of images. Each image has different morphology related to different viscosity, can that way determine the viscosity at the temperature of heating. The chemical composition of these sludges is close to a basalt rock except that the phosphorus content is higher, and sometimes with a certain proportion of heavy metals. Cr, Zn and Pb exceeds the limit allowed to be used in agriculture, this is one of the solutions actually used. In general, major oxides to sludges ranging from: SiO2 (36-48 wt %), Al2O3 (9-16 wt %), CaO (5-25 wt %), P2O5 (1.5-11 wt %) and Fe2O3 (~ 9 wt %), this composition. Since of them are formulated and prepared by four different glasses, in some cases being necessary to incorporate a quantity of raw materials. The sludge combustion heat, the thermal evolution, vitreous transition temperature (Tg) and crystal growth temperature of the glasses were obtained by carrying out a differential thermal analysis. Tg of the four glasses vary between 650 and 725 °C and the growth occurs between 938 and 1033 °C. The vitreous transition temperature was also determined with a dilatometer. Each original glass has been characterized mineralogically by X-ray diffraction: quartz, plagioclase, K-feldspar and calcite. Two samples contained gypsum and some clay mineral traces. We also obtained the viscosity - temperature curves with the aid of the hot stage microscopy that has allowed

  10. Transport and fate of silver as polymer-stabilised nanoparticles and ions in a pilot wastewater treatment plant, followed by sludge digestion and disposal of sludge/soil mixtures: A case study.

    PubMed

    Hedberg, Jonas; Baresel, Christian; Odnevall Wallinder, Inger

    2014-01-01

    A case study of transport and changes in properties of polymer-stabilised Ag NPs is presented in this paper investigating their interaction in different treatment steps within a fully realistic pilot wastewater treatment plant (WWTP), in anaerobic digested sludge, and in soil/sludge mixtures. The fate of the same Ag NPs was tracked in these environments, hence taking the history of the Ag NPs into account. The results show that most of the Ag NPs end up in the sludge (80-100%), also after anaerobically digestion. Furthermore, the fraction of silver in the supernatant was very low after 48 h incubation with silver-containing digested sludge mixed with different soil types. However, when Ag NPs were added directly to the sludge/soil mixture, soluble silver was present in the supernatant with sandy soil, but not with clayey soil. In all, generated findings show that risk assessments and toxicological studies of Ag NPs suspensions must take into account possible chemical and particle transformations upon environmental entry, as silver in general become less soluble when transported to WWTPs and interacting with sludge, and soil.

  11. Ecological stabilization of thickened wastewater sludge from CAST process.

    PubMed

    Cui, Y B; Wu, X H; Liu, Zh Sh; Liu, J Zh; Lin, Y Z

    2008-01-01

    Wastewater sludge ecological stabilization (WWSES) pilot scale experiments were conducted for thickening treatment and disposal of sludge which came from Cyclic Activated Sludge Technology (CAST) process. The study was performed over the periods from June to November 2005 and from May to November 2006, on a bed of 80 m2. The sludge loadings were stopped for the winter from December 2005 and resumed in May 2006. The results shows that dried sludge layer has higher permeation coefficients of 0.15-1.3 m/h. It is suggested that the percolate did not filtrate downwards evenly, part of percolate filtrates downwards along stems, roots and cracks existing in dried sludge which have lower flow resistance. The relationship of dried sludge thickness and operation time is in accord with quadratic equation under fluctuating sludge loadings. Linear regression equation can indicate dried sludge thickness variation under fixed sludge loading. In comparison with natural ones, coarse protein content of Phragmites australis roots in the system is twice as high, coarse fiber content of roots, coarse fat content of stems and leaf are obviously higher; and coarse protein content of Typha augustifolia in the system are obviously higher, while coarse fat and coarse fiber contents have no significant difference.

  12. Response of anaerobic granular sludge to a shock load of zinc oxide nanoparticles during biological wastewater treatment.

    PubMed

    Mu, Hui; Zheng, Xiong; Chen, Yinguang; Chen, Hong; Liu, Kun

    2012-06-05

    The increasing use of zinc oxide nanoparticles (ZnO NPs) in consumer and industrial products highlights a need to understand their potential environmental impacts. In this study, the response of anaerobic granular sludge (AGS) to a shock load of ZnO NPs during anaerobic biological wastewater treatment was reported. It was observed that the extracellular polymeric substances (EPS) of AGS and the methane production were not significantly influenced at ZnO NPs of 10 and 50 mg per gram of total suspended solids (mg/g-TSS), but they were decreased when the dosage of ZnO NPs was greater than 100 mg/g-TSS. The visualization of EPS structure with multiple fluorescence labeling and confocal laser scanning microscope revealed that ZnO NPs mainly caused the decrease of proteins by 69.6%. The Fourier transform infrared spectroscopy analysis further indicated that the C-O-C group of polysaccharides and carboxyl group of proteins in EPS were also changed in the presence of ZnO NPs. The decline of EPS induced by ZnO NPs resulted in their deteriorating protective role on the inner microorganisms of AGS, which was in correspondence with the observed lower general physiological activity of AGS and the death of microorganisms. Further investigation showed that the negative influence of ZnO NPs on methane production was due to their severe inhibition on the methanization step.

  13. Psychrophilic (6--15 {degree}C) high-rate anaerobic treatment of malting wastewater in a two-module expanded granular sludge bed system

    SciTech Connect

    Rebac, S.; Lier, J.B. van; Lens, P.; Cappellen, J. van; Vermeulen, M.; Stams, A.J.M.; Lettinga, G.; Dekkers, F.; Swinkels, K.T.M.

    1998-11-01

    Psychrophilic (6--15 C) anaerobic treatment of malting wastewater was investigated. A two-module expanded granular sludge bed reactor system with a total volume of 140 dm{sup 3} was used to treat malting wastewater having a soluble and total chemical oxygen demand (COD) between 233 and 1778 mg dm{sup {minus}3} and between 317 and 4422 mg dm{sup {minus}3}, respectively. The removal efficiencies at 6 C were 47 and 71% of the soluble and volatile fatty acids (VFA) COD, at organic loading rates (OLR) ranging between 3.3 and 5.8 kg of COD m{sup {minus}3} day{sup {minus}1}. The removal efficiencies at 10--15 C were 67--78 and 90--96% of the soluble and VFA COD at an OLR between 2.8 and 12.3 kg of COD m{sup {minus}3} day{sup {minus}1}. The specific methanogenic activity of the sludge present in each module increased 2--3-fold during system operation for 400 days. The relatively high concentration of suspended solids in the influent (25% of the total COD) caused a deterioration of the sludge bed in the first reactor module. This was aggravated by excessive growth of acidifying biomass, which persisted in the first module sludge bed and resulted in granular sludge flotation. However, the second module could accommodate the increased OLR, this providing a very high effluent quality (soluble COD < 200 mg dm{sup {minus}3}) of the total system. The stability of module 1 concerning suspended solids could be restored by presettling the wastewater.

  14. A combined approach for a better understanding of wastewater treatment plants operation: statistical analysis of monitoring database and sludge physico-chemical characterization.

    PubMed

    Avella, A C; Görner, T; Yvon, J; Chappe, P; Guinot-Thomas, P; de Donato, Ph

    2011-01-01

    Biological wastewater treatment plants (WWTP) are complex systems to assess. Many parameters are recorded daily in WWTP to monitor and control the treatment process, providing huge amounts of registered data. A combined approach of extracting information from the WWTP databases by statistical methods and from the sludge physico-chemical characterization was used here for a better understanding of the WWTP operation. The monitored parameters were analysed by multivariate statistical methods: Principal Components Analysis and multiple partial linear regression. The WWTP operational conditions determine the sludge characteristics. The bacterial activity of the sludge in terms of extra-cellular polymeric substances (EPS) production was assessed using size exclusion chromatography and the internal structure of sludge flocs was observed by confocal laser scanning microscopy. The diagnosis of three paper mill WWTP enabled the identification of an important EPS production, the presence of the nitrification process and the presence of PO(4)(3-) nutrient in WWTP-A. These three main characteristics of WWTP-A were related with a systematically good sludge settling. In WWTP-B and C with bad settling, the bacterial activity was weak.

  15. Recovery of volatile fatty acids from fermentation of sewage sludge in municipal wastewater treatment plants.

    PubMed

    Longo, S; Katsou, E; Malamis, S; Frison, N; Renzi, D; Fatone, F

    2015-01-01

    This work investigated the pilot scale production of short chain fatty acids (SCFAs) from sewage sludge through alkaline fermentation and the subsequent membrane filtration. Furthermore, the impact of the fermentation liquid on nutrient bioremoval was examined. The addition of wollastonite in the fermenter to buffer the pH affected the composition of the carbon source produced during fermentation, resulting in higher COD/NH4-N and COD/PO4-P ratios in the liquid phase and higher content of propionic acid. The addition of wollastonite decreased the capillary suction time (CST) and the time to filter (TTF), resulting in favorable dewatering characteristics. The sludge dewatering characteristics and the separation process were adversely affected from the use of caustic soda. When wollastonite was added, the permeate flux increased by 32%, compared to the use of caustic soda. When fermentation liquid was added as carbon source for nutrient removal, higher removal rates were obtained compared to the use of acetic acid.

  16. Pilot-scale anaerobic co-digestion of sewage sludge with agro-industrial by-products for increased biogas production of existing digesters at wastewater treatment plants.

    PubMed

    Maragkaki, A E; Fountoulakis, M; Gypakis, A; Kyriakou, A; Lasaridi, K; Manios, T

    2017-01-01

    Due to low degradability of dry solids, most of the digesters at wastewater treatment plants (WWTP) operate at low loading rates resulting in poor biogas yields. In this study, co-digestion of sewage sludge (SS) with olive mill wastewater (OMW), cheese whey (CW) and crude glycerol (CG) was studied in an attempt to improve biogas production of existing digesters at WWTPs. The effect of agro-industrial by-products in biogas production was investigated using a 220L pilot-scale (180L working volume) digester under mesophilic conditions (35°C) with a total feeding volume of 7.5L daily and a 24-day hydraulic retention time. The initial feed was sewage sludge and the bioreactor was operated using this feed for 40days. Each agro-industrial by-product was then added to the feed so that the reactor was fed continuously with 95% sewage sludge and 5% (v/v) of each examined agro-industrial by-product. The experiments showed that a 5% (v/v) addition of OMW, CG or CW to sewage sludge significantly increased biogas production by nearly 220%, 350% and 86% as values of 34.8±3.2L/d, 185.7±15.3L/d and 45.9±3.6L/d respectively, compared to that with sewage sludge alone (375ml daily, 5% v/v in the feed). The average removal of dissolved chemical oxygen demand (d-COD) ranged between 72 and 99% for organic loading rates between 0.9 and 1.5kgVSm(-3)d(-1). Reduction in the volatile solids ranged between 25 and 40%. This work suggests that methane can be produced very efficiently by adding a small concentration (5%) of agro-industrial by-products and especially CG in the inlet of digesters treating sewage sludge.

  17. Greenhouse evaluation of struvite and sludges from municipal wastewater treatment works as phosphorus sources for plants.

    PubMed

    Plaza, César; Sanz, Rafael; Clemente, Cristina; Fernández, José M; González, Ricardo; Polo, Alfredo; Colmenarejo, Manuel F

    2007-10-03

    Sewage sludge obtained by a conventional aerobic activated sludge process (CSS), P-rich sewage sludge from an enhanced biological P removal process (PRS), and struvite (MgNH 4PO 4 x 6H 2O) recovered from an anaerobic digester supernatant using a low-grade MgO byproduct from the calcination of natural magnesite as a Mg source (STR) were evaluated as P sources for plant growth. For this purpose, a greenhouse pot experiment was conducted using a P-deficient loamy sand soil and perennial ryegrass ( Lolium perenne L.) as the test crop. The P sources were applied at rates equivalent to 0, 9, 17, 26, 34, and 44 mg/kg P. Single superphosphate (SUP) was used as reference for comparison with the other P sources. The results obtained indicated that STR was as effective as SUP in increasing the dry matter yield and supplying P to ryegrass. Compared to SUP and STR, PRS and especially CSS exhibited less agronomic effectiveness as P sources, which may be attributed, at least partially, to greater soil P fixation because of the larger amount of Fe incorporated with these materials.

  18. Wastewater Treatment Evaluation, Mather AFB, CA

    DTIC Science & Technology

    1974-06-01

    Flov measurement. g. Poli.’ihing lagoons. h. Anaerobic Sludge Digestion. i. Sludge drying on sand beds. In this report, processes a... process . Solids (sludge) removed from the wastewater in the secondary clarifiers are pumped to the treatment facility influent channel upstream from...undetermined amount of wastewater to return, by gravity, to the recirculation pumps. The effluent from the two secondary clarifiers is combined at

  19. Treatment of a chocolate industry wastewater in a pilot-scale low-temperature UASB reactor operated at short hydraulic and sludge retention time.

    PubMed

    Esparza-Soto, M; Arzate-Archundia, O; Solís-Morelos, C; Fall, C

    2013-01-01

    The aim of this work was to evaluate the performance of a 244-L pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of chocolate-processing industry wastewater under low-temperature conditions (18 ± 0.6 °C) for approximately 250 d. The applied organic loading rate (OLR) was varied between 4 and 7 kg/m(3)/d by varying the influent soluble chemical oxygen demand (CODsol), while keeping the hydraulic retention time constant (6.4 ± 0.3 h). The CODsol removal efficiency was low (59-78%). The measured biogas production increased from 240 ± 54 to 431 ± 61 L/d during the experiments. A significant linear correlation between the measured biogas production and removed OLR indicated that 81.69 L of biogas were produced per kg/m(3) of CODsol removed. Low average reactor volatile suspended solids (VSS) (2,700-4,800 mg/L) and high effluent VSS (177-313 mg/L) were derived in a short sludge retention time (SRT) (4.9 d). The calculated SRT was shorter than those reported in the literature, but did not affect the reactor's performance. Average sludge yield was 0.20 kg-VSS/kg-CODsol. The low-temperature anaerobic treatment was a good option for the pre-treatment of chocolate-processing industry wastewater.

  20. Atmospheric Release of Organic Chlorinated Compounds from the Activated-Sludge Wastewater Treatment Process.

    DTIC Science & Technology

    1980-05-01

    the uncertainties of --y were considerably less. Ii 24 2.0 EXPERIMENTAL METHODS The study was comprised of two aspects: field surveys of an activated...Tables 29 and 31. Neither survey generated detectable levels for Hex-BCH, Hex-VCL or chlordene with the charcoal tubes. With the Chromosorb 102 tube...two wastewater samples. N/D refers to None Detected Table 18 Air Sample Results of Aeration Basin Survey (IV) (March 24, 1979 9AM-1PM) Concentration

  1. Simulating a cyclic activated sludge system by employing a modified ASM3 model for wastewater treatment.

    PubMed

    Gao, Feng; Nan, Jun; Zhang, Xinhui

    2017-03-13

    To interpret the biological nutrient removal in a cyclic activated sludge system (CAS), a modified model was developed by combining the process of simultaneous storage and growth, and the kinetics of soluble microbial product (S SMP) and extracellular polymeric substance (X EPS) with activated sludge model no. 3 (ASM3). These most sensitive parameters were initially selected whilst parameters with low sensitivity were given values from literature. The selected parameters were then calibrated on an oxygen uptake rate test and a batch CAS reactor on an operational cycle. The calibrated model was validated using a combination of the measurements from a batch CAS reactor operated for 1 month and the average deviation method. The simulations demonstrated that the modified model was capable of predicting higher effluent concentrations compared to outputs of the ASM3 model. Additionally, it was also shown that the average deviation of effluent S COD, S NH, S SMP and X EPS simulated with the modified model was all less than 1 mg L(-1). In summary, the model could effectively describe biological processes in a CAS reactor and provide a wonderful tool for operation.

  2. Characterization of refractory matters in dyeing wastewater during a full-scale Fenton process following pure-oxygen activated sludge treatment.

    PubMed

    Bae, Wookeun; Won, Hosik; Hwang, Byungho; de Toledo, Renata Alves; Chung, Jinwook; Kwon, Kiwook; Shim, Hojae

    2015-04-28

    Refractory pollutants in raw and treated dyeing wastewaters were characterized using fractional molecular weight cut-off, Ultraviolet-vis spectrophotometry, and high-performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI/MS). Significant organics and color compounds remained after biological (pure-oxygen activated sludge) and chemical (Fenton) treatments at a dyeing wastewater treatment plant (flow rate ∼100,000m(3)/d). HPLC-ESI/MS analysis revealed that some organic compounds disappeared after the biological treatment but reappeared after the chemical oxidation process, and some of that were originally absent in the raw dyeing wastewater was formed after the biological or chemical treatment. It appeared that the Fenton process merely impaired the color-imparting bonds in the dye materials instead of completely degrading them. Nevertheless, this process did significantly reduce the soluble chemical oxygen demand (SCOD, 66%) and color (73%) remaining after initial biological treatment which reduced SCOD by 53% and color by 13% in raw wastewater. Biological treatment decreased the degradable compounds substantially, in such a way that the following Fenton process could effectively remove recalcitrant compounds, making the overall hybrid system more economical. In addition, ferric ion inherent to the Fenton reaction effectively coagulated particulate matters not removed via biological and chemical oxidation.

  3. Bioconversion of industrial wastewater and wastewater sludge into Bacillus thuringiensis based biopesticides in pilot fermentor.

    PubMed

    Yezza, A; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2006-10-01

    Starch industry wastewater (SWW), slaughterhouse wastewater (SHWW) and secondary sludges from three different wastewater treatment plants (Jonquière--JQS, Communauté Urbaine de Québec--CUQS and Black lake-BLS) were used as raw materials for the production of Bacillus thuringiensis (Bt) based biopesticides in a pilot scale fermentor (100 L working volume). The slaughterhouse wastewater exhibited the lowest Bt growth and entomotoxcity (Tx) potential (measured against spruce budworm) due to low availability of carbon, nitrogen and other nutrients. Performance variation (growth, sporulation, proteolytic activity and Tx potential) within the three types of sludges was directly related to the availability of nitrogen and carbohydrates, which could change with sludge origin and methods employed for its generation. The Tx potential of Bt obtained in different secondary sludges (JQS: 12 x 10(9) SBU/L; CUQS: 13 x 10(9) SBU/L and BLS: 16 x 10(9) SBU/L) and SWW (18 x 10(9) SBU/L) was higher than the soybean based synthetic medium (10 x 10(9) SBU/L). The maximum protease activity was obtained in CUQ secondary sludge (4.1 IU/mL) due to its high complex protein concentration. Nevertheless, high carbohydrate concentration in SWW repressed enzyme production. The secondary sludges and SWW were found to be suitable raw materials for high potency Bt biopesticide production.

  4. An integrated AMBBR and IFAS-SBR process for municipal wastewater treatment towards enhanced energy recovery, reduced energy consumption and sludge production.

    PubMed

    Gu, Jun; Xu, Guangjing; Liu, Yu

    2017-03-01

    The conventional activated sludge (CAS) process has been widely employed for wastewater treatment for more than one hundred years. Recently, more and more concerns have been raised on the CAS process due to its high energy consumption and production of huge amount of waste activated sludge, which are inevitably linked to the issue of environmental sustainability and global climate change. Facing to such emerging and challenging situation, this study reported a novel A-B process in which an anaerobic moving bed biofilm reactor (AMBBR) served a lead A-stage for COD capture towards biogas production and an integrated fixed-biofilm and activated sludge sequencing batch reactor (IFAS-SBR) was employed as B-stage for biological nitrogen removal. Results showed that about 85% of wastewater COD was removed in the steady-state AMBBR with a total energy production rate of 0.28 kWh/m(3) wastewater treated, while 85% of N-removal was achieved when the stable nitrite shunt was established in the IFAS-SBR. Moreover, 90% of dissolved methane in the AMBBR effluent could be removed by the proposed flash chamber at the lower energy demand of 0.12 kWh/m(3) which could be offset by the potential energy harvested from produced methane. Compared to the CAS process, the production of waste sludge was reduced by about 75% in the proposed A-B process due to the efficient COD capture at the A-stage, leading to significant energy savings from aeration for COD oxidation and post-treatment of waste sludge at the B-stage. Consequently, this study offers in-depth insights into A-B process which should be considered as an ideal candidate for achieving the energy-neutral or even energy positive operation of a municipal wastewater treatment. Given the complex situation in A-B process, future study is needed to look into the system optimization towards the operational synergy between A- and B-stage in terms of energy recovery and nitrogen removal.

  5. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)?

    PubMed

    Escolà Casas, Mònica; Bester, Kai

    2015-02-15

    The degradation of seven compounds which are usually recalcitrant in classical activated sludge treatment (e.g., diclofenac, propranolol, iopromide, iohexol, iomeprol tebuconazole and propiconazole) was studied in a biofilm reactor (slow sand filtration). This reactor was used to treat real effluent-wastewater at different flow rates (hydraulic loadings) under aerobic conditions so removal and degradation kinetics of these recalcitrant compounds were calculated. With the hydraulic loading rate of 0.012 m(3)m(2)h(-1) the reactor removed 41, 94, 58, 57 and 85% of diclofenac, propranolol, iopromide, iohexol and iomeprol respectively. For these compounds the removal efficiency was dependent on hydraulic residence-times. Only 59 and 21% of the incoming tebuconazole and propiconazole respectively were removed but their removal did not depend on hydraulic residence time. Biofilm reactors are thus efficient in removing micro-pollutants and could be considered as an option for advanced treatment in small wastewater treatment plants.

  6. Adaptability comparison of E. fetida in vermicomposting against sludge from livestock wastewater treatment plant based on their several growth stages.

    PubMed

    Hao, Xiaoxia; Hu, Hongwen; Li, Xuewei; Jiang, Dongmei; Zhu, Li; Bai, Lin

    2016-08-01

    Vermicomposting is a low-cost, eco-efficient process to deal with organic wastes. Mixtures of swine manure (SM), cow dung (CD), and animal wastewater treatment plant sludge (S) were applied as feeds, and Eisenia fetida was employed in this study to investigate the vermicomposting efficiency based on their several growth stages. The hatching test resulted in a 100 % hatching rate in S60SM40 (60 % S + 40 % SM) mixture, while 4.40 hatchlings per cocoon were observed. The growth of infancy performed best in 0-20 % CD mixtures (0.05 ± 0.002 g), followed by in SM + CD (0.04 ± 0.003 g). The highest growth rate of young and adult E. fetida was noticed in CD + S mixtures (11.14 ± 0.01 and 6.00 ± 0.02 mg/d/worm, respectively), while the higher cocoon production of adults was noticed in S + SM mixtures especially in S40SM60 (537 ± 5 worms). Moreover, the conversion of solids; the modified pH value; the reduction in total organic carbon (TOC); total Kjeldahl nitrogen (TKN), NH4-N, NO3-N, and C:N ratio; and the rich in total available phosphorus (TAP) and total potassium (TK) content by young and adult E. fetida were related to the growth of worms. Such work would benefit understanding and to increase the efficiency of vermicompost processing of different wastes.

  7. Current levels and composition profiles of emerging halogenated flame retardants and dehalogenated products in sewage sludge from municipal wastewater treatment plants in China.

    PubMed

    Zeng, Lixi; Yang, Ruiqiang; Zhang, Qinghua; Zhang, Haidong; Xiao, Ke; Zhang, Haiyan; Wang, Yawei; Lam, Paul K S; Jiang, Guibin

    2014-11-04

    Occurrence of new toxic chemicals in sludge from wastewater treatment plants (WWTPs) is of concern for the environment and human health. Alternative halogenated flame retardants (HFRs) are a group of potentially harmful organic contaminants in the environment. In this study, a nationwide survey was carried out to identify the occurrence of HFRs and their potential dehalogenated products in sewage sludge from 62 WWTPs in China. Of all 20 target chemicals analyzed, decabromodiphenyl ethane (DBDPE), hexabromocyclododecane (HBCD) and 1, 2-bis (2,4,6-tribromophenoxy)-ethane (BTBPE) were detected in all sludge samples, and the concentrations were in the range of 0.82-215, 0.09-65.8, and 0.10-2.26 ng g(-1) d.w., respectively. Dechlorane Plus (DP) was found in 60 of 62 samples, and the concentration ranged from nd-298 ng g(-1) with a mean of 18.9 ng g(-1) d.w. The anti-DP fractional abundance fanti (0.79) in the samples was much higher than the commercial DP composition (fanti=0.59), indicating a stereoselective degradation. Comparison with global sludge concentrations of HFRs indicate that China is at the medium pollution level in the world. Principal components analysis revealed that strong correlations existed between ln-transformed concentrations (natural logarithm) of the dominant BFRs and total organic carbon (TOC) as well as industrial wastewater proportion, influent volume and serving population. Significant linear relationships (R=0.360-0.893, p<0.01) were found among emerging brominated flame retardants (BFRs), suggesting their common commercial applications and release sources to the environment. Two kinds of dehalogenated products, pentabromocyclododecane (PBCD) and undecachloropentacyclooctadecadiene (Cl11-DP), derived from HBCD and DP, were also identified in sewage sludge for the first time.

  8. Evaluation of Municipal Wastewater Treatment Plant Activated Sludge for Biodegradation of Propylene Glycol as an Aircraft Deicing Fluid

    DTIC Science & Technology

    2012-03-01

    unit for use. 31 Explore other treatment and disposal options for used ADF. While anaerobic digestion of used ADF has been widely...scale sequencing batch reactor containing municipal waste water treatment facility activated sludge (AS) performing simultaneous organic carbon...all used ADF in an approved manner. Available options include recycling, disposal under a waste contract, or onsite pretreatment (United States EPA

  9. Treatment of coal-conversion wastewater with the powdered activated carbon-contact stabilization activated-sludge process. First semiannual technical progress report, August 1, 1980-January 31, 1981

    SciTech Connect

    Suidan, M.T.; Pirbazari, M.; Gee, C.S.; Deady, M.A.

    1981-01-01

    The treatment of coal conversion wastewaters has traditionally been accomplished through the use of the activated sludge process and its various modifications. General observations have been that phenol was degraded efficiently; however, very poor removal efficiencies of thiocyanate, cyanide, and ammonia were obtained. The addition of powdered activated carbon (PAC) to the activated sludge process has been reported to result in a number of distinct advantages. Generally, however, improving the effluent water quality beyond the capabilities of conventional biological treatment and enhancing the treatability of wastewaters that inhibit or toxify biological treatment systems are the primary objectives of utilizing PAC in secondary biological treatment. The focus of the present research project is to assess the effectiveness of the powdered activated carbon-contact stabilization activated sludge process in the treatment of a coking wastewater. The purpose of the contact tank in such a process will be to provide sufficient time for the adsorbable constituents of the coking wastewater to adsorb onto the PAC. The liquor leaving the contact tank is then clarified with the concentratrated underflow receiving treatment in the stabilization tank. After stabilization the sludge is returned to the contact tank. The clarifier supernatant is then nitrified in an activated sludge-type nitrification process and the nitrified effluent is subsequently denitrified in an anoxic filter.

  10. Seasonal and time variability of heavy metal content and of its chemical forms in sewage sludges from different wastewater treatment plants.

    PubMed

    García-Delgado, M; Rodríguez-Cruz, M S; Lorenzo, L F; Arienzo, M; Sánchez-Martín, M J

    2007-08-15

    Sewage sludges obtained from seven wastewater treatment plants from the province of Salamanca, Spain, were periodically sampled to determine seasonal and time variation of their elemental composition over 2000 to 2002. The aim of this paper was to provide additional insight to evaluate the potential environmental impact following soil incorporation of these materials as amendments. Aqua regia extractable metals (pseudo total content) of Cd, Cr, Cu, Ni, Pb and Zn were determined and furthermore, the main chemical forms of metals within the sludge were evaluated using a five-step fractionation procedure. All the studied sludges displayed high fertility properties due to their richness of OC, P and K. Total mean concentrations of Cd, Cr, Cu, Ni, Pb and Zn in the sludges were within the regulation of the Spanish legislation. Using an multifactor analysis of variance, significant differences between Cr, Cu, Ni, Pb and Zn pseudo total contents (p<0.01) of sludges at different sites were found while the Cd content was statistically similar. Also significant differences were found between these pseudo total contents of heavy metals in samples collected along the time after three years (0.001sludge up to 35% of total metal content. Cu and Pb distributed in the organically bound fraction up to 25% and 60%, respectively. The Cd, Cr, Cu, Ni, Zn in sludges were predominantly bound within the oxide or silicate components. Significant differences between distribution fractions of metals considered together (p<0.001) were found at different years, and for each individual metal, significant differences can be observed between distribution fractions of sludges collected at different sites, times and seasonal periods. The results showed that the studied sludges can

  11. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    PubMed Central

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  12. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    PubMed

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-12-11

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  13. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment.

    PubMed

    Ruffino, Barbara; Campo, Giuseppe; Genon, Giuseppe; Lorenzi, Eugenio; Novarino, Daniel; Scibilia, Gerardo; Zanetti, Mariachiara

    2015-01-01

    Performances of mechanical and low-temperature (<100°C) thermal pre-treatments were investigated to improve the present efficiency of anaerobic digestion (AD) carried out on waste activated sludge (WAS) in the largest Italian wastewater treatment plant (2,300,000p.e.). Thermal pre-treatments returned disintegration rates of one order of magnitude higher than mechanical ones (about 25% vs. 1.5%). The methane specific production increased by 21% and 31%, with respect to untreated samples, for treatment conditions of respectively 70 and 90°C, 3h. Thermal pre-treatments also decreased WAS viscosity. Preliminary energy and economic assessments demonstrated that a WAS final total solid content of 5% was enough to avoid the employment of auxiliary methane for the pre-treatment at 90°C and the subsequent AD process, provided that all the heat generated was transferred to WAS through heat exchangers. Moreover, the total revenues from sale of the electricity produced from biogas increased by 10% with respect to the present scenario.

  14. Comparison of the removal of phthalates and other organic pollutants from industrial wastewaters in membrane bioreactor and conventional activated sludge treatment plants.

    PubMed

    Llop, A; Borrull, F; Pocurull, E

    2009-01-01

    In recent years greater attention has been paid to the presence of pollutants in wastewater treatment plants, mainly because of strict environmental regulations and the possibility of reusing treated water in industrial processes. Since some organic pollutant compounds are not sufficiently removed in conventional activated sludge treatment (CAST) plants, new treatment processes have been developed, such as membrane bioreactors (MBRs). In this study a submerged membrane bioreactor (MBR) was used to treat mixed industrial wastewaters in parallel with a CAST plant. Two hydraulic retention times (HRT) of wastewater were tested as one of the operational conditions of MBR and the quality of effluents of the two processes were studied and compared. Several general quality parameters were analysed in wastewaters: chemical oxygen demand (COD), pH, conductivity, nitrogen, phosphate, suspended solids (SS) and turbidity. The two systems reduced COD by around 90%. SS was reduced by around 81% in the CAST plant and around 90% in the MBR plant. The results for the other general parameters were similar or better in the MBR process, which worked at a lower HRT. We also studied the removal of a group of six phthalates and bis(2-ethylhexyl)adipate ester by SPME/GC-MS in the two treatment plants. Most of these compounds were not completely removed in the two treatment plants and were identified at low microg l(-1) levels. We also tentatively identify some organic compounds in the wastewaters. Most of the compounds we found in the influent, MBR effluent and CAST effluent were benzene derivates, styrene, naphthalene and naphthalene derivates, and phenol derivates.

  15. Electricity generation using chocolate industry wastewater and its treatment in activated sludge based microbial fuel cell and analysis of developed microbial community in the anode chamber.

    PubMed

    Patil, Sunil A; Surakasi, Venkata Prasad; Koul, Sandeep; Ijmulwar, Shrikant; Vivek, Amar; Shouche, Y S; Kapadnis, B P

    2009-11-01

    Feasibility of using chocolate industry wastewater as a substrate for electricity generation using activated sludge as a source of microorganisms was investigated in two-chambered microbial fuel cell. The maximum current generated with membrane and salt bridge MFCs was 3.02 and 2.3 A/m(2), respectively, at 100 ohms external resistance, whereas the maximum current generated in glucose powered MFC was 3.1 A/m(2). The use of chocolate industry wastewater in cathode chamber was promising with 4.1 mA current output. Significant reduction in COD, BOD, total solids and total dissolved solids of wastewater by 75%, 65%, 68%, 50%, respectively, indicated effective wastewater treatment in batch experiments. The 16S rDNA analysis of anode biofilm and suspended cells revealed predominance of beta-Proteobacteria clones with 50.6% followed by unclassified bacteria (9.9%), alpha-Proteobacteria (9.1%), other Proteobacteria (9%), Planctomycetes (5.8%), Firmicutes (4.9%), Nitrospora (3.3%), Spirochaetes (3.3%), Bacteroides (2.4%) and gamma-Proteobacteria (0.8%). Diverse bacterial groups represented as members of the anode chamber community.

  16. The survival of Escherichia coli, faecal coliforms and enterobacteriaceae in general in soil treated with sludge from wastewater treatment plants.

    PubMed

    Estrada, I B; Aller, A; Aller, F; Gómez, X; Morán, A

    2004-06-01

    We monitored the effect of the application of treated sludge on the behaviour of enterobacteriaceae (mainly faecal coliforms and especially Escherichia coli) in the soil, and studied their evolution over time after application. Three different sludges were used: two from a municipal sewage plant, one of them had been subjected to anaerobic digestion and heat drying, and the other to anaerobic digestion and mechanical dehydration, and one from a dairy waste treatment to aerobic digestion and gravity thickening. Two types of tests were carried out: type O, in the open air, with no possibility of controlling humidity or temperature; and type L, under laboratory conditions, with controlled temperature and humidity. Sludge tests were also run on unscreened soil previously treated with chemical fertilizer. After 80 days of experimentation the populations of faecal coliforms and E. coli had decreased considerably or were undetectable in assays carried out on the soil/sludge mixtures, under both open-air and laboratory conditions, but that, over the same period, in the mixtures containing chemical fertilizer (calcium ammonium nitrate) there had been a considerable increase in the micro-organism populations studied.

  17. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    PubMed

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  18. Decolorization and treatment of Kokuto-shochu distillery wastewater by the combination treatment involving biodecolorization and biotreatment by Penicillium oxalicum d, physical decolorization by ozonation and treatment by activated sludge.

    PubMed

    Watanabe, Takashi; Tanaka, Miki; Masaki, Kazuo; Fujii, Tsutomu; Iefuji, Haruyuki

    2010-11-01

    Kokuto-shochu is a traditional Japanese distilled liquor made from brown sugar. Kokuto-shochu distillery wastewater (KDW) contains high concentrations of organic compounds and brown pigments (called molasses pigments) which are hardly decolorized by general biological wastewater treatment. A fungus, Penicillium oxalicum d, which we isolated in a previous study, decolorizes 47% of the color from KDW without the addition of any nutrients. P. oxalicum d decolorizes KDW by absorbing the pigments into its mycelia. Here we describe a KDW treatment system that combines biodecolorization and biotreatment by P. oxalicum d with treatment by activated sludge and physical decolorization by ozonation. Adding HClO to suppress bacterial growth and replacing fresh seed sludge at regular intervals helped to maintain the dominance and decolorization ability of P. oxalicum d. In a laboratory-scale demonstration, 48 cycles (12 days) achieved a decolorization ratio of 90% and removed more than 97% of dissolved organic carbon (DOC), dissolved total nitrogen (DTN) and dissolved total phosphorus (DTP). A major feature of our system is that it uses only 6% of the water used in an activated sludge-ozonation system.

  19. Transformation of Four Silver/Silver Chloride Nanoparticles during Anaerobic Treatment of Wastewater and Post-processing of Sewage Sludge

    EPA Science Inventory

    The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-...

  20. A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  1. Treatment of natural rubber processing wastewater using a combination system of a two-stage up-flow anaerobic sludge blanket and down-flow hanging sponge system.

    PubMed

    Tanikawa, D; Syutsubo, K; Hatamoto, M; Fukuda, M; Takahashi, M; Choeisai, P K; Yamaguchi, T

    2016-01-01

    A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kg COD/(m(3).d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB-DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB-DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.

  2. Sludge treatment studies

    SciTech Connect

    Beahm, E.C.; Weber, C.F.; Dillow, T.A.; Bush, S.A.; Lee, S.Y.; Hunt, R.D.

    1997-06-01

    Solid formation in filtered leachates and wash solutions was seen in five of the six sludges treated by Enhanced Sludge Washing. Solid formation in process solutions takes a variety of forms: very fine particles, larger particulate solids, solids floating in solution like egg whites, gels, crystals, and coatings on sample containers. A gel-like material that formed in a filtered leachate from Enhanced Sludge Washing of Hanford T-104 sludge was identified as natrophosphate, Na{sub 7}(PO{sub 4}){sub 2}F{center_dot}19H{sub 2}O. A particulate material that formed in a filtered caustic leachate from Hanford SX-113 sludge contained sodium and silicon. This could be any of a host of sodium silicates in the NaOH-SiO{sub 2}-H{sub 2}O system. Acidic treatment of Hanford B-202 sludge with 1 M, 3 M, and 6 M HNO{sub 3} sequential leaching resulted in complete dissolution at 75 C, but not at ambient temperature. This treatment resulted in the formation of solids in filtered leachates. Analyses of the solids revealed that a gel material contained silica with some potassium, calcium, iron, and manganese. Two phases were embedded in the gel. One was barium sulfate. The other could not be identified, but it was determined that the only metal it contained was bismuth.

  3. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms.

    PubMed

    Fischer, Klaus; Majewsky, Marius

    2014-08-01

    Municipal wastewaters contain a multitude of organic trace pollutants. Often, their biodegradability by activated sludge microorganisms is decisive for their elimination during wastewater treatment. Since the amounts of micropollutants seem too low to serve as growth substrate, cometabolism is supposed to be the dominating biodegradation process. Nevertheless, as many biodegradation studies were performed without the intention to discriminate between metabolic and cometabolic processes, the specific contribution of the latter to substance transformations is often not clarified. This minireview summarizes current knowledge about the cometabolic degradation of organic trace pollutants by activated sludge and sludge-inherent microorganisms. Due to their relevance for communal wastewater contamination, the focus is laid on pharmaceuticals, personal care products, antibiotics, estrogens, and nonylphenols. Wherever possible, reference is made to the molecular process level, i.e., cometabolic pathways, involved enzymes, and formed transformation products. Particular cometabolic capabilities of different activated sludge consortia and various microbial species are highlighted. Process conditions favoring cometabolic activities are emphasized. Finally, knowledge gaps are identified, and research perspectives are outlined.

  4. Impact of ozone pre-treatment on the performance of upflow anaerobic sludge blanket treating pre-treated grain distillery wastewater.

    PubMed

    Robertson, L; Britz, T J; Sigge, G O

    2014-01-01

    Two 2 L laboratory-scale upflow anaerobic sludge blanket (UASB) reactors were operated for 277 days. The substrate of the control reactor (Rc) contained grain distillery wastewater (GDWW) that had undergone coagulant pre-treatment, and the substrate of the second UASB reactor consisted of GDWW that had undergone coagulant pre-treatment and ozone pre-treatment (Ro). Both reactors treated pre-treated GDWW successfully at ca. 9 kgCOD m(-3) d(-1). Chemical oxygen demand (COD) reductions of ca. 96% for Rc and 93% for Ro were achieved. Fats, oils and grease (FOG) reductions (%) showed variations throughout the study, and reductions of ca. 88 and 92% were achieved for Rc and Ro, respectively. Rc produced more biogas, and the methane percentage was similar in both reactors. UASB granule washout in Rc suggested possible toxicity of unsaturated fatty acids present in non-ozonated substrate. The feasibility of FOG removal was demonstrated as both reactors successfully treated pre-treated GDWW. Better results were obtained for Ro effluent during post-ozonation. The ozone pre-treatment possibly led to easier degradable wastewater, and better results could potentially be obtained when other post-treatment steps are applied. Ozone pre-treatment did not, however, show an added benefit in the reactor performance results.

  5. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  6. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant.

    PubMed

    Luostarinen, S; Luste, S; Sillanpää, M

    2009-01-01

    The feasibility of co-digesting grease trap sludge from a meat-processing plant and sewage sludge was studied in batch and reactor experiments at 35 degrees C. Grease trap sludge had high methane production potential (918 m(3)/tVS(added)), but methane production started slowly. When mixed with sewage sludge, methane production started immediately and the potential increased with increasing grease trap sludge content. Semi-continuous co-digestion of the two materials was found feasible up to grease trap sludge addition of 46% of feed volatile solids (hydraulic retention time 16d; maximum organic loading rate 3.46 kgVS/m(3)d). Methane production was significantly higher and no effect on the characteristics of the digested material was noticed as compared to digesting sewage sludge alone. At higher grease trap sludge additions (55% and 71% of feed volatile solids), degradation was not complete and methane production either remained the same or decreased.

  7. Effects of sludge retention time and biosurfactant on the treatment of polyaromatic hydrocarbon (PAH) in a petrochemical industry wastewater.

    PubMed

    Sponza, D T; Gok, O

    2011-01-01

    A laboratory-scale aerobic activated sludge reactor (AASR) system was employed to investigate the effects of sludge retention time (SRT) on the removal of three polyaromatic hydrocarbons (PAHs) with low benzene rings [(acenaphthene (ACT), fluorene (FLN) and phenanthrene (PHE)] and six PAHs with high benzene rings [(benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene, dibenz[a,h]anthracene (DahA), benzo[g,h,i]perylene (BghiP)] in the presence of rhamnolipid (RD), emulsan (EM) and surfactine (SR) biosurfactants. This study showed that biosurfactants enhance the PAH biodegradation by increasing the biomass growth. RD exhibits a better performance than the other biosurfactants in the removal of the chemical oxygen demand (COD) and PAHs. At a RD concentration of 15 mg/L aerobic treatment for 25 days, SRT was enough to remove over 95% of total PAHs, and COD(dis). Under the same conditions 75% of COD originating from the inert organics (COD(inert)) and 96% of COD originating from the inert soluble microbial products (COD(imp)) were removed. At 25 days SRT and 15 mg/L RD concentration, about 88% of PAHs were biodegraded by the AASR system, 4% were accumulated in the system, 3% were released in the effluent, and 5% remained in the waste sludge.

  8. Start-up of sequencing batch reactor with Thiosphaera pantotropha for treatment of high-strength nitrogenous wastewater and sludge characterization.

    PubMed

    Phatak, Pranita S; Trivedi, Saurabh; Garg, Anurag; Gupta, Sudhir K; Mukherji, Suparna

    2016-10-01

    Biological treatment of high-strength nitrogenous wastewater is challenging due to low growth rate of autotrophic nitrifiers. This study reports bioaugmentation of Thiosphaera pantotropha capable of simultaneously performing heterotrophic nitrification and aerobic denitrification (SND) in sequencing batch reactors (SBRs). SBRs fed with 1:1 organic-nitrogen (N) and NH4(+)-N were started up with activated sludge and T. pantotropha by gradual increase in N concentration. Sludge bulking problems initially observed could be overcome through improved aeration and mixing and change in carbon source. N removal decreased with increase in initial nitrogen concentration, and only 50-60 % removal could be achieved at the highest N concentration of 1000 mg L(-1) at 12-h cycle time. SND accounted for 28 % nitrogen loss. Reducing the settling time to 5-10 min and addition of divalent metal ions gradually improved the settling characteristics of sludge. Sludge aggregates of 0.05-0.2 mm diameter, much smaller than typical aerobic granules, were formed and progressive increase in settling velocity, specific gravity, Ca(2+), Mg(2+), protein, and polysaccharides was observed over time. Granulation facilitated total nitrogen (TN) removal at a constant rate over the entire 12-h cycle and thus increased TN removal up to 70 %. Concentrations of NO2(-)-N and NO3(-)-N were consistently low indicating effective denitrification. Nitrogen removal was possibly limited by urea hydrolysis/nitrification. Presence of T. pantotropha in the SBRs was confirmed through biochemical tests and 16S rDNA analysis.

  9. Sludge accumulation and conversion to methane in a septic tank treating domestic wastewater or black water.

    PubMed

    Elmitwalli, Tarek

    2013-01-01

    Although the septic tank is the most applied on-site system for wastewater pre-treatment, limited research has been performed to determine sludge accumulation and biogas production in the tank. Therefore a dynamic mathematical model based on the Anaerobic Digestion Model No. 1 (ADM1) was developed for anaerobic digestion of the accumulated sludge in a septic tank treating domestic wastewater or black water. The results showed that influent chemical oxygen demand (COD) concentration and hydraulic retention time (HRT) of the tank mainly control the filling time with sludge, while operational temperature governs characteristics of the accumulated sludge and conversion to methane. For obtaining stable sludge and high conversion, the tank needs to be operated for a period more than a year without sludge wasting. Maximum conversion to methane in the tank is about 50 and 60% for domestic wastewater and black water, respectively. The required period for sludge wasting depends on the influent COD concentration and the HRT, while characteristics of the wasted sludge are affected by operational temperature followed by the influent COD concentration and the HRT. Sludge production from the tank ranges between 0.19 to 0.22 and 0.13 to 0.15 L/(person.d), for the domestic wastewater and black water, respectively.

  10. Microbial community structural analysis of an expanded granular sludge bed (EGSB) reactor for beet sugar industrial wastewater (BSIW) treatment.

    PubMed

    Ambuchi, John Justo; Liu, Junfeng; Wang, Haiman; Shan, Lili; Zhou, Xiangtong; Mohammed, Mohammed O A; Feng, Yujie

    2016-05-01

    A looming global energy crisis has directly increased biomethanation processes using anaerobic digestion technology. However, much knowledge on the microbial community structure, their distribution within the digester and related functions remains extremely scanty and unavailable in some cases, yet very valuable in the improvement of the anaerobic bioprocesses. Using pyrosequencing technique based on Miseq PE 3000, microbial community population profiles were determined in an operated mesophilic expanded granular sludge bed (EGSB) reactor treating beet sugar industrial wastewater (BSIW) in the laboratory scale. Further, the distribution of the organisms in the lower, middle and upper sections within the reactor was examined. To our knowledge, this kind of analysis of the microbial community in a reactor treating BSIW is the first of its kind. A total of 44,204 non-chimeric reads with average length beyond 450 bp were yielded. Both bacterial and archaeal communities were identified with archaea predominance (60 %) observed in the middle section. Bayesian classifier yielded 164 families with only 0.73 % sequences which could not be classified to any taxa at family level. The overall phylum predominance in the reactor showed Firmicutes, Euryarchaeota, Chloroflexi, Proteobacteria and Bacteroidetes in the descending order. Our results clearly demonstrate a highly diverse microbial community population of an anaerobic reactor treating BSIW, with distinct distribution levels within the reactor.

  11. Studies on the production of B. thuringiensis based biopesticides using wastewater sludge as a raw material.

    PubMed

    Vidyarthi, A S; Tyagi, R D; Valero, J R; Surampalli, R Y

    2002-11-01

    Growth and delta-endotoxin yield of Bacillus thuringiensis (Bt) subsp kurstaki in tryptic soy yeast extract (TSY) medium, soybean meal based commercial medium and wastewater sludge medium were studied. The viable spores (VS) count in sludge medium was comparable to that obtained in laboratory and commercial media. The entomotoxicity of the fermentation liquid (Bt grown sludge) against Choristoneura fumiferana was comparable to the concentrated commercial Bt formulation available in the market (Foray 48B). A higher entomotoxicity was observed in a sludge medium than in the TSY or soybean meal media. The secondary and mixed (mixture of primary and secondary) sludges from various wastewater treatment plants were also evaluated for spore formation and entomotoxicity yield. The VS count was higher in a mixed sludge compared to the secondary sludge at a similar sludge solids concentration. Both VS count and entomotoxicity yield was found to be a function of sludge solids concentration in the medium. The optimum value of solids concentration for Bt production was found to be 25 g (-1) (dry weight basis). Beyond this concentration, a drop in VS count and entomotoxicity yield was observed. A low C:N ratio in the secondary sludge and a high C:N ratio in the mixed sludge resulted in a higher entomotoxicity. The optimum value of C:N ratio in combined sludge for Bt production was found to be 7.9-9.9. Relationships between entomotoxicity and maximum specific growth as well as with specific sporulation rate were developed.

  12. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    PubMed

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD

  13. Low temperature conversion (LTC)--an alternative method to treat sludge generated in an industrial wastewater treatment station--batch and continuous process comparison.

    PubMed

    Vieira, G E G; Romeiro, G A; Sella, S M; Damasceno, R N; Pereira, R G

    2009-02-01

    In this work low temperature conversion (LTC) process was applied in a dried sludge from a petrochemical industry wastewater treatment station located in Rio de Janeiro, Brazil. The process was performed in two modes: continuous and batch-scale. This process produced a pyrolysis oil (continuous 14%; batch-scale 40% yield); pyrolytic char (continuous 46%; batch-scale 56% yield); gas and water. Pyrolysis oil fraction was analyzed by gas chromatographic mass spectrometry (GCMS) and the main components identified were toluene, ethylbenzene, styrene, isopropyl benzene, alpha-methylstyrene, butanenitrile and 1,3- biphenyl propane. Metals content, sulfur content and calorific value have been determined for the pyrolysis oil fraction. The results showed that the pyrolysis oil obtained could be used for industrial purposes and/or as energetic matrix.

  14. Sequential modeling of fecal coliform removals in a full-scale activated-sludge wastewater treatment plant using an evolutionary process model induction system.

    PubMed

    Suh, Chang-Won; Lee, Joong-Won; Hong, Yoon-Seok Timothy; Shin, Hang-Sik

    2009-01-01

    We propose an evolutionary process model induction system that is based on the grammar-based genetic programming to automatically discover multivariate dynamic inference models that are able to predict fecal coliform bacteria removals using common process variables instead of directly measuring fecal coliform bacteria concentration in a full-scale municipal activated-sludge wastewater treatment plant. A sequential modeling paradigm is also proposed to derive multivariate dynamic models of fecal coliform removals in the evolutionary process model induction system. It is composed of two parts, the process estimator and the process predictor. The process estimator acts as an intelligent software sensor to achieve a good estimation of fecal coliform bacteria concentration in the influent. Then the process predictor yields sequential prediction of the effluent fecal coliform bacteria concentration based on the estimated fecal coliform bacteria concentration in the influent from the process estimator with other process variables. The results show that the evolutionary process model induction system with a sequential modeling paradigm has successfully evolved multivariate dynamic models of fecal coliform removals in the form of explicit mathematical formulas with high levels of accuracy and good generalization. The evolutionary process model induction system with sequential modeling paradigm proposed here provides a good alternative to develop cost-effective dynamic process models for a full-scale wastewater treatment plant and is readily applicable to a variety of other complex treatment processes.

  15. Wastewater Treatment

    MedlinePlus

    ... amazing ability to cope with small amounts of water wastes and pollution, but it would be overwhelmed if we didn't treat the billions of gallons of wastewater and sewage produced every day before ... is used water. It includes substances such as human waste, food ...

  16. LAND APPLICATION AND SLUDGE TREATMENT

    EPA Science Inventory

    Fecal matter potentially containing pathogenic microorganisms and chemical contaminants enters community wastewater collection systems from hospitals, funeral homes, animal slaughtering operations, and dwellings. While these wastewaters are cleansed in the wastewater treatment p...

  17. Phosphorus and heavy metal extraction from wastewater treatment plant sludges using microwaves for generation of exceptional quality biosolids.

    PubMed

    Danesh, Paymon; Hong, Seung M; Moon, Kyong W; Park, Jae K

    2008-09-01

    The objectives of this study were to evaluate the amount of phosphorus and metals in sludge that can be released into solution by microwave irradiation when applied to sludge before anaerobic digestion and determine the effectiveness of subsequent lime precipitation. The fraction of phosphorus in the soluble form increased to 23 to 28% for thickened sludge and to 31 to 38% for unthickened sludge, after raising temperatures by microwave heating to 50 to 70 degrees C. Microwave irradiation also caused the release of arsenic, molybdenum, nickel, and selenium into solution to 33, 15, 13, and 28% for thickened sludge and 63, 61, 37, and 27% for unthickened sludge, respectively. Microwave irradiation has been found to destruct pathogens in sludge to meet Class A biosolids requirements. Therefore, the reduction of phosphorus and metals in biosolids using microwave heating is economically attractive when considered as a secondary benefit to the use of microwave heating to generate Class A biosolids.

  18. Improvement strategy on enhanced biological phosphorus removal for municipal wastewater treatment plants: full-scale operating parameters, sludge activities, and microbial features.

    PubMed

    Zhang, Zhijian; Li, Hui; Zhu, Jun; Weiping, Liu; Xin, Xu

    2011-04-01

    The poor quality of effluent discharged by municipal wastewater treatment plants (WWTPs) is threatening the safety of water ecology. This study, which integrated a field survey, batch tests, and microbial community identification, was designed to improve the effectiveness of the enhanced biological phosphorus removal (EBPR) process for WWTPs. Over two-thirds of the investigated WWTPs could not achieve total P in effluent lower than 0.5 mg/L, mainly due to the high ratio of chemical oxygen demand to P (28.6-196.2) in the influent. The rates of anaerobic P release and aerobic P uptake for the activated sludge varied from 0.22 to 7.9 mg/g VSS/h and 0.43 to 8.11 mg/g VSS/h, respectively. The fraction of Accumulibacter (PAOs: polyphosphate accumulating organisms) was 4.8 ± 2.0% of the total biomass, while Competibacter (GAOs: glycogen-accumulating organisms) accounted for 4.8 ± 6.4%. The anaerobic P-release rate was found to be an effective indicator of EBPR. Four classifications of the principal components were identified to improve the EBPR effluent quality and sludge activity.

  19. Enhanced treatment of Fischer-Tropsch (F-T) wastewater using the up-flow anaerobic sludge blanket coupled with bioelectrochemical system: Effect of electric field.

    PubMed

    Wang, Dexin; Han, Hongjun; Han, Yuxing; Li, Kun; Zhu, Hao

    2017-02-07

    The coupling of bioelectrochemical system (BES) with an up-flow anaerobic sludge blanket (UASB) was established for enhanced Fischer-Tropsch (F-T) wastewater treatment while the UASB (control group) was operated in parallel. The presence of electric field could offer system a more reductive micro-environment that lower the ORP values and maintain the appropriate pH range, resulting in the higher chemical oxygen demand (COD) removal efficiency and methane production for BES-UASB (86.8% and 2.31±0.1L/(L·d)) while those values in control group were 72.1% and 1.77±0.08L/(L·d). In addition, the coupled system could promote sludge granulation to perform a positive effect on maintaining stability of pollutants removal. The high-throughput 16S rRNA gene pyrosequencing in this study further confirmed that the promoting direct interspecies electron transfer (DIET) between Geobacter and Methanosarcina might be established in BES-UASB to improve the syntrophic degradation of propionate and butyrate, finally facilitated completely methane production.

  20. Ammonia-oxidizing bacteria and archaea in wastewater treatment plant sludge and nearby coastal sediment in an industrial area in China.

    PubMed

    Zhang, Yan; Chen, Lujun; Sun, Renhua; Dai, Tianjiao; Tian, Jinping; Wen, Donghui

    2015-05-01

    Under the increasing pressure of human activities, Hangzhou Bay has become one of the most seriously polluted waters along China's coast. Considering the excessive inorganic nitrogen detected in the bay, in this study, the impact of an effluent from a coastal industrial park on ammonia-oxidizing microorganisms (AOMs) of the receiving area was interpreted for the first time by molecular technologies. Revealed by real-time PCR, the ratio of archaeal amoA/bacterial amoA ranged from 5.68 × 10(-6) to 4.79 × 10(-5) in the activated sludge from two wastewater treatment plants (WWTPs) and 0.54-3.44 in the sediments from the effluent receiving coastal area. Analyzed by clone and pyrosequencing libraries, genus Nitrosomonas was the predominant ammonia-oxidizing bacteria (AOB), but no ammonia-oxidizing archaea (AOA) was abundant enough for sequencing in the activated sludge from the WWTPs; genus Nitrosomonas and Nitrosopumilus were the dominant AOB and AOA, respectively, in the coastal sediments. The different abundance of AOA but similar structure of AOB between the WWTPs and nearby coastal area probably indicated an anthropogenic impact on the microbial ecology in Hangzhou Bay.

  1. Wastewater and sludge reuse in agriculture

    NASA Astrophysics Data System (ADS)

    Kalavrouziotis, Ioannis

    2016-04-01

    The reuse of Municipal wastewaters (TMWW) for irrigation of crops, and of sludge for the amendment of soils, is a multidimensional disposal practice aiming at: (i) minimizing the environmental problems by releasing the pressure exerted by these two inputs on the environment, (ii) providing the growing plants with water and nutrients and (ii) improving soil fertility and productivity, The research work conducted in our University in relation to accomplishing a safe reuse has been focused on the study of the following aspects of reuse: (i) heavy metal accumulation in soils and plants with emphasis on their edible part. This aspect has been studied by conducting a series of experiments aiming at the study of the accumulation of heavy metals in soils, and in plant roots, stalks, leaves and fruits. The conclusions drawn so far with regard to the order of accumulation of heavy metals are: Roots>leaves>stalks>fruits ( edible parts) (ii) interactions between heavy metals, plant nutrients and soil chemical and physical properties. After the examinations of hundreds of interactions, and the development of a quantification of the interactions contribution, it was found that considerable quantities of heavy metals and nutrients are contributed to the soil and to various plant parts , emphasizing the important role of the elemental interactions in plants.(iii) assessment of soil pollution with heavy metals based on pollution indices, Three pollution Indices have been established by our research team and were proposed internationally for application in actual practice for the prediction of soil pollution due to long term reuse of wastewater and sludge. These indices are as follows: (a) Elemental pollution Index (EPI), (b) Heavy Metal Load (HML), and (c) Total Concentration Factor (TCF) and (iv) construction of a computer program for the control of the reuse of TMWW and sludge, and forecasting soil pollution due to accumulation of heavy metal by means of pollution indices.

  2. A Combined Activated Sludge Anaerobic Digestion Model (CASADM) to understand the role of anaerobic sludge recycling in wastewater treatment plant performance.

    PubMed

    Young, Michelle N; Marcus, Andrew K; Rittmann, Bruce E

    2013-05-01

    The Combined Activated Sludge-Anaerobic Digestion Model (CASADM) quantifies the effects of recycling anaerobic-digester (AD) sludge on the performance of a hybrid activated sludge (AS)-AD system. The model includes nitrification, denitrification, hydrolysis, fermentation, methanogenesis, and production/utilization of soluble microbial products and extracellular polymeric substances (EPS). A CASADM example shows that, while effluent COD and N are not changed much by hybrid operation, the hybrid system gives increased methane production in the AD and decreased sludge wasting, both caused mainly by a negative actual solids retention time in the hybrid AD. Increased retention of biomass and EPS allows for more hydrolysis and conversion to methane in the hybrid AD. However, fermenters and methanogens survive in the AS, allowing significant methane production in the settler and thickener of both systems, and AD sludge recycle makes methane formation greater in the hybrid system.

  3. Wastewater treatment using ferrous sulfate

    SciTech Connect

    Boetskaya, K.P.; Ioffe, E.M.

    1980-01-01

    Treatment of industrial wastewater with coagulants is used extensively in the thorough removal of emulsified tars and oils. The central plant laboratory at the Zhdanov Coke Works conducted investigations of the treatment of wastewater, subsequently used for quenching coke, with ferrous sulfate. Laboratory tests and subsequent industrial tests demonstrated the efficiency of the method. In order to further intensify the wastewater treatment process we conducted laboratory tests with the addition of certain quantities of other coagulation reagents, for example polyacrylamide (PAA) and caustic soda, in addition to the ferrous sulfate. The combined use of polyacrylamide and ferrous sulfate permits instant coagulation of the sludge and very rapid (5 to 10 min) clarification of the water. In addition, in this case the degree of purification of the water is less dependent on the initial concentration of impurities. The purification is also improved when caustic soda is added, raising the pH. From the data it is apparent that an identical degree of purification of the water may be achieved either by increasing the consumption of ferrous sulfate, or by adding PAA or NaOH. During industrial tests of the purification of wastewater with ferrous sulfate, we also investigated the resulting sludge. The use of ferrous sulfate causes a significant increase in its quantity (by a factor of 1.5 to 1.8) and in its oil content (by a factor of 2 to 2.5). The water content in the sludge decreases. The sludge (in the quantity of 0.6% of the charge) may be added to the coking charge.

  4. The sludge loading rate regulates the growth and release of heterotrophic bacteria resistant to six types of antibiotics in wastewater activated sludge.

    PubMed

    Yuan, Qing-Bin; Guo, Mei-Ting; Yang, Jian

    2015-01-01

    Wastewater treatment plants are considered as hot reservoirs of antimicrobial resistance. However, the fates of antibiotic-resistant bacteria during biological treatment processes and relevant influencing factors have not been fully understood. This study evaluated the effects of the sludge loading rate on the growth and release of six kinds of antibiotic-resistant bacteria in an activated sludge system. The results indicated that higher sludge loading rates amplified the growth of all six types of antibiotic resistant bacteria. The release of most antibiotic-resistant bacteria through both the effluent and biosolids was amplified with increased sludge loading rate. Biosolids were the main pattern for all antibiotic-resistant bacteria release in an activated sludge system, which was determined primarily by their growth in the activated sludge. A higher sludge loading rate reactor tended to retain more antibiotic resistance. An activated sludge system with lower sludge loading rates was considered more conducive to the control of antibiotic resistance.

  5. Sludge recycle and reuse in acid mine drainage treatment

    SciTech Connect

    Keefer, G.B.; Sack, W.A.

    1983-03-01

    Neutralization of acid mine drainage produces vast quantities of iron-rich sludge, and large quantities of unused lime remain in the sludge after treatment. In a study in which sludge was recycled to increase lime utilization, sludge was mixed with raw acid mine drainage and settled out in an intermediate clarifier. The clarifier supernatant was then treated by lime addition, aeration and sedimentation. The low-pH sludge was withdrawn from the intermediate clarifier. The iron was recovered by acidification and used as wastewater coagulant. The recycle scheme resulted in a 30% decrease in lime requirements, and the resultant coagulant performed well when compared with stock iron coagulant solutions.

  6. IMPACT OF INFLUENT MICROORGANISMS UPON POOR SOLIDS SEPARATION IN THE QUIESCENT ZONE OF AN INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    EPA Science Inventory

    One of the most common biological treatment systems used to clean wastewater is suspended growth activated sludge wastewater treatment (AS). When AS is adapted for the treatment of wastewater from industrial manufacturing processes, unanticipated difficulties can arise. For the s...

  7. Sewage sludge treatment system

    NASA Technical Reports Server (NTRS)

    Kalvinskas, John J. (Inventor); Mueller, William A. (Inventor)

    1976-01-01

    Raw sewage may be presently treated by mixing screened raw sewage with activated carbon. The mixture is then allowed to stand in a first tank for a period required to settle the suspended matter to the bottom of the tank as a sludge. Thereafter, the remaining liquid is again mixed with activated carbon and the mixture is transferred to a secondary settling tank, where it is permitted to stand for a period required for the remaining floating material to settle as sludge and for adsorption of sewage carbon as well as other impurities to take place. The sludge from the bottom of both tanks is removed and pyrolyzed to form activated carbon and ash, which is mixed with the incoming raw sewage and also mixed with the liquid being transferred from the primary to the secondary settling tank. It has been found that the output obtained by the pyrolysis process contains an excess amount of ash. Removal of this excess amount of ash usually also results in removing an excess amount of carbon thereby requiring adding carbon to maintain the treatment process. By separately pyrolyzing the respective sludges from the first and second settling tanks, and returning the separately obtained pyrolyzed material to the respective first and second tanks from which they came, it has been found that the adverse effects of the excessive ash buildup is minimized, the carbon yield is increased, and the sludge from the secondary tank can be pyrolyzed into activated carbon to be used as indicated many more times than was done before exhaustion occurs.

  8. Filtration properties of activated sludge in municipal MBR wastewater treatment plants are related to microbial community structure.

    PubMed

    Bugge, Thomas V; Larsen, Poul; Saunders, Aaron M; Kragelund, Caroline; Wybrandt, Lisbeth; Keiding, Kristian; Christensen, Morten L; Nielsen, Per H

    2013-11-01

    In the conventional activated sludge process, a number of important parameters determining the efficiency of settling and dewatering are often linked to specific groups of bacteria in the sludge--namely floc size, residual turbidity, shear sensitivity and composition of extracellular polymeric substances (EPS). In membrane bioreactors (MBRs) the nature of solids separation at the membrane has much in common with sludge dewaterability but less is known about the effect of specific microbial groups on the sludge characteristics that affect this process. In this study, six full-scale MBR plants were investigated to identify correlations between sludge filterability, sludge characteristics, and microbial community structure. The microbial community structure was described by quantitative fluorescence in situ hybridization and sludge filterability by a low-pressure filtration method. A strong correlation between the degree of flocculation (ratio between floc size and residual turbidity) and sludge filterability at low pressure was found. A good balance between EPS and cations in the sludge correlated with good flocculation, relatively large sludge flocs, and low amounts of small particles and single cells in the bulk phase (measured as residual turbidity), all leading to a good filterability. Floc properties could also be linked to the microbial community structure. Bacterial species forming strong microcolonies such as Nitrospira and Accumulibacter were present in plants with good flocculation and filtration properties, while few strong microcolonies and many filamentous bacteria in the plants correlated with poor flocculation and filtration problems. In conclusion this study extends the hitherto accepted perception that plant operation affects floc properties which affects fouling. Additionally, plant operation also affects species composition, which affects floc properties and in the end fouling propensity.

  9. Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge.

    PubMed

    Van Caneghem, J; Vermeulen, I; Block, C; Van Brecht, A; Van Royen, P; Jaspers, M; Wauters, G; Vandecasteele, C

    2012-03-15

    During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain "PCDD/F fingerprints". The ASR contained approximately 9000 ng PCDD/Fs/kg(DW), six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kg(DW), respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8 ng PCDD/Fs/kg (DW). From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25-10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the FBCs outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD

  10. Production of thermostable protease enzyme in wastewater sludge using thermophilic bacterial strains isolated from sludge.

    PubMed

    Chenel, J P; Tyagi, R D; Surampalli, R Y

    2008-01-01

    The volume of sludge produced annually is very high and poses serious disposal problems. The traditional methods of sludge disposal produce secondary pollutants. Therefore, the alternate or suitable solution is reuse of sludge in an ecofriendly approach. Biotechnology is an interesting tool to add value to the processes involved in wastewater and wastewater sludge disposal/reuse. In this context, a study was carried out on thermophilic bacterial strains that produce thermostable proteases. The bacterial strains were first isolated from municipal wastewater sludge. In contrast to the conventional strains used in industries, like Bacillus sp., the new strains were Gram-Negative type. In semi-synthetic medium, a maximal protease activity of 5.25 IU/ml (International Unit per ml) was obtained at a pH of 8.2 and at a temperature of 60 degrees C, which is higher than the stability temperature of 37 degrees C for a similar protease obtained from the conventional producer Bacillus licheniformis. Moreover, growth and protease activity of the strains were tested in wastewater sludge. It is expected that the complexity of sludge could stimulate/enhance the protease production and their characteristics. In conclusion, reuse of wastewater sludge will help to reduce their quantity as well as the value-added products produced will replace chemical products used in industries.

  11. Identification and quantification of bacteria and archaea responsible for ammonia oxidation in different activated sludge of full-scale wastewater treatment plants.

    PubMed

    Sinthusith, Nutpornnapat; Terada, Akihiko; Hahn, Martha; Noophan, Pongsak Lek; Munakata-Marr, Junko; Figueroa, Linda A

    2015-01-01

    In this study, the abundance and sequences of the amoA gene in ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA) were defined in three wastewater treatment plants using activated sludge with biological nitrogen removal in different countries: Thailand, United States of America (USA), and Japan. Quantitative real-time polymerase chain reaction (PCR) and PCR coupled with denaturing gradient gel electrophoresis were used to find the comparative abundance and identity of AOB and AOA. The conditions at the Phuket WWTP in Thailand promoted the dominance of AOA amoA genes over AOB amoA genes, while conditions at the WWTPs in Japan and USA promoted growth of AOB. Three parameters that may have contributed to the AOA dominance in Phuket were longer SRT, higher temperature, and higher pH. The Phuket WWTP is a unique system that can be used to better understand the conditions that promote AOA growth and dominance over AOB. In addition, analysis of operational data in conjunction with AOA and AOB community structure from the Phuket WWTP may elucidate advantages of AOA in meeting stricter treatment standards.

  12. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model.

    PubMed

    Flores-Alsina, Xavier; Comas, Joaquim; Rodriguez-Roda, Ignasi; Gernaey, Krist V; Rosen, Christian

    2009-10-01

    The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation case study. Practically, the proposed approach includes a risk assessment model based on a knowledge-based decision tree to detect favourable conditions for the development of filamentous bulking sludge. Once such conditions are detected, the settling characteristics of the secondary clarifier model are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance. Particularly, during the periods when the conditions for the development of filamentous bulking sludge are favourable--leading to poor activated sludge compaction, low return and waste TSS concentrations and difficulties in maintaining the biomass in the aeration basins--a subsequent reduction in overall pollution removal efficiency is observed. Also, a scenario analysis is conducted to examine i) the influence of sludge retention time (SRT), the external recirculation flow rate (Q(r)) and the air flow rate in the bioreactor (modelled as k(L)a) as factors promoting bulking sludge, and ii) the effect on the model predictions when the settling properties are changed due to a possible proliferation of filamentous microorganisms. Finally, the potentially adverse effects of certain operational procedures are highlighted, since such effects are normally not considered by state-of-the-art models that do not include microbiology-related solids separation problems.

  13. Genotoxicity testing of wastewater sludge using the Allium cepa anaphase-telophase chromosome aberration assay.

    PubMed

    Rank, J; Nielsen, M H

    1998-10-12

    Wastewater sludges were analysed in the Allium cepa genotoxicity test. They were sampled during three winter periods from three Danish municipal wastewater treatment plants differing in size and industrial load. The toxicity of the sludge was tested in the Allium root inhibition assay, and the results expressed as EC30 and EC50 values showed that the toxicity could be positive correlated to the industrial load. However, when genotoxicity was tested at concentrations corresponding to the EC30 and EC50 values in the A. cepa anaphase-telophase assay, only two sludge samples from the smallest plant with the lowest industrial load induced significant chromosome aberrations. Concentrations of the heavy metal's Pb, Ni, Cr, Zn, Cu, and Cd were also determined and could partly be correlated with the toxicity of the sludge and the industrial load of the treatment plants.

  14. Characterization, Recovery Opportunities, and Valuation of Metals in Municipal Sludges from U.S. Wastewater Treatment Plants Nationwide.

    PubMed

    Westerhoff, Paul; Lee, Sungyun; Yang, Yu; Gordon, Gwyneth W; Hristovski, Kiril; Halden, Rolf U; Herckes, Pierre

    2015-08-18

    U.S. sewage sludges were analyzed for 58 regulated and nonregulated elements by ICP-MS and electron microscopy to explore opportunities for removal and recovery. Sludge/water distribution coefficients (KD, L/kg dry weight) spanned 5 orders of magnitude, indicating significant metal accumulation in biosolids. Rare-earth elements and minor metals (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) detected in sludges showed enrichment factors (EFs) near unity, suggesting dust or soils as likely dominant sources. In contrast, most platinum group elements (i.e., Ru, Rh, Pd, Pt) showed high EF and KD values, indicating anthropogenic sources. Numerous metallic and metal oxide colloids (<100-500 nm diameter) were detected; the morphology of abundant aggregates of primary particles measuring <100 nm provided clues to their origin. For a community of 1 million people, metals in biosolids were valued at up to US$13 million annually. A model incorporating a parameter (KD × EF × $Value) to capture the relative potential for economic value from biosolids revealed the identity of the 13 most lucrative elements (Ag, Cu, Au, P, Fe, Pd, Mn, Zn, Ir, Al, Cd, Ti, Ga, and Cr) with a combined value of US $280/ton of sludge.

  15. Anaerobic wastewater treatment of concentrated sewage using a two-stage upflow anaerobic sludge blanket- anaerobic filter system.

    PubMed

    Halalsheh, Maha M; Abu Rumman, Zainab M; Field, Jim A

    2010-01-01

    A two-stage pilot-scale upflow anaerobic sludge blanket - anaerobic filter (UASB-AF) reactors system treating concentrated domestic sewage was operated at 23 degrees C and at hydraulic retention times (HRT) of 15 and 4 h, respectively. Excess sludge from the downstream AF stage was returned to the upstream UASB reactor. The aim was to obtain higher sludge retention time (SRT) in the UASB reactor for better methanization of suspended COD. The UASB-AF system removed 55% and 65% of the total COD (COD(tot)) and suspended COD (COD(ss)), respectively. The calculated SRT in the UASB reactor ranged from 20-35 days. The AF reactor removed the washed out sludge from the first stage reactor with average COD(ss) removal efficiency of 55%. The volatile fatty acids concentration in the effluent of the AF was 39 mg COD/L compared with 78 mg COD/L measured for the influent. The slightly higher COD(tot) removal efficiency obtained in this study compared with a single stage UASB reactor was achieved at 17% reduction in the total volume.

  16. Utilization of AMD sludges from the anthracite region of Pennsylvania for removal of phosphorus from wastewater

    USGS Publications Warehouse

    Sibrell, P.L.; Cravotta, C.A.; Lehman, W.G.; Reichert, W.

    2010-01-01

    Excess phosphorus (P) inputs from human sewage, animal feeding operations, and nonpoint source discharges to the environment have resulted in the eutrophication of sensitive receiving bodies of water such as the Great Lakes and Chesapeake Bay. Phosphorus loads in wastewater discharged from such sources can be decreased by conventional treatment with iron and aluminum salts but these chemical reagents are expensive or impractical for many applications. Acid mine drainage (AMD) sludges are an inexpensive source of iron and aluminum hydrous oxides that could offer an attractive alternative to chemical reagent dosing for the removal of P from local wastewater. Previous investigations have focused on AMD sludges generated in the bituminous coal region of western Pennsylvania, and confirmed that some of those sludges are good sorbents for P over a wide range of operating conditions. In this study, we sampled sludges produced by AMD treatment at six different sites in the anthracite region of Pennsylvania for potential use as P sequestration sorbents. Sludge samples were dried, characterized, and then tested for P removal from water. In addition, the concentrations of acid-extractable metals and other impurities were investigated. Test results revealed that sludges from four of the sites showed good P sorption and were unlikely to add contaminants to treated water. These results indicate that AMD sludges could be beneficially used to sequester P from the environment, while at the same time decreasing the expense of sludge disposal.

  17. Enhanced industrial wastewater treatment

    SciTech Connect

    Nachabe, A.H.; Durlak, E.

    1997-12-31

    The sodium sulfide/ferrous sulfate (SS/FS) process is a treatment technology for the reduction of hexavalent chromium and precipitation of heavy metals in industrial wastewater treatment plants (IWTP). When the ferrous ion, as ferrous sulfate, is mixed with sulfide, the hexavalent chromium is rapidly reduced to its trivalent state at a neutral pH and then precipitated. SS/FS technology can be used to replace the current hydroxide treatment chemistry in Navy IWTPs. This paper will present the results and lessons learned from full-scale implementation of SS/FS at Naval Undersea Warfare Center (NUWC) Keyport, Washington. The SS/FS treatment process reduced the chemical cost by fifty nine percent and sludge disposal cost by thirty one percent. On an annual basis total cost savings amounted to $31,950 or thirty four percent. The SS/FS treatment process lowered the amount of treatment chemicals used in the IWTP. Furthermore, metal sulfides tend to be two to three orders of magnitude less soluble than their corresponding metal hydroxides. This allows for cleaner effluent, which will help the facility meet environmental discharge requirements. Further benefits include the removal from the shop area of the high pressure sulfur dioxide cylinder (used in the hydroxide process), a faster and more reliable chrome reduction method, neutral pH operation that extends tank and equipment life, and less acid and caustic chemicals stored on the shop floor. As Navy activities respond to the ever increasing pressures to do more with less, the SS/FS process can help them meet the increasingly stringent standards.

  18. Microplastics in Sewage Sludge: Effects of Treatment.

    PubMed

    Mahon, A M; O'Connell, B; Healy, M G; O'Connor, I; Officer, R; Nash, R; Morrison, L

    2017-01-17

    Waste water treatment plants (WWTPs) are receptors for the cumulative loading of microplastics (MPs) derived from industry, landfill, domestic wastewater and stormwater. The partitioning of MPs through the settlement processes of wastewater treatment results in the majority becoming entrained in the sewage sludge. This study characterized MPs in sludge samples from seven WWTPs in Ireland which use anaerobic digestion (AD), thermal drying (TD), or lime stabilization (LS) treatment processes. Abundances ranged from 4196 to 15 385 particles kg(-1) (dry weight). Results of a general linear mixed model (GLMM) showed significantly higher abundances of MPs in smaller size classes in the LS samples, suggesting that the treatment process of LS shears MP particles. In contrast, lower abundances of MPs found in the AD samples suggests that this process may reduce MP abundances. Surface morphologies examined using scanning electron microscopy (SEM) showed characteristics of melting and blistering of TD MPs and shredding and flaking of LS MPs. This study highlights the potential for sewage sludge treatment processes to affect the risk of MP pollution prior to land spreading and may have implications for legislation governing the application of biosolids to agricultural land.

  19. Reduction of N2O and NO generation in anaerobic-aerobic (low dissolved oxygen) biological wastewater treatment process by using sludge alkaline fermentation liquid.

    PubMed

    Zhu, Xiaoyu; Chen, Yinguang

    2011-03-15

    This paper reported an efficient method to significantly reduce nitrous oxide (N(2)O) and nitric oxide (NO) generation in anaerobic-aerobic (low dissolved oxygen) processes. It was found that by the use of waste-activated sludge alkaline fermentation liquid as the synthetic wastewater-carbon source, compared with the commonly used carbon source in the literature (e.g., acetic acid), the generation of N(2)O and NO was reduced by 68.7% and 50.0%, respectively, but the removal efficiencies of total phosphorus (TP) and total nitrogen (TN) were improved. Both N(2)O and NO were produced in the low dissolved oxygen (DO) stage, and the use of sludge fermentation liquid greatly reduced their generation from the denitrification. The presences of Cu(2+) and propionic acid in fermentation liquid were observed to play an important role in the reduction of N(2)O and NO generation. The analysis of the activities of denitrifying enzymes suggested that sludge fermentation liquid caused the significant decrease of both nitrite reductase activity to NO reductase activity ratio and NO reductase activity to N(2)O reductase activity ratio, which resulted in the lower generation of NO and N(2)O. Fluorescence in situ hybridization analysis indicated that the number of glycogen accumulating bacteria, which was reported to be relevant to nitrous oxide generation, in sludge fermentation liquid reactor was much lower than that in acetic acid reactor. The quantitative detection of the nosZ gene, encoding nitrous oxide reductase, showed that the use of fermentation liquid increased the number of bacteria capable of reducing N(2)O to N(2). The feasibility of using sludge fermentation liquid to reduce NO and N(2)O generation in an anaerobic-low DO process was finally confirmed for a municipal wastewater.

  20. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge.

    PubMed

    Sibrell, Philip L; Montgomery, Gary A; Ritenour, Kelsey L; Tucker, Travis W

    2009-05-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges -- hitherto thought of as undesirable wastes -- can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  1. Removal of phosphorus from agricultural wastewaters using adsorption media prepared from acid mine drainage sludge

    USGS Publications Warehouse

    Sibrell, Philip L.; Montgomery, Gary A.; Ritenour, Kelsey L.; Tucker, Travis W.

    2009-01-01

    Excess phosphorus in wastewaters promotes eutrophication in receiving waterways. A??cost-effective method for the removal of phosphorus from water would significantly reduce the impact of such wastewaters on the environment. Acid mine drainage sludge is a waste product produced by the neutralization of acid mine drainage, and consists mainly of the same metal hydroxides used in traditional wastewater treatment for the removal of phosphorus. In this paper, we describe a method for the drying and pelletization of acid mine drainage sludge that results in a particulate media, which we have termed Ferroxysorb, for the removal of phosphorus from wastewater in an efficient packed bed contactor. Adsorption capacities are high, and kinetics rapid, such that a contact time of less than 5 min is sufficient for removal of 60-90% of the phosphorus, depending on the feed concentration and time in service. In addition, the adsorption capacity of the Ferroxysorb media was increased dramatically by using two columns in an alternating sequence so that each sludge bed receives alternating rest and adsorption cycles. A stripping procedure based on treatment with dilute sodium hydroxide was also developed that allows for recovery of the P from the media, with the possibility of generating a marketable fertilizer product. These results indicate that acid mine drainage sludges - hitherto thought of as undesirable wastes - can be used to remove phosphorus from wastewater, thus offsetting a portion of acid mine drainage treatment costs while at the same time improving water quality in sensitive watersheds.

  2. Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors.

    PubMed

    Fitamo, T; Boldrin, A; Boe, K; Angelidaki, I; Scheutz, C

    2016-04-01

    Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co-digesting sludge with food waste, grass clippings and garden waste with a corresponding %VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30 days. However, the methane yield dropped significantly to 356 (R1) and 315 (R2) NmL CH4/g VS when reducing the HRT to 10 days, indicating that the process was stressed. Since the methane production rate improved significantly with decreasing HRT, the trade-off between yield and productivity was obtained at 15 days HRT.

  3. [Quickly enrichment of carbon in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Zhao, Fang; Wen, Xiang-Hua

    2011-10-01

    Pilot tests were carried out to investigate the absorption characteristics of the carbon source in urban wastewater by activated sludge and to analyze the carbon release from the carbon absorbed activated sludge in the settling process. The results indicated that carbon in wastewater could be quickly enriched by activated sludge. The absorption process of indissolvable organic matter could be finished as shortly as less than 10 min, while the absorption process of the dissolved organic matter was relatively slow and should consume up about 30 min. Moreover, carbon release was observed in the settling process of enriched sludge. In the period of 30-100 min, the release amount of total COD (TCOD) was 11.44 mg x g(-1), while in the period of 60-150 min, the release amount of dissolved COD (SCOD) was 6.24 mg x g(-1). Furthermore, based on the results of the bench-scale tests, a pilot-scale plant was built to investigate the absorption of carbon, nitrogen and phosphorus by activated sludge and the settleability of enriched sludge. The results indicated that under continuously operation mode, 60% of COD, 75% of TP and 10% of TN in the wastewater could be removed by the absorption of activated sludge, and the enriched sludge with SVI of 34.2 mL x g(-1) presented good settleability. Carbon enrichment by activated sludge could not only reclaim the carbon source in wastewater, but also reduce the loading of organic matter and give low C/N for the following nitrification unit and improving the nitrification efficiency.

  4. Bioflocculant from pre-treated sludge and its applications in sludge dewatering and swine wastewater pretreatment.

    PubMed

    Guo, Junyuan; Ma, Jing

    2015-11-01

    Potentials of alkaline-thermal (ALT) pre-treated sludge as a bioflocculant were studied in sludge dewatering and swine wastewater pretreatment. When incubated with this ALT pre-treated sludge, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 22.5% and 3.4×10(12)m/kg, respectively, which were much better than that obtained with conventional chemical flocculants. Sludge dewatering was further improved when both the bioflocculant and conventional polyaluminum chloride (PAC) were used simultaneously. Charge neutralization and inter-particle bridging were proposed as the reasons for the enhanced performance in the case of the combined use. With swine wastewater, the bioflocculant could remove COD, ammonium and turbidity by 45.2%, 41.8% and 74.6% when incubated with 20mg/L at pH 8.0. This study suggested that the ALT pre-treated sludge has a great potential as an alternative bioflocculant to conventional flocculants in sludge dewatering and swine wastewater pretreatment.

  5. Heat inactivation of enteric viruses in dewatered wastewater sludge.

    PubMed

    Ward, R L; Ashley, C S

    1978-12-01

    The effect of moisture content on the rates of heat inactivation of enteric viruses in wastewater sludge was determined. The protective effect of raw sludge on poliovirus previously observed (R. L. Ward, C. S. Ashley, and R. H. Moseley, Appl. Environ. Microbiol. 32:339--346, 1976) was found to be greatly enhanced in sludge dewatered by evaporation. Other enteroviruses responded in a similar fashion. This effect did not appear to be due merely to the state of dryness of the sludge samples because in humus-deficient soil, a relatively inert material, the rate of poliovirus inactivation by heat was not significantly altered through dewatering. Instead, this effect appeared to have been caused by protective substances in the sludge, such as detergents, which are concentrated through dewatering. As reported previously (R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol. 34:681-688, 1977; R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol 36:889--897, 1978) raw sludge is not protective of reovirus, but, instead, the ionic detergents in sludge cause the rate of heat inactivation of this virus to be accelerated. Dewatering of sludge, however, was found to partially reverse this virucidal effect. Evidence is presented indicating that this reversal is caused by an unidentified protective substance in sludge also concentrated through dewatering. Finally, it was shown that the effects of raw sludge on heat inactivation of poliovirus and reovirus are greatly reduced by composting, a result that correlated with the degradation of detergents.

  6. Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge production of bioplastics using dairy residues.

    PubMed

    Bosco, Francesca; Chiampo, Fulvia

    2010-04-01

    The production of polyhydroxyalcanoates (PHAs), which are biodegradable plastics, was studied using milk whey and dairy wastewater activated sludge to define a suitable C/N ratio, the pre-treatments required to reduce the protein content, and the effect of pH correction. The results show good production of PHAs at a C/N=50 and without pH correction. The use of dairy wastewater activated sludge has the advantage of not requiring aseptic conditions.

  7. Wetlands for Wastewater Treatment.

    PubMed

    Martinez-Guerra, Edith; Jiang, Yi; Lee, Gordon; Kokabian, Bahareh; Fast, Sara; Truax, Dennis D; Martin, James L; Magbanua, Benjamin S; Gude, Veera Gnaneswar

    2015-10-01

    This paper provides a review of the treatment technologies, which utilize natural processes or passive components in wastewater treatment. In particular, this paper primarily focuses on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (single and multiple pollutants, and metals), and emerging pollutant removal (pharmaceuticals). A summary of studies involving the plant (vegetation) effects, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included.

  8. Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hu, Yongyou; Bi, Zhe; Cao, Yunqing

    Substantial optimization and cost reduction are required before microbial fuel cells (MFCs) can be practically applied. We show here the performance improvement of an air-cathode single-chamber MFC by using a microfiltration membrane (MFM) on the water-facing side of the cathode and using multiple aerobic sludge (AES), anaerobic sludge (ANS), and wetland sediment (WLS) as anodic inoculums. Batch test results show that the MFC with an MFM resulted in an approximately two-fold increase in maximum power density compared to the MFC with a proton exchange membrane (PEM). The Coulombic efficiency increased from 4.17% to 5.16% in comparison with the membrane-less MFC, without a significant negative effect on power generation and internal resistance. Overall performance of the MFC was also improved by using multiple sludge inoculums in the anode. The MFC inoculated with ANS + WLS produced the greatest maximal power density of 373 mW m -2 with a substantially low internal resistance of 38 Ω. Higher power density with a decreased internal resistance was also achieved in MFC inoculated with ANS + AES and ANS + AES + WLS in comparison with those inoculated with only one sludge. The MFCs inoculated with AES + ANS achieved the highest Coulombic efficiency. Over 92% COD was removed from confectionery wastewater in all tested MFCs, regardless of the membrane or inoculum used.

  9. Capital and operating costs of full-scale fecal sludge management and wastewater treatment systems in Dakar, Senegal.

    PubMed

    Dodane, Pierre-Henri; Mbéguéré, Mbaye; Sow, Ousmane; Strande, Linda

    2012-04-03

    A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita(-1) year(-1)) was ten times higher than the FSM ($4.05 capita(-1) year(-1)), the annual operating cost for the SB ($11.98 capita(-1) year(-1)) was 1.5 times higher than the FSM ($7.58 capita(-1) year(-1)), and the combined capital and operating for the SB ($54.64 capita(-1) year(-1)) was five times higher than FSM ($11.63 capita(-1) year(-1)). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive.

  10. Capital and Operating Costs of Full-Scale Fecal Sludge Management and Wastewater Treatment Systems in Dakar, Senegal

    PubMed Central

    2012-01-01

    A financial comparison of a parallel sewer based (SB) system with activated sludge, and a fecal sludge management (FSM) system with onsite septic tanks, collection and transport (C&T) trucks, and drying beds was conducted. The annualized capital for the SB ($42.66 capita–1 year–1) was ten times higher than the FSM ($4.05 capita–1 year–1), the annual operating cost for the SB ($11.98 capita–1 year–1) was 1.5 times higher than the FSM ($7.58 capita–1 year–1), and the combined capital and operating for the SB ($54.64 capita–1 year–1) was five times higher than FSM ($11.63 capita–1 year–1). In Dakar, costs for SB are almost entirely borne by the sanitation utility, with only 6% of the annualized cost borne by users of the system. In addition to costing less overall, FSM operates with a different business model, with costs spread among households, private companies, and the utility. Hence, SB was 40 times more expensive to implement for the utility than FSM. However, the majority of FSM costs are borne at the household level and are inequitable. The results of the study illustrate that in low-income countries, vast improvements in sanitation can be affordable when employing FSM, whereas SB systems are prohibitively expensive. PMID:22413875

  11. TENORM: Wastewater Treatment Residuals

    EPA Pesticide Factsheets

    Water and wastes which have been discharged into a municipal sewers are treated at wastewater treatment plants. These may contain both man-made and naturally occurring radionuclides which can accumulate in the treatment plant.

  12. Sustainable operation of a biological wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Trikoilidou, E.; Samiotis, G.; Bellos, D.; Amanatidou, E.

    2016-11-01

    The sustainable operation of a biological wastewater treatment plant is significantly linked to its removal efficiency, cost of sludge management, energy consumption and monitoring cost. The biological treatment offers high organic removal efficiency, it also entails significant sludge production, which contains active (live) and inactive (dead) microorganisms and must be treated prior to final disposal, in order to prevent adverse impact on public health and environment. The efficiency of the activated sludge treatment process is correlated to an efficient solid-liquid separation, which is strongly depended on the biomass settling properties. The most commonly encountered settling problems in a wastewater treatment plant, which are usually associated with operating conditions and specific microorganisms growth, are sludge bulking, floating sludge, pin point flocs and straggler flocs. Sustainable management of sludge and less energy consumption are the two principal aspects that determine the operational cost of wastewater treatment plants. Sludge treatment and management accumulate more than 50% of the operating cost. Aerobic wastewater treatment plants have high energy requirements for covering the needs of aeration and recirculations. In order to ensure wastewater treatment plants’ effective operation, a large number of physicochemical parameters have to be monitored, thus further increasing the operational cost. As the operational parameters are linked to microbial population, a practical way of wastewater treatment plants’ controlling is the microscopic examination of sludge, which is proved to be an important tool for evaluating plants’ performance and assessing possible problems and symptoms. This study presents a biological wastewater treatment plant with almost zero biomass production, less energy consumption and a practical way for operation control through microbial manipulation and microscopic examination.

  13. Rapid quantification of bacteria and viruses in influent, settled water, activated sludge and effluent from a wastewater treatment plant using flow cytometry.

    PubMed

    Ma, Lili; Mao, Guannan; Liu, Jie; Yu, Hui; Gao, Guanghai; Wang, Yingying

    2013-01-01

    As microbiological parameters are important in monitoring the correct operation of wastewater treatment plants and controlling the microbiological quality of wastewater, the abundances of total bacteria (including intact and damaged bacterial cells) and total viruses in wastewater were investigated using a combination of ultrasonication and flow cytometry. The comparisons between flow cytometry (FCM) and other cultivation-independent methods (adenosine tri-phosphate (ATP) analysis for bacteria enumeration and epifluorescence microscopy (EFM) for virus enumeration) gave very similar patterns of microbial abundance changes, suggesting that FCM is suitable for targeting and obtaining reliable counts for bacteria and viruses in wastewater samples. The main experimental results obtained were: (1) effective removal of total bacteria in wastewater, with a decrease from an average concentration of 1.74 × 10(8)counts ml(-1) in raw wastewater to 3.91 × 10(6)counts ml(-1) in the effluent, (2) compared to influent raw wastewater, the average concentration of total viruses in the treated effluent (3.94 × 10(8)counts ml(-1)) exhibited no obvious changes, (3) the applied FCM approach is a rapid, easy, and convenient tool for understanding the microbial dynamics and monitoring microbiological quality in wastewater treatment processes.

  14. Sludge Generation from Ferrous/Sulfide Chromium Treatment.

    DTIC Science & Technology

    1984-08-01

    sodium bisulfite , sulfur dioxide, and sodium sulfide. While all these chemicals produce a satisfactory effluent, the quantity of sludge produced by the...34Treatment of Toxic Metal Wastewaters by Alkaline Ferrous Sulfate and Sodium Sulfied for Chromium Reduction, Precipitation and Coagulation," Pro... sodium sulfide and ferrous chloride (9:1 ratio) at pH 8.0 rapidly reduced hexavalent chromium and produced approximately one-fourth the sludge (on a

  15. Wastewater sludge dewaterability enhancement using hydroxyl aluminum conditioning: Role of aluminum speciation.

    PubMed

    Cao, Bingdi; Zhang, Weijun; Wang, Qiandi; Huang, Yangrui; Meng, Chenrui; Wang, Dongsheng

    2016-11-15

    Chemical conditioning is one of the most important processes for improve the performance of sludge dewatering device. Aluminum salt coagulant has been widely used in wastewater and sludge treatment. It is generally accepted that pre-formed speciation of aluminum salt coagulants (ASC) has an important influence on coagulation/flocculation performance. In this study, the interaction mechanisms between sludge particles and aluminum salt coagulants with different speciation of hydroxy aluminum were investigated by characterizing the changes in morphological and EPS properties. It was found that middle polymer state aluminum (Alb) and high polymer state aluminum (Alc) performed better than monomer aluminum and oligomeric state aluminum (Ala) in reduction of specific resistance to filtration (SRF) and compressibility of wastewater sludge due to their higher charge neutralization and formed more compact flocs. Sludge was significantly acidified after addition Ala, while pH was much more stable under Alb and Alc conditioning due to their hydrolysis stability. The size of sludge flocs conditioned with Alb and Alc was small but flocs structure was denser and more compact, and floc strength is higher, while that formed from Ala is relatively large, but floc structure was loose, floc strength is relatively lower. Scanning environmental microscope analysis revealed that sludge flocs conditioned by Alb and Alc (especially PAC2.5 and Al13) exhibited obvious botryoidal structure, this is because sludge flocs formed by Alb and Alc were more compact and floc strength is high, it was easy generated plentiful tiny channels for water release. In addition, polymeric aluminum salt coagulant (Alb, Alc) had better performance in compressing extracellular polymeric substances (EPS) structure and removing sticky protein-like substances from soluble EPS fraction, contributing to improvement of sludge filtration performance. Therefore, this study provides a novel solution for improving sludge

  16. Two Devices for Removing Sludge From Bioreactor Wastewater

    NASA Technical Reports Server (NTRS)

    Archer, Shivaun; Hitchens, G. DUncan; Jabs, Harry; Cross, Jennifer; Pilkinton, Michelle; Taylor, Michael

    2007-01-01

    Two devices a magnetic separator and a special filter denoted a self-regenerating separator (SRS) have been developed for separating sludge from the stream of wastewater from a bioreactor. These devices were originally intended for use in microgravity, but have also been demonstrated to function in normal Earth gravity. The magnetic separator (see Figure 1) includes a thin-walled nonmagnetic, stainless-steel cylindrical drum that rotates within a cylindrical housing. The wastewater enters the separator through a recirculation inlet, and about 80 percent of the wastewater flow leaves through a recirculation outlet. Inside the drum, a magnet holder positions strong permanent magnets stationary and, except near a recirculation outlet, close to the inner drum surface. To enable magnetic separation, magnetite (a ferromagnetic and magnetically soft iron oxide) powder is mixed into the bioreactor wastewater. The magnetite becomes incorporated into the sludge by condensation, onto the powder particles, of microbe flocks that constitute the sludge. As a result, the magnets inside the drum magnetically attract the sludge onto the outer surface of the drum.

  17. A fullerene colloidal suspension stimulates the growth and denitrification ability of wastewater treatment sludge-derived bacteria.

    PubMed

    Huang, Fei; Ge, Ling; Zhang, Bo; Wang, Yun; Tian, Hao; Zhao, Liping; He, Yiliang; Zhang, Xiaojun

    2014-08-01

    Fullerene (C60) is a nanoparticle that has been widely studied and applied in numerous commodities. However, there are concerns regarding its potential negative impact on the environment. A fullerene colloidal suspension (nC60) is known for its property of selectively inhibiting the growth of microorganisms. In this study, using denaturing gradient gel electrophoresis fingerprinting technology, we found that fullerene altered the structure of a sludge-derived microbial community. Specifically, the bacteria from Bacillus, Acidovorax and Cloacibacterium genera were enriched in abundance when supplemented with nC60 at pH 6.5 under aerobic conditions. The effects of the fullerene colloidal suspension on a strain of Bacillus isolated from the same microbial community were evaluated to further characterize the growth-stimulating effect of nC60. The biomass of cultures of this strain incubated with nC60 concentrations ranging from 3 mg L(-1) to 7 mg L(-1) was approximately twice that of the control during the stationary phase. The fullerene also induced higher superoxide dismutase activity in Bacillus cereus. Furthermore, the nitrate removal rate of B. cereus increased to nearly 55% in the presence of 5 mg L(-1) nC60, compared to 35% for the control. Meanwhile, the cumulative loading amount of nitrite was reduced from 33 μg mL(-1) to 25 μg mL(-1) by the addition of 5 mg L(-1) nC60. Our results demonstrate that the fullerene colloidal suspension is conditionally capable of promoting the growth and denitrification metabolism of certain bacteria, such as B. cereus. Fullerene might have both inhibitory and stimulatory effects on microorganisms in various environments.

  18. Sewage sludge treatment with lime.

    PubMed

    Herbst, B

    2000-01-01

    The article describes the application of lime as a method for treatment and hygienisation of sewage sludges with lime products such as quicklime, slake lime and dolomitic lime. As a result of the increase in temperature and pH-value during sludge and lime mixing most pathogenic vectors of disease (i.e. bacteria, worms, viruses and parasites) are reduced in concentration and viability to manufacture a safe product for further application on agricultural land.

  19. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.

    PubMed

    Bratina, Božidar; Šorgo, Andrej; Kramberger, Janez; Ajdnik, Urban; Zemljič, Lidija Fras; Ekart, Janez; Šafarič, Riko

    2016-12-01

    After a ban on the depositing of untreated sludge in landfills, the sludge from municipal and industrial water-treatment plants can be regarded as a problem. Waste products of the water treatment process can be a problem or an opportunity - a source for obtaining raw materials. In the European Union, raw sludge and fats, oil and grease (FOG) from municipal and industrial wastewater treatment plants (WWTP) cannot be deposited in any natural or controlled environment. For this reason, it must be processed (stabilized, dried) to be used later as a fertilizer, building material, or alternative fuel source suitable for co-incineration in high temperature furnaces (power plants or concrete plants). The processes of drying sludge, where heat and electricity are used, are energy consuming and economically unattractive. Beside energy efficiency, the main problem of sludge drying is in its variability of quality as a raw material. In addition to this, sludge can be contaminated by a number of organic and inorganic pollutants and organisms. Due to the presence or absence of pollutants, different end products can be economically interesting. For example, if the dried sludge contains coliform bacteria, viruses, helminths eggs or smaller quantities of heavy metals, it cannot be used as a fertilizer but can still be used as a fuel. The objectives of the current article is to present a batch-processing pilot device of sludge or digestate that allows the following: (1) low pressure and low temperature energy effective drying of from 10 to 40% remaining water content, (2) disinfection of pathogen (micro)organisms, (3) heavy metal reduction, (4) production of products of predetermined quality (e.g. containing different quantities of water; it can be used as a fertilizer, or if the percentage of water in the dry sludge is decreased to 10%, then the dried sludge can be used as a fuel with a calorific value similar to coal). An important feature is also the utilization of low

  20. Sludge.

    ERIC Educational Resources Information Center

    Tenenbaum, David

    1992-01-01

    Cites a recycling success story involving sludge production from wastewater and transformation into an effective plant fertilizer. Discusses related concerns such as dealing with pollutants like heavy metals and PCBs often found in sludge. Provides an example of an application of sludge produced in Chicago to an area reclamation site. (MCO)

  1. Bacteriophages--potential for application in wastewater treatment processes.

    PubMed

    Withey, S; Cartmell, E; Avery, L M; Stephenson, T

    2005-03-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction.

  2. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    ERIC Educational Resources Information Center

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  3. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP.

    PubMed

    Liu, Jun; Li, Jun; Wang, Xiaodong; Zhang, Qi; Littleton, Helen

    2017-01-01

    Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor (SBR) using piggery wastewater. Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2mm and SVI30 of 20.3mL/g formed in SBR on day 18. High concentrations of Ca and Fe in the raw piggery wastewater and operating mode accelerated aerobic granulation, even though the seed sludge was from a municipal wastewater treatment plant (WWTP). Alpha diversity analysis revealed Operational Taxonomic Units, Shannon, ACE and Chao 1 indexes in aerobic granules were 2013, 5.51, 4665.5 and 3734.5, which were obviously lower compared to seed sludge. The percentages of major microbial communities, such as Proteobacteria, Bacteroidetes and Firmicutes were obviously higher in aerobic granules than seed sludge. Chloroflexi, Planctomycetes, Actinobacteria, TM7 and Acidobacteria showed much higher abundances in the inoculum. The main reasons might be the characteristics of raw piggery wastewater and granule structure.

  4. Wetlands for Wastewater Treatment.

    PubMed

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included.

  5. Nitrate content of lettuce (Lactuca sativa L.) after fertilization with sewage sludge and irrigation with treated wastewater.

    PubMed

    Castro, E; Mañas, M P; De Las Heras, J

    2009-02-01

    A romaine-type lettuce (Lactuca sativa L.) was cultivated over three crop seasons (spring 2005, spring 2006 and autumn-winter 2006) in six 36 m(2) plots in Alcázar de San Juan, Spain. A drip irrigation system was used to water all plots: five plots with drinking water and one plot with wastewater from the activated sludge system of a wastewater treatment plant (WWTP). One drinking water-irrigated plot was not fertilized (control). Five different treatments were applied to the soil: three organic mixtures (sewage sludge, sewage sludge mixed with pine bark and municipal solid waste with composted sludge) and a conventional fertilizer were applied to the four plots irrigated with drinking water. The last plot was irrigated with treated wastewater. The treatments were tested for their effect on plant growth and nitrate concentration in vegetable tissue. An increase in fresh weight in the lettuce was linked to the dosage of sewage sludge. The highest nitrate level was observed in the sewage sludge treatment in all crops and seasons, although, in general, all values were below the maximum limits established by the European Commission for nitrate content in fresh romaine lettuce. In the third crop season, a significant increase in nitrate content was observed in lettuce from organic treatments. Nitrate concentration in lettuce from irrigated treated wastewater was higher than control, although significant differences were not found.

  6. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge.

    PubMed

    Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J

    2015-09-09

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.

  7. Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge

    PubMed Central

    Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.

    2015-01-01

    Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678

  8. Wastewater and sludge control-technology options for synfuels industries

    SciTech Connect

    Castaldi, F.J.; Harrison, W.; Ford, D.L.

    1981-02-01

    The options examined were those of zero discharge, partial water reuse with restricted discharge of treated effluents, and unrestricted discharge of treated effluents. Analysis of cost data and performance-analyses data for several candidate secondary-wastewater-treatment unit processes indicated that combined activated-sludge/powdered-activated-carbon (AS/PAC) treatment incorporating wet-air-oxidation carbon regeneration is the most cost-effective control technology available for the removal of organic material from slagging, fixed-bed process wastewaters. Bench-scale treatability and organic-constituent removal studies conducted on process quench waters from a pilot-scale, slagging, fixed-bed gasifer using lignite as feedstock indicated that solvent extraction followed by AS/PAC treatment reduces levels of extractable and chromatographable organics to less than 1 ..mu..g/L in the final effluent. Levels of conventional pollutants also were effectively reduced by AS/PAC to the minimum water-quality standards for most receiving waters. The most favored and most cost-effective treatment option is unrestricted discharge of treated effluents with ultimate disposal of biosludges and landfilling of gasifier ash and slag. This option requires a capital expenditure of $8,260,000 and an annual net operating cost of $2,869,000 in 1978 dollars, exclusive of slag disposal. The net energy requirement of 19.6 x 10/sup 6/ kWh/year, or 15.3 kWh/1000 gal treated, is less than 6% of the equivalent energy demand associated with the zero-discharge option.

  9. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering.

    PubMed

    Bala Subramanian, S; Yan, S; Tyagi, R D; Surampalli, R Y

    2010-04-01

    Wastewater treatment plants often face the problems of sludge settling mainly due to sludge bulking. Generally, synthetic organic polymer and/or inorganic coagulants (ferric chloride, alum and quick lime) are used for sludge settling. These chemicals are very expensive and further pollute the environment. Whereas, the bioflocculants are environment friendly and may be used to flocculate the sludge. Extracellular polymeric substances (EPS) produced by sludge microorganisms play a definite role in sludge flocculation. In this study, 25 EPS producing strains were isolated from municipal wastewater treatment plant. Microorganisms were selected based on EPS production properties on solid agar medium. Three types of EPS (slime, capsular and bacterial broth mixture of both slime and capsular) were harvested and their characteristics were studied. EPS concentration (dry weight), viscosity and their charge (using a Zetaphoremeter) were also measured. Bioflocculability of obtained EPS was evaluated by measuring the kaolin clay flocculation activity. Six bacterial strains (BS2, BS8, BS9, BS11, BS15 and BS25) were selected based on the kaolin clay flocculation. The slime EPS was better for bioflocculation than capsular EPS and bacterial broth. Therefore, extracted slime EPS (partially purified) from six bacterial strains was studied in terms of sludge settling [sludge volume index (SVI)] and dewatering [capillary suction time (CST)]. Biopolymers produced by individual strains substantially improved dewaterability. The extracted slime EPS from six different strains were partially characterized.

  10. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.

    PubMed

    Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza

    2010-01-01

    The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.

  11. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment.

    PubMed

    Nakada, Norihide; Tanishima, Toshikatsu; Shinohara, Hiroyuki; Kiri, Kentaro; Takada, Hideshige

    2006-10-01

    We measured six acidic analgesics or anti-inflammatories (aspirin, ibuprofen, naproxen, ketoprofen, fenoprofen, mefenamic acid), two phenolic antiseptics (thymol, triclosan), four amide pharmaceuticals (propyphenazone, crotamiton, carbamazepine, diethyltoluamide), three phenolic endocrine disrupting chemicals (nonylphenol, octylphenol, bisphenol A), and three natural estrogens (17beta-estradiol, estrone, estriol) in 24-h composite samples of influents and secondary effluents collected seasonally from five municipal sewage treatment plants in Tokyo. Aspirin was most abundant in the influent, with an average concentration of 7300 ng/L (n = 16), followed by crotamiton (921 ng/L), ibuprofen (669 ng/L), triclosan (511 ng/L), and diethyltoluamide (503 ng/L). These concentrations were 1 order of magnitude lower than those reported in the USA and Europe. This can be ascribed to lower consumption of the pharmaceuticals in Japan. Aspirin, ibuprofen, and thymol were removed efficiently during primary + secondary treatment (> 90% efficiency). On the other hand, amide-type pharmaceuticals, ketoprofen, and naproxen showed poor removal (< 50% efficiency), which is probably due to their lower hydrophobicity (logKow < 3). Because of the persistence of crotamiton during secondary treatment, crotamiton was most abundant among the target pharmaceuticals in the effluent. This is the first paper to report ubiquitous occurrence of crotamiton, a scabicide, in sewage. Because crotamiton is used worldwide and it is persistent during secondary treatment, it is a promising molecular marker of sewage and secondary effluent.

  12. Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant.

    PubMed

    Wang, Liang; Min, Min; Li, Yecong; Chen, Paul; Chen, Yifeng; Liu, Yuhuan; Wang, Yingkuan; Ruan, Roger

    2010-10-01

    The objective of this study was to evaluate the growth of green algae Chlorella sp. on wastewaters sampled from four different points of the treatment process flow of a local municipal wastewater treatment plant (MWTP) and how well the algal growth removed nitrogen, phosphorus, chemical oxygen demand (COD), and metal ions from the wastewaters. The four wastewaters were wastewater before primary settling (#1 wastewater), wastewater after primary settling (#2 wastewater), wastewater after activated sludge tank (#3 wastewater), and centrate (#4 wastewater), which is the wastewater generated in sludge centrifuge. The average specific growth rates in the exponential period were 0.412, 0.429, 0.343, and 0.948 day(-1) for wastewaters #1, #2, #3, and #4, respectively. The removal rates of NH4-N were 82.4%, 74.7%, and 78.3% for wastewaters #1, #2, and #4, respectively. For #3 wastewater, 62.5% of NO3-N, the major inorganic nitrogen form, was removed with 6.3-fold of NO2-N generated. From wastewaters #1, #2, and #4, 83.2%, 90.6%, and 85.6% phosphorus and 50.9%, 56.5%, and 83.0% COD were removed, respectively. Only 4.7% was removed in #3 wastewater and the COD in #3 wastewater increased slightly after algal growth, probably due to the excretion of small photosynthetic organic molecules by algae. Metal ions, especially Al, Ca, Fe, Mg, and Mn in centrate, were found to be removed very efficiently. The results of this study suggest that growing algae in nutrient-rich centrate offers a new option of applying algal process in MWTP to manage the nutrient load for the aeration tank to which the centrate is returned, serving the dual roles of nutrient reduction and valuable biofuel feedstock production.

  13. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Díaz-Granados, José Sánchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.

  14. Chemical stability of acid rock drainage treatment sludge and implications for sludge management

    SciTech Connect

    Danny M. McDonald; John A. Webb; Jeff Taylor

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by {approximately} 1 pH unit with each test, until the final pH is {approximately}2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, {approximately}4.5, {approximately}5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack. 26 refs., 5 figs., 2 tabs.

  15. Chemical stability of acid rock drainage treatment sludge and implications for sludge management.

    PubMed

    McDonald, Danny M; Webb, John A; Taylor, Jeff

    2006-03-15

    To assess the chemical stability of sludges generated by neutralizing acid rock drainage (ARD) with alkaline reagents, synthetic ARD was treated with hydrated lime (batch and high-density sludge process), limestone, and two proprietary reagents (KB-1 and Bauxsol). The amorphous metal hydroxide sludge produced was leached using deionized water, U.S. EPA methods (toxicity characteristic leaching procedure, synthetic precipitation leaching procedure), and the new strong acid leach test (SALT), which leaches the sludge with a series of sulfuric acid extractant solutions; the pH decreases by approximately 1 pH unit with each test, until the final pH is approximately 2. Sludges precipitated by all reagents had very similar leachabilities except for KB-1 and Bauxsol, which released more aluminum. SALT showed that lowering the pH of the leaching solution mobilized more metals from the sludges. Iron, aluminum, copper, and zinc began to leach at pH 2.5-3, approximately 4.5, approximately 5.5, and 6-6.5, respectively. The leachability of ARD treatment sludges is determined by the final pH of the leachate. A higher neutralization potential (e.g., a greater content of unreacted neutralizing agent) makes sludges inherently more chemically stable. Thus, when ARD or any acidic metalliferous wastewater is treated, a choice must be made between efficient reagent use and resistance to acid attack.

  16. Effects of additional fermented food wastes on nitrogen removal enhancement and sludge characteristics in a sequential batch reactor for wastewater treatment.

    PubMed

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-07-01

    In order to enhance nitrogen removal from domestic wastewater with a carbon/nitrogen (C/N) ratio as low as 2.2:1, external carbon source was prepared by short-term fermentation of food wastes and its effect was evaluated by experiments using sequencing batch reactors (SBRs). The addition of fermented food wastes, with carbohydrate (42.8 %) and organic acids (24.6 %) as the main organic carbon components, could enhance the total nitrogen (TN) removal by about 25 % in contrast to the 20 % brought about by the addition of sodium acetate when the C/N ratio was equally adjusted to 6.6:1. The fermented food waste addition resulted in more efficient denitrification in the first anoxic stage of the SBR operation cycle than sodium acetate. In order to characterize the metabolic potential of microorganisms by utilizing different carbon sources, Biolog-ECO tests were conducted with activated sludge samples from the SBRs. As a result, in comparison with sodium acetate, the sludge sample by fermented food waste addition showed a greater average well color development (AWCD590), better utilization level of common carbon sources, and higher microbial diversity indexes. As a multi-organic mixture, fermented food wastes seem to be superior over mono-organic chemicals as an external carbon source.

  17. Increased biogas production in a wastewater treatment plant by anaerobic co-digestion of fruit and vegetable waste and sewer sludge - a full scale study.

    PubMed

    Park, Nathan D; Thring, Ronald W; Garton, Randy P; Rutherford, Michael P; Helle, Steve S

    2011-01-01

    Anaerobic digestion is a well established technology for the reduction of organic matter and stabilization of wastewater. Biogas, a mixture of methane and carbon dioxide, is produced as a useful by-product of the process. Current solid waste management at the city of Prince George is focused on disposal of waste and not on energy recovery. Co-digestion of fresh fruit and vegetable waste with sewer sludge can improve biogas yield by increasing the load of biodegradable material. A six week full-scale project co-digesting almost 15,000 kg of supermarket waste was completed. Average daily biogas production was found to be significantly higher than in previous years. Digester operation remained stable over the course of the study as indicated by the consistently low volatile acids-to-alkalinity ratio. Undigested organic material was visible in centrifuged sludge suggesting that the waste should have been added to the primary digester to prevent short circuiting and to increase the hydraulic retention time of the freshly added waste.

  18. Activated sludge systems removal efficiency of veterinary pharmaceuticals from slaughterhouse wastewater.

    PubMed

    Carvalho, Pedro N; Pirra, António; Basto, M Clara P; Almeida, C Marisa R

    2013-12-01

    The knowledge on the efficiency of wastewater treatment plants (WWTPs) from animal food production industry for the removal of both hormones and antibiotics of veterinary application is still very limited. These compounds have already been reported in different environmental compartments at levels that could have potential impacts on the ecosystems. This work aimed to evaluate the role of activated sludge in the removal of commonly used veterinary drugs, enrofloxacin (ENR), tetracycline (TET), and ceftiofur, from wastewater during a conventional treatment process. For that, a series of laboratory-controlled experiments using activated sludge were carried out in batch reactors. Sludge reactors with 100 μg/L initial drug charge presented removal rates of 68 % for ENR and 77 % for TET from the aqueous phase. Results indicated that sorption to sludge and to the wastewater organic matter was responsible for a significant percentage of drugs removal. Nevertheless, these removal rates still result in considerable concentrations in the aqueous phase that will pass through the WWTP to the receiving environment. Measuring only the dissolved fraction of pharmaceuticals in the WWTP effluents may underestimate the loading and risks to the aquatic environment.

  19. Occurrence of selected polybrominated diphenyl ethers and 2,2',4,4',5,5'-hexabromobiphenyl (BB-153) in sewage sludge and effluent samples of a wastewater-treatment plant in Cape Town, South Africa.

    PubMed

    Daso, Adegbenro P; Fatoki, Olalekan S; Odendaal, James P; Olujimi, Olanrewaju O

    2012-04-01

    The reuse of treated effluent from wastewater treatment plants (WWTPs) as alternative water source for sport-field or landscape irrigation, agricultural, and other industrial purposes is growing significantly. Similarly, the application of treated sludge (biosolid) to agricultural soils is now being considered globally as the most economic means of sludge disposal. However, the presence of emerging organic contaminants in these matrices, including polybrominated diphenyl ethers (PBDEs), which are potential endocrine disruptors, portends a high health risk to humans and the environment in general. In this study, effluent and sewage sludge samples collected from a WWTP were analysed for some selected PBDE congeners (BDE congeners 28, 47, 99 100 153 154 183, and 209) as well as BB-153 using a high-capillary gas chromatograph equipped with an electron capture detector. The sum of the eight PBDE congeners ranged from 369 to 4370, 19.2 to 2640, and 90.4 to 15,100 ng/l for raw water, secondary effluent, and final effluent, respectively. A similar result was observed for sewage sludge samples, which ranged between 13.1 and 652 ng/g dry weight (dw). The results obtained for BB-153 were generally lower compared with those found for most PBDE congeners. These ranged from ND to 18.4 ng/l and ND to 9.97 ng/g dw for effluents and sewage sludge, respectively. In both matrices, BDE 47 and 209 congeners were found to contribute significantly to the overall sum of PBDEs. The reuse of the treated effluent, particularly for agricultural purposes, could enhance the possibility of these contaminants entering into the food chain, thus causing undesirable health problems in exposed subjects.

  20. Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater.

    PubMed

    Hu, Qing-Yuan; Li, Meng; Wang, Can; Ji, Min

    2015-09-15

    A powdered activated carbon-activated sludge (PAC-AS) system, a traditional activated sludge (AS) system, and a powdered activated carbon (PAC) system were operated to examine the insights into the influence of PAC addition on biological treatment. The average COD removal efficiencies of the PAC-AS system (39%) were nearly double that of the AS system (20%). Compared with the average efficiencies of the PAC system (7%), COD removal by biodegradation in the PAC-AS system was remarkably higher than that in the AS system. The analysis of the influence of PAC on water quality and sludge properties showed that PAC facilitated the removal of hydrophobic matter and metabolic acidic products, and also enhanced the biomass accumulation, sludge settleability, and specific oxygen uptake rate inside the biological system. The microbial community structures in the PAC-AS and AS systems were monitored. The results showed that the average well color development in the PAC-AS system was higher than that in the AS system. The utilization of various substrates by microorganisms in the two systems did not differ. The dissimilarity index was far less than one; thus, showing that the microbial community structures of the two systems were the same.

  1. [Treatment of drilling wastewater from oil field by using yeast].

    PubMed

    Wang, Yanming; Yang, Min; Zheng, Shaokui; Zhou, Xiangyu; Shen, Zhemin

    2002-09-01

    Two strains of yeast, namely Wickerhamiella domercqii and Candida boidinii, were acquired through screening from soil samples contaminated by drilling wastewater. A TOC removal of 40.5% was acquired when the mixture of the two yeast strains was used for drilling wastewater treatment, a little higher than that with activated sludge acclimated with wastewater (35.2%). Some organic compounds in the fraction of molecular weight above 60,000 were found to be biodegradable.

  2. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    ERIC Educational Resources Information Center

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  3. Biofilms Versus Activated Sludge: Considerations in Metal and Metal Oxide Nanoparticle Removal from Wastewater.

    PubMed

    Walden, Connie; Zhang, Wen

    2016-08-16

    The increasing application of metal and metal oxide nanoparticles [Me(O)NPs] in consumer products has led to a growth in concentration of these nanoparticles in wastewater as emerging contaminants. This may pose a threat to ecological communities (e.g., biological nutrient removal units) within treatment plants and those subject to wastewater effluents. Here, the toxicity, fate, and process implications of Me(O)NPs within wastewater treatment, specifically during activated sludge processing and biofilm systems are reviewed and compared. Research showed activated sludge achieves high removal rate of Me(O)NPs by the formation of aggregates through adsorption. However, recent literature reveals evidence that inhibition is likely for nutrient removal capabilities such as nitrification. Biofilm systems were much less studied, but show potential to resist Me(O)NP inhibition and achieve removal through possible retention by sorption. Implicating factors during bacteria-Me(O)NP interactions such as aggregation, surface functionalization, and the presence of organics are summarized. At current modeled levels, neither activated sludge nor biofilm systems can achieve complete removal of Me(O)NPs, thus allowing for long-term environmental exposure of diverse biological communities to Me(O)NPs in streams receiving wastewater effluents. Future research directions are identified throughout in order to minimize the impact of these nanoparticles released.

  4. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  5. Reuse of wastewater sludge with marine clay as a new resource of construction aggregates.

    PubMed

    Tay, J H; Show, K Y; Lee, D J; Hong, S Y

    2004-01-01

    The disposal of sludge from wastewater treatment presents highly complex problems to any municipality. Most of the sludge disposal methods have varying degrees of environmental impact. Hence, it is necessary to explore potential areas of reuse in order to alleviate sludge disposal problems and to conserve natural resources. Industrial sludge and marine clay are two forms of high-volume wastes. Using these wastes as a resource of raw materials to produce construction aggregates would enable large-scale sludge reuse. The aggregates were produced at various sludge-clay combinations containing 0, 20, 50, 80 and 100% clay contents, respectively. The pelletized aggregates displayed lower particle densities ranged between 1.48 and 2.25 g/cm3, compared to the density of granite at 2.56 g/cm3. Good 28-day concrete compressive strength of 38.5 N/mm2 achieved by the 100% sludge aggregate was comparable to the value of 38.0 N/mm2 achieved of the granite control specimens. The leachate contamination levels from the aggregates after 150 days were found acceptable when used in concrete, indicating insignificant environmental contamination. The heat flow study showed increases in heat flow at the temperatures of 480 degrees C and between 660 degrees C and 900 degrees C, indicating a need for the extension of heating time around these temperatures.

  6. [Modern approaches to wastewater treatment].

    PubMed

    Ivan'ko, O M

    2013-01-01

    The present state and prospects of new methods for cleaning in the water and wastewater using membrane separation, are examples of application of this technology in the treatment of surface and subsurface natural waters, seawater desalination, wastewater treatment plants.

  7. Prevalence and fate of Giardia cysts in wastewater treatment plants.

    PubMed

    Nasser, A M; Vaizel-Ohayon, D; Aharoni, A; Revhun, M

    2012-09-01

    The present study was conducted to review factors affecting the prevalence and concentration of Giardia in raw wastewater. The removal and inactivation efficiency of Giardia by wastewater treatment technologies was also reviewed. Data published for the prevalence of Giardia in wastewater and the removal by wastewater treatment plants was reviewed. Giardia cysts are highly prevalent in wastewater in various parts of the world, which may reflect the infection rate in the population. In 23 of 30 (76.6%) studies, all of the tested raw wastewater samples were positive for Giardia cysts at concentrations ranging from 0.23 to 100 000 cysts l(-1). The concentration of Giardia in raw wastewater was not affected by the geographical region or the socio-economic status of the community. Discharge of raw wastewater or the application of raw wastewater for irrigation may result in Giardia transmission. Activated sludge treatment resulted in a one to two orders of magnitude reduction in Giardia, whereas a stabilization pond with a high retention time removed up to 100% of the cysts from wastewater. High-rate sand filtration, ultrafiltration and UV disinfection were reported as the most efficient wastewater treatment methods for removal and disinfection of Giardia cysts. Wastewater treatment may not totally prevent the environmental transmission of Giardia cysts. The reviewed data show that a combination of wastewater treatment methods may results in efficient removal of Giardia cysts and prevent their environmental transmission.

  8. Characterization of a bioflocculant from potato starch wastewater and its application in sludge dewatering.

    PubMed

    Guo, Junyuan; Zhang, Yuzhe; Zhao, Jing; Zhang, Yu; Xiao, Xiao; Wang, Bin; Shu, Bi

    2015-07-01

    A bioflocculant was produced by using potato starch wastewater; its potential in sludge dewatering and potato starch wastewater treatment was investigated. Production of this bioflocculant was positively associated with cell growth, and a highest value of 0.81 g/L was obtained. When incubated with this bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of typical wastewater activated sludge reached 20.8% and 3.9 × 10(12) m/kg, respectively, which were much better than the ones obtained with conventional chemical flocculants. Sludge dewatering was further improved when both the bioflocculant and conventional polyacrylamide (PAM) were used simultaneously. With potato starch wastewater, chemical oxygen demand (COD) and turbidity removal rates could reach 52.4 and 81.7%, respectively, at pH value of 7.5 when the bioflocculant dose was adjusted to 30 mg/L; from a practical standpoint, the removal of COD and turbidity reached 48.3 and 72.5%, respectively, without pH value adjustment.

  9. Microalgae and wastewater treatment

    PubMed Central

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  10. Disinfection. [Wastewater treatment

    SciTech Connect

    Haas, C.N.; McCreary, J.J.

    1982-06-01

    Methods of disinfection of wastewater including chlorination, ultraviolet radiation, ozone, and quaternary compounds are reviewed. Various analytical methods to detect residues of the disinfectants are described. The production of inorganic and nonvolatile organic compounds in conventional water treatment processes is reviewed. (KRM)

  11. A direct comparison amongst different technologies (aerobic granular sludge, SBR and MBR) for the treatment of wastewater contaminated by 4-chlorophenol.

    PubMed

    Carucci, Alessandra; Milia, Stefano; Cappai, Giovanna; Muntoni, Aldo

    2010-05-15

    Environmental concern on chlorinated phenols is rising due to their extreme toxicity even at low concentrations and their persistency in water and soils. Since the high amount of published data often lacks in terms of uniformity, direct comparisons amongst different treatment technologies are very difficult, or even impossible. In this study, granular sludge developed in an acetate-fed Granular sludge Sequencing Batch Reactor (GSBR) was used for the aerobic degradation of low chlorinated 4-chlorophenol (4CP), with readily biodegradable sodium acetate (NaAc) as growth substrate. A conventional Sequencing Batch Reactor (SBR) and a Membrane BioReactor (MBR) were operated in parallel under the same 4CP influent concentrations and/or 4CP volumetric organic loading rates as the GSBR, in order to carry out a direct comparison in terms of 4CP removal efficiencies and specific removal rates, effluent quality, waste sludge production, system simplicity, land area requirement, start-up times, NaAc dosage as growth substrate and maximum applied 4CP volumetric organic loading rate. A decision matrix was built to define the best technology to suit different scenarios: the GSBR was proved to be the most suitable technology when system simplicity, low land area requirement and short start-up times were considered as critical parameters for decision making.

  12. Analysis of Pharmaceutical and Personal Care Compounds in Wastewater Sludge and Aqueous Samples using GC-MS/MS

    SciTech Connect

    Zhong, Lirong; Mitroshkov, Alexandre V.; Gilmore, Tyler J.

    2016-03-15

    The Bioenergy Program at Pacific Northwest National Laboratory (PNNL) is evaluating the feasibility of converting wastewater sludge materials to fuels. Wastewater sludge from various municipalities will be used in the evaluation process and as with any municipal waste, there is the potential for residual contaminates to remain in the sludge following wastewater treatment. Many surveys and studies have confirmed the presence of pharmaceuticals in municipal wastewater and effluents (World Health Organization, 2011). Determination of the presence and concentrations of the contaminants is required to define the proper handling of this sludge. A list of targeted compounds was acquired from the literature and an analytical method was developed for the pharmaceutical and personal care compounds. The presence of organics complicated the analytical techniques and, in some cases, the precision of the results. However, residual concentrations of a range of compounds were detected in the wastewater sludge and the presence and concentrations of these compounds will be considered in identifying the appropriate handling of this material in conduct of research.

  13. Characterization of drinking water treatment sludge after ultrasound treatment.

    PubMed

    Zhou, Zhiwei; Yang, Yanling; Li, Xing; Zhang, Yang; Guo, Xuan

    2015-05-01

    Ultrasonic technology alone or the combination of ultrasound with alkaline or thermal hydrolysis as pretreatment for anaerobic digestion of activated sludge has been extensively documented. However, there are few reports on ultrasound as pretreatment of drinking water treatment sludge (DWTS), and thereby the characteristic variability of sonicated DWTS has not been fully examined. This research presents a lab-scale study on physical, chemical and biological characteristics of a DWTS sample collected from a water plant after ultrasonic treatment via a bath/probe sonoreactor. By doing this work, we provide implications for using ultrasound as pretreatment of enhanced coagulation of recycling sludge, and for the conditioning of water and wastewater mixed sludge by ultrasound combined with polymers. Our results indicate that the most vigorous DWTS disintegration quantified by particles' size reduction and organic solubilization is achieved with 5 W/ml for 30 min ultra-sonication (specific energy of 1590 kWh/kg TS). The Brunauer, Emmett and Teller (BET) specific surface area of sonicated DWTS flocs increase as ultra-sonication prolongs at lower energy densities (0.03 and 1 W/ml), while decrease as ultra-sonication prolongs at higher energy densities (3 and 5 W/ml). Additionally, the pH and zeta potential of sonicated DWTS slightly varies under all conditions observed. A shorter sonication with higher energy density plays a more effective role in restraining microbial activity than longer sonication with lower energy density.

  14. Wastewater treatment as an energy production plant

    NASA Astrophysics Data System (ADS)

    Samela, Daniel A.

    The objective of this research was to investigate the potential for net energy production at a Wastewater Treatment Plant (WWTP). Historically, wastewater treatment plants have been designed with the emphasis on process reliability and redundancy; efficient utilization of energy has not received equal consideration. With growing demands for energy and increased budgetary pressures in funding wastewater treatment plant costs, methods of reducing energy consumption and operating costs were explored in a new and novel direction pointed towards energy production rather than energy consumption. To estimate the potential for net energy production, a quantitative analysis was performed using a mathematical model which integrates the various unit operations to evaluate the overall plant energy balance. Secondary treatment performance analysis is included to ensure that the energy evaluation is consistent with plant treatment needs. Secondary treatment performance was conducted for activated sludge, trickling filters and RBCs. The equations for the mathematical model were developed independently for each unit operation by writing mass balance equations around the process units. The process units evaluated included those for preliminary treatment, primary treatment, secondary treatment, disinfection, and sludge treatment. Based on an analysis of both energy reduction and energy recovery methods, it was shown that net energy production at a secondary WWTP is possible utilizing technologies available today. Such technologies include those utilized for plant operations, as well as for energy recovery. The operation of fuel cells using digester gas represents one of the most significant new opportunities for energy recovery at wastewater facilities. The analysis predicts that a trickling filter WWTP utilizing commercial phosphoric acid fuel cells to recover energy from digester gas can provide for facility energy needs and have both electrical and thermal energy available for

  15. Microwave Supported Treatment of Sewage Sludge

    NASA Astrophysics Data System (ADS)

    Janíček, František; Perný, Milan; Šály, Vladimír; Giemza, Markus; Hofmann, Peter

    2016-07-01

    This work is focused on microwave treatment of sewage sludge. The aim of our experiments was to investigate the impact of microwave radiation upon different sewage sludge parameters such as concentration of nitrates and nitrites, phosphates, COD (Chemical Oxygen Demand), SVI (Sludge Volume Index) and the microscopic structure of sludge. The experiments with microwave irradiation of sewage sludge indicate that moderate microwave power causes visible effects on the chemical, physical and biological properties of the sludge. The calculation of profitability and energy efficiency is also presented.

  16. Phosphorus recycling potential assessment by a biological test applied to wastewater sludge.

    PubMed

    Braak, Etienne; Auby, Sarah; Piveteau, Simon; Guilayn, Felipe; Daumer, Marie-Line

    2016-01-01

    Phosphorus (P) recycling as mineral fertilizer from wastewater activated sludge (WAS) depends on the amount that can be dissolved and separated from the organic matter before the final crystallization step. The aim of the biological phosphorus dissolution potential (BPDP) test developed here was to assess the maximum amount of P that could be biologically released from WAS prior that the liquid phase enters the recovery process. It was first developed for sludge combining enhanced biological phosphorus removal and iron chloride. Because carbohydrates are known to induce acidification during the first stage of anaerobic digestion, sucrose was used as a co-substrate. Best results were obtained after 24-48 h, without inoculum, with a sugar/sludge ratio of 0.5 gCOD/gVS and under strict anaerobic conditions. Up to 75% of the total phosphorus in sludge from a wastewater treatment plant combining enhanced biological phosphorus removal and iron chloride phosphorus removal could be dissolved. Finally, the test was applied to assess BPDP from different sludge using alum compounds for P removal. No dissolution was observed when alum polychloride was used and less than 20% when alum sulphate was used. In all the cases, comparison to chemical acidification showed that the biological process was a major contributor to P dissolution. The possibility to crystallize struvite was discussed from the composition of the liquids obtained. The BPDP will be used not only to assess the potential for phosphorus recycling from sludge, but also to study the influence of the co-substrates available for anaerobic digestion of sludge.

  17. Removal of disperse dyes from textile wastewater using bio-sludge.

    PubMed

    Sirianuntapiboon, Suntud; Srisornsak, Parawee

    2007-03-01

    Granular activated carbon (GAC) did not show any significant adsorption ability on the disperse dyes, while resting (living) bio-sludge of a domestic wastewater treatment plant showed high adsorption abilities on both disperse dyes and organic matter. The dye adsorption ability of bio-sludge increased by approximately 30% through acclimatization with disperse dyes, and it decreased by autoclaving. The deteriorated bio-sludge could be reused after being washed with 0.1N NaOH solution. Disperse Red 60 was more easily adsorbed onto the bio-sludge than Disperse Blue 60. The Disperse Red 60, COD, and BOD5 adsorption capacities of acclimatized, resting bio-sludge were 40.0+/-0.1, 450+/-12, and 300+/-10mg/g of bio-sludge, respectively. The GAC-SBR system could be applied to treat textile wastewater (TWW) containing disperse dyes with high dye, BOD5, COD, and TKN removal efficiencies of 93.0+/-1.1%, 88.0+/-3.1%, 92.2+/-2.7% and 51.5+/-7.0%, respectively without any excess bio-sludge production under an organic loading of 0.18 kg BOD5/m3-d. Furthermore, the removal efficiencies increased with the addition of glucose into the system. The dye, BOD5, COD, and TKN removal efficiencies of the GAC-SBR system with TWW containing 0.89 g/L glucose were 94.6+/-0.7%, 94.4+/-0.6%, 94.4+/-0.8% and 59.3+/-8.5%, respectively, under an SRT of 67+/-0.4 days.

  18. Wastewater treatment of pulp and paper industry: a review.

    PubMed

    Kansal, Ankur; Siddiqui, Nihalanwar; Gautam, Ashutosh

    2011-04-01

    Pulp and paper industries generate varieties of complex organic and inorganic pollutants depending upon the type of the pulping process. A state-of-art of treatment processes and efficiencies of various wastewater treatment is presented and critically reviewed in this paper. Process description, source of wastewater and their treatment is discussed in detail. Main emphasis is given to aerobic and anaerobic wastewater treatment. In pulp and paper mill wastewater treatment aerobic treatment includes activated sludge process, aerated lagoons and aerobic biological reactors. UASB, fluidized bed, anaerobic lagoon and anaerobic contact reactors are the main technologies for anaerobic wastewater treatment. It is found that the combination of anaerobic and aerobic treatment processes is much efficient in the removal of soluble biodegradable organic pollutants. Color can be removed effectively by fungal treatment, coagulation, chemical oxidation, and ozonation. Chlorinated phenolic compounds and adsorable organic halides (AOX) can be efficiently reduced by adsorption, ozonation and membrane filtration techniques.

  19. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment.

    PubMed

    Guerra, P; Kim, M; Kinsman, L; Ng, T; Alaee, M; Smyth, S A

    2014-05-15

    This study examined the fate and behaviour of perfluoroalkyl acids (PFAAs) in liquid and solid samples from five different wastewater treatment types: facultative and aerated lagoons, chemically assisted primary treatment, secondary aerobic biological treatment, and advanced biological nutrient removal treatment. To the best of our knowledge, this is the largest data set from a single study available in the literature to date for PFAAs monitoring study in wastewater treatment. Perfluorooctanoic acid (PFOA) was the predominant PFAA in wastewater with levels from 2.2 to 150ng/L (influent) and 1.9 to 140ng/L (effluent). Perfluorooctanesulfonic acid (PFOS) was the predominant compound in primary sludge, waste biological sludge, and treated biosolids with concentrations from 6.4 to 2900ng/g dry weight (dw), 9.7 to 8200ng/gdw, and 2.1 to 17,000ng/gdw, respectively. PFAAs were formed during wastewater treatment and it was dependant on both process temperature and treatment type; with higher rates of formation in biological wastewater treatment plants (WWTPs) operating at longer hydraulic retention times and higher temperatures. PFAA removal by sorption was influenced by different sorption tendencies; median log values of the solid-liquid distribution coefficient estimated from wastewater biological sludge and final effluent were: PFOS (3.73)>PFDA (3.68)>PFNA (3.25)>PFOA (2.49)>PFHxA (1.93). Mass balances confirmed the formation of PFAAs, low PFAA removal by sorption, and high PFAA levels in effluents.

  20. Integration of a microbial fuel cell with activated sludge process for energy-saving wastewater treatment: taking a sequencing batch reactor as an example.

    PubMed

    Liu, Xian-Wei; Wang, Yong-Peng; Huang, Yu-Xi; Sun, Xue-Fei; Sheng, Guo-Ping; Zeng, Raymond J; Li, Feng; Dong, Fang; Wang, Shu-Guang; Tong, Zhong-Hua; Yu, Han-Qing

    2011-06-01

    In the research and application of microbial fuel cell (MFC), how to incorporate MFCs into current wastewater infrastructure is an importance issue. Here, we report a novel strategy of integrating an MFC into a sequencing batch reactor (SBR) to test the energy production and the chemical oxygen demand (COD) removal. The membrane-less biocathode MFC is integrated with the SBR to recover energy from the aeration in the form of electricity and thus reduce the SBR operation costs. In a lab-scale integrated SBR-MFC system, the maximum power production of the MFC was 2.34 W/m(3) for one typical cycle and the current density reached up to 14 A/m(3) . As a result, the MFC contributed to the 18.7% COD consumption of the integrated system and also recovered energy from the aeration tank with a volume fraction of only 12% of the SBR. Our strategy provides a feasible and effective energy-saving and -recovering solution to upgrade the existing activated sludge processes.

  1. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment.

    PubMed

    Ambuchi, John J; Zhang, Zhaohan; Shan, Lili; Liang, Dandan; Zhang, Peng; Feng, Yujie

    2017-03-31

    The accelerated use of iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs) in the consumer and industrial sectors has triggered the need to understand their potential environmental impact. The response of anaerobic granular sludge (AGS) to IONPs and MWCNTs during the anaerobic digestion of beet sugar industrial wastewater (BSIW) was investigated in this study. The IONPs increased the biogas and subsequent CH4 production rates in comparison with MWCNTs and the control samples. This might be due to the utilization of IONPs and MWCNTs as conduits for electron transfer toward methanogens. The MWCNTs majorly enriched the bacterial growth, while IONP enrichment mostly benefitted the archaea population. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed that AGS produced extracellular polymeric substances, which interacted with the IONPs and MWCNTs. This provided cell protection and prevented the nanoparticles from piercing through the membranes and thus cytotoxicity. The results provide useful information and insights on the adjustment of anaerobic microorganisms to the natural complex environment based on nanoparticles infiltration.

  2. Treatment of Dredged Sludge By Mechanical Dehydration,

    DTIC Science & Technology

    there is an urgent need to reduce both the volume of dredged sludge and the size of the disposal area. This mechanical method is different from the...conventional engineering dehydration by loading, consolidation, and drainage in that the dredged sludge is separated into sludge cakes and clean water...turbidity in water. This mechanical sludge treatment technique can be most efficient when used in combination with a pump dredge. This method offers

  3. Technical, economic and environmental assessment of sludge treatment wetlands.

    PubMed

    Uggetti, Enrica; Ferrer, Ivet; Molist, Jordi; García, Joan

    2011-01-01

    Sludge treatment wetlands (STW) emerge as a promising sustainable technology with low energy requirements and operational costs. In this study, technical, economic and environmental aspects of STW are investigated and compared with other alternatives for sludge management in small communities (<2000 population equivalent). The performance of full-scale STW was characterised during 2 years. Sludge dewatering increased total solids (TS) concentration by 25%, while sludge biodegradation lead to volatile solids around 45% TS and DRI(24h) between 1.1 and 1.4 gO(2)/kgTS h, suggesting a partial stabilisation of biosolids. In the economic and environmental assessment, four scenarios were considered for comparison: 1) STW with direct land application of biosolids, 2) STW with compost post-treatment, 3) centrifuge with compost post-treatment and 4) sludge transport to an intensive wastewater treatment plant. According to the results, STW with direct land application is the most cost-effective scenario, which is also characterised by the lowest environmental impact. The life cycle assessment highlights that global warming is a significant impact category in all scenarios, which is attributed to fossil fuel and electricity consumption; while greenhouse gas emissions from STW are insignificant. As a conclusion, STW are the most appropriate alternative for decentralised sludge management in small communities.

  4. Design of automated oil sludge treatment unit

    NASA Astrophysics Data System (ADS)

    Chukhareva, N.; Korotchenko, T.; Yurkin, A.

    2015-11-01

    The article provides the feasibility study of contemporary oil sludge treatment methods. The basic parameters of a new resource-efficient oil sludge treatment unit that allows extracting as much oil as possible and disposing other components in efficient way have been outlined. Based on the calculation results, it has been revealed that in order to reduce the cost of the treatment unit and the expenses related to sludge disposal, it is essential to apply various combinations of the existing treatment methods.

  5. Utilizing acid mine drainage sludge and coal fly ash for phosphate removal from dairy wastewater.

    PubMed

    Wang, Y R; Tsang, Daniel C W; Olds, William E; Weber, Paul A

    2013-01-01

    This study aims to investigate a new and sustainable approach for the reuse of industrial by-products from wastewater treatment. The dairy industry produces huge volumes of wastewater, characterized by high levels of phosphate that can result in eutrophication and degradation of aquatic ecosystems. This study evaluated the application of acid mine drainage (AMD) sludge, coal fly ash, and lignite as low-cost adsorbents for the removal of phosphate from dairy wastewater. Material characterization using X-ray fluorescence, X-ray diffraction, and Brunauer-Emmett-Teller surface area analysis revealed significant amounts of crystalline/amorphous Fe/Al/Si/Ca-based minerals and large surface areas of AMD sludge and fly ash. Batch adsorption isotherms were best described using the Freundlich model. The Freundlich distribution coefficients were 13.7 mg(0.577) L(0.423) g(-1) and 16.9 mg(0.478) L(0.522) g(-1) for AMD sludge and fly ash, respectively, and the nonlinearity constants suggested favourable adsorption for column applications. The breakthrough curves of fixed-bed columns, containing greater than 10 wt% of the waste materials (individual or composite blends) mixed with sand, indicated that phosphate breakthrough did not occur within 100 pore volumes while the cumulative removal was 522 and 490 mg kg(-1) at 10 wt% AMD sludge and 10 wt% fly ash, respectively. By contrast, lignite exhibited negligible phosphate adsorption, possibly due to small amounts of inorganic minerals suitable for phosphate complexation and limited surface area. The results suggest that both AMD sludge and fly ash were potentially effective adsorbents if employed individually at a ratio of 10 wt% or above for column application.

  6. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogen production.

    PubMed

    Yu, Li; Yu, Yang; Jiang, Wentian; Wei, Huangzhao; Sun, Chenglin

    2015-02-01

    The increasing sludge generated in wastewater treatment plants poses a threat to the environment. Based on the traditional processes, sludge dewatered by usual methods was further dewatered by hydraulic compression and the filtrate released was treated by anaerobic fermentation. The difficulties in sludge dewatering were associated with the existence of sludge flocs or colloidal materials. A suitable CaO dosage of 125 mg/g dry sludge (DS) could further decrease the moisture content of sludge from 82.4 to 50.9 %. The filtrate from the dewatering procedure was a potential substrate for biohydrogen production. Adding zero-valent iron (ZVI) into the anaerobic system improved the biohydrogen yield by 20 %, and the COD removal rate was lifted by 10 % as well. Meanwhile, the sludge morphology and microbial community were altered. The novel method could greatly reduce the sludge volume and successfully treated filtrate along with the conversion of organics into biohydrogen.

  7. Fractionation of heavy metals in sludge from anaerobic wastewater stabilization ponds in southern Spain

    SciTech Connect

    Alonso, E.

    2006-07-01

    The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the Standard, Measurements and Testing Programme of the European Commission was applied to sludge samples collected from ten anaerobic wastewater stabilization ponds (WSPs) located in southern Spain. Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes, none of the metal concentrations exceeded maximum permitted levels. Overall, heavy metals were mainly associated with the two less-available fractions (34% oxidizable metal and 55% residual metal). Only Mn and Zn showed the highest share of the available (exchangeable and reducible) fractions (25-48%)

  8. Techno-economic analysis of wastewater sludge gasification: a decentralized urban perspective.

    PubMed

    Lumley, Nicholas P G; Ramey, Dotti F; Prieto, Ana L; Braun, Robert J; Cath, Tzahi Y; Porter, Jason M

    2014-06-01

    The successful management of wastewater sludge for small-scale, urban wastewater treatment plants, (WWTPs), faces several financial and environmental challenges. Common management strategies stabilize sludge for land disposal by microbial processes or heat. Such approaches require large footprint processing facilities or high energy costs. A new approach considers converting sludge to fuel which can be used to produce electricity on-site. This work evaluated several thermochemical conversion (TCC) technologies from the perspective of small urban WWTPs. Among TCC technologies, air-blown gasification was found to be the most suitable approach. A gasification-based generating system was designed and simulated in ASPEN Plus® to determine net electrical and thermal outputs. A technical analysis determined that such a system can be built using currently available technologies. Air-blown gasification was found to convert sludge to electricity with an efficiency greater than 17%, about triple the efficiency of electricity generation using anaerobic digester gas. This level of electricity production can offset up to 1/3 of the electrical demands of a typical WWTP. Finally, an economic analysis concluded that a gasification-based power system can be economically feasible for WWTPs with raw sewage flows above 0.093m(3)/s (2.1 million gallons per day), providing a profit of up to $3.5 million over an alternative, thermal drying and landfill disposal.

  9. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

  10. Application of Sludges and Wastewaters on Agricultural Land: A Planning and Educational Guide, MCD-35. Research Bulletin 1090.

    ERIC Educational Resources Information Center

    Knezek, Bernard D., Ed.; Miller, Robert H., Ed.

    This report addresses the application of agricultural processing wastes, industrial and municipal wastes on agricultural land as both a waste management and resource recovery and reuse practice. The document emphasizes the treatment and beneficial utilization of sludge and wastewater as opposed to waste disposal. These objectives are achieved…

  11. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  12. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  13. Methane emission during municipal wastewater treatment.

    PubMed

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.

  14. [Dynamics of quickly absorption of the carbon source in wastewater by activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang

    2011-09-01

    In this paper, absorption characteristics of organic matter in municipal wastewater by three kinds of activated sludge (carbon-enriching, nitrification and denitrification sludge) were studied, and the absorption kinetic data was checked using three kinds of absorption kinetic equations based on Ritchie rate equation. The objectives of this study were to investigate the absorption mechanism of activated sludge to organic matter in municipal wastewater, and to identify the possibility of reclaiming organic matter by activated sludge. Results indicated that in the early 30 min, absorption process of organic matter by activated sludge was found to be mainly physical adsorption, which could be expressed by the Lagergren single-layer adsorption model. The carbon-enriching sludge had the highest adsorption capacity (COD/SS) which was 60 mg/g but the adsorption rate was lower than that of denitrification sludge. While nitrification sludge had the lowest adsorption rate and higher adsorption capacity compared with denitrification sludge, which was about 35 mg/g. The rates of the fitting index theta(0) of carbon-enriching, nitrification and denitrification sludge were 0.284, 0.777 and 0.923, respectively, which indicated that the sorbed organic matter on the surface of carbon-enriching sludge was the easiest fraction to be washed away. That is, the combination intensity of carbon-enriching sludge and organic matter was the feeblest, which was convenient for carbon-enriching sludge to release sorbed carbon. Furthermore, by fitting with Langmuir model, concentration of organic matter was found to be the key parameter influencing the adsorption capacity of activated sludge, while the influence of temperature was not obvious. The kinetic law of organic matter absorption by activated sludge was developed, which introduces a way to kinetically analyze the removing mechanism of pollutant by activated sludge and provides theoretical base for the reclaiming of nutriments in

  15. Removal of phosphorus from wastewater using ferroxysorb sorption media produced from amd sludge

    USGS Publications Warehouse

    Sibrell, P.L.; Tucker, T.W.; Kehler, T.; Fletcher, J.W.

    2008-01-01

    Treatment of acid mine drainage (AMD), whether with lime, limestone, caustic or simple aeration, nearly always results in generation of a metal hydroxide sludge. Disposal of the sludge often constitutes a significant fraction of the operating cost for the AMD treatment plant. Research at the USGS - Leetown Science Center has shown that AMD sludge, with its high content of aluminum and iron oxides, has a high affinity of phosphorus (P). Anthropogenic sources of P are associated with eutrophication and degradation of aquatic environments, resulting in anoxic dead zones in certain sensitive waterways. In this paper, we describe a method of converting the AMD sludge from a liability into an asset - Ferroxysorb P removal media - which can be used to remove excess P from wastewater. Three different Ferroxysorb media samples were produced from differing AMD sources and tested for P removal. Adsorption isotherms confirmed that the media had a high sorption capacity for P, as high as 19,000 mg/kg. The technology was demonstrated at an active fish hatchery, where the media remained in service for over three months without stripping or regeneration. Over that period of time, the calculated P removal was 50%, even at a very low influent P concentration of 60 parts per billion. In summary, use of the AMD-derived Ferroxysorb sorption media will reduce AMD treatment costs while at the same time helping to resolve the pressing environmental issue of eutrophication and degradation of sensitive waterways.

  16. A review of wet air oxidation and Thermal Hydrolysis technologies in sludge treatment.

    PubMed

    Hii, Kevin; Baroutian, Saeid; Parthasarathy, Raj; Gapes, Daniel J; Eshtiaghi, Nicky

    2014-03-01

    With rapid world population growth and strict environmental regulations, increasingly large volumes of sludge are being produced in today's wastewater treatment plants (WWTP) with limited disposal routes. Sludge treatment has become an essential process in WWTP, representing 50% of operational costs. Sludge destruction and resource recovery technologies are therefore of great ongoing interest. Hydrothermal processing uses unique characteristics of water at elevated temperatures and pressures to deconstruct organic and inorganic components of sludge. It can be broadly categorized into wet oxidation (oxidative) and thermal hydrolysis (non-oxidative). While wet air oxidation (WAO) can be used for the final sludge destruction and also potentially producing industrially useful by-products such as acetic acid, thermal hydrolysis (TH) is mainly used as a pre-treatment method to improve the efficiency of anaerobic digestion. This paper reviews current hydrothermal technologies, roles of wet air oxidation and thermal hydrolysis in sludge treatment, and challenges faced by these technologies.

  17. Characterization of Industrial Wastewater Sludge in Oman from Three Different Regions and Recommendations for Alternate Reuse Applications

    PubMed Central

    BAAWAIN, Mahad S.; AL-JABRI, Mohsin; CHOUDRI, B.S.

    2015-01-01

    Background: Domestic and industrial wastewaters are mostly treated by biological process such as activated sludge, aerobic pond, and anaerobic treatment. This study focuses on characterizing the quality of sewage sludge in the Sultanate of Oman chosen from three industrial sewage treatment plants (STPs): Rusayl Industrial Estate (RSL.IE); Sohar Industrial Estate (SIE); and Raysut Industrial Estate (RIE). Methods: Samples of recycled activated sludge (RAS) and wasted activated sludge (WAS) were collected over a period of 12 months across above mentioned STPs. Parameters analyzed are electrical conductivity (EC), potential of hydrogen (pH), cations, anions and volatile content (VC). Results: The obtained values for pH and EC were low for both RAS and WAS samples, except EC values of RIE that was more than 1000 μS/cm. The range of VC percentages in RAS and WAS samples were 44 to 86% and 41 to 77%, respectively. The measured values for chloride, sulfate, nitrate and phosphate were higher than the other anions. Conclusion: The average values of the cations in RAS and WAS samples were within the Omani Standards, suitable for the re-use of sludge in agriculture except for Cd in RSL.IE. The study recommends that a regular maintenance should be performed at the studied STPs to prevent any accumulation of some harmful substances, which may affect the sludge quality, and the sludge drying beds should be large enough to handle the produced sludge for better management. PMID:26744704

  18. The effectiveness of coagulation for water reclamation from a wastewater treatment plant that has a long hydraulic and sludge retention times: A case study.

    PubMed

    Cui, Xiaochun; Zhou, Dandan; Fan, Wei; Huo, Mingxin; Crittenden, John C; Yu, Zhisen; Ju, Pengfei; Wang, Yang

    2016-08-01

    Coagulation is a feasible process to reclaim municipal wastewater, however, the role of coagulation in removing effluent organic matter (EfOM) from underutilized wastewater treatment plants (WWTPs) has not been fully explored. We identified the characteristics of the EfOM from a typical underutilized WWTP (i.e., the ratio of actual capacity to design capacity is 50%-70%), and investigated the performance of coagulation on suspended solids (SS) and dissolved organic matter (DOM) removal. The effluent could even satisfy the highest national standard of China (Class 1 A) for WWTP effluent, as evaluated by the traditional parameters such as SS and chemical oxygen demand (COD). However, the DOM in the EfOM we studied contained considerable biomass-associated products (BAPs), which were dominated by proteins with a molecular weight of approximately 150 kDa. In addition, protein also dominated the DOM after coagulation. Fulvic acid and humic-like acid organics were poorly removed by either AlCl3 or polyaluminum chloride (PAC) coagulation, even with a dosage as high as 24 mg Al L(-1). Biodegradability was very poor, as the ratio of biological oxygen demand (BOD5) to COD was less than 0.17. After coagulation the typical BAPs, protein and polysaccharide, remained as high as 1.6 mg L(-1) and 1.2 mg L(-1) respectively. In this study we found coagulation was ineffective for removal of recalcitrant BAPs.

  19. Evaluation of reusing alum sludge for the coagulation of industrial wastewater containing mixed anionic surfactants.

    PubMed

    Jangkorn, Siriprapha; Kuhakaew, Sinchai; Theantanoo, Suwapee; Klinla-or, Harit; Sriwiriyarat, Tongchai

    2011-01-01

    A coagulation-flocculation process is typically employed to treat the industrial wastewater generated by the consumer products industry manufacturing detergents, soaps, and others. The expenditure of chemicals including coagulants and chemicals for pH adjustment is costly for treating this wastewater. The objective of this study was to evaluate the feasibility of reusing the aluminum sulfate (alum) sludge as a coagulant or as a coagulation aid so that the fresh alum dosage can be minimized or the removal efficiency can be enhanced. The experiments were conducted in a jar-test apparatus simulating the coagulation-flocculation process for simultaneous removals of organic matters, anionic surfactants, suspended solids, and turbidity. At the optimum initial pH value of 10 and the fresh alum concentration of 400 mg/L, the total suspended solids (TSS), total chemical oxygen demand (TCOD), total anionic surfactants, and turbidity removal efficiencies were 71.5%, 76.4%, 95.4%, and 98.2%, respectively. The addition of alum sludge as a coagulant alone without any fresh alum addition could significantly remove the turbidity, TCOD, and anionic surfactants. The TSS was left in the supernatants after the settling period, but would subsequently be removed by adding the fresh alum. The TSS, TCOD, and turbidity removal efficiencies were also enhanced when both the alum sludge and the fresh alum were employed. The TCOD removal efficiency over 80% has been accomplished, which has never fulfilled by using the fresh alum alone. It is concluded that the alum sludge could be reused for the treatment of industrial wastewater generated by the consumer products industry.

  20. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2016-06-14

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m(3), (or 0.087 kWh/m(3), if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  1. Extending the use of dewatered alum sludge as a P-trapping material in effluent purification: Study on two separate water treatment sludges.

    PubMed

    Zhao, Y Q; Yang, Y

    2010-08-01

    The generation of alum sludge from drinking water purification process remains inevitable when aluminium sulphate is used as primary coagulant for raw water coagulation. Sustainable managing such the sludge becomes an increasing concern in water industry. Its beneficial reuse is therefore highly desirable and has attracted considerable research efforts. In view of the novel development of alum sludge as a value-added raw material for beneficial reuse for wastewater treatment, this study examined the maximum phosphorus-adsorption capacity of two dewatered alum sludges sampled from two largest water treatment works in Dublin, Ireland. The objective lies in clarifying the change of alum sludge characteristics and its P-adsorption capacity over the location of the alum sludge produced and the raw water being treated. Experiments have demonstrated that the two alum sludges have the similar P adsorption capacity (14.3 mg P/g sludge for Ballymore-Eustace sludge and 13.1 mg P/g sludge for Leixlip sludge at pH 7.0). However, the study supports that alum sludge beneficial reuse as a low cost adsorbent for P immobilization should study its P-adsorption capacity before any decision of large application is made since the raw water quality will affect the sludge characteristics and therefore influence its adsorption ability.

  2. Effect of ambient temperatures on disinfection efficiency of various sludge treatment technologies.

    PubMed

    Bauerfeld, Katrin

    2014-01-01

    Sewage sludge produced during municipal wastewater treatment has to be treated efficiently in order to reduce impacts on the environment and on public health. In Germany and many countries, large quantities of sludge are reused in agriculture in order to recycle nutrients and organic material. In order to quantify the effect of different ambient temperatures on conventional and advanced sludge treatment technologies as well as on disinfection efficiency, a comprehensive research study was performed at Braunschweig Institute of Technology. The detailed results show that ambient temperature has a strong effect on biological liquid sludge stabilization and on natural dewatering and drying technologies, although microbiological quality of treated sludge, indicated by Escherichia coli concentration, does not meet the requirements for unrestricted reuse in agriculture. Composting and lime treatment of sludge are most efficient on reducing E. coli, as high temperatures and high pH values arise in the material respectively.

  3. Land Application of Treated Sewage Sludge in the United States: Regulatory Considerations for Risk Reduction and Determining Treatment Process Equivalency

    EPA Science Inventory

    In the United States, municipal wastewater includes discharges from households, commercial businesses and various industries. Microorganisms associated with these wastes can be concentrated in the solids (sludge) which are removed during treatment operations. Beneficial reuse a...

  4. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor

    PubMed Central

    Ito, Ayumi; Mensah, Lawson; Cartmell, Elise; Lester, John N.

    2016-01-01

    Anaerobic treatment of municipal wastewater offers the prospect of a new paradigm by reducing aeration costs and minimizing sludge production. It has been successfully applied in warm climates, but does not always achieve the desired outcomes in temperate climates at the biochemical oxygen demand (BOD) values of municipal crude wastewater. Recently the concept of ‘fortification' has been proposed to increase organic strength and has been demonstrated at the laboratory and pilot scale treating municipal wastewater at temperatures of 10–17°C. The process treats a proportion of the flow anaerobically by combining it with primary sludge from the residual flow and then polishing it to a high effluent standard aerobically. Energy consumption is reduced as is sludge production. However, no new treatment process is viable if it only addresses the problems of traditional pollutants (suspended solids – SS, BOD, nitrogen – N and phosphorus – P); it must also treat hazardous substances. This study compared three potential municipal anaerobic treatment regimes, crude wastewater in an expanded granular sludge blanket (EGSB) reactor, fortified crude wastewater in an EGSB and crude wastewater in an anaerobic membrane bioreactor. The benefits of fortification were demonstrated for the removal of SS, BOD, N and P. These three systems were further challenged with the removal of steroid estrogens at environmental concentrations from natural indigenous sources. All three systems removed these compounds to a significant degree, confirming that estrogen removal is not restricted to highly aerobic autotrophs, or aerobic heterotrophs, but is also a faculty of anaerobic bacteria. PMID:26212345

  5. Solar-thermic sewage sludge treatment in extreme alpine environments.

    PubMed

    Becker, W; Schoen, M A; Wett, B

    2007-01-01

    In the framework of a program for environmental protection conducted by the German mountaineers' club (DAV) problems emerging from residual solids accumulating in on-site wastewater treatment plants of mountain refuges were investigated. To handle these problems in an ecologically and economically reasonable way two devices for solar-supported treatment of sludge and bio-solids have been developed. These units support gravity-filtration and evaporation of liquid sludge as well as thermal acceleration of composting processes. Two solar sludge dryers were installed and operated without external energy supply at alpine refuges treating primary and secondary sludge, respectively. Batch-filling during the season could increase load capacity and a total solids concentration of up to 40% could be achieved before discharge at the beginning of the next season. The promising results from the solar sludge dryer encouraged for the development of a solar composter. The period of temperature levels suitable for composting biosolids in mountain areas can be extended considerably by application of this technology--measured temperature distribution indicated no freezing at all.

  6. Efficient COD removal and nitrification in an upflow microaerobic sludge blanket reactor for domestic wastewater.

    PubMed

    Zheng, Shaokui; Cui, Cancan

    2012-03-01

    The treatment performance of an upflow microaerobic sludge blanket reactor (UMSB) for synthetic domestic wastewater was investigated at two dissolved oxygen (DO) levels, 0.3-0.5 and 0.7-0.9 mg l(-1), focusing on nitrification performance. The higher DO level induced complete nitrification of ammonia nitrogen (NH(3)-N), achieving chemical oxygen demand and NH(3)-N removals of 97 and 92%, respectively. There were consistently significantly higher nitrate nitrogen (NO(3)-N) and nitrite nitrogen (NO(2)-N) levels in the effluent, with ~66% of newly-produced oxidised nitrogen as NO(2)-N. Despite the high nitrification efficiency, only about 23% of the removed NH(3)-N amount from the influent was ultimately transformed into oxidised nitrogen due to the simultaneous nitrification-denitrification. Sludge blanket development and granulation occurred simultaneously in the UMSB.

  7. Wastewater treatment with microalgae

    SciTech Connect

    Oswald, W.J. )

    1992-01-01

    In locations where total solar energy inputs average 400 langeleys or more, microscopic algae, grown in properly designed ponds, can contribute significantly and economically to wastewater treatment. While growing, microalgae produce an abundance of oxygen for microbial and biochemical oxidation of organics and other reduced compounds and for odor control. Microalgae also accelerate the inactivation of disease bacteria and parasitic ova by increasing water temperature and pH. Microalgae remove significant amounts of nitrogen and phosphorus and adsorb most polyvalent metals, including those that are toxic. After growth in properly designed paddle wheel mixed high rate ponds, microalgae settle readily, leaving a supernatant free of most pollutants. Such effluents are suitable for irrigation of ornamental plants, crops not eaten raw, aquaculture, and grounwater recharge. The settled and concentrated microalgae may be used for fertilizer, for fermentation to methane, or, assuming no toxicity, for fish, bivalve, or animal feed.

  8. Energy from municipal waste: assessment of energy conservation and recovery in municipal wastewater treatment

    SciTech Connect

    Pierson, F.W.; Pearson, C.V.

    1984-10-01

    This document provides a qualitative report on the status of a program for energy conservation in wastewater treatment. Analyzing the nation's energy requirements for wastewater treatment by process has shown that the wastewater- and sludge-stabilization processes accounted for more than 56% of the energy used for wastewater treatment in 1978. Advanced processes are projected to have the largest increase in energy of all treatment processes between 1978 and the year 2000. To promote energy conservation in wastewater treatment, DOE has sponsored a number of projects (either wholly or in part), including the following: demonstration of the anaerobic upflow (ANFLOW) bioreactor at Knoxville, Tenn.; assessment of digester-gas production and use in anaerobic-digestion facilities; study of the enhancement of anaerobic digestion by carbon addition; demonstration of water-hyacinth wastewater-treatment (WHWT) at Lake Buena Vista, Florida; and demonstration of unheated anaerobic contact stabilization (UACS) of sludge. These programs are described. 19 references, 22 figures, 29 tables.

  9. Steam-explosion pretreatment for enhancing anaerobic digestion of municipal wastewater sludge.

    PubMed

    Dereix, Marcela; Parker, Wayne; Kennedy, Kevin

    2006-05-01

    This study evaluated the use of steam explosion as a pretreatment for municipal wastewater treatment sludges and biosolids as a technique for enhancing biogas generation during anaerobic digestion. Samples of dewatered anaerobic digester effluent (biosolids) and a mixture of thickened waste activated sludge (TWAS) and biosolids were steam-exploded under differing levels of intensity in this study. The results indicate that steam explosion can solublize components of these sludge streams. Increasing the intensity of the steam-explosion pressure and temperature resulted in increased solublization. The steam-explosion pretreatment also increased the bioavailability of sludge components under anaerobic digestion conditions. Increasing the steam-explosion intensity increased the ultimate yield of methane during anaerobic digestion. Batch anaerobic digestion tests suggested that pretreatment at 300 psi was the most optimal condition for enhanced biogas generation while minimizing energy input. Semicontinuous anaerobic digestion revealed that the results that were observed in the batch tests were sustainable in prolonged operation. Semicontinuous digestion of the TWAS/biosolids mixture that was pretreated at 300 psi generated approximately 50% more biogas than the controls. Semicontinuous digestion of the pretreated biosolids resulted in a 3-fold increase in biogas compared with the controls. Based on capillary suction test results, steam-explosion pretreatment at 300 psi improved the dewaterability of the final digested sludge by 32 and 45% for the TWAS/ biosolids mixture and biosolids, respectively, compared with controls. The energy requirements of the nonoptimized steam-explosion process were substantially higher than the additional energy produced from enhanced digestion of the pretreated sludge. Substantial improvements in energy efficiency will be required to make the process viable from an energy perspective.

  10. Effects of floc aluminum on activated sludge characteristics and removal of 17-alpha-ethinylestradiol in wastewater systems.

    PubMed

    Park, Chul; Fang, Yuan; Murthy, Sudhir N; Novak, John T

    2010-03-01

    The effects of floc aluminum (Al) on activated sludge performance and 17-alpha-ethinylestradiol (EE2) removal were studied using bench-scale activated sludge systems. The results showed that higher Al-fed activated sludge led to better settling, dewatering, and effluent quality with better EE2 removal. EE2 concentrations in the effluent revealed correlations with effluent suspended solids and large particulate/colloidal effluent biopolymer (protein+polysaccharide). Furthermore, a significant correlation existed between effluent proteins and EE2 for all size fractions, indicating that hydrophobic proteinaceous colloids provide binding sites for EE2 and washout together into the effluent. These results suggest that aluminum plays a crucial role in bioflocculation of activated sludge and the efficacy of flocculation influences the removal of endocrine disrupting compounds (EDCs) from wastewater treatment systems.

  11. Use of wastewater sludge as a raw material for production of L-lactic acid

    SciTech Connect

    Nakasaki, Kiyohiko; Akakura, Naoki; Adachi, Tomohiko; Akiyama, Tetsuo

    1999-01-01

    This study utilizes wastewater sludges to produce L-lactic acid, a precursor of biodegradable plastic. The high concentrations of cellulose contained in the sludge, derived from a paper manufacturing facility, have been found to be convertible to L-lactic acid at a rate as high as 6.91 g/L. To achieve such a high conversion rate, the sludge must be pretreated with cellulase. This pretreatment includes inoculation of the sludge with lactic acid bacteria, strain LA1, after the sludge has been subjected to enzymatic hydrolysis.

  12. Land Application of Wastewater Sludges: A National Science Foundation Student-Originated Studies Project.

    ERIC Educational Resources Information Center

    Bender, Timothy J.; Barnard, Walther M.

    1981-01-01

    Summarizes a student-originated studies project, funded by the National Science Foundation, on land application of wastewater sludges. Describes the students' proposal, research methods, and evaluation of the project. (DS)

  13. EMISSIONS OF METALS, CHROMIUM AND NICKEL SPECIES, AND ORGANICS FROM MUNICIPAL WASTEWATER SLUDGE INCINERATORS

    EPA Science Inventory

    In order to provide data to support regulations on municipal wastewater sludge incineration, emissions of metals, hexavalent chromium, nickel subsulfide, polychlorinated dibenzo-dioxins and furans (PCDD/PCDFs), semivolatile and volatile organic compounds, carbon monoxide (CO)...

  14. Wastewater Treatment I. Instructor's Manual.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  15. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  16. Cheese whey wastewater: characterization and treatment.

    PubMed

    Carvalho, Fátima; Prazeres, Ana R; Rivas, Javier

    2013-02-15

    Cheese whey wastewater (CWW) is a strong organic and saline effluent whose characterization and treatment have not been sufficiently addressed. CWW composition is highly variable due to raw milk used, the fraction of non valorized cheese whey and the amount of cleaning water used. Cheese whey wastewater generation is roughly four times the volume of processed milk. This research tries to conduct an exhaustive compilation of CWW characterization and a comparative study between the different features of CWW, cheese whey (CW), second cheese whey (SCW) and dairy industry effluents. Different CWW existing treatments have also been critically analyzed. The advantages and drawbacks in aerobic/anaerobic processes have been evaluated. The benefits of physicochemical pre-stages (i.e. precipitation, coagulation-flocculation) in biological aerobic systems are assessed. Pre-treatments based on coagulation or basic precipitation might allow the application of aerobic biodegradation treatments with no dilution requirements. Chemical precipitation with lime or NaOH produces a clean wastewater and a sludge rich in organic matter, N and P. Their use in agriculture may lead to the implementation of Zero discharge systems.

  17. Phenolic Wastewater Treatment Alternatives.

    DTIC Science & Technology

    1980-06-01

    pH 7 retention times become excessive. The manganese dioxide (Mn02 ) precipitates as a hydrous sludge which must be removed. This sludge becomes a...the sorptive properties of the hydrous MnO 2 often render it bene- ficial to clarification (Reference 22). On the other hand, it would increase the...SYSTEMS Phenol recovery systems are widely used for petroleum refi- nery wastes, coke-oven liquors , and phenol resin plant effluents, where waste phenol

  18. Biological treatment of a seafood processing wastewater

    SciTech Connect

    Mines, R.O. Jr.; Robertson, R.R. II

    1998-07-01

    The seafood industry in Tampa is a multi-million dollar-per-year industry which heavily impacts the environment with large volumes of wastewater containing high concentrations of suspended solids and nitrogen. A 10 liter per day, bench-scale, wastewater treatment facility was designed, constructed, and operated for approximately eight (8) months to collect treat ability data on a seafood-processing wastewater. The bench-scale reactor consisted of a single-sludge, extended aeration, modified Ludzack-Ettinger (MLE) process for biologically removing carbon, nitrogen, and phosphorus from the wastewater. Influent and effluent data collected on the system included: chemical oxygen demand (COD), total suspended solids (TSS), total Kjeldahl nitrogen (TKN), ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, total nitrogen (TN), pH, total phosphorus (TP), dissolved oxygen (DO), alkalinity, and temperature. All analyses were performed in accordance with Standard Methods (1992). Typical influent characteristics were: 900--4,000 mg/L COD, 45--110 mg/L TKN, 150--2,000 mg/L TSS, and 40--80 mg/L TP. Solids residence time (SRT) served as the primary control parameter with average STR's of 4.5, 6.4, 8.5, and 30.9 days observed during the study. The following biokinetic constants were determined from the data: a yield coefficient (Y) of 0.49 mg TSS/mg COD and an endogenous decay coefficient (k{sub e}) of 0.11 days{sup {minus}1}.

  19. [The wastewater treatment significance in the control sanitarian and epidemiological state of environment].

    PubMed

    Chojecka, Agnieszka; Jakimiak, Bozenna; Podgórska, Marta; Röhm-Rodowald, Ewa

    2009-01-01

    The municipal wastewater consist of organic, inorganic and biological contaminations. The most of human and animals pathogens are found in municipal wastewater responsible for water-borne and waterwashed diseases. Wastewater biological treatment is effective methods to reduce the transmission route of this pathogens. Different kind of methods (microfiltration/coagulation) and technology (aerobic/anaerobic stabilization) treated municipal wastewater, secondary effluent, primary and excess sludge are used to inactivation viruses, bacteria and protozoan. Chemical disinfection with CaO significantly affects inactivation of helminthes eggs during the hygienization of sludge. However the efficiency of pathogens disinfection particularly depend on contact time and concentration of disinfectants.

  20. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and disinfection to remove microorganisms from municipal wastewaters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor activated-sludge (MBR) and two conventional secondary activated-sludge municipal wastewater treatment plants during three disinfection seasons (May–Oct.). In total, 73 regular samples were ...

  1. Occurrence of Listeria spp. in Effluents of French Urban Wastewater Treatment Plants

    PubMed Central

    Paillard, Delphine; Dubois, Véronique; Thiebaut, Rodolphe; Nathier, Fany; Hoogland, Emilie; Caumette, Pierre; Quentin, Claudine

    2005-01-01

    Listeria spp. were found in most treated waters (84.4%) and raw sludge (89.2%) of six French urban wastewater treatment plants and one composting facility, examined monthly over a 1-year period. Most strains belonged to Listeria monocytogenes, serotypes 4b/4e being predominant. Sludge composting and liming reduced or prevented Listeria contamination. PMID:16269804

  2. Deployable Wastewater Treatment Technology Evaluation

    DTIC Science & Technology

    2006-05-31

    AFRL/MLQD is expanding the Deployable Waste Disposal System to include bare base wastewater treatment. The goal of AFRL/MLQD is for the deployable... wastewater treatment system to be integrated into a waste treatment system that will treat both solid and aqueous waste. The US Army (TARDEC) and the... Air Force (AAC/WMO) have been involved in preliminary studies that provide extensive useful background information for this project. These studies show

  3. Treatment of textile wastewater with membrane bioreactor: A critical review.

    PubMed

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process.

  4. Treating Sludges

    ERIC Educational Resources Information Center

    Josephson, Julian

    1978-01-01

    Discussed are some of the ways to handle municipal and industrial wastewater treatment sludge presented at the 1978 American Chemical Society meeting. Suggestions include removing toxic materials, recovering metals, and disposing treated sewage sludge onto farm land. Arguments for and against land use are also given. (MA)

  5. Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater

    NASA Astrophysics Data System (ADS)

    Yang, Lan; Wei, Jie; Zhang, Yumei; Wang, Jianli; Wang, Dongtian

    2014-06-01

    Acid coagulant-recovered drinking waterworks sludge residual (DWSR) is a waste product from drinking waterworks sludge (DWS) treatment with acid for coagulant recovery. In this study, we evaluated DWSR as a potential phosphorus (P) removing material in wastewater treatment by conducting a series of batch and semi-continuous tests. Batch tests were carried out to study the effects of pH, initial concentration, and sludge dose on P removal. Batch test results showed that the P removal efficiency of DWSR was highly dependent on pH. Calcinated DWSR (C-DWSR) performed better in P removal than DWSR due to its higher pH. At an optimum initial pH value of 5-6 and a sludge dose of 10 g/L, the P removal rates of DWSR and DWS decreased from 99% and 93% to 84% and 14%, respectively, and the specific P uptake of DWSR and DWS increased from 0.19 and 0.19 mg P/g to 33.60 and 5.72 mg P/g, respectively, when the initial concentration was increased from 2 to 400 mg/L. The effective minimum sludge doses of DWSR and DWS were 0.5 g/L and 10 g/L, respectively, when the P removal rates of 90% were obtained at an initial concentration of 10 mg/L. Results from semi-continuous test indicated that P removal rates over 99% were quickly achieved for both synthetic and actual wastewater (lake water and domestic sewage). These rates could be maintained over a certain time under a certain operational conditions including sludge dose, feed flow, and initial concentration. The physicochemical properties analysis results showed that the contents of aluminum (Al) and iron (Fe) in DWSR were reduced by 50% and 70%, respectively, compared with DWS. The insoluble Al and Fe hydroxide in DWS converted into soluble Al and Fe in DWSR. Metal leaching test results revealed that little soluble Al and Fe remained in effluent when DWSR was used for P removal. We deduced that chemical precipitation might be the major action for P removal by DWSR and that adsorption played only a marginal role.

  6. Marine carbohydrates of wastewater treatment.

    PubMed

    Sudha, Prasad N; Gomathi, Thandapani; Vinodhini, P Angelin; Nasreen, K

    2014-01-01

    Our natural heritage (rivers, seas, and oceans) has been exploited, mistreated, and contaminated because of industrialization, globalization, population growth, urbanization with increased wealth, and more extravagant lifestyles. The scenario gets worse when the effluents or contaminants are discharged directly. So wastewater treatment is a very important and necessary in nowadays to purify wastewater before it enters a body of natural water, or it is applied to the land, or it is reused. Various methods are available for treating wastewater but with many disadvantages. Recently, numerous approaches have been studied for the development of cheaper and more effective technologies, both to decrease the amount of wastewater produced and to improve the quality of the treated effluent. Biosorption is an emerging technology, which uses natural materials as adsorbents for wastewater treatment. Low-cost adsorbents of polysaccharide-based materials obtained from marine, such as chitin, chitosan, alginate, agar, and carrageenan, are acting as rescue for wastewater treatment. This chapter reviews the treatment of wastewater up to the present time using marine polysaccharides and its derivatives. Special attention is paid to the advantages of the natural adsorbents, which are a wonderful gift for human survival.

  7. Reduction in toxicity of wastewater from three wastewater treatment plants to alga (Scenedesmus obliquus) in northeast China.

    PubMed

    Zhang, Ying; Sun, Qing; Zhou, Jiti; Masunaga, Shigeki; Ma, Fang

    2015-09-01

    The toxicity of municipal wastewater to the receiving water bodies is still unknown, due to the lack of regulated toxicity based index for wastewater discharge in China. Our study aims at gaining insight into the acute toxic effects of local municipal wastewater on alga, Scenedesmus obliquus. Four endpoints, i.e. cell density, chlorophyll-A concentration, superoxide dismutase (SOD) activity and cell membrane integrity, of alga were analyzed to characterize the acute toxicity effects of wastewater from municipal wastewater treatment plants (WWTPs) with different treatment techniques: sequencing batch reactor (SBR), Linpor and conventional activated sludge. Influent and effluent from each treatment stage in these three WWTPs were sampled and evaluated for their acute toxicity. Our results showed that all three techniques can completely affect the algal chlorophyll-A synthesis stimulation effects of influent; the algal cell growth stimulation effect was only completely removed by the secondary treatment process in conventional activated sludge technique; toxic effects on cell membrane integrity of two influents from WWTPs with SBR and conventional activated sludge techniques were completely removed; the acute toxicity on SOD activity was partially reduced in SBR and conventional activated sludge techniques while not significantly reduced by Linpor system. As to the disinfection unit, NaClO disinfection enhanced wastewater toxicity dramatically while UV radiation had no remarkable influence on wastewater toxicity. Our results illustrated that SOD activity and chlorophyll-A synthesis were relatively sensitive to municipal wastewater toxicity. Our results would aid to understand the acute toxicity of municipal wastewater, as well as the toxicity removal by currently utilized treatment techniques in China.

  8. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste

    PubMed Central

    Zuliani, Luca; Frison, Nicola; Jelic, Aleksandra; Fatone, Francesco; Bolzonella, David; Ballottari, Matteo

    2016-01-01

    Microalgae are fast-growing photosynthetic organisms which have the potential to be exploited as an alternative source of liquid fuels to meet growing global energy demand. The cultivation of microalgae, however, still needs to be improved in order to reduce the cost of the biomass produced. Among the major costs encountered for algal cultivation are the costs for nutrients such as CO2, nitrogen and phosphorous. In this work, therefore, different microalgal strains were cultivated using as nutrient sources three different anaerobic digestates deriving from municipal wastewater, sewage sludge or agro-waste treatment plants. In particular, anaerobic digestates deriving from agro-waste or sewage sludge treatment induced a more than 300% increase in lipid production per volume in Chlorella vulgaris cultures grown in a closed photobioreactor, and a strong increase in carotenoid accumulation in different microalgae species. Conversely, a digestate originating from a pilot scale anaerobic upflow sludge blanket (UASB) was used to increase biomass production when added to an artificial nutrient-supplemented medium. The results herein demonstrate the possibility of improving biomass accumulation or lipid production using different anaerobic digestates. PMID:27735859

  9. Biological treatment of shrimp production wastewater.

    PubMed

    Boopathy, Raj

    2009-07-01

    Over the last few decades, there has been an increase in consumer demand for shrimp, which has resulted in its worldwide aquaculture production. In the United States, the stringent enforcement of environmental regulations encourages shrimp farmers to develop new technologies, such as recirculating raceway systems. This is a zero-water exchange system capable of producing high-density shrimp yields. The system also produces wastewater characterized by high levels of ammonia, nitrate, nitrite, and organic carbon, which make waste management costs prohibitive. Shrimp farmers have a great need for a waste management method that is effective and economical. One such method is the sequencing batch reactor (SBR). A SBR is a variation of the activated sludge biological treatment process. This process uses multiple steps in the same reactor to take the place of multiple reactors in a conventional treatment system. The SBR accomplishes equalization, aeration, and clarification in a timed sequence in a single reactor system. This is achieved through reactor operation in sequences, which includes fill, react, settle, decant, and idle. A laboratory scale SBR was successfully operated using shrimp aquaculture wastewater. The wastewater contained high concentrations of carbon and nitrogen. By operating the reactors sequentially, namely, aerobic and anoxic modes, nitrification and denitrification were achieved as well as removal of carbon. Ammonia in the waste was nitrified within 4 days. The denitrification of nitrate was achieved by the anoxic process, and 100% removal of nitrate was observed within 15 days of reactor operation.

  10. Shotgun Metagenomic Profiles Have a High Capacity To Discriminate Samples of Activated Sludge According to Wastewater Type

    PubMed Central

    Ibarbalz, Federico M.; Orellana, Esteban; Figuerola, Eva L. M.

    2016-01-01

    ABSTRACT This study was conducted to investigate whether functions encoded in the metagenome could improve our ability to understand the link between microbial community structures and functions in activated sludge. By analyzing data sets from six industrial and six municipal wastewater treatment plants (WWTPs), covering different configurations, operational conditions, and geographic regions, we found that wastewater influent composition was an overriding factor shaping the metagenomic composition of the activated sludge samples. Community GC content profiles were conserved within treatment plants on a time scale of years and between treatment plants with similar influent wastewater types. Interestingly, GC contents of the represented phyla covaried with the average GC contents of the corresponding WWTP metagenome. This suggests that the factors influencing nucleotide composition act similarly across taxa and thus the variation in nucleotide contents is driven by environmental differences between WWTPs. While taxonomic richness and functional richness were correlated, shotgun metagenomics complemented taxon-based analyses in the task of classifying microbial communities involved in wastewater treatment systems. The observed taxonomic dissimilarity between full-scale WWTPs receiving influent types with varied compositions, as well as the inferred taxonomic and functional assignment of recovered genomes from each metagenome, were consistent with underlying differences in the abundance of distinctive sets of functional categories. These conclusions were robust with respect to plant configuration, operational and environmental conditions, and even differences in laboratory protocols. IMPORTANCE This work contributes to the elucidation of drivers of microbial community assembly in wastewater treatment systems. Our results are significant because they provide clear evidence that bacterial communities in WWTPs assemble mainly according to influent wastewater

  11. Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge.

    PubMed

    Luesken, Francisca A; van Alen, Theo A; van der Biezen, Erwin; Frijters, Carla; Toonen, Ger; Kampman, Christel; Hendrickx, Tim L G; Zeeman, Grietje; Temmink, Hardy; Strous, Marc; Op den Camp, Huub J M; Jetten, Mike S M

    2011-11-01

    Recently discovered microorganisms affiliated to the bacterial phylum NC10, named "Candidatus Methylomirabilis oxyfera", perform nitrite-dependent anaerobic methane oxidation. These microorganisms could be important players in a novel way of anaerobic wastewater treatment where ammonium and residual dissolved methane might be removed at the expense of nitrate or nitrite. To find suitable inocula for reactor startup, ten selected wastewater treatment plants (WWTPs) located in The Netherlands were screened for the endogenous presence of M. oxyfera using molecular diagnostic methods. We could identify NC10 bacteria with 98% similarity to M. oxyfera in nine out of ten WWTPs tested. Sludge from one selected WWTP was used to start a new enrichment culture of NC10 bacteria. This enrichment was monitored using specific pmoA primers and M. oxyfera cells were visualized with fluorescence oligonucleotide probes. After 112 days, the enrichment consumed up to 0.4 mM NO(2)(-) per day. The results of this study show that appropriate sources of biomass, enrichment strategies, and diagnostic tools existed to start and monitor pilot scale tests for the implementation of nitrite-dependent methane oxidation in wastewater treatment at ambient temperature.

  12. Impacts of wastewater sludge amendments in restoring nitrogen cycle in p-nitrophenol contaminated soil.

    PubMed

    Sagban, F Olcay Topac

    2011-01-01

    The possible impacts on nitrogen-cycle in a p-nitrophenol (PNP) polluted soil and the effectiveness of wastewater sludge amendments in restoring nitrification potential and urease activity were evaluated by an incubation study. The results indicated that PNP at 250 mg/kg soil inhibited urease activity, nitrification potential, arginine ammonification rate and heterotrophic bacteria counts to some extents. After exposure to PNP, the nitrification potential of the tested soil was dramatically reduced to zero over a period of 30 days. Based on the findings, nitrification potential was postulated as a simple biochemical indicator for PNP pollution in soils. Nitrogen-cycling processes in soils responded positively to the applications of wastewater sludges. A sludge application rate of 200 tons/ha was sufficient for successful biostimulation of these nitrogen processes. The microbial activities in sludge-amended, heavy PNP-polluted soils seemed to recover after 30-45 days, indicating the effectiveness of sludge as a useful soil amendment.

  13. Activated Sludge.

    ERIC Educational Resources Information Center

    Saunders, F. Michael

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) activated sludge process; (2) process control; (3) oxygen uptake and transfer; (4) phosphorus removal; (5) nitrification; (6) industrial wastewater; and (7) aerobic digestion. A list of 136 references is also presented. (HM)

  14. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China.

    PubMed

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China.

  15. Effect of microwave pre-treatment of thickened waste activated sludge on biogas production from co-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and municipal sludge.

    PubMed

    Ara, E; Sartaj, M; Kennedy, K

    2014-12-01

    Anaerobic co-digestion of organic fraction of municipal solid waste, with thickened waste activated sludge and primary sludge has the potential to enhance biodegradation of solid waste, increase longevity of existing landfills and lead to more sustainable development by improving waste to energy production. This study reports on mesophilic batch and continuous studies using different concentrations and combinations (ratios) of organic fraction of municipal solid waste, thickened waste activated sludge (microwave pre-treated and untreated) and primary sludge to assess the potential for improved biodegradability and specific biogas production. Improvements in specific biogas production for batch assays, with concomitant improvements in total chemical oxygen demand and volatile solid removal, were obtained with organic fraction of municipal solid waste:thickened waste activated sludge:primary sludge mixtures at a ratio of 50:25:25 (with and without thickened waste activated sludge microwave pre-treatment). This combination was used for continuous digester studies. At 15 d hydraulic retention times, the co-digestion of organic fraction of municipal solid waste:organic fraction of municipal solid waste:primary sludge and organic fraction of municipal solid waste:thickened waste activated sludge microwave:primary sludge resulted in a 1.38- and 1.46-fold increase in biogas production and concomitant waste stabilisation when compared with thickened waste activated sludge:primary sludge (50:50) and thickened waste activated sludge microwave:primary sludge (50:50) digestion at the same hydraulic retention times and volumetric volatile solid loading rate, respectively. The digestion of organic fraction of municipal solid waste with primary sludge and thickened waste activated sludge provides beneficial effects that could be implemented at municipal wastewater treatment plants that are operating at loading rates of less than design capacity.

  16. Nitrous oxide emissions from an aerobic granular sludge system treating low-strength ammonium wastewater.

    PubMed

    Gao, Mingming; Yang, Sen; Wang, Mingyu; Wang, Xin-Hua

    2016-11-01

    Aerobic granular sludge is a promising technology in wastewater treatment process. Its special microorganism structure could make the emissions of greenhouse gas nitrous oxide (N2O) more complicated. This study investigated the N2O emissions from a batch-fed aerobic granular sludge system during nitrification of low-strength synthetic ammonium wastewater. The N2O emission was 2.72 ± 0.52% of the oxidized ammonium during the whole anoxic-oxic sequencing batch reactor (SBR) cycle. Under nitrification batch test with sole ammonium substrate (50 mg N/L), N2O emission factor was 1.82% (N2ON/NH4(+)-Nox) and ammonia-oxidizing bacteria (AOB) was the responsible microorganism. The presence of high ammonium concentration (or high ammonium oxidation rate (AOR)) and accumulation of nitrite would lead to significant N2O emissions. AOB denitrification pathway was speculated to contribute more to the N2O emissions under nitrification conditions. While under simultaneous nitrification and denitrification condition with carbon source of 500 mg COD/L, the N2O emission factor increased to 2.76%. Both AOB and heterotrophic denitrifiers were responsible for N2O emission and heterotrophic denitrification enhances N2O emission. Step feeding of organic carbon source declined N2O emission factor to 1.60%, which underlined the role of storage substance consumption in N2O generation during denitrification.

  17. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    PubMed

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  18. The effect of ozone on tannery wastewater biological treatment at demonstrative scale.

    PubMed

    Di Iaconi, Claudio; Ramadori, Roberto; Lopez, Antonio

    2009-12-01

    This paper reports the results obtained during an investigation aimed at transferring to the demonstrative scale an aerobic granular biomass system (SBBGR--Sequencing Batch Biofilter Granular Reactor) integrated with ozonation for the efficient treatment of tannery wastewater. The results show that the integrated process was able to achieve high removal efficiencies for COD, TSS, TKN, surfactants and colour with residual concentrations much lower than the current discharge limits. Furthermore, the process was characterised by a very low sludge production (i.e., 0.1 kg dry sludge/m(3) of treated wastewater) with interesting repercussions on treatment costs (about 1 euro per m(3) of wastewater).

  19. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    PubMed

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  20. Conditioning of wastewater sludge using freezing and thawing: role of curing.

    PubMed

    Hu, Kai; Jiang, Jun-Qiu; Zhao, Qing-Liang; Lee, Duu-Jong; Wang, Kun; Qiu, Wei

    2011-11-15

    Freeze/thaw (F/T) treatment is an efficient pre-treatment process for biological sludges. When bulk sludge was frozen, tiny unfrozen regimes in the ice matrix were continuously dehydrated by surrounding ice fronts, termed as the "curing stage". This work demonstrated that the F/T treatment could not only enhance sludge dewaterability, but also solubilize organic matters from sludge matrix. Most enhancement of sludge dewaterability was achieved during bulk freezing stage, with the waste activated sludge more readily dewatered than the mixed sludges after treatment. Conversely, the freezing stage released only limited quantities of organic matters to liquid. Conversely, the curing contributed mostly on chemical oxygen demand (COD) solubilization and NH(3)-N release. The crystallization of intra-aggregate moisture was claimed to damage cell membranes so to release intracellular substances to surroundings. The F/T treatment with sufficient curing is advised to effectively condition biological sludge as the feedstock of the following anaerobic digestion process.

  1. Biotreatment of oily wastewater by rhamnolipids in aerated active sludge system.

    PubMed

    Zhang, Hong-zi; Long, Xu-wei; Sha, Ru-yi; Zhang, Guo-liang; Meng, Qin

    2009-11-01

    Oily wastewater generated by various industries creates a major ecological problem throughout the world. The traditional methods for the oily wastewater treatment are inefficient and costly. Surfactants can promote the biodegradation of petroleum hydrocarbons by dispersing oil into aqueous environment. In the present study, we applied rhamnolipid-containing cell-free culture broth to enhance the biodegradation of crude oil and lubricating oil in a conventional aerobically-activated sludge system. At 20 degrees C, rhamnolipids (11.2 mg/L) increased the removal efficiency of crude oil from 17.7% (in the absence of rhamnolipids) to 63%. At 25 degrees C, the removal efficiency of crude oil was over 80% with the presence of rhamnolipids compared with 22.3% in the absence of rhamnolipids. Similarly, rhamnolipid treatment (22.5 mg/L) for 24 h at 20 degrees C significantly increased the removal rate of lubricating oil to 92% compared with 24% in the absence of rhamnolipids. The enhanced removal of hydrocarbons was mainly attributed to the improved solubility and the reduced interfacial tension by rhamnolipids. We conclude that a direct application of the crude rhamnolipid solution from cell culture is effective and economic in removing oily contaminants from wastewater.

  2. Ferric coagulant recovered from coagulation sludge and its recycle in chemically enhanced primary treatment.

    PubMed

    Xu, G R; Yan, Z C; Wang, N; Li, G B

    2009-01-01

    An investigation was conducted to study the feasibility of ferric coagulant recovery from chemical sludge and its recycle in chemically enhanced primary treatment (CEPT) to make the process more cost-effective, as well as reduce sludge volume. The optimum conditions and efficiency of the acidification for ferric coagulant recovery from coagulation sludge were investigated. Experimental results showed that the recovered coagulants can be used in CEPT and the pollutants removal efficiency is similar to that of fresh coagulant, and for some aspects the effect of recovered coagulants is better than that of fresh ones, such as turbidity removal. Although some substances will be enriched during recycle, they have little effect on treated wastewater quality. Acidification condition also had significant influence on reduction of sludge volume. The efficiency of coagulant recovery had a linear relationship with sludge reduction. Experiments verify that it would be a sustainable and cost-effective way to recover ferric coagulant from coagulation sludge in water treatment and chemical wastewater treatment, and then recycle it to CEPT, as well as reduce sludge volume.

  3. Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants

    PubMed Central

    Zeng, Jie; Gao, Jun-Min; Chen, You-Peng; Yan, Peng; Dong, Yang; Shen, Yu; Guo, Jin-Song; Zeng, Ni; Zhang, Peng

    2016-01-01

    As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A2/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extracted by ultrasound method. The proteins and polysaccharides contents in EPS were determined by using a modified Lowry method and anthrone colorimetry respectively to analyze the detail differences in two types of WWTPs. Fourier transform-infrared spectroscopy and three-dimensional excitation-emission matrix fluorescence spectroscopy demonstrated proteins and polysaccharides were the dominant components of the two types of EPS, and the aromatic protein-like substances accounted for a larger proportion in EPS proteins. The results of the aggregation test indicated that EPS were good for the sludge aggregation, and the EPS in oxic sludge were more beneficial to sludge aggregation than that in anoxic sludge. Anoxic sludge EPS in H-WWTP showed a negligible effect on sludge aggregation. Comparative study on EPS of different tanks in the M-WWTP and H-WWTP was valuable for understanding the characteristics of EPS isolated from two typical wastewater treatment processes. PMID:27220287

  4. Membrane bioreactors and their uses in wastewater treatments.

    PubMed

    Le-Clech, Pierre

    2010-12-01

    With the current need for more efficient and reliable processes for municipal and industrial wastewaters treatment, membrane bioreactor (MBR) technology has received considerable attention. After just a couple of decades of existence, MBR can now be considered as an established wastewater treatment system, competing directly with conventional processes like activated sludge treatment plant. However, MBR processes still suffer from major drawbacks, including high operational costs due to the use of anti-fouling strategies applied to the system to maintain sustainable filtration conditions. Moreover, this specific use of membranes has not reached full maturity yet, as MBR suppliers and users still lack experience regarding the long-term performances of the system. Still, major improvements of the MBR design and operation have been witnessed over the recent years, making MBR an option of choice for wastewater treatment and reuse. This mini-review reports recent developments and current research trends in the field.

  5. Application of the SCADA system in wastewater treatment plants.

    PubMed

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  6. Assessment of endotoxin activity in wastewater treatment plants.

    PubMed

    Guizani, Mokhtar; Dhahbi, Mahmoud; Funamizu, Naoyuki

    2009-07-01

    Endotoxic material, commonly associated to biological reactions, is thought to be one of the most important constituents in water. This has become a very important topic because of the common interest in microbial products governed by the possible shift to water reuse for drinking purposes. In this light, this study was conducted to provide an assessment of endotoxic activity in reclaimed wastewater. A bacterial endotoxin test (LAL test) was applied to water samples from several wastewater treatment plants (WWTP) in Sapporo, Japan keeping in view the seasonal variation. Samples were taken from several points in WWTP (influent, effluent, return sludge, advanced treatment effluent). The findings of this study indicated that wastewater shows high endotoxin activity. The value of Endotoxin (Endo) to COD ratio in the effluent is usually higher than that of the influent. Moreover, it is found that wastewater contains initially endotoxic active material. Some of those chemicals are biodegradable and but most of them are non-biodegradable. Batch scale activated sludge studies were undertaken to understand the origin of endotoxic active material in the effluent. This study showed that those chemicals are mainly produced during biological reactions, more precisely during decay process. Moreover, raw wastewater (RWW) contains high amounts of organic matter having endotoxicity which remains in the effluent.

  7. Self-heating of dried industrial wastewater sludge: lab-scale investigation of supporting conditions.

    PubMed

    Della Zassa, M; Biasin, A; Zerlottin, M; Refosco, D; Canu, P

    2013-06-01

    We studied the reactivity of dried sludge produced by treatment of wastewater, mainly from tanneries. The solids transformations have been first characterized with thermal analysis (TGA and DSC) proving that exothermic transformation takes place at fairly low temperature, before the total organic combustion that occurs in air above 400°C. The onset of low temperature reactions depends on the heating rate and it can be below 100°C at very small heating rate. Then, we reproducibly determined the conditions to trigger dried sludge self-heating at the laboratory scale, on samples in the 0.2-0.3 kg size. Thermal insulation, some aeration and addition of water are key factors. Mastering the self-heating at this scale allows more detailed investigations as well as manipulation of conditions, to understand its nature, course and remediation. Here we report proves and discussions on the role of air, water, particle size, porosity and biological activity, as well as proving that also dried sludge from similar sources lead to self-heating. Tests demonstrate that air and water are simultaneously required for significant self-heating to occur. They act in diverging directions, both triggering the onset of the reactions and damping the temperature rise, by supporting heat loss. The higher the O2 concentration, the higher the solids heating rate. More added water prolongs the exothermic phase. Further additions of water can reactivate the material. Water emphasizes the exothermic processes, but it is not sufficient to start it in an air-free atmosphere. The initial solid moisture concentration (between 8% and 15%) affects the onset of self-heating as intuitive. The sludge particles size strongly determines the strength and extent of the heat release, indicating that surface reactions are taking place. In pelletized particles, limitations to water and air permeability mitigates the reaction course.

  8. Removal of tricaine methanesulfonate from aquaculture wastewater by adsorption onto pyrolysed paper mill sludge.

    PubMed

    Ferreira, Catarina I A; Calisto, Vânia; Otero, Marta; Nadais, Helena; Esteves, Valdemar I

    2017-02-01

    Tricaine methanesulfonate (MS-222) has been widely used in intensive aquaculture systems to control stress during handling and confinement operations. This compound is dissolved in the water tanks and, once it is present in the Recirculating Aquaculture Systems (RASs), MS-222 can reach the environment by the discharge of contaminated effluents. The present work proposes the implementation of the adsorption process in the RASs, using pyrolysed biological paper mill sludge as adsorbent, to remove MS-222 from aquaculture wastewater. Adsorption experiments were performed under extreme operating conditions, simulating those corresponding to different farmed fish species: temperature (from 8 to 30 °C), salinity (from 0.8 to 35‰) and different contents of organic and inorganic matter in the aquaculture wastewater. Furthermore, the MS-222 adsorption from a real aquaculture effluent was compared with that from ultrapure water. Under the studied conditions, the performance of the produced adsorbent remained mostly the same, removing satisfactorily MS-222 from water. Therefore, it may be concluded that the produced adsorbent can be employed in intensive aquaculture wastewater treatment with the same performance independently of the farmed fish species.

  9. Innovative sludge stabilization method

    SciTech Connect

    Riggenbach, J.D.

    1995-06-01

    Sludge is generated in many water and wastewater treatment processes, both biological and physical/chemical. Examples include biological sludges from sanitary and industrial wastewater treatment operations and chemical sludges such as those produced when metals are removed from metal plating wastewater. Even some potable water plants produce sludge, such as when alum is used as a flocculating agent to clarify turbid water. Because sludge is produced from such a variety of operations, different techniques have been developed to remove water from sludges and reduce the sludge volume and mass, thus making the sludge more suitable for recovery or disposal. These techniques include mechanical (e.g., filter presses), solar (sludge drying beds), and thermal. The least expensive of these methods, neglecting land costs, involves sludge drying beds and lagoons. The solar method was widely used in sewage treatment plants for many years, but has fallen in disfavor in the US; mechanical and thermal methods have been preferred. Since environmental remediation often requires managing sludges, this article presents a discussion of a variation of sludge lagoons known as evaporative sludge stabilization. Application of this process to the closure of two 2.5 acre (10117 m{sup 2}) hazardous waste surface impoundments will be discussed. 1 ref., 2 figs.

  10. Denitrification of high nitrate wastewater in a cloth strip bioreactor with immobilized sludge.

    PubMed

    Nair, Rashmi R; D'Souza, Stanislaus F

    2012-11-01

    Denitrification of synthetic high nitrate wastewater containing 40,000 ppm NO(3) (9,032 ppm NO(3)-N) was achieved using immobilized activated sludge in a column reactor. Active anoxic sludge adsorbed onto Terry cloth was used in the denitrification of high nitrate wastewater. The operational stability of the immobilized sludge system was studied both in a batch reactor and in a continuous reactor. The immobilized sludge showed complete degradation of different concentrations of NO(3)-N (1,129, 1,693, 3,387, 6,774, and 9,032 ppm) in a batch process. The reactors were successfully run for 90 days without any loss in activity. The immobilized cell process has yielded promising results in attaining high denitrifying efficiency.

  11. A strategy for reducing pollutants at source in order to obtain sustainable agricultural recycling of wastewater sludge.

    PubMed

    Mattsson, A; Mattsson, J; Davidsson, F

    2012-01-01

    The Swedish licensing system for wastewater sludge use in agriculture, REVAQ, sets challenges. These include a maximum nominal accumulation rate of 0.2%/year on farmland, for specified metals, to be reached by 2025. Here a model is suggested, and applied for the Gothenburg regional wastewater treatment plant, Gryaab, to quantify historic sludge quality improvements and necessary future development. Local sampling campaigns covering two decades show a substantial reduction of heavy metals and ecologically harmful organic substances (such as adsorbable organic halogens, nonylphenols, phthalates, naphthalenes and polycyclic aromatic hydrocarbons) from households and society at large. For the metals studied the historic mass flow reduction to sludge varies from 1 to 2%/year for mercury, zinc and copper to 15%/year for silver. Copper needs further reduction, involving water pipes and copper roofing. Silver is rare in soil, and significant reduction from already low levels is needed to reach the accumulation goal. Further reduction of other metals involves addressing storm- and drainage water entering the sewers and the sediments already in the sewers. Fulfilling the goals of REVAQ implies national and local measures affecting public and private stakeholders including property owners, the wastewater collection system, commercial businesses and legislating authorities.

  12. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum).

    PubMed

    Hossain, Mustafa K; Strezov, Vladimir; Chan, K Yin; Nelson, Peter F

    2010-02-01

    This work presents agronomic values of a biochar produced from wastewater sludge through pyrolysis at a temperature of 550 degrees C. In order to investigate and quantify effects of wastewater sludge biochar on soil quality, growth, yield and bioavailability of metals in cherry tomatoes, pot experiments were carried out in a temperature controlled environment and under four different treatments consisting of control soil, soil with biochar; soil with biochar and fertiliser, and soil with fertiliser only. The soil used was chromosol and the applied wastewater sludge biochar was 10tha(-1). The results showed that the application of biochar improves the production of cherry tomatoes by 64% above the control soil conditions. The ability of biochar to increase the yield was attributed to the combined effect of increased nutrient availability (P and N) and improved soil chemical conditions upon amendment. The yield of cherry tomato production was found to be at its maximum when biochar was applied in combination with the fertiliser. Application of biochar was also found to significantly increase the soil electrical conductivity as well as phosphorus and nitrogen contents. Bioavailability of metals present in the biochar was found to be below the Australian maximum permitted concentrations for food.

  13. An experimental investigation of wastewater treatment using electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  14. Carbon footprint of aerobic biological treatment of winery wastewater.

    PubMed

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  15. Wastewater Treatment: The Natural Way

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  16. Quantitative mapping of suspended solids in wastewater sludge plumes in the New York Bight apex

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Duedall, I. W.; Glasgow, R. M.; Proni, J. R.; Nelsen, T. A.

    1977-01-01

    The purpose of this investigation was to apply the previously reported methodology to remotely sensed data that were collected over wastewater sludge plumes in the New York Bight apex on September 22, 1975. Spectral signatures were also determined during this study. These signatures may be useful in the specific identification of sludge plumes, as opposed to other plumes such as those created by the disposal of industrial acid wastes.

  17. Occurrence and fate of heavy metals in large wastewater treatment plants treating municipal and industrial wastewaters.

    PubMed

    Carletti, G; Fatone, F; Bolzonella, D; Cecchi, F; Carletti, G

    2008-01-01

    This paper deals with a detailed study on the occurrence and fate of heavy metals (plus As, Fe and Al) in five Italian large wastewater treatment plants treating municipal and industrial wastewaters. The study showed that some of the compounds (As, Hg and Cd) were present at trace levels, while others were dispersed in a broad range of concentrations and were sometimes under the detection limit. The occurrence followed the order Hg = As < Hg < Pb < Ni < Cu < Cr < Fe < Zn < Al. Metals were mainly present bound to particulate organic matter in municipal wastewaters while they were often present in soluble phase in industrial wastewaters. Some heavy metals, like Hg and Pb, showed clear correlations with Al and Fe, therefore the last could be used as control parameters. Metals were removed with good efficiency in the treatment works, with the order As < Cd = Cr = Zn < Pb < Hg < Ni = Al < Cu < Fe. Metals then concentrated in waste activated sludge and accumulated after sludge stabilisation because of volatile solids degradation, therefore some problems may arise with limit for agricultural application, in particular for Hg, Cd and Ni.

  18. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants.

    PubMed

    Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2015-10-01

    The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 μg L(-1), except for TDWTP-F (2.12 μg L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater.

  19. Anaerobic filters for the treatment of coal gasification wastewater.

    PubMed

    Suidan, M T; Siekerka, G L; Kao, S W; Pfeffer, J T

    1983-06-01

    A process train consisting of the following sequence of unit processes, a berl-saddle-packed anaerobic filter, an expanded bed, granular activated carbon anaerobic filter, and an activated sludge nitrification system was evaluated for the treatment of a synthetically prepared coal gasification wastewater. The first-stage anaerobic filter resulted in very little removal of organic matter and no methane production. Excellent reduction in organic matter occurred in the granular activated carbon anaerobic filter. The removal mechanism was initially adsorptive and near the end of the study, removal of organic matter was primarily through conversion to methane gas. It is felt that the success of the activated carbon anaerobic filter was due to the ability of the activated carbon to sequester some components of the wastewater that were toxic to the mixed culture of anaerobic microorganisms. The activated sludge nitrification system resulted in complete ammonia oxidation and was very efficient in final effluent polishing.

  20. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    PubMed

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  1. Investigating the inhibitory effect of cyanide, phenol and 4-nitrophenol on the activated sludge process employed for the treatment of petroleum wastewater.

    PubMed

    Inglezakis, V J; Malamis, S; Omirkhan, A; Nauruzbayeva, J; Makhtayeva, Z; Seidakhmetov, T; Kudarova, A

    2016-09-25

    In this work, the inhibitory effect of cyanide, phenol and 4-nitrophenol on the activated sludge process was investigated. The inhibition of the aerobic oxidation of organic matter, nitrification and denitrification were examined in batch reactors by measuring the specific oxygen uptake rate (sOUR), the specific ammonium uptake rate (sAUR) and the specific nitrogen uptake rate (sNUR) respectively. The tested cyanide, phenol and 4-nitrophenol concentrations were 0.2-1.7 mg/L, 4.8-73.1 mg/L and 8.2-73.0 mg/L respectively. Cyanide was highly toxic as it significantly (>50%) inhibited the activity of autotrophic biomass, heterotrophic biomass under aerobic conditions and denitrifiers even at relatively low concentrations (1.0-1.7 mgCN(-)/L). The determination of the half maximum inhibitory concentration (IC50) confirmed this, since for cyanide IC50 values were very low for the examined bioprocesses (<1.5 mg/L). On the other hand, the IC50 values for phenol and 4-nitrophenol were much higher (>25 mg/L) for the tested bioprocesses since appreciable concentrations were required to accomplish significant inhibition. The autotrophic bacteria were more sensitive to phenol than the aerobic heterotrophs. The denitrifiers were found to be very resistant to phenol.

  2. Efficient anaerobic treatment of synthetic textile wastewater in a UASB reactor with granular sludge enriched with humic acids supported on alumina nanoparticles.

    PubMed

    Cervantes, Francisco J; Gómez, Rafael; Alvarez, Luis H; Martinez, Claudia M; Hernandez-Montoya, Virginia

    2015-07-01

    A novel technique to co-immobilize humus-reducing microorganisms and humic substances (HS), supported on γ-Al2O3 nanoparticles (NP), by a granulation process in an upflow anaerobic sludge bed (UASB) reactor is reported in the present work. Larger granules (predominantly between 1 and 1.7 mm) were produced using NP coated with HS compared to those obtained with uncoated NP (mostly between 0.25 and 0.5 mm). The HS-enriched granular biomass was then tested for its capacity to achieve the reductive decolorization of the recalcitrant azo dye, reactive red 2 (RR2), in the same UASB reactor operated with a hydraulic residence time of 12 h and with glucose as electron donor. HS-enriched granules achieved higher decolorization and COD removal efficiencies, as compared to the control reactor operated in the absence of HS, in long term operation and applying high concentrations of RR2 (40-400 mg/L). This co-immobilizing technique could be attractive for its application in UASB reactors for the reductive biotransformation of several contaminants, such as nitroaromatics, poly-halogenated compounds, metalloids, among others.

  3. Use of lysis and recycle to control excess sludge production in activated sludge treatment: bench scale study and effect of chlorinated organic compounds.

    PubMed

    Nolasco, M A; Campos, A L O; Springer, A M; Pires, E C

    2002-01-01

    The most widely used treatment system in the pulp and paper industry--the activated sludge--produces high quantities of sludge which need proper disposal. In this paper a modified activated sludge process is presented. A synthetic wastewater, prepared to simulate the effluent of bleached and unbleached pulp and paper plant wastewater, was submitted to treatment in a bench scale aerobic reactor. The excess sludge was lysed in a mechanical mill--Kaddy mill--and totally recycled to the aeration tank. In the first phase the synthetic wastewater, without the chlorinated compounds, was fed to the reactor. In the second phase increasing dosages of the chlorinated compounds were used. Total recycle of excess sludge after disintegration did not produce adverse effects. During the first phase average COD removal efficiency was 65% for the control unit, which operated in a conventional way, and 63% for the treatment unit, which operated with total recycle. During the second phase the COD removal efficiency increased to 77% in the control unit and 75% in the treatment unit. Chlorinated organics removal was 85% in the treatment unit and 86% for the control unit. These differences are not significant.

  4. Fossil organic carbon in wastewater and its fate in treatment plants.

    PubMed

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions.

  5. A multi-disciplinary approach to the removal of emerging contaminants in municipal wastewater treatment plans in New York State, 2003-2004

    USGS Publications Warehouse

    Philips, Patrick J.; Stinson, Beverley; Zaugg, Steven D.; Furlong, Edward T.; Kolpin, Dana W.; Esposito, Kathleen; Bodniewicz, B.; Pape, R.; Anderson, J.

    2005-01-01

    The second phase of the study focused on one of the most common wastewater treatment processes operated in the United States, the Activated Sludge process. Using four controlled parallel activated sludge pilots, a more detailed assessment of the impact of Sludge Retention Time (SRT) on the reduction or removal of ECs was performed.

  6. Holistic sludge management through ozonation: A critical review.

    PubMed

    Semblante, Galilee U; Hai, Faisal I; Dionysiou, Dionysios D; Fukushi, Kensuke; Price, William E; Nghiem, Long D

    2017-01-01

    This paper critically reviews the multidimensional benefits of ozonation in wastewater treatment plants. These benefits include sludge reduction, removal of emerging trace organic contaminants (TrOC) from wastewater and sludge, and resource recovery from sludge. Literature shows that ozonation leads to sludge solubilisation, reducing overall biomass yield. Sludge solubilisation is primarily influenced by ozone dosage, which, in turn, depends on the fraction of ozonated sludge, ozone concentration, and sludge concentration. Additionally, sludge ozonation facilitates the removal of TrOCs from wastewater. On the other hand, by inducing cell lysis, ozonation increases the chemical oxygen demand (COD) and nutrient concentration of the sludge supernatant, which deteriorates effluent quality. This issue can be resolved by implementing resource recovery. Thus far, successful retrieval of phosphorous from ozonated sludge supernatant has been performed. The recovery of phosphorous and other resources from sludge could help offset the operation cost of ozonation, and give greater incentive for wastewater treatment plants to adapt this approach.

  7. [Harvest of the carbon source in wastewater by the adsorption and desorption of activated sludge].

    PubMed

    Liu, Hong-Bo; Wen, Xiang-Hua; Zhao, Fang; Mei, Yi-Jun

    2011-04-01

    The carbon source in municipal wastewater was adsorbed by activated sludge and then harvested through the hydrolysis of activated sludge. Results indicated that activated sludge had high absorbing ability towards organic carbon and phosphorus under continuous operation mode, and the average COD and TP absorption rate reached as high as 63% and 76%, respectively. Moreover, about 50% of the soluble carbon source was outside of the sludge cell and could be released under mild hydrolysis condition. Whereas the absorbed amount of nitrogen was relatively low, and the removal rate of ammonia was only 13% . Furthermore, the releases of organic carbon, nitrogen and phosphorus from the sludge absorbing pollutants in the wastewater were studied. By comparing different hydrolysis conditions of normal (pH 7.5, 20 degrees C), heating (pH 7.5, 60 degrees C) and the alkaline heating (pH 11, 60 degrees C), the last one presented the optimum hydrolysis efficiency. Under which, the release rate of COD could reach 320 mg/g after 24 hours, whereas nitrogen and phosphorus just obtained low release rates of 18 mg/g and 2 mg/g, respectively. Results indicate that the carbon source in wastewater could be harvested by the adsorption and desorption of activated sludge, and the concentrations of nitrogen and phosphorus are low and would not influence the reuse of the harvested carbon source.

  8. Revised sampling campaigns to provide sludge for treatment process testing

    SciTech Connect

    PETERSEN, C.A.

    1999-02-18

    The purpose of this document is to review the impact to the sludge sampling campaigns planned for FY 1999 given the recent decision to delete any further sludge sampling in the K West Basin. Requirements for Sludge sample material for Sludge treatment process testing are reviewed. Options are discussed for obtaining the volume sample material required and an optimized plan for obtaining this sludge is summarized.

  9. Study on the methylene blue adsorption from wastewaters by pore-expanded calcium fluoride sludge adsorbent.

    PubMed

    Hong, Junming; Lin, Bing; Hong, Gui-Bing; Chang, Chang-Tang

    2014-04-01

    The adsorption of methylene blue (MB) onto pore-expanded calcium fluoride sludge (ECF) by the batch adsorption technique was investigated. The results showed that the adsorption capacity increased with increasing MB concentration but decreased as pH was increased. In order to investigate the adsorption mechanisms, three simplified isotherm models and kinetic models were used in this study. The best-fit adsorption isotherm was achieved with the Temkin model. Furthermore, the pseudo-second-order kinetic model agreed very well with the dynamical behavior for the adsorption of MB onto ECF. Thermodynamic studies revealed that the adsorption process of MB onto ECF was spontaneous and exothermic. The results indicated that ECF adsorbed MB efficiently and could be used as a waste adsorbent for the removal of cationic dyes in wastewater treatment.

  10. Influence of sludge age on the performance of MFC treating winery wastewater.

    PubMed

    Penteado, Eduardo D; Fernandez-Marchante, Carmen Maria; Zaiat, Marcelo; Cañizares, Pablo; Gonzalez, Ernesto Rafael; Rodrigo, Manuel Andrés

    2016-05-01

    The objective of this paper was to determine the influence of sludge age on microbial fuel cell (MFC) performance for generating electricity and removing organic matter from winery wastewater. Six Solid Retention Times (SRT) were used: 1.2, 1.4, 1.8, 2.3, 3.5 and 7.0 d. Results demonstrate that the electricity generation increases by decreasing the SRT, selecting electrogenic microorganisms, once the specific organic loading rate (SOLR) increased and the competition for substrate was reduced. Decreasing the SRT, coulombic efficiency can be increased from 3.4% to almost 42.2% and maximum power density from 58 to 890 mW m(-2). However the SRT did not influence on organic matter removal in biological treatment, because only a small part of COD was removed oscillating around 600 mg L(-1) d(-1)and it was very similar at all SRT studied.

  11. Struvite formation for enhanced dewaterability of digested wastewater sludge.

    PubMed

    Bergmans, B J C; Veltman, A M; van Loosdrecht, M C M; van Lier, J B; Rietveld, L C

    2014-01-01

    One of the main advantages of controlled struvite formation in digested sludge is an improvement in dewaterability of the digested sludge, which eventually leads to lower volumes of dewatered sludge that need to be transported. The effects of the control parameters for struvite formation, magnesium concentration and pH, on digested sludge dewaterability were investigated and are discussed in relation to the efficiency of struvite formation. Laboratory experiments with digested activated sludge were performed in a 20 L batch reactor. CO2 was stripped from the digested sludge using a bubble aerator and magnesium chloride was added to induce struvite formation. The dewaterability of the sludge was determined by gravity filtration tests. In the experiments, either the pH or the molar magnesium to phosphate ratio (Mg:PO4) was varied. The results confirm improved sludge dewaterability after struvite formation. Magnesium to phosphate ratios above 1.0 mol/mol did not further improve dewaterability. The addition of magnesium did not prevent the need for polymer addition for sludge dewatering. An increase in pH led to a deterioration in dewaterability. The best dewaterability results were found at the lowest pH value (pH = 7.0), while stirring the sludge instead of using the bubble aerator. At these settings, an orthophosphate removal of around 80% was achieved.

  12. Effect of lime addition during sewage sludge treatment on characteristics of resulting SSA when it is used in cementitious materials.

    PubMed

    Vouk, D; Nakic, D; Štirmer, N; Baricevic, A

    2017-02-01

    Final disposal of sewage sludge is important not only in terms of satisfying the regulations, but the aspect of choosing the optimal wastewater treatment technology, including the sludge treatment. In most EU countries, significant amounts of stabilized and dewatered sludge are incinerated, and sewage sludge ash (SSA) is generated as a by product. At the same time, lime is one of the commonly used additives in the sewage sludge treatment primarily to stabilize the sludge. In doing so, the question arose how desirable is such addition of lime if the sludge is subsequently incinerated, and the generated ash is further used in the production of cementitious materials. A series of mortars were prepared where 10-20% of the cement fraction was replaced by SSA. Since all three types of analyzed SSA (without lime, with lime added during sludge stabilization and with extra lime added during sludge incineration) yielded nearly same results, it can be concluded that if sludge incineration is accepted solution, lime addition during sludge treatment is unnecessary even from the standpoint of preserving the pozzolanic properties of the resulting SSA. Results of the research carried out on cement mortars point to the great possibilities of using SSA in concrete industry.

  13. Comparative study of phenol and cyanide containing wastewater in CSTR and SBR activated sludge reactors.

    PubMed

    Papadimitriou, C A; Samaras, P; Sakellaropoulos, G P

    2009-01-01

    The objectives of this work were the examination of the performance of two bench scale activated sludge systems, a conventional Continuous Stirring Tank Reactor (CSTR) and a Sequential Batch Reactor (SBR), for the treatment of wastewaters containing phenol and cyanides and the assessment of the toxicity reduction potential by bioassays. The operation of the reactors was monitored by physicochemical analyses, while detoxification potential of the systems was monitored by two bioassays, the marine photobacterium Vibrio fischeri and the ciliate protozoan Tetrahymena thermophila. The reactors influent was highly toxic to both organisms, while activated sludge treatment resulted in the reduction of toxicity of the influent. An increased toxicity removal was observed in the SBR; however CSTR system presented a lower ability for toxicity reduction of influent. The performance of both systems was enhanced by the addition of powdered activated carbon in the aeration tank; activated carbon upgraded the performance of the systems due to the simultaneous biological removal of pollutants and to carbon adsorption process; almost negligible values of phenol and cyanides were measured in the effluents, while further toxicity reduction was observed in both systems.

  14. Green Systems for Wastewater Treatment

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Plants found in marshlands and wetlands in many parts of the world may play an increasing part in a very new, yet very old approach to treatment of water and wastewater--the application of biological methods. Biological water pollution control methods being utilized around the world are examined. (BT)

  15. Wastewater Treatment I. Student's Guide.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  16. Imprinted Polymers in Wastewater Treatment

    SciTech Connect

    Eastman, Christopher; Goodrich, Scott; Gartner, Isabelle; Mueller, Anja

    2004-03-31

    In wastewater treatment, a method that specifically recognizes a variety of impurities in a flexible manner would be useful for treatment facilities with varying needs. Current purification techniques (i.e. bacteria, oxidation, reduction, precipitation and filtration) are nonspecific and difficult to control in complex mixtures. Heavy metal removal is particularly important in improving the efficiency of wastewater treatment, as they inhibit or even destroy the bacteria used for filtration. Imprinting polymerization is a technique that allows for the efficient removal of specific compounds and has been used in purification of enantiomers. It has potential to be applied in wastewater systems with the impurities acting as the template for the imprinting polymerization. The polymer with the bound impurities intact can then be removed via precipitation. After removal of the impurity the polymer can be reused. Data for the imprinting polymerization of polyacrylates and polyacrylamides for several metal complexes will be presented. Imprinting polymerization in combination with emulsion polymerization to improve the removal of hydrophobic contaminants will be described. Removal efficiencies will be presented and compared with conventional wastewater treatment methods.

  17. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    PubMed

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  18. Pilot Plant Demonstration of a Sulfide Precipitation Process for Metal-Finishing Wastewater Treatment.

    DTIC Science & Technology

    1984-05-01

    TOAD Metal-Finishing Wastewater Treatment System 6 3 View of Portion of Treatment System 7 4 Section of Treatment System, Showing Clearwell 7 5 Filter... Clearwell Effluent Suspended Solids 21 10 Effluent Oil and Grease 22 1 1 Dewatered Sludge Solids 23 12 Operating Time, Wastewater Flows, and Volume of...showing clearwell . S S S - - - - - - - - - - S 0C C0 CL U. * 4 Figure 6. Control panel. c. Flow Equalization. The effluents from the cyanide

  19. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  20. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.

    PubMed

    Remy, C; Lesjean, B; Waschnewski, J

    2013-01-01

    This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO(2), CH(4), N(2)O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (-162 MJ/PE(COD) * a) and carbon footprint (-11.6 kg CO(2)-eq/PE(COD) * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general.

  1. Nitrogen removal from wastewater and external waste activated sludge reutilization/reduction by simultaneous sludge fermentation, denitrification and anammox (SFDA).

    PubMed

    Wang, Bo; Peng, Yongzhen; Guo, Yuanyuan; Zhao, Mengyue; Wang, Shuying

    2016-08-01

    This work demonstrates the feasibility of simultaneous nitrogen removal and external waste activated sludge (WAS) reutilization/reduction by using the synergy of sludge fermentation, denitrification and anammox processes in up-flow reactors (SFDA). Pre-treated domestic wastewater and synthetic wastewater (containing nitrite ∼20mg/L, ammonium ∼10mg/L in both) were fed to 1# and 2# SFDA, respectively. Long-term operation of 1# SFDA was investigated with achieving the peak ammonium removal rate of 0.021 and nitrite removal rate of 0.081kgN/(m(3)d) as nitrogen loading rate elevated from 0.075 to 0.106kgN/(m(3)d). Negative effect of dissolved oxygen on anammox or fermentation in the 2# SFDA was demonstrated negligible due to rapid depletion by microorganisms. Furthermore, a "net" sludge reduction of 38.8% was obtained due to sludge decay and organics consumption by denitrification. The SFDA process was expected to potentially be used for nitrogen removal and WAS reutilization/reduction in full-scale application.

  2. K Basin sludge treatment process description

    SciTech Connect

    Westra, A.G.

    1998-08-28

    The K East (KE) and K West (KW) fuel storage basins at the 100 K Area of the Hanford Site contain sludge on the floor, in pits, and inside fuel storage canisters. The major sources of the sludge are corrosion of the fuel elements and steel structures in the basin, sand intrusion from outside the buildings, and degradation of the structural concrete that forms the basins. The decision has been made to dispose of this sludge separate from the fuel elements stored in the basins. The sludge will be treated so that it meets Tank Waste Remediation System (TWRS) acceptance criteria and can be sent to one of the double-shell waste tanks. The US Department of Energy, Richland Operations Office accepted a recommendation by Fluor Daniel Hanford, Inc., to chemically treat the sludge. Sludge treatment will be done by dissolving the fuel constituents in nitric acid, separating the insoluble material, adding neutron absorbers for criticality safety, and reacting the solution with caustic to co-precipitate the uranium and plutonium. A truck will transport the resulting slurry to an underground storage tank (most likely tank 241-AW-105). The undissolved solids will be treated to reduce the transuranic (TRU) and content, stabilized in grout, and transferred to the Environmental Restoration Disposal Facility (ERDF) for disposal. This document describes a process for dissolving the sludge to produce waste streams that meet the TWRS acceptance criteria for disposal to an underground waste tank and the ERDF acceptance criteria for disposal of solid waste. The process described is based on a series of engineering studies and laboratory tests outlined in the testing strategy document (Flament 1998).

  3. Beyond the conventional life cycle inventory in wastewater treatment plants.

    PubMed

    Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario.

  4. A comparative study of the hydroxyl radical scavenging capacity of activated sludge and membrane bioreactor wastewater effluents.

    PubMed

    Grant, Jacque-Ann; Hofmann, Ron

    2016-01-01

    This study evaluated the hydroxyl radical scavenging characteristics of wastewater from five membrane bioreactor (MBR) and five activated sludge (AS) systems. The average values of the characteristics of both wastewater types was found to be significantly different at a 90% confidence interval in terms UV absorbance at 254 nm, alkalinity, and biopolymer concentration. Effluent organic matter (EfOM), with an average kOH,EfOM of (2.75 ± 1.04) × 10(8) M(-1)s(-1), was identified as the primary hydroxyl scavenger contributing to >70% of the background scavenging in all cases, except when nitrite exceeded 0.3 mg NO(2)(-)-N/L. The average scavenging capacity, EfOM scavenging capacity, and the EfOM reaction rate constant of the AS wastewaters exceeded that of the MBR. However, due to the small sample size (n = 5) and considerable variability in scavenging characteristics among the MBR wastewaters, the difference in EfOM reactivity between the two wastewaters was not statistically significant at a 90% confidence interval. Nevertheless, these preliminary findings suggest the possibility that MBR wastewaters may be more amenable to treatment by advanced oxidation. A plausible explanation is that MBRs were observed to reject biopolymers, and a strong correlation was observed between EfOM scavenging capacity and biopolymer concentration.

  5. A Guide for Developing Standard Operating Job Procedures for the Digestion Process Wastewater Treatment Facility. SOJP No. 10.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…

  6. Orientation to Municipal Wastewater Treatment. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  7. Supported noble metal catalysts in the catalytic wet air oxidation of industrial wastewaters and sewage sludges.

    PubMed

    Besson, M; Descorme, C; Bernardi, M; Gallezot, P; di Gregorio, F; Grosjean, N; Minh, D Pham; Pintar, A

    2010-12-01

    This paper reviews some catalytic wet air oxidation (CWAO) investigations of industrial wastewaters over platinum and ruthenium catalysts supported on TiO2 and ZrO2 formulated to be active and resistant to leaching, with particular focus on the stability of the catalyst. Catalyst recycling experiments were performed in batch reactors and long-term stability tests were conducted in trickle-bed reactors. The catalyst did not leach upon treatment of Kraft bleaching plant and olive oil mill effluents, and could be either recycled or used for long periods of time in continuous reactors. Conversely, these catalysts were rapidly leached when used to treat effluents from the production of polymeric membranes containing N,N-dimethylformamide. The intermediate formation of amines, such as dimethylamine and methylamine with a high complexing capacity for the metal, was shown to be responsible for the metal leaching. These heterogeneous catalysts also deactivated upon CWAO of sewage sludges due to the adsorption of the solid organic matter. Pre-sonication of the sludge to disintegrate the flocs and improve solubility was inefficient.

  8. Quantification of greenhouse gas emissions from sludge treatment wetlands.

    PubMed

    Uggetti, Enrica; García, Joan; Lind, Saara E; Martikainen, Pertti J; Ferrer, Ivet

    2012-04-15

    Constructed wetlands are nowadays successfully employed as an alternative technology for wastewater and sewage sludge treatment. In these systems organic matter and nutrients are transformed and removed by a variety of microbial reaction and gaseous compounds such as methane (CH(4)) and nitrous oxide (N(2)O) may be released to the atmosphere. The aim of this work is to introduce a method to determine greenhouse gas emissions from sludge treatment wetlands (STW) and use the method in a full-scale system. Sampling and analysing techniques used to determine greenhouse gas emissions from croplands and natural wetlands were successfully adapted to the quantification of CH(4) and N(2)O emissions from an STW. Gas emissions were measured using the static chamber technique in 9 points of the STW during 13 days. The spatial variation in the emission along the wetland did not follow some specific pattern found for the temporal variation in the fluxes. Emissions ranged from 10 to 5400 mg CH(4)/m(2)d and from 20 to 950 mgN(2)O/m(2)d, depending on the feeding events. The comparison between the CH(4) and N(2)O emissions of different sludge management options shows that STW have the lowest atmospheric impact in terms of CO(2) equivalent emissions (Global warming potential with time horizon of 100 years): 17 kg CO(2) eq/PE y for STW, 36 kg CO(2) eq/PE y for centrifuge and 162 kg CO(2) eq/PE y for untreated sludge transport, PE means Population Equivalent.

  9. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    PubMed

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management.

  10. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments

    PubMed Central

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub

    2016-01-01

    ABSTRACT Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 103 genome copies [GC]/ml) and influents (2.7 × 103 GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. IMPORTANCE This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level

  11. Recent advances in membrane bio-technologies for sludge reduction and treatment.

    PubMed

    Wang, Zhiwei; Yu, Hongguang; Ma, Jinxing; Zheng, Xiang; Wu, Zhichao

    2013-12-01

    This paper is designed to critically review the recent developments of membrane bio-technologies for sludge reduction and treatment by covering process fundamentals, performances (sludge reduction efficiency, membrane fouling, pollutant removal, etc.) and key operational parameters. The future perspectives of the hybrid membrane processes for sludge reduction and treatment are also discussed. For sludge reduction using membrane bioreactors (MBRs), literature review shows that biological maintenance metabolism, predation on bacteria, and uncoupling metabolism through using oxic-settling-anaerobic (OSA) process are promising ways that can be employed in full-scale applications. Development of control methods for worm proliferation is in great need of, and a good sludge reduction and MBR performance can be expected if worm growth is properly controlled. For lysis-cryptic sludge reduction method, improvement of oxidant dispersion and increase of the interaction with sludge cells can enhance the lysis efficiency. Green uncoupler development might be another research direction for uncoupling metabolism in MBRs. Aerobic hybrid membrane system can perform well for sludge thickening and digestion in small- and medium-sized wastewater treatment plants (WWTPs), and pilot-scale/full-scale applications have been reported. Anaerobic membrane digestion (AMD) process is a very competitive technology for sludge stabilization and digestion. Use of biogas recirculation for fouling control can be a powerful way to decrease the energy requirements for AMD process. Future research efforts should be dedicated to membrane preparation for high biomass applications, process optimization, and pilot-scale/full-scale tracking research in order to push forward the real and wide applications of the hybrid membrane systems for sludge minimization and treatment.

  12. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.

  13. Quorum quenching is responsible for the underestimated quorum sensing effects in biological wastewater treatment reactors.

    PubMed

    Song, Xiang-Ning; Cheng, Yuan-Yuan; Li, Wen-Wei; Li, Bing-Bing; Sheng, Guo-Ping; Fang, Cai-Yun; Wang, Yun-Kun; Li, Xiao-Yan; Yu, Han-Qing

    2014-11-01

    Quorum sensing (QS) and quorum quenching (QQ) are two antagonistic processes coexisting in various bacterial communities in bioreactors, e.g., activated sludge for biological wastewater treatment. Although QS signal molecules are detected in activated sludge reactors and known to affect sludge properties and reactor performance, there has been no direct evidence to prove the endogenous existence of QQ effects in activated sludge. In this study, for the first time, acyl homoserine lactones-degrading enzymatic activity, a typical QQ effect, was discovered in activated sludge and found to considerably affect the QS detection results. The coexistence of QS and QQ bacteria in activated sludge was further confirmed by bacterial screening and denaturing gradient gel electrophoresis analysis. The method developed in this study could also be used to evaluate QQ activities in bioreactors, and a possible way is provided to tune bioreactor performance through balancing the QS and QQ processes.

  14. When Research Turns to Sludge

    ERIC Educational Resources Information Center

    Wing, Steve

    2010-01-01

    Sewage sludge is composed of residuals removed from wastewater that comes from homes, hospitals, and industries. Wastewater-treatment systems are designed to remove pollutants that could contaminate public waterways. Sludge--called "biosolids" by those who produce it, spread it, and regulate it--includes these pollutants as well as…

  15. Biodegradability and toxicity of pharmaceuticals in biological wastewater treatment plants.

    PubMed

    Carucci, Alessandra; Cappai, Giovanna; Piredda, Martina

    2006-01-01

    In this experimental study both biological treatability of pharmaceuticals and their potential toxic effect in biological processes were evaluated. The pharmaceuticals were selected among those that are present at higher concentration in the Italian wastewater treatment plant effluents and widely used as antiulcer (ranitidine), beta-blocker (atenolol) and antibiotic (lincomycin). The present paper is the continuation of a work already presented,[1] which used a synthetic wastewater fed to laboratory scale SBR (Sequencing Batch Reactor) operated with different sludge ages (8 and 14 days), different biochemical conditions (aerobic or anoxic-aerobic mode) and several influent drug concentrations (2, 3 and 5 mg/L). In this case a real municipal wastewater was used as influent to the SBR. In parallel, batch tests were conducted to determine the removal kinetics of drugs and nitrogen. Toxicity tests using a titrimetric biosensor to verify possible inhibition on microorganisms were also performed. Finally, the possible adsorption of the pharmaceuticals on activated sludge was evaluated. The drugs under investigation showed different behaviours in terms of both biodegradability and toxicity effect on nitrifiers. Ranitidine showed generally low removal efficiencies (17-26%) and a chronic inhibition on nitrification. Atenolol showed generally higher removal efficiencies than ranitidine, even if the fairly good efficiency obtained in the previous experimentation with synthetic wastewater (up to 90%) was not attained with real wastewater (36%). No inhibition on nitrification was observed on both acclimated and non acclimated microorganisms with a high nitrification activity, whilst it was present with activated sludge characterised by a lower nitrification activity. Consistently with his pharmaceutical properties, lincomycin showed significant inhibition on nitrification activity.

  16. Bench-scale treatment of Lurgi gasifier and H-coal wastewaters by the PACT system

    SciTech Connect

    Randall, T.L.

    1984-11-01

    Laboratory and pilot scale studies were carried out on the feasibility of applying the PACT system (involving addition of powdered activated carbon to the aeration tanks in the activated sludge process, and wet-air oxidation of the sludge to recover carbon) to the treatment of wastewaters from the Lurgi/Mobil M process, which produces synthesis gas, and a coal liquefaction process. The PACT system provided continuous, reliable treatment. A 2-stage process gave the best overall removal of COD and DOC. Both single and 2-stage systems achieved consistent nitrification of the wastewaters, producing effluents containing < 1 mg NH/sub 3//l.

  17. Net-Zero-Energy Model for Sustainable Wastewater Treatment.

    PubMed

    Yan, Peng; Qin, Rong-Cong; Guo, Jin-Song; Yu, Qiang; Li, Zhe; Chen, You-Peng; Shen, Yu; Fang, Fang

    2017-01-17

    A large external energy input prevents wastewater treatment from being environmentally sustainable. A net-zero-energy (NZE) wastewater treatment concept based on biomass energy recycling was proposed to avoid wasting resources and to promote energy recycling in wastewater treatment plants (WWTPs). Simultaneously, a theoretical model and boundary condition based on energy balance were established to evaluate the feasibility of achieving NZE in WWTPs; the model and condition were employed to analyze data from 20 conventional WWTPs in China. A total of six WWTPs can currently export excess energy, eight WWTPs can achieve 100% energy self-sufficiency by adjusting the metabolic material allocation, and six municipal WWTPs cannot achieve net-zero energy consumption based on the evaluation of the theoretical model. The NZE model offset 79.5% of the electricity and sludge disposal cost compared with conventional wastewater treatment. The NZE model provides a theoretical basis for the optimization of material regulation for the effective utilization of organic energy from wastewater and promotes engineering applications of the NZE concept in WWTPs.

  18. Alkaline textile wastewater biotreatment: A sulfate-reducing granular sludge based lab-scale study.

    PubMed

    Zeng, Qian; Hao, Tianwei; Mackey, Hamish Robert; Wei, Li; Guo, Gang; Chen, Guanghao

    2017-03-06

    In this study the feasibility of treating dyeing wastewater with sulfate reducing granular sludge was explored, focusing on decolorization/degradation of azo dye (Procion Red HE-7B) and the performance of microbial consortia under alkaline conditions (pH=11). Efficiency of HE-7B degradation was influenced strongly by the chemical oxygen demand (COD) concentration which was examined in the range of 500-3000mg/L. COD removal efficiency was reduced at high COD concentration, while specific removal rate was enhanced to 17.5 mg-COD/gVSSh(-1). HE-7B removal was also improved at higher organic strength with more than 90% removal efficiency and a first-rate removal constant of 5.57h(-1) for dye degradation. Three dye-degradation metabolites were identified by HPLC-MS. The granular structure provided enhanced removal performance for HE-7B and COD in comparison to a near-identical floc SRB system and the key functional organisms were identified by high throughput sequencing. This study demonstrates an example of a niche application where SRB granules can be applied for high efficient and cost-effective treatment of a wastewater under adverse environmental conditions.

  19. Can a wastewater treatment plant be a powerplant? A case study.

    PubMed

    Schwarzenbeck, N; Pfeiffer, W; Bomball, E

    2008-01-01

    Today wastewater treatment plants are evaluated not only in terms of their treatment efficiency but also concerning their energy efficiency. Increasing energy efficiency can be realized either through operational optimisation or by realising an already existing potential for energy generation on-site. The main