Sample records for wastewater stabilization pond

  1. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    NASA Astrophysics Data System (ADS)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  2. Stabilization Pond Operation and Maintenance Manual.

    ERIC Educational Resources Information Center

    Sexauer, Willard N.; Karn, Roger V.

    This manual provides the waste stabilization pond operator with the basics necessary for the treatment of wastewater in stabilization ponds. The material is organized as a comprehensive guide that follows the normal operation and maintenance procedures from the time the wastewater enters the left station until it leaves the pond. A comprehensive…

  3. Renewable energy for the aeration of wastewater ponds.

    PubMed

    Hobus, I; Hegemann, W

    2003-01-01

    The application of a decentralised renewable energy supply for the aeration of wastewater ponds, and the influence of an unsteady oxygen supply on the specific conversion rate and biocoenose was investigated. With the discontinuous aeration the specific conversion rate is increased as compared to facultative ponds. The estimation of the microorganisms consortia was done with in situ hybridisation techniques. A significant shift in the bacteria population with the chosen specific probes for anaerobic, sulphate reducing and nitrifying bacteria could not be detected. Wastewater ponds have sufficient buffer volume to compensate for the fluctuating energy supply. But the efficiency of the energy supply of a photovoltaic plant decreases in shallow lakes (d < 1.5 m) corresponding to a high oxygen production of algae. For the layout of the individual components: photovoltaic and wind power plant, energy management, aeration system and wastewater pond, a simulation model was developed and tested. The application of renewable energy for the aeration of wastewater ponds is a useful alternative for the redevelopment of overloaded ponds as well as the construction of new wastewater ponds, especially in areas with an inadequate central electricity grid and a high availability of wind and solar energy.

  4. Facultative Stabilization Pond: Measuring Biological Oxygen Demand using Mathematical Approaches

    NASA Astrophysics Data System (ADS)

    Wira S, Ihsan; Sunarsih, Sunarsih

    2018-02-01

    Pollution is a man-made phenomenon. Some pollutants which discharged directly to the environment could create serious pollution problems. Untreated wastewater will cause contamination and even pollution on the water body. Biological Oxygen Demand (BOD) is the amount of oxygen required for the oxidation by bacteria. The higher the BOD concentration, the greater the organic matter would be. The purpose of this study was to predict the value of BOD contained in wastewater. Mathematical modeling methods were chosen in this study to depict and predict the BOD values contained in facultative wastewater stabilization ponds. Measurements of sampling data were carried out to validate the model. The results of this study indicated that a mathematical approach can be applied to predict the BOD contained in the facultative wastewater stabilization ponds. The model was validated using Absolute Means Error with 10% tolerance limit, and AME for model was 7.38% (< 10%), so the model is valid. Furthermore, a mathematical approach can also be applied to illustrate and predict the contents of wastewater.

  5. A review of virus removal in wastewater treatment pond systems.

    PubMed

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  6. Pits, pipes, ponds--and me.

    PubMed

    Mara, Duncan

    2013-05-01

    My life in low-cost sanitation and low-cost wastewater treatment and the use of treated wastewater in agriculture and aquaculture really has been 'pits, pipes and ponds' - 'pits' are low-cost sanitation technologies (LCST) such as VIP latrines and pour-flush toilets; 'pipes' are low-cost sewerage, principally condominial (simplified) sewerage; and 'ponds' are low-cost wastewater treatment systems, especially waste stabilization ponds, and the use of treated wastewater in agriculture and aquaculture. 'Pits' were mainly working on World Bank LCST research projects, with fieldwork principally in Zimbabwe, 'pipes' were working on condominial sewerage projects in Brazil and disseminating this LCST to a wider global audience, and 'ponds' were waste stabilization ponds, with fieldwork mainly in Brazil, Colombia, Portugal and the United Kingdom, the development of aerated rock filters to polish facultative-pond effluents, and the human-health aspects of treated wastewater use in agriculture and aquaculture, with fieldwork in Brazil and the UK, and the application of quantitative microbial risk analysis. The paper provides a professional perspective and lessons from historical developments and gives recommended future directions based on my career working on low-cost sanitation technologies and treated wastewater use in agriculture and aquaculture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Mathematical Analysis for the Optimization of Wastewater Treatment Systems in Facultative Pond Indicator Organic Matter

    NASA Astrophysics Data System (ADS)

    Sunarsih; Widowati; Kartono; Sutrisno

    2018-02-01

    Stabilization ponds are easy to operate and their maintenance is simple. Treatment is carried out naturally and they are recommended in developing countries. The main disadvantage of these systems is large land area they occupy. The aim of this study was to perform an optimization of the wastewater treatment systems in a facultative pond, considering a mathematical analysis of the methodology to determine the model constrains organic matter. Matlab optimization toolbox was used for non linear programming. A facultative pond with the method was designed and then the optimization system was applied. The analyse meet the treated water quality requirements for the discharge to the water bodies. The results show a reduction of hydraulic retention time by 4.83 days, and the efficiency of of wastewater treatment of 84.16 percent.

  8. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    PubMed

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water.

  9. Taenia eggs in a stabilization pond system with poor hydraulics: concern for human cysticercosis?

    PubMed

    Verbyla, Matthew E; Oakley, Stewart M; Lizima, Louis A; Zhang, Jie; Iriarte, Mercedes; Tejada-Martinez, Andres E; Mihelcic, James R

    2013-01-01

    The objective of this study is to compare the removal of Taenia eggs to the removal of Ascaris eggs in a wastewater stabilization pond system consisting of three ponds in series, where the hydraulic residence time distribution has been characterized via a tracer study supported by computational fluid dynamics modeling. Despite a theoretical hydraulic retention time of 30 days, the peak dye concentration was measured in the effluent of the first pond after only 26 hours. The smaller-sized Taenia eggs were detected in higher concentrations than Ascaris eggs in the raw wastewater. Ascaris eggs were not detected in the pond system effluent, but 45 Taenia eggs/L were detected in the system effluent. If some of these eggs were of the species Taenia solium, and if the treated wastewater were used for the irrigation of crops for human consumption, farmers and consumers could potentially be at risk for neurocysticercosis. Thus, limits for Taenia eggs in irrigation water should be established, and precautions should be taken in regions where pig taeniasis is endemic. The results of this study indicate that the theoretical hydraulic retention time (volume/flow) of a pond is not always a good surrogate for helminth egg removal.

  10. Concentrations and inactivation of Ascaris eggs and pathogen indicator organisms in wastewater stabilization pond sludge.

    PubMed

    Nelson, K L

    2003-01-01

    During treatment in wastewater stabilization ponds (WSPs) many pathogens, in particular helminth eggs, are concentrated in the sludge layer. Because periodic removal of the sludge is often required, information is needed on the concentrations and inactivation of pathogens in the sludge layer to evaluate the public health risk they pose upon removal of the sludge. In this paper, previous reports on the sludge concentrations of various pathogen indicator organisms and helminth eggs are reviewed and results from our own recent experiments are reported. The advantages and disadvantages of several methods for studying inactivation in the sludge layer are discussed, as well as implications for the management of WSP sludge. In our recent experiments, which were conducted at three WSPs in central Mexico, sludge cores, dialysis chambers, and batch experiments were used to measure the inactivation rates of fecal coliform bacteria, fecal enterococci, F+ coliphage, somatic coliphage, and Ascaris eggs. The first-order inactivation rate constants were found to be approximately 0.1, 0.1, 0.01, 0.001, and 0.001 d(-1), respectively. The concentrations of all the organisms were found to vary both vertically and horizontally in the sludge layer; therefore, to determine the maximum and average concentration of organisms in the sludge layer of a WSP, complete sludge cores must be collected from representative locations throughout the pond.

  11. Comparison of constructed wetland and stabilization pond for the treatment of digested effluent of swine wastewater.

    PubMed

    Liu, Gang-Jin; Zheng, Dan; Deng, Liang-Wei; Wen, Quan; Liu, Yi

    2014-01-01

    A laboratory-scale horizontal subsurface flow constructed wetland (HSFCW) and a stabilization pond (SP) were constructed to compare their performances on the treatment of digested effluent of swine wastewater. After 457 days of operation, the removal efficiencies of the HSFCW were as follows: chemical oxygen demand (COD), 17-54%; total phosphorus (TP), 32-45% and ammonia nitrogen [Formula: see text], 27-88%, while they were 25-55%, 31-56% and 56-98%, respectively, for the SP, with a hydraulic retention time of 54 days and hydraulic loading of 0.01 m³ m⁻² d⁻¹. The average removed loads for the HSFCW were as follows: COD, 0.25-4.33; TP, 0.01-0.11 and [Formula: see text], 0.34-2.54 g m⁻² d⁻¹, while they were 0.25-4.45, 0.02-0.13 and 0.72-2.87 g m⁻² d⁻¹, respectively, for the SP. The SP performed better than the HSFCW because the SP showed a 20% of higher removal efficiency for [Formula: see text] than the HSFCW. Especially, the COD removal rate of SP was 10% higher than the HSFCW when the influent concentration was at the lowest and highest stages. Meanwhile, given the lower costs, the SP is more suitable for the treatment of digested effluent of swine wastewater than the HSFCW.

  12. Modeling Nitrogen Decrease in Water Lettuce Ponds from Waste Stabilization Ponds

    NASA Astrophysics Data System (ADS)

    Putri, Gitta Agnes; Sunarsih

    2018-02-01

    This paper presents about the dynamic modeling of the Water Lettuce ponds as a form of improvement from the Water Hyacinth ponds. The purpose of this paper is to predict nitrogen decrease and nitrogen transformation in Water Lettuce ponds integrated with Waste Stabilization Ponds. The model consists of 4 mass balances, namely Dissolved Organic Nitrogen (DON), Particulate Organic Nitrogen (PON), ammonium (NH4+), Nitrate and Nitrite (NOx). The process of nitrogen transformation which considered in a Water Lettuce ponds, namely hydrolysis, mineralization, nitrification, denitrification, plant and bacterial uptake processes. Numerical simulations are performed by giving the values of parameters and the initial values of nitrogen compounds based on a review of previous studies. Numerical results show that the rate of change in the concentration of nitrogen compounds in the integration ponds of waste stabilization and water lettuce decreases and reaches stable at different times.

  13. Optical characteristics of waste stabilization ponds: recommendations for monitoring.

    PubMed

    Davies-Colley, R J; Craggs, R J; Park, J; Nagels, J W

    2005-01-01

    The optical character of waste stabilization ponds (WSPs) is of concern for several reasons. Algal photosynthesis, which produces oxygen for waste oxidation in WSPs, is influenced by attenuation of sunlight in ponds. Disinfection in WSPs is influenced by optical characteristics because solar UV exposure usually dominates inactivation. The optical nature of WSPs effluent also affects assimilation by receiving waters. Despite the importance of light behaviour in WSPs, few studies have been made of their optical characteristics. We discuss simple optical measures suitable for routine monitoring of WSPs (including at sites remote from laboratories): optical density of filtrates - an index of dissolved coloured organic (humic) matter, visual clarity - to provide an estimate of the beam attenuation coefficient (a fundamental quantity needed for optical modelling) colour (hue) - as an indicator of general WSP 'condition' and irradiance attenuation quantifying depth of light penetration. The value of optical characterisation of WSPs is illustrated with reference to optical data for WSPs in NZ (including high-rate algal ponds) treating dairy cattle wastewater versus domestic sewage. We encourage increased research on optical characteristics of WSPs and the incorporation of optical measures in monitoring and modelling of WSP performance.

  14. Rapid Sand Filtration for Best Practical Treatment of Domestic Wastewater Stabilization Pond Effluent

    ERIC Educational Resources Information Center

    Boatright, D. T.; Lawrence, C. H.

    1977-01-01

    The technical and economic feasibility of constructing and operating a rapid sand filtration sewage treatment system as an adjunct to a waste water stabilization pond is investigated. The study concludes that such units are within the technical and economic constraints of a small community and comply with the EPA criteria. (BT)

  15. Shrimp pond wastewater treatment using pyrolyzed chicken feather as adsorbent

    NASA Astrophysics Data System (ADS)

    Moon, Wei Chek; Jbara, Mohamad Hasan; Palaniandy, Puganeshwary; Yusoff, Mohd Suffian

    2017-10-01

    In this study, chicken feather fiber was used as a raw material to prepare a non-expensive adsorbent by pyrolysis without chemical activation. The main pollutants treated in this study were chemical oxygen demand (COD) and ammoniacal nitrogen (NH3-N) from shrimp pond wastewater containing high concentrations of nutrients, which caused the eutrophication phenomenon in adjacent water. Batch adsorption studies were performed to investigate the effect of pH (5-8), mass of adsorbent (0.5-3 g), and shaking time (0.5-2 h) on the removal efficiency of COD and NH3- N. Experimental results showed that the optimum conditions were as follows: pH 5, 0.5 g of adsorbent, and 0.5 h of shaking. Under these conditions, 34.01% and 40.47% of COD and NH3-N were removed, respectively, from shrimp pond wastewater. The adsorption processes were best described by the Langmuir isotherm model for COD and NH3-N removal, with maximum monolayer adsorption capacity of 36.9 and 7.24 mg/g for COD and NH3-N, respectively. The results proved that chicken feather could remove COD and NH3-N from shrimp pond wastewater. However, further studies on thermal treatment should be carried out to increase the removal efficiency of pyrolyzed chicken feather fiber.

  16. Autonomous mobile platform for monitoring air emissions from industrial and municipal wastewater ponds.

    PubMed

    Fu, Long; Huda, Quamrul; Yang, Zheng; Zhang, Lucas; Hashisho, Zaher

    2017-11-01

    Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO 2 /CH 4 sensor on board, the mobile platform was able to measure CO 2 and CH 4 emissions over two days at two different locations in the pond. Flux emission rates of CO 2 and CH 4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs. The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.

  17. Environmental Projects. Volume 8: Modifications of wastewater evaporation ponds

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The Goldstone Deep Space Communications Complex (GDSCC), located in the Mojave Desert about 45 miles north of Barstow, California, and about 160 miles northeast of Pasadena, is part of NASA's Deep Space Network, one of the world's largest and most sensitive scientific telecommunications and radio navigation networks. The Goldstone Complex is managed, technically directed, and operated for NASA by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology in Pasadena, California. Activities at the GDSCC are carried out in support of seven parabolic dish antennas. These activities may give rise to environmental hazards: use of hazardous chemicals, asbestos, and underground storage tanks as well as the generation of hazardous wastes and the disposal of wastewater. Federal, state, and local laws governing the management of hazardous substances, asbestos, underground storage tanks and wastewater disposal have become so complex there is a need to devise specific programs to comply with the many regulations that implement these laws. In support of the national goal of the preservation of the environment and the protection of human health and safety, NASA, JPL, and the GDSCC have adopted a position that their operating installations shall maintain a high level of compliance with these laws. One of the environmental problems at the GDSCC involved four active, operational, wastewater evaporation ponds designed to receive and evaporate sewage effluent from upstream septic tank systems. One pair of active wastewater evaporation ponds is located at Echo Site, while another operational pair is at Mars Site.

  18. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    PubMed

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  19. Lime enhanced chromium removal in advanced integrated wastewater pond system.

    PubMed

    Tadesse, I; Isoaho, S A; Green, F B; Puhakka, J A

    2006-03-01

    The removal of trivalent chromium from a combined tannery effluent in horizontal settling tanks and subsequent Advanced Integrated Wastewater Pond System (AIWPS) reactors was investigated. The raw combined effluent from Modjo tannery had pH in the range of 11.2-12. At this pH, a trivalent chromium removal of 46-72% was obtained in the horizontal settling tanks after a one-day detention time. Trivalent chromium precipitated as chromium hydroxide, Cr(OH)3. 58-95% Cr(III) was removed in the advanced facultative pond (AFP) where the water column pH of 7.2-8.4 was close to pH 8, which is the optimum precipitation pH for trivalent chromium. Chromium removals in the secondary facultative pond (SFP) and maturation pond (MP) were 30-50% and 6-16%, respectively. With Cr(III) concentration of 0.2-0.8 mg/l in the final treated effluent, the AIWPS preceded by horizontal settling tanks produced effluent that could easily meet most of the current Cr(III) discharge limits to receive water bodies.

  20. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This ismore » well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  1. Insight into the risk of replenishing urban landscape ponds with reclaimed wastewater.

    PubMed

    Chen, Rong; Ao, Dong; Ji, Jiayuan; Wang, Xiaochang C; Li, Yu-You; Huang, Yue; Xue, Tao; Guo, Hongbing; Wang, Nan; Zhang, Lu

    2017-02-15

    Increasing use of reclaimed wastewater (RW) for replenishing urban landscape ponds has aroused public concern about the water quality. Three ponds replenished with RW in three cities in China were chosen to investigate 22 indexes of water quality in five categories. This was achieved by comparing three pairs of ponds in the three different cities, where one pond in each pair was replenished with RW and the other with surface water (SW). The nutrients condition, heavy metal concentration and ecotoxicity did not differ significantly between RW- and SW-replenished ponds. By contrast, significant differences were observed in algal growth and pathogen risk. RW ponds presented a Cyanophyta-Chlorophyta-Bacillariophyta type with high algal diversity while SW ponds presented a Cyanophyta type with low diversity. Regrowth of bacterial pathogens and especially survival of viral pathogens in RW, was the main driver behind the higher risk for RW ponds compared with SW ones. The duration of RW replenishment was proved to have a marked impact on the algal growth and pathogen risk. With continued RW replenishment, non-dominant algal species subjected to decrease while dominant species were enhanced resulting in the biomass increasing but diversity declining, and the risk posed by viral pathogens might become greater. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Impact of sludge layer geometry on the hydraulic performance of a waste stabilization pond.

    PubMed

    Ouedraogo, Faissal R; Zhang, Jie; Cornejo, Pablo K; Zhang, Qiong; Mihelcic, James R; Tejada-Martinez, Andres E

    2016-08-01

    Improving the hydraulic performance of waste stabilization ponds (WSPs) is an important management strategy to not only ensure protection of public health and the environment, but also to maximize the potential reuse of valuable resources found in the treated effluent. To reuse effluent from WSPs, a better understanding of the factors that impact the hydraulic performance of the system is needed. One major factor determining the hydraulic performance of a WSP is sludge accumulation, which alters the volume of the pond. In this study, computational fluid dynamics (CFD) analysis was applied to investigate the impact of sludge layer geometry on hydraulic performance of a facultative pond, typically used in many small communities throughout the developing world. Four waste stabilization pond cases with different sludge volumes and distributions were investigated. Results indicate that sludge distribution and volume have a significant impact on wastewater treatment efficiency and capacity. Although treatment capacity is reduced with accumulation of sludge, the latter may induce a baffling effect which causes the flow to behave closer to that of plug flow reactor and thus increase treatment efficiency. In addition to sludge accumulation and distribution, the impact of water surface level is also investigated through two additional cases. Findings show that an increase in water level while keeping a constant flow rate can result in a significant decrease in the hydraulic performance by reducing the sludge baffling effect, suggesting a careful monitoring of sludge accumulation and water surface level in WSP systems. Published by Elsevier Ltd.

  3. Simulated responses of streams and ponds to groundwater withdrawals and wastewater return flows in southeastern Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Walter, Donald A.; Barbaro, Jeffrey R.

    2015-12-21

    The percentages of the total number of ponds affected by pumping with wastewater return flows under long-term average conditions in the modeled areas were 28 percent for the Plymouth-Carver region, 67 percent for western Cape Cod, and 75 percent for eastern Cape Cod. Pond-level alterations ranged from a decrease of 4.6 feet at Great South Pond in the Plymouth Carver region to an increase of 0.9 feet at Wequaquet Lake in western Cape Cod. The magnitudes of monthly alterations to pond water levels were fairly consistent throughout the year.

  4. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. Thismore » is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.« less

  5. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Coldmore » Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.« less

  6. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  7. Kinetic hindrance of Fe(II) oxidation at alkaline pH and in the presence of nitrate and oxygen in a facultative wastewater stabilization pond.

    PubMed

    Rockne, Karl J

    2007-02-15

    To better understand the dynamics of Fe2 + oxidation in facultative wastewater stabilization ponds, water samples from a three-pond system were taken throughout the period of transition from anoxic conditions with high aqueous Fe2 + levels in the early spring to fully aerobic conditions in late spring. Fe2 + levels showed a highly significant correlation with pH but were not correlated with dissolved oxygen (DO). Water column Fe2 + levels were modeled using the kinetic rate law for Fe2 + oxidation of Sung and Morgan.[5] The fitted kinetic coefficients were 5 +/- 3 x 10(6) M(- 2) atm(-1) min(-1); more than six orders of magnitude lower than typically reported. Comparison of four potential Fe redox couples demonstrated that the rhoepsilon was at least 3-4 orders of magnitude higher than would be expected based on internal equilibrium. Surprisingly, measured nitrate and DO (when present) were typically consistent with both nitrate (from denitrification) and DO levels (from aerobic respiration) predicted from equilibrium. Although the hydrous Fe oxide/FeCO3 couple was closest to equilibrium and most consistent with the observed pH dependence (in contrast to predicted lepidocrocite), Fe2 + oxidation is kinetically hindered, resulting in up to 10(7)-fold higher levels than expected based on both kinetic and equilibrium analyses.

  8. The effect of aeration and effluent recycling on domestic wastewater treatment in a pilot-plant system of duckweed ponds.

    PubMed

    Ben-shalom, Miriam; Shandalov, Semion; Brenner, Asher; Oron, Gideon

    2014-01-01

    Three pilot-scale duckweed pond (DP) wastewater treatment systems were designed and operated to examine the effect of aeration and effluent recycling on treatment efficiency. Each system consisted of two DPs in series fed by pre-settled domestic sewage. The first system (duckweed+ conventional treatment) was 'natural' and included only duckweed plants. The second system (duckweed aeration) included aeration in the second pond. The third system (duckweed+ aeration+ circulation) included aeration in the second pond and effluent recycling from the second to the first pond. All three systems demonstrated similarly efficient removal of organic matter and nutrients. Supplemental aeration had no effect on either dissolved oxygen levels or on pollutant removal efficiencies. Although recycling had almost no influence on nutrient removal efficiencies, it had a positive impact on chemical oxygen demand and total suspended solids removals due to equalization of load and pH, which suppressed algae growth. Recycling also improved the appearance and growth rate of the duckweed plants, especially during heavy wastewater loads.

  9. Removal of Organic Pollutants from Municipal Wastewater by Applying High-Rate Algal Pond in Addis Ababa, Ethiopia

    NASA Astrophysics Data System (ADS)

    Alemu, Keneni; Assefa, Berhanu; Kifle, Demeke; Kloos, Helmut

    2018-05-01

    The discharge of inadequately treated municipal wastewater has aggravated the pollution load in developing countries including Ethiopia. Conventional wastewater treatment methods that require high capital and operational costs are not affordable for many developing nations, including Ethiopia. This study aimed to investigate the performance of two high-rate algal ponds (HRAPs) in organic pollutant removal from primary settled municipal wastewater under highland tropical climate conditions in Addis Ababa. The experiment was done for 2 months at hydraulic retention times (HRTs) ranging from 2 to 8 days using an organic loading rates ranging 333-65 kg {BOD}5 /ha/day using two HRAPs, 250 and 300 mm deep, respectively. In this experiment, Chlorella sp., Chlamydomonas sp., and Scenedesmus sp., the class of Chlorophyceae, were identified as the dominant species. Chlorophyll-a production was higher in the shallower ponds (250 mm) throughout the course of the study, whereas the deeper HRAP (300 mm) showed better dissolved oxygen production. The maximum COD and {BOD}5 removal of 78.03 and 81.8% was achieved at a 6-day HRT operation in the 250-mm-deep HRAP. Therefore, the 300-mm-deep HRAP is promising for scaling up organic pollutant removal from municipal wastewater at a daily average organic loading rate of 109.3 kg {BOD}5 /ha/day and a 6-day HRT. We conclude that the removal of organic pollutants in HRAP can be controlled by pond depth, organic loading rate, and HRT.

  10. Iowa interstate rest area stabilization ponds : Part I. Pond design, Part II: Feasibility of wind-powered aeration.

    DOT National Transportation Integrated Search

    1979-09-01

    "This report is presented in two parts. Part I takes a new look at the design of rest area stabilization ponds after nearly 10 years'experience with some of the existing ponds and in the light of new design standards issued by Iowa DEQ. The Iowa DOT ...

  11. Performance comparison and economics analysis of waste stabilization ponds and horizontal subsurface flow constructed wetlands treating domestic wastewater: a case study of the Juja sewage treatment works.

    PubMed

    Mburu, Njenga; Tebitendwa, Sylvie M; van Bruggen, Johan J A; Rousseau, Diederik P L; Lens, Piet N L

    2013-10-15

    The performance, effluent quality, land area requirement, investment and operation costs of a full-scale waste stabilization pond (WSP) and a pilot scale horizontal subsurface flow constructed wetland (HSSF-CW) at Jomo Kenyatta University of Agriculture and Technology (JKUAT) were investigated between November 2010 to January 2011. Both systems gave comparable medium to high levels of organic matter and suspended solids removal. However, the WSP showed a better removal for Total Phosphorus (TP) and Ammonium (NH4(+)-N). Based on the population equivalent calculations, the land area requirement per person equivalent of the WSP system was 3 times the area that would be required for the HSSF-CW to treat the same amount of wastewater. The total annual cost estimates consisting of capital, operation and maintenance (O&M) costs were comparable for both systems. However, the evaluation of the capital cost of either system showed that it is largely influenced by the size of the population served, local cost of land and the construction materials involved. Hence, one can select either system in terms of treatment efficiency. When land is available other factor including the volume of wastewater or the investment, and O&M costs determine the technology selection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Fate of Potential Contaminants Due to Disposal of Olive Mill Wastewaters in Unprotected Evaporation Ponds.

    PubMed

    Kavvadias, V; Elaiopoulos, K; Theocharopoulos, Sid; Soupios, P

    2017-03-01

    The disposal of olive mill wastewaters (OMW) in shallow and unprotected evaporation ponds is a common, low-cost management practice, followed in Mediterranean countries. So far, the fate of potential soil pollutants in areas located near evaporation ponds is not adequately documented. This study investigates the extent in which the long-term disposal of OMW in evaporation ponds can affect the soil properties of the area located outside the evaporation pond and assesses the fate of the pollution loads of OMW. Four soil profiles situated outside and around the down slope side of the disposal area were excavated. The results showed considerable changes in concentration of soil phenols at the down-site soil profiles, due to the subsurface transport of the OMW. In addition, excessive concentrations of NH 4 + , PO 4 3- and phenols were recorded in liquid samples taken from inside at the bottom of the soil profiles. It is concluded that unprotected evaporation ponds located in light texture soils pose a serious threat to favour soil and water pollution.

  13. Principles of Design And Operations Of Wastewater Treatment Pond Systems For Plant Operators, Engineers, And Managers

    EPA Science Inventory

    Wastewater pond systems provide reliable, low cost, and relatively low maintenance treatment for municipal and industrial discharges. However, they do have certain design, operations, and maintenance requirements. While the basic models have not changed in the 30-odd years sinc...

  14. On the risks from sediment and overlying water by replenishing urban landscape ponds with reclaimed wastewater.

    PubMed

    Ao, Dong; Chen, Rong; Wang, Xiaochang C; Liu, Yanzheng; Dzakpasu, Mawuli; Zhang, Lu; Huang, Yue; Xue, Tao; Wang, Nan

    2018-05-01

    The extensive use of reclaimed wastewater (RW) as a source of urban landscape pond replenishment, stimulated by the lack of surface water (SW) resources, has raised public concern. Greater attention should be paid to pond sediments, which act as 'sinks' and 'sources' of contaminants to the overlying pond water. Three ponds replenished with RW (RW ponds) in three Chinese cities were chosen to investigate 22 indices of sediment quality in four categories: eutrophication, heavy metal, ecotoxicity and pathogens risk. RW ponds were compared with other ponds of similar characteristics in the same cities that were replenished with SW (SW ponds). Our results show a strong impact of RW to the eutrophication and pathogenic risks, which are represented by organic matter, water content, total nitrogen, total phosphorus and phosphorus fractions, and pathogens. In particular, total phosphorus concentrations in the RW pond sediments were, on average, 50% higher than those of SW ponds. Moreover, the content of phosphorus, extracted by bicarbonate/dithionite (normally represented by BD-P) and NaOH (NaOH-P), were 2.0- and 2.83-times higher in RW ponds, respectively. For pathogens, the concentrations of norovirus and rotavirus in RW pond sediments were, on average, 0.52 and 0.30- log times those of SW ponds. The duration of RW replenishment was proved to have a marked impact on the eutrophication and pathogens risks from sediments. The continued use of RW for replenishment increases the eutrophication risk, and the pathogens risk, especially by viral pathogens, becomes greater. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The potential for facilitating spring discharge from continental climate waste stabilisation ponds by carry-over of treated wastewater: concepts and experimental findings.

    PubMed

    Whalley, C; Pak, L N; Heaven, S

    2007-01-01

    The research investigated some factors influencing the rate of stabilisation of wastewater in the spring period in continental climate waste stabilisation ponds, and in particular the potential for bringing forward the discharge date by optimising storage capacity and dilution. Experiments using pilot and modelscale ponds were set up in Almaty, Kazakhstan. These simulated operating regimes for a facultative and storage/maturation pond system subject to ice cover from late November until late March. Two pilot-scale facultative ponds were operated at hydraulic retention times (HRT) of 20 and 30 days, with surface loading rates of 100 and 67 kg BOD ha(-1) day(-1). Effluent from the 20-day HRT facultative pond was then fed to two pilot-scale storage/maturation ponds which had been partially emptied and allowed to refill over the winter period with no removal of effluent. The paper discusses the results of the experiments with respect to selection of an operating regime to make treated wastewater available early in the spring. Preliminary results indicate that there may be potential for alternative operating protocols designed to maximise their performance and economic potential.

  16. Removal of Fecal Indicators, Pathogenic Bacteria, Adenovirus, Cryptosporidium and Giardia (oo)cysts in Waste Stabilization Ponds in Northern and Eastern Australia

    PubMed Central

    Sheludchenko, Maxim; Padovan, Anna; Katouli, Mohammad; Stratton, Helen

    2016-01-01

    Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP) with (n = 1) and without (n = 3) baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo) cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation. PMID:26729150

  17. Removal of Fecal Indicators, Pathogenic Bacteria, Adenovirus, Cryptosporidium and Giardia (oo)cysts in Waste Stabilization Ponds in Northern and Eastern Australia.

    PubMed

    Sheludchenko, Maxim; Padovan, Anna; Katouli, Mohammad; Stratton, Helen

    2016-01-02

    Maturation ponds are used in rural and regional areas in Australia to remove the microbial loads of sewage wastewater, however, they have not been studied intensively until present. Using a combination of culture-based methods and quantitative real-time PCR, we assessed microbial removal rates in maturation ponds at four waste stabilization ponds (WSP) with (n = 1) and without (n = 3) baffles in rural and remote communities in Australia. Concentrations of total coliforms, E. coli, enterococci, Campylobacter spp., Salmonella spp., F+ RNA coliphage, adenovirus, Cryptosporidium spp. and Giardia (oo) cysts in maturation ponds were measured at the inlet and outlet. Only the baffled pond demonstrated a significant removal of most of the pathogens tested and therefore was subjected to further study by analyzing E. coli and enterococci concentrations at six points along the baffles over five sampling rounds. Using culture-based methods, we found a decrease in the number of E. coli and enterococci from the initial values of 100,000 CFU per 100 mL in the inlet samples to approximately 1000 CFU per 100 mL in the outlet samples for both bacterial groups. Giardia cysts removal was relatively higher than fecal indicators reduction possibly due to sedimentation.

  18. Pharmaceutically active compounds in sludge stabilization treatments: anaerobic and aerobic digestion, wastewater stabilization ponds and composting.

    PubMed

    Martín, Julia; Santos, Juan Luis; Aparicio, Irene; Alonso, Esteban

    2015-01-15

    Sewage sludge disposal onto lands has been stabilized previously but still many pollutants are not efficiently removed. Special interest has been focused on pharmaceutical compounds due to their potential ecotoxicological effects. Nowadays, there is scarce information about their occurrence in different sludge stabilization treatments. In this work, the occurrence of twenty-two pharmaceutically active compounds has been studied in sludge from four sludge stabilization treatments: anaerobic digestion, aerobic digestion, composting and lagooning. The types of sludge evaluated were primary, secondary, anaerobically-digested and dehydrated, composted, mixed, aerobically-digested and dehydrated and lagoon sludge. Nineteen of the twenty-two pharmaceutically active compounds monitored were detected in sewage sludge. The most contaminated samples were primary sludge, secondary sludge and mixed sludge (the average concentrations of studied compounds in these sludges were 179, 310 and 142 μg/kg dm, respectively) while the mean concentrations found in the other types of sewage sludge were 70 μg/kg dm (aerobically-digested sludge), 63 μg/kg dm (lagoon sludge), 12 μg/kg dm (composted sludge) and 8 μg/kg dm (anaerobically-digested sludge). The antibiotics ciprofloxacin and norfloxacin were found at the highest concentration levels in most of the analyzed sludge samples (up to 2660 and 4328 μg/kg dm, respectively). Anaerobic-digestion treatment reduced more considerably the concentration of most of the studied compounds than aerobic-digestion (especially in the case of bezafibrate and fluoroquinolones) and more than anaerobic stabilization ponds (in the case of acetaminophen, atenolol, bezafibrate, carbamazepine, 17α-ethinylestradiol, naproxen and salicylic acid). Ecotoxicological risk assessment, of sludge application onto soils, has also been evaluated. Risk quotients, expressed as the ratio between the predicted environmental concentration and the predicted non

  19. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Diversity of phytoplankton in some domestic wastewater-fed urban fish pond ecosystems of the Chota Nagpur Plateau in Bankura, India

    NASA Astrophysics Data System (ADS)

    Das, Debjyoti; Pathak, Arabinda; Pal, Sudin

    2018-06-01

    The present limnological investigation is conducted to study the relationship between phytoplankton abundance and five important physicochemical factors in urban wastewater-fed seven fish ponds of Chota Nagpur Plateau area. A total number of 43 phytoplankton taxa representing four classes, namely Cyanophyceae (7), Chlorophyceae (29), Bacillariophyceae (5) and Euglenophyceae (2), are thriving in these ponds which may suggest that different nutrient-rich wastewater supports the diversity and abundance of the phytoplankton. Different values of diversity indices, results of post hoc analysis and rarefaction curve are depicted spatial variations of phytoplankton abundance and physicochemical factors. From the Principal Component Analysis, out of 43 phytoplankton species, 23 important species are extracted. The canonical correspondence analysis presents that most of the phytoplankton species densities are associated with higher values of the physicochemical variables in these ponds. Correspondingly, in the present study, Algal Genus Pollution Index (AGPI) is employed to study the water quality of seven sites. From the AGPI score, it is revealed that Site 4 has probable high organic pollution and Site 2 and Site 3 have moderate organic pollution. Therefore, long-term intensive studies and proper management are necessary to protect these ponds toward eutrophication and degradation, because these ponds not only act as a safeguard of livelihoods but also contribute significantly at local level food and water security and economic prosperity.

  1. Toxigenic Vibrio cholerae O1 in vegetables and fish raised in wastewater irrigated fields and stabilization ponds during a non-cholera outbreak period in Morogoro, Tanzania: an environmental health study.

    PubMed

    Hounmanou, Yaovi M G; Mdegela, Robinson H; Dougnon, Tamègnon V; Mhongole, Ofred J; Mayila, Edward S; Malakalinga, Joseph; Makingi, George; Dalsgaard, Anders

    2016-10-18

    Cholera, one of the world's deadliest infectious diseases, remains rampant and frequent in Tanzania and thus hinders existing control measures. The present study was undertaken to evaluate the occurrence of toxigenic Vibrio cholerae O1 in wastewater, fish and vegetables during a non-outbreak period in Morogoro, Tanzania. From October 2014 to February 2015, 60 wastewater samples, 60 fish samples from sewage stabilization ponds and 60 wastewater irrigated vegetable samples were collected. Samples were cultured for identification of V. cholerae using conventional bacteriological methods. Isolates were confirmed as V. cholerae by detection of the outer membrane protein gene (ompW) using polymerase chain reaction (PCR). Isolates were further tested for antibiotic susceptibility and presence of virulence genes including, cholera enterotoxin gene (ctx), the toxin co-regulated pilus gene (tcpA) and the haemolysin gene (hlyA). The prevalence of V. cholerae in wastewater, vegetables and fish was 36.7, 21.7 and 23.3 %, respectively. Two isolates from fish gills were V. cholerae O1 and tested positive for ctx and tcpA. One of these contained in addition the hlyA gene while five isolates from fish intestines tested positive for tcpA. All V. cholerae isolates were resistant to ampicillin, amoxicillin and some to tetracycline, but sensitive to gentamicin, chloramphenicol, and ciprofloxacin. Our results show that toxigenic and drug-resistant V. cholerae O1 species are present and persist in aquatic environments during a non-cholera outbreak period. This is of public health importance and shows that such environments may be important as reservoirs and in the transmission of V. cholerae O1.

  2. Assesing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia

    NASA Astrophysics Data System (ADS)

    S'habou, Rakia; Zairi, Moncef; Kallel, Amjed; Aydi, Abdelwaheb; Ben Dhia, Hamed

    2009-08-01

    Olive oil is a typical and valuable agro-industrial product in Mediterranean countries. In Tunisia, olive mill wastewaters (OMW) reach an amount of about 1,000,000 t year-1 and constitute a serious organic pollution risk because of the high chemical oxygen demand values and the presence of phytotoxic and antibacterial polyphenols. OMW have been generally stored in pond sites to be eliminated by natural evaporation or valorised by spreading on cultivated soils or by composting. Many researches on the interactions of OMW with soils at laboratory scale (columns) have been reported, but less attention have been paid to the effect of OMW on soils at field scale. The aim of this work is to investigate an area used for >15 years as an uncontrolled OMW pond site. The transformations of soil properties and groundwater occurring during OMW storage were characterised by the pH, phenolic contents, electrical conductivity (EC), moisture content and organic contents. The soil samples were taken from two borings and compared to those of a control one located near the pond site. Groundwater samples were taken on the accessible and nearest water wells to the evaporation ponds. The permeable silty and sandy layers in the site support the infiltration of OMW near the evaporation ponds. This infiltration has reached a depth of 6 m at a distance of almost 50 m laterally. The results show that the OMW infiltration in the subsoil has affected the pH, EC, organic content, phenolic compounds and the moisture.

  3. Nitrous oxide emissions from high rate algal ponds treating domestic wastewater.

    PubMed

    Alcántara, Cynthia; Muñoz, Raúl; Norvill, Zane; Plouviez, Maxence; Guieysse, Benoit

    2015-02-01

    This study investigated the generation of N2O by microcosms withdrawn from 7-L high rate algal ponds (HRAPs) inoculated with Chlorella vulgaris and treating synthetic wastewater. Although HRAPs microcosms demonstrated the ability to generate algal-mediated N2O when nitrite was externally supplied under darkness in batch assays, negligible N2O emissions rates were consistently recorded in the absence of nitrite during 3.5-month monitoring under 'normal' operation. Thereafter, HRAP A and HRAP B were overloaded with nitrate and ammonium, respectively, in an attempt to stimulate N2O emissions via nitrite in situ accumulation. Significant N2O production (up to 5685±363 nmol N2O/g TSS h) was only recorded from HRAP B microcosms externally supplied with nitrite in darkness. Although confirmation under full-scale outdoors conditions is needed, this study provides the first evidence that the ability of microalgae to synthesize N2O does not affect the environmental performance of wastewater treatment in HRAPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.

    PubMed

    Howeth, Jennifer G; Leibold, Mathew A

    2010-09-01

    Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem

  5. Characterisation of winery wastewater from continuous flow settling basins and waste stabilisation ponds over the course of 1 year: implications for biological wastewater treatment and land application.

    PubMed

    Welz, P J; Holtman, G; Haldenwang, R; le Roes-Hill, M

    2016-11-01

    Wineries generate 0.2 to 4 L of wastewater per litre of wine produced. Many cellars make use of irrigation as a means of disposal, either directly or after storage. In order to consider the potential downstream impacts of storage/no storage, this study critically compared the seasonal organic and inorganic composition of fresh winery effluent with effluent that had been stored in waste stabilisation ponds. Ethanol and short chain volatile fatty acids were the main contributors to chemical oxygen demand (COD), with average concentrations of 2,086 and 882 mgCOD/L, respectively. Total phenolics were typically present in concentrations <100 mg/L. The concentration of sodium from cleaning agents was higher in the non-crush season, while the converse was true for organics. The effluent was nitrogen-deficient for biological treatment, with COD:N ratios of 0.09 to 1.2. There was an accumulation of propionic and butyric acid during storage. The composition of the pond effluent was more stable in character, and it is possible that bacterial and algal nitrogen fixation in such systems may enhance biological wastewater treatment by natural nitrogen supplementation. It is therefore recommended that if land requirements can be met, winery effluent should be stored in ponds prior to treatment.

  6. Biodiesel production potential of wastewater treatment high rate algal pond biomass.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2016-12-01

    This study investigates the year-round production potential and quality of biodiesel from wastewater treatment high rate algal pond (WWT HRAP) biomass and how it is affected by CO 2 addition to the culture. The mean monthly pond biomass and lipid productivities varied between 2.0±0.3 and 11.1±2.5gVSS/m 2 /d, and between 0.5±0.1 and 2.6±1.1g/m 2 /d, respectively. The biomass fatty acid methyl esters were highly complex which led to produce low-quality biodiesel so that it cannot be used directly as a transportation fuel. Overall, 0.9±0.1g/m 2 /d (3.2±0.5ton/ha/year) low-quality biodiesel could be produced from WWT HRAP biomass which could be further increased to 1.1±0.1g/m 2 /d (4.0ton/ha/year) by lowering culture pH to 6-7 during warm summer months. CO 2 addition, had little effect on both the biomass lipid content and profile and consequently did not change the quality of biodiesel. Copyright © 2016. Published by Elsevier Ltd.

  7. Cadmium tolerance and antibiotic resistance in Escherichia coli isolated from waste stabilization ponds.

    PubMed

    Patra, Sova; Das, T K; Avila, C; Cabello, V; Castillo, F; Sarkar, D; Lahiri, Susmita; Jana, B B

    2012-04-01

    The incidence pattern of cadmium tolerance and antibiotics resistance by Escherichia coli was examined periodically from the samples of water, sludge and intestine of fish raised in waste stabilization ponds in a sewage treatment plant. Samples of water and sludge were collected from all the selected ponds and were monitored for total counts of fecal coliform (FC), total coliform (TC) and the population of Escherichia coli, which was also obtained from the intestine of fishes. Total counts of both FC and TC as well as counts of E. coli were markedly reduced from the facultative pond to the last maturation pond. Tolerance limit to cadmium by E. coli tended to decline as the distance of the sewage effluent from the source increased; the effective lethal concentration of cadmium ranged from 0.1 mM in split chamber to 0.05 mM in first maturation pond. E. coli isolated from water, sludge and fish gut were sensitive to seven out of ten antibiotics tested. It appears that holistic functions mediated through the mutualistic growth of micro algae and heterotrophic bacteria in the waste stabilization ponds were responsible for the promotion of water quality and significant reduction of coliform along the sewage effluent gradient.

  8. Ecology of duckweed ponds used for nutrient recovery from wastewater.

    PubMed

    Teles, C C; Mohedano, R A; Tonon, G; Filho, P Belli; Costa, R H R

    2017-06-01

    The microorganism community that grows under duckweed shelter can play an important role on treatment processes. Therefore, the present study aimed to assess the zooplankton dynamic and microbial community in duckweed ponds (DPs) applied for domestic wastewater treatment under open field conditions. A pilot system comprised of two DPs in series (DP1 and DP2), with 10 m 2 each, received domestic wastewater through a flow rate of 200 L·day -1 . Thus, the system was monitored during 314 days through samples collected and analysed weekly. Also, the zooplankton organisms were identified and quantified. DNA sequencing was performed in order to identify the bacterial populations. The findings showed a high efficiency of nutrient removal with 93% and 91% of total phosphorus and total nitrogen, respectively. A high density of microcrustaceans was observed in DP1 reaching 4,700 org.100 mL -1 and rotifers (over than 32,000 org.100 mL -1 ) in DP2, that could be related to the low suspended solids concentration (<30 mg·L -1 ) and turbidity (<10 NTU). The bacterial community showed a strong heterogeneity between samples collected along the seasons. Through these findings, it is possible to realise that the understanding of ecology could help to enhance the operation and designs of DPs.

  9. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to themore » Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  10. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were dischargedmore » to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  11. 2016 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cafferty, Kara Grace

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, Modification 1, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2015, through October 31, 2016.

  12. Occurrence, fate and removal of pharmaceuticals, personal care products and pesticides in wastewater stabilization ponds and receiving rivers in the Nzoia Basin, Kenya.

    PubMed

    K'oreje, Kenneth Otieno; Kandie, Faith Jebiwot; Vergeynst, Leendert; Abira, Margaret Akinyi; Van Langenhove, Herman; Okoth, Maurice; Demeestere, Kristof

    2018-05-08

    Although there is increased global environmental concern about emerging organic micropollutants (EOMPs) such as pharmaceuticals, personal care products (PPCPs) and polar pesticides, limited information is available on their occurrence in Africa. This study presents unique data on concentrations and loads of 31 PPCPs and 10 pesticides in four wastewater stabilization ponds (WSPs) and receiving rivers (flowing through urban centres) in Kenya. The WSPs indicate a high potential to remove pharmaceutically active compounds (PhACs) with removals by up to >4 orders of magnitude (>99.99% removal), mainly occurring at the facultative stage. However, there are large differences in removal among the different classes, and a shift in the relative PhACs occurrence is observed during wastewater treatment. Whereas the influent is dominated by high-consumption PhACs like anti-inflammatory drugs (e.g. paracetamol and ibuprofen, up to 1000 μg L -1 ), the most recalcitrant PhACs including mainly antibiotics (e.g. sulfadoxin and sulfamethoxazole) and antiretrovirals (e.g. lamivudine and nevirapine) are largely abundant (up to 100 μg L -1 ) in treated effluent. Overall, concentrations of EOMPs in the Nzoia Basin rivers are the highest in dry season (except pesticides) and in small tributaries. They are of the same order of magnitude as those measured in the western world, but clearly lower than what we recently measured in the Ngong River, Nairobi region. Based on the specific consumption patterns and recalcitrant behavior, high concentrations (>1000 ng L -1 ) are observed in the rivers for PPCPs like lamivudine, zidovudine, sulfamethoxazole and methylparaben. Concentration levels of pesticides are in general one order of magnitude lower (<250 ng L -1 ). Our data suggest a continuous input of EOMPs to the rivers from both point (WSPs) and diffuse (urban centres) sources. To better understand and manage the impact of both sources, EOMP removal mechanisms in WSPs and

  13. Comparison of experimental ponds for the treatment of dye wastewater under controlled and semi-natural conditions.

    PubMed

    Yaseen, Dina A; Scholz, Miklas

    2017-07-01

    This study compares the performance of simulated shallow ponds vegetated with Lemna minor L. under controlled and semi-natural conditions for the treatment of simulated wastewater containing textile dyes. The objectives were to assess the water quality outflow parameters, the potential of L. minor concerning the removal of chemical oxygen demand (COD) and four azo dyes (Acid blue 113, reactive blue 198, Direct Orange 46 and Basic Red 46) and the plants' growth rate. Findings show that all mean outflow values of COD, total dissolved solids (TDS) and electrical conductivity (EC) were significantly (p < 0.05) lower within the outdoor compared to the indoor experiment except the dissolved oxygen (DO). The COD removal was low for both experiments. The outflow TDS values were acceptable for all ponds. The pond systems were able to reduce only BR46 significantly (p < 0.05) for the tested boundary conditions. Removals under laboratory conditions were better than those for semi-natural environments, indicating the suitability of operating the pond system as a polishing step in warmer regions. The mean outflow values of zinc and copper were below the thresholds set for drinking and irrigation waters and acceptable for L. minor. The dyes inhibited the growth of the L. minor.

  14. New factors in the design, operation and performance of waste-stabilization ponds

    PubMed Central

    Marais, G. v. R.

    1966-01-01

    In the developing countries, the unit costs of waste-stabilization ponds are generally low. Moreover, in the tropics and subtropics, the environmental conditions are conducive to a high level of pond performance. In view of this, the theory, operation and performance of such ponds under these conditions have been studied. It is shown that the Hermann & Gloyna and Marais & Shaw theories of the degradation action in oxidation ponds can be integrated, and that account can be taken of the effect of the sludge layer. In Lusaka, Zambia, anaerobic conditions are much more likely to occur in summer than in winter, because of intense stratification. It is confirmed that a series of maturation or oxidation ponds is more efficient than a single pond of equivalent volume. When aqua privies and septic tanks are used as anaerobic pretreatment units, the area of the primary oxidation ponds can be reduced and there is less likelihood that anaerobic conditions will develop in them in summer. The use of self-topping aqua privies, discharging through sewers to oxidation ponds, has made possible the economic installation of water-carriage systems of waste disposal in low-cost high-density housing areas. In the oxidation ponds, typhoid bacteria appear to be more resistant than indicator organisms; helminths, cysts and ova settle out; there are no snails and, if peripheral vegetation is removed, mosquitos will not breed. PMID:5296235

  15. Further contributions to the understanding of nitrogen removal in waste stabilization ponds.

    PubMed

    Bastos, R K X; Rios, E N; Sánchez, I A

    2018-06-01

    A set of experiments were conducted in Brazil in a pilot-scale waste stabilization pond (WSP) system (a four-maturation-pond series) treating an upflow anaerobic sludge blanket (UASB) reactor effluent. Over a year and a half the pond series was monitored under two flow rate conditions, hence also different hydraulic retention times and surface loading rates. On-site and laboratory trials were carried out to assess: (i) ammonia losses by volatilization using acrylic capture chambers placed at the surface of the ponds; (ii) organic nitrogen sedimentation rates using metal buckets placed at the bottom of the ponds for collecting settled particulate matter; (iii) nitrogen removal by algal uptake based on the nitrogen content of the suspended particulate matter in samples from the ponds' water column. In addition, nitrification and denitrification rates were measured in laboratory-based experiments using pond water and sediment samples. The pond system achieved high nitrogen removal (69% total nitrogen and 92% ammonia removal). The average total nitrogen removal rates varied from 10,098 to 3,849 g N/ha·d in the first and the last ponds, respectively, with the following fractions associated with the various removal pathways: (i) 23.5-45.6% sedimentation of organic nitrogen; (ii) 13.1-27.8% algal uptake; (iii) 1.2-3.1% ammonia volatilization; and (iv) 0.15-0.34% nitrification-denitrification.

  16. Water-quality data from shallow pond-bottom groundwater in the Fishermans Cove area of Ashumet Pond, Cape Cod, Massachusetts, 2001–2010

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.

    2011-01-01

    The U.S. Geological Survey (USGS) collected water-quality data between 2001 and 2010 in the Fishermans Cove area of Ashumet Pond, Falmouth, Massachusetts, where the eastern portion of a treated-wastewater plume, created by more than 60 years of overland disposal, discharges to the pond. Temporary drive points were installed, and shallow pond-bottom groundwater was sampled, at 167 locations in 2001, 150 locations in 2003, and 120 locations in 2004 to delineate the distribution of wastewater-related constituents. In 2004, the Air Force Center for Engineering and the Environment (AFCEE) installed a pond-bottom permeable reactive barrier (PRB) to intercept phosphate in the plume at its discharge point to the pond. The USGS monitored the performance of the PRB by collecting samples from temporary drive points at multiple depth intervals in 2006 (200 samples at 76 locations) and 2009 (150 samples at 90 locations). During the first 5 years after installation of the PRB, water samples were collected periodically from five types of pore-water samplers that had been permanently installed in and near the PRB during the barrier's emplacement. The distribution of wastewater-related constituents in the pond-bottom groundwater and changes in the geochemistry of the pond-bottom groundwater after installation of the PRB have been documented in several published reports that are listed in the references.

  17. The removal of thermo-tolerant coliform bacteria by immobilized waste stabilization pond algae.

    PubMed

    Pearson, H W; Marcon, A E; Melo, H N

    2011-01-01

    This study investigated the potential of laboratory- scale columns of immobilized micro-algae to disinfect effluents using thermo-tolerant coliforms (TTC) as a model system. Cells of a Chlorella species isolated from a waste stabilization pond complex in Northeast Brazil were immobilized in calcium alginate, packed into glass columns and incubated in contact with TTC suspensions for up to 24 hours. Five to six log removals of TTC were achieved in 6 hours and 11 log removals in 12 hours contact time. The results were similar under artificial light and shaded sunlight. However little or no TTC removal occurred in the light in columns of alginate beads without immobilized algae present or when the immobilized algae were incubated in the dark suggesting that the presence of both algae and light were necessary for TTC decay. There was a positive correlation between K(b) values for TTC and increasing pH in the effluent from the immobilized algal columns within the range pH 7.2 and 8.9. The potential of immobilized algal technology for wastewater disinfection may warrant further investigation.

  18. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.« less

  19. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  20. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged tomore » the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  1. Ecosystem function in waste stabilisation ponds: Improving water quality through a better understanding of biophysical coupling

    NASA Astrophysics Data System (ADS)

    Ghadouani, Anas; Reichwaldt, Elke S.; Coggins, Liah X.; Ivey, Gregory N.; Ghisalberti, Marco; Zhou, Wenxu; Laurion, Isabelle; Chua, Andrew

    2014-05-01

    Wastewater stabilisation ponds (WSPs) are highly productive systems designed to treat wastewater using only natural biological and chemical processes. Phytoplankton, microbial communities and hydraulics play important roles for ecosystem functionality of these pond systems. Although WSPs have been used for many decades, they are still considered as 'black box' systems as very little is known about the fundamental ecological processes which occur within them. However, a better understanding of how these highly productive ecosystems function is particularly important for hydrological processes, as treated wastewater is commonly discharged into streams, rivers, and oceans, and subject to strict water quality guidelines. WSPs are known to operate at different levels of efficiency, and treatment efficiency of WSPs is dependent on physical (flow characteristics and sludge accumulation and distribution) and biological (microbial and phytoplankton communities) characteristics. Thus, it is important to gain a better understanding of the role and influence of pond hydraulics and vital microbial communities on pond performance and WSP functional stability. The main aim of this study is to investigate the processes leading to differences in treatment performance of WSPs. This study uses a novel and innovative approach to understand these factors by combining flow cytometry and metabolomics to investigate various biochemical characteristics, including the metabolite composition and microbial community within WSPs. The results of these analyses will then be combined with results from the characterisation of pond hydrodynamics and hydraulic performance, which will be performed using advanced hydrodynamic modelling and advanced sludge profiling technology. By understanding how hydrodynamic and biological processes influence each other and ecosystem function and stability in WSPs, we will be able to propose ways to improve the quality of the treatment using natural processes, with

  2. Post-treatment of UASB reactor effluent in waste stabilization ponds and in horizontal flow constructed wetlands: a comparative study in pilot scale in Southeast Brazil.

    PubMed

    Bastos, R K X; Calijuri, M L; Bevilacqua, P D; Rios, E N; Dias, E H O; Capelete, B C; Magalhães, T B

    2010-01-01

    The results of a 20-month period study in Brazil were analyzed to compare horizontal-flow constructed wetlands (CW) and waste stabilization pond (WSP) systems in terms of land area requirements and performance to produce effluent qualities for surface water discharge, and for wastewater use in agriculture and/or aquaculture. Nitrogen, E. coli and helminth eggs were more effectively removed in WSP than in CW. It is indicated that CW and WSP require similar land areas to achieve a bacteriological effluent quality suitable for unrestricted irrigation (10(3) E. coli per 100 mL), but CW would require 2.6 times more land area than ponds to achieve quite relaxed ammonia effluent discharge standards (20 mg NH(3) L(-1)), and, by far, more land than WSP to produce an effluent complying with the WHO helminth guideline for agricultural use (< or =1 egg per litre).

  3. Effect of low quality effluent from wastewater stabilization ponds to receiving bodies, case of Kilombero sugar ponds and Ruaha river, Tanzania.

    PubMed

    Machibya, Magayane; Mwanuzi, Fredrick

    2006-06-01

    A study was conducted in a sewage system at Kilombero Sugar Company to review its design, configuration, effectiveness and the quality of influent and effluent discharged into the Ruaha river (receiving body). The concern was that, the water in the river, after effluent has joined the river, is used as drinking water by villages located downstream of the river. Strategic sampling at the inlet of the oxidation pond, at the outlet and in the river before and after the effluent has joined the receiving body (river) was undertaken. Samples from each of these locations were taken three times, in the morning, noon and evening. The sample were then analysed in the laboratory using standard methods of water quality analysis. The results showed that the configuration and or the layout of the oxidation ponds (treatment plant) were not in accordance with the acceptable standards. Thus, the BOD5 of the effluent discharged into the receiving body (Ruaha River) was in the order of 41 mg/l and therefore not meeting several standards as set out both by Tanzanian and international water authorities. The Tanzanian water authorities, for example, requires that the BOD5 of the effluent discharged into receiving bodies be not more that 30 mg/l while the World Health Organization (WHO) requires that the effluent quality ranges between 10 - 30 mg/l. The paper concludes that proper design of treatment plants (oxidation ponds) is of outmost importance especially for factories, industries, camps etc located in rural developing countries where drinking water from receiving bodies like rivers and lakes is consumed without thorough treatment. The paper further pinpoint that both owners of treatment plants and water authorities should establish monitoring/management plan such that treatment plants (oxidation ponds) could be reviewed regarding the change on quantity of influent caused by population increase.

  4. Using wastewater and high-rate algal ponds for nutrient removal and the production of bioenergy and biofuels.

    PubMed

    Batten, David; Beer, Tom; Freischmidt, George; Grant, Tim; Liffman, Kurt; Paterson, David; Priestley, Tony; Rye, Lucas; Threlfall, Greg

    2013-01-01

    This paper projects a positive outcome for large-scale algal biofuel and energy production when wastewater treatment is the primary goal. Such a view arises partly from a recent change in emphasis in wastewater treatment technology, from simply oxidising the organic matter in the waste (i.e. removing the biological oxygen demand) to removing the nutrients - specifically nitrogen and phosphorus - which are the root cause of eutrophication of inland waterways and coastal zones. A growing need for nutrient removal greatly improves the prospects for using new algal ponds in wastewater treatment, since microalgae are particularly efficient in capturing and removing such nutrients. Using a spreadsheet model, four scenarios combining algae biomass production with the making of biodiesel, biogas and other products were assessed for two of Australia's largest wastewater treatment plants. The results showed that super critical water reactors and anaerobic digesters could be attractive pathway options, the latter providing significant savings in greenhouse gas emissions. Combining anaerobic digestion with oil extraction and the internal economies derived from cheap land and recycling of water and nutrients on-site could allow algal oil to be produced for less than US$1 per litre.

  5. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Barrington, D. J.; Ghadouani, A.; Ivey, G. N.

    2013-06-01

    Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (commonly occurring cyanotoxins) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full scale within a maturation WSP, the final pond in a wastewater treatment plant. Hydrogen peroxide treatment at concentrations ≥ 0.1 mg H2O2 μg-1 total phytoplankton chlorophyll a led to the lysis of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial Chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the Chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

  7. Benthic nutrient fluxes and sediment oxygen consumption in a full-scale facultative pond in Patagonia, Argentina.

    PubMed

    Faleschini, M; Esteves, J L

    2013-01-01

    The study of benthic metabolism is an interesting tool to understand the process that occurs in bottom water at wastewater stabilization ponds. Here, rates of benthic oxygen consumption and nutrient exchange across the water-sludge interface were measured in situ using a benthic chamber. The research was carried out during autumn, winter, and summer at a municipal facultative stabilization pond working in a temperate region (Puerto Madryn city, Argentina). Both a site near the raw wastewater inlet (Inlet station) and a site near the outlet (Outlet station) were sampled. Important seasonal and spatial patterns were identified as being related to benthic fluxes. Ammonium release ranged from undetectable (autumn/summer - Inlet station) to +30.7 kg-NH4(+) ha(-1) d(-1) (autumn - Outlet station), denitrification ranged from undetectable (winter - in both sites) to -4.0 kg-NO3(-) ha(-1) d(-1) (autumn - Outlet station), and oxygen consumption ranged from 0.07 kg-O2ha(-1) d(-1) (autumn/summer - Outlet station) to 0.84 kg-O2ha(-1) d(-1) (autumn - Inlet station). During the warmer months, the mineralization of organic matter from the bottom pond acts as a source of nutrients, which seem to support the important development of phytoplankton and nitrification activity recorded in the surface water. Bottom processes could be related to the advanced degree and efficiency of the treatment, the temperature, and probably the strong and frequent wind present in the region.

  8. Treatment of piggery wastes in waste stabilization ponds.

    PubMed

    Estrada, V E E; Hernández, D E A

    2002-01-01

    The piggery industry produces high effluent loads. This is due to the high concentration of animals kept in a confined space, foods with high protein content that are not well assimilated by the animals, and poor on-farm water management. In this study, we present the characteristics, design, site selection, soil study, and the construction of a pilot pond system for a family farm located in a warm climate area. The design includes a solids sedimentation phase, an anaerobic pond, a facultative pond and three maturation ponds. Once the system had reached steady state, the organic and bacterial kinetic constants were determined for each pond. The control parameters were determined and the dissolved oxygen and removal efficiency profiles were obtained. The results indicate that the effluent from the second maturation pond complies with the Official Mexican Standard for reuse in agriculture ("1000 FC/100 ml).

  9. The removal of ammonia from sanitary landfill leachate using a series of shallow waste stabilization ponds.

    PubMed

    Leite, V D; Pearson, H W; de Sousa, J T; Lopes, W S; de Luna, M L D

    2011-01-01

    This study evaluated the efficiency of a shallow (0.5 m deep) waste stabilization pond series to remove high concentrations of ammonia from sanitary landfill leachate. The pond system was located at EXTRABES, Campina Grande, Paraiba, Northeast Brazil. The pond series was fed with sanitary landfill leachate transported by road tanker to the experimental site from the sanitary landfill of the City of Joao Pessoa, Paraiba. The ammoniacal-N surface loading on the first pond of the series was equivalent to 364 kg ha(-1) d(-1) and the COD surface loading equivalent to 3,690 kg ha(-1) d(-1). The maximum mean ammonia removal efficiency was 99.5% achieved by the third pond in the series which had an effluent concentration of 5.3 mg L(-1) ammoniacal-N for an accumulative HRT of 39.5 days. The removal process was mainly attributed to ammonia volatilization (stripping) from the pond surfaces as a result of high surface pH values and water temperatures of 22-26°C. Shallow pond systems would appear to be a promising technology for stripping ammonia from landfill leachate under tropical conditions.

  10. Effects of scale and Froude number on the hydraulics of waste stabilization ponds.

    PubMed

    Vieira, Isabela De Luna; Da Silva, Jhonatan Barbosa; Ide, Carlos Nobuyoshi; Janzen, Johannes Gérson

    2018-01-01

    This paper presents the findings from a series of computational fluid dynamics simulations to estimate the effect of scale and Froude number on hydraulic performance and effluent pollutant fraction of scaled waste stabilization ponds designed using Froude similarity. Prior to its application, the model was verified by comparing the computational and experimental results of a model scaled pond, showing good agreement and confirming that the model accurately reproduces the hydrodynamics and tracer transport processes. Our results showed that the scale and the interaction between scale and Froude number has an effect on the hydraulics of ponds. At 1:5 scale, the increase of scale increased short-circuiting and decreased mixing. Furthermore, at 1:10 scale, the increase of scale decreased the effluent pollutant fraction. Since the Reynolds effect cannot be ignored, a ratio of Reynolds and Froude numbers was suggested to predict the effluent pollutant fraction for flows with different Reynolds numbers.

  11. Stability analysis of a run-of-river diversion hydropower plant with surge tank and spillway in the head pond.

    PubMed

    Sarasúa, José Ignacio; Elías, Paz; Martínez-Lucas, Guillermo; Pérez-Díaz, Juan Ignacio; Wilhelmi, José Román; Sánchez, José Ángel

    2014-01-01

    Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted.

  12. Stability Analysis of a Run-of-River Diversion Hydropower Plant with Surge Tank and Spillway in the Head Pond

    PubMed Central

    Sarasúa, José Ignacio; Elías, Paz; Wilhelmi, José Román; Sánchez, José Ángel

    2014-01-01

    Run-of-river hydropower plants usually lack significant storage capacity; therefore, the more adequate control strategy would consist of keeping a constant water level at the intake pond in order to harness the maximum amount of energy from the river flow or to reduce the surface flooded in the head pond. In this paper, a standard PI control system of a run-of-river diversion hydropower plant with surge tank and a spillway in the head pond that evacuates part of the river flow plant is studied. A stability analysis based on the Routh-Hurwitz criterion is carried out and a practical criterion for tuning the gains of the PI controller is proposed. Conclusions about the head pond and surge tank areas are drawn from the stability analysis. Finally, this criterion is applied to a real hydropower plant in design state; the importance of considering the spillway dimensions and turbine characteristic curves for adequate tuning of the controller gains is highlighted. PMID:25405237

  13. Reuse of reclaimed wastewater for golf course irrigation in Tunisia.

    PubMed

    Bahri, A; Basset, C; Oueslati, F; Brissaud, F

    2001-01-01

    In Tunisia, golf courses are irrigated with secondary treated effluent stored in landscape impoundments. The impact of the conveyance and storage steps on the physical-chemical and biological quality of irrigation water was evaluated on three golf courses over two years. It was found that the water quality varies all along the water route, from the wastewater treatment plant up to the irrigation site: nutrient and bacteria contents decreased along the route in the three cases. This variation depends on the wastewater quality, the length of the pipes conveying water, the number of regulation reservoirs and ponds, the water residence time in pipes, reservoirs and ponds, and the operation of the ponds. The bacteriological quality of irrigation water deteriorates during the irrigation period in the three golf courses as the ponds are operated as continuous flow reactors. The results obtained in this study indicate the inability of golf water supplies, as currently managed, to properly sanitize reclaimed wastewater and meet target quality criteria recommended by WHO (1989) for water intended for recreational use. For a safe reuse of reclaimed wastewater for golf course irrigation, changes in the design and operation of the ponds should be planned or additional treatment steps provided.

  14. Microalgae recycling improves biomass recovery from wastewater treatment high rate algal ponds.

    PubMed

    Gutiérrez, Raquel; Ferrer, Ivet; González-Molina, Andrés; Salvadó, Humbert; García, Joan; Uggetti, Enrica

    2016-12-01

    Microalgal biomass harvesting by inducing spontaneous flocculation (bioflocculation) sets an attractive approach, since neither chemicals nor energy are needed. Indeed, bioflocculation may be promoted by recycling part of the harvested microalgal biomass to the photobioreactor in order to increase the predominance of rapidly settling microalgae species. The aim of the present study was to improve the recovery of microalgal biomass produced in wastewater treatment high rate algal ponds (HRAPs) by recycling part of the harvested microalgal biomass. The recirculation of 2% and 10% (dry weight) of the HRAPs microalgal biomass was tested over one year in an experimental HRAP treating real urban wastewater. Results indicated that biomass recycling had a positive effect on the harvesting efficiency, obtaining higher biomass recovery in the HRAP with recycling (R-HRAP) (92-94%) than in the control HRAP without recycling (C-HRAP) (75-89%). Microalgal biomass production was similar in both systems, ranging between 3.3 and 25.8 g TSS/m 2 d, depending on the weather conditions. Concerning the microalgae species, Chlorella sp. was dominant overall the experimental period in both HRAPs (abundance >60%). However, when the recycling rate was increased to 10%, Chlorella sp. dominance decreased from 97.6 to 88.1%; while increasing the abundance of rapidly settling species such as Stigeoclonium sp. (16.8%, only present in the HRAP with biomass recycling) and diatoms (from 0.7 to 7.3%). Concerning the secondary treatment of the HRAPs, high removals of COD (80%) and N-NH 4 + (97%) were found in both HRAPs. Moreover, by increasing the biomass recovery in the R-HRAP the effluent total suspended solids (TSS) concentration was decreased to less than 35 mg/L, meeting effluent quality requirements for discharge. This study shows that microalgal biomass recycling (10% dry weight) increases biomass recovery up to 94% by selecting the most rapidly settling microalgae species without

  15. A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia.

    PubMed

    Symonds, E M; Verbyla, M E; Lukasik, J O; Kafle, R C; Breitbart, M; Mihelcic, J R

    2014-11-15

    Wastewater treatment ponds (WTP) are one of the most widespread treatment technologies in the world; however, the mechanisms and extent of enteric virus removal in these systems are poorly understood. Two WTP systems in Bolivia, with similar overall hydraulic retention times but different first stages of treatment, were analyzed for enteric virus removal. One system consisted of a facultative pond followed by two maturation ponds (three-pond system) and the other consisted of an upflow anaerobic sludge blanket (UASB) reactor followed by two maturation (polishing) ponds (UASB-pond system). Quantitative polymerase chain reaction with reverse transcription (RT-qPCR) was used to measure concentrations of norovirus, rotavirus, and pepper mild mottle virus, while cell culture methods were used to measure concentrations of culturable enteroviruses (EV). Limited virus removal was observed with RT-qPCR in either system; however, the three-pond system removed culturable EV with greater efficiency than the UASB-pond system. The majority of viruses were not associated with particles and only a small proportion was associated with particles larger than 180 μm; thus, it is unlikely that sedimentation is a major mechanism of virus removal. High concentrations of viruses were associated with particles between 0.45 and 180 μm in the UASB reactor effluent, but not in the facultative pond effluent. The association of viruses with this size class of particles may explain why only minimal virus removal was observed in the UASB-pond system. Quantitative microbial risk assessment of the treated effluent for reuse for restricted irrigation indicated that the three-pond system effluent requires an additional 1- to 2-log10 reduction of viruses to achieve the WHO health target of <10(-4) disability-adjusted life years (DALYs) lost per person per year; however, the UASB-pond system effluent may require an additional 2.5- to 4.5-log10 reduction of viruses. Copyright © 2014 Elsevier Ltd. All

  16. Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: need for a biorefinery.

    PubMed

    Van Den Hende, Sofie; Laurent, Cedric; Bégué, Marine

    2015-11-01

    An outdoor raceway pond with microalgal bacterial flocs (MaB-flocs) is a novel sunlight-based system to treat pikeperch aquaculture wastewater while producing biomass. The harvested MaB-floc biomass (33tonTSha(-1)y(-1)) needs further valorization. Therefore, the biochemical methane yield (BMY) of MaB-floc biomass was determined in batch experiments. The results show significant differences between the BMY of MaB-flocs amongst their harvest dates (128-226NLCH4kg(-1)VS), a low anaerobic digestion conversion efficiency (25.0-36.2%), a moderate chlorophyll a removal (51.5-86.9%) and a low biogas profit (<0.01€m(-3)wastewater). None of the pretreatment methods screened (freezing, thermal, microwave, ultrasonic and chlorination, flue gas sparging, and acid) can be recommended due to a low BMY improvement and/or unfavorable energy balance. Therefore, anaerobic digestion of this MaB-floc biomass should only be granted a supporting role within a biorefinery concept. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Effects of wastewater on forested wetlands

    USGS Publications Warehouse

    Doyle, Thomas W.

    2002-01-01

    Cycling nutrient-enriched wastewater from holding ponds through natural, forested wetlands is a practice that municipal waste treatment managers are considering as a viable option for disposing of wastewater. In this wastewater cycling process, sewer effluent that has been circulated through aerated ponds is discharged into neighboring wetland systems. To understand how wastewater cycling affects forest and species productivity, researchers at the USGS National Wetlands Research Center conducted dendroecological investigations in a swamp system and in a bog system that have been exposed to wastewater effluent for many decades. Dendroecology involves the study of forest changes over time as interpreted from tree rings. Tree-ring chronologies describe the pattern and history of growth suppression and release that can be associated with aging and disturbances such as hurricanes, floods, and fires. But because of limited monitoring, little is known about the potential for long-term effects on forested wetlands as a result of wastewater flooding. USGS researchers used tree rings to detect the effect of wastewater cycling on tree growth. Scientists expected to find that tree-ring width would be increased as a result of added nutrients.

  18. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO2 addition and modification of dilution rate.

    PubMed

    de Godos, I; Arbib, Z; Lara, E; Rogalla, F

    2016-11-01

    High Rate Algae Ponds (HRAP) are the simplest way to grow microalgae biomass and an interesting alternative for wastewater treatment. In this work the performance of these systems was evaluated using anaerobically digested wastewater as culture medium. Two variables were studied in long-term mode: the carbon dioxide supply and the modification of the dilution rates. The results showed that CO2 supply increases the productivity but less than expected considering the potential biomass generation calculated based on the ratios of carbon to nitrogen of microalgae and wastewater. The assimilation into biomass only accounted for 57% of the inlet nitrogen under the best conditions because nitrification and volatilization reduced the availability of this element. The operation under short hydraulic retention times presented a more interesting performance with higher biomass productivities. The biomass produced was efficiently harvested with in a Dissolved Air Flotation (DAF) unit. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Algae Production from Wastewater Resources: An Engineering and Cost Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenung, Susan; Efroymson, Rebecca Ann

    Co-locating algae cultivation ponds near municipal wastewater (MWW) facilities provides the opportunity to make use of the nitrogen and phosphorus compounds in the wastewater as nutrient sources for the algae. This use benefits MWW facilities, the algae biomass and biofuel or bioproduct industry, and the users of streams where treated or untreated waste would be discharged. Nutrient compounds can lead to eutrophication, hypoxia, and adverse effects to some organisms if released downstream. This analysis presents an estimate of the cost savings made possible to cultivation facilities by using the nutrients from wastewater for algae growth rather than purchase of themore » nutrients. The analysis takes into consideration the cost of pipe transport from the wastewater facility to the algae ponds, a cost factor that has not been publicly documented in the past. The results show that the savings in nutrient costs can support a wastewater transport distance up to 10 miles for a 1000-acre-pond facility, with potential adjustments for different operating assumptions.« less

  20. Microbiological quality of fish grown in wastewater-fed and non-wastewater-fed fishponds in Hanoi, Vietnam: influence of hygiene practices in local retail markets.

    PubMed

    Lan, Nguyen Thi Phong; Dalsgaard, Anders; Cam, Phung Dac; Mara, Duncan

    2007-06-01

    Mean water quality in two wastewater-fed ponds and one non-wastewater-fed pond in Hanoi, Vietnam was approximately 10(6) and approximately 10(4) presumptive thermotolerant coliforms (pThC) per 100 ml, respectively. Fish (common carp, silver carp and Nile tilapia) grown in these ponds were sampled at harvest and in local retail markets. Bacteriological examination of the fish sampled at harvest from both types of pond showed that they were of very good quality (2 - 3 pThC g(-1) fresh muscle weight), despite the skin and gut contents being very contaminated (10(2) - 10(3) pThC g(-1) fresh weight and 10(4) - 10(6) pThC g(-1) fresh weight, respectively). These results indicate that the WHO guideline quality of < or = 1000 faecal coliforms per 100 ml of pond water in wastewater-fed aquaculture is quite restrictive and represents a safety factor of approximately 3 orders of magnitude. However, when the fish from both types of pond were sampled at the point of retail sale, quality deteriorated to 10(2) - 10(5) pThC g(-1) of chopped fresh fish (mainly flesh and skin contaminated with gut contents); this was due to the practice of the local fishmongers in descaling and chopping up the fish from both types of pond with the same knife and on the same chopping block. Fishmonger education is required to improve their hygienic practices; this should be followed by regular hygiene inspections.

  1. Development of Low-Toxicity Wastewater Stabilization for Spacecraft Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Julie L.; Adam, Niklas; Pickering, Karen D.; Alvarez, Giraldo N.

    2015-01-01

    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-milliliter volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  2. Development of Low-Toxicity Wastewater Stabilization for Spacecraft Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Mitchell, Julie; Pickering, Karen; Carrier, Chris; Vega, Letty; Muirhead, Dean

    2014-01-01

    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  3. Resource-Saving Cleaning Technologies for Power Plant Waste-Water Cooling Ponds

    NASA Astrophysics Data System (ADS)

    Zakonnova, Lyudmila; Nikishkin, Igor; Rostovzev, Alexandr

    2017-11-01

    One of the frequently encountered problems of power plant small cooling ponds is rapid eutrophication and related intensified development of phytoplankton ("hyperflow") and overgrowing of ponds by higher aquatic vegetation. As a result of hyper-flowering, an enormous amount of detritus settles on the condenser tubes, reducing the efficiency of the power plant operation. The development of higher aquatic vegetation contributes to the appearing of the shoals. As a result the volume, area and other characteristics of the cooling ponds are getting changed. The article describes the environmental problems of small manmade ponds of power plants and coal mines in mining regions. Two approaches to the problem of eutrophication are considered: technological and ecological. The negative effects of herbicides application to aquatic organisms are experimentally proved. An ecological approach to solving the problem by fish-land reclamation method is shown.

  4. Performance evaluation of 388 full-scale waste stabilization pond systems with seven different configurations.

    PubMed

    Espinosa, Maria Fernanda; von Sperling, Marcos; Verbyla, Matthew E

    2017-02-01

    Waste stabilization ponds (WSPs) and their variants are one the most widely used wastewater treatment systems in the world. However, the scarcity of systematic performance data from full-scale plants has led to challenges associated with their design. The objective of this research was to assess the performance of 388 full-scale WSP systems located in Brazil, Ecuador, Bolivia and the United States through the statistical analysis of available monitoring data. Descriptive statistics were calculated of the influent and effluent concentrations and the removal efficiencies for 5-day biochemical oxygen demand (BOD 5 ), total suspended solids (TSS), ammonia nitrogen (N-Ammonia), and either thermotolerant coliforms (TTC) or Escherichia coli for each WSP system, leading to a broad characterization of actual treatment performance. Compliance with different water quality and system performance goals was also evaluated. The treatment plants were subdivided into seven different categories, according to their units and flowsheet. The median influent concentrations of BOD 5 and TSS were 431 mg/L and 397 mg/L and the effluent concentrations varied from technology to technology, but median values were 50 mg/L and 47 mg/L, respectively. The median removal efficiencies were 85% for BOD 5 and 75% for TSS. The overall removals of TTC and E. coli were 1.74 and 1.63 log 10 units, respectively. Future research is needed to better understand the influence of design, operational and environmental factors on WSP system performance.

  5. Pathogens and fecal indicators in waste stabilization pond systems with direct reuse for irrigation: Fate and transport in water, soil and crops.

    PubMed

    Verbyla, M E; Iriarte, M M; Mercado Guzmán, A; Coronado, O; Almanza, M; Mihelcic, J R

    2016-05-01

    Wastewater use for irrigation is expanding globally, and information about the fate and transport of pathogens in wastewater systems is needed to complete microbial risk assessments and develop policies to protect public health. The lack of maintenance for wastewater treatment facilities in low-income areas and developing countries results in sludge accumulation and compromised performance over time, creating uncertainty about the contamination of soil and crops. The fate and transport of pathogens and fecal indicators was evaluated in waste stabilization ponds with direct reuse for irrigation, using two systems in Bolivia as case studies. Results were compared with models from the literature that have been recommended for design. The removal of Escherichia coli in both systems was adequately predicted by a previously-published dispersed flow model, despite more than 10years of sludge accumulation. However, a design equation for helminth egg removal overestimated the observed removal, suggesting that this equation may not be appropriate for systems with accumulated sludge. To assess the contamination of soil and crops, ratios were calculated of the pathogen and fecal indicator concentrations in soil or on crops to their respective concentrations in irrigation water (termed soil-water and crop-water ratios). Ratios were similar within each group of microorganisms but differed between microorganism groups, and were generally below 0.1mLg(-1) for coliphage, between 1 and 100mLg(-1) for Giardia and Cryptosporidium, and between 100 and 1000mLg(-1) for helminth eggs. This information can be used for microbial risk assessments to develop safe water reuse policies in support of the United Nations' 2030 Sustainable Development Agenda. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assessment of a full-scale duckweed pond system for septage treatment.

    PubMed

    Papadopoulos, F H; Tsihrintzis, V A

    2011-01-01

    Environmental conditions and wastewater treatment performance in a full-scale duckweed pond system are presented. The treatment system consisted of three stabilization ponds in series and was fed with septage. Vacuum trucks pumped the septage from residential holding tanks and discharged it to the system daily. The inflow rates averaged 36 m3 d(-1) in the cold season and 60 m3 d(-1) in the warm season. Duckweed (Lemna minor) colonized the ponds in the warm months and survived during the cold season. Because of the difficult process for harvesting the duckweed biomass, the investigation of the treatment efficiency was carried out without plant harvesting. Samples were collected from the vacuum trucks and from the exit of each pond and were analysed for physicochemical and microbiological parameters over a period of 12 months. The results showed that the duckweed mat suppressed algal biomass, which in turn led to anoxic and neutral pond conditions. On an annual basis, the duckweed system sufficiently removed BOD5 (94%), NH4+ (72%) and E. coli (99.65%), with lower removal of TSS (63%) and Enterococci (91.76%). A slight increase (1.1%) was recorded for o-PO4(3-). Between the two sampling seasons, BOD5 and TSS removal efficiencies were higher in the cold season with the longer retention time. Similar removal values in the warm and the cold season were found for nutrients and bacteria. These findings indicate that BOD5 and TSS removals are less temperature-dependent at higher retention times, while ammonia nitrogen and bacterial removals are substantially influenced by temperature as well as retention time.

  7. Microbiological quality of a waste stabilization pond effluent used for restricted irrigation in Valle Del Cauca, Colombia.

    PubMed

    Madera, C A; Peña, M R; Mara, D D

    2002-01-01

    This paper discusses the applicability of effluent reuse in agriculture after treatment in a series of anaerobic, facultative and maturation ponds. The WSP system is located in Ginebra municipality, a small town in southwest Colombia. The total HRT is 12 days. Several samples of the final effluent were taken over a 55 day period and were analysed for E. coli, Streptococcus spp. and helminth eggs. Some additional grab samples were taken to determine the presence of pathogenic bacteria such as Salmonella spp. and Shigella spp. The results showed that the system was able to remove 4 log units of E. coli, 1 log unit of Streptococcus spp. and 100% of helminth eggs. Meanwhile, Salmonella spp. were detected in the effluent of the facultative pond whilst Shigella spp. were not detected in any sample. The main species of helminth eggs encountered were Taenia spp., Ascaris spp., Trichuris spp., Hymenolepis nana, H. diminuta and Enterobius vermicularis. Removal efficiencies were satisfactory despite the relatively short HRT. Nevertheless, WHO guidelines were slightly surpassed in the case of E. coli for unrestricted irrigation. The helminth egg value was always below the maximum WHO limit. Hence, this effluent can be safely used for restricted irrigation provided that field workers are protected from direct contact with wastewater given the presence of Salmonella spp. in the facultative pond effluent.

  8. Molecular evaluation of microalgal communities in full-scale waste stabilisation ponds.

    PubMed

    Eland, Lucy E; Davenport, Russell J; Santos, Andre Bezerra Dos; Mota Filho, Cesar R

    2018-02-22

    Waste stabilisation ponds (WSPs) are widely used across the world as a passive wastewater treatment for domestic wastewaters, but little is known about their ecology, especially their phototrophic communities. This study uses molecular methods and flow cytometry to assess the cyanobacterial and eukaryotic communities longitudinally throughout two systems, one treating domestic wastewater and the other mixed industrial/domestic wastewaters. More variation was seen between the systems than between different stages in the treatment processes for both eukaryotic and cyanobacterial communities. Chlorella species and Planktophrix cyanobacteria dominated both treatment systems. Arthrospira cyanobacteria were detected only in the industrial/domestic system. The balance between non-photosynthetic and photosynthetic organisms is rarely considered, though both play vital roles in WSP functioning. Flow cytometry showed that the facultative and first maturation pond in the industrial system contained a lower proportion of photosynthetic organisms compared to the domestic system. This is reflected in the species richness data and low dissolved oxygen levels detected. All data indicated that both systems are significantly different from one another and that variation longitudinally throughout the systems is lower. A more systematic study is needed to determine if it is the wastewater source rather than the initial inoculum that drives community composition.

  9. Wastewater infrastructure for small cities in an urbanizing world: integrating protection of human health and the environment with resource recovery and food security.

    PubMed

    Verbyla, Matthew E; Oakley, Stewart M; Mihelcic, James R

    2013-04-16

    The majority of population growth in developing countries will occur in small cities closely linked to agricultural zones, with poor access to water and sanitation. Wastewater management priorities in these regions will be different from those in larger cities and developed countries. Two wastewater treatment systems in Bolivia, one with an upflow anaerobic sludge blanket (UASB) reactor and polishing ponds, the other with three stabilization ponds, are assessed to determine their resource recovery potential. The UASB reactor produces biogas with 500-650 MJ per day. In six months, both systems discharge wastewater with the same mass of nutrients as fertilizers used to produce crops containing 10-75 days' worth of the recommended food energy intake for each person using the system. Both systems also discharge detectable levels of helminth eggs, Giardia cysts, and Cryptosporidium oocysts, but the UASB reactor system discharges higher concentrations, implying limited reuse potential. From a regional management standpoint, small cities should not expend resources to treat wastewater to levels suitable for discharge into surface waters. Rather, they should focus on removing pathogens to reclaim water and nutrients. Biogas recovery may be a priority that should be subservient to water and nutrient recovery in these settings.

  10. Cyanobacterial and microcystins dynamics following the application of hydrogen peroxide to waste stabilisation ponds

    NASA Astrophysics Data System (ADS)

    Barrington, D. J.; Ghadouani, A.; Ivey, G. N.

    2013-02-01

    Cyanobacteria and cyanotoxins are a risk to human and ecological health, and a hindrance to biological wastewater treatment. This study investigated the use of hydrogen peroxide (H2O2) for the removal of cyanobacteria and cyanotoxins from within waste stabilization ponds (WSPs). The daily dynamics of cyanobacteria and microcystins (a commonly occurring cyanotoxin) were examined following the addition of H2O2 to wastewater within both the laboratory and at the full-scale within a WSP. Hydrogen peroxide treatment at concentrations ≥ 10-4 g H2O2 μg-1 of total phytoplankton chlorophyll a led to the death of cyanobacteria, in turn releasing intracellular microcystins to the dissolved state. In the full-scale trial, dissolved microcystins were then degraded to negligible concentrations by H2O2 and environmental processes within five days. A shift in the phytoplankton assemblage towards beneficial chlorophyta species was also observed within days of H2O2 addition. However, within weeks, the chlorophyta population was significantly reduced by the re-establishment of toxic cyanobacterial species. This re-establishment was likely due to the inflow of cyanobacteria from ponds earlier in the treatment train, suggesting that whilst H2O2 may be a suitable short-term management technique, it must be coupled with control over inflows if it is to improve WSP performance in the longer term.

  11. Sludge accumulation and distribution impact the hydraulic performance in waste stabilisation ponds.

    PubMed

    Coggins, Liah X; Ghisalberti, Marco; Ghadouani, Anas

    2017-03-01

    Waste stabilisation ponds (WSPs) are used worldwide for wastewater treatment, and throughout their operation require periodic sludge surveys. Sludge accumulation in WSPs can impact performance by reducing the effective volume of the pond, and altering the pond hydraulics and wastewater treatment efficiency. Traditionally, sludge heights, and thus sludge volume, have been measured using low-resolution and labour intensive methods such as 'sludge judge' and the 'white towel test'. A sonar device, a readily available technology, fitted to a remotely operated vehicle (ROV) was shown to improve the spatial resolution and accuracy of sludge height measurements, as well as reduce labour and safety requirements. Coupled with a dedicated software package, the profiling of several WSPs has shown that the ROV with autonomous sonar device is capable of providing sludge bathymetry with greatly increased spatial resolution in a greatly reduced profiling time, leading to a better understanding of the role played by sludge accumulation in hydraulic performance of WSPs. The high-resolution bathymetry collected was used to support a much more detailed hydrodynamic assessment of systems with low, medium and high accumulations of sludge. The results of the modelling show that hydraulic performance is not only influenced by the sludge accumulation, but also that the spatial distribution of sludge plays a critical role in reducing the treatment capacity of these systems. In a range of ponds modelled, the reduction in residence time ranged from 33% in a pond with a uniform sludge distribution to a reduction of up to 60% in a pond with highly channelized flow. The combination of high-resolution measurement of sludge accumulation and hydrodynamic modelling will help in the development of frameworks for wastewater sludge management, including the development of more reliable computer models, and could potentially have wider application in the monitoring of other small to medium water bodies

  12. SOLIDIFICATION/STABILIZATION OF SLUDGE AND ASH FROM WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Tests were performed to determine the physical properties and chemical leaching characteristics of the residuals and the stabilized/solidified products from two publicly-owned wastewater treatment works (POTW). The two POTW waste products included in this study were an anaerobic ...

  13. Anaerobes, aerobes and phototrophs. A winning team for wastewater management.

    PubMed

    Gijzen, H J

    2001-01-01

    Current mainstream technologies for wastewater treatment, such as activated sludge and tertiary nutrient removal, are too costly to provide a satisfactory solution for the increasing wastewater problems in developing regions. Besides, these technologies do not allow for re-use of valuable energy and nutrients contained in the wastewater. In light of these limitations, it is important to reconsider the technology and strategic approaches in wastewater management. This paper introduces the "Cleaner Production" concept to sewage management, which combines two approaches: pollution prevention and re-use. Pollution prevention includes a shift towards low water use sanitation technology. The more concentrated wastewater, becomes more attractive for re-use oriented treatment schemes. A combination of anaerobic pre-treatment followed by macrophyte-covered stabilisation ponds is proposed for the effective recovery of energy and nutrients from sewage. By selecting optimal applications of the plant biomass and pond effluent, nutrients will end up as fish and crop protein. This contrasts favourably to tertiary nitrogen removal in activated sludge systems, which recycles ammonia through molecular nitrogen at the expense of energy and high costs. Macrophyte ponds are proposed as a key step in waste recycling, because these form the central unit of a recycling engine, driven by photosynthesis. The process is energy efficient, cost effective and applicable under a wide variety of rural and urban conditions.

  14. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike lewis

    2013-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  15. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  16. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel.

    PubMed

    Massimi, Rebecca; Kirkwood, Andrea E

    2016-01-01

    Exploiting microalgae as feedstock for biofuel production is a growing field of research and application, but there remain challenges related to industrial viability and economic sustainability. A solution to the water requirements of industrial-scale production is the use of wastewater as a growth medium. Considering the variable quality and contaminant loads of wastewater, algal feedstock would need to have broad tolerance and resilience to fluctuating wastewater conditions during growth. As a first step in targeting strains for growth in wastewater, our study isolated microalgae from wastewater habitats, including urban stormwater-ponds and a municipal wastewater-treatment system, to assess growth, fatty acids and metal tolerance under standardized conditions. Stormwater ponds in particular have widely fluctuating conditions and metal loads, so microalgae from this type of environment may have desirable traits for growth in wastewater. Forty-three algal strains were isolated in total, including several strains from natural habitats. All strains, with the exception of one cyanobacterial strain, are members of the Chlorophyta, including several taxa commonly targeted for biofuel production. Isolates were identified using taxonomic and 18S rRNA sequence methods, and the fastest growing strains with ideal fatty acid profiles for biodiesel production included Scenedesmus and Desmodesmus species (Growth rate (d(-1)) > 1). All isolates in a small, but diverse taxonomic group of test-strains were tolerant of copper at wastewater-relevant concentrations. Overall, more than half of the isolated strains, particularly those from stormwater ponds, show promise as candidates for biofuel feedstock.

  17. Inactivation of Escherichia coli in a baffled pond with attached growth: treating anaerobic effluent under the Sahelian climate.

    PubMed

    Moumouni, D A; Andrianisa, H A; Konaté, Y; Ndiaye, A; Maïga, A H

    2016-01-01

    This study aimed to investigate and understand the zero-level detection of Escherichia coli (E. coli) at the outlet of an improved waste stabilization pond. Wastewaters were collected from the International Institute for Water and Environmental Engineering (2iE) campus and were subjected to biological treatment. The system included two-stage Anaerobic Reactors followed by a Baffled Pond (AR-BP) with recycled plastic media as a medium for attached growth and a control pond (CP). Three vertical baffles were installed, giving four compartments in the baffled pond (BP). The research was conducted on the pilot scale from March to July 2014, by monitoring E. coli, pH, temperature, dissolved oxygen (DO) and chlorophyll-a in each compartment and at different depths. The results show that E. coli concentrations were lower in top layers of all compartments with an undetectable level in the last compartment up to 0.60 m deep. E. coli mean removal efficiencies and decay rates were achieved by significant difference in BP (4.5 log-units, 9.1 day(-1)) and CP (1.1 log-units, 1.1 day(-1)). Higher values of pH (≥9), temperature (≥32°C), DO (≥ 8 mg/L) and chlorophyll-a (≥ 1000 µg/L) were observed at the surface of BP, whereas lower values were shown at the bottom. Sedimentation combined with the synergetic effects of the physicochemical parameters and environmental factors would be responsible for the inactivation of E. coli in BP. It was concluded that the AR-BP could be applied as an alternative low-cost wastewater treatment technology for developing countries and recommended for reuse of their effluent for restricted peri-urban irrigation.

  18. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    PubMed

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  19. Water hyacinth (Eichhornia crassipes) waste as an adsorbent for phosphorus removal from swine wastewater.

    PubMed

    Chen, Xi; Chen, Xiuxia; Wan, Xianwei; Weng, Boqi; Huang, Qin

    2010-12-01

    Both live plants and dried straw of water hyacinth were applied to a sequential treatment of swine wastewater for nitrogen and phosphorus reduction. In the facultative tank, the straw behaved as a kind of adsorbent toward phosphorus. Its phosphorus removal rate varied considerably with contact time between the straw and the influent. In the laboratory, the straw displayed a rapid total phosphorus reduction on a KH(2)PO(4) solution. The adsorption efficiency was about 36% upon saturation. At the same time, the water hyacinth straw in the facultative tank enhanced NH(3)-N removal efficiency as well. However, no adsorption was evident. This study demonstrated an economically feasible means to apply water hyacinth phosphorus straw for the swine wastewater treatment. The sequential system employed significantly reduced the land use, as compared to the wastewater stabilization pond treatment, for pollution amelioration of swine waste. 2010 Elsevier Ltd. All rights reserved.

  20. Nutrient and suspended solids removal from petrochemical wastewater via microalgal biofilm cultivation.

    PubMed

    Hodges, Alan; Fica, Zachary; Wanlass, Jordan; VanDarlin, Jessica; Sims, Ronald

    2017-05-01

    Wastewater derived from petroleum refining currently accounts for 33.6 million barrels per day globally. Few wastewater treatment strategies exist to produce value-added products from petroleum refining wastewater. In this study, mixed culture microalgal biofilm-based treatment of petroleum refining wastewater using rotating algae biofilm reactors (RABRs) was compared with suspended-growth open pond lagoon reactors for removal of nutrients and suspended solids. Triplicate reactors were operated for 12 weeks and were continuously fed with petroleum refining wastewater. Effluent wastewater was monitored for nitrogen, phosphorus, total suspended solids (TSS), and chemical oxygen demand (COD). RABR treatment demonstrated a statistically significant increase in removal of nutrients and suspended solids, and increase in biomass productivity, compared to the open pond lagoon treatment. These trends translate to a greater potential for the production of biomass-based fuels, feed, and fertilizer as value-added products. This study is the first demonstration of the cultivation of mixed culture biofilm microalgae on petroleum refining wastewater for the dual purposes of treatment and biomass production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Pollutant removal in a multi-stage municipal wastewater treatment system comprised of constructed wetlands and a maturation pond, in a temperate climate.

    PubMed

    Rivas, A; Barceló-Quintal, I; Moeller, G E

    2011-01-01

    A multi-stage municipal wastewater treatment system is proposed to comply with Mexican standards for discharge into receiving water bodies. The system is located in Santa Fe de la Laguna, Mexico, an area with a temperate climate. It was designed for 2,700 people equivalent (259.2 m3/d) and consists of a preliminary treatment, a septic tank as well as two modules operating in parallel, each consisting of a horizontal subsurface-flow wetland, a maturation pond and a vertical flow polishing wetland. After two years of operation, on-site research was performed. An efficient biochemical oxygen demand (BOD5) (94-98%), chemical oxygen demand (91-93%), total suspended solids (93-97%), total Kjeldahl nitrogen (56-88%) and fecal coliform (4-5 logs) removal was obtained. Significant phosphorus removal was not accomplished in this study (25-52%). Evapotranspiration was measured in different treatment units. This study demonstrates that during the dry season wastewater treatment by this multi-stage system cannot comply with the limits established by Mexican standards for receiving water bodies type 'C'. However, it has demonstrated the system's potential for less restrictive uses such as agricultural irrigation, recreation and provides the opportunity for wastewater treatment in rural areas without electric energy.

  2. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.

    PubMed

    Shi, Wenxin; Wang, Lizheng; Rousseau, Diederik P L; Lens, Piet N L

    2010-05-01

    Many pollutants have received significant attention due to their potential estrogenic effect and are classified as endocrine disrupting compounds (EDCs). Because of possible ecological effects and increased attention for water reuse schemes, it is important to increase our understanding of the EDC removal capacities of various wastewater treatment systems. However, there has so far been little research on the fate and behavior of EDCs in stabilization pond systems for wastewater treatment, which represent an important class of wastewater treatment systems in developing countries because of their cost-effectiveness. The aim of this work is to study the fate and behavior of EDCs in algae and duckweed ponds. Because the synthetic hormone 17alpha-ethinylestradiol (EE2) and the natural hormones estrone (E1), as well as 17beta-estradiol (E2), have been detected in effluents of sewage treatment plants and been suggested as the major compounds responsible for endocrine disruption in domestic sewage; E1, E2, and EE2 were therefore chosen as target chemicals in this current work. Both batch tests and continuous-flow tests were carried out to investigate the sorption and biodegradation of estrogens in algae and duckweed pond systems. The applied duckweed was a Lemna species. The applied algae was a mixture of pure cultures of six different algae genera, i.e., Anabaena cylindrica, Chlorococcus, Spirulina platensis, Chlorella, Scenedesmus quadricauda, and Anaebena var. Synthetic wastewater were used in all tests. The concentrations of estrogens were measured with three different enzyme-linked immunosorbent assay kits specific for E1, E2, or EE2. When the concentrations of estrogens in water samples were below the lowest quantitative analysis range (0.05 microg/l), preconcentration of the water samples were performed by means of solid phase extraction (SPE) with C18 cartridges. The 6-day batch tests show that the presence of algae or duckweed accelerated the removal of the three

  3. Effect of High-Rate Algal Ponds on Viability of Cryptosporidium parvum Oocysts

    PubMed Central

    Araki, S.; Martín-Gomez, S.; Bécares, E.; De Luis-Calabuig, E.; Rojo-Vazquez, F.

    2001-01-01

    The physicochemical conditions of high-rate algal ponds were responsible for a more than 97% reduction in the infectivity of Cryptosporidium parvum oocysts in neonatal mice. The use of semipermeable bags of cellulose showed that pH, ammonia, and/or light seems to be a major factor for the inactivation of oocysts in wastewater, supporting the importance of alga-based systems for safer reuse of treated wastewater. PMID:11425762

  4. Sterols indicate water quality and wastewater treatment efficiency.

    PubMed

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  5. Effect of Diuron on aquatic bacteria in laboratory-scale wastewater treatment ponds with special reference to Aeromonas species studied by colony hybridization.

    PubMed

    Sumpono; Perotti, P; Belan, A; Forestier, C; Lavedrine, B; Bohatier, J

    2003-01-01

    Six laboratory-scale wastewater treatment ponds were filled with sediment and water obtained from a reference pond (a wastewater treatment plant located in a rural environment at Montel-de-Gelat, Puy-de-Dôme, France). They were kept at 20 degrees C, with alternative light and dark periods (12 h-12 h), and fed with raw effluent supplied weekly. Three of them were treated with Diuron (dissolved in DMSO) at a final concentration 10 mg/l, while the other three received only DMSO. Physico-chemical parameters, total bacteria, cultivable bacteria, and Aeromonas spp. were measured periodically until 41 days after the Diuron contamination. Total bacteria were treated with 4,6-diamidino 2-phenylindole (DAPI) and counted by epifluoroscence microscopy. The cultivable bacteria were quantified on plate count agar medium and Aeromonas spp. using colony hybridization. In the contaminated pilots, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), volatile suspended solids (VSS), ammonium, phosphorus, and bacteria increased, but dissolved oxygen decreased. The abundance of total bacteria, cultivable bacteria (multiplied by 30), and Aeromonas spp. increased for two weeks after Diuron introduction, reverting to initial values three weeks later. The percentage of cultivable bacteria relative to total bacteria was 0.2% in controls and 1.2% in treated pilots, while the percentage of Aeromonas spp. relative to cultivable bacteria decreased from 6-10% to 2%. Our results suggest that Diuron, which acts on the photosystem II of phototrophs, supports the development of cultivable bacteria through new carbon sources derived from the decomposition of photosynthetic micro-organisms, but does not specifically support Aeromonas spp.

  6. Dynamics of Aeromonas hydrophila, Aeromonas sobria, and Aeromonas caviae in a sewage treatment pond.

    PubMed Central

    Monfort, P; Baleux, B

    1990-01-01

    The spatiotemporal dynamics of Aeromonas spp. and fecal coliforms in the sewage treatment ponds of an urban wastewater center were studied after 20 months of sampling from five stations in these ponds. Isolation and identification of 247 Aeromonas strains were undertaken over four seasons at the inflow and outflow of this pond system. The hemolytic activity of these strains was determined. The Aeromonas spp. and the fecal coliform distributions showed seasonal cycles, the amplitude of which increased at distances further from the wastewater source, so that in the last pond there was an inversion of the Aeromonas spp. cycle in comparison with that of fecal coliforms. The main patterns in these cycles occurred simultaneously at all stations, indicating control of these bacterial populations by seasonal factors (temperature, solar radiation, phytoplankton), the effects of which were different on each bacterial group. The analysis of the Aeromonas spp. population structure showed that, regardless of the season, Aeromonas caviae was the dominant species at the pond system inflow. However at the outflow the Aeromonas spp. population was dominated by A. caviae in winter, whereas Aeromonas sobria was the dominant species in the treated effluent from spring to fall. Among the Aeromonas hydrophila and A. sobria strains, 100% produced hemolysin; whereas among the A. caviae strains, 96% were nonhemolytic. Images PMID:2389929

  7. Treatment of synthetic textile wastewater containing dye mixtures with microcosms.

    PubMed

    Yaseen, Dina A; Scholz, Miklas

    2018-01-01

    The aim was to assess the ability of microcosms (laboratory-scale shallow ponds) as a post polishing stage for the remediation of artificial textile wastewater comprising two commercial dyes (basic red 46 (BR46) and reactive blue 198 (RB198)) as a mixture. The objectives were to evaluate the impact of Lemna minor L. (common duckweed) on the water quality outflows; the elimination of dye mixtures, organic matter, and nutrients; and the impact of synthetic textile wastewater comprising dye mixtures on the L. minor plant growth. Three mixtures were prepared providing a total dye concentration of 10 mg/l. Findings showed that the planted simulated ponds possess a significant (p < 0.05) potential for improving the outflow characteristics and eliminate dyes, ammonium-nitrogen (NH 4 -N), and nitrate-nitrogen (NO 3 -N) in all mixtures compared with the corresponding unplanted ponds. The removal of mixed dyes in planted ponds was mainly due to phyto-transformation and adsorption of BR46 with complete aromatic amine mineralisation. For ponds containing 2 mg/l of RB198 and 8 mg/l of BR46, removals were around 53%, which was significantly higher than those for other mixtures: 5 mg/l of RB198 and 5 mg/l of BR46 and 8 mg/l of RB198 and 2 mg/l of BR46 achieved only 41 and 26% removals, respectively. Dye mixtures stopped the growth of L. minor, and the presence of artificial wastewater reduced their development.

  8. New Conceptual Model for Soil Treatment Units: Formation of Multiple Hydraulic Zones during Unsaturated Wastewater Infiltration.

    PubMed

    Geza, Mengistu; Lowe, Kathryn S; Huntzinger, Deborah N; McCray, John E

    2013-07-01

    Onsite wastewater treatment systems are commonly used in the United States to reclaim domestic wastewater. A distinct biomat forms at the infiltrative surface, causing resistance to flow and decreasing soil moisture below the biomat. To simulate these conditions, previous modeling studies have used a two-layer approach: a thin biomat layer (1-5 cm thick) and the native soil layer below the biomat. However, the effect of wastewater application extends below the biomat layer. We used numerical modeling supported by experimental data to justify a new conceptual model that includes an intermediate zone (IZ) below the biomat. The conceptual model was set up using Hydrus 2D and calibrated against soil moisture and water flux measurements. The estimated hydraulic conductivity value for the IZ was between biomat and the native soil. The IZ has important implications for wastewater treatment. When the IZ was not considered, a loading rate of 5 cm d resulted in an 8.5-cm ponding. With the IZ, the same loading rate resulted in a 9.5-cm ponding. Without the IZ, up to 3.1 cm d of wastewater could be applied without ponding; with the IZ, only up to 2.8 cm d could be applied without ponding. The IZ also plays a significant role in soil moisture distribution. Without the IZ, near-saturation conditions were observed only within the biomat, whereas near-saturation conditions extended below the biomat with the IZ. Accurate prediction of ponding is important to prevent surfacing of wastewater. The degree of water and air saturation influences pollutant treatment efficiency through residence time, volatility, and biochemical reactions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  9. 2014 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    2015-02-01

    This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  10. Data analysis protocol for using resistivity array as an early-warning wastewater pond leak detector

    USDA-ARS?s Scientific Manuscript database

    Typically, holding ponds are used to control runoff from concentrated animal feeding operations. The integrity of these holding ponds has come under increased scrutiny since subsurface leakage has the potential to affect soil and groundwater quality. Traditionally, ponds are monitored by installin...

  11. [Spectral Analysis of Dissolved Organic Matter of Tannery Wastewater in the Treatment Process].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Du, Bo; Song, Juan; Huai, Cui-qian; Wang, Jia-hong

    2015-06-01

    Tannery industry is one of the major traditional industries and important wastewater sources in China. The existing research mainly focus on the quality of inlet and outlet water, rather than the purification and transformation behavior of dissolved organic matter (DOM) in the treatment process of tannery wastewater. The UV spectra and fluorescence spectroscopy were used to detect the spectral characteristics of water samples in the treatment process, and it is analyzed that the formation process and the linear relationships between total fluorescence intensity and parameters. The results showed: the UV absorbance of DOM in wastewater increased firstly and then decreased with longer wavelength, and the wave peaks were found around the wavelength of 230 nr. The values of A253 /A203 and SUVA254 increased firstly and then decreased, indicating the complex reaction process related to free substituent and aromatic rings. The fluorescence peaks appeared at the regions of λ(ex/em) = 320-350/440- 460 and λ(ex/em) = 270-300/390-420, referred as visible humic-like and visible fulvic-like fluorescence, respectively. With the treatment process of tannery wastewater, the following fluorescence phenomenon were monitored, such as the blue-shift of humic-like fluorescence peak in the hydrolytic acidification tank, the appearance of tryptophan fluorescence peak in the second biochemical pond (λ(ex/em) = 290/340), the weak fluorescence peak in the fourth biochemical pond (λ(ex/em) = 350/520) and the stabilized fluorescence characteristics in the secondary sedimentation tank and water outlet. The achievements are helpful to investigate the degradation and formation behavior of water components, and significant for the fluorescence variation analysis in the treatment system. The removal rate of total fluorescence intensity of tannery wastewater fit better the removal rate of TOC with coefficient of r 0.835 5. The UV spectra and 3D-EEMs are effective to reveal the purification

  12. Bird Mortality in Oil Field Wastewater Disposal Facilities

    NASA Astrophysics Data System (ADS)

    Ramirez, Pedro

    2010-11-01

    Commercial and centralized oilfield wastewater disposal facilities (COWDFs) are used in the Western United States for the disposal of formation water produced from oil and natural gas wells. In Colorado, New Mexico, Utah, and Wyoming, COWDFs use large evaporation ponds to dispose of the wastewater. Birds are attracted to these large evaporation ponds which, if not managed properly, can cause wildlife mortality. The U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency (EPA) conducted 154 field inspections of 28 COWDFs in Wyoming from March 1998 through September 2008 and documented mortality of birds and other wildlife in 9 COWDFs. Of 269 bird carcasses recovered from COWDFs, grebes (Family Podicipedidae) and waterfowl (Anatidae) were the most frequent casualties. Most mortalities were attributed to oil on evaporation ponds, but sodium toxicity and surfactants were the suspected causes of mortality at three COWDFs. Although the oil industry and state and federal regulators have made much progress in reducing bird mortality in oil and gas production facilities, significant mortality incidents continue in COWDFs, particularly older facilities permitted in the early 1980’s. Inadequate operation and management of these COWDFs generally results in the discharge of oil into the large evaporation ponds which poses a risk for birds and other wildlife.

  13. Bird mortality in oil field wastewater disposal facilities.

    PubMed

    Ramirez, Pedro

    2010-11-01

    Commercial and centralized oilfield wastewater disposal facilities (COWDFs) are used in the Western United States for the disposal of formation water produced from oil and natural gas wells. In Colorado, New Mexico, Utah, and Wyoming, COWDFs use large evaporation ponds to dispose of the wastewater. Birds are attracted to these large evaporation ponds which, if not managed properly, can cause wildlife mortality. The U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency (EPA) conducted 154 field inspections of 28 COWDFs in Wyoming from March 1998 through September 2008 and documented mortality of birds and other wildlife in 9 COWDFs. Of 269 bird carcasses recovered from COWDFs, grebes (Family Podicipedidae) and waterfowl (Anatidae) were the most frequent casualties. Most mortalities were attributed to oil on evaporation ponds, but sodium toxicity and surfactants were the suspected causes of mortality at three COWDFs. Although the oil industry and state and federal regulators have made much progress in reducing bird mortality in oil and gas production facilities, significant mortality incidents continue in COWDFs, particularly older facilities permitted in the early 1980's. Inadequate operation and management of these COWDFs generally results in the discharge of oil into the large evaporation ponds which poses a risk for birds and other wildlife.

  14. Prevention of volatile fatty acids production and limitation of odours from winery wastewaters by denitrification.

    PubMed

    Bories, André; Guillot, Jean-Michel; Sire, Yannick; Couderc, Marie; Lemaire, Sophie-Andréa; Kreim, Virginie; Roux, Jean-Claude

    2007-07-01

    The effect of the addition of nitrate to winery wastewaters to control the formation of VFA in order to prevent odours during storage and treatment was studied in batch bioreactors at different NO(3)/chemical oxygen demand (COD) ratios and at full scale in natural evaporation ponds (2 x 7000 m(2)) by measuring olfactory intensity. In the absence of nitrate, butyric acid (2304 mgL(-1)), acetic acid (1633 mgL(-1)), propionic acid (1558 mgL(-1)), caproic acid (499 mgL(-1)) and valeric acid (298 mgL(-1)) were produced from reconstituted winery wastewater. For a ratio of NO(3)/COD=0.4 gg(-1), caproic and valeric acids were not formed. The production of butyric and propionic acids was reduced by 93.3% and 72.5%, respectively, at a ratio of NO(3)/COD=0.8, and by 97.4% and 100% at a ratio of NO(3)/COD=1.2 gg(-1). Nitrate delayed and decreased butyric acid formation in relation to the oxidoreduction potential. Studies in ponds showed that the addition of concentrated calcium nitrate (NITCAL) to winery wastewaters (3526 m(3)) in a ratio of NO(3)/COD=0.8 inhibited VFA production, with COD elimination (94%) and total nitrate degradation, and no final nitrite accumulation. On the contrary, in ponds not treated with nitrate, malodorous VFA (from propionic to heptanoïc acids) represented up to 60% of the COD. Olfactory intensity measurements in relation to the butanol scale of VFA solutions and the ponds revealed the pervasive role of VFA in the odour of the untreated pond as well as the clear decrease in the intensity and not unpleasant odour of the winery wastewater pond enriched in nitrates. The results obtained at full scale underscored the feasibility and safety of the calcium nitrate treatment as opposed to concentrated nitric acid.

  15. Detection of the sul1, sul2, and sul3 genes in sulfonamide-resistant bacteria from wastewater and shrimp ponds of north Vietnam.

    PubMed

    Phuong Hoa, Phan Thi; Nonaka, Lisa; Hung Viet, Pham; Suzuki, Satoru

    2008-11-01

    To assess the presence and distribution of the sul genes (sul1, sul2, and sul3) and plasmids in human-mediated environments of north Vietnam, we examined a total of 127 sulfonamide-resistant (SR) bacterial isolates from four shrimp ponds (HNAQs), a city canal (HNCs) and three fish ponds that received wastewater directly from swine farms (HNPs). Results from the SR isolates revealed that sul genes were most frequently detected in the HNPs (92.0%), followed by HNCs (72.0%), and the HNAQs (43.0%). Among the sul genes detected, sul1 was the most prevalent gene in all three environments (57.0, 33.0 and 60.0% in HNPs, HNAQs, and HNCs, respectively) followed by sul2 (51.0, 19.0, and 20.0%, respectively) and sul3 (14.0, 6.0, and 8.0%, respectively). All combinations of paired different sul genes were detected, with the combination between sul1 and sul2 being the most frequent in all three environments (20.0, 8.0, and 8.0% in HNPs, HNAQs, and HNCs, respectively). The combination of three sul genes was detected at low frequencies (2-3%) in the HNPs and HNAQs, and was absent in the HNCs. The sul genes were more frequently located on the chromosome than on plasmids. The identification of SR isolates positive for the sul genes and plasmids showed that Acinetobacter was the most dominant. Our study revealed that the sul genes were common in SR bacteria from the aquatic environments we examined from northern Vietnam. Wastewater from swine farms might be "hot spots" of the sul genes and plasmids and may be reservoirs for the exchange of the sul genes among bacteria.

  16. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  17. Constructed wetlands and waste stabilization ponds for small rural communities in the United Kingdom: a comparison of land area requirements, performance and costs.

    PubMed

    Mara, D D

    2006-07-01

    Land area requirements for secondary subsurface horizontal-flow constructed wetlands (CW) and primary and secondary facultative ponds with either unaerated or aerated rock filters were determined for three levels of effluent quality: that specified in the Urban Waste Water Treatment Directive (UWWTD) (< or = 25 mg filtered BOD l(-1) and < or = 150 mg SS l(-1) for waste stabilization ponds (WSP) effluents, and < or = 25 mg unfiltered BOD l(-1) for CW effluents (mean values); and two common requirements of the Environment Agency: < or = 40 mg BOD l(-1) and < or = 60 mg SS l(-1), and < or = 10 mg BOD l(-1), < or = 15 mg SS l(-1) and < or = 5 mg ammonia-N l(-1) (95-percentile values). A secondary CW requires 60 percent more land than a secondary facultative pond to produce an UWWTD-quality effluent, 38 percent more land than a secondary facultative pond and an unaerated rock filter to produce a 40/60 effluent and, were it to be used to produce a 10/15/5 effluent, it would require approximately 480 percent more land than a secondary facultative pond and an aerated rock filter. Its estimated 2005 cost is pound 1100-2600 p.e.(-1), whereas that of a primary facultative pond and rock filter is approximately pound 400 p.e.(-1). On the basis of land area requirements, performance and cost, facultative ponds and unaerated or aerated rock filters are to be preferred to secondary subsurface horizontal-flow constructed wetlands.

  18. Can terraced pond wetland systems improve urban watershed water quality?

    NASA Astrophysics Data System (ADS)

    Li, S.; Ho, M.; Flanagan, N. E.; Richardson, C. J.

    2017-12-01

    Properly built constructed wetlands are a more economic and efficient way of wastewater treatment compared with traditional methods, although their mechanisms are far from completely understood. As part of the Stream and Wetland Assessment Management Park (SWAMP), which is aimed to improve the water quality of downstream and thereby enhance watershed ecosystem services, a terraced three-pond wetland system was created near Duke University in 2014. This project is expected to promote the retention and settling of pollutants and sediment before runoffs enter downstream flow. The goal of this study is to examine: (1) whether a terraced pond wetland system improves water quality, during both baseline (low flow) and storm events (high flow), which increases pollutant inputs; and (2) how this system functions to remove pollutants, namely what components of this system (plant, soil or water) increase or decrease the level of pollutants. By analyzing a dataset consisting of more than four-year monthly samplings from Pond 1 (first pond in the system) and Pond 3 (last pond in the system), we found that the pond system has reduced total suspended solids (TSS) but only when elevated inputs occur. Dissolved oxygen (DO) is closely related to temperature and macrophytes growth; whereas acidity (pH), total nitrogen (TN), and total phosphorus (TP) did not show retention in the early stages of the system development. This system reaches its optimum for reducing TSS at the second pond, but the third pond has important effects on DO, pH, TN and TP. A monitoring in 2017 shows this pond system significantly reduces TSS while increasing dissolved oxygen and neutralizing pH after a storm event; although greater variations incurred within the system as time progresses after storm, overall retention function remained valid. Retention of the pollutants is primarily accomplished by the settling process, which occurs in stilled waterbody of the ponds and by the filtration of macrophytes. We

  19. Critical study of current situation of Vrănicioara tailing pond on Cavnicului Valley, risks and consequences

    NASA Astrophysics Data System (ADS)

    Bud, I.; Duma, S.; Gusat, D.; Pasca, I.; Bud, A.

    2017-05-01

    In northern Romania, there are numerous tailing ponds, resulting from mining activities that present significant environmental risks. Some of them, including Vrănicioara tailing pond, were the subject of technical projects for ecological rehabilitation. Vrănicioara pond is located on the right side of Cavnic Valley, downstream Cavnic town, about 4 kilometers far. It has about 500 m length and is located parallel to the road linking Baia Sprie and Cavnic localities. Chemical and physical stability of the tailing pond before rehabilitation interest the research, analysis and conclusions were published in several scientific meetings. In addition, close to the pond at less than 100 m, an open pit has developed, exploiting andesite by mining blast, increasing the risk of physical stability by continuous exposure to vibration. This activity currently continues, advancing towards the tailing pond body. The critical study addresses the current state of Vrănicioara Tailing Pond, analysis of some rehabilitation works done incorrectly, analysis of chemical stability that was not a priority during rehabilitation. Research intention is heading to water analysis confirming the existence of acid drainage that was not stopped or at least reduced. The scientific approach is based on the Technical Standards for Waste Deposits, in force in Romania, providing the rules to ensure physical and chemical stability.

  20. Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow.

    PubMed

    Uysal, Y

    2013-12-15

    The aim of this study was to determine the ability of Lemna minor to remove Cr (VI) ions from wastewater in a continuous flow pond system. This system was used to simulate a wastewater treatment pond and a natural wetland as habitat of plants. In order to find optimal conditions for chromium removal, ponds were operated with aqueous solutions having different pH (4.0-7.0) and chromium concentration of 0.25 mgCr(+6)/L, then plants were exposed to different chromium concentrations (0.25-5.0 mgCr(+6)/L) at pH 4.0. Chromium concentrations, both in biomass and wastewater, were measured and removal efficiency was determined throughout water flow. Growth factors such as growth rates, chlorophyll contents and dry/fresh weight ratios of plants were also determined to measure toxic effects of chromium. The percentages of chromium uptake (PMU) and bioconcentration factors (BCF) were calculated for each run. The highest accumulated chromium concentration (4.423 mgCr/g) was found in plants grown in the first chamber of pond operated at pH 4.0 and 5.0 mgCr/L, while the minimum accumulated chromium concentration (0.122 mgCr/g) was in plants grown in the last chamber of pond operated at pH 4.0 and 0.25 mgCr(+6)/L. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Evaluation of historical and analytical data on the TAN TSF-07 Disposal Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, S.M.

    1993-07-01

    The Technical Support Facility (TSF)-07 Disposal Pond, located at Test Area North at the Idaho National Engineering Laboratory, has been identified as part of Operable Unit 1-06 under the Comprehensive Environmental Response, Compensation, and Liability Act. The Environmental Restoration and Waste Management Department is conducting an evaluation of existing site characterization data for the TSF-07 Disposal Pond Track 1 investigation. The results from the site characterization data will be used to determine whether the operable unit will undergo a Track 2 investigation, an interim action, a remedial investigation/feasibility study, or result in a no-action decision. This report summarizes activities relevantmore » to wastewaters discharged to the pond and characterization efforts conducted from 1982 through 1991. Plan view and vertical distribution maps of the significant contaminants contained in the pond are included. From this evaluation it was determined that cobalt-60, cesium-137, americium-241, mercury, chromium, and thallium are significant contaminants for soils. This report also evaluates the migration tendencies of the significant contaminants into the perched water zone under the pond and the surrounding terrain to support the investigation.« less

  2. Decontamination and decommissioning of the BORAX-V leach pond. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.L.

    1985-01-01

    This report describes the decontamination and decommissioning (D and D) of the BORAX-V leach pond located at the Idaho National Engineering Laboratory (INEL). The leach pond became radioactively contaminated from the periodic discharge of low-level liquid waste during operation of the Boiling Water Reactor Experiments (BORAX) from 1954 to 1964. This report describes work performed to accomplish the D and D objectives of stabilizing the leach pond and preventing the spread of contamination. D and D of the BORAX-V leach pond consisted to backfilling the pond with clean soil, grading and seeding the area, and erecting a permanent marker tomore » identify very low-level subsurface contamination.« less

  3. Economic feasibility of microalgal bacterial floc production for wastewater treatment and biomass valorization: A detailed up-to-date analysis of up-scaled pilot results.

    PubMed

    Vulsteke, Elien; Van Den Hende, Sofie; Bourez, Lode; Capoen, Henk; Rousseau, Diederik P L; Albrecht, Johan

    2017-01-01

    The economic potential of outdoor microalgal bacterial floc (MaB-floc) raceway ponds as wastewater treatment technology and bioresource of biomass for fertilizer, shrimp feed, phycobiliproteins and biogas in Northwest Europe is assessed. This assessment is based on cost data provided by industry experts, on experimental data obtained from pilot-scale outdoor MaB-floc ponds treating aquaculture and food-industry effluents, and from different biomass valorization tests. MaB-floc ponds exhibit a cost-performance of EUR 0.25-0.50m -3 wastewater which is similar to conventional wastewater treatment technologies. The production cost of MaB-flocs in aquaculture and food industry effluent is EUR 5.29 and 8.07kg -1 TSS, respectively. Capital costs and pond mixing costs are the major expenses. Commercializing MaB-flocs as aquaculture feed generates substantial revenues, but the largest profit potential lies in production of high-purity phycobiliproteins from MaB-flocs. These results highlight the large economic potential of MaB-floc technology, and justify its further development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. How Healthy Is Our Pond?

    ERIC Educational Resources Information Center

    Sterling, Donna R.; Hargrove, Dori L.

    2014-01-01

    With crosscutting concepts such as stability and change in the "Next Generation Science Standards," this article was written for those who have wondered how to teach these concepts in a way that is relevant to students. In this investigation, students ask the question, "Why is the pond dirty?" As students investigate the health…

  5. Performance of a constructed wetland-pond system for treatment and reuse of wastewater from campus buildings.

    PubMed

    Ou, Wen-Sheng; Lin, Ying-Feng; Jing, Shuh-Ren; Lin, Hsien-Te

    2006-11-01

    A constructed wetland-pond system consisting of two free-water-surface-flow (FWS) wetland cells, a scenic pond, and a slag filter in series was used for reclamation of septic tank effluent from a campus building. The results show that FWS wetlands effectively removed major pollutants under a hydraulic loading rate between 2.1 and 4.2 cm/d, with average efficiencies ranging from 74 to 78% for total suspended solids, 73 to 88% for 5-day biochemical oxygen demand, 42 to 49% for total nitrogen, 34 to 70% for total phosphorous, 64 to 79% for total coliforms, and 90 to 99.9% for Escherichia coli. After passing through the scenic pond and slag filter, the reclaimed water was used for landscape irrigation. There were a variety of ornamental plants and aquatic animals established in the second FWS cell and scenic pond with good water quality, thus enhancing landscape and ecology amenity in campuses.

  6. Poultry slaughterhouse wastewater treatment plant for high quality effluent.

    PubMed

    Del Nery, V; Damianovic, M H Z; Moura, R B; Pozzi, E; Pires, E C; Foresti, E

    2016-01-01

    This paper assesses a wastewater treatment plant (WWTP) regarding the technology used, as well as organic matter and nutrient removal efficiencies aiming to optimize the treatment processes involved and wastewater reclamation. The WWTP consists of a dissolved air flotation (DAF) system, an upflow anaerobic sludge blanket (UASB) reactor, an aerated-facultative pond (AFP) and a chemical-DAF system. The removal efficiencies of chemical oxygen demand (COD) (97.9 ± 1.0%), biochemical oxygen demand (BOD) (98.6 ± 1.0%) and oil and grease (O&G) (91.1 ± 5.2%) at the WWTP, the nitrogen concentration of 17 ± 11 mg N-NH3 and phosphorus concentration of 1.34 ± 0.93 mg PO4(-3)/L in the final effluent indicate that the processes used are suitable to comply with discharge standards in water bodies. Nitrification and denitrification tests conducted using biomass collected at three AFP points indicated that nitrification and denitrification could take place in the pond.

  7. Nanopyroxene Grafting with β-Cyclodextrin Monomer for Wastewater Applications.

    PubMed

    Nafie, Ghada; Vitale, Gerardo; Carbognani Ortega, Lante; Nassar, Nashaat N

    2017-12-06

    Emerging nanoparticle technology provides opportunities for environmentally friendly wastewater treatment applications, including those in the large liquid tailings containments in the Alberta oil sands. In this study, we synthesize β-cyclodextrin grafted nanopyroxenes to offer an ecofriendly platform for the selective removal of organic compounds typically present in these types of applications. We carry out computational modeling at the micro level through molecular mechanics and molecular dynamics simulations and laboratory experiments at the macro level to understand the interactions between the synthesized nanomaterials and two-model naphthenic acid molecules (cyclopentanecarboxylic and trans-4-pentylcyclohexanecarboxylic acids) typically existing in tailing ponds. The proof-of-concept computational modeling and experiments demonstrate that monomer grafted nanopyroxene  or nano-AE of the sodium iron-silicate aegirine are found to be promising candidates for the removal of polar organic compounds from wastewater, among other applications. These nano-AE offer new possibilities for treating tailing ponds generated by the oil sands industry.

  8. A combination of solvent extraction and freeze thaw for oil recovery from petroleum refinery wastewater treatment pond sludge.

    PubMed

    Hu, Guangji; Li, Jianbing; Hou, Haobo

    2015-01-01

    A combination of solvent extraction and freeze thaw was examined for recovering oil from the high-moisture petroleum refinery wastewater treatment pond sludge. Five solvents including cyclohexane (CHX), dichloromethane (DCM), methyl ethyl ketone (MEK), ethyl acetate (EA), and 2-propanol (2-Pro) were examined. It was found that these solvents except 2-Pro showed a promising oil recovery rate of about 40%, but the recycling of DCM solvent after oil extraction was quite low. Three solvents (CHX, MEK and EA) were then selected for examining the effect of freeze/thaw treatment on improving the quality of recovered oil. This treatment increased the total petroleum hydrocarbon (TPH) content in recovered oil from about 40% to 60% for both MEK and EA extractions, but little effect was observed for CHX extraction. Although the solid residue after oil recovery had a significantly decreased TPH content, a high concentration of heavy metals was observed, indicating that this residue may require proper management. In general, the combination of solvent extraction with freeze/thaw is effective for high-moisture oily hazardous waste treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. One-dimensional transient finite difference model of an operational salinity gradient solar pond

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Golding, Peter

    1992-01-01

    This paper describes the modeling approach used to simulate the transient behavior of a salinity gradient solar pond. A system of finite difference equations are used to generate the time dependent temperature and salinity profiles within the pond. The stability of the pond, as determined by the capacity of the resulting salinity profile to suppress thermal convection within the primary gradient region of the pond, is continually monitored and when necessary adjustments are made to the thickness of the gradient zone. Results of the model are then compared to measurements taken during two representative seasonal periods at the University of Texas at El Paso's (UTEP's) research solar pond.

  10. Source, movement, and effects of nitrogen and phosphorus in three ponds in the headwaters of Hop Brook, Marlborough, Massachusetts

    USGS Publications Warehouse

    Briggs, John C.; Silvey, William D.

    1984-01-01

    The headwaters of Hop Brook near Marlborough, Massachusetts, contain a series of three in-line ponds--Hager Pond, Brist Millpond, and Carding Millpond--which receive over half of their surface-water inflow as effluent from the Marlborough Easterly Wastewater Treatment Plant. These ponds have a history of summer algal blooms and fish kills. Water entering these ponds contains quantities of nitrogen and phosphorus far higher than the levels known to promote excessive growth of aquatic vegetation. As the water moves through the three ponds, nitrogen levels decrease. Although some nitrogen is lost to the atmosphere by denitrification, the bulk of the nitrogen probably is retained in the pond sediments. There is a net decrease in phosphorus in the water leaving Carding Millpond compared to the water entering Hager Pond. However, during most sampling periods, the phosphorus concentration of water leaving Carding Millpond is still above the level known to cause excessive growth of aquatic vegetation in lakes. During certain summer periods, there appears to be release of some phosphorus from the sediments in Carding and Grist Millponds. No improvement in water quality of the three ponds can be expected until the concentrations of nutrients entering Hager Pond are reduced to levels that will not support excessive growth of aquatic vegetation. (USGS)

  11. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    PubMed

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000 cells mL(-1), equivalent to a biovolume of 2-6 mm3 L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds.

  12. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO2 scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds.

    PubMed

    Shilton, A N; Mara, D D; Craggs, R; Powell, N

    2008-01-01

    Waste stabilisation pond (WSP) technology offers some important advantages and interesting possibilities when viewed in the light of sustainable energy and carbon management. Pond systems stand out as having significant advantages due to simple construction; low (or zero) operating energy requirements; and the potential for bio-energy generation. Conventional WSP requires little or no electrical energy for aerobic treatment as a result of algal photosynthesis. Sunlight enables WSP to disinfect wastewaters very effectively without the need for any chemicals or electricity consumption and their associated CO(2) emissions. The energy and carbon emission savings gained over electromechanical treatment systems are immense. Furthermore, because algal photosynthesis consumes CO(2), WSP can be utilised as CO(2) scrubbers. The environmental and financial benefits of pond technology broaden further when considering the low-cost, energy production opportunities of anaerobic ponds and the potential of algae as a biofuel. As we assess future best practice in wastewater treatment technology, perhaps one of the greatest needs is an improved consideration of the carbon footprint and the implications of future increases in the cost of electricity and the value of biogas. (c) IWA Publishing 2008.

  13. Superior cottonwood and eucalyptus clones for biomass production in wastewater biomass production in wastewater bioremediation systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rockwood, D.L.; Pisano, S.M.; McConnell, W.V.

    1996-12-31

    Fast-growing cottonwood and Eucalyptus species have wastewater bioremediation potential. To estimate genetic variation in cottonwood`s response to sewage effluent, 10 clones were planted at Tallahassee in April 1992. Progenies and/or clones of E. Ampligolia (EA). E. Camaldulensis (EC), and E. Grandis (EG) were planted in a dry stormwater retention/bioremediation pond constructed in June 1993 at Tampa. Genetic variability within cottonwood and Eucalyptus species was observed and should be utilized to optimize biomass production and nutrient uptake in wastewater bioremediation applications. On good sites with freeze risk in northern Florida, three cottonwood clones are particularly productive. While as many as fourmore » EC and EG clones are promising, one EG clone appears superior for stormwater remediation, systems in central Florida.« less

  14. Cultivation of Chlorella zofingiensis in bench-scale outdoor ponds by regulation of pH using dairy wastewater in winter, South China.

    PubMed

    Huo, Shuhao; Wang, Zhongming; Zhu, Shunni; Zhou, Weizheng; Dong, Renjie; Yuan, Zhenhong

    2012-10-01

    Cultivation of Chlorella zofingiensis and nutrients removal in dairy wastewater were investigated in bench-scale outdoor ponds in winter, South China. The impacts of the two types of pH regulations, 5 ≈ 6% CO(2) and acetic acid (HAc) on this process were studied. After 6 days cultivation, the removal rates of total nitrogen (TN) and orthophosphate (PO(4)(3-)) using CO(2) regulation were better than those using HAc. The removal rates of PO(4)(3-) and TN were 97.5% and 51.7%, respectively using CO(2) regulation; 79.6% (TN) and 42.0% (PO(4)(3-)) were obtained using HAc regulation. Higher biomass, protein, sugar content, and stable pH control were found using CO(2) regulation. However, significantly higher lipid content (31.8%) was observed using HAc regulation. The dominant differences of fatty acids were the content of C18:1 and C18:3. The growth characteristics and environmental conditions especially during the typical logarithmic phase were also analyzed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Analysis of nitrogenous and algal oxygen demand in effluent from a system of aerated lagoons followed by polishing pond.

    PubMed

    Khorsandi, Hassan; Alizadeh, Rahimeh; Tosinejad, Horiyeh; Porghaffar, Hadi

    2014-01-01

    In this descriptive-analytical study, nitrogenous and algal oxygen demand were assessed for effluent from a system of facultative partially mixed lagoons followed by the polishing pond using 120 grab samples over 1 year. Filtered and non-filtered samples of polishing pond effluent were tested in the presence and absence of a nitrification inhibitor. Effective factors, including 5-day biochemical and chemical oxygen demand (BOD and COD), total suspended solids (TSS), dissolved oxygen, chlorophyll A, and temperature, were measured using standard methods for water and wastewater tests. The results were analyzed using repeated measures analysis of variance with SPSS version 16. Findings show that the annual mean of the total 5-day BOD in the effluent from the polishing pond consisted of 44.92% as the algal carbonaceous biochemical oxygen demand (CBOD), 43.61% as the nitrogenous biochemical oxygen demand (NBOD), and 11.47% as the soluble CBOD. According to this study, the annual mean ratios of algal COD and 5-day algal CBOD to TSS were 0.8 and 0.37, respectively. As the results demonstrate, undertaking quality evaluation of the final effluent from the lagoons without considering nitrogenous and algal oxygen demand would undermine effluent quality assessment and interpretation of the performance of the wastewater treatment plant.

  16. Occurrence and removal of butyltin compounds in a waste stabilisation pond of a domestic waste water treatment plant of a rural French town.

    PubMed

    Sabah, A; Bancon-Montigny, C; Rodier, C; Marchand, P; Delpoux, S; Ijjaali, M; Tournoud, M-G

    2016-02-01

    The aim of this study was to investigate the fate and behaviour of butyltin pollutants, including monobutyltin (MBT), dibutylin (DBT), and tributyltin (TBT), in waste stabilisation ponds (WSP). The study was conducted as part of a baseline survey and included five sampling campaigns comprising bottom sludge and the water column from each pond from a typical WSP in France. Butyltins were detected in all raw wastewater and effluents, reflecting their widespread use. Our results revealed high affinity between butyltins and particulate matter and high accumulation of butyltins in the sludge taken from anaerobic ponds. The dissolved butyltins in the influent ranged from 21.5 to 28.1 ng(Sn).L(-1) and in the effluent, from 8.8 to 29.3 ng(Sn).L(-1). The butyltin concentrations in the sludge ranged from 45.1 to 164 and 3.6-8.1 ng(Sn).g(-1) respectively in the first and last ponds. Our results showed an average treatment efficiency of 71% for MBT, 47% for DBT, 55% for TBT. Laboratory sorption experiments enabled the calculation of a distribution coefficient (Kd = 75,000 L.kg-1) between TBT and particulate matter from the WSPs. The Kd explained the accumulation and persistence of the TBT in the sludge after settling of particulate matter. The continuous supply of contaminated raw wastewater and the sorption-desorption processes in the ponds led to incomplete bio- and photolytic degradation and to the persistence of butyltins in dissolved and particulate matrices throughout the survey period. It is thus recommended to use shallow ponds and to pay particular attention when sludge is used for soil amendment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Flow rate analysis of wastewater inside reactor tanks on tofu wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Mamat; Sintawardani, N.; Astuti, J. T.; Nilawati, D.; Wulan, D. R.; Muchlis; Sriwuryandari, L.; Sembiring, T.; Jern, N. W.

    2017-03-01

    The research aimed to analyse the flow rate of the wastewater inside reactor tanks which were placed a number of bamboo cutting. The resistance of wastewater flow inside reactor tanks might not be occurred and produce biogas fuel optimally. Wastewater from eleven tofu factories was treated by multi-stages anaerobic process to reduce its organic pollutant and produce biogas. Biogas plant has six reactor tanks of which its capacity for waste water and gas dome was 18 m3 and 4.5 m3, respectively. Wastewater was pumped from collecting ponds to reactors by either serial or parallel way. Maximum pump capacity, head, and electrical motor power was 5m3/h, 50m, and 0.75HP, consecutively. Maximum pressure of biogas inside the reactor tanks was 55 mbar higher than atmosphere pressure. A number of 1,400 pieces of cutting bamboo at 50-60 mm diameter and 100 mm length were used as bacteria growth media inside each reactor tank, covering around 14,287 m2 bamboo area, and cross section area of inner reactor was 4,9 m2. In each reactor, a 6 inches PVC pipe was installed vertically as channel. When channels inside reactor were opened, flow rate of wastewater was 6x10-1 L.sec-1. Contrary, when channels were closed on the upper part, wastewater flow inside the first reactor affected and increased gas dome. Initially, wastewater flowed into each reactor by a gravity mode with head difference between the second and third reactor was 15x10-2m. However, head loss at the second reactor was equal to the third reactor by 8,422 x 10-4m. As result, wastewater flow at the second and third reactors were stagnant. To overcome the problem pump in each reactor should be installed in serial mode. In order to reach the output from the first reactor and the others would be equal, and biogas space was not filled by wastewater, therefore biogas production will be optimum.

  18. Effects of pond draining on biodiversity and water quality of farm ponds.

    PubMed

    Usio, Nisikawa; Imada, Miho; Nakagawa, Megumi; Akasaka, Munemitsu; Takamura, Noriko

    2013-12-01

    Farm ponds have high conservation value because they contribute significantly to regional biodiversity and ecosystem services. In Japan pond draining is a traditional management method that is widely believed to improve water quality and eradicate invasive fish. In addition, fishing by means of pond draining has significant cultural value for local people, serving as a social event. However, there is a widespread belief that pond draining reduces freshwater biodiversity through the extirpation of aquatic animals, but scientific evaluation of the effectiveness of pond draining is lacking. We conducted a large-scale field study to evaluate the effects of pond draining on invasive animal control, water quality, and aquatic biodiversity relative to different pond-management practices, pond physicochemistry, and surrounding land use. The results of boosted regression-tree models and analyses of similarity showed that pond draining had little effect on invasive fish control, water quality, or aquatic biodiversity. Draining even facilitated the colonization of farm ponds by invasive red swamp crayfish (Procambarus clarkii), which in turn may have detrimental effects on the biodiversity and water quality of farm ponds. Our results highlight the need for reconsidering current pond management and developing management plans with respect to multifunctionality of such ponds. Efectos del Drenado de Estanques sobre la Biodiversidad y la Calidad del Agua en Estanques de Cultivo. © 2013 Society for Conservation Biology.

  19. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    PubMed

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater.

    PubMed

    de-Bashan, Luz E; Trejo, Adan; Huss, Volker A R; Hernandez, Juan-Pablo; Bashan, Yoav

    2008-07-01

    In the summer of 2003, a microalga strain was isolated from a massive green microalgae bloom in wastewater stabilization ponds at the treatment facility of La Paz, B.C.S., Mexico. Prevailing environmental conditions were air temperatures over 40 degrees C, water temperature of 37 degrees C, and insolation of up to 2400 micromol m2 s(-1) at midday for several hours at the water surface for four months. The microalga was identified as Chlorella sorokiniana Shih. et Krauss, based on sequencing its entire 18S rRNA gene. In a controlled photo-bioreactor, this strain can grow to high population densities in synthetic wastewater at temperatures of 40-42 degrees C and light intensity of 2500 micromol m2 s(-1) for 5h daily and efficiently remove ammonium from the wastewater under these conditions better than under normal lower temperature (28 degrees C) and lower light intensity (60 micromol m2 s(-1)). When co-immobilized with the bacterium Azospirillum brasilense that promotes growth of microalgae, the population of microalga grew faster and removed even more ammonium. Under exposure to extreme growth conditions, the quantity of four photosynthetic pigments increased in the co-immobilized cultures. This strain of microalga has potential as a wastewater treatment agent under extreme conditions of temperature and light intensity.

  1. Effects of domestic wastewater treated by anaerobic stabilization on soil pollution, plant nutrition, and cotton crop yield.

    PubMed

    Uzen, Nese; Cetin, Oner; Unlu, Mustafa

    2016-12-01

    This study has aimed to determine the effects of treated wastewater on cotton yield and soil pollution in Southeastern Anatolia Region of Turkey during 2011 and 2012. The treated wastewater was provided from the reservoir operated as anaerobic stabilization. After treatment, suspended solids (28-60 mg/l), biological oxygen demand (29-30 mg/l), and chemical oxygen demand (71-112 mg/l) decreased significantly compared to those in the wastewater. There was no heavy metal pollution in the water used. There were no significant amounts of coliform bacteria, fecal coliform, and Escherichia coli compared to untreated wastewater. The cottonseed yield (31.8 g/plant) in the tanks where no commercial fertilizers were applied was considerably higher compared to the yield (17.2 g/plant) in the fertilized tanks where a common nitrogenous fertilizer was utilized. There were no significant differences between the values of soil pH. Soil electrical conductivity (EC) after the experiment increased from 0.8-1.0 to 0.9-1.8 dS/m. Heavy metal pollution did not occur in the soil and plants, because there were no heavy metals in the treated wastewater. It can be concluded that treated domestic wastewater could be used to grow in a controlled manner crops, such as cotton, that would not be used directly as human nutrients.

  2. Detection of purple sulfur bacteria in purple and non-purple dairy wastewaters

    USDA-ARS?s Scientific Manuscript database

    Purple sulfur bacteria (PSB) in livestock wastewaters use reduced sulfur compounds and simple volatile organics as growth factors. As a result, the presence of PSB in manure storage ponds or lagoons is often associated with reduced odors. In this study, our objectives were to use molecular- and cult...

  3. Basal-topographic control of stationary ponds on a continuously moving landslide

    USGS Publications Warehouse

    Coe, J.A.; McKenna, J.P.; Godt, J.W.; Baum, R.L.

    2009-01-01

    The Slumgullion landslide in the San Juan Mountains of southwestern Colorado has been moving for at least the last few hundred years and has multiple ponds on its surface. We have studied eight ponds during 30 trips to the landslide between July 1998 and July 2007. During each trip, we have made observations on the variability in pond locations and water levels, taken ground-based photographs to document pond water with respect to moving landslide material and vegetation, conducted Global Positioning System surveys of the elevations of water levels and mapped pond sediments on the landslide surface. Additionally, we have used stereo aerial photographs taken in October 1939, October 1940 and July 2000 to measure topographic profiles of the eight pond locations, as well as a longitudinal profile along the approximate centerline of the landslide, to examine topographic changes over a 60- to 61-year period of time. Results from field observations, analyses of photographs, mapping and measurements indicate that all pond locations have remained spatially stationary for 60-300 years while landslide material moves through these locations. Water levels during the observation period were sensitive to changes in the local, spring-fed, stream network, and to periodic filling of pond locations by sediment from floods, hyperconcentrated flows, mud flows and debris flows. For pond locations to remain stationary, the locations must mimic depressions along the basal surface of the landslide. The existence of such depressions indicates that the topography of the basal landslide surface is irregular. These results suggest that, for translational landslides that have moved distances larger than the dimensions of the largest basal topographic irregularities (about 200 m at Slumgullion), landslide surface morphology can be used as a guide to the morphology of the basal slip surface. Because basal slip surface morphology can affect landslide stability, kinematic models and stability

  4. Ground-Water-Quality Data for a Treated-Wastewater Plume Undergoing Natural Restoration, Ashumet Valley, Cape Cod, Massachusetts, 1994-2004

    USGS Publications Warehouse

    Savoie, Jennifer G.; Smith, Richard L.; Kent, Douglas B.; Hess, Kathryn M.; LeBlanc, Denis R.; Barber, Larry B.

    2006-01-01

    A plume of contaminated ground water extends from former disposal beds at the Massachusetts Military Reservation wastewater-treatment plant toward Ashumet Pond, and farther southward toward coastal ponds and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected periodically from monitoring wells and multilevel samplers during and after the disposal period to characterize the nature and extent of the contaminated ground water and to observe the water-quality changes after the wastewater disposal ceased. Data are presented here for water samples collected from 1994 through 2004 from 16 wells (at 2 locations) and 14 multilevel samplers (at 9 locations) along a longitudinal transect that extends through one of the disposal beds. Data collected from the treated-wastewater plume are presented in tabular format. These data include field parameters; concentrations of cations, anions, nitrate, ammonium, and organic and inorganic carbon species; and ultraviolet/visible absorbance. The natural restoration of the sand and gravel aquifer after removal of the nearly 60-year-long treated-wastewater source, along with interpretations of the water quality in the treated-wastewater plume on Cape Cod, have been documented in several published reports that are listed in the references.

  5. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  6. Carbon sequestration in a surface flow constructed wetland after 12 years of swine wastewater treatment.

    PubMed

    Reddy, Gudigopuram B; Raczkowski, Charles W; Cyrus, Johnsely S; Szogi, Ariel

    2016-01-01

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in a marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbon content and organic matter turnover rate. To better understand system performance and carbon dynamics, we measured plant dry matter, decomposition rates and soil carbon fractions. Plant litter decomposition rate was 0.0052 g day(-1) (±0.00119 g day(-1)) with an estimated half-life of 133 days. The detritus layer accumulated over the soil surface had much more humin than other C fractions. In marsh areas, soil C extracted with NaOH had four to six times higher amounts of humic acid, fulvic acid and humin than soil C extracted by cold and hot water, HCl/HF, and Na pyruvate. In the pond area, humic acid, fulvic acid and humin content were two to four times lower than in the marsh area. More soil C and N was found in the marsh area than in the pond area. These wetlands proved to be large sinks for stable C forms.

  7. Municipal wastewater treatment in Mexico: current status and opportunities for employing ecological treatment systems.

    PubMed

    Zurita, Florentina; Roy, Eric D; White, John R

    2012-06-01

    The aim of this paper is to evaluate the current status of municipal wastewater (MWW) treatment in Mexico, as well as to assess opportunities for using ecological treatment systems, such as constructed wetlands. In 2008, Mexico had 2101 MWW treatment plants that treated only 84 m3/s of wastewater (208 m3/s ofMWW were collected in sewer systems). Unfortunately, most treatment plants operate below capacity owing to a lack of maintenance and paucity of properly trained personnel. The main types of treatment systems applied in Mexico are activated sludge and waste stabilization ponds, which treat 44.3% and 18% of the MWW collected, respectively. As in many other developing nations around the world, there is a great need in Mexico for low-cost, low-maintenance wastewater treatment systems that are both economically and environmentally sustainable. In 2005, 24.3 million Mexicans lived in villages of less than 2500 inhabitants and 14.1 million lived in towns with 2500-15,000 inhabitants. An opportunity exists to extend the use of ecological treatment systems to these low population density areas and considerably increase the percentage of MWW that is treated in Mexico. Small-scale and medium-size constructed wetlands have been built successfully in some states, primarily during the past five years. Several barriers need to be overcome to increase the adoption and utilization of ecological wastewater technology in Mexico, including: a lack of knowledge about this technology, scarce technical information in Spanish, and the government's concentration on constructing MWW treatment plants solely in urban areas.

  8. Comparison between coagulation-flocculation and ozone-flotation for Scenedesmus microalgal biomolecule recovery and nutrient removal from wastewater in a high-rate algal pond.

    PubMed

    Oliveira, Gislayne Alves; Carissimi, Elvis; Monje-Ramírez, Ignacio; Velasquez-Orta, Sharon B; Rodrigues, Rafael Teixeira; Ledesma, María Teresa Orta

    2018-07-01

    The removal of nutrients by Scenedesmus sp. in a high-rate algal pond, and subsequent algal separation by coagulation-flocculation or flotation with ozone to recover biomolecules, were evaluated. Cultivation of Scenedesmus sp. in wastewater resulted in complete NH 3 -H removal, plus 93% total nitrogen and 61% orthophosphate removals. Ozone-flotation obtained better water quality results than coagulation-flocculation for most parameters (NH 3 -N, NTK, nitrate and nitrite) except orthophosphate. Ozone-flotation, also produced the highest recovery of lipids, carbohydrates and proteins which were 0.32 ± 0.03, 0.33 ± 0.025 and 0.58 ± 0.014 mg/mg of biomass, respectively. In contrast, there was a low lipid extraction of 0.21 mg of lipids/mg of biomass and 0.12-0.23 mg of protein/mg of biomass in the coagulation-flocculation process. In terms of biomolecule recovery and water quality, ozone showed better results than coagulation-flocculation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. A review of the sustainable value and disposal techniques, wastewater stabilisation ponds sludge characteristics and accumulation.

    PubMed

    Keffala, Chéma; Harerimana, Casimir; Vasel, Jean-luc

    2013-01-01

    Based on worldwide works available in international literature, this paper describes the status of sewage sludge resulting from settleable solids in waste stabilisation ponds (WSP). This review presents, in detail, sludge characteristics, production and accumulation rates in order to provide background information to those who expect to advise or get involved with sewage disposal in situations where resources are limited. Knowing that several years are usually required for a sludge removal operation and that the long-term sustainability of WSP systems is dependent on the safe and effective management of their sludge, its cost must be estimated and taken into account in the annual maintenance costs of the processes. Thus, this paper intends to summarise desludging methods and their financial estimation. Even when ponds have been functioning for several years, most of the sediments are stabilised well, the final disposal is an issue in terms of risk due, for example, to their content in nematode eggs. More generally, the pathogen content in sludge from WSP ponds has to be known to define an appropriate management and to safeguard public health. Based on existing data, the rates and distribution of helminth eggs will be presented and practical treatment methods will be suggested. A number of sludge utilisation and disposal pathways will also be summarised. Sludge activity in terms of oxygen consumption is also discussed in order to gather more information to improve pond design and keep an economic and sustainable value of WSP. The objectives of the present review are to advance knowledge and gather scientific and technical information on all aspects of sludge management including production, characterisation, management, agricultural reuse and ultimate disposal.

  10. Winery wastewater treatment using the land filter technique.

    PubMed

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  11. Disposal of hypergolic propellants, phase 6 task 4. Disposal pond products

    NASA Technical Reports Server (NTRS)

    Cohenour, B. C.; Wiederhold, C. N.

    1977-01-01

    Waste monomethyl hydrazine scrubber liquor, consisting of aqueous solutions containing small amounts of CH4, Cl2, CH3Cl, CH2Cl2, and CHCl3 as well as large amounts of CH3OH is scheduled to be dumped in stabilization ponds along with nitrate and nitrite salt solutions obtained as waste liquors from the N2O4 scrubbers. The wastes are investigated as to the hazardous materials generated by such combinations of items as described as well as the finite lifetime of such materials in the stabilization ponds. The gas liquid chromatograph was used in the investigation. A series of experiments designed to convert nitrate and nitrite salts to the environmentally innocuous N2O and N2 using solar energy is reported. Results indicate that this solar conversion is feasible.

  12. Denitrification and anammox in tropical aquaculture settlement ponds: an isotope tracer approach for evaluating N2 production.

    PubMed

    Castine, Sarah A; Erler, Dirk V; Trott, Lindsay A; Paul, Nicholas A; de Nys, Rocky; Eyre, Bradley D

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N(2)) was produced in all ponds, although potential rates were low (0-7.07 nmol N cm(-3) h(-1)) relative to other aquatic systems. Denitrification was the main driver of N(2) production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N(2). A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N(2) production and N removal from aquaculture wastewater.

  13. Denitrification and Anammox in Tropical Aquaculture Settlement Ponds: An Isotope Tracer Approach for Evaluating N2 Production

    PubMed Central

    Castine, Sarah A.; Erler, Dirk V.; Trott, Lindsay A.; Paul, Nicholas A.; de Nys, Rocky; Eyre, Bradley D.

    2012-01-01

    Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater. PMID:22962581

  14. Agricultural ponds support amphibian populations

    USGS Publications Warehouse

    Knutson, M.G.; Richardson, W.B.; Reineke, D.M.; Gray, B.R.; Parmelee, J.R.; Weick, S.E.

    2004-01-01

    In some agricultural regions, natural wetlands are scarce, and constructed agricultural ponds may represent important alternative breeding habitats for amphibians. Properly managed, these agricultural ponds may effectively increase the total amount of breeding habitat and help to sustain populations. We studied small, constructed agricultural ponds in southeastern Minnesota to assess their value as amphibian breeding sites. Our study examined habitat factors associated with amphibian reproduction at two spatial scales: the pond and the landscape surrounding the pond. We found that small agricultural ponds in southeastern Minnesota provided breeding habitat for at least 10 species of amphibians. Species richness and multispecies reproductive success were more closely associated with characteristics of the pond (water quality, vegetation, and predators) compared with characteristics of the surrounding landscape, but individual species were associated with both pond and landscape variables. Ponds surrounded by row crops had similar species richness and reproductive success compared with natural wetlands and ponds surrounded by nongrazed pasture. Ponds used for watering livestock had elevated concentrations of phosphorus, higher turbidity, and a trend toward reduced amphibian reproductive success. Species richness was highest in small ponds, ponds with lower total nitrogen concentrations, tiger salamanders (Ambystoma tigrinum) present, and lacking fish. Multispecies reproductive success was best in ponds with lower total nitrogen concentrations, less emergent vegetation, and lacking fish. Habitat factors associated with higher reproductive success varied among individual species. We conclude that small, constructed farm ponds, properly managed, may help sustain amphibian populations in landscapes where natural wetland habitat is rare. We recommend management actions such as limiting livestock access to the pond to improve water quality, reducing nitrogen input, and

  15. Egg wash wastewater: estrogenic risk or environmental asset?

    PubMed

    Shappell, Nancy W

    2013-07-01

    already at the proposed aquatic no effect concentration for 17β-E2 and would be expected to decrease further as wastewater passes through 2 consecutive storage ponds before application on field crops for irrigation. The original project plan was to follow the wastewater as it was applied by aerial irrigation and concomitant surface runoff, but based on the consistent and extremely low concentration of estrogenic activity of the wastewater from the treatment lagoon, it was concluded that activity would be below limits of quantitation by E-Screen in water used for irrigation from the storage ponds. Use of egg wash wastewater--or gray water--to irrigate crops removes the cost and burden of wastewater treatment by the local wastewater plant, poses little to no potential threat of estrogenic endocrine disruption, and supports the conservation of water resources through the use of wastewater irrigation. Copyright © 2013 SETAC.

  16. Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya.

    PubMed

    K'oreje, K O; Vergeynst, L; Ombaka, D; De Wispelaere, P; Okoth, M; Van Langenhove, H; Demeestere, K

    2016-04-01

    Emerging organic contaminants have not received a lot of attention in developing countries, particularly Africa, although problems regarding water quantity and quality are often even more severe than in more developed regions. This study presents general water quality parameters as well as unique data on concentrations and loads of 24 pharmaceuticals including antibiotic, anti(retro)viral, analgesic, anti-inflammatory and psychiatric drugs in three wastewater treatment plants, three rivers and three groundwater wells in Nairobi and Kisumu. This allowed studying removal efficiencies in wastewater treatment, identifying important sources of pharmaceutical pollution and distinguishing dilution effects from natural attenuation in rivers. In general, antiretrovirals and antibiotics, being important in the treatment of common African diseases such as HIV and malaria, were in all matrices more prevalent as compared to the Western world. Wastewater stabilization ponds removed pharmaceuticals with an efficiency between 11 and 99%. Despite this large range, a different removal is observed for a number of compounds, as compared to more conventional activated sludge systems. Total concentrations in river water (up to 320 μg L(-1)) were similar or exceeded concentrations in untreated wastewater, with domestic discharges from slums, wastewater treatment plant effluent and waste dumpsites identified as important sources. In shallow wells situated next to pit latrines and used for drinking water, the recalcitrant antiretroviral nevirapine was measured at concentrations as high as 1-2 μg L(-1). Overall, distinct pharmaceutical contamination patterns as compared to the Western world can be concluded, which might be a trigger for further research in developing regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Tyler, S. W.; Childress, A. E.

    2010-12-01

    The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination

  18. Mechanism of nitrogen removal in wastewater lagoon: a case study.

    PubMed

    Vendramelli, Richard A; Vijay, Saloni; Yuan, Qiuyan

    2017-06-01

    Ammonia being a nutrient facilitates the growth of algae in wastewater and causes eutrophication. Nitrate poses health risk if it is present in drinking water. Hence, nitrogen removal from wastewater is required. Lagoon wastewater treatment systems have become common in Canada these days. The study was conducted to understand the nitrogen removal mechanisms from the existing wastewater treatment lagoon system in the town of Lorette, Manitoba. The lagoon system consists of two primary aerated cells and two secondary unaerated cells. Surface samples were collected periodically from lagoon cells and analysed from 5 May 2015 to 9 November 2015. The windward and leeward sides of the ponds were sampled and the results were averaged. It was found that the free ammonia volatilization to the atmosphere is responsible for most of the ammonia removal. Ammonia and nitrate assimilation into biomass and biological growth in the cells appears to be the other mechanisms of nitrogen removal over the monitoring period. Factors affecting the nitrogen removal efficiency were found to be pH, temperature and hydraulic residence time. Also, the ammonia concentration in the effluent from the wastewater treatment lagoon was compared with the regulatory standard.

  19. Groundwater-quality data for a treated-wastewater plume near the Massachusetts Military Reservation, Ashumet Valley, Cape Cod, Massachusetts, 2006-08

    USGS Publications Warehouse

    Savoie, Jennifer G.; LeBlanc, Denis R.; Fairchild, Gillian M.; Smith, Richard L.; Kent, Douglas B.; Barber, Larry B.; Repert, Deborah A.; Hart, Charles P.; Keefe, Steffanie H.; Parsons, Luke A.

    2012-01-01

    A plume of contaminated groundwater extends from former disposal beds at the Massachusetts Military Reservation's wastewater-treatment plant toward Ashumet Pond, coastal ponds, and Vineyard Sound, Cape Cod, Massachusetts. Treated sewage-derived wastewater was discharged to the rapid-infiltration beds for nearly 60 years before the disposal site was moved to a different location in December 1995. Water-quality samples were collected from monitoring wells, multilevel samplers, and profile borings to characterize the nature and extent of the contaminated groundwater and to observe the water-quality changes after the wastewater disposal ceased. Data are presented here for water samples collected in 2007 from 394 wells (at 121 well-cluster locations) and 780 multilevel-sampler ports (at 42 locations) and in 2006-08 at 306 depth intervals in profile borings (at 20 locations) in and near the treated-wastewater plume. Analyses of these water samples for field parameters (specific conductance, pH, dissolved oxygen and phosphate concentrations, and alkalinity); absorbance of ultraviolet/visible light; and concentrations of nitrous oxide, dissolved organic carbon, methylene blue active substances, selected anions and nutrients, including nitrate and ammonium, and selected inorganic solutes, including cations, anions, and minor elements, are presented in tabular format. The natural restoration of the sand and gravel aquifer after removal of the treated-wastewater source, along with interpretations of the water quality in the treated-wastewater plume, have been documented in several published reports that are listed in the references.

  20. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.

    PubMed

    Franca, R D G; Ortigueira, J; Pinheiro, H M; Lourenço, N D

    2017-09-01

    Treatment of the highly polluting and variable textile industry wastewater using aerobic granular sludge (AGS) sequencing batch reactors (SBRs) has been recently suggested. Aiming to develop this technology application, two feeding strategies were compared regarding the capacity of anaerobic-aerobic SBRs to deal with disturbances in the composition of the simulated textile wastewater feed. Both a statically fed, anaerobic-aerobic SBR and an anaerobic plug-flow fed, anaerobic-aerobic SBR could cope with shocks of high azo dye concentration and organic load, the overall chemical oxygen demand and color removal yields being rapidly restored to 80%. Yet, subsequent azo dye metabolite bioconversion was not observed, along the 315-day run. Moreover, switching from a starch-based substrate to acetate in the feed composition deteriorated AGS stability. Overall, the plug-flow fed SBR recovered more rapidly from the imposed disturbances. Further research is needed towards guaranteeing long-term AGS stability during the treatment of textile wastewater.

  1. Intermediate Pond Sizes Contain the Highest Density, Richness, and Diversity of Pond-Breeding Amphibians

    PubMed Central

    Semlitsch, Raymond D.; Peterman, William E.; Anderson, Thomas L.; Drake, Dana L.; Ousterhout, Brittany H.

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  2. [FTIR and 13C NMR Analysis of Dissolved Organic Matter (DOM) in the Treatment Process of Tannery Wastewater].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Tang, Ze-heng; Wang, Jia-hong

    2015-05-01

    Nowadays, the wastewater quantity discharged yearly from tannery industry is around 0. 2 billion t in China. The contaminants of tannery wastewater include macromolecular organic matters, such as grease, fur scraps and collagen, and the alkaline wastewater appears to be of high content of salt and COD. The quality of tannery wastewater is monitored strictly among all kinds of industry wastewater. In the treatment process of tannery wastewater, the quality of inlet and outlet water is generally analyzed. In fact, the transformation behavior of contaminants should be additionally checked to optimize the treatment conditions. Dissolved organic matter (DOM) is commonly existed in water-bodies and helpful to understand the physicochemical characteristics, while the related work should be further studied on tannery wastewater. The approaches of elemental analysis, thermal gravimetric analysis (TG), Fourier infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (13C NMR) were used to reveal the characteristics of DOM in the treatment process of tannery wastewater. The results showed the carbon content of DOM samples increased gradually, atomic ratios of H/C increased firstly and then decreased, indicating the organic matters were decomposed into chain structures firstly, finally forming the component hard to degraded. The pyrolysis process of DOM mainly proceeded in the regions of 110~530 °C (aliphatic compound, protein, etc. ) and 530~800 °C (aromatic ring, single bond of C-C, etc. ). The functional groups of DOM included -OH, -NH2, C=O and so on, and the aromatic substances were detected, shown from FTIR figures, in the later period of the reaction, caused by the metabolism effect of micro-organism. The content of alkoxy-C increased to the maximum in the second biochemical pond, and the minimum content of aromatic-C appeared in the second biochemical pond, suggesting the transformation behavior of carbon functional groups. The investigation on DOM in tannery

  3. Innovative Treatment Technologies for Natural Waters and Wastewaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energymore » usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.« less

  4. Estrogenic and AhR activities in dissolved phase and suspended solids from wastewater treatment plants.

    PubMed

    Dagnino, Sonia; Gomez, Elena; Picot, Bernadette; Cavaillès, Vincent; Casellas, Claude; Balaguer, Patrick; Fenet, Hélène

    2010-05-15

    The distribution of estrogen receptor (ERalpha) and Aryl Hydrocarbon Receptor (AhR) activities between the dissolved phase and suspended solids were investigated during wastewater treatment. Three wastewater treatment plants with different treatment technologies (waste stabilization ponds (WSPs), trickling filters (TFs) and activated sludge supplemented with a biofilter system (ASB)) were sampled. Estrogenic and AhR activities were detected in both phases in influents and effluents. Estrogenic and AhR activities in wastewater influents ranged from 41.8 to 79 ng/L E(2) Eq. and from 37.9 to 115.5 ng/L TCDD Eq. in the dissolved phase and from 5.5 to 88.6 ng/g E(2) Eq. and from 15 to 700 ng/g TCDD Eq. in the suspended solids. For both activities, WSP showed greater or similar removal efficiency than ASB and both were much more efficient than TF which had the lowest removal efficiency. Moreover, our data indicate that the efficiency of removal of ER and AhR activities from the suspended solid phase was mainly due to removal of suspended solids. Indeed, ER and AhR activities were detected in the effluent suspended solid phase indicating that suspended solids, which are usually not considered in these types of studies, contribute to environmental contamination by endocrine disrupting compounds and should therefore be routinely assessed for a better estimation of the ER and AhR activities released in the environment. Copyright 2010 Elsevier B.V. All rights reserved.

  5. Operation of Wastewater Treatment Plants: A Field Study Training Program. Volume I. Second Edition.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This manual was prepared by experienced wastewater collection system workers to provide a home study course to develop new qualified workers and expand the abilities of existing workers. This volume is directed primarily towards entry-level operators and the operators of ponds, package plants, or small treatment plants. Ten chapters examine the…

  6. Thermal evolutions of two kinds of melt pond with different salinity

    NASA Astrophysics Data System (ADS)

    Kim, Joo-Hong; Wilkinson, Jeremy; Moon, Woosok; Hwang, Byongjun; Granskog, Mats

    2016-04-01

    Melt ponds are water pools on sea ice. Their formation reduces ice surface albedo and alter surface energy balance, by which the ice melting and freezing processes are regulated. Thus, better understanding of their radiative characteristics has been vital to improve the simulation of melting/freezing of sea ice in numerical models. A melt pond would preserve nearly fresh water if it formed on multi-year ice and no flooding of sea water occurred, whereas a melt pond would contain more salty water if it formed on thinner and porous first-year ice, if there were an inflow of sea water by streams or cracks. One would expect that the fluid dynamic/thermodynamic properties (e.g., turbulence, stability, etc.) of pond water are influenced by the salinity, so that the response of pond water to any heat input (e.g., shortwave radiation) would be different. Therefore, better understanding of the salinity-dependent thermal evolution also has significant potential to improve the numerical simulation of the sea ice melting/freezing response to radiative thermal forcing. To observe and understand the salinity-dependent thermal evolution, two ice mass balance buoys (IMBs) were deployed in two kinds (fresh and salty) of melt pond on a same ice floe on 13 August 2015 during Araon Arctic cruise. The thermistor chain, extending from the air through the pond and ice into the sea water, was deployed through a drilled borehole inside the pond. Besides, the IMBs were also accompanied with three broadband solar radiation sensors (two (up and down) in the air over melt pond and one upward-looking under sea ice) to measure the net shortwave radiation at the pond surface and the penetrating solar radiation through ice. Also, the web camera was installed to observe any updates in the conditions of equipment and surrounding environment (e.g., weather, surface state, etc.). On the date of deployment, the fresh pond had salinity of 2.3 psu, light blue color, lots of slush ice particles which

  7. Hydroponic root mats for wastewater treatment-a review.

    PubMed

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  8. Arctic melt ponds and energy balance in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  9. Effects of wastewater sludge and its detergents on the stability of rotavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.L.; Ashley, C.S.

    1980-06-01

    Wastewater sludge reduced the heat required to inactivate rotavirus SA-11, and ionic detergents were identified as the sludge components responsible for this effect. A similar result was found previously with reovirus. The quantitative effects of individual ionic detergents on rotavirus and reovirus were very different, and rotavirus was found to be extremely sensitive to several of these detergents. However, neither virus was destabilized by nonionic detergents. On the contrary, rotavirus was stabilized by a nonionic detergent against the potent destabilizing effects of the ionic detergent sodium dodecyl sulfate. The destabilizing effects of both cationic and anionic detergents on rotavirus weremore » greatly altered by changes in the pH of the medium.« less

  10. Geohydrology and limnology of Walden Pond, Concord, Massachusetts

    USGS Publications Warehouse

    Colman, John A.; Friesz, Paul J.

    2001-01-01

    nitrogen inputs (858 kilograms per year) were dominated (30 percent) by plume water from the septic leach field and, possibly, by swimmers (34 percent). Phosphorus inputs (32 kilograms per year) were dominated by atmospheric dry deposition, background ground water, and estimated swimmer inputs. Swimmer inputs may represent more than 50 percent of the phosphorus load during the summer. The septic-system plume did not contribute phosphorus, but increased the nitrogen to phosphorus ratio for inputs from 41 to 59, on an atom-to-atom basis. The ratio of nitrogen to phosphorus in input loads and within the lake indicated algal growth would be strongly phosphorus limited. Nitrogen supply in excess of plant requirements may mitigate against nitrogen fixing organisms including undesirable blooms of cyanobacteria. Based on areal nutrient loading, Walden Pond is a mesotrophic lake. Hypolimnetic oxygen demand of Walden Pond has increased since a profile was measured in 1939. Currently (1999), the entire hypolimnion of Walden Pond becomes devoid of dissolved oxygen before fall turnover in late November; whereas historical data indicated dissolved oxygen likely remained in the hypolimnion during 1939. The complete depletion of dissolved oxygen likely causes release of phosphorus from the sediments. Walden Pond contains a large population of the deep-growing benthic macro alga Nitella, which has been hypothesized to promote water clarity in other clear-water lakes by sequestering nutrients and keeping large areas of the sediment surface oxygenated. Loss of Nitella populations in other lakes has correlated with a decline in water quality. Although the Nitella standing crop is large in Walden Pond, Nitella still appears to be controlled by nutrient availability. Decreasing phosphorus inputs to Walden Pond, by amounts under anthropogenic control would likely contribute to the stability of the Nitella population in the metalimnion, may reverse oxygen depletion in the hypolimnion, and decreas

  11. Biodegradation of phytosanitary products in biological wastewater treatment.

    PubMed

    Massot, A; Estève, K; Noilet, P; Méoule, C; Poupot, C; Mietton-Peuchot, M

    2012-04-15

    Agricultural activity generates two types of waste: firstly, biodegradable organic effluents generally treated by biological processes and, secondly, phytosanitary effluents which contain residues of plant protection products. The latter are collected and treated. Current technological solutions are essentially based on concentration or physical-chemical processes. However, recent improvements in the biodegradability of pesticides open the way to the consideration of alternative, biological, treatment using mixed liquor from wastewater plant activated sludge. The feasibility of the biological treatment of viticultural effluents has been evaluated by the application of pesticides to activated sludge. The necessity for selection of a pesticide-resistant biomass has been highlighted. The elimination of the phytosanitary products shows the potential of a resistant biomass in the treatment of pesticides. The aerated biological storage ponds at three wineries, followed by a sand or reed-bed filter, were used for the treatment of the total annual volume of the viticulture effluents and validate the laboratory experiments. The results show that the biological purification of pesticides by activated sludge is possible by allowing approximately 8 days for biomass adaptation. Stability of purification occurs between 20 and 30 days. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Emissions of organic compounds from produced water ponds II: Evaluation of flux chamber measurements with inverse-modeling techniques.

    PubMed

    Tran, Huy N Q; Lyman, Seth N; Mansfield, Marc L; O'Neil, Trevor; Bowers, Richard L; Smith, Ann P; Keslar, Cara

    2018-07-01

    In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2-C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013-2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin. This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.

  13. Estimated discharge of treated wastewater in Florida, 1990

    USGS Publications Warehouse

    Marella, R.L.

    1994-01-01

    According to the Florida Department of Environ- mental Protection, 5,100 wastewater treatment systems were in operation during 1990. Of this total, 72 percent were domestic wastewater facilities and 28 percent were industrial waste- water facilities. The number of wastewater systems inventoried for 1990 was 1,062 (systems that treated and discharged more than 0.01 Mgal/d or had a plant capacity of greater than 0.04 Mgal/d. Based on this inventory, the estimated discharge of treated wastewater in Florida during 1990 totaled 1,638 million gallons per day. Approxi- mately 65 percent of this water was discharged to surface water during 1990 and the remaining 35 percent was discharged to ground water. Discharge to surface water includes effluent outfalls into the Atlantic Ocean (32 percent), while the re- maining (68 percent) is discharged into the Gulf of Mexico, bays, rivers, wetlands, and other surface water bodies throughout Florida. Discharge to ground-water includes treated effluent outfalls to land application systems (reuse systems and spray fields), drain fields, percolation ponds (51 percent), and to injection wells (49 percent). An estimated 322 million gallons per day of the treated domestic and industrial wastewater was reused during 1990. Discharge of treated domestic wastewater from the 994 systems inventoried in Florida during 1990 totaled 1,353 million gallons per day and served an estimated 8.58 million people (66 percent of the population of Florida in 1990). The remaining 34 percent of the popu- lation (4.36 million) are served by the 2,700 smaller domestic wastewater systems or have individual septic tanks. In 1990, there were 1.56 million septic tanks in Florida. Discharge of industrial wastewater was inventoried for 68 systems in 1990 and totaled 285 million gallons per day. Discharge of domestic wastewater in- creased more than 20 percent and industrial wastewater discharge increased 5 percent from 1985 to 1990. (USGS)

  14. Using on-farm sedimentation ponds to improve microbial quality of irrigation water in urban vegetable farming in Ghana.

    PubMed

    Keraita, B; Drechsel, P; Konradsen, F

    2008-01-01

    This paper presents an assessment of the potential of using on-farm ponds to reduce levels of microbial contamination in wastewater--contaminated irrigation water. The study involved observations on the use of ponds in urban agriculture in Kumasi, Ghana, and more than 300 irrigation water samples were taken for physico-chemical and microbial laboratory analysis. The study shows that while on-farm ponds are commonly used, their potential to remove pathogens through sedimentation has not been fully optimized. Two-thirds of helminth eggs were in the sediments and careful collection of irrigation water without disturbing sediments reduced helminth eggs in irrigation water by about 70%. Helminth eggs reduced from about 5 to less than 1 egg per litre in three days in both dry and wet seasons while thermotolerant coliforms took six days in the dry season to reduce from about 8 to 4 log units per 100 ml, to meet the WHO guidelines. For optimal pathogen removal, better pond designs, farmers' training on collection of water with minimal disturbance and any other means to enhance sedimentation and pathogen die-off can be essential components of a multiple-barrier approach complementing farm-based measures like simple filtration techniques, better irrigation methods and post-harvest contamination.

  15. Understanding the biological activity of high rate algae ponds through the calculation of oxygen balances.

    PubMed

    Arbib, Zouhayr; de Godos Crespo, Ignacio; Corona, Enrique Lara; Rogalla, Frank

    2017-06-01

    Microalgae culture in high rate algae ponds (HRAP) is an environmentally friendly technology for wastewater treatment. However, for the implementation of these systems, a better understanding of the oxygenation potential and the influence of climate conditions is required. In this work, the rates of oxygen production, consumption, and exchange with the atmosphere were calculated under varying conditions of solar irradiance and dilution rate during six months of operation in a real scale unit. This analysis allowed determining the biological response of these dynamic systems. The rates of oxygen consumption measured were considerably higher than the values calculated based on the organic loading rate. The response to light intensity in terms of oxygen production in the bioreactor was described with one of the models proposed for microalgae culture in dense concentrations. This model is based on the availability of light inside the culture and the specific response of microalgae to this parameter. The specific response to solar radiation intensity showed a reasonable stability in spite of the fluctuations due to meteorological conditions. The methodology developed is a useful tool for optimization and prediction of the performance of these systems.

  16. Hydrodynamic evaluation of a full-scale facultative pond by computational fluid dynamics (CFD) and field measurements.

    PubMed

    Passos, Ricardo Gomes; von Sperling, Marcos; Ribeiro, Thiago Bressani

    2014-01-01

    Knowledge of the hydraulic behaviour is very important in the characterization of a stabilization pond, since pond hydrodynamics plays a fundamental role in treatment efficiency. An advanced hydrodynamics characterization may be achieved by carrying out measurements with tracers, dyes and drogues or using mathematical simulation employing computational fluid dynamics (CFD). The current study involved experimental determinations and mathematical simulations of a full-scale facultative pond in Brazil. A 3D CFD model showed major flow lines, degree of dispersion, dead zones and short circuit regions in the pond. Drogue tracking, wind measurements and dye dispersion were also used in order to obtain information about the actual flow in the pond and as a means of assessing the performance of the CFD model. The drogue, designed and built as part of this research, and which included a geographical positioning system (GPS), presented very satisfactory results. The CFD modelling has proven to be very useful in the evaluation of the hydrodynamic conditions of the facultative pond. A virtual tracer test allowed an estimation of the real mean hydraulic retention time and mixing conditions in the pond. The computational model in CFD corresponded well to what was verified in the field.

  17. Survey of the Occurrence and Human Infective Potential of Giardia duodenalis and Cryptosporidium spp. in Wastewater and Different Surface Water Sources of Western Romania.

    PubMed

    Imre, Kálmán; Morar, Adriana; Ilie, Marius S; Plutzer, Judit; Imre, Mirela; Emil, Tîrziu; Herbei, Mihai V; Dărăbuș, Gheorghe

    2017-10-01

    From the group of parasitic protozoa, Giardia and Cryptosporidium are the most common pathogens spread in surface water sources, representing a continuous threat to public health and water authorities. The aim of this survey was to assess the occurrence and human infective potential of these pathogens in treated wastewaters and different surface water sources. A total of 76 western Romanian water bodies in four counties (Arad, Bihor, Caraș-Severin and Timiș) were investigated, including the effluents of wastewater treatment plants (n = 11) and brooks (n = 19), irrigation channels (n = 8), lakes (n = 16), and ponds (n = 22). Water samples were collected through polyester microfiber filtration. Giardia cysts and Cryptosporidium oocysts were isolated using immunomagnetic separation, according to the US EPA 1623 method, followed by their identification and counting by immunofluorescence (IF) microscopy. All samples were screened through PCR-based techniques targeting the gdh gene for Giardia spp. and the 18S rRNA gene for Cryptosporidium spp., followed by sequencing of the positive results. Cryptosporidium-positive samples were subtyped based on sequence analysis of the GP60 gene. Giardia spp. was found in all tested water types with a cumulative detection rate of 90.1% in wastewaters, 26.3% in brooks, 37.5% in irrigation channels, 31.2% in lakes, and 36.4% in ponds. Except for ponds, all monitored water bodies harbored the Giardia duodenalis AII subassemblage with human infective potential. In addition, the ruminant origin assemblage E was widely distributed, and the domestic/wild canid-specific assemblage D was also recorded in a pond. Three (27.3%) wastewater samples were Cryptosporidium positive, and the identified species was the zoonotic Cryptosporidium parvum, with IIaA15G2R1 (n = 2) and IIdA18G1 subtypes. The results highlight that this threat to the public health must be brought to the attention of epidemiologists, health officials

  18. Temporal stability of Escherichia coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of water sources is an important water quality issue for agricultural irrigation ponds. Escherichia coli is a common microbial indicator used to evaluate recreational and irrigation water quality. We hypothesized that there is a temporally stable pattern of E.coli concentrations ...

  19. PONDS Watering System for Veggie

    NASA Image and Video Library

    2018-03-07

    Tomato plants are growing inside a laboratory at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. The plant growth is being tested in the Veggie Passive Orbital Nutrient Delivery System (PONDS). Veggie PONDS is a direct follow-on to the Veg-01 and Veg-03 hardware and plant growth validation tests. The primary goal of this newly developed plant growing system, Veggie PONDS, is to demonstrate uniform plant growth. PONDS units have features that are designed to mitigate microgravity effects on water distribution, increase oxygen exchange and provide sufficient room for root zone growth. PONDS is planned for use during Veg-04 and Veg-05 on the International Space Station after the Veggie PONDS Validation flights on SpaceX-14 and OA-9.

  20. Chemical treatment costs reduced with in-pond receway systems comopared to traditional pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Production systems such as in-pond raceway systems (IPRS) and split ponds are providing an alternative to traditional pond culture for raising catfish in several southeastern states. One advantage noted by farmers utilizing these systems is the reduced cost associated with the chemical treatment of...

  1. The effectiveness of flocculants on inorganic and metallic species removal during aerobic digestion of wastewater from poultry processing plant

    USDA-ARS?s Scientific Manuscript database

    : Large amount of water is used for processing of our food supplies, especially in meat processing plants. The resulting amount of wastewater cannot be discarded freely back into natural settings due to regulatory mandates, whether the sinks would be rivers, ponds, or other natural systems. These wa...

  2. The effectiveness of flocculants on inorganic and metallic species removal during aerobic digestion of wastewater from poultry processing plant

    USDA-ARS?s Scientific Manuscript database

    Large amount of water is used for processing of our food supplies, especially in meat processing plants. The resulting amount of wastewater cannot be discarded freely back into natural settings due to regulatory mandates, whether the sinks would be rivers, ponds, or other natural systems. These wast...

  3. PONDS Watering System for Veggie

    NASA Image and Video Library

    2018-03-07

    Tomato plants are growing under red and blue LED lights in a growth chamber inside a laboratory at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. The plant growth is being tested in the Veggie Passive Orbital Nutrient Delivery System (PONDS). Veggie PONDS is a direct follow-on to the Veg-01 and Veg-03 hardware and plant growth validation tests. The primary goal of this newly developed plant growing system, Veggie PONDS, is to demonstrate uniform plant growth. PONDS units have features that are designed to mitigate microgravity effects on water distribution, increase oxygen exchange and provide sufficient room for root zone growth. PONDS is planned for use during Veg-04 and Veg-05 on the International Space Station after the Veggie PONDS Validation flights on SpaceX-14 and OA-9.

  4. PONDS Watering System for Veggie

    NASA Image and Video Library

    2018-03-07

    Howard Levine, Ph.D., a research scientist at NASA's Kennedy Space Center in Florida, reviews the growth of several tomato plants in a laboratory in the Space Station Processing Facility. The tomato plants are growing in the Veggie Passive Orbital Nutrient Delivery System (PONDS). Veggie PONDS is a direct follow-on to the Veg-01 and Veg-03 hardware and plant growth validation tests. The primary goal of this newly developed plant growing system, Veggie PONDS, is to demonstrate uniform plant growth. PONDS units have features that are designed to mitigate microgravity effects on water distribution, increase oxygen exchange and provide sufficient room for root zone growth. PONDS is planned for use during Veg-04 and Veg-05 on the International Space Station after the Veggie PONDS Validation flights on SpaceX-14 and OA-9.

  5. Simulated ground-water flow for a pond-dominated aquifer system near Great Sandy Bottom Pond, Pembroke, Massachusetts

    USGS Publications Warehouse

    Carlson, Carl S.; Lyford, Forest P.

    2005-01-01

    A ground-water flow simulation for a 66.4-square-mile area around Great Sandy Bottom (GSB) Pond (105 acres) near Pembroke, Massachusetts, was developed for use by local and State water managers to assess the yields for public water supply of local ponds and wells for average climatic and drought conditions and the effects of water withdrawals on nearby water levels and streamflows. Wetlands and ponds cover about 30 percent of the study area and the aquifer system is dominated by interactions between ground water and the ponds. The three largest surface-water bodies in the study area are Silver Lake (640 acres), Monponsett Pond (590 acres), and Oldham Pond (236 acres). The study area is drained by tributaries of the Taunton River to the southwest, the South and North Rivers to the northeast, and the Jones River to the southeast. In 2002, 10.8 million gallons per day of water was exported from ponds and 3.5 million gallons per day from wells was used locally for public supply. A transient ground-water-flow model with 69 monthly stress periods spanning the period from January 1998 through September 2003 was calibrated to stage at GSB Pond and nearby Silver Lake and streamflow and water levels collected from September 2002 through September 2003. The calibrated model was used to assess hydrologic responses to a variety of water-use and climatic conditions. Simulation of predevelopment (no pumping or export) average monthly (1949-2002) water-level conditions caused the GSB Pond level to increase by 6.3 feet from the results of a simulation using average 2002 pumping for all wells, withdrawals, and exports. Most of this decline can be attributed to pumping, withdrawals, and exports of water from sites away from GSB Pond. The effects of increasing the export rate from GSB Pond by 1.25 and 1.5 times the 2002 rate were a lowering of pond levels by a maximum of 1.6 and 2.8 feet, respectively. Simulated results for two different drought conditions, one mild drought similar to

  6. Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed.

    PubMed

    Wang, Feng; Hu, Yiru; Guo, Chen; Huang, Wei; Liu, Chun-Zhao

    2012-04-01

    The immobilized laccase on magnetic mesoporous silica nanoparticles has been developed for efficient phenol degradation. The degradation rate of phenol by the immobilized laccase was 2-fold higher than that of the free laccase, and the immobilized laccase retained 71.3% of its initial degradation ability after 10 successive batch treatments of coking wastewater. The phenol degradation in the coking wastewater was enhanced in a continuous treatment process by the immobilized laccase in a magnetically stabilized fluidized bed (MSFB) because of good mixing and mass transfer. The degradation rate of phenol maintained more than 99% at a flow rate of less than 450mLh(-1) and decreased slowly to 91.5% after 40h of the continuous operation in the MSFB. The present work indicated that the immobilized laccase on magnetic mesoporous supports together with the MSFB provided a promising avenue for the continuous enzymatic degradation of phenolic compounds in industrial wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. 216-B-3 expansion ponds closure plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-10-01

    This document describes the activities for clean closure under the Resource Conservation and Recovery Act of 1976 (RCRA) of the 216-B-3 Expansion Ponds. The 216-B-3 Expansion Ponds are operated by the US Department of Energy, Richland Operations Office (DOE-RL) and co-operated by Westinghouse Hanford Company (Westinghouse Hanford). The 216-B-3 Expansion Ponds consists of a series of three earthen, unlined, interconnected ponds that receive waste water from various 200 East Area operating facilities. The 3A, 3B, and 3C ponds are referred to as Expansion Ponds because they expanded the capability of the B Pond System. Waste water (primarily cooling water, steammore » condensate, and sanitary water) from various 200 East Area facilities is discharged to the Bypass pipe (Project X-009). Water discharged to the Bypass pipe flows directly into the 216-B-3C Pond. The ponds were operated in a cascade mode, where the Main Pond overflowed into the 3A Pond and the 3A Pond overflowed into the 3C Pond. The 3B Pond has not received waste water since May 1985; however, when in operation, the 3B Pond received overflow from the 3A Pond. In the past, waste water discharges to the Expansion Ponds had the potential to have contained mixed waste (radioactive waste and dangerous waste). The radioactive portion of mixed waste has been interpreted by the US Department of Energy (DOE) to be regulated under the Atomic Energy Act of 1954; the dangerous waste portion of mixed waste is regulated under RCRA.« less

  8. Temporal stability of E. coli concentration patterns in two irrigation ponds in Maryland

    USDA-ARS?s Scientific Manuscript database

    There are about nine millions ponds in USA, and many of them serve as an important agricultural surface water source. E. coli concentrations are commonly used as indicator organisms to evaluate microbial water quality for irrigation and recreation. Our hypothesis was that there exists a temporally ...

  9. Characterization of Salmonella spp. from wastewater used for food production in Morogoro, Tanzania.

    PubMed

    Mhongole, Ofred J; Mdegela, Robinson H; Kusiluka, Lughano J M; Forslund, Anita; Dalsgaard, Anders

    2017-03-01

    Wastewater use for crop irrigation and aquaculture is commonly practiced by communities situated close to wastewater treatment ponds. The objective of this study was to characterize Salmonella spp. and their antimicrobial susceptibility patterns among isolates from wastewater and Tilapia fish. A total of 123 Salmonella spp. isolates were isolated from 52 water and 21 fish intestinal samples. Genotyping of Salmonella spp. isolates was done by Pulsed-field Gel Electrophoresis (PFGE). Antimicrobial susceptibility testing was done by the minimal inhibitory concentration (MIC) technique. A total of 123 Salmonella spp. isolates represented 13 different serovars and 22 PFGE groups. Salmonella serovars showed resistance to 8 out of 14 antimicrobials; sulfamethaxazole (94%), streptomycin (61%), tetracycline (22%), ciprofloxacin and nalidixic acid (17%), trimethoprim (11%); gentamycin and chloramphenicol (6%). Salmonella Kentucky, S. Chandans, S. Durban and S. Kiambu showed multiple antimicrobial resistance to 7, 6 and 3 antimicrobials, respectively. This study has demonstrated that wastewater at the study sites is contaminated with Salmonella spp. which are resistant to common antimicrobials used for treatment of diseases in humans. Wastewater may, therefore, contaminate pristine surface water bodies and foodstuffs including fish and irrigated crops as well as food handlers.

  10. Effect of duckweed cover on greenhouse gas emissions and odour release from waste stabilisation ponds.

    PubMed

    van der Steen, N P; Nakiboneka, P; Mangalika, L; Ferrer, A V M; Gijzen, H J

    2003-01-01

    Treatment of wastewater in stabilisation pond systems prevents the negative environmental impact of uncontrolled disposal of sewage. However, even a natural treatment system may generate secondary negative environmental impacts in terms of energy consumption, emission of greenhouse gases and emission of odorous compounds. Whereas natural systems have an advantage over electro-mechanical systems in that they use less hardware and less energy, it is not yet known whether secondary environmental effects in the form of greenhouse gas emissions are lower for these systems. This research intends to be a first step in the direction of answering this question by assessing gas emissions from two types of natural systems, namely algae-based and duckweed-based stabilisation ponds. The H2S volatilisation from laboratory scale pond-reactors has been determined by drawing the air above the water surface continuously through a solution of 1 M NaOH for absorption of sulphide. The amount of H2S that volatilised from the algae pond-reactor, and was trapped in the NaOH trap, was found to be 2.5-86 mg/m2/day. The H2S volatilisation from the duckweed pond-reactor was found to be negligible, even though the sulphide concentration was 9.7 mg/l S(2-). The duckweed cover was a physical barrier for volatilisation, since bubbles were trapped in the cover. In addition the duckweed layer was found to be afavourable environment for both aerobic sulphide oxidisers (Beggiatoa gigantae) as well as for photosynthetic purple sulphur bacteria belonging to the genus Chromatium. These may also have contributed to the prevention of H2S volatilisation. Results on methane emissions were not conclusive so far, but the same mechanisms that prevent H2S volatilisation may also prevent methane volatilisation. Therefore it was concluded that duckweed covers on stabilisation ponds may reduce the emission of both odorous and greenhouse gases.

  11. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC.

    PubMed

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R

    2017-07-12

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.

  12. South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project

    EPA Pesticide Factsheets

    Information about the SFBWQP South Bay Salt Pond Tidal Marsh Restoration at Pond A17 Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  13. Changes in tundra pond limnology: re-sampling Alaskan ponds after 40 years.

    PubMed

    Lougheed, Vanessa L; Butler, Malcolm G; McEwen, Daniel C; Hobbie, John E

    2011-09-01

    The arctic tundra ponds at the International Biological Program (IBP) site in Barrow, AK, were studied extensively in the 1970s; however, very little aquatic research has been conducted there for over three decades. Due to the rapid climate changes already occurring in northern Alaska, identifying any changes in the ponds' structure and function over the past 30-40 years can help identify any potential climate-related impacts. Current research on the IBP ponds has revealed significant changes in the physical, chemical, and biological characteristics of these ponds over time. These changes include increased water temperatures, increased water column nutrient concentrations, the presence of at least one new chironomid species, and increased macrophyte cover. However, we have also observed significant annual variation in many measured variables and caution that this variation must be taken into account when attempting to make statements about longer-term change. The Barrow IBP tundra ponds represent one of the very few locations in the Arctic where long-term data are available on freshwater ecosystem structure and function. Continued monitoring and protection of these invaluable sites is required to help understand the implications of climate change on freshwater ecosystems in the Arctic.

  14. Plant based phosphorus recovery from wastewater via algae and macrophytes.

    PubMed

    Shilton, Andrew N; Powell, Nicola; Guieysse, Benoit

    2012-12-01

    At present, resource recovery by irrigation of wastewater to plants is usually driven by the value of the water resource rather than phosphorus recovery. Expanded irrigation for increased phosphorus recovery may be expected as the scarcity and price of phosphorus increases, but providing the necessary treatment, storage and conveyance comes at significant expense. An alternative to taking the wastewater to the plants is instead to take the plants to the wastewater. Algal ponds and macrophyte wetlands are already in widespread use for wastewater treatment and if harvested, would require less than one-tenth of the area to recover phosphorus compared to terrestrial crops/pastures. This area could be further decreased if the phosphorus content of the macrophytes and algae biomass was tripled from 1% to 3% via luxury uptake. While this and many other opportunities for plant based recovery of phosphorus exist, e.g. offshore cultivation, much of this technology development is still in its infancy. Research that enhances our understanding of how to maximise phosphorus uptake and harvest yields; and further add value to the biomass for reuse would see the recovery of phosphorus via plants become an important solution in the future. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Biodiesel production from indigenous microalgae grown in wastewater.

    PubMed

    Komolafe, Oladapo; Velasquez Orta, Sharon B; Monje-Ramirez, Ignacio; Yáñez Noguez, Isaura; Harvey, Adam P; Orta Ledesma, María T

    2014-02-01

    This paper describes a process for producing biodiesel sustainably from microalgae grown in wastewater, whilst significantly reducing the wastewater's nutrients and total coliform. Furthermore, ozone-flotation harvesting of the resultant biomass was investigated, shown to be viable, and resulted in FAMEs of greater oxidation stability. Desmodesmus sp. and two mixed cultures were successfully grown on wastewater. Desmodesmus sp. grew rapidly, to a higher maximum biomass concentration of 0.58 g/L. A native mixed culture dominated by Oscillatoria and Arthrospira, reached 0.45 g/L and exhibited the highest lipid and FAME yield. The FAME obtained from ozone-flotation exhibited the greatest oxidative stability, as the degree of saturation was high. In principle ozone could therefore be used as a combined method of harvesting and reducing FAME unsaturation. During microalgae treatment, the total nitrogen in wastewater was reduced by 55.4-83.9%. More importantly, total coliform removal was as high as 99.8%. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Treesearch

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  17. Solidification and stabilization of the incinerated wastewater sludge from textile industry

    NASA Astrophysics Data System (ADS)

    Aziz, Hamidi Abdul; Ghazali, Miskiah Fadzilah; Omran, Abdelnaser; Umar, Muhammad

    2017-10-01

    This paper describes the investigation of solidification and stabilization (S/S) process for the safe disposal of incinerated wastewater sludge produced from a textile industry in Penang, Malaysia. Physical and chemical properties of the samples were first characterized. Various ratios of ordinary Portland cement (OPC) as a binder were used to immobilize the metals. The leachability of metals in these cement-based waste materials was studied by standard toxicity characteristic leaching procedure (TCLP) and the mechanical strength was tested by a compressive strength test. TCLP results showed the ability of OPC to immobilize various metals such as Zn, Cu, Fe, Al, Ti, and K within the limits set by USEPA and Malaysia Environment Quality Act, 1974. However, the strength of the solidified matrixes was generally lower than the control specimens, ranging from 1-23 Mpa, which was well above the specified limit of 414 kPa for such matrices for their disposal in landfills.

  18. Fuel Pond Sludge - Lessons Learned from Initial De-sludging of Sellafield's Pile Fuel Storage Pond - 12066

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, Derek; Adamson, Kate

    2012-07-01

    The Pile Fuel Storage Pond (PFSP) at Sellafield was built and commissioned between the late 1940's and early 1950's as a storage and cooling facility for irradiated fuel and isotopes from the two Windscale Pile reactors. The pond was linked via submerged water ducts to each reactor, where fuel and isotopes were discharged into skips for transfer along the duct to the pond. In the pond the fuel was cooled then de-canned underwater prior to export for reprocessing. The plant operated successfully until it was taken out of operation in 1962 when the First Magnox Fuel Storage Pond took overmore » fuel storage and de-canning operations on the site. The pond was then used for storage of miscellaneous Intermediate Level Waste (ILW) and fuel from the UK's Nuclear Programme for which no defined disposal route was available. By the mid 1970's the import of waste ceased and the plant, with its inventory, was placed into a passive care and maintenance regime. By the mid 1990s, driven by the age of the facility and concern over the potential challenge to dispose of the various wastes and fuels being stored, the plant operator initiated a programme of work to remediate the facility. This programme is split into a number of key phases targeted at sustained reduction in the hazard associated with the pond, these include: - Pond Preparation: Before any remediation work could start the condition of the pond had to be transformed from a passive store to a plant capable of complex retrieval operations. This work included plant and equipment upgrades, removal of redundant structures and the provision of a effluent treatment plant for removing particulate and dissolved activity from the pond water. - Canned Fuel Retrieval: Removal of canned fuel, including oxide and carbide fuels, is the highest priority within the programme. Handling and export equipment required to remove the canned fuel from the pond has been provided and treatment routes developed utilising existing site

  19. Box Model of a Series of Salt Ponds, as Applied to the Alviso Salt Pond Complex, South San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.; Shellenbarger, Gregory; Orlando, James L.; Ganju, Neil K.

    2007-01-01

    This report documents the development and application of a box model to simulate water level, salinity, and temperature of the Alviso Salt Pond Complex in South San Francisco Bay. These ponds were purchased for restoration in 2003 and currently are managed by the U.S. Fish and Wildlife Service to maintain existing wildlife habitat and prevent a build up of salt during the development of a long-term restoration plan. The model was developed for the purpose of aiding pond managers during the current interim management period to achieve these goals. A previously developed box model of a salt pond, SPOOM, which calculates daily pond volume and salinity, was reconfigured to simulate multiple connected ponds and a temperature subroutine was added. The updated model simulates rainfall, evaporation, water flowing between the ponds and the adjacent tidal slough network, and water flowing from one pond to the next by gravity and pumps. Theoretical and measured relations between discharge and corresponding differences in water level are used to simulate most flows between ponds and between ponds and sloughs. The principle of conservation of mass is used to calculate daily pond volume and salinity. The model configuration includes management actions specified in the Interim Stewardship Plan for the ponds. The temperature subroutine calculates hourly net heat transfer to or from a pond resulting in a rise or drop in pond temperature and daily average, minimum, and maximum pond temperatures are recorded. Simulated temperature was compared with hourly measured data from pond 3 of the Napa?Sonoma Salt Pond Complex and monthly measured data from pond A14 of the Alviso Salt-Pond Complex. Comparison showed good agreement of measured and simulated pond temperature on the daily and monthly time scales.

  20. Optimization of pilot high rate algal ponds for simultaneous nutrient removal and lipids production.

    PubMed

    Arbib, Zouhayr; de Godos, Ignacio; Ruiz, Jesús; Perales, José A

    2017-07-01

    Special attention is required to the removal of nitrogen and phosphorous in treated wastewaters. Although, there are a wide range of techniques commercially available for nutrient up-take, these processes entail high investment and operational costs. In the other hand, microalgae growth can simultaneously remove inorganic constituents of wastewater and produce energy rich biomass. Among all the cultivation technologies, High Rate Algae Ponds (HRAPs), are accepted as the most appropriate system. However, the optimization of the operation that maximizes the productivity, nutrient removal and lipid content in the biomass generated has not been established. In this study, the effect of two levels of depth and the addition of CO 2 were evaluated. Batch essays were used for the calculation of the kinetic parameters of microbial growth that determine the optimum conditions for continuous operation. Nutrient removal and lipid content of the biomass generated were analyzed. The best conditions were found at depth of 0.3m with CO 2 addition (biomass productivity of 26.2gTSSm -2 d -1 and a lipid productivity of 6.0glipidsm -2 d -1 ) in continuous mode. The concentration of nutrients was in all cases below discharge limits established by the most restrictive regulation for wastewater discharge. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Chemical treatment costs reduced with use of in-pond raceway systems compared to traditional pond aquaculture

    USDA-ARS?s Scientific Manuscript database

    Production systems such as in-pond raceway systems (IPRS) and split ponds are providing an alternative to traditional pond culture for raising catfish in several southeastern states. One advantage noted by farmers utilizing these systems is the reduced cost associated with the chemical treatment of ...

  2. Pollution loads in urban runoff and sanitary wastewater.

    PubMed

    Taebi, Amir; Droste, Ronald L

    2004-07-05

    While more attention has been paid in recent years to urban point source pollution control through the establishment of wastewater treatment plants in many developing countries, no considerable planning nor any serious measures have been taken to control urban non-point source pollution (urban stormwater runoff). The present study is a screening analysis to investigate the pollution loads in urban runoff compared to point source loads as a first prerequisite for planning and management of receiving water quality. To compare pollutant loads from point and non-point urban sources, the pollutant load is expressed as the weight of pollutant per hectare area per year (kg/ha.year). Unit loads were estimated in stormwater runoff, raw sanitary wastewater and secondary treatment effluents in Isfahan, Iran. Results indicate that the annual pollution load in urban runoff is lower than the annual pollution load in sanitary wastewater in areas with low precipitation but it is higher in areas with high precipitation. Two options, namely, advanced treatment (in lieu of secondary treatment) of sanitary wastewater and urban runoff quality control systems (such as detention ponds) were investigated as controlling systems for pollution discharges into receiving waters. The results revealed that for Isfahan, as a low precipitation urban area, advanced treatment is a more suitable option, but for high precipitation urban areas, urban surface runoff quality control installations were more effective for suspended solids and oxygen-demanding matter controls, and that advanced treatment is the more effective option for nutrient control.

  3. Pond bank access as an approach for managing toxic cyanobacteria in beef cattle pasture drinking water ponds.

    PubMed

    Wilson, Alan E; Chislock, Michael F; Yang, Zhen; Barros, Mário U G; Roberts, John F

    2018-03-25

    Forty-one livestock drinking water ponds in Alabama beef cattle pastures during were surveyed during the late summer to generally understand water quality patterns in these important water resources. Since livestock drinking water ponds are prone to excess nutrients that typically lead to eutrophication, which can promote blooms of toxigenic phytoplankton such as cyanobacteria, we also assessed the threat of exposure to the hepatotoxin, microcystin. Eighty percent of the ponds studied contained measurable microcystin, while three of these ponds had concentrations above human drinking water thresholds set by the US Environmental Protection Agency (i.e., 0.3 μg/L). Water quality patterns in the livestock drinking water ponds contrasted sharply with patterns typically observed for temperate freshwater lakes and reservoirs. Namely, we found several non-linear relationships between phytoplankton abundance (measured as chlorophyll) and nutrients or total suspended solids. Livestock had direct access to all the study ponds. Consequently, the proportion of inorganic suspended solids (e.g., sediment) increased with higher concentrations of total suspended solids, which underlies these patterns. Unimodal relationships were also observed between microcystin and phytoplankton abundance or nutrients. Euglenoids were abundant in the four ponds with chlorophyll concentrations > 250 μg/L (and dominated three of these ponds), which could explain why ponds with high chlorophyll concentrations would have low microcystin concentrations. Based on observations made during sampling events and available water quality data, livestock-mediated bioturbation is causing elevated total suspended solids that lead to reduced phytoplankton abundance and microcystin despite high concentrations of nutrients, such as phosphorus and nitrogen. Thus, livestock could be used to manage algal blooms, including toxic secondary metabolites, in their drinking water ponds by allowing them to walk in the

  4. Event-based stormwater management pond runoff temperature model

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Sattar, A. M. A.; Thompson, A. M.

    2016-09-01

    Stormwater management wet ponds are generally very shallow and hence can significantly increase (about 5.4 °C on average in this study) runoff temperatures in summer months, which adversely affects receiving urban stream ecosystems. This study uses gene expression programming (GEP) and artificial neural networks (ANN) modeling techniques to advance our knowledge of the key factors governing thermal enrichment effects of stormwater ponds. The models developed in this study build upon and compliment the ANN model developed by Sabouri et al. (2013) that predicts the catchment event mean runoff temperature entering the pond as a function of event climatic and catchment characteristic parameters. The key factors that control pond outlet runoff temperature, include: (1) Upland Catchment Parameters (catchment drainage area and event mean runoff temperature inflow to the pond); (2) Climatic Parameters (rainfall depth, event mean air temperature, and pond initial water temperature); and (3) Pond Design Parameters (pond length-to-width ratio, pond surface area, pond average depth, and pond outlet depth). We used monitoring data for three summers from 2009 to 2011 in four stormwater management ponds, located in the cities of Guelph and Kitchener, Ontario, Canada to develop the models. The prediction uncertainties of the developed ANN and GEP models for the case study sites are around 0.4% and 1.7% of the median value. Sensitivity analysis of the trained models indicates that the thermal enrichment of the pond outlet runoff is inversely proportional to pond length-to-width ratio, pond outlet depth, and directly proportional to event runoff volume, event mean pond inflow runoff temperature, and pond initial water temperature.

  5. Par Pond vegetation status 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-12-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995, and into themore » early spring and late summer of 1996. Communities similar to the pre-drawdown, Par Pond aquatic plant communities continue to become re-established. Emergent beds of maidencane, lotus, waterlily, watershield, and Pontederia are extensive and well developed. Measures of percent cover, width of beds, and estimates of area of coverage with satellite data indicate regrowth within two years of from 40 to 60% of levels prior to the draw down. Cattail occurrence continued to increase during the summer of 1996, especially in the former warm arm of Par Pond, but large beds common to Par Pond prior to the draw down still have not formed. Lotus has invaded and occupies many of the areas formerly dominated by cattail beds. To track the continued development of macrophytes in Par Pond, future surveys through the summer and early fall of 1997, along with the evaluation of satellite data to map the extent of the macrophyte beds of Par Pond, are planned.« less

  6. Microbiology of solar salt ponds

    NASA Technical Reports Server (NTRS)

    Javor, B.

    1985-01-01

    Solar salt ponds are shallow ponds of brines that range in salinity from that of normal seawater (3.4 percent) through NaCl saturation. Some salterns evaporate brines to the potash stage of concentration (bitterns). All the brines (except the bitterns, which are devoid of life) harbor high concentrations of microorganisms. The high concentrations of microorganisms and their adaptation to life in the salt pond are discussed.

  7. Experience in non-conventional wastewater treatment techniques used in the Czech Republic.

    PubMed

    Felberova, L; Kucera, J; Mlejnska, E

    2007-01-01

    Among the most common non-conventional wastewater treatment techniques used in the Czech Republic are waste stabilisation ponds (WSP), subsurface horizontal flow constructed wetlands (CW) and vertical flow groundfilters (GF). These extensive systems can be advantageously used for treatment of waters coming from sewerages where the ballast weighting commonly makes more than half of dry-weather flow. The monitoring was focused at 14 different extensive systems. Organics removal efficiencies were favourable (CW-82%; GF-88%); in the case of WSP only 57% due to the algal bloom. Total nitrogen removal efficiencies were 43 and 47% for WSP and GF; in the case of CW only 32% due to often occurring anaerobic conditions in filter beds. Total phosphorus removal efficiencies were 37, 35 and 22% for WSP, GF and CW, respectively. Often occurring problems are the ice-blockage of surface aerators at WSP during wintertimes, the pond duckweed-cover or the algal bloom at WSP during summers; a gradual colmatage of filter systems; and the oxygen deficiency in beds of subsurface horizontal flow constructed wetlands. Czech legal regulations do not allow treated wastewater disposal into underground waters. There is only an exception for individual family houses. Up to now, knowledge gained by monitoring of a village (which uses the infiltration upon a permission issued according to earlier legal regulations) have not shown an unacceptable groundwater quality deterioration into the infiltration areas.

  8. Case study: design, operation, maintenance and water quality management of sustainable storm water ponds for roof runoff.

    PubMed

    Scholz, Miklas

    2004-12-01

    The purpose of this case study was to optimise design, operation and maintenance guidelines, and to assess the water treatment potential of a storm water pond system after 15 months of operation. The system was based on a combined silt trap, attenuation pond and vegetated infiltration basin. This combination was used as the basis for construction of a roof water runoff system from a single domestic property. United Kingdom Building Research Establishment and Construction Industry Research and Information Association, and German Association for Water, Wastewater and Waste design guidelines were tested. These design guidelines failed because they did not consider local conditions. The infiltration function for the infiltration basin was logarithmic. Algal control techniques were successfully applied, and treatment of rainwater runoff from roofs was found to be largely unnecessary for recycling (e.g., watering plants). However, seasonal and diurnal variations of biochemical oxygen demand, dissolved oxygen and pH were recorded.

  9. Comparative performance evaluation of full-scale anaerobic and aerobic wastewater treatment processes in Brazil.

    PubMed

    von Sperling, M; Oliveira, S C

    2009-01-01

    This article evaluates and compares the actual behavior of 166 full-scale anaerobic and aerobic wastewater treatment plants in operation in Brazil, providing information on the performance of the processes in terms of the quality of the generated effluent and the removal efficiency achieved. The observed results of effluent concentrations and removal efficiencies of the constituents BOD, COD, TSS (total suspended solids), TN (total nitrogen), TP (total phosphorus) and FC (faecal or thermotolerant coliforms) have been compared with the typical expected performance reported in the literature. The treatment technologies selected for study were: (a) predominantly anaerobic: (i) septic tank + anaerobic filter (ST + AF), (ii) UASB reactor without post-treatment (UASB) and (iii) UASB reactor followed by several post-treatment processes (UASB + POST); (b) predominantly aerobic: (iv) facultative pond (FP), (v) anaerobic pond followed by facultative pond (AP + FP) and (vi) activated sludge (AS). The results, confirmed by statistical tests, showed that, in general, the best performance was achieved by AS, but closely followed by UASB reactor, when operating with any kind of post-treatment. The effluent quality of the anaerobic processes ST + AF and UASB reactor without post-treatment was very similar to the one presented by facultative pond, a simpler aerobic process, regarding organic matter.

  10. Characterizing bacterial communities in tilapia pond surface sediment and their responses to pond differences and temporal variations.

    PubMed

    Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao

    2017-01-01

    Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).

  11. Algal wastewater treatment systems for seasonal climates: application of a simple modelling approach to generate local and regional design guidelines.

    PubMed

    Heaven, Sonia; Salter, Andrew M; Clarke, Derek; Pak, Lyubov N

    2012-05-01

    Algal waste stabilisation ponds (WSP) provide a means of treating wastewater, and also a potential source of water for re-use in irrigation, aquaculture or algal biomass cultivation. The quantities of treated water available and the periods in which it is suitable for use or discharge are closely linked to climatic factors. This paper describes the application, at a continent-wide scale, of a modelling approach based on the use of readily available climate datasets to provide WSP design and performance guidelines linked to geographical location. Output is presented in regionally-based contour maps covering a wide area of Russia and central Asia and indicating pond area, earliest discharge date, discharge duration, wastewater inflow:outflow ratio and salinity under user-specified conditions. The results confirm that broad-brush discharge guidelines of the type commonly used in North America can safely be applied; but suggest that a more detailed approach is worthwhile to optimise operating regimes for local conditions. The use of long-series climate data can also permit tailoring of designs to specific sites. The work considers a simple 2-pond system, but other configurations and operating regimes should be investigated, especially for the wide range of locations across the world that are intermediate between the 'one short discharge per year' mode and year-round steady-state operation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Saltless solar pond

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H. (Inventor)

    1984-01-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  13. 2016 Annual Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Ponds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Michael George

    This report describes conditions and information, as required by the state of Idaho, Department of Environmental Quality Reuse Permit I-161-02, for the Advanced Test Reactor Complex Cold Waste Ponds located at Idaho National Laboratory from November 1, 2015–October 31, 2016. The effective date of Reuse Permit I-161-02 is November 20, 2014 with an expiration date of November 19, 2019. This report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Permit required groundwater monitoring data • Status of compliance activities • Issues • Discussion of the facility’s environmental impacts. Duringmore » the 2016 permit year, 180.99 million gallons of wastewater were discharged to the Cold Waste Ponds. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest in well USGS-065, which is the closest downgradient well to the Cold Waste Ponds. Sulfate and total dissolved solids concentrations decrease rapidly as the distance downgradient from the Cold Waste Ponds increases. Although concentrations of sulfate and total dissolved solids are significantly higher in well USGS-065 than in the other monitoring wells, both parameters remained below the Ground Water Quality Rule Secondary Constituent Standards in well USGS-065. The facility was in compliance with the Reuse Permit during the 2016 permit year.« less

  14. Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC

    PubMed Central

    Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.

    2017-01-01

    This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958

  15. Wastewater characterization survey, Edwards Air Force Base, California. Final report, 17-28 February 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, R.P.

    1992-08-01

    A wastewater characterization survey was conducted at Edwards Air Force Base from 17-28 February 1992 by personnel from the Water Quality Function of Armstrong Laboratory. Extensive sampling of the treatment plant influent wastewater and sludge beds was performed as well as sampling at nine other sites in the base cantonment area. Some sampling of an Imhoff tank on North Base, five evaporation ponds and the lakebed was also conducted. Low levels of organic contamination were found in the influent and industrial sites downstream of Site 7. Site 7 is a manhole located in an identified Installation Restoration Program (IRP) site.more » Corrective actions were recommended to prevent organic soil contaminants from intruding into this site prior to the operation of a planned tertiary treatment plant. Organic and inorganic contaminants discharged at other industrial sites were found to be in low concentrations and indicated that good shop practices were followed in minimizing contamination of the wastewater with industrial chemicals.« less

  16. Antibiotic resistance genes and intI1 prevalence in a swine wastewater treatment plant and correlation with metal resistance, bacterial community and wastewater parameters.

    PubMed

    Yuan, Qing-Bin; Zhai, Yi-Fan; Mao, Bu-Yun; Hu, Nan

    2018-06-07

    The livestock wastewater treatment plant represents an important reservoir of antibiotic resistance determinants in the environment. The study explored the prevalence of five antibiotic resistance genes (ARGs, including sulI, tetA, qnrD, mphB and mcr-1) and class 1 integron (intI1) in a typical livestock wastewater treatment plant, and analyzed their integrated association with two metal resistance genes (copA and czcA), two pathogens genes (Staphylococcus and Campylobacter), bacterial community and wastewater properties. Results indicated that all investigated genes were detected in the plant. The treatment plant could not completely remove ARGs abundances, with up to 2.2 × 10 4 ~3.7 × 10 8 copies/L of them remaining in the effluent. Mcr-1 was further enriched by 27-fold in the subsequent pond. The correlation analysis showed that mphB significantly correlateed with tetA and intI. Mcr-1 strongly correlated with copA. MphB and intI significantly correlated with czcA. The correlations implied a potential co-selection risk of bacterial resistant to antibiotics and metals. Redundancy analyses indicated that qnrD and mcr-1 strongly correlated with 13 and 14 bacterial genera, respectively. Most ARGs positively correlated to wastewater nutrients, indicating that an efficient reduction of wastewater nutrients would contribute to the antibiotic resistance control. The study will provide useful implications on fates and reductions of ARGs in livestock facilities and receiving environments. Copyright © 2018. Published by Elsevier Inc.

  17. Genetic markers for detection of Escherichia coli K-12 harboring ampicillin-resistance plasmid from an industrial wastewater treatment effluent pond.

    PubMed

    Simões, G A R; Xavier, M A S; Oliveira, D A; Menezes, E V; Magalhães, S S G; Gandra, J A C D; Xavier, A R E O

    2016-06-17

    Biotechnology industries that use recombinant DNA technology are potential sources for release of genetically modified organisms to the environment. Antibiotic-resistance marker genes are commonly used for recombinant bacteria selection. One example is the marker gene coding for β-lactamase (bla) in plasmids found in Escherichia coli K-12. The aim of this study was to provide an approach to develop a molecular method for genetic marker detection in E. coli K-12 harboring bla genes from an industrial wastewater treatment effluent pond (IWTEP). For the detection of bla and Achromobacter lyticus protease I (api) genes in samples from IWTEP, we employed multiplex polymerase chain reaction (PCR) using E. coli K-12 genetic marker detection primers, previously described in the literature, and primers designed in our laboratory. The microbiological screening method resulted in 22 bacterial colony-forming units isolated from three different IWTEP harvesting points. The multiplex PCR amplicons showed that five isolates were positive for the bla gene marker and negative for the E. coli K-12 and api genes. The 16S rRNA regions of positive microorganisms carrying the bla gene were genotyped by the MicroSeq®500 system. The bacteria found were Escherichia spp (3/5), Chromobacterium spp (1/5), and Aeromonas spp (1/5). None of the 22 isolated microorganisms presented the molecular pattern of E. coli K-12 harboring the bla gene. The presence of microorganisms positive for the bla gene and negative for E. coli K-12 harboring bla genes at IWTEP suggests that the ampicillin resistance found in the isolated bacteria could be from microorganisms other than the E. coli K-12 strain harboring plasmid.

  18. Assessing Chemical Retention Process Controls in Ponds

    NASA Astrophysics Data System (ADS)

    Torgersen, T.; Branco, B.; John, B.

    2002-05-01

    Small ponds are a ubiquitous component of the landscape and have earned a reputation as effective chemical retention devices. The most common characterization of pond chemical retention is the retention coefficient, Ri= ([Ci]inflow-[Ci] outflow)/[Ci]inflow. However, this parameter varies widely in one pond with time and among ponds. We have re-evaluated literature reported (Borden et al., 1998) monthly average retention coefficients for two ponds in North Carolina. Employing a simple first order model that includes water residence time, the first order process responsible for species removal have been separated from the water residence time over which it acts. Assuming the rate constant for species removal is constant within the pond (arguable at least), the annual average rate constant for species removal is generated. Using the annual mean rate constant for species removal and monthly water residence times results in a significantly enhanced predictive capability for Davis Pond during most months of the year. Predictive ability remains poor in Davis Pond during winter/unstratified periods when internal loading of P and N results in low to negative chemical retention. Predictive ability for Piedmont Pond (which has numerous negative chemical retention periods) is improved but not to the same extent as Davis Pond. In Davis Pond, the rate constant for sediment removal (each month) is faster than the rate constant for water and explains the good predictability for sediment retention. However, the removal rate constant for P and N is slower than the removal rate constant for sediment (longer water column residence time for P,N than for sediment). Thus sedimentation is not an overall control on nutrient retention. Additionally, the removal rate constant for P is slower than for TOC (TOC is not the dominate removal process for P) and N is removed slower than P (different in pond controls). For Piedmont Pond, sediment removal rate constants are slower than the removal

  19. Veggie Passive Orbital Nutrient Delivery System (PONDS)

    NASA Image and Video Library

    2018-02-27

    Project scientists, place seeds in Veggie Passive Orbital Nutrient Delivery System (PONDS) units inside a laboratory at the Space Station Processing Facility at NASA’s Kennedy Space Center in Florida. Veggie PONDS is a direct follow-on to the Veg-01 and Veg-03 hardware and plant growth validation tests. The primary goal of this newly developed plant growing system, Veggie PONDS, is to demonstrate uniform plant growth. PONDS units have features that are designed to mitigate microgravity effects on water distribution, increase oxygen exchange and provide sufficient room for root zone growth. PONDS is planned for use during Veg-04 and Veg-05 on the International Space Station after the Veggie PONDS Validation flights on SpaceX-14 and OA-9.

  20. Recycled water reuse permit renewal application for the materials and fuels complex industrial waste ditch and industrial waste pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Name, No

    This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in themore » initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.« less

  1. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa

    PubMed Central

    Edokpayi, Joshua N.; Odiyo, John O.; Popoola, Oluwaseun E.; Msagati, Titus A. M.

    2016-01-01

    Polycyclic aromatic hydrocarbons are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs (Polycyclic aromatic hydrocarbons) classified by the United State Environmental Protection Agency as priority pollutants in water and sediments of the Mvudi and Nzhelele Rivers. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using an ultrasonication method. The extracts were purified using an SPE technique and reconstituted in n-hexane before analyses with a gas chromatograph time of flight—mass spectrometer. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174–26.382 mg/L and 27.10–55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs found in both river water and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs. PMID:27043597

  2. A Summary Description of a Computer Program Concept for the Design and Simulation of Solar Pond Electric Power Generation Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    A solar pond electric power generation subsystem, an electric power transformer and switch yard, a large solar pond, a water treatment plant, and numerous storage and evaporation ponds. Because a solar pond stores thermal energy over a long period of time, plant operation at any point in time is dependent upon past operation and future perceived generation plans. This time or past history factor introduces a new dimension in the design process. The design optimization of a plant must go beyond examination of operational state points and consider the seasonal variations in solar, solar pond energy storage, and desired plant annual duty-cycle profile. Models or design tools will be required to optimize a plant design. These models should be developed in order to include a proper but not excessive level of detail. The model should be targeted to a specific objective and not conceived as a do everything analysis tool, i.e., system design and not gradient-zone stability.

  3. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part II--Management and operating issues.

    PubMed

    Sweeney, D G; O'Brien, M J; Cromar, N J; Fallowfield, H J

    2005-01-01

    Bolivar Wastewater Treatment Plant (WWTP) was originally commissioned with trickling filter secondary treatment, followed by waste stabilisation pond (WSP) treatment and marine discharge. In 1999, a dissolved air flotation/filtration (DAFF) plant was commissioned to treat a portion of the WSP effluent for horticultural reuse. In 2001, the trickling filters were replaced with activated sludge treatment. A shift in WSP ecology became evident soon after this time, characterised by a statistically significant reduction in algal counts in the pond effluent, and increased variability in algal counts and occasional population crashes in the ponds. While the photosynthetic capacity of the WSPs has been reduced, the concomitant reduction in organic loading has meant that the WSPs have not become overloaded. As a result of the improvement in water quality leaving the ponds, significant cost savings and improved product water quality have been realised in the subsequent DAFF treatment stage. A number of operating issues have arisen from the change, however, including the re-emergence of a midge fly nuisance at the site. Control of midge flies using chemical spraying has negated the cost savings realised in the DAFF treatment stage. While biomanipulation of the WSP may provide a less aggressive method of midge control, this case demonstrates the difficulty of predicting in advance all ramifications of a retrospective process change.

  4. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater.

    PubMed

    Corsino, Santo Fabio; di Biase, Alessandro; Devlin, Tanner Ryan; Munz, Giulio; Torregrossa, Michele; Oleszkiewicz, Jan A

    2017-02-01

    Results obtained from three aerobic granular sludge reactors treating brewery wastewater are presented. Reactors were operated for 60d days in each of the two periods under different cycle duration: (Period I) short 6h cycle, and (Period II) long 12h cycle. Organic loading rates (OLR) varying from 0.7kgCODm -3 d -1 to 4.1kgCODm -3 d -1 were tested. During Period I, granules successfully developed in all reactors, however, results revealed that the feast and famine periods were not balanced and the granular structure deteriorated and became irregular. During Period II at decreased 12h cycle time, granules were observed to develop again with superior structural stability compared to the short 6h cycle time, suggesting that a longer starvation phase enhanced production of proteinaceous EPS. Overall, the extended famine conditions encouraged granule stability, likely because long starvation period favours bacteria capable of storage of energy compounds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. 100-D Ponds closure plan. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, S.W.

    1997-09-01

    The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit ismore » clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.« less

  6. Wastewater microalgal production, nutrient removal and physiological adaptation in response to changes in mixing frequency.

    PubMed

    Sutherland, Donna L; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2014-09-15

    Laminar flows are a common problem in high rate algal ponds (HRAP) due to their long channels and gentle mixing by a single paddlewheel. Sustained laminar flows may modify the amount of light microalgal cells are exposed to, increase the boundary layer between the cell and the environment and increase settling out of cells onto the pond bottom. To date, there has been little focus on the effects of the time between mixing events (frequency of mixing) on the performance of microalgae in wastewater treatment HRAPs. This paper investigates the performance of three morphologically distinct microalgae in wastewater treatment high rate algal mesocosms operated at four different mixing frequencies (continuous, mixed every 45 min, mixed every 90 min and no mixing). Microalgal performance was measured in terms of biomass concentration, nutrient removal efficiency, light utilisation and photosynthetic performance. Microalgal biomass increased significantly with increasing mixing frequency for the two colonial species but did not differ for the single celled species. All three species were more efficient at NH4-N uptake as the frequency of mixing increased. Increased frequency of mixing supported larger colonies with improved harvest-ability by gravity but at the expense of efficient light absorption and maximum rate of photosynthesis. However, maximum quantum yield was highest in the continuously mixed cultures due to higher efficiency of photosynthesis under light limited conditions. Based on these results, higher microalgal productivity, improved wastewater treatment and better gravity based harvest-ability can be achieved with the inclusion of more mixing points and reduced laminar flows in full-scale HRAP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    PubMed

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Par Pond vegetation status Summer 1995 -- Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar tomore » the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  9. Antibiotic resistance genes in municipal wastewater treatment systems and receiving waters in Arctic Canada.

    PubMed

    Neudorf, Kara D; Huang, Yan Nan; Ragush, Colin M; Yost, Christopher K; Jamieson, Rob C; Truelstrup Hansen, Lisbeth

    2017-11-15

    Domestic wastewater discharges may adversely impact arctic ecosystems and local indigenous people, who rely on being able to hunt and harvest food from their local environment. Therefore, there is a need to develop efficient wastewater treatment plants (WWTPs), which can be operated in remote communities under extreme climatic conditions. WWTPs have been identified as reservoirs of antibiotic resistance genes (ARGs). The objective of this work was to quantify the presence of nine different ARG markers (int1, sul1, sul2, tet(O), erm(B), mecA, bla CTX-M , bla TEM , and qnr(S)) in two passive systems (waste stabilization ponds [WSPs]) and one mechanical filtration plant operating in two smaller and one large community, respectively, in Nunavut, Canada. Measurement of water quality parameters (carbonaceous oxygen demand, ammonia, total suspended solids, Escherichia coli and total coliforms) showed that the WWTPs provided only primary treatment. Low levels of the ARGs (2logcopies/mL) were observed in the effluent, demonstrating that bacteria residing in three northern WWTPs harbour ARGs conferring resistance to multiple clinically-relevant classes of antibiotics. Our results indicate that long-term storage in WSPs benefitted removal of organic material and some ARGs. However, one WSP system showed evidence of the enrichment of sul1, sul2, mecA, tet(O) and qnr(S). Further research is needed to fully understand if these ARG releases pose a risk to human health, especially in the context of traditional hunting and fishing activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Wintertime Emissions from Produced Water Ponds

    NASA Astrophysics Data System (ADS)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  11. New England Lakes & Ponds Project

    EPA Science Inventory

    The New England Lakes and Ponds Project provides a consistent and first time comprehensive assessment of the ecological and water quality condition of lakes and ponds across the New England region. The project is being conducted by EPA along with the New England Interstate Water...

  12. Reflective properties of melt ponds on sea ice

    NASA Astrophysics Data System (ADS)

    Malinka, Aleksey; Zege, Eleonora; Istomina, Larysa; Heygster, Georg; Spreen, Gunnar; Perovich, Donald; Polashenski, Chris

    2018-06-01

    Melt ponds occupy a large part of the Arctic sea ice in summer and strongly affect the radiative budget of the atmosphere-ice-ocean system. In this study, the melt pond reflectance is considered in the framework of radiative transfer theory. The melt pond is modeled as a plane-parallel layer of pure water upon a layer of sea ice (the pond bottom). We consider pond reflection as comprising Fresnel reflection by the water surface and multiple reflections between the pond surface and its bottom, which is assumed to be Lambertian. In order to give a description of how to find the pond bottom albedo, we investigate the inherent optical properties of sea ice. Using the Wentzel-Kramers-Brillouin approximation approach to light scattering by non-spherical particles (brine inclusions) and Mie solution for spherical particles (air bubbles), we conclude that the transport scattering coefficient in sea ice is a spectrally independent value. Then, within the two-stream approximation of the radiative transfer theory, we show that the under-pond ice spectral albedo is determined by two independent scalar values: the transport scattering coefficient and ice layer thickness. Given the pond depth and bottom albedo values, the bidirectional reflectance factor (BRF) and albedo of a pond can be calculated with analytical formulas. Thus, the main reflective properties of the melt pond, including their spectral dependence, are determined by only three independent parameters: pond depth z, ice layer thickness H, and transport scattering coefficient of ice σt.The effects of the incident conditions and the atmosphere state are examined. It is clearly shown that atmospheric correction is necessary even for in situ measurements. The atmospheric correction procedure has been used in the model verification. The optical model developed is verified with data from in situ measurements made during three field campaigns performed on landfast and pack ice in the Arctic. The measured pond albedo

  13. Waterfowl production on stock-watering ponds in the northern plains

    USGS Publications Warehouse

    Lokemoen, J.T.

    1973-01-01

    In a 5-year study of stock-watering ponds in western North Dakota, pond size was found to be the major factor influencing duck use. As pond size increased, total pair and brood use per pond increased. Pairs used ponds as small as 0.1 acre in size, but broods were seldom seen on ponds of less than 1.0 surface acre. Dam-type ponds larger than 1.0 surface acre comprised only 29% of all man-made ponds on the study area but received 65% of the pair use and 87% of the brood use. Utilization of fenced ponds by pairs and broods was not significantly different from utilization of unfenced ponds. Grazing rates of 2 to 3 acres per AUM and lower rates permitted the development of grassy shoreline cover preferred by pairs and brushy and emergent shorelines preferred by broods. Duck pairs were significantly more numerous on older ponds and ponds with grassy shorelines but less numerous on ponds that had heavy deposits of sediment or were isolated from other wetlands. Broods were significantly more numerous on ponds with brushy shorelines and emergent vegetation than on those without. Broods were less numerous on turbid and newly constructed ponds. The most suitable stock-watering units for maximum waterfowl production were dam-type ponds of 1.5 surface acres, or larger, built in gentle to rolling terrain away from major sources of siltation.

  14. Gas transfer velocities in small forested ponds

    NASA Astrophysics Data System (ADS)

    Holgerson, Meredith A.; Farr, Emily R.; Raymond, Peter A.

    2017-05-01

    Inland waters actively exchange gases with the atmosphere, and the gas exchange rate informs system biogeochemistry, ecology, and global carbon budgets. Gas exchange in medium- to large-sized lakes is largely regulated by wind; yet less is known about processes regulating gas transfer in small ponds where wind speeds are low. In this study, we determined the gas transfer velocity, k600, in four small (<250 m2) ponds by using a propane (C3H8) gas injection. When estimated across 12 h periods, the average k600 ranged from 0.19 to 0.72 m d-1 across the ponds. We also estimated k600 at 2 to 3 h intervals during the day and evaluated the relationship with environmental conditions. The average daytime k600 ranged from 0.33 to 1.83 m d-1 across the ponds and was best predicted by wind speed and air or air-water temperature; however, the explanatory power was weak (R2 < 0.27) with high variability within and among ponds. To compare our results to larger water bodies, we compiled direct measurements of k600 from 67 ponds and lakes worldwide. Our k600 estimates were within the range of estimates for other small ponds, and variability in k600 increased with lake size. However, the majority of studies were conducted on medium-sized lakes (0.01 to 1 km2), leaving small ponds and large lakes understudied. Overall, this study adds four small ponds to the existing body of research on gas transfer velocities from inland waters and highlights uncertainty in k600, with implications for calculating metabolism and carbon emissions in inland waters.

  15. Transport of nitrogen in a treated-wastewater plume to coastal discharge areas, Ashumet Valley, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Barbaro, Jeffrey R.; Walter, Donald A.; LeBlanc, Denis R.

    2013-01-01

    Pond, and Bournes River. Approximately 76 percent of the total nitrate-N mass in the plume will discharge to these receptors within 100 years of 2007; 90 and 94 percent will discharge within 200 and 500 years, respectively. Nitrate loads will peak within about 50 years at all of the major receptors. The highest peak loads will occur at the Coonamessett River (450 kg per year (kg/yr) nitrate-N) and the Backus River (350 kg/yr nitrate-N). Because of adsorption, travel times are longer for ammonium than for nitrate; approximately 5 percent of the total ammonium-N mass in the plume will discharge to receptors within 100 years; 46 and 81 percent will discharge within 200 and 500 years, respectively. The simulations indicate that the Coonamessett River will receive the largest cumulative nitrogen mass and the highest rate of discharge (load). Ongoing discharge to Ashumet Pond is relatively minor because most of the wastewater plume mass has already migrated downgradient from the pond. To evaluate the contribution of the nitrogen loads from the treated-wastewater plume to total nitrogen loads to the discharge areas, the simulated treated-wastewater plume loads were compared to steady-state nonpoint-source loads calculated by the Massachusetts Estuaries Project for 2005. Simulation results indicate that the total nitrogen loads from the treated-wastewater plume are much lower than corresponding steady-state nonpoint-source loads from the watersheds; peak plume loads are equal to 11 percent or less of the nonpoint-source loads.

  16. Schoolyard Ponds: Safety and Liability.

    ERIC Educational Resources Information Center

    Danks, Sharon Gamson

    2001-01-01

    Engaging, attractive schoolyard ponds provide habitat for wildlife and hold great educational promise. Reviews water safety and liability issues including mud, stagnant pond water that serves as mosquito breeding grounds, and drowning. Offers ideas for creatively addressing those issues through site planning, shallow water depth, signage and…

  17. Walden Pond, Massachusetts: Environmental Setting and Current Investigations

    USGS Publications Warehouse

    Colman, John A.; Waldron, Marcus C.

    1998-01-01

    Introduction Walden Pond, in Concord, Massachusetts, is famous among lakes because of its unique social history. Walden was the setting for American naturalist Henry David Thoreau's well-known essay 'Walden; or, Life in the Woods,' first published in 1854. Thoreau lived and wrote at Walden Pond from July 1845 to September 1847. In 'Walden,' Thoreau combined highly admired writing on Transcendental philosophy with pioneering observations of aquatic ecology and physical aspects of limnology, the study of lakes. Because Thoreau also defended so effectively the value of living close to nature in the Walden woods, the pond is considered by many to be the birthplace of the American conservation movement. Visitors come from all over the world to the pond, which has been designated a National Historic Landmark, and its fame has resulted in a major fund drive to preserve the surrounding woods. Walden Pond has no surfacewater inflow or outflow, and much of its ground-water contributing area likely is preserved within the Walden Pond Reservation area (fig. 1). Only 15 miles from Boston, the pond is unusually clear and pristine for an urban-area lake. However, point sources of nutrients near the pond, and a large annual visitor attendance, concentrated during the summer when the swimming beach (fig. 2) is open, may contribute a nutrient load sufficient to change the pond environment. The occurrence of nuisance algal species, a recent beach closing, and an awareness of water-quality problems suffered by other ponds in the region raise concerns about the risk of ecological change at Walden Pond. Despite the role of Walden Pond as a cultural and environmental icon, little is known about the pond's ecological features, such as its internal nutrient cycling or the structure of its food web, nor have consistent measurements been made to determine whether these features are changing or are stable. Production rates of aquatic plants in lakes and ponds naturally undergo a slow increase

  18. The efficacy of an oxidation pond in mineralizing some industrial waste products with special reference to fluorene degradation: A case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M.T.; Dewedar, A.; Mekki, L.

    1999-07-01

    The efficacy of the oxidation pond on the outskirts of the 10th of Ramadan, the main industrial city in Egypt, was examined. Samples of wastewater collected from the inlet and the outlet were screened for some priority pollutants. Acenaphethene and fluorene were the most frequently detected polycyclic aromatic hydrocarbons, while dimethyl phthalate was the most frequently detected phthalate ester. The spectrum of pollutants, their concentrations and frequencies were similar in the inlet and the outlet, indicating an inferior mineralization capability of the pond. Several degradative bacterial strains were isolated from the pond and grown on M56 minimal media supplemented withmore » different pollutants as the carbon source. The efficacy of pure and mixed cultures to break down fluorene, the most frequently detected pollutant was examined. Fluorene degradation was fast in the first 10 days, the followed by a slow phase. Mixed culture had a higher rate of fluorene degradation in comparison to pure cultures. High performance liquid chromatography analysis of fluorene degradation showed three degradative metabolites. But GC/MS analysis detected one compound, identified as acetamide. The present work has indicated the poor efficacy of the pond. Lack of primary treatment of industrial effluent at factory level, coupled with shock loads of toxicants that may damage the microorganisms and their degradative capabilities are presumably main factors behind such inferior performance. Moreover, the type of pollutants discharged into the pond tend to fluctuate and change depending on the rate from the factories discharge and work shifts. Such irregular feeding of persistent pollutants may have led to a wash out of specialized strains of bacteria capable to degrade such persistent pollutants.« less

  19. Floristics of ephemeral ponds in east-central Texas

    Treesearch

    Barbara R. MacRoberts; Michael H. MacRoberts; D. Craig Rudolph; David W. Peterson

    2014-01-01

    Beginning in 2009, we surveyed the vegetation of ephemeral ponds in Sabine and Nacogdoches counties in east-central Texas. These ponds are shallow and flat-bottomed, with a small but distinct flora dominated by grasses (Poaceae) and sedges (Cyperaceae). The floras of these ponds are most similar to those of flatwoods ponds located on the lower coastal plain. Once more...

  20. Comet Pond II: Synergistic Intersection of Concentrated Extraterrestrial Materials and Planetary Environments to Form Procreative Darwinian Ponds.

    PubMed

    Clark, Benton C; Kolb, Vera M

    2018-05-11

    In the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents. Pond physical morphology and the heterogeneities imposed by gravitational forces (bottom sludge; surface scum) and weather result in a highly heterogeneous variety of macro- and microenvironments. Wet/dry, freeze/thaw, and natural chromatography processes further promote certain reaction sequences. Evaporation concentrates organics less volatile than water. Freezing concentrates all soluble organics into a residual liquid phase, including CH₃OH, HCN, etc. The pond’s evolutionary processes culminate in the creation of a Macrobiont with the metabolically equivalent capabilities of energy transduction and replication of RNA (or its progenitor informational macromolecule), from which smaller organisms can emerge. Planet-wide dispersal of microorganisms is achieved through wind transport, groundwater, and/or spillover from the pond into surface hydrologic networks.

  1. The color of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Leppäranta, Matti; Cheng, Bin; Li, Zhijun; Istomina, Larysa; Heygster, Georg

    2018-04-01

    Pond color, which creates the visual appearance of melt ponds on Arctic sea ice in summer, is quantitatively investigated using a two-stream radiative transfer model for ponded sea ice. The upwelling irradiance from the pond surface is determined and then its spectrum is transformed into RGB (red, green, blue) color space using a colorimetric method. The dependence of pond color on various factors such as water and ice properties and incident solar radiation is investigated. The results reveal that increasing underlying ice thickness Hi enhances both the green and blue intensities of pond color, whereas the red intensity is mostly sensitive to Hi for thin ice (Hi < 1.5 m) and to pond depth Hp for thick ice (Hi > 1.5 m), similar to the behavior of melt-pond albedo. The distribution of the incident solar spectrum F0 with wavelength affects the pond color rather than its intensity. The pond color changes from dark blue to brighter blue with increasing scattering in ice, and the influence of absorption in ice on pond color is limited. The pond color reproduced by the model agrees with field observations for Arctic sea ice in summer, which supports the validity of this study. More importantly, the pond color has been confirmed to contain information about meltwater and underlying ice, and therefore it can be used as an index to retrieve Hi and Hp. Retrievals of Hi for thin ice (Hi < 1 m) agree better with field measurements than retrievals for thick ice, but those of Hp are not good. The analysis of pond color is a new potential method to obtain thin ice thickness in summer, although more validation data and improvements to the radiative transfer model will be needed in future.

  2. The refreezing of melt ponds on Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Flocco, Daniela; Feltham, Daniel L.; Bailey, Eleanor; Schroeder, David

    2015-02-01

    The presence of melt ponds on the surface of Arctic sea ice significantly reduces its albedo, inducing a positive feedback leading to sea ice thinning. While the role of melt ponds in enhancing the summer melt of sea ice is well known, their impact on suppressing winter freezing of sea ice has, hitherto, received less attention. Melt ponds freeze by forming an ice lid at the upper surface, which insulates them from the atmosphere and traps pond water between the underlying sea ice and the ice lid. The pond water is a store of latent heat, which is released during refreezing. Until a pond freezes completely, there can be minimal ice growth at the base of the underlying sea ice. In this work, we present a model of the refreezing of a melt pond that includes the heat and salt balances in the ice lid, trapped pond, and underlying sea ice. The model uses a two-stream radiation model to account for radiative scattering at phase boundaries. Simulations and related sensitivity studies suggest that trapped pond water may survive for over a month. We focus on the role that pond salinity has on delaying the refreezing process and retarding basal sea ice growth. We estimate that for a typical sea ice pond coverage in autumn, excluding the impact of trapped ponds in models overestimates ice growth by up to 265 million km3, an overestimate of 26%.

  3. An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent.

    PubMed

    Wu, Yin-Hu; Li, Xin; Yu, Yin; Hu, Hong-Ying; Zhang, Tian-Yuan; Li, Feng-Min

    2013-09-01

    Microalgal growth is the key to the coupled system of wastewater treatment and microalgal biomass production. In this study, Monod model, Droop model and Steele model were incorporated to obtain an integrated growth model describing the combined effects of nitrogen, phosphorus and light intensity on the growth rate of Scenedesmus sp. LX1. The model parameters were obtained via fitting experimental data to these classical models. Furthermore, the biomass production of Scenedesmus sp. LX1 in open pond under nutrient level of secondary effluent was analyzed based on the integrated model, predicting a maximal microalgal biomass production rate about 20 g m(-2) d(-1). In order to optimize the biomass production of open pond the microalgal biomass concentration, light intensity on the surface of open pond, total depth of culture medium and hydraulic retention time should be 500 g m(-3), 16,000 lx, 0.2 m and 5.2 d in the conditions of this study, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. CO₂ efflux from shrimp ponds in Indonesia.

    PubMed

    Sidik, Frida; Lovelock, Catherine E

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored 'blue' carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO₂) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO₂ efflux from the floors and walls of shrimp ponds. Rates of CO₂ efflux within shrimp ponds were 4.37 kg CO₂ m⁻² y⁻¹ from the walls and 1.60 kg CO₂ m⁻² y⁻¹ from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO₂ emissions to the atmosphere between 5.76 and 13.95 Tg y⁻¹. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO₂ emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO₂ released to atmosphere.

  5. The Pond Is Our Laboratory

    ERIC Educational Resources Information Center

    Marchewka, Barbara Turco

    1978-01-01

    This science teacher's laboratory is a pond within walking distance of his school that provides a stimulating environment for exploring the natural world. With simple materials students practice making careful observations, taking measurements and compiling and graphing information for their science studies. They also extend their pond experiences…

  6. Simulation of outdoor pond cultures using indoor LED-lighted and temperature-controlled raceway ponds and Phenometrics photobioreactors

    DOE PAGES

    Huesemann, Michael; Dale, T.; Chavis, A.; ...

    2016-12-02

    Two innovative culturing systems, the LED-lighted and temperature-controlled 800 liter indoor raceways at Pacific Northwest National Laboratory (PNNL) and the Phenometrics environmental Photobioreactors™ (ePBRs) were evaluated in terms of their ability to accurately simulate the microalgae growth performance of outdoor cultures subjected to fluctuating sunlight and water temperature conditions. When repeating a 60-day outdoor pond culture experiment (batch and semi-continuous at two dilution rates) conducted in Arizona with the freshwater strain Chlorella sorokiniana DOE 1412 in these two indoor simulators, it was found that ash-free dry weight based biomass growth and productivity in the PNNL climate-simulation ponds was comparatively slightlymore » higher (8–13%) but significantly lower (44%) in the ePBRs. The difference in biomass productivities between the indoor and outdoor ponds was not statistically significant. When the marine Picochlorum soloecismus was cultured in five replicate ePBRs at Los Alamos National Laboratory (LANL) and in duplicate indoor climate-simulation ponds at PNNL, using the same inoculum, medium, culture depth, and light and temperature scripts, the optical density based biomass productivity and the rate of increase in cell counts in the ePBRs was about 35% and 66%, respectively, lower compared than in the indoor ponds. Potential reasons for the divergence in growth performance in these pond simulators, relative to outdoor raceways, are discussed. In conclusion, the PNNL climate-simulation ponds provide reasonably reliable biomass productivity estimates for microalgae strains cultured in outdoor raceways under different climatic conditions.« less

  7. Factors Influencing Fecal Contamination in Pond of Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; Escamilla, V.; Layton, A.; McKay, L. D.; Emch, M.; Mailloux, B. J.; Williams, D. E.; Huq, M. R.; Alam, M.; Farhana, L.; Ferguson, A. S.; Sayler, G. S.; Ahmed, K.; Serre, M. L.; Akita, Y.; Yunus, M.; van Geen, A.

    2010-12-01

    Occurrence of diarrheal disease in villages in rural Bangladesh remains relatively common, even though many households have switched to tubewell water for drinking and cooking. One factor contributing to this may be exposure to fecal contamination in ponds, which are often used for bathing and fishing. The objective of this study is to determine the dominant sources of fecal pollution in typical ponds and to explore the relationship between local population, latrine density, latrine quality and concentrations of fecal bacteria and pathogens in pond water. Forty-three ponds were sampled and analyzed for E. coli using culture-based methods and for E. coli, Bacteroides and adenovirus using quantitative PCR. Population and sanitation infrastructure were surveyed and compared to levels of pond fecal contamination. Molecular fecal source tracking using Bacteroides, determined that humans were the dominant source of fecal contamination in 79% of the ponds. Ponds directly receiving latrine effluent had the highest concentrations of fecal indicator bacteria. Concentrations of fecal indicator bacteria correlated with population surveyed within a distance of 30-70 m (p<0.01) and total latrines surveyed within 50-70 m (p<0.05). Unsanitary latrines with visible effluent within the pond drainage basin were also significantly correlated to fecal indicator concentrations (p<0.05). The vast majority of the surveyed ponds contained unsafe levels of fecal contamination primarily due to unsanitary latrines, and to lesser extent to sanitary latrines and cattle. Since the majority of fecal pollution is from humans, use of pond water could help explain the persistence of diarrheal disease in rural Bangladesh.

  8. Effects of sensor location and the atmospheric stability on the accuracy of an inverse-dispersion technique for lagoon gas emission measurements

    USDA-ARS?s Scientific Manuscript database

    Measuring gas emission rates from wastewater lagoons and storage ponds using currently available micrometeorological techniques can be an arduous task because typical lagoon environments contain a variety of obstructions (e.g., berm, trees, buildings) to wind flow. These non-homogeneous terrain cond...

  9. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  10. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture.

    PubMed

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China's aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water's surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine's motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine's mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02-0.03 m/s. For an illumination of 13,000-52,500 Lx, the sediment lifting device runs at 0.13-0.35 m/s, and its water delivery capacity is 110-208 m(3)/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10-15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3(+)-N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These results

  11. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  12. Biomass byproducts for the remediation of wastewaters contaminated with toxic metals.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneegurt, M. A.; Jain, J. C.; Menicucci, J. A., Jr.

    2001-09-15

    Pollution of the environment with toxic metals is widespread and often involves large volumes of wastewater. Remediation strategies must be designed to support high throughput while keeping costs to a minimum. Biosorption is presented as an alternative to traditional physicochemical means for removing toxic metals from wastewater. We have investigated the metal binding qualities of two biomass byproducts that are commercially available in quantity and at low cost, namely 'spillage', a dried yeast and plant mixture from the production of ethanol from corn, and ground corn cobs used in animal feeds. The biomass materials effectively removed toxic metals, such asmore » Cu, Cs, Mo, Ni, Pb, and Zn, even in the presence of competing metals likely to be found in sulfide mine tailing ponds. The effectiveness of these biosorbents was demonstrated using samples from the Berkeley Pit in Montana. Investigations included column chromatography and slurry systems, and linear distribution coefficients are presented. X-ray spectroscopy was used to identify the binding sites for metals adsorbed to the spillage material. The results of our experiments demonstrate that the biosorption of metals from wastewaters using biomass byproducts is a viable and cost-effective technology that should be included in process evaluations.« less

  13. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    PubMed

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  14. A review of the salt-gradient solar pond technology

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H.

    1982-01-01

    The state of the salt-gradient solar pond technology is reviewed. Highlights of findings and experiences from existing ponds to data are presented, and the behavior, energy yield, operational features, and economics of solar ponds are examined. It is concluded that salt-gradient solar ponds represent a technically feasible, environmentally benign, and economically attractive energy producing alternative. In order to bring this emerging technology to maturity, however, much research and development effort remains to be undertaken. Specific R&D areas requiring the attention and action of technical workers and decision-makers are discussed, both from the perspectives of smaller, thermally-oriented ponds and larger, electricity generating ponds.

  15. Sport fishery potential of power plant cooling ponds: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidinger, R.C.; Lewis, W.M.

    1986-10-01

    This research was undertaken to determine if cooling ponds could serve as habitat for several coolwater fish species and also to evaluate the potential use of cooling ponds as nursery areas for receiving waters. The work was conducted on two cooling ponds in northern Illinois. Walleye (Stizostedion vitreum), muskellunge (Esox masquinongy), striped bass (Morone saxatilis) fingerlings, and adult threadfin shad (Dorosoma petenense) were stocked into both cooling ponds. The hybrids between the striped bass and white bass (M. chrysops) had been previously stocked into Collins Pond. Smallmouth bass (Micropterus dolomieui) fingerlings and larval striped bass and walleye were stocked inmore » Dresden Pond. Several sampling techniques including seining, electrofishing, and rotenoning were used to monitor growth and survival of stocked species. In addition, escapement of stocked and indigenous species was monitored at the Dresden Pond spillway. Walleye, muskellunge, striped bass and hybrid striped bass exhibited excellent growth in Collins Pond as did smallmouth bass in Dresden Pond. One of the primary differences between an open system (such as Dresden Pond) and a closed system (such as Collins Pond) is the potential that the open system has to serve as a fish nursery area for receiving waters. The stocking of ''coolwater'' species in a closed type system such as Collins Pond is an effective way to control and maintain selected sport species. Dresden Pond was not open to public fishing during this study, but Collins Pond developed an excellent sport fishery as a result of these stockings.« less

  16. Mechanisms for parasites removal in a waste stabilisation pond.

    PubMed

    Reinoso, Roberto; Blanco, Saúl; Torres-Villamizar, Linda A; Bécares, Eloy

    2011-04-01

    A waste stabilisation pond (WSP) system formed by two anaerobic ponds, a facultative pond and a maturation pond was studied from December 2003 to September 2004 in north-western Spain in order to evaluate its efficiency in the removal of faecal indicator bacteria (total coliforms, Escherichia coli, faecal streptococci), coliphages, helminth eggs and protozoan (oo)cysts (Cryptosporidium and Giardia). Furthermore, sediment samples were collected from the bottom of the ponds to assess the settling rates and thus determine the main pathogen removal mechanisms in the WSPs system. The overall removal ranged from 1.4 log units for coliphages in the cold period to 5.0 log units for E. coli in the hot period. Cryptosporidium oocysts were reduced by an average of 96%, Giardia cysts by 98% and helminth eggs by 100%. The anaerobic ponds showed significantly higher surface removal rates (4.6, 5.2 and 3.7 log (oo)cysts/eggs removed m(-2) day(-1), respectively) than facultative and maturation ponds. Sunlight and water physicochemical conditions were the main factors influencing C. parvum oocysts removal both in the anaerobic and maturation ponds, whereas other factors like predation or natural mortality were more important in the facultative pond. Sedimentation, the most commonly proposed mechanism for cyst removal had, therefore, a negligible influence in the studied ponds.

  17. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    NASA Astrophysics Data System (ADS)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  18. Design and Application of a Solar Mobile Pond Aquaculture Water Quality-Regulation Machine Based in Bream Pond Aquaculture

    PubMed Central

    Liu, Xingguo; Xu, Hao; Ma, Zhuojun; Zhang, Yongjun; Tian, Changfeng; Cheng, Guofeng; Zou, Haisheng; Lu, Shimin; Liu, Shijing; Tang, Rong

    2016-01-01

    Bream pond aquaculture plays a very important role in China’s aquaculture industry and is the main source of aquatic products. To regulate and control pond water quality and sediment, a movable solar pond aquaculture water quality regulation machine (SMWM) was designed and used. This machine is solar-powered and moves on water, and its primary components are a solar power supply device, a sediment lifting device, a mechanism for walking on the water’s surface and a control system. The solar power supply device provides power for the machine, and the water walking mechanism drives the machine’s motion on the water. The sediment lifting device orbits the main section of the machine and affects a large area of the pond. Tests of the machine’s mechanical properties revealed that the minimum illumination necessary for the SMWM to function is 13,000 Lx and that its stable speed on the water is 0.02–0.03 m/s. For an illumination of 13,000–52,500 Lx, the sediment lifting device runs at 0.13–0.35 m/s, and its water delivery capacity is 110–208 m3/h. The sediment lifting device is able to fold away, and the angle of the suction chamber can be adjusted, making the machine work well in ponds at different water depths from 0.5 m to 2 m. The optimal distance from the sediment lifting device to the bottom of the pond is 10–15 cm. In addition, adjusting the length of the connecting rod and the direction of the traction rope allows the SMWM to work in a pond water area greater than 80%. The analysis of water quality in Wuchang bream (Parabramis pekinensis) and silver carp (Hypophthalmichthys molitrix) culture ponds using the SMWM resulted in decreased NH3+–N and available phosphorus concentrations and increased TP concentrations. The TN content and the amount of available phosphorus in the sediment were reduced. In addition, the fish production showed that the SMWM enhanced the yields of Wuchang bream and silver carp by more than 30% and 24%, respectively. These

  19. Long-term changes in pond permanence, size, and salinity in Prairie Pothole Region wetlands: The role of groundwater-pond interaction

    USGS Publications Warehouse

    LaBaugh, James W.; Rosenberry, Donald O.; Mushet, David M.; Neff, Brian; Nelson, Richard D.; Euliss, Ned H.

    2018-01-01

    Study RegionCottonwood Lake area wetlands, North Dakota, U.S.A.Study FocusFluctuations in pond permanence, size, and salinity are key features of prairie-pothole wetlands that provide a variety of wetland habitats for waterfowl in the northern prairie of North America. Observation of water-level and salinity fluctuations in a semi-permanent wetland pond over a 20-year period, included periods when the wetland occasionally was dry, as well as wetter years when the pond depth and surface extent doubled while volume increased 10 times.New hydrological insights for the study regionCompared to all other measured budget components, groundwater flow into the pond often contributed the least water (8–28 percent) but the largest amount (>90 percent) of specific solutes to the water and solute budgets of the pond. In drier years flow from the pond into groundwater represented > 10 percent of water loss, and in 1992 was approximately equal to evapotranspiration loss. Also during the drier years, export of calcium, magnesium, sodium, potassium, chloride, and sulfate by flow from the pond to groundwater was substantial compared with previous or subsequent years, a process that would have been undetected if groundwater flux had been calculated as a net value. Independent quantification of water and solute gains and losses were essential to understand controls on water-level and salinity fluctuations in the pond in response to variable climate conditions.

  20. Musculoskeletal disorder survey for pond workers

    NASA Astrophysics Data System (ADS)

    Maryani, A.; Partiwi, S. G.; Dewi, H. N. F.

    2018-04-01

    Mucsuloskeletal disorder will affect worker performance and become serious injury when ignored, so that workers cannot work normally. Therefore, an effective strategy plan is needed to reduce the risk of musculoskeletal disorder. A pond worker is profession with high risk of physical complain. Four main activities are ponds preparation, seed distribution, pond maintenance, and harvesting. The methods employed in this current musculoskeletal disorder survey are questionnaire and interview. The result from 73 questionnaires shown that most of pond workers were working for 7 days a week. Prevalence physical complain are on neck, shoulders, upper back, lower back, and knees. The level of perceived complaint is moderate pain. However, most of them do not contact therapists or physicians. Therefore it is necessary to improve the working methods to be able to reduce physical complains due to musculoskeletal disorder.

  1. Implementation of reactive and predictive real-time control strategies to optimize dry stormwater detention ponds

    NASA Astrophysics Data System (ADS)

    Gaborit, Étienne; Anctil, François; Vanrolleghem, Peter A.; Pelletier, Geneviève

    2013-04-01

    here increased the pond's TSS (and associated pollution) removal efficiency from 46% (current state) to between 70 and 90%, depending on the pond's capacity considered. The RTC strategies allow simultaneously maximizing the detention time of water, while minimizing the hydraulic shocks induced to the receiving water bodies and preventing overflow. A constraint relative to a maximum time of 4 days with water accumulated in the pond was thus respected to avoid mosquito breeding issues. The predictive control schemes (taking rainfall forecasts into consideration) can further reinforce the safety of the management strategies, even if meteorological forecasts are, of course, not error-free. With RTC, the studied pond capacity could thus have been limited to 1250 m3 instead of the 4000 m3 capacity currently used under static control. References Marsalek, J. 2005. Evolution of urban drainage: from cloaca maxima to environmental sustainability. Paper presented at Acqua e Citta, I Convegno Nazionale di Idraulica Urbana, Cent. Stud. Idraul. Urbana, Sant'Agnello di Sorrento, Italy, 28- 30 Sept. Middleton, J.R. and Barrett, M.E. 2008. Water quality performance of a batch-type stormwater detention basin. Water Environment Research, 80 (2): 172-178. Doi: http://dx.doi.org/10.2175/106143007X220842 Muschalla, D., Pelletier, G., Berrouard, É., Carpenter, J.-F., Vallet, B., and Vanrolleghem, P.A. 2009. Ecohydraulic-driven real-time control of stormwater basins. In: Proceedings 8th International Conference on Urban Drainage Modelling (8UDM), Tokyo, Japan, September 7-11. National Research Council, 1993. Managing Wastewater in Coastal Urban Areas. Washington, DC: National Academy Press. Shammaa, Y., Zhu, D.Z., Gyürék, L.L., and Labatiuk C.W. 2002. Effectiveness of dry ponds for stormwater total suspended solids removal. Canadian Journal of Civil Engineering, 29 (2): 316-324 (9). Doi: 10.1139/l02-008

  2. Solar perspectives - Israel, solar pond innovator

    NASA Astrophysics Data System (ADS)

    Winsberg, S.

    1981-07-01

    Existing and planned solar pond electricity producing power plants in Israel and California are discussed. Salt ponds, with salinity increasing with depth, are coupled with low temperature, organic working fluid Rankine cycle engines to form self-storage, nonpolluting, electric plants. Average pond thermal gradients range from 25 C surface to 90 C at the bottom; 160 GW of potential power have been projected as currently available from existing natural solar ponds from a partial survey of 14 countries. The largest installation to date has a 220 kW output, and a 5 MW plant is scheduled for completion in 1983. Efficiencies of 10% and a cost of $2,000/kW for a 40 MW plant are projected, a cost which is comparable to that of conventional plants. The 40 MW plant is an optimized design, allowing for modular plant additions to increase capacity.

  3. Falling head ponded infiltration in the nonlinear limit

    NASA Astrophysics Data System (ADS)

    Triadis, D.

    2014-12-01

    The Green and Ampt infiltration solution represents only an extreme example of behavior within a larger class of very nonlinear, delta function diffusivity soils. The mathematical analysis of these soils is greatly simplified by the existence of a sharp wetting front below the soil surface. Solutions for more realistic delta function soil models have recently been presented for infiltration under surface saturation without ponding. After general formulation of the problem, solutions for a full suite of delta function soils are derived for ponded surface water depleted by infiltration. Exact expressions for the cumulative infiltration as a function of time, or the drainage time as a function of the initial ponded depth may take implicit or parametric forms, and are supplemented by simple asymptotic expressions valid for small times, and small and large initial ponded depths. As with surface saturation without ponding, the Green-Ampt model overestimates the effect of the soil hydraulic conductivity. At the opposing extreme, a low-conductivity model is identified that also takes a very simple mathematical form and appears to be more accurate than the Green-Ampt model for larger ponded depths. Between these two, the nonlinear limit of Gardner's soil is recommended as a physically valid first approximation. Relative discrepancies between different soil models are observed to reach a maximum for intermediate values of the dimensionless initial ponded depth, and in general are smaller than for surface saturation without ponding.

  4. Assessment of the ecosystem services provided by ponds in hilly areas.

    PubMed

    Fu, Bin; Xu, Pei; Wang, Yukuan; Yan, Kun; Chaudhary, Suresh

    2018-06-18

    Ponds are an important ecosystem in rural landscapes. They play an important role in water retention, aquatic products supply and biodiversity conservation. By using a questionnaire-based survey of rural households in a small watershed in the Three Gorges Reservoir area, we analyzed the distribution of ponds, their size and current status. The Integrated Valuation of Environmental Services and Tradeoffs (InVEST) model was used to evaluate the regulation, provision and culture services of the ponds. We found that pond density was high throughout hilly areas. About 20 ponds were within an area of 1 km 2 . They were mainly distributed in the middle and lower parts of the basin. The presence of such a large number of ponds was considered remarkable. Water retention was the primary ecosystem service. On average, each pond contained about 4500 mm depth of water, which was 10 times that of the surrounding forest. However, with the transformation of agriculture in mountainous areas, the irrigation and domestic water services provided by ponds have declined. In recent years, ponds have been used predominantly for fish farming and leisure services. Aquaculture and multi-function ponds accounted for 54.55% and 27.7% of the surveyed ponds, respectively. Multi-function ponds consumed more water, but fish farming ponds were the most economically valuable. Due to weak environmental management and the decreasing economic value of ponds, it is necessary to conduct ecological management of ponds in accordance with societal changes in mountainous areas and to promote the protection and use of ponds. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Experimental canopy removal enhances diversity of vernal pond amphibians.

    PubMed

    Skelly, David K; Bolden, Susan R; Freidenburg, L Kealoha

    2014-03-01

    Vernal ponds are often treated as protected environments receiving special regulation and management. Within the landscapes where they are found, forest vegetation frequently dominates surrounding uplands and can grow to overtop and shade pond basins. Two bodies of research offer differing views of the role of forest canopy for vernal pond systems. Studies of landscape conversion suggest that removing forest overstory within uplands can cause local extinctions of amphibians by altering terrestrial habitat or hindering movement. Studies of canopy above pond basins imply an opposite relationship; encroachment of overstory vegetation can be associated with local extinctions potentially via changes in light, thermal, and food resource environments. Unresolved uncertainties about the role of forest canopy reveal significant gaps in our understanding of wetland species distributions and dynamics. Any misunderstanding of canopy influences is simultaneously important to managers because current practices emphasize promoting or conserving vegetation growth particularly within buffers immediately adjacent to ponds. We evaluated this apparent contradiction by conducting a landscape-scale, long-term experiment using 14 natural vernal ponds. Tree felling at six manipulated ponds was limited in spatial scope but was nevertheless effective in increasing water temperature. Compared with eight control ponds, manipulated ponds maintained more amphibian species during five years post-manipulation. There was little evidence that any species was negatively influenced, and the reproductive effort of species for which we estimated egg inputs maintained pretreatment population densities in manipulated compared with control ponds. Overall, our experiment shows that a carefully circumscribed reduction of overhead forest canopy can enhance the capacity of vernal ponds to support wildlife diversity and suggests a scale dependence of canopy influences on amphibians. These findings have

  6. The laboratory environmental algae pond simulator (LEAPS) photobioreactor: Validation using outdoor pond cultures of Chlorella sorokiniana and Nannochloropsis salina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, M.; Williams, P.; Edmundson, S.

    A bench-scale photobioreactor system, termed Laboratory Environmental Algae Pond Simulator (LEAPS), was designed and constructed to simulate outdoor pond cultivation for a wide range of geographical locations and seasons. The LEAPS consists of six well-mixed glass column photobioreactors sparged with CO2-enriched air to maintain a set-point pH, illuminated from above by a programmable multicolor LED lighting (0 to 2,500 µmol/m2-sec), and submerged in a temperature controlled water-bath (-2 °C to >60 °C). Measured incident light intensities and water temperatures deviated from the respective light and temperature set-points on average only 2.3% and 0.9%, demonstrating accurate simulation of light and temperaturemore » conditions measured in outdoor ponds. In order to determine whether microalgae strains cultured in the LEAPS exhibit the same linear phase biomass productivity as in outdoor ponds, Chlorella sorokiniana and Nannochloropsis salina were cultured in the LEAPS bioreactors using light and temperature scripts measured previously in the respective outdoor pond studies. For Chlorella sorokiniana, the summer season biomass productivity in the LEAPS was 6.6% and 11.3% lower than in the respective outdoor ponds in Rimrock, Arizona, and Delhi, California; however, these differences were not statistically significant. For Nannochloropsis salina, the winter season biomass productivity in the LEAPS was statistically significantly higher (15.2%) during the 27 day experimental period than in the respective outdoor ponds in Tucson, Arizona. However, when considering only the first 14 days, the LEAPS biomass productivity was only 9.2% higher than in the outdoor ponds, a difference shown to be not statistically significant. Potential reasons for the positive or negative divergence in LEAPS performance, relative to outdoor ponds, are discussed. To demonstrate the utility of the LEAPS in predicting productivity, two other strains – Scenedesmus obliquus and

  7. Pond fractals in a tidal flat.

    PubMed

    Cael, B B; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  8. Pond fractals in a tidal flat

    NASA Astrophysics Data System (ADS)

    Cael, B. B.; Lambert, Bennett; Bisson, Kelsey

    2015-11-01

    Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.

  9. Impact of surface melt and ponding on the stability of Larsen C Ice Shelf, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Kulessa, Bernd; Luckman, Adrian; Hubbard, Bryn; Bevan, Suzanne; O'Leary, Martin; Ashmore, David; Kuipers Munneke, Peter; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Holland, Paul; McGrath, Daniel; Brisbourne, Alex; Rutt, Ian

    2017-04-01

    Several ice shelves on the Antarctic Peninsula have disintegrated rapidly in recent decades, and surface meltwater is strongly implicated as a driver. The Larsen C Ice Shelf is the largest ice shelf on the peninsula and one of the largest in Antarctica, and is subject to pronounced surface melting and meltwater ponding, especially in the northern sectors and landward inlets. As part of the MIDAS project we have investigated the structure and physical properties of the firn and ice layers in the 2014/15 and 2015/16 austral summers, using a combination of radar and seismic geophysical surveys together with hot water drilling and borehole optical televiewing and temperature measurements. We found that Larsen C's firn column and ice temperatures are modified strongly by surface melting and ponding, including the presence of massive ice bodies in the Cabinet and Whirlwind inlets. Numerical modelling reveals that these modifications have been altering ice shelf deformation, flow and fracture significantly. The findings from our MIDAS project thus suggest that the response of Antarctic ice shelves to climatic warming is more complex than previously thought.

  10. Zoo-heleoplankton structure in three artificial ponds of North-eastern Argentina.

    PubMed

    Frutos, S M; Carnevali, R

    2008-09-01

    The aim of the present study was to compare the abundance and species richness of zoo-heleoplankton bigger than 53 microm in an annual cycle under similar climate conditions in three artificial ponds, in order to observe the changes during an annual cycle. Samples were taken monthly from June 1993 to July 1994 in Corrientes, Argentina. The first pond (A) was covered an 80% by Eichhornia crassipes (Mart.), the second one (B) with bloom of Microcystis aeruginosa (Kurtzing) and the last one (C) with organic matter deposited in the bottom. The water was more acidic at pond A, and the water at pond B contained more dissolved oxygen concentration than the water at the other two ponds. The zoo-heleoplankton densities varied between 20-1728 ind.l(-1) at pond A, 42-4082 ind.l(-1) at pond B and 148-2447 ind.l(-1) at pond C. The maximum zoo-heleoplankton abundance was found in the pond with cyanobacteria bloom during Autumn 1994 and the minimum abundance was found in the one with a predominance of E. crassipes. The rank of species richness was pond A > pond B > pond C. Rotifera was the most abundant group in pond A whereas the larval stages of Copepoda were abundant in the other two ponds. Anuraeopsis navicula Rousselt 1910 was the dominant population in the pond with macrophytes prevalence. Brachionus calyciflorus Pallas 1776 and larval stage of Copepoda had variable proportions in the pond with cyanobacteria bloom. Thermocyclops decipiens (Kiefer 1929) was present during the annual cycle only in the pond with organic matter deposited in the bottom. The succession of taxa was observed in the pond with coverage of aquatic macrophytes and with cyanobacteria bloom. Differences in species richness and low similarity in zoo-heleoplankton between ponds were determined by differences in the quality of the water in relation to the presence of macrophytes, cyanobacteria, organic matter deposited in the bottom and fish predation. Multiple regression analysis (stepwise) revealed that

  11. Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.

    PubMed

    Brix, H; Koottatep, T; Laugesen, C H

    2007-01-01

    The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.

  12. Models and observations of Arctic melt ponds

    NASA Astrophysics Data System (ADS)

    Golden, K. M.

    2016-12-01

    During the Arctic melt season, the sea ice surface undergoes a striking transformation from vast expanses of snow covered ice to complex mosaics of ice and melt ponds. Sea ice albedo, a key parameter in climate modeling, is largely determined by the complex evolution of melt pond configurations. In fact, ice-albedo feedback has played a significant role in the recent declines of the summer Arctic sea ice pack. However, understanding melt pond evolution remains a challenge to improving climate projections. It has been found that as the ponds grow and coalesce, the fractal dimension of their boundaries undergoes a transition from 1 to about 2, around a critical length scale of 100 square meters in area. As the ponds evolve they take complex, self-similar shapes with boundaries resembling space-filling curves. I will outline how mathematical models of composite materials and statistical physics, such as percolation and Ising models, are being used to describe this evolution and predict key geometrical parameters that agree very closely with observations.

  13. Utilization of surface mine ponds in East Tennessee by breeding amphibians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, L.J.; Fowler, D.K.

    1981-06-01

    Of 24 ponds examined on Ollis Creek Surface Mine, Campbell County, Tennessee, 21 contained breeding amphibians. Twelve species of amphibians were identified in ponds that ranged from 4.0 to 8.0 in pH. Although ponds with low pH values were used by breeding amphibians, significantly more amphibian species were found in ponds with higher pH values. The average pH of ponds occupied by each amphibian species varied. Spring peepers (Hyla crucifer) occupied ponds with the lowest average pH (5.22) while upland chorus frogs (Pseudacris triseriata feriarum) utilized ponds with the highest average pH (6.33). Findings indicated high biological productivity in surfacemore » mine ponds. Aquatic vegetation was present in 20 of the 24 ponds. Aquatic insects and a diverse wildlife fauna utilized the study ponds. Large mammals (3 species), waterbirds (17 species), and snakes (2 species) were among those species observed. Surface mine ponds were found to supply an important habitat component for a variety of wildlife species and therefore improve the quality of wildlife habitat on the surface mines. In some areas, mine ponds are the only source of surface water available for wildlife use. 23 references, 9 figures, 5 tables.« less

  14. Samples of Asteroid Surface Ponded Deposits in Chondritic Meteorites

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Lee, R.; Le, L.

    2004-01-01

    One of the many unexpected observations of asteroid 433 Eros by the Near Earth Asteroid Rendezvous (NEAR) mission was the many ponds of fine-grained materials [1-3]. The ponds have smooth surfaces, and define equipotential surfaces up to 10's of meters in diameter [4]. The ponds have a uniformly sub-cm grain size and appear to be cohesive or indurated to some degree, as revealed by slumping. The ponds appear to be concentrated within 30 degrees of the equator of Eros, where gravity is lowest. There is some insight into the mineralogy and composition of the ponds surfaces from NEAR spectroscopy [2,4,5,6]. Compared to the bulk asteroid, ponds: (1) are distinctly bluer (high 550/760 nm ratio), (2) have a deeper 1um mafic band, (3) have reflectance elevated by 5%.

  15. CO2 Efflux from Shrimp Ponds in Indonesia

    PubMed Central

    Sidik, Frida; Lovelock, Catherine E.

    2013-01-01

    The conversion of mangrove forest to aquaculture ponds has been increasing in recent decades. One of major concerns of this habitat loss is the release of stored ‘blue’ carbon from mangrove soils to the atmosphere. In this study, we assessed carbon dioxide (CO2) efflux from soil in intensive shrimp ponds in Bali, Indonesia. We measured CO2 efflux from the floors and walls of shrimp ponds. Rates of CO2 efflux within shrimp ponds were 4.37 kg CO2 m−2 y−1 from the walls and 1.60 kg CO2 m−2 y−1 from the floors. Combining our findings with published data of aquaculture land use in Indonesia, we estimated that shrimp ponds in this region result in CO2 emissions to the atmosphere between 5.76 and 13.95 Tg y−1. The results indicate that conversion of mangrove forests to aquaculture ponds contributes to greenhouse gas emissions that are comparable to peat forest conversion to other land uses in Indonesia. Higher magnitudes of CO2 emission may be released to atmosphere where ponds are constructed in newly cleared mangrove forests. This study indicates the need for incentives that can meet the target of aquaculture industry without expanding the converted mangrove areas, which will lead to increased CO2 released to atmosphere. PMID:23755306

  16. Sedimentation rates and patterns in beaver ponds in a mountain environment

    NASA Astrophysics Data System (ADS)

    Butler, David R.; Malanson, George P.

    1995-09-01

    Sediment depth was measured at several sites within each of eight beaver ponds in Glacier National Park, Montana, and sediment samples wen; collected from five of these ponds. Accumulation rates of sediments far exceeded published rates from boreal forest landscapes in eastem and central North America. Pond area strongly predicts volume of sedimentation. Textural differences illustrated spatial variations associated with position in a pond and along a pond sequence. Organic matter content was significantly higher in older ponds, and has ramifications for the development of the benthos and the long-term storage of matter in ponds. The role of beavers as biogeomorphic agents is profound, but requires further elucidation to distinguish between fluvial sediment deposition in ponds and sediment deposition associated with beaver excavational activity.

  17. The critical role of islands for waterbird breeding and foraging habitat in managed ponds of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California

    USGS Publications Warehouse

    Ackerman, Joshua T.; Hartman, C. Alex; Herzog, Mark P.; Smith, Lacy M.; Moskal, Stacy M.; De La Cruz, Susan E. W.; Yee, Julie L.; Takekawa, John Y.

    2014-01-01

    The South Bay Salt Pond Restoration Project aims to restore 50–90 percent of former salt evaporation ponds into tidal marsh in South San Francisco Bay, California. However, large numbers of waterbirds use these ponds annually as nesting and foraging habitat. Islands within ponds are particularly important habitat for nesting, foraging, and roosting waterbirds. To maintain current waterbird populations, the South Bay Salt Pond Restoration Project plans to create new islands within former salt ponds in South San Francisco Bay. In a series of studies, we investigated pond and individual island attributes that are most beneficial to nesting, foraging, and roosting waterbirds.

  18. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds.

    PubMed

    Popović, Predrag; Cael, B B; Silber, Mary; Abbot, Dorian S

    2018-04-06

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  19. Simple Rules Govern the Patterns of Arctic Sea Ice Melt Ponds

    NASA Astrophysics Data System (ADS)

    Popović, Predrag; Cael, B. B.; Silber, Mary; Abbot, Dorian S.

    2018-04-01

    Climate change, amplified in the far north, has led to rapid sea ice decline in recent years. In the summer, melt ponds form on the surface of Arctic sea ice, significantly lowering the ice reflectivity (albedo) and thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback; however, a reliable model of pond geometry does not currently exist. Here we show that a simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The only two model parameters, characteristic circle radius and coverage fraction, are chosen by comparing, between the model and the aerial photographs of the ponds, two correlation functions which determine the typical pond size and their connectedness. Using these parameters, the void model robustly reproduces the ponds' area-perimeter and area-abundance relationships over more than 6 orders of magnitude. By analyzing the correlation functions of ponds on several dates, we also find that the pond scale and the connectedness are surprisingly constant across different years and ice types. Moreover, we find that ponds resemble percolation clusters near the percolation threshold. These results demonstrate that the geometry and abundance of Arctic melt ponds can be simply described, which can be exploited in future models of Arctic melt ponds that would improve predictions of the response of sea ice to Arctic warming.

  20. Energetic potential of algal biomass from high-rate algal ponds for the production of solid biofuels.

    PubMed

    Costa, Taynan de Oliveira; Calijuri, Maria Lúcia; Avelar, Nayara Vilela; Carneiro, Angélica de Cássia de Oliveira; de Assis, Letícia Rodrigues

    2017-08-01

    In this investigation, chemical characteristics, higher, lower and net heating value, bulk and energy density, and thermogravimetric analysis were applied to study the thermal characteristics of three algal biomasses. These biomasses, grown as by-products of wastewater treatment in high-rate algal ponds (HRAPs), were: (i) biomass produced in domestic effluent and collected directly from an HRAP (PO); (ii) biomass produced in domestic effluent in a mixed pond-panel system and collected from the panels (PA); and (iii) biomass originating from the treatment effluent from the meat processing industry and collected directly from an HRAP (IN). The biomass IN was the best alternative for thermal power generation. Subsequently, a mixture of the algal biomasses and Jatropha epicarp was used to produce briquettes containing 0%, 25%, 50%, 75%, and 100% of algal biomass, and their properties were evaluated. In general, the addition of algal biomass to briquettes decreased both the hygroscopicity and fixed carbon content and increased the bulk density, ash content, and energy density. A 50% proportion of biomass IN was found to be the best raw material for producing briquettes. Therefore, the production of briquettes consisting of algal biomass and Jatropha epicarp at a laboratory scale was shown to be technically feasible.

  1. Bacterial abundance and diversity in pond water supplied with different feeds

    NASA Astrophysics Data System (ADS)

    Qin, Ya; Hou, Jie; Deng, Ming; Liu, Quansheng; Wu, Chongwei; Ji, Yingjie; He, Xugang

    2016-10-01

    The abundance and diversity of bacteria in two types of ponds were investigated by quantitative PCR and Illumina MiSeq sequencing. The results revealed that the abundance of bacterial 16S rRNA genes in D ponds (with grass carp fed sudan grass) was significantly lower than that in E ponds (with grass carp fed commercial feed). The microbial communities were dominated by Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria in both E and D ponds, while the abundance of some genera was significantly different between the two types of ponds. Specifically, some potential pathogens such as Acinetobacter and Aeromonas were found to be significantly decreased, while some probiotics such as Comamonadaceae unclassified and Bacillales unclassified were significantly increased in D ponds. In addition, water quality of D ponds was better than that of E ponds. Temperature, dissolved oxygen and nutrients had significant influence on bacterial communities. The differences in bacterial community compositions between the two types of ponds could be partially explained by the different water conditions.

  2. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  3. Vermont lakes and ponds: a pilot recreation planning process

    Treesearch

    Daniel T. Malone; John J. Lindsay

    1992-01-01

    This report analyzes a pilot planning study conducted on two Vermont ponds by University of Vermont outdoor recreation planning students. It discusses the planning process used for these ponds and offers ways in which a statewide lake and pond planning process could be implemented.

  4. Chemical treatment costs reduced with in-pond raceway systems

    USDA-ARS?s Scientific Manuscript database

    Production systems such as in-pond raceway systems (IPRS) and split ponds are providing an alternative to traditional pond culture for raising catfish in several southeastern states. One advantage noted by farmers utilizing these systems is the reduced cost associated with the chemical treatment of ...

  5. A Report of Archaeological Testing at Site 3CT263 Within the Proposed Edmondson Wastewater Pond, Crittendon County, Arkansas

    DTIC Science & Technology

    1990-09-01

    Reservoirs. For U. S. Army Corps of Engineers. 1974b Archaeological Reconnaissance of the Reelfoot - Lake No. 9 Project Impact Area, Fulton Co., Kentucky...bayous, and lakes . Major drainages in Crittenden County include the Tvronza River, Fifteenmile Bayou, Tenmile Bayou, and Big Creek. The proposed...and canadian geese (Branta canadensis). Fish from the larger streams, oxbow lakes and beaver ponds, were also an important food source for

  6. Under-ice melt ponds in the Arctic

    NASA Astrophysics Data System (ADS)

    Smith, Naomi; Flocco, Daniela; Feltham, Daniel

    2017-04-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Double diffusion can lead to the formation of a sheet of ice, which is called a false bottom, at the interface between the fresh water and the ocean. These false bottoms isolate under-ice melt ponds from the ocean below, trapping the fresh water against the sea ice. These ponds and false bottoms have been estimated to cover between 5 and 40% of the base of the sea ice. [Notz et al. Journal of Geophysical Research 2003] We have developed a one-dimensional thermodynamic model of sea ice underlain by an under-ice melt pond and false bottom. Not only has this allowed us to simulate the evolution of under-ice melt ponds over time, identifying an alternative outcome than previously observed in the field, but sensitivity studies have helped us to estimate the impact that these pools of fresh water have on the mass-balance sea ice. We have also found evidence of a possible positive feedback cycle whereby increasingly less ice growth is seen due to the presence of under-ice melt ponds as the Arctic warms. Since the rate of basal ablation is affected by these phenomena, their presence alters the salt and freshwater fluxes from the sea ice into the ocean. We have coupled our under-ice melt pond model to a simple model of the oceanic mixed layer to determine how this affects mixed layer properties such as temperature, salinity, and depth. In turn, this changes the oceanic forcing reaching the sea ice.

  7. A survey of catfish pond water chemistry parameters for copper toxicity modelling

    USDA-ARS?s Scientific Manuscript database

    Water samples were collected from 20 catfish ponds in 2015 to obtain data useful in predicting copper toxicity and chemical behavior. Ponds were located in major catfish producing areas of west Alabama, east Arkansas, and Mississippi. Pond types included traditional levee ponds, split-ponds, water...

  8. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  9. Carbon footprint of four different wastewater treatment scenarios

    NASA Astrophysics Data System (ADS)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  10. WMOST v2 Case Study: Monponsett Ponds

    EPA Science Inventory

    This webinar presents an overview of the preliminary results of a case study application of EPA's Watershed Management Optimization Support Tool v2 (WMOST) for stakeholders in the Monponsett Ponds Watershed Workgroup. Monponsett Ponds is a large water system consisting of two ba...

  11. Enhancing Ecoefficiency in Shrimp Farming through Interconnected Ponds

    PubMed Central

    Barraza-Guardado, Ramón Héctor; Arreola-Lizárraga, José Alfredo; Juárez-García, Manuel; Juvera-Hoyos, Antonio; Casillas-Hernández, Ramón

    2015-01-01

    The future development of shrimp farming needs to improve its ecoefficiency. The purpose of this study was to evaluate water quality, flows, and nitrogen balance and production parameters on a farm with interconnected pond design to improve the efficiency of the semi-intensive culture of Litopenaeus vannamei ponds. The study was conducted in 21 commercial culture ponds during 180 days at densities of 30–35 ind m−2 and daily water exchange <2%. Our study provides evidence that by interconnecting ponds nutrient recycling is favored by promoting the growth of primary producers of the pond as chlorophyll a. Based on the mass balance and flow of nutrients this culture system reduces the flow of solid, particulate organic matter, and nitrogen compounds to the environment and significantly increases the efficiency of water (5 to 6.5 m3 kg−1 cycle−1), when compared with traditional culture systems. With this culture system it is possible to recover up to 34% of the total nitrogen entering the system, with production in excess of 4,000 kg ha−1 shrimp. We believe that the production system with interconnected ponds is a technically feasible model to improve ecoefficiency production of shrimp farming. PMID:26525070

  12. First description of underwater acoustic diversity in three temperate ponds.

    PubMed

    Desjonquères, Camille; Rybak, Fanny; Depraetere, Marion; Gasc, Amandine; Le Viol, Isabelle; Pavoine, Sandrine; Sueur, Jérôme

    2015-01-01

    The past decade has produced an increased ecological interest in sonic environments, or soundscapes. However, despite this rise in interest and technological improvements that allow for long-term acoustic surveys in various environments, some habitats' soundscapes remain to be explored. Ponds, and more generally freshwater habitats, are one of these acoustically unexplored environments. Here we undertook the first long term acoustic monitoring of three temperate ponds in France. By aural and visual inspection of a selection of recordings, we identified 48 different sound types, and according to the rarefaction curves we calculated, more sound types are likely present in one of the three ponds. The richness of sound types varied significantly across ponds. Surprisingly, there was no pond-to-pond daily consistency of sound type richness variation; each pond had its own daily patterns of activity. We also explored the possibility of using six acoustic diversity indices to conduct rapid biodiversity assessments in temperate ponds. We found that all indices were sensitive to the background noise as estimated through correlations with the signal-to-noise ratio (SNR). However, we determined that the AR index could be a good candidate to measure acoustic diversities using partial correlations with the SNR as a control variable. Yet, research is still required to automatically compute the SNR in order to apply this index on a large data set of recordings. The results showed that these three temperate ponds host a high level of acoustic diversity in which the soundscapes were variable not only between but also within the ponds. The sources producing this diversity of sounds and the drivers of difference in daily song type richness variation both require further investigation. Such research would yield insights into the biodiversity and ecology of temperate ponds.

  13. Recovery of aquatic insect-mediated methylmercury flux from ponds following drying disturbance.

    PubMed

    Chumchal, Matthew M; Drenner, Ray W; Greenhill, Frank M; Kennedy, James H; Courville, Ashlyn E; Gober, Charlie A A; Lossau, Luke O

    2017-08-01

    Small ponds exist across a permanence gradient, and pond permanence is hypothesized to be a primary determinant of insect community structure and insect-mediated methylmercury (MeHg) flux from ponds to the surrounding terrestrial landscape. The present study describes the first experiment examining the recovery of insect-mediated MeHg flux following a drying disturbance that converted permanent ponds with insectivorous fish to semipermanent ponds without fish. Floating emergence traps were used to collect emergent insects for 10 wk in the spring and summer from 5 ponds with fish (permanent) and 5 ponds that were drained to remove fish, dried, and refilled with water (semipermanent). During the 73-d period after semipermanent ponds were refilled, total MeHg flux from semipermanent ponds was not significantly different than total MeHg flux from permanent ponds, indicating that insect-mediated MeHg flux had rapidly recovered in semipermanent ponds following the drying disturbance. Methylmercury fluxes from dragonflies (Odonata: Anisoptera) and phantom midges (Diptera: Chaoboridae) were significantly greater from newly refilled semipermanent ponds than permanent ponds, but the MeHg fluxes from the other 8 emergent insect taxa did not differ between treatments. The present study demonstrates the impact of drying disturbance and the effect of community structure on the cross-system transport of contaminants from aquatic to terrestrial ecosystems. Environ Toxicol Chem 2017;36:1986-1990. © 2017 SETAC. © 2017 SETAC.

  14. Life-history evolution when Lestes damselflies invaded vernal ponds.

    PubMed

    De Block, Marjan; McPeek, Mark A; Stoks, Robby

    2008-02-01

    We know little about the macroevolution of life-history traits along environmental gradients, especially with regard to the directionality compared to the ancestral states and the associated costs to other functions. Here we examine how age and size at maturity evolved when Lestes damselflies shifted from their ancestral temporary pond habitat (i.e., ponds that may dry once every decade or so) to extremely ephemeral vernal ponds (ponds that routinely dry completely each year). Larvae of three species were reared from eggs until emergence under different levels of photoperiod and transient starvation stress. Compared to the two temporary-pond Lestes, the phylogenetically derived vernal-pond Lestes dryas developed more rapidly across photoperiod treatments until the final instar, and only expressed plasticity in development time in the final instar under photoperiod levels that simulated a later hatching date. The documented change in development rate can be considered adaptive and underlies the success of the derived species in vernal ponds. Results suggest associated costs of faster development are lower mass at maturity and lower immune function after transient starvation stress. These costs may not only have impeded further evolution of the routine development rate to what is physiologically maximal, but also maintained some degree of plasticity to time constraints when the habitat shift occurred.

  15. Fatty acids from high rate algal pond's microalgal biomass and osmotic stress effects.

    PubMed

    Drira, Neila; Dhouibi, Nedra; Hammami, Saoussen; Piras, Alessandra; Rosa, Antonella; Porcedda, Silvia; Dhaouadi, Hatem

    2017-11-01

    The extraction of oil from a wild microalgae biomass collected from a domestic wastewater treatment facility's high rate algal pond (HRAP) was investigated. An experiment plan was used to determine the most efficient extraction method, the optimal temperature, time and solvent system based on total lipids yield. Microwave-assisted extraction was the most efficient method whether in n-hexane or in a mixture of chloroform/methanol compared to Soxhlet, homogenization, and ultrasounds assisted extractions. This same wild biomass was cultivated in a photobioreactor (PBR) and the effect of osmotic stress was studied. The lipids extraction yield after 3days of stress increased by more than four folds without any significant loss of biomass, however, the quality of extracted total lipids in terms of saturated, monounsaturated and polyunsaturated fatty acids was not affected by salinity change in the culture medium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  17. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  18. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  19. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  20. 33 CFR 117.598 - Eel Pond Channel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Eel Pond Channel. 117.598 Section 117.598 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Massachusetts § 117.598 Eel Pond Channel. The...

  1. Screening for illicit drugs in pooled human urine and urinated soil samples and studies on the stability of urinary excretion products of cocaine, MDMA, and MDEA in wastewater by hyphenated mass spectrometry techniques.

    PubMed

    Mardal, Marie; Kinyua, Juliet; Ramin, Pedram; Miserez, Bram; Van Nuijs, Alexander L N; Covaci, Adrian; Meyer, Markus R

    2017-01-01

    Monitoring population drug use through wastewater-based epidemiology (WBE) is a useful method to quantitatively follow trends and estimate total drug consumption in communities. Concentrations of drug biomarkers might be low in wastewater due to dilution; and therefore analysis of pooled urine (PU) is useful to detect consumed drugs and identify targets of illicit drugs use. The aims of the study were (1) to screen PU and urinated soil (US) samples collected at festivals for illicit drug excretion products using hyphenated techniques; (2) to develop and validate a hydrophilic interaction liquid chromatography - mass spectrometry / mass spectrometry (HILIC-MS/MS) method of quantifying urinary targets of identified drugs in wastewater; and (3) to conduct a 24 h stability study, using PU and US to better reflect the chemical environment for targets in wastewater. Cocaine (COC) and ecstasy-like compounds were the most frequently detected illicit drugs; an analytical method was developed to quantify their excretion products. Hydroxymethoxymethamphetamine (HMMA), 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxyamphetamine (MDA), HMMA sulfate (HMMA-S), benzoylecgonine (BE), and cocaethylene (CE) had 85-102% of initial concentration after 8 h of incubation, whereas COC and ecgonine methyl ester (EME) had 74 and 67% after 8 h, respectively. HMMA showed a net increase during 24 h of incubation (107% ± 27, n = 8), possibly due to the cleavage of HMMA conjugates, and biotransformation of MDMA. The results suggest HMMA as analytical target for MDMA consumption in WBE, due to its stability in wastewater and its excretion as the main phase I metabolite of MDMA. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Selenium poisoning of fish by coal ash wastewater in Herrington Lake, Kentucky.

    PubMed

    Lemly, A Dennis

    2018-04-15

    Selenium pollution from the E.W. Brown Electric Generating Station was investigated in Herrington Lake, KY. Coal ash wastewater is discharged as surface water overflow from ash disposal ponds into the lake via a National Pollutant Discharge Elimination System permit issued by the Kentucky Division of Water, but the permit does not restrict or limit the amount of selenium released. Unpermitted discharges occur from seeps and drainage through leaks in ash pond dams. Together, these discharges have resulted in selenium concentrations in water, sediment, benthic macroinvertebrates, and fish that are 2-9 times the level that is toxic for fish reproduction and survival. A large proportion (12.2%, or 25 times background) of juvenile largemouth bass (Micropterus salmoides, the only species examined) exhibited spinal and/or craniofacial malformations that are consistent with selenium poisoning. Teratogenic Deformity Index values indicated a 3.05% population-level impact on the bass fishery, with total selenium-induced mortality (including pre-swimup mortality) estimated to be in excess of 25% per year. These findings confirm that coal ash discharges into Herrington Lake are contributing selenium to the Lake that is poisoning fish. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater.

    PubMed

    Stager, Jennifer L; Zhang, Xiaoyuan; Logan, Bruce E

    2017-12-01

    Power generation using microbial fuel cells (MFCs) must provide stable, continuous conversion of organic matter in wastewaters into electricity. However, when relatively small diameter (0.8cm) graphite fiber brush anodes were placed close to the cathodes in MFCs, power generation was unstable during treatment of low strength domestic wastewater. One reactor produced 149mW/m 2 before power generation failed, while the other reactor produced 257mW/m 2 , with both reactors exhibiting severe power overshoot in polarization tests. Using separators or activated carbon cathodes did not result in stable operation as the reactors continued to exhibit power overshoot based on polarization tests. However, adding acetate (1g/L) to the wastewater produced stable performance during fed batch and continuous flow operation, and there was no power overshoot in polarization tests. These results highlight the importance of wastewater strength and brush anode size for producing stable and continuous power in compact MFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Material selection for a constructed wetroof receiving pre-treated high strength domestic wastewater.

    PubMed

    Zapater-Pereyra, M; van Dien, F; van Bruggen, J J A; Lens, P N L

    2013-01-01

    A constructed wetroof (CWR) is defined in this study as the combination of a green roof and a constructed wetland: a shallow wastewater treatment system placed on the roof of a building. The foremost challenge of such CWRs, and the main aim of this investigation, is the selection of an appropriate matrix capable of assuring the required hydraulic retention time, the long-term stability and the roof load-bearing capacity. Six substrata were subjected to water dynamics and destructive tests in two testing-tables. Among all the materials tested, the substratum configuration composed of sand, light expanded clay aggregates, biodegradable polylactic acid beads together with stabilization plates and a turf mat is capable of retaining the water for approximately 3.8 days and of providing stability (stabilization plates) and an immediate protection (turf mat) to the system. Based on those results, a full-scale CWR was built, which did not show any physical deterioration after 1 year of operation. Preliminary wastewater treatment results on the full-scale CWR suggest that it can highly remove main wastewater pollutants (e.g. chemical oxygen demand, PO4(3-)-P and NH4(+)-N). The results of these tests and practical design considerations of the CWR are discussed in this paper.

  5. The study of recirculating aquaculture system in pond and its purification effect

    NASA Astrophysics Data System (ADS)

    Qu, Jiangqi; Zhang, Qingjing; Jia, Chengxia; Liu, Pan; Yang, Mu

    2017-05-01

    In this paper, a recirculating aquaculture purification system (RAPS) was designed to solve the problems of aquaculture pollution and shortage of freshwater resource according to the characteristic of northern freshwater ponds of China. The system were arranged in series and composed of high density culture pond, deposit pond, floating and submerged plant pond, ecological floating bed pond and biofilm filtrate pond. At the fish density of 20~30kg/m3 in the high density culture pond, the water quality parameters were monitored seasonally. The results indicated that the removal rate of total nitrogen, total phosphorus, ammonia nitrogen and nitrite nitrogen in the recirculating aquaculture system were 69.59%, 77.89%, 72.54% and 68.68%, respectively. The floating and submerged plant pond and ecological floating bed pond can remove TN and TP obviously, and increase dissolved oxygen and transparency significantly. And the biofilm filtrate pond has good effect of removing ammonium nitrogen and nitrite nitrogen, meanwhile, the microbial communities in the recirculating aquaculture system regulate on the water quality. Therefore, the RAPS show significant effects on water saving and pollution emission reducing.

  6. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production.

    PubMed

    Yuan, Zhenhong; Wang, Zhongming; Takala, Josu; Hiltunen, Erkki; Qin, Lei; Xu, Zhongbin; Qin, Xiaoxi; Zhu, Liandong

    2013-06-01

    Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for simultaneous wastewater treatment and biodiesel production was tested. The cultivation of C. zofingiensis with autoclaved wastewater and NaClO-pretreated wastewater, cultivation of algae indoors and outdoors, and stability of semi-continuous feeding operation were examined. The results showed that C. zofingiensis cultivated in piggery wastewater pretreated by autoclaving and NaClO had no evident difference in the performance of nutrient removal, algal growth and biodiesel production. The outdoor cultivation experiments indicated that C. zofingiensis was able to adapt and grow well outdoors. The semi-continuous feeding operation by replacing 50% of algae culture with fresh wastewater every 1.5 days could provide a stable net biomass productivity of 1.314 g L(-1) day(-1). These findings in this study can prove that it is greatly possible to amplify the cultivation of C. zofingiensis in piggery wastewater for nutrient removal and biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Screening new psychoactive substances in urban wastewater using high resolution mass spectrometry.

    PubMed

    González-Mariño, Iria; Gracia-Lor, Emma; Bagnati, Renzo; Martins, Claudia P B; Zuccato, Ettore; Castiglioni, Sara

    2016-06-01

    Analysis of drug residues in urban wastewater could complement epidemiological studies in detecting the use of new psychoactive substances (NPS), a continuously changing group of drugs hard to monitor by classical methods. We initially selected 52 NPS potentially used in Italy based on seizure data and consumption alerts provided by the Antidrug Police Department and the National Early Warning System. Using a linear ion trap-Orbitrap high resolution mass spectrometer, we designed a suspect screening and a target method approach and compared them for the analysis of 24 h wastewater samples collected at the treatment plant influents of four Italian cities. This highlighted the main limitations of these two approaches, so we could propose requirements for future research. A library of MS/MS spectra of 16 synthetic cathinones and 19 synthetic cannabinoids, for which analytical standards were acquired, was built at different collision energies and is available on request. The stability of synthetic cannabinoids was studied in analytical standards and wastewater, identifying the best analytical conditions for future studies. To the best of our knowledge, these are the first stability data on NPS. Few suspects were identified in Italian wastewater samples, in accordance with recent epidemiological data reporting a very low prevalence of use of NPS in Italy. This study outlines an analytical approach for NPS identification and measurement in urban wastewater and for estimating their use in the population.

  8. Short-term exposure to municipal wastewater influences energy, growth, and swimming performance in juvenile Empire Gudgeons (Hypseleotris compressa).

    PubMed

    Melvin, Steven D

    2016-01-01

    Effectively treating domestic wastewater is paramount for preserving the health of aquatic ecosystems. Various technologies exist for wastewater treatment, ranging from simple pond-based systems to advanced filtration, and it is important to evaluate the potential for these different options to produce water that is acceptable for discharge. Sub-lethal responses were therefore assessed in juvenile Empire Gudgeons (Hypseleotris compressa) exposed for a period of two weeks to control, 12.5, 25, 50, and 100% wastewater treated through a multi-stage constructed wetland (CW) treatment system. Effects on basic energy reserves (i.e., lipids and protein), growth and condition, and swimming performance were quantified following exposure. A significant increase in weight and condition was observed in fish exposed to 50 and 100% wastewater dilutions, whereas whole-body lipid content was significantly reduced in these treatments. Maximum swimming velocity increased in a dose-dependent manner amongst treatment groups (although not significantly), whereas angular velocity was significantly reduced in the 50 and 100% dilutions. Results demonstrate that treated domestic wastewater can influence the growth and swimming performance of fish, and that such effects may be related to alterations to primary energy stores. However, studies assessing complex wastewaters present difficulties when it comes to interpreting responses, as many possible factors can contribute towards the observed effects. Future research should address these uncertainties by exploring interaction between nutrients, basic water quality characteristics and relevant contaminant mixtures, for influencing the energetics, growth, and functional performance of aquatic animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Waterbird use of saltmarsh ponds created for open marsh water management

    USGS Publications Warehouse

    Erwin, R.M.; Hatfield, J.S.; Howe, M.A.; Klugman, S.K.

    1994-01-01

    Open Marsh Water Management (OMWM) as an alternative to pesticides for mosquito control in saltmarshes along the Atlantic Coast has created debate among biologists. We designed an experiment to determine waterbird (American black duck (Anas rubripes) and other waterfowl, wading birds, shorebirds, gulls, and terns) use (during daylight) of ponds created for mosquito control compared with use of pre-existing water bodies (i.e., natural tidal ponds, creeks, old ditches) and refuge impoundments. We also evaluated the influence of pond size and depth on waterbird use of wetlands. We documented bird use of different habitats for 1 year. The highest densities of waterfowl, in autumn, occurred in 0.030.06ha ponds (P lt 0.05) versus ponds either lt 0.02 ha or gt 0.08 ha; highest shorebird densities occurred in summer in ponds gt 0.10 ha (P lt 0.05). Pond depth affected shorebird and other waterfowl use in some seasons. Comparisons of mean number of birds using created (OMWM) ponds with mean number of birds using other water bodies revealed that most species showed no pattern (P gt 0.05) of disproportionate use versus availability. At high tidal levels, most species groups used OMWM ponds in the marsh more often (P lt 0.05) than other water bodies. Black ducks and other waterfowl used nearby refuge impoundments in higher densities than they did OMWM ponds, for nesting and during autumn-winter (all Ps lt 0.05). Creating small ( lt 0.1 ha) ponds for mosquito control does not enhance waterbird habitat, at least not where large impoundments are in close proximity. We recommend that in areas where OMWM practices seem appropriate, fewer large ( gt 0.10 ha) ponds be constructed with shallow ( lt 15 cm) basins and sloping sides.

  10. Emissions from Produced Water Treatment Ponds, Uintah Basin, Utah, USA

    NASA Astrophysics Data System (ADS)

    Mansfield, M. L.; Lyman, S. N.; Tran, H.; O'Neil, T.; Anderson, R.

    2015-12-01

    An aqueous phase, known as "produced water," usually accompanies the hydrocarbon fluid phases that are extracted from Earth's crust during oil and natural gas extraction. Produced water contains dissolved and suspended organics and other contaminants and hence cannot be discharged directly into the hydrosphere. One common disposal method is to discharge produced water into open-pit evaporation ponds. Spent hydraulic fracturing fluids are also often discharged into the same ponds. It is obvious to anyone with a healthy olfactory system that such ponds emit volatile organics to the atmosphere, but very little work has been done to characterize such emissions. Because oil, gas, and water phases are often in contact in geologic formations, we can expect that more highly soluble compounds (e.g., salts, alcohols, carbonyls, carboxyls, BTEX, etc.) partition preferentially into produced water. However, as the water in the ponds age, many physical, chemical, and biological processes alter the composition of the water, and therefore the composition and strength of volatile organic emissions. For example, some ponds are aerated to hasten evaporation, which also promotes oxidation of organics dissolved in the water. Some ponds are treated with microbes to promote bio-oxidation. In other words, emissions from ponds are expected to be a complex function of the composition of the water as it first enters the pond, and also of the age of the water and of its treatment history. We have conducted many measurements of emissions from produced water ponds in the Uintah Basin of eastern Utah, both by flux chamber and by evacuated canister sampling with inverse modeling. These measurements include fluxes of CO2, CH4, methanol, and many other volatile organic gases. We have also measured chemical compositions and microbial content of water in the ponds. Results of these measurements will be reported.

  11. Field and laboratory tests for assessing the feasibility on the use of municipal treated wastewater for agricultural irrigation

    NASA Astrophysics Data System (ADS)

    Gallardo, Helena; Lovera, Raúl; Himi, Mahjoub; Sendrós, Alexandre; Marguí, Eva; Tapias, Josefina C.; Queralt, Ignasi; Casas, Albert

    2014-05-01

    he scarcity of water resources in many regions of the planet in the XXIst century is a challenge which concerns the current societies. Water use has been growing during the last decades. Therefore, different strategies of water management in many water-deficient regions are being carried out, especially in densely populated areas, in coastal zones or in regions under arid or semi-arid climate. During the last years, there has been a growing interest in the use of the subsurface for water storage though shallow percolating ponds. Moreover, on a best-practices basis, the use of reclaimed wastewater for different purposes is becoming more usual. The irrigation with municipal treated wastewater (MTWW) is an interesting strategy especially in the agricultural sector, which represents the main water user in contrast with other socioeconomic activities. The study area is located near Castellbisbal, on the lower stretches of the Llobregat River close to the Metropolitan area of Barcelona (Catalonia, Spain). The site consists on a percolating pond and agricultural fields around. In order to assess the feasibility of using reclaimed wastewater for different uses in this site, several experiments both on field and at the laboratory were carried out. First of all, a detailed non-destructive geophysical survey was conducted using electrical resistivity tomography (ERT) technique. Geophysical data were constrained by geological and hydrogeological properties from boreholes and water wells. On the other hand, laboratory experiments were carried out through batch and column assays, focused on the detailed water-mineral particles interrelationships that can occur at the vadose zone. Soil samples from the crop fields around and water samples from the nearest well, as from the municipal wastewater treatment plant were used. Chemical and mineralogical composition of the soils were determined by using non-destructive spectroscopic techniques as x-ray fluorescence (XRF) and x-ray powder

  12. Morphology-dependent water budgets and nutrient fluxes in arctic thaw ponds

    USGS Publications Warehouse

    Koch, Joshua C.; Gurney, Kirsty; Wipfli, Mark S.

    2014-01-01

    Thaw ponds on the Arctic Coastal Plain of Alaska are productive ecosystems, providing habitat and food resources for many fish and bird species. Permafrost in this region creates unique pond morphologies: deep troughs, shallow low-centred polygons (LCPs) and larger coalescent ponds. By monitoring seasonal trends in pond volume and chemistry, we evaluated whether pond morphology and size affect water temperature and desiccation, and nitrogen (N) and phosphorus (P) fluxes. Evaporation was the largest early-summer water flux in all pond types. LCPs dried quickly and displayed high early-summer nutrient concentrations and losses. Troughs consistently received solute-rich subsurface inflows, which accounted for 12 to 42 per cent of their volume and may explain higher P in the troughs. N to P ratios increased and ammonium concentrations decreased with pond volume, suggesting that P and inorganic N availability may limit ecosystem productivity in older, larger ponds. Arctic summer temperatures will likely increase in the future, which may accelerate mid-summer desiccation. Given their morphology, troughs may remain wet, become warmer and derive greater nutrient loads from their thawing banks. Overall, seasonal- to decadal-scale warming may increase ecosystem productivity in troughs relative to other Arctic Coastal Plain ponds

  13. Simple rules govern the patterns of Arctic sea ice melt ponds

    NASA Astrophysics Data System (ADS)

    Popovic, P.; Cael, B. B.; Abbot, D. S.; Silber, M.

    2017-12-01

    Climate change, amplified in the far north, has led to a rapid sea ice decline in recent years. Melt ponds that form on the surface of Arctic sea ice in the summer significantly lower the ice albedo, thereby accelerating ice melt. Pond geometry controls the details of this crucial feedback. However, currently it is unclear how to model this intricate geometry. Here we show that an extremely simple model of voids surrounding randomly sized and placed overlapping circles reproduces the essential features of pond patterns. The model has only two parameters, circle scale and the fraction of the surface covered by voids, and we choose them by comparing the model to pond images. Using these parameters the void model robustly reproduces all of the examined pond features such as the ponds' area-perimeter relationship and the area-abundance relationship over nearly 7 orders of magnitude. By analyzing airborne photographs of sea ice, we also find that the typical pond scale is surprisingly constant across different years, regions, and ice types. These results demonstrate that the geometric and abundance patterns of Arctic melt ponds can be simply described, and can guide future models of Arctic melt ponds to improve predictions of how sea ice will respond to Arctic warming.

  14. Pumping performance of a slow-rotating paddlewheel for split-ponds

    USDA-ARS?s Scientific Manuscript database

    Commercial catfish farmers are intensifying production by retrofitting ponds with variations of the partitioned aquaculture system. The split-pond system is the most common variation used commercially. The split-pond consists of a small fish-holding basin connected to a waste treatment lagoon by two...

  15. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.

    PubMed

    Fine, Pinchas; Hadas, Efrat

    2012-02-01

    Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which

  16. Continuous Hydrologic and Water Quality Monitoring of Vernal Ponds.

    PubMed

    Mina, Odette; Gall, Heather E; Chandler, Joseph W; Harper, Jeremy; Taylor, Malcolm

    2017-11-13

    Vernal ponds, also referred to as vernal pools, provide critical ecosystem services and habitat for a variety of threatened and endangered species. However, they are vulnerable parts of the landscapes that are often poorly understood and understudied. Land use and management practices, as well as climate change are thought to be a contribution to the global amphibian decline. However, more research is needed to understand the extent of these impacts. Here, we present methodology for characterizing a vernal pond's morphology and detail a monitoring station that can be used to collect water quantity and quality data over the duration of a vernal pond's hydroperiod. We provide methodology for how to conduct field surveys to characterize the morphology and develop stage-storage curves for a vernal pond. Additionally, we provide methodology for monitoring the water level, temperature, pH, oxidation-reduction potential, dissolved oxygen, and electrical conductivity of water in a vernal pond, as well as monitoring rainfall data. This information can be used to better quantify the ecosystem services that vernal ponds provide and the impacts of anthropogenic activities on their ability to provide these services.

  17. WHAT HAPPENS TO FLUOROTELOMER POLYMER PRODUCTS DURING WASTEWATER TREATMENT?

    EPA Science Inventory

    Fluorotelomer based polymers formulate numerous products relied upon by society. Despite their widespread use and high opportunity for down-the-drain disposal, the fate and stability of fluorotelomer polymer products in wastewater treatment systems remains unknown. To address thi...

  18. Salton Sea Project, Phase 1. [solar pond power plant

    NASA Technical Reports Server (NTRS)

    Peelgren, M. L.

    1982-01-01

    A feasibility study was made for a salt gradient solar pond power plant in or near the Salton Sea of California. The conclusions support continuance 5-MWe proof-of-concept experiment, and ultimate construction by an electric utility company of a 600-MWe plant. The Solar Pond concept would be an environmental benefit to the Salton Sea by reversing the increasing salinity trend. The greatest cost drivers are the lake dike construction and pond sealing. Problems to be resolved include method of brine production from Salton Sea water for the first unit (which requires evaporation pond area and time), the high turbidity and color content of the Salton Sea water (which requires pretreatment), and other questions related to pond permeability, bio-activity and soil/brine chemical reactions. All technical and environmental problems appear solvable and/or manageable if care is taken in mitigating impacts.

  19. Estimated hydrologic budgets of kettle-hole ponds in coastal aquifers of southeastern Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2011-01-01

    Water fluxes through the ponds are a function of several factors, including the size, shape, and bathymetry of the pond, orientation of the pond relative to the regional hydraulic gradient, and hydrologic setting relative to the proximity of groundwater divides and discharge boundaries. Total steady-state fluxes through the ponds range from more than 3,300,000 to less than 2,000 cubic feet per day. For ponds without surface-water inlets or outlets, groundwater inflow accounts for 98 to 3 percent of total inflow; conversely, recharge onto the pond surface accounts for the remainder of inflow (between 2 and 97 percent). All natural flows from these ponds are through recharge from the pond into the aquifer. In one pond, about 94 percent of the total outflow is removed for water supply. For ponds that are connected to surface-water drainages, most inflow and outflow are through streams. Ponds that receive water from streams receive most (58 to 89 percent) of their water from those streams. Ponds that are drained by streams lose between 5 and 100 percent of their water to those streams.

  20. Solidified structure and leaching properties of metallurgical wastewater treatment sludge after solidification/stabilization process.

    PubMed

    Radovanović, Dragana Đ; Kamberović, Željko J; Korać, Marija S; Rogan, Jelena R

    2016-01-01

    The presented study investigates solidification/stabilization process of hazardous heavy metals/arsenic sludge, generated after the treatment of the wastewater from a primary copper smelter. Fly ash and fly ash with addition of hydrated lime and Portland composite cement were studied as potential binders. The effectiveness of the process was evaluated by unconfined compressive strength (UCS) testing, leaching tests (EN 12457-4 and TCLP) and acid neutralization capacity (ANC) test. It was found that introduction of cement into the systems increased the UCS, led to reduced leaching of Cu, Ni and Zn, but had a negative effect on the ANC. Gradual addition of lime resulted in decreased UCS, significant reduction of metals leaching and high ANC, due to the excess of lime that remained unreacted in pozzolanic reaction. Stabilization of more than 99% of heavy metals and 90% of arsenic has been achieved. All the samples had UCS above required value for safe disposal. In addition to standard leaching tests, solidificates were exposed to atmospheric conditions during one year in order to determine the actual leaching level of metals in real environment. It can be concluded that the EN 12457-4 test is more similar to the real environmental conditions, while the TCLP test highly exaggerates the leaching of metals. The paper also presents results of differential acid neutralization (d-AN) analysis compared with mineralogical study done by scanning electron microscopy and X-ray diffraction analysis. The d-AN coupled with Eh-pH (Pourbaix) diagrams were proven to be a new effective method for analysis of amorphous solidified structure.

  1. Evaluation of Autothermal Thermophilic Aerobic Digester Performance for the Stabilization of Municipal Wastewater Sludge.

    PubMed

    Shokoohi, Reza; Rahmani, Alireza; Asgari, Ghorban; Dargahi, Abdollah; Vaziri, Yaser; Abbasi, Mohammad Attar

    2017-01-01

    Sludge stabilization process in terms of operational, environmental and economic indexes is the most important stage of treatment and its disposal. This study was aimed to determine the performance of Autothermal Thermophilic Aerobic Digestion (ATAD) system as one of the low-cost and biocompatible methods of sludge treatment. This study has been done using a laboratory scale Autothermal Thermophilic Aerobic Digestion (ATAD). The reactor was consisted of two polyethylene tanks with a final capacity of 100 L for each tank. Both tanks with all fittings were installed on a metal frame. The variables of study were temperature, dissolved oxygen, pH, volatile organic compounds, total solids, COD and the number of Ascaris eggs and fecal coliforms per gram of dry matter of the sludge. The temperature was measured hourly and the pH and dissolved oxygen were measured and controlled twice per day. One-way ANNOVA was applied to analyze reasults. According to the results, the temperature of sludge increased from 11.7-61.2°C by biological reactions. Pathogen organisms were reduced from 80×106 to 503 in number during 72 h. After 6 days pathogen organisms and Ascaris eggs were removed completely. Volatile organic compounds and COD were reduced 42 and 38.3% respectively during the 6 days. It is concluded that the performance of ATAD in removing organic compounds from wastewater sludge were desirable. Resulted sludge from stabilization process were appropriate for use in agriculture as a soil supplement and met the indexes of class A sludge according to EPA's standards (CFR 40 Part 503).

  2. Poorly known microbial taxa dominate the microbiome of permafrost thaw ponds.

    PubMed

    Wurzbacher, Christian; Nilsson, R Henrik; Rautio, Milla; Peura, Sari

    2017-08-01

    In the transition zone of the shifting permafrost border, thaw ponds emerge as hotspots of microbial activity, processing the ancient carbon freed from the permafrost. We analyzed the microbial succession across a gradient of recently emerged to older ponds using three molecular markers: one universal, one bacterial and one fungal. Age was a major modulator of the microbial community of the thaw ponds. Surprisingly, typical freshwater taxa comprised only a small fraction of the community. Instead, thaw ponds of all age classes were dominated by enigmatic bacterial and fungal phyla. Our results on permafrost thaw ponds lead to a revised perception of the thaw pond ecosystem and their microbes, with potential implications for carbon and nutrient cycling in this increasingly important class of freshwaters.

  3. Decolorization of reactive dyes in solar pond reactors: Perspectives and challenges for the textile industry.

    PubMed

    Chavaco, L C; Arcos, C A; Prato-Garcia, D

    2017-08-01

    In the past three decades, Fenton and photo-Fenton processes have been the subject of a large number of research studies aimed at developing a low-cost and robust alternative to treat complex wastewater. Aspects such as installation and operating costs and technical complexity of reactors have limited the commercial applications of Fenton processes. In this study, we evaluated the potential of solar pond reactors to carry out degradation of the dye reactive orange 16 (RO16). Decolorization (D = 99 ± 0.6%), chemical oxygen demand reduction (COD = 55 ± 2%), total organic carbon removal (TOC = 28 ± 0.5%), and biocompatibilization can be accomplished using 15% peroxide (0.6 mg H 2 O 2 /mg RO16), which is theoretically required to mineralize the dye. Under dark conditions, decolorization and aromatic removal were scarcely affected (2%), whereas COD and TOC removal were reduced to 37% and 16%, respectively. The application of multivariable analysis and the use of low-cost reactors may lead to a reduction in annual treatment costs of colored effluents to 0.76 (US/m 3 ). Furthermore, the treatment capacity can be increased from 0.6 m 3 wastewater/m 2 reactor surface to 1.7 m 3 wastewater/m 2 reactor surface without compromising process efficiency or the biodegradability (BOD 5 /COD ratio) of the effluent. Dyeing auxiliaries, mainly NaCl, appreciably reduced the decolorization performance in Fenton (13 ± 0.4%) and photo-Fenton (83 ± 0.5%) processes due to the formation of iron-chloride complexes and less powerful oxidants. To reduce the impact of auxiliary agents on process performance and treatment capacity, the Fe 2+ concentration should be increased from 5 mg/L to 15 mg/L. The results seem promising; however, additional studies at pilot and semi-industrial scales should be conducted to demonstrate the potential of low-cost reactors to carry out colored wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis and Technological Innovation of Applying Oxide Nanomaterials in Wastewater Treatment by Flotation

    NASA Astrophysics Data System (ADS)

    Covaliu, C. I.; Moga, I. C.; Matache, M. G.; Paraschiv, G.; Gageanu, I.; Vasile, E.

    2018-06-01

    The appearance and development of nanotechnology gave new and efficient modalities for pollutants removal from wastewaters by using new compounds called nanomaterials which possess unique structural and morphological properties. In this paper we investigated the application of CoFe2O4 nanomaterial for increasing the efficiency of oily wastewater treatment by flotation. CoFe2O4 nanomaterial was prepared by precipitation method. Prior testing their application in wastewater treatment by flotation, the oxide nanomaterial was structural and morphological characterized by XRD and TEM analyses. The influence of CoFe2O4nanomaterial on oily wastewater depollution by flotation process was investigated by measuring the following parameters: treatment efficiency [%] and the stability of froth.

  5. Tundra ponds of the Yukon Delta, Alaska, and their macroinvertebrate communities.

    USGS Publications Warehouse

    Maciolek, J.A.

    1989-01-01

    The Yukon Delta, a low alluvial tundra in western Alaska, has more than 105 thaw-basin ponds within its 70000 km2 area. In 1984 and 1985, 68 ponds in three interior areas of the Delta were surveyed to determine limnological features, macroinvertebrate fauna, and trophic character. Ponds ranged up to 90 ha in area, 2 m in depth, and 17 m in elevation, and occurred in various temporal stages of growth and senescence. Among the 18 major invertebrate taxa collected, in order of decreasing frequency of occurrence, Trichoptera, Hemiptera, Diptera, Pelecypoda, Isopoda, Coleoptera, Gastropoda, and Oligochaeta were found in over 50% of the ponds. Trichoptera, the only taxon occurring in all ponds, was represented by 22 species of 6 families. The average Delta pond had 6.6 of the nine more common taxa. This measure of faunal richness was similar among study areas but was higher in low-tundra (sea level) ponds and in older ponds on raised tundra. In comparison, lentic invertebrate communities in five other areas of Alaskan and Canadian tundra had fewer taxa and also lower average richness based on occurrence of the same nine taxa.

  6. Biomat development in soil treatment units for on-site wastewater treatment.

    PubMed

    Winstanley, H F; Fowler, A C

    2013-10-01

    We provide a simple mathematical model of the bioremediation of contaminated wastewater leaching into the subsoil below a septic tank percolation system. The model comprises a description of the percolation system's flows, together with equations describing the growth of biomass and the uptake of an organic contaminant concentration. By first rendering the model dimensionless, it can be partially solved, to provide simple insights into the processes which control the efficacy of the system. In particular, we provide quantitative insight into the effect of a near surface biomat on subsoil permeability; this can lead to trench ponding, and thus propagation of effluent further down the trench. Using the computed vadose zone flow field, the model can be simply extended to include reactive transport of other contaminants of interest.

  7. Polypropylene fiber reinforced concrete detention ponds : final report.

    DOT National Transportation Integrated Search

    1995-09-01

    In 1991, two Durafiber polypropylene fiber reinforced concrete lined detention ponds were constructed. The detention ponds are located on the north side of the 181st Avenue Interchange, on the Columbia River Highway (I-84), approximately ten miles ea...

  8. Rotenone persistence in freshwater ponds: Effects of temperature and sediment adsorption

    USGS Publications Warehouse

    Dawson, V.K.; Gingerich, W.H.; Davis, R.A.; Gilderhus, P.A.

    1991-01-01

    The persistence of rotenone was compared between a cement-lined pond (0.04 hectare) and an earthen-bottom pond (0.02 hectare) treated with 5 I?L Noxfish/L (250 I?g rotenone/L) during spring, summer, and fall. Water temperatures on the days of treatment in each season were 8, 22, and 15A?C, respectively. Both ponds were filled with pond water from a common source 1 week before each of the three treatments. Water samples (filtered and unfiltered) and sediment samples were analyzed by high-performance liquid chromatography to monitor the decrease of rotenone until residues were at or below the detection limit (<2.0 I?g/L for water and < 25 ng/g for sediments). The loss of rotenone from water generally followed a first-order rate ofdecay. Rotenone disappeared two to three times faster in the earthen pond than in the concrete pond. The rotenone half-life times in the spring, summer, and fall treatments were 3.7, 1.3, and 5.2 d, respectively, in the concrete pond, and 1.8, 0.7, and 1.8 d in the earthen pond. Rates of decay in both ponds were directly correlated with water temperature. Filtered water samples from both ponds contained less rotenone than unfiltered water, indicating that some rotenone was bound to suspended material. The highest concentration of rotenone in sediment samples was 102 ng/g; residues decreased to below the detection limit within 14 d in the spring treatment and within 3 d in the summer and fall treatments.

  9. Under-ice melt ponds and the oceanic mixed layer

    NASA Astrophysics Data System (ADS)

    Flocco, D.; Smith, N.; Feltham, D. L.

    2017-12-01

    Under-ice melt ponds are pools of freshwater beneath the Arctic sea ice that form when melt from the surface of the sea ice percolates down through the porous sea ice. Through double diffusion, a sheet of ice can form at the interface between the ocean and the under-ice melt pond, completely isolating the pond from the mixed layer below and forming a false bottom to the sea ice. As such, they insulate the sea ice from the ocean below. It has been estimated that these ponds could cover between 5 and 40 % of the base of the Arctic sea ice, and so could have a notable impact on the mass balance of the sea ice. We have developed a one-dimensional model to calculate the thickness and thermodynamic properties of a slab of sea ice, an under-ice melt pond, and a false bottom, as these layers evolve. Through carrying out sensitivity studies, we have identified a number of interesting ways that under-ice melt ponds affect the ice above them and the rate of basal ablation. We found that they result in thicker sea ice above them, due to their insulation of the ice, and have found a possible positive feedback cycle in which less ice will be gained due to under-ice melt ponds as the Arctic becomes warmer. More recently, we have coupled this model to a simple Kraus-Turner type model of the oceanic mixed layer to investigate how these ponds affect the ocean water beneath them. Through altering basal ablation rates and ice thickness, they change the fresh water and salt fluxes into the mixed layer, as well as incoming radiation. Multi-year simulations have, in particular, shown how these effects work on longer time-scales.

  10. Wastewater disposal to landfill-sites: a synergistic solution for centralized management of olive mill wastewater and enhanced production of landfill gas.

    PubMed

    Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos

    2013-10-15

    The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Water and Wastewater Characterization Survey, Williams AFB AZ

    DTIC Science & Technology

    1991-03-01

    effluent discharges. Most industrial effluent originates from the flight line operations. The WWTP includes primary sedimentation , trickling filters...final sedimentation , plug-flow chlorine contact basin, and a stabilization pond. Samples were collected at the influent and effluent of the plant...Stispcndcd Solido ~ 60) 31 pit wvithll 6.0 to 90- *1 1*0 is Totil toxic 0, plan:*’ aq (leCiitc(l at .i10 (1 R Pitt 4133. 5 (IIIL)RINE REOPENEP T1 his permit

  12. Sydney Tar Ponds Remediation: Experience to China

    ERIC Educational Resources Information Center

    Liu, Fan; Bryson, Ken A.

    2009-01-01

    The infamous "Sydney Tar Ponds" are well known as one of the largest toxic waste sites of Canada, due to almost 100 years of steelmaking in Sydney, a once beautiful and peaceful city located on the east side of Cape Breton Island, Nova Scotia. This article begins with a contextual overview of the Tar Ponds issue including a brief…

  13. Salt-gradient Solar Ponds: Summary of US Department of Energy Sponsored Research

    NASA Technical Reports Server (NTRS)

    French, R. L.; Johnson, D. H.; Jones, G. F.; Zangrando, F.

    1984-01-01

    The solar pond research program conducted by the United States Department of Energy was discontinued after 1983. This document summarizes the results of the program, reviews the state of the art, and identifies the remaining outstanding issues. Solar ponds is a generic term but, in the context of this report, the term solar pond refers specifically to saltgradient solar pond. Several small research solar ponds have been built and successfully tested. Procedures for filling the pond, maintaining the gradient, adjusting the zone boundaries, and extracting heat were developed. Theories and models were developed and verified. The major remaining unknowns or issues involve the physical behavior of large ponds; i.e., wind mixing of the surface, lateral range or reach of horizontally injected fluids, ground thermal losses, and gradient zone boundary erosion caused by pumping fluid for heat extraction. These issues cannot be scaled and must be studied in a large outdoor solar pond.

  14. Capturing temporal and spatial variability in the chemistry of shallow permafrost ponds

    NASA Astrophysics Data System (ADS)

    Morison, Matthew Q.; Macrae, Merrin L.; Petrone, Richard M.; Fishback, LeeAnn

    2017-12-01

    Across the circumpolar north, the fate of small freshwater ponds and lakes (< 1 km2) has been the subject of scientific interest due to their ubiquity in the landscape, capacity to exchange carbon and energy with the atmosphere, and their potential to inform researchers about past climates through sediment records. A changing climate has implications for the capacity of ponds and lakes to support organisms and store carbon, which in turn has important feedbacks to climate change. Thus, an improved understanding of pond biogeochemistry is needed. To characterize spatial and temporal patterns in water column chemistry, a suite of tundra ponds were examined to answer the following research questions: (1) does temporal variability exceed spatial variability? (2) If temporal variability exists, do all ponds (or groups of ponds) behave in a similar temporal pattern, linked to seasonal hydrologic drivers or precipitation events? Six shallow ponds located in the Hudson Bay Lowlands region were monitored between May and October 2015 (inclusive, spanning the entire open-water period). The ponds span a range of biophysical conditions including pond area, perimeter, depth, and shoreline development. Water samples were collected regularly, both bimonthly over the ice-free season and intensively during and following a large summer storm event. Samples were analysed for nitrogen speciation (NO3-, NH4+, dissolved organic nitrogen) and major ions (Cl-, SO42-, K+, Ca2+, Mg2+, Na+). Across all ponds, temporal variability (across the season and within a single rain event) exceeded spatial variability (variation among ponds) in concentrations of several major species (Cl-, SO42-, K+, Ca2+, Na+). Evapoconcentration and dilution of pond water with precipitation and runoff inputs were the dominant processes influencing a set of chemical species which are hydrologically driven (Cl-, Na+, K+, Mg2+, dissolved organic nitrogen), whereas the dissolved inorganic nitrogen species were likely

  15. Estimation of Melt Ponds over Arctic Sea Ice using MODIS Surface Reflectance Data

    NASA Astrophysics Data System (ADS)

    Ding, Y.; Cheng, X.; Liu, J.

    2017-12-01

    Melt ponds over Arctic sea ice is one of the main factors affecting variability of surface albedo, increasing absorption of solar radiation and further melting of snow and ice. In recent years, a large number of melt ponds have been observed during the melt season in Arctic. Moreover, some studies have suggested that late spring to mid summer melt ponds information promises to improve the prediction skill of seasonal Arctic sea ice minimum. In the study, we extract the melt pond fraction over Arctic sea ice since 2000 using three bands MODIS weekly surface reflectance data by considering the difference of spectral reflectance in ponds, ice and open water. The preliminary comparison shows our derived Arctic-wide melt ponds are in good agreement with that derived by the University of Hamburg, especially at the pond distribution. We analyze seasonal evolution, interannual variability and trend of the melt ponds, as well as the changes of onset and re-freezing. The melt pond fraction shows an asymmetrical growth and decay pattern. The observed melt ponds fraction is almost within 25% in early May and increases rapidly in June and July with a high fraction of more than 40% in the east of Greenland and Beaufort Sea. A significant increasing trend in the melt pond fraction is observed for the period of 2000-2017. The relationship between melt pond fraction and sea ice extent will be also discussed. Key Words: melt ponds, sea ice, Arctic

  16. Ecological conditions of ponds situated on blast furnace slag deposits located in South Gare Site of Special Scientific Interest (SSSI), Teesside, UK.

    PubMed

    Raper, E; Davies, S; Perkins, B; Lamb, H; Hermanson, M; Soares, A; Stephenson, T

    2015-06-01

    Slag, a by-product from the iron and steel industry, has a range of applications within construction and is used in wastewater treatment. Historically considered a waste material, little consideration was given to the environmental impacts of its disposal. South Gare (a Site of Special Scientific Interest) located at the mouth of the Tees estuary, UK, formed on slag deposits used to create a sea wall and make the land behind permanent. Over time, ponds formed in depressions with the water chemistry, being significantly impacted by the slag deposits. Calcium levels reached 504 mg/L, nitrate 49.0 mg/L and sulphate 1,698 mg/L. These levels were also reflected in the composition of the sediment. pH (5.10-9.90) and electrical conductivity (2,710-3,598 µS/cm) were variable but often notably high. Pb, Cu and Cd were not present within the water, whilst Zn ranged from 0.027 to 0.37 mg/L. Heavy metal levels were higher in surface sediments. Zinc was most dominant (174.3-1,310.2 mg/L) followed by Pb (9.9-431 mg/L), Cu (8.4-41.8 mg/L) and Cd (0.4-1.1 mg/L). A sediment core provided a historical overview of the ponds. The ponds were unfavourable for aquatic biodiversity and unsuitable for drinking water abstraction.

  17. The stability of accumulating nitrite from Swine wastewater in a sequencing batch reactor.

    PubMed

    Wang, Liang; Zhu, Jun; Miller, Curtis

    2011-02-01

    Shortcut nitrification is the first step of shortcut nitrogen removal from swine wastewater. Stably obtaining an effluent with a significant amount of nitrite is the premise for the subsequent shortcut denitrification. In this paper, the stability of nitrite accumulation was investigated using a 1.5-day hydraulic retention time in a 10-L (working volume) activated sludge sequencing batch reactor (SBR) with an 8-h cycle consisted of 4 h 38 min aerobic feeding, 1 h 22 min aerobic reaction, 30 min settling, 24 min withdrawal, and 1 h 6 min idle. The nitrite production stability was tested using four different ammonium loading rates, 0.075, 0.062, 0.053, and 0.039 g NH(4)-N/g (mixed liquid suspended solid, MLSS) day in a 2-month running period. The total inorganic nitrogen composition in the effluent was not affected when the ammonium load was between 0.053 and 0.075 g NH(4)-N/g MLSS · day (64% NO(2)-N, 16% NO(3)-N, and 20% NH(4)-N). Under 0.039 g NH(4)-N/g MLSS · day, more NO(2)-N was transformed to NO(3)-N with an effluent of 60% NO(2)-N, 20% NO(3)-N, and 20% NH(4)-N. The reducing load test was able to show the relationship between a declining free nitrous acid (FNA) concentration and the decreasing nitrite production, indicating that the inhibition of FNA on nitrite oxidizing bacteria depends on its levels and an ammonium loading rate around 0.035 g NH(4)-N/g MLSS · day is the lower threshold for producing a nitrite dominance effluent in the activated sludge SBR under the current settings.

  18. Maneuvering Melt Ponds

    NASA Image and Video Library

    2017-12-08

    On July 10, 2011, Don Perovich, of Cold Regions Research and Engineering Laboratory, maneuvered through melt ponds collecting optical data along the way to get a sense of the amount of sunlight reflected from sea ice and melt ponds in the Chukchi Sea. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  19. Alternative technologies for the reduction of greenhouse gas emissions from palm oil mills in Thailand.

    PubMed

    Kaewmai, Roihatai; H-Kittikun, Aran; Suksaroj, Chaisri; Musikavong, Charongpun

    2013-01-01

    Alternative methodologies for the reduction of greenhouse gas (GHG) emissions from crude palm oil (CPO) production by a wet extraction mill in Thailand were developed. The production of 1 t of CPO from mills with biogas capture (four mills) and without biogas capture (two mills) in 2010 produced GHG emissions of 935 kg carbon dioxide equivalent (CO2eq), on average. Wastewater treatment plants with and without biogas capture produced GHG emissions of 64 and 47% of total GHG emission, respectively. The rest of the emissions mostly originated from the acquisition of fresh fruit bunches. The establishment of a biogas recovery system must be the first step in the reduction of GHG emissions. It could reduce GHG emissions by 373 kgCO2eq/t of CPO. The main source of GHG emission of 163 kgCO2eq/t of CPO from the mills with biogas capture was the open pond used for cooling of wastewater before it enters the biogas recovery system. The reduction of GHG emissions could be accomplished by (i) using a wastewater-dispersed unit for cooling, (ii) using a covered pond, (iii) enhancing the performance of the biogas recovery system, and (iv) changing the stabilization pond to an aerated lagoon. By using options i-iv, reductions of GHG emissions of 216, 208, 92.2, and 87.6 kgCO2eq/t of CPO, respectively, can be achieved.

  20. Disentangling natural and anthropogenic influences on Patagonian pond water quality.

    PubMed

    Epele, Luis B; Manzo, Luz M; Grech, Marta G; Macchi, Pablo; Claverie, Alfredo Ñ; Lagomarsino, Leonardo; Miserendino, M Laura

    2018-02-01

    The water quality of wetlands is governed not only by natural variability in hydrology and other factors, but also by anthropogenic activities. Patagonia is a vast sparsely-populated in which ponds are a key component of rural and urban landscapes because they provide several ecosystem services such as habitat for wildlife and watering for livestock. Integrating field-based and geospatial data of 109 ponds sampled across the region, we identified spatial trends and assessed the effects of anthropogenic and natural factors in pond water quality. The studied ponds were generally shallow, well oxygenated, with maximum nutrient values reported in sites used for livestock breeding. TN:TP ratio values were lower than 14 in >90% of the ponds, indicating nitrogen limitation. Water conductivity decreased from de east to the west, meanwhile pH and dissolved oxygen varied associated with the latitude. To assess Patagonian ponds water status we recommend the measure of total suspended solids and total nitrogen in the water, and evaluate the mallín (wetland vegetation) coverage in a 100m radius from the pond, since those features were significantly influenced by livestock land use. To evaluate the relative importance of natural variability and anthropogenic influences as driving factors of water quality we performed three generalized linear models (GLM) that encompassed the hydrology, hydroperiod and biome (to represent natural influences), and land use (to represent anthropogenic influences) as fixed effects. Our results revealed that at the Patagonian scale, ponds water quality would be strongly dependent on natural gradients. We synthetized spatial patterns of Patagonian pond water quality, and disentangled natural and anthropic factors finding that the dominant environmental influence is rainfall gradient. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Shallow ponds are heterogeneous habitats within a temperate salt marsh ecosystem

    NASA Astrophysics Data System (ADS)

    Spivak, Amanda C.; Gosselin, Kelsey; Howard, Evan; Mariotti, Giulio; Forbrich, Inke; Stanley, Rachel; Sylva, Sean P.

    2017-06-01

    Integrating spatial heterogeneity into assessments of salt marsh biogeochemistry is becoming increasingly important because disturbances that reduce plant productivity and soil drainage may contribute to an expansion of shallow ponds. These permanently inundated and sometimes prominent landscape features can exist for decades, yet little is known about pond biogeochemistry or their role in marsh ecosystem functioning. We characterized three ponds in a temperate salt marsh (MA, USA) over alternating periods of tidal isolation and flushing, during summer and fall, by evaluating the composition of plant communities and organic matter pools and measuring surface water oxygen, temperature, and conductivity. The ponds were located in the high marsh and had similar depths, temperatures, and salinities. Despite this, they had different levels of suspended particulate, dissolved, and sediment organic matter and abundances of phytoplankton, macroalgae, and Ruppia maritima. Differences in plant communities were reflected in pond metabolism rates, which ranged from autotrophic to heterotrophic. Integrating ponds into landcover-based estimates of marsh metabolism resulted in slower rates of net production (-8.1 ± 0.3 to -15.7 ± 0.9%) and respiration (-2.9 ± 0.5 to -10.0 ± 0.4%), compared to rates based on emergent grasses alone. Seasonality had a greater effect on pond water chemistry, organic matter pools, and algal abundances than tidal connectivity. Alternating stretches of tidal isolation and flushing did not affect pond salinities or algal communities, suggesting that exchange between ponds and nearby creeks was limited. Overall, we found that ponds are heterogeneous habitats and future expansion could reduce landscape connectivity and the ability of marshes to capture and store carbon.

  2. Integrated copper-containing wastewater treatment using xanthate process.

    PubMed

    Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming

    2002-09-02

    Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.

  3. Spatial-temporal Change of Sanshui district's Dike-pond from 1979-2009

    NASA Astrophysics Data System (ADS)

    Liu, Jiaxing; Chen, Jianfei; Wang, Xiaoxuan

    Dike-pond is a representative style of ecological agriculture in the PRD(Pearl River Delta). Since 1992, Guangdong quicken its pace of reform and opening-up to the outside world. A mass of factories had been built in the PRD. The dike-ponds have come across some influential changes in the recent 30 years. To detect and study on the changes of dike-ponds, the Remote Sensing and Geography Information System skill was applied in this paper. This article selected Sanshui district as an example and used Landsat TM 1979, 1990, 2000 and SPOT 2009 satellite image as the major data sources. With the help of ITTVIS company newly released software-ENVI EX, object-oriented approach has been used to extract the dike-pond land from each image. The result indicates that the area of dike-pond gained rapidly growth from 1979 to 2000, but decrease critically during 2000-2009. When using Change Detection Analysis to compute each period's change statistics, the result shown that the increased dike-pond area were mainly from vegetation covered land and other bare land. Then we found out that the mean centre of Sanshui district's dike-pond was moving from northwest to southeast during 1979-2009. Therefore, it comes to the conclusion that Sanshui district's dike-pond increased across the southeast of Sanshui district from 1979 to 2009. Last but not least, some suggestions have been put forward to keep the dike-pond land area from decreasing.

  4. Survival of spotted salamander eggs in temporary woodland ponds of coastal Maryland

    USGS Publications Warehouse

    Albers, P.H.; Prouty, R.M.

    1987-01-01

    Temporary ponds on the Atlantic Coastal Plain in maryland were characterized according to water chemistry, rain input, phytoplankton, zooplankton and use by the spotted salamander Ambystoma maculatum during March-October 1983-1984. Neither the number of egg masses per unit of pond surface (abundance) nor the survival of spotted salamander embryos was significantly correlated (P>0.05) with pond pH. Rainfall during May-July significantly increased the hydrogen ion concentration of 5 of 11 ponds evaluated for the impact of rainfall during the previous 48h and the previous week. Survival of egg masses transferred among eight ponds with pH3.66-4.45 and one pond with pH5.18 was significantly reduced (Ppond water. The abundance of egg masses was positively correlated (Ppond characteristics (e.g. water chemistry, pond longevity) and amphibian reproduction make it difficult to determine the effects of acidic deposition on the spotted salamander. At the present time, pond longevity, water temperature and possibly, oxygen content, seem more important to spotted salamander reproduction than chemical changes caused by annual acidic deposition.

  5. Farmed areas predict the distribution of amphibian ponds in a traditional rural landscape.

    PubMed

    Hartel, Tibor; von Wehrden, Henrik

    2013-01-01

    Traditional rural landscapes of Eastern Europe are undergoing major changes due to agricultural intensification, land abandonment, change in agricultural practices and infrastructural development. Small man-made ponds are important yet vulnerable components of rural landscapes. Despite their important role for biodiversity, these ponds tend to be excluded from conservation strategies. Our study was conducted in a traditional rural landscape in Eastern Europe. The aim of this study is twofold: (i) to model the distribution of four major man-made pond types and (ii) to present the importance of man-made ponds for the endangered Yellow Bellied Toad (Bombina variegata) and the Common Toad (Bufo bufo). Six environmental variables were used to model pond distribution: Corine landcover, the heterogeneity of the landcover, slope, road distance, distance to closest village and the human population density. Land cover heterogeneity was the most important driver for the distribution of fishponds. Areas used for agriculture with significant areas of natural vegetation were the most important predictors for the distribution of temporary ponds. In addition, areas covered by transitional woodland and scrub were important for the open cattle ponds. Bombina variegata was found predominantly in the temporary ponds (e.g. ponds created by cattle and buffalo, dirt road ponds and concrete ponds created for livestock drinking) and Bufo bufo in fishponds. Our Maxent models revealed that the highest probability of occurrence for amphibian ponds was in areas used as farmland. The traditional farming practices combined with a low level of infrastructure development produces a large number of amphibian ponds. The challenge is to harmonize economic development and the maintenance of high densities of ponds in these traditional rural landscapes.

  6. Phosphorus loading to McGrath and Ellis ponds, Kennebec County, Maine

    USGS Publications Warehouse

    Nichols, Wallace J.; Sowles, J.W.; Lobao, J.J.

    1984-01-01

    McGrath and Ellis Ponds in south-central Maine have been identified as having nuisance algae blooms. In 1978, a cooperative study between the U.S. Geological Survey and the Maine Department Environmental Protection was begun to evaluate areas in which restoration effort would best improve water quality of the ponds. Streamflow and phosphorus data were collected from 28 tributaries to the ponds, April 1 through September 30, 1978 and 1979. Phosphorus yields from each tributary watershed were compared to determine their relative importance to the phosphorus budgets of the ponds. Three tributaries to the ponds were estimated to contribute 44 percent of the phosphorus load, yet drain only 22 percent of the watershed. Phosphorus input to the ponds likely would be most easily reduced by instituting phosphorus control practices in parts of the basin drained by the three tributaries. (USGS)

  7. The Western Pond Turtle; Habitat and History, 1993-1994 Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Dan C.

    1994-08-01

    The western pond turtle is known from many areas of Oregon. The majority of sightings and other records occur in the major drainages of the Klamath, Rogue, Umpqua, Willamette and Columbia River systems. A brief overview is presented of the evolution of the Willamette-Puget Sound hydrographic basin. A synopsis is also presented of the natural history of the western pond turtle, as well as, the status of this turtle in the Willamette drainage basin. The reproductive ecology and molecular genetics of the western pond turtle are discussed. Aquatic movements and overwintering of the western pond turtle are evaluated. The effectmore » of introduced turtle species on the status of the western pond turtle was investigated in a central California Pond. Experiments were performed to determine if this turtle could be translocated as a mitigation strategy.« less

  8. [Characterizing composition and transformation of dissolved organic matter in subsurface wastewater infiltration system].

    PubMed

    Wang, Li-Jun; Liu, Yu-Zhong; Zhang, Lie-Yu; Xi, Bei-Dou; Xia, Xun-Feng; Liu, Ya-Ru

    2013-08-01

    In the present study, the soil column with radius of 30 cm and height of 200 cm was used to simulate a subsurface wastewater infiltration system. Under the hydraulic loading of 4 cm x d(-1), composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI). The results indicate that: (1) from different depth, the composition of DOM was also different; influent with the depth of 0.5 m was mainly composed of protein-like substances, and that at other depths was mainly composed of humic- and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively, but also the stability of the DOM improved in subsurface wastewater infiltration system.

  9. Cannibalism in single-batch hybrid catfish production ponds

    USDA-ARS?s Scientific Manuscript database

    Hybrid catfish are more efficiently harvested by seining than are Channel Catfish. Due to that, and their faster growth, hybrids are typically produced in “single-batch” production systems, either in intensively-aerated commercial ponds or in split-pond systems. In either production system, hybrids...

  10. Polycyclic aromatic hydrocarbon contamination in stormwater detention pond sediments in coastal South Carolina.

    PubMed

    Weinstein, John E; Crawford, Kevin D; Garner, Thomas R

    2010-03-01

    The purpose of this study was to characterize the polycyclic aromatic hydrocarbon (PAH) contamination in the sediments of stormwater detention ponds in coastal South Carolina. Levels of the sum of PAH analytes were significantly higher in the sediments of commercial ponds compared to that of reference, golf course, low-density residential, and high-density residential ponds. Isomer ratio analysis suggested that the predominant source of PAHs were pyrogenic; however, many ponds had a PAH signature consistent with mixed uncombusted and combusted PAH sources. PAH levels in these sediments could be modeled using both pond drainage area and pond surface area. These results demonstrate that the sediment from most commercial ponds, and a few residential and golf course ponds, were moderately contaminated with PAHs. PAH levels in these contaminated ponds exceeded between 42% and 75% of the ecological screening values for individual PAH analytes established by US EPA Region IV, suggesting that they may pose a toxicological risk to wildlife.

  11. Farmed Areas Predict the Distribution of Amphibian Ponds in a Traditional Rural Landscape

    PubMed Central

    Hartel, Tibor; von Wehrden, Henrik

    2013-01-01

    Background Traditional rural landscapes of Eastern Europe are undergoing major changes due to agricultural intensification, land abandonment, change in agricultural practices and infrastructural development. Small man-made ponds are important yet vulnerable components of rural landscapes. Despite their important role for biodiversity, these ponds tend to be excluded from conservation strategies. Methodology/Findings Our study was conducted in a traditional rural landscape in Eastern Europe. The aim of this study is twofold: (i) to model the distribution of four major man-made pond types and (ii) to present the importance of man-made ponds for the endangered Yellow Bellied Toad (Bombina variegata) and the Common Toad (Bufo bufo). Six environmental variables were used to model pond distribution: Corine landcover, the heterogeneity of the landcover, slope, road distance, distance to closest village and the human population density. Land cover heterogeneity was the most important driver for the distribution of fishponds. Areas used for agriculture with significant areas of natural vegetation were the most important predictors for the distribution of temporary ponds. In addition, areas covered by transitional woodland and scrub were important for the open cattle ponds. Bombina variegata was found predominantly in the temporary ponds (e.g. ponds created by cattle and buffalo, dirt road ponds and concrete ponds created for livestock drinking) and Bufo bufo in fishponds. Conclusions/Significance Our Maxent models revealed that the highest probability of occurrence for amphibian ponds was in areas used as farmland. The traditional farming practices combined with a low level of infrastructure development produces a large number of amphibian ponds. The challenge is to harmonize economic development and the maintenance of high densities of ponds in these traditional rural landscapes. PMID:23704928

  12. Interconnected ponds operation for flood hazard distribution

    NASA Astrophysics Data System (ADS)

    Putra, S. S.; Ridwan, B. W.

    2016-05-01

    The climatic anomaly, which comes with extreme rainfall, will increase the flood hazard in an area within a short period of time. The river capacity in discharging the flood is not continuous along the river stretch and sensitive to the flood peak. This paper contains the alternatives on how to locate the flood retention pond that are physically feasible to reduce the flood peak. The flood ponds were designed based on flood curve number criteria (TR-55, USDA) with the aim of rapid flood peak capturing and gradual flood retuning back to the river. As a case study, the hydrologic condition of upper Ciliwung river basin with several presumed flood pond locations was conceptually designed. A fundamental tank model that reproducing the operation of interconnected ponds was elaborated to achieve the designed flood discharge that will flows to the downstream area. The flood hazard distribution status, as the model performance criteria, will be computed within Ciliwung river reach in Manggarai Sluice Gate spot. The predicted hazard reduction with the operation of the interconnected retention area result had been bench marked with the normal flow condition.

  13. Operation of a pond-cooler: the case of Berezovskaya GRES-1

    NASA Astrophysics Data System (ADS)

    Morozova, O. G.; Kamoza, T. L.; Koyupchenko, I. N.; Savelyev, A. S.; Pen, R. Z.; Veselkova, N. S.; Kudryavtsev, M. D.

    2017-08-01

    Pond-coolers at heat and nuclear power stations are natural-technological systems, so the program of their monitoring should include the effect made by the SRPS (state regional power station) on the pond ecosystem, including thermal discharge of cooling water. The objectives of this study were development and implementation of a monitoring program for the cooling pond of Berezovskaya SRPS-1 on the chemical and biological water quality indicators and identification of patterns of the thermal and hydrochemical regime when operating the progressive power plant (from 1996 to 2015). The quality of the cooling water of the pond-cooler BGRES-1 was studied under full-scale conditions by selecting and analyzing the water samples of the pond in accordance with the principles of complexity, systematic observation, and consistency of timing their conduct with the characteristic hydrological phases. Processing of the obtained array of monitoring data by methods of mathematical statistics makes it possible to identify the main factors affecting the water quality of the pond. The data on water quality obtained during their monitoring and mathematical processing over a long time interval are the scientific basis for forecasting the ecological state of the pond, which is necessary to economically ensure the efficient energy production and safety of water use. Recommendations proposed by these authors, including those partially already implemented, have been to prevent the development of eutrophication processes in the pond-cooler: the construction of a dam that cuts off the main peat massif and cleaning the river banks forming the cooling pond.

  14. Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, USA) kettle ponds

    USGS Publications Warehouse

    Roman, C.T.; Barrett, N.E.; Portnoy, J.W.

    2001-01-01

    The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.

  15. PONDCALC - A Tool to Estimate Discharge from the Alviso Salt Ponds, California

    USGS Publications Warehouse

    Shellenbarger, Gregory; Schoellhamer, David H.; Lionberger, Megan A.

    2007-01-01

    Former commercial salt ponds in Alviso, California, now are operated by the U.S. Fish and Wildlife Service (USFWS) to provide habitat for birds. The USFWS has modified the operation of the ponds to prevent exceedingly high salinity. Ponds that were formerly hydraulically isolated from South San Francisco Bay and adjacent sloughs now are managed as flow-through ponds, and some are allowed to discharge to the Bay and sloughs. This discharge is allowed under a permit issued by the Regional Water Quality Control Board. As a requirement of the permit, the USFWS must estimate the amount of discharge from each discharge pond for the period May through November of each year. To facilitate the accurate estimation of pond discharge, a calculation methodology (hereafter referred to as 'calculator' or PONDCALC) for the discharging Alviso ponds has been developed as a Microsoft Excel file and is presented in this report. The presence of flap gates on one end of the discharge culverts, which allow only outflow from a pond, complicates the hydraulic analysis of flow through the culverts. The equation typically used for culvert flow contains an energy loss coefficient that had to be determined empirically using measured water discharge and head at the discharge structure of one of the ponds. A standard weir-flow equation is included in PONDCALC for discharge calculation in the ponds having weir box structures in addition to culverts. The resulting methodology is applicable only to the five Alviso ponds (A2W, A3W, A7, A14, and A16) that discharge to South San Francisco Bay or adjacent sloughs under the management practices for 2005.

  16. Effect of pond ash on pen surface properties

    USDA-ARS?s Scientific Manuscript database

    Maintaining adequate feedlot pen surfaces is expensive. Pond ash (PA), a coal-fired electrical generation by-product, has good support qualities. A study was conducted comparing the performance of pond ash (PA) surfaced pens with soil surface (SS) pens. Four pens of an eight pen series with dimensio...

  17. Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds.

    PubMed

    Ranganathan, Panneerselvam; Amal, J C; Savithri, S; Haridas, Ajith

    2017-10-01

    In this study, the growth of Arthrospira platensis was studied in an open raceway pond. Furthermore, dynamic model for algae growth and CFD modelling of hydrodynamics in open raceway pond were developed. The dynamic behaviour of the algal system was developed by solving mass balance equations of various components, considering light intensity and gas-liquid mass transfer. A CFD modelling of the hydrodynamics of open raceway pond was developed by solving mass and momentum balance equations of the liquid medium. The prediction of algae concentration from the dynamic model was compared with the experimental data. The hydrodynamic behaviour of the open raceway pond was compared with the literature data for model validation. The model predictions match the experimental findings. Furthermore, the hydrodynamic behaviour and residence time distribution in our small raceway pond were predicted. These models can serve as a tool to assess the pond performance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Little Fish in a Big Pond--Time to Get Schooled!

    ERIC Educational Resources Information Center

    Moye, Johnny J.

    2011-01-01

    One technique used by many who fish is to catch a fish in a creek or pond and then release it in a different pond. This satisfies the desire for sport, and it also serves to stock a pond that may need replenishment. Of course this restocking can be a traumatic experience for the new fish. To survive in the new environment, the fish must find its…

  19. Bacterial communities in full-scale wastewater treatment systems.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  20. Social Relation between Businessman and Community in Management of Intensive Shrimp Pond

    NASA Astrophysics Data System (ADS)

    Gumay Febryano, Indra; Sinurat, James; Lovinia Salampessy, Messalina

    2017-02-01

    Expansion of aquaculture, especially shrimp culture, is the primary cause of deforestation of mangrove along coastal zone. This phenomenon is pretty much related to social relation between businessman of intensive shrimp pond and community around coastal zone. The objective of this research is to explain social relation between businessman and community in managing intensive shrimp pond. This research is a kind of qualitative research and the method used is a case study. The result of this research shows that the behaviour of the majority of businessman of intensive shrimp pond is not accordingly with environmental concerns as they compelled conversion of mangrove and they disposed waste of shrimp pond into the sea. Such kind of behaviour caused degradation of water ecosystem and marginalizing local community. Corporate Social Responsibility (CSR) which was implemented by businessman of intensive shrimp pond in the area of social, religion, and education can downgrade the coming up of social turbulence. Otherwise, CSR in enabling economic community and environmental management was not conducted yet. CSR in environmental management can be conducted by businessman of intensive shrimp pond by considering the existence of mangrove and pond management and waste in a better way, so that environment around ponds is not polluted and the sustainability of shrimp pond business as well as income of community can be guaranteed. Accordingly with the result of this research, CSR is not only involving businessman of intensive shrimp pond and community, but also involving local government in terms of right and responsibility of citizen as well as management and development of community.

  1. Production and Cycling of Methylmercury in High Arctic Wetland Ponds

    NASA Astrophysics Data System (ADS)

    Lehnherr, I.; St. Louis, V. L.

    2010-12-01

    Some species of freshwater fish in the Canadian high Arctic contain levels of methylmercury (MeHg) that pose health risks to the northern Inuit peoples that harvest these species as a traditional food source. In temperate regions, wetlands are known natural sites of MeHg production and hence significant MeHg sources to downstream ecosystems. However, the importance of wetlands to Hg methylation in the Arctic is unclear and the sources of MeHg to arctic freshwater ecosystems are still largely unidentified. Our research is demonstrating that some shallow and warm wetland ponds on the Arctic landscape contain high MeHg concentrations compared to nearby deep and cold lakes. We used a mass-balance approach to measure the net in-pond production of MeHg in two warm wetland ponds (Ponds 1 and 2) near Lake Hazen, Ellesmere Island, Nunavut (81° N latitude). We quantified external inputs and outputs of MeHg to and from the ponds, as well as the accumulation of MeHg in the water column during the summers of 2005 and 2008. Any changes in water column MeHg concentrations that could not be accounted for by external inputs or sinks were attributed to in-pond production. The principal external input and sink of MeHg was, respectively, wet atmospheric deposition and water-column MeHg photodemethylation. For 2005, we estimate that the net flux of MeHg from sediments into the water column was 0.015 μg m-2 d-1 in Pond 1 and 0.0016 μg m-2 d-1 in Pond 2. Compared to sediment-water MeHg fluxes measured in Alaskan tundra lakes (0.0015-0.0045 μg m-2 d-1), Pond 1 sediments are a greater source of MeHg while Pond 2 is similar to the Alaskan lakes. Furthermore, the accumulation of MeHg in the water column of Pond 1 (0.0061 μg m-2 d-1) was similar to the net yield of MeHg from temperate boreal wetlands (0.0005-0.006 μg m-2 d-1), demonstrating that these Arctic wetlands are important sites of MeHg production. In addition, we used mercury stable-isotope tracers to quantify methylation and

  2. Multi-platform observations on melt pond in Arctic summer 2010

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Huang, W.; Lu, P.; Li, Z.

    2011-12-01

    Melt ponds play an important role in sea ice surface albedo and further affect the heat budget between ice-air interface. The overall reductions of Arctic sea ice extend and thickness especially in recent years is considered to be enhanced partly by the melt ponds, and understanding of melt ponds on how they change the heat and mass balance of sea ice through the ice surface albedo decrease is urgently required. Although satellite remote sensing is a general tool to observe sea ice surface features on a large scale, the small scale information with higher spatial and temporal resolution is more helpful to understand the physical mechanism in the evolution of melt ponds. Arctic summer in 2010 is special because of an obvious trans-polar melting, during which the multi-year ice in the central Arctic was seriously melted, and formed a trans-polar zone with ice concentration less than 80% stretching from the Chukchi Sea to the Greenland Sea. It provided a fantastic opportunity to observe melt ponds especially at the high latitude. The Fourth Chinese National Arctic Research Expedition in 2010 (CHINARE-2010) was carried out from July 1 to September 20, 2010. As R/V Xuelong sailing in the ice-infested seas, a multi-platform observation was conducted to investigate the evolution of melt ponds on Arctic sea ice. Among which, aerial photography provided a downward-looking snapshot of the ice surface by using the camera installed on a helicopter, and melt pond information on a 100-meter scale can be obtained. Shipboard photography gave an inclined inspection on the ice conditions beside the ship using the camera installed on the vessel, and melt pond information on a 10-meter scale can be determined. Ground-based photography was similar to the shipboard photography, but the camera with tilt angle was installed on the top of a vertical lifting device fixed on the ice, and melt pond information on a 1-meter scale can be observed. Over 10,000 sea ice images from different

  3. Optimization of Native and Formaldehyde iPOND Techniques for Use in Suspension Cells.

    PubMed

    Wiest, Nathaniel E; Tomkinson, Alan E

    2017-01-01

    The isolation of proteins on nascent DNA (iPOND) technique developed by the Cortez laboratory allows a previously unparalleled ability to examine proteins associated with replicating and newly synthesized DNA in mammalian cells. Both the original, formaldehyde-based iPOND technique and a more recent derivative, accelerated native iPOND (aniPOND), have mostly been performed in adherent cell lines. Here, we describe modifications to both protocols for use with suspension cell lines. These include cell culture, pulse, and chase conditions that optimize sample recovery in both protocols using suspension cells and several key improvements to the published aniPOND technique that reduce sample loss, increase signal to noise, and maximize sample recovery. Additionally, we directly and quantitatively compare the iPOND and aniPOND protocols to test the strengths and limitations of both. Finally, we present a detailed protocol to perform the optimized aniPOND protocol in suspension cell lines. © 2017 Elsevier Inc. All rights reserved.

  4. (226) RA AND (228) RA ACTIVITIES ASSOCIATED WITH AGRICULTURAL DRAINAGE PONDS AND WETLAND PONDS IN THE KANKAKEE WATERSHED, IL-IN, USA

    EPA Science Inventory

    Background radioactivity is elevated in many agricultural drainage ponds and also constructed wetland ponds in the Kankakee watershed. During 1995-1999, gross-a and -B activities were measured up to 455 and 1650 mBq L-1, respectively. 226Ra and 228Ra averaged 139 and 192 mBq L-01...

  5. Evaluation of relocation of unionid mussels into artificial ponds

    USGS Publications Warehouse

    Newton, T.J.; Monroe, E.M.; Kenyon, R.; Gutreuter, S.; Welke, K.I.; Thiel, P.A.

    2001-01-01

    Relocation of unionid mussels into refuges (e.g., hatchery ponds) has been suggested as a management tool to protect these animals from the threat of zebra mussel (Dreissena polymorpha) invasion. To evaluate the efficacy of relocation, we experimentally relocated 768 mussels, representing 5 species (Leptodea fragilis, Obliquaria reflexa, Fusconaia flava, Amblema plicata, and Quadrula quadrula) into an earthen pond at a National Fish Hatchery or back into the river. In both locations, mussels were placed into 1 of 4 treatments (mesh bags, corrals, and buried or suspended substrate-filled trays). Mussels were examined annually for survival, growth (shell length and wet mass), and physiological condition (glycogen concentration in foot and mantle and tissue condition index) for 36 mo in the pond or 40 mo in the river. We observed significant differences in mortality rates between locations (mortality was 4 times greater in the pond than in the river), among treatments (lowest mortality in the suspended trays), and among species (lower mortality in the amblemines than lamp-silines). Overall survival in both locations averaged 80% the 1st year; survival in the pond decreased dramatically after that. Although length and weight varied between locations and over time, these changes were small, suggesting that their utility as short-term measures of well being in long-lived unionids is questionable. Mussels relocated to the pond were in poor physiological condition relative to those in the river, but the magnitude of these differences was small compared to the inherent variability in physiological condition of reference mussels. These data suggest that relocation of unionids into artificial ponds is a high-risk conservation strategy; alternatives such as introduction of infected host fish, identification of mussel beds at greatest risk from zebra mussels, and a critical, large-scale assessment of the factors contributing to their decline should be explored.

  6. Definition of realistic disturbances as a crucial step during the assessment of resilience of natural wastewater treatment systems.

    PubMed

    Cuppens, A; Smets, I; Wyseure, G

    2012-01-01

    Natural wastewater treatment systems (WWTSs) for urban areas in developing countries are subjected to large fluctuations in their inflow. This situation can result in a decreased treatment performance. The main aims of this paper are to introduce resilience as a performance indicator for natural WWTSs and to propose a methodology for the identification and generation of realistic disturbances of WWTSs. Firstly, a definition of resilience is formulated for natural WWTSs together with a short discussion of its most relevant properties. An important aspect during the evaluation process of resilience is the selection of appropriate disturbances. Disturbances of the WWTS are caused by fluctuations in water quantity and quality characteristics of the inflow. An approach to defining appropriate disturbances is presented by means of water quantity and quality data collected for the urban wastewater system of Coronel Oviedo (Paraguay). The main problem under consideration is the potential negative impact of stormwater inflow and infiltration in the sanitary sewer system on the treatment performance of anaerobic waste stabilisation ponds.

  7. Evaluation of the preservation value and location of farm ponds in Yunlin County, Taiwan.

    PubMed

    Chou, Wen-Wen; Lee, Soen-Han; Wu, Chen-Fa

    2013-12-31

    Farm ponds in Yunlin County first appeared in 1,622 and have played roles in habitation, production, the ecology, culture, and disaster reduction. Farm ponds largely disappeared with the development of urban areas and the industrial sector; thus, effective preservation of the remaining ponds is critical. The criteria to evaluate the preservation value of farm ponds is established by expert questionnaires which follow the Fuzzy Delphi Method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP), and GIS, which are integrated into a spatial analysis of the remaining 481 farm ponds in Yunlin County. The results show that 28 ponds should be preserved to continue the cultural interaction between farm ponds and settlements; 36 ponds should preserved to connect coasts and streams, which are important habitats for birds; 30 ponds should be preserved to increase storage capacity, recharge groundwater, and reduce land subsidence; four ponds should be preserved as Feng-Shui ponds in front of temples in settlements or as recreation areas for local citizens; and four farms should be preserved (high priority) in agricultural production areas to support irrigation. In short, FAHP and GIS are integrated to evaluate the number and locations of farm ponds that provide water for habitation, production, the ecology, culture, and disaster reduction and maintain the overall preservation value in Yunlin County. The results could inform governmental departments when considering conservation policies.

  8. Evaluation of the Preservation Value and Location of Farm Ponds in Yunlin County, Taiwan

    PubMed Central

    Chou, Wen-Wen; Lee, Soen-Han; Wu, Chen-Fa

    2013-01-01

    Farm ponds in Yunlin County first appeared in 1,622 and have played roles in habitation, production, the ecology, culture, and disaster reduction. Farm ponds largely disappeared with the development of urban areas and the industrial sector; thus, effective preservation of the remaining ponds is critical. The criteria to evaluate the preservation value of farm ponds is established by expert questionnaires which follow the Fuzzy Delphi Method (FDM) and Fuzzy Analytic Hierarchy Process (FAHP), and GIS, which are integrated into a spatial analysis of the remaining 481 farm ponds in Yunlin County. The results show that 28 ponds should be preserved to continue the cultural interaction between farm ponds and settlements; 36 ponds should preserved to connect coasts and streams, which are important habitats for birds; 30 ponds should be preserved to increase storage capacity, recharge groundwater, and reduce land subsidence; four ponds should be preserved as Feng-Shui ponds in front of temples in settlements or as recreation areas for local citizens; and four farms should be preserved (high priority) in agricultural production areas to support irrigation. In short, FAHP and GIS are integrated to evaluate the number and locations of farm ponds that provide water for habitation, production, the ecology, culture, and disaster reduction and maintain the overall preservation value in Yunlin County. The results could inform governmental departments when considering conservation policies. PMID:24384776

  9. Microbial and chemical properties of log ponds along the Oregon Coast.

    Treesearch

    Iwan Ho; Ching Yan Li

    1987-01-01

    The microbial and chemical properties of log ponds along the Oregon coast were investigated. The log ponds were highly eutrophic, containing high concentrations of ammonium and nitrate nitrogen, phosphate, and organic compounds. Because of large microbial populations, the biochemical oxygen demand was high and dissolved oxygen was low. Bacterial species in log ponds...

  10. Amphibian Oasis: Designing and Building a Schoolyard Pond.

    ERIC Educational Resources Information Center

    Gosselin, Heather; Johnson, Bob

    1996-01-01

    Building a pond in a schoolyard is a rewarding way to help boost local populations of amphibians, to increase the natural value of school grounds, and to serve as a locale for observing the life cycles of plants, invertebrates, and amphibians. This article outlines important considerations in designing and building a pond from siting through…

  11. Changes in waste stabilisation pond performance resulting from the retrofit of activated sludge treatment upstream: part I--water quality issues.

    PubMed

    Cromar, N J; Sweeney, D G; O'Brien, M J; Fallowfield, H J

    2005-01-01

    This paper describes changes in effluent quality occurring before and after an upgrade to the Bolivar Wastewater Treatment Plant in South Australia. Trickling filters (TF) were replaced with an activated sludge (AS) plant, prior to tertiary treatment using waste stabilisation ponds (WSPs). The water quality in the WSPs following the upgrade was significantly improved. Reductions in total and soluble BOD, COD, TKN, suspended solids and organic nitrogen were recorded and the predominant form of inorganic nitrogen changed from NH(4)-N to NO(2)/NO(3)-N. The reduction in ammonium and potentially toxic free ammonia removed a control upon the growth of zooplankton, which may have contributed to decreases in algal biomass in the final ponds and consequently lower dissolved oxygen. Additionally, changes in inorganic nitrogen speciation contributed to a slightly elevated pH which reduced numbers of faecal coliforms in WSPs. The AS pretreated influent recorded significantly lower inorganic molar N:P ratio (10-4:1) compared to those fed with TF effluent (17-13:1). Algae within the WSPs may now be nitrogen limited, a condition which may favour the growth of nitrogen-fixing cyanobacteria. The decrease in algal biomass and in dissolved oxygen levels may enhance sedimentary denitrification, further driving the system towards nitrogen limitation.

  12. The effect of beaver ponds on water quality in rural coastal plain streams

    USGS Publications Warehouse

    Bason, Christopher W.; Kroes, Daniel; Brinson, Mark M.

    2017-01-01

    We compared water-quality effects of 13 beaver ponds on adjacent free-flowing control reaches in the Coastal Plain of rural North Carolina. We measured concentrations of nitrate, ammonium, soluble reactive phosphorus (SRP), and suspended sediment (SS) upstream and downstream of paired ponds and control reaches. Nitrate and SS concentrations decreased, ammonium concentrations increased, and SRP concentrations were unaffected downstream of the ponds and relative to the control reaches. The pond effect on nitrate concentration was a reduction of 112 ± 55 μg-N/L (19%) compared to a control-reach—influenced reduction of 28 ± 17 μg-N/L. The pond effect on ammonium concentration was an increase of 9.47 ± 10.9 μg-N/L (59%) compared to the control-reach—influenced reduction of 1.49 ± 1.37 μg-N/L. The pond effect on SS concentration was a decrease of 3.41 ± 1.68 mg/L (40%) compared to a control-reach—influenced increase of 0.56 ± 0.27 mg/L. Ponds on lower-order streams reduced nitrate concentrations by greater amounts compared to those in higher-order streams. Older ponds reduced SS concentrations by greater amounts compared to younger ponds. The findings of this study indicate that beaver ponds provide water-quality benefits to rural Coastal Plain streams by reducing concentrations of nitrate and suspended sediment.

  13. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    NASA Astrophysics Data System (ADS)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  14. The reasons behind the performance superiority of a high rate algal pond over three facultative ponds in series.

    PubMed

    El Hamouri, B; Rami, A; Vasel, J L

    2003-01-01

    Results from a tracer study were used to determine and to compare actual and standard (k(20 degrees C)) first order reaction rate constants for COD removal in a High Rate Algal Pond (HRAP) and in 3 facultative ponds (FP) in series. An annual average k(20 degreesC) of 0.123 day(-1) was found for the HRAP while the values of 0.097, 0.025 and 0.003 d(-1) were found for facultative ponds 1, 2 and 3 respectively. Also, comparing nominal and tracer study hydraulic retention times showed large differences for the FP but not for the HRAP indicating that the former were suffering from severe short-circuiting. Loading rate within the range of operation exhibited a positive correlation with k(20 degrees C) for the HRAP but did not show such a relationship for any of the FP. Optimal chlorophyll-a concentration was found to be 3 mg/l for the HRAP and only 1.1 mg/l for the FP. Pollutant specific removal rates (SRR), that translate the hydrodynamic efficiency and the rate of COD biodegradation into pond performance per m2 and per day were calculated. They show that the adoption of the HRAP in place of a series of 3 FP reduces the net land area requirement (LAR) by at least 40%.

  15. Isolation, Identification, and Optimization of Culture Conditions of a Bioflocculant-Producing Bacterium Bacillus megaterium SP1 and Its Application in Aquaculture Wastewater Treatment

    PubMed Central

    Luo, Liang; Huang, Xiaoli; Du, Xue; Wang, Chang'an; Li, Jinnan; Wang, Liansheng

    2016-01-01

    A bioflocculant-producing bacterium, Bacillus megaterium SP1, was isolated from biofloc in pond water and identified by using both 16S rDNA sequencing analysis and a Biolog GEN III MicroStation System. The optimal carbon and nitrogen sources for Bacillus megaterium SP1 were 20 g L−1 of glucose and 0.5 g L−1 of beef extract at 30°C and pH 7. The bioflocculant produced by strain SP1 under optimal culture conditions was applied into aquaculture wastewater treatment. The removal rates of chemical oxygen demand (COD), total ammonia nitrogen (TAN), and suspended solids (SS) in aquaculture wastewater reached 64, 63.61, and 83.8%, respectively. The volume of biofloc (FV) increased from 4.93 to 25.97 mL L−1. The addition of Bacillus megaterium SP1 in aquaculture wastewater could effectively improve aquaculture water quality, promote the formation of biofloc, and then form an efficient and healthy aquaculture model based on biofloc technology. PMID:27840823

  16. Concentrated Brine Treatment using New Energy in Coal Mine Evaporation Ponds

    NASA Astrophysics Data System (ADS)

    Li, Ting; Li, Jingfeng

    2017-12-01

    Recently, more and more coal mine water is being advanced treated and reused in China. The concentrated brine that results from advanced treatment methods can only be evaporated in an evaporation pond. Because of limited treatment capabilities and winter freezing, evaporation ponds often overflow, causing environment contamination. In this paper, based on analysis of brine water quality and economic-technical feasibility, we present a suitable treatment method for brine in evaporation ponds as electrodialysis using solar energy. In addition, we propose a new system to treat brine in coal mine evaporation ponds, which is powered by solar and wind. The operating efficiency of this treatment system proposed in this paper can meet the concentrated brine treatment demands in most coal mines in western mining areas of China and it places the photovoltaic power generation plates on the surface of the evaporation pond on a fixed floating island, which reduces any risk associated with land acquisition. This system can enhance brine treatment efficiency, requires a reduced evaporation pond area, increases the utilization of coal mine water, and minimizes the risk of environment contamination.

  17. Effects of hydrology on zooplankton communities in high-mountain ponds, Mount Rainier National Park, USA

    USGS Publications Warehouse

    Girdner, Scott; Larson, Gary L.

    1995-01-01

    Ten high-mountain ponds in Mount Rainier National Park, Washington State, were studied from ice-out in June through September1992 to investigate the influences of fluctuating pond volumes on zooplankton communities. All of the ponds were at maximum volume immediately after ice-out. The temporary pond with the shortest wet phase was inhabited by rotifer taxa with short generation times and a crustacean taxon with the ability to encyst as drought-resistant resting bodies at immature stages of development. Dominant zooplankton taxa in three other temporary ponds and six permanent ponds were similar. Rotifer densities typically were lower in temporary ponds relative to those in permanent ponds, although Brachionus urceolaris was abundant shortly before the temporary ponds dried. Large volume loss was associated with large declines in total abundances of crustacean populations. Daphnia rosea was not present in temporary ponds following fall recharge. In deep-permanent ponds, copepods had slower developmental rates, smaller temporal changes in total abundances of crustacean populations and two additional large-bodied crustacean taxa were present relative to the characteristics of crustacean communities in shallow-permanent ponds. Owing to their small sizes and sensitivity to environmental change, collectively ponds such as these may provide an early signal of long-term climate change in aquatic systems.

  18. LONG TERM DETENTION FOR THE STABILIZATION OF WASTEWATER BIOSOLIDS FOR SMALL COMMUNITIES

    EPA Science Inventory

    Treated biosolids from small wastewater treatment plants in mid-western US are usually disposed off by land application. This practice allows for the recycling of the nutrients present in the biosolids for food and fiber production and can help re-vegetate sites destroyed by mini...

  19. Thaw pond dynamics and carbon emissions in a Siberian lowland tundra landscape

    NASA Astrophysics Data System (ADS)

    van Huissteden, Ko; Heijmans, Monique; Dean, Josh; Meisel, Ove; Goovaerts, Arne; Parmentier, Frans-Jan; Schaepman-Strub, Gabriela; Belelli Marchesini, Luca; Kononov, Alexander; Maximov, Trofim; Borges, Alberto; Bouillon, Steven

    2017-04-01

    Arctic climate change induces drastic changes in permafrost surface wetness. As a result of thawing ground ice bodies, ice wedge troughs and thaw ponds are formed. Alternatively, ongoing thaw may enhance drainage as a result of increased interconnectedness of thawing ice wedge troughs, as inferred from a model study (Liljedahl et al., 2016, Nature Geoscience, DOI: 10.1038/NGEO2674). However, a recent review highlighted the limited predictability of consequences of thawing permafrost on hydrology (Walvoord and Kurylyk, 2016, Vadose Zone J., DOI:10.2136/vzj2016.01.0010). Overall, these changes in tundra wetness modify carbon cycling in the Arctic and in particular the emissions of CO2 and CH4 to the atmosphere, providing a possibly positive feedback on climate change. Here we present the results of a combined remote sensing, geomorphological, vegetation and biogechemical study of thaw ponds in Arctic Siberian tundra, at Kytalyk research station near Chokurdakh, Indigirka lowlands. The station is located in an area dominated by Pleistocene ice-rich 'yedoma' sediments and drained thaw lake bottoms of Holocene age. The development of three types of ponds in the Kytalyk area (polygon centre ponds, ice wedge troughs and thaw ponds) has been traced with high resolution satellite and aerial imagery. The remote sensing data show net areal expansion of all types of ponds. Next to formation of new ponds, local vegetation change from dry vegetation types to wet, sedge-dominated vegetation is common. Thawing ice wedges and thaw ponds show an increase in area and number at most studied locations. In particular the area of polygon centre ponds increased strongly between 2010 and 2015, but this is highly sensitive to antecedent precipitation conditions. Despite a nearly 60% increase of the area of thawing ice wedge troughs, there is no evidence of decreasing water surfaces by increasing drainage through connected ice wedge troughs. The number of thaw ponds shows an equilibrium

  20. [Reduction of radioactive cesium content in pond smelt by cooking].

    PubMed

    Nabeshi, Hiromi; Tsutsumi, Tomoaki; Hachisuka, Akiko; Matsuda, Rieko

    2013-01-01

    In Japan, seafood may be eaten raw or after having been cooked in diverse ways. Therefore, it is important to understand the effect of cooking on the extent of contamination with radioactive materials in order to avoid internal exposure to radioactive materials via seafood. In this study, we investigated the changes in radioactive cesium content in pond smelt cooked in four different ways: grilled, stewed (kanroni), fried and soaked (nanbanzuke). The radioactive cesium content in grilled, kanroni and fried pond smelt was almost unchanged compared with the uncooked state. In contrast, radioactive cesium content in nanbanzuke pond smelt was decreased by about 30%. Our result suggests that soaking cooked pond smelt in seasoning is an effective method of reducing the burden radioactive cesium.

  1. Visibility from roads predict the distribution of invasive fishes in agricultural ponds.

    PubMed

    Kizuka, Toshikazu; Akasaka, Munemitsu; Kadoya, Taku; Takamura, Noriko

    2014-01-01

    Propagule pressure and habitat characteristics are important factors used to predict the distribution of invasive alien species. For species exhibiting strong propagule pressure because of human-mediated introduction of species, indicators of introduction potential must represent the behavioral characteristics of humans. This study examined 64 agricultural ponds to assess the visibility of ponds from surrounding roads and its value as a surrogate of propagule pressure to explain the presence and absence of two invasive fish species. A three-dimensional viewshed analysis using a geographic information system quantified the visual exposure of respective ponds to humans. Binary classification trees were developed as a function of their visibility from roads, as well as five environmental factors: river density, connectivity with upstream dam reservoirs, pond area, chlorophyll a concentration, and pond drainage. Traditional indicators of human-mediated introduction (road density and proportion of urban land-use area) were alternatively included for comparison instead of visual exposure. The presence of Bluegill (Lepomis macrochirus) was predicted by the ponds' higher visibility from roads and pond connection with upstream dam reservoirs. Results suggest that fish stocking into ponds and their dispersal from upstream sources facilitated species establishment. Largemouth bass (Micropterus salmoides) distribution was constrained by chlorophyll a concentration, suggesting their lower adaptability to various environments than that of Bluegill. Based on misclassifications from classification trees for Bluegill, pond visual exposure to roads showed greater predictive capability than traditional indicators of human-mediated introduction. Pond visibility is an effective predictor of invasive species distribution. Its wider use might improve management and mitigate further invasion. The visual exposure of recipient ecosystems to humans is important for many invasive species that

  2. Small ponds play big role in greenhouse gas emissions from inland waters

    NASA Astrophysics Data System (ADS)

    Holgerson, M.; Raymond, P. A.

    2017-12-01

    Inland waters are an important part of the global carbon cycle, but there is uncertainty in estimating their greenhouse gas emissions. Uncertainty stems from different models and variable estimates of surface water gas concentrations, gas exchange rates, and the global size distribution of water bodies. Emissions from small water bodies are especially difficult to estimate because they are not globally mapped and few studies have assessed their greenhouse gas concentrations and gas exchange rates. To overcome these limitations, we studied greenhouse gases and gas exchange rates in small ponds in temperate forests of the northeastern United States. We then compiled our data with direct measurements of CO2 and CH4 concentrations from 427 ponds and lakes worldwide, and upscaled to estimate greenhouse gas emissions using estimates of gas exchange rates and the size distribution of lakes. We found that small ponds play a disproportionately large role in greenhouse gas emissions. While small ponds only account for about 9% of global lakes and ponds by area, they contribute 15% of CO2 and 41% of diffusive CH4 emissions from inland freshwaters. Secondly, we measured gas exchange velocities (k) in small ponds and compiled direct measurements of k from 67 global water bodies. We found that k is low but highly variable in small ponds, and increases and becomes even more variable with lake size, a finding that is not currently included in global carbon models. In a third study, we found that gas exchange in small ponds is highly sensitive to overnight cooling, which can lead to short bursts of increased k at night, with implications for greenhouse gas emissions. Overall, these studies show that small ponds are a critical part of the global carbon cycle, and also highlight many knowledge gaps. Therefore, understanding small pond carbon cycling is an important research priority.

  3. Gauging the Health of New England's Lakes and Ponds

    EPA Science Inventory

    The New England Lakes and Ponds Project provides a consistent and first time comprehensive assessment of the ecological and water quality condition of lakes and ponds across the New England region. The project is being conducted by EPA along with the New England Interstate Water...

  4. Salt budget for West Pond, Utah, April 1987 to June 1989

    USGS Publications Warehouse

    Wold, S.R.; Waddell, K.M.

    1994-01-01

    During operation of the West Desert pumping project, April 10. 1987, to June 30, 1989, data were collected as part of a monitoring program to evaluate the effects of pumping brine from Great Salt Lake into West Pond in northern Utah. The removal of brine from Great Sail was part of an effort to lower the level of Great Salt Lake when the water level was at a high in 1986. These data were used to prepare a salt budget that indicates about 695 million tons of salt or about 14.2 percent of salt contained in Great Salt Lake was pumped into West Pond. Of the 695 million tons of salt pumped into West Pond, 315 million tons (45 percent) were dissolved in West Pond, 71 million tons (10.2 percent) formed a salt crust at the bottom of the pond, 10 million tons (1.4 percent) infiltrated the subsurface areas inundated by storage in the pond, 88 million tons (12.7 percent) were withdrawn by American Magnesium Corporation, and 123 million tons (17.7 percent) discharged from the pond through the Newfoundland weir. About 88 million tons (13 percent) of the salt pumped from the lake could not be accounted for in the salt budget. About 94 million tons of salt (1.9 percent of the total salt in Great Salt Lake) flowed back to Great Salt Lake.

  5. Microalgae biomass growth using primary treated wastewater as nutrient source and their potential use for lipids production

    NASA Astrophysics Data System (ADS)

    Frementiti, Anastacia; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2015-04-01

    The great demand for energy, the rising price of the crude oil and the rapid decrease of the supply of fossil fuels are the main reasons that have increased the interest for the production of fuels from renewable resources. Microalgae are considered to be the most promising new source of biomass and biofuels, since their lipid content in some cases is up to 70%. The microalgal growth and its metabolism processes are essential in wastewater treatment with many economical prospects. The aim of this work was to evaluate the algal production in a laboratory scale open pond. The pond had a working volume of 30 L and was fed with sterilized primary treated wastewater. Chlorococcum sp. was used as a model microalgal. Experiments were conducted under controlled environmental conditions in order to investigate the removal of nutrients, biomass growth, and lipids accumulation in microalgae. Chlorococcum sp. cultures behavior was investigated under batch, fill and draw, and continuous operation mode, at two different radiation intensities (100 and 200 μmol/m2s). The maximum biomass concentration of 630 mg/L was observed with the fill and draw mode. Moreover, the growth rates of microalgal biomass were depended on the influent nutrients concentration. Specifically, the phosphates were the limiting factor for biomass growth in continuous condition; the phosphates removal in this condition, reached a 100%. Chemical demand oxygen (COD) was not removed efficiently by Chlorococcum sp. since it was an autotrophic microalgal with no organic carbon demands for its growth. The lipids content in the dry weight of Chlorococcum sp. ranged from 1 to 9% depending on the concentration of nutrients and the operating conditions.

  6. Pond Ecology in the Classroom.

    ERIC Educational Resources Information Center

    Kneidl, Sally Stenhouse

    1993-01-01

    Describes activities with organisms from freshwater ponds and ditches. Several experiments involve predation, some involve habitat choices, and one addressees the role of sunlight in supporting plant-eating animals. (PR)

  7. Par Pond vegetation status Summer 1995 -- October survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-11-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the emergent shoreline aquatic plant communities began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level and continued with this late October survey. Communities similar to the pre-drawdown Par Pond aquatic plant communitiesmore » are becoming re-established; especially, beds of maiden cane, lotus, waterlily, and watershield are now extensive and well established. Cattail occurrence continues to increase, but large beds common to Par Pond prior to the drawdown have not formed. Future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.« less

  8. Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond

    NASA Technical Reports Server (NTRS)

    Wakeham, S. G.; Howes, B. L.; Dacey, J. W. H.; Schwarzenbach, R. P.; Zeyer, J.

    1987-01-01

    Dimethylsulfide (DMS) is the major volatile reduced organic sulfur compound in the water column of coastal Salt Pond, Cape Cod, MA. DMS concentration and vertical distributions vary seasonally in response to changing biogeochemical processes in the pond. When the pond is thermally stratified in summer, maximum DMS concentrations of up to 60 nmol/l were found in the oxygen-deficient metalimnion. DMS concentrations in the epilimnion (typically 5-10 nmol/l) were always an order of magnitude higher than in the hypolimnion (less than 0.2 nmol/l). The most likely precursor for DMS is algal dimethylsulfoniopropionate (DMSP), which showed vertical profiles similar to those of DMS. Laboratory experiments show that microorganisms in the pond, especially in the metalimnion, are capable of decomposing DMSP to DMS, while photosynthetic sulfur bacteria in the hypolimnion can consume DMS. Estimates of DMS production and consumption in Salt Pond have been made, considering production of DMS in the epilimnion and metalimnion and removal of DMS via gas exchange to the atmosphere, tidal exchange, and microbial consumption in the hypolimnion.

  9. Pumping performance of a slow-rotating paddlewheel for split-pond aquaculture systems

    USDA-ARS?s Scientific Manuscript database

    Commercial catfish farmers are intensifying production by retrofitting ponds with variations of the partitioned aquaculture system (PAS). The split-pond system is the most common variation used commercially. The split-pond consists of a small fish-holding basin connected to a waste treatment lagoon ...

  10. Design and development of decentralized water and wastewater technologies: a combination of safe wastewater disposal and fertilizer production.

    PubMed

    Fach, S; Fuchs, S

    2010-01-01

    Modern wastewater treatment plants are often inappropriate for communities in developing countries. Such communities lack the funding, resources and skilled labour required to implement, operate, and maintain these plants. This research was conducted to investigate and establish an appropriate wastewater treatment system for the district of Gunung Kidul, Indonesia. Due to its lack of water during the dry season, this district is considered one of the poorest areas in the nation. First, wastewater was stored in septic tank units for a retention time of 26 days. Anaerobic conditions occurred, resulting in an 80% reduction of initial COD. The retained sludge was well stabilized with great potential, if dewatered, for reuse as fertilizer. Consequently, supernatant was separated for experiments consisting of lab scale aerobic sand filtering unit. Through filtration, further removals of COD (about 30%) and pathogens were achieved. Rich in nitrogen, the resulting effluent could be used for irrigation and soil conditioning. With faecal sludge and also a mixture of septic sludge and food waste, the hydrolysis stage of anaerobic digestion was examined. This paper discusses the laboratory findings in Karlsruhe and the design and implementation of a treatment system in Glompong, Indonesia.

  11. The symbiotic relationship of sediment and biofilm dynamics at the sediment water interface of oil sands industrial tailings ponds.

    PubMed

    Reid, T; VanMensel, D; Droppo, I G; Weisener, C G

    2016-09-01

    Within the oil sands industry, tailings ponds are used as a means of retaining tailings until a reclamation technology such as end pit lakes (EPLs) can be developed and optimized to remediate such tailings with a water cap (although dry-land strategies for tailing reclamation are also being developed). EPLs have proven successful for other mining ventures (e.g. metal rock mines) in eventually mitigating contaminant loads to receiving waters once biochemical remediation has taken place (although the duration for this to occur may be decades). While the biological interactions at the sediment water interface of tailings ponds or EPLs have been shown to control biogeochemical processes (i.e. chemical fluxes and redox profiles), these have often been limited to static microcosm conditions. Results from such experiments may not tell the whole story given that the sediment water interface often represents a dynamic environment where erosion and deposition may be occurring in association with microbial growth and decay. Mobilization of sediments and associated contaminants may therefore have a profound effect on remediation rates and, as such, may decrease the effectiveness of EPLs as viable reclamation strategies for mining industries. Using a novel core erosion system (U-GEMS), this paper examines how the microbial community can influence sediment water interface stability and how the biofilm community may change with tailings age and after disturbance (biofilm reestablishment). Shear strength, eroded mass measurements, density gradients, high-resolution microscopy, and microbial community analyses were made on 2 different aged tailings (fresh and ∼38 years) under biotic and abiotic conditions. The same experiments were repeated as duplicates with both sets of experiments having consolidation/biostabilization periods of 21 days. Results suggest that the stability of the tailings varies between types and conditions with the fresh biotic tailings experiencing up to 75

  12. Supraglacial Ponds Regulate Runoff From Himalayan Debris-Covered Glaciers

    NASA Astrophysics Data System (ADS)

    Irvine-Fynn, Tristram D. L.; Porter, Philip R.; Rowan, Ann V.; Quincey, Duncan J.; Gibson, Morgan J.; Bridge, Jonathan W.; Watson, C. Scott; Hubbard, Alun; Glasser, Neil F.

    2017-12-01

    Meltwater and runoff from glaciers in High Mountain Asia is a vital freshwater resource for one-fifth of the Earth's population. Between 13% and 36% of the region's glacierized areas exhibit surface debris cover and associated supraglacial ponds whose hydrological buffering roles remain unconstrained. We present a high-resolution meltwater hydrograph from the extensively debris-covered Khumbu Glacier, Nepal, spanning a 7 month period in 2014. Supraglacial ponds and accompanying debris cover modulate proglacial discharge by acting as transient and evolving reservoirs. Diurnally, the supraglacial pond system may store >23% of observed mean daily discharge, with mean recession constants ranging from 31 to 108 h. Given projections of increased debris cover and supraglacial pond extent across High Mountain Asia, we conclude that runoff regimes may become progressively buffered by the presence of supraglacial reservoirs. Incorporation of these processes is critical to improve predictions of the region's freshwater resource availability and cascading environmental effects downstream.

  13. Implications of Fecal Bacteria Input from Latrine-Polluted Ponds for Wells in Sandy Aquifers

    PubMed Central

    Knappett, Peter S. K.; McKay, Larry D.; Layton, Alice; Williams, Daniel E.; Alam, Md. J.; Huq, Md. R.; Mey, Jacob; Feighery, John E.; Culligan, Patricia J.; Mailloux, Brian J.; Zhuang, Jie; Escamilla, Veronica; Emch, Michael; Perfect, Edmund; Sayler, Gary S.; Ahmed, Kazi M.; van Geen, Alexander

    2012-01-01

    Ponds receiving latrine effluents may serve as sources of fecal contamination to shallow aquifers tapped by millions of tube-wells in Bangladesh. To test this hypothesis, transects of monitoring wells radiating away from four ponds were installed in a shallow sandy aquifer underlying a densely populated village and monitored for 14 months. Two of the ponds extended to medium sand. Another pond was sited within silty sand and the last in silt. The fecal indicator bacterium E. coli was rarely detected along the transects during the dry season and was only detected near the ponds extending to medium sand up to 7 m away during the monsoon. A log-linear decline in E. coli and Bacteroidales concentrations with distance along the transects in the early monsoon indicates that ponds excavated in medium sand were the likely source of contamination. Spatial removal rates ranged from 0.5-1.3 log10/m. After the ponds were artificially filled with groundwater to simulate the impact of a rain storm, E. coli levels increased near a pond recently excavated in medium sand, but no others. These observations show that adjacent sediment grain-size and how recently a pond was excavated influence how much fecal contamination ponds receiving latrine effluents contribute to neighboring groundwater. PMID:22191430

  14. Decommissioning of magnox Ltd fuel cooling pond facilities in the UK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertoncini, Carlo

    2013-07-01

    Magnox reactors were the first generation of nuclear power stations built in the UK; ten sites in total, of which, nine had wet fuel routes with cooling ponds. Five ponds are currently in a decommissioning phase; this paper will focus primarily on Hunterston-A (HNA) Site and the central programme of work which governs its management. During its operation, the Cartridge Cooling Pond at HNA was used to receive the spent fuel discharged from the Site's two reactors, it was then stored for cooling purposes prior to dispatch off site. The current decommissioning phase focusses on draining the 6500 m{sup 3}more » pond. Due to the Site's limited caesium removal facilities, a stand-alone effluent treatment plant was constructed to improve abatement and reduce the pond activity from 200 to 0.7 Bq/ml (β). This was necessary due to increased environmental standards introduced since the site had ceased generation ten years previously. Early characterisation and experience from other sites concluded that if the pond were to be drained without any treatment to the walls, doses to the Operators, during subsequent decommissioning works, would routinely be in excess of 1 mSv.hr{sup -1}(γ). An opportunity was realised within the Ponds Programme that if the surface layer of the pond walls were to be removed during drain-down, ambient dose rates would be reduced by a factor of 10; this would allow for more cost-effective decommissioning options in the future. Ultrahigh pressure water jetting was tested and proved to yield a ∼95% total-activity reduction on treated surfaces. Challenges were overcome in providing safe and secure access to Decommissioning Operators to perform this operation by means of floating platforms on the surface of the pond. As strategies to clear facilities to exemption levels are becoming both cost prohibitive and not reasonably practicable, work is now underway in the Programme to determine the optimum condition for entry into long-term quiescent storage

  15. Spatial Distribution of Nitrate in Mizoro-Ga a Pond with Floating at Bog

    NASA Astrophysics Data System (ADS)

    Shimamura, Tetsuya; Takemon, Yasuhiro; Osaka, Ken'ichi; Itoh, Masayuki; Ohte, Nobuhito

    Artificial nutrient loading has been linked to the decrease in plant diversity in peatlands, riparian areas, and swamps. Mizoro-ga-ike pond is one of the natural monuments of Japan and contains temperate floating mat and diverse plant community. The pond had experienced eutrophication by sewage and tap water. As the inflows of nutrient-rich water had been lessened, the amount of source area of the pond has decreased to 30%. We investigated factors that control water chemistry in and around the pond to assess the present situation of the pond. The pond has two mouths of inflows. One of the inflows includes leaked water from a tap water reserver. The other is the surface flow collected by a ditch. The result of water quality census indicates the pond has two sources of nutrient-rich water. One is the drainage from the surface water polluted by the road for automobile that flows into the northern coast of the pond, and the other is the tap water-contaminated water entering from the southern coast. Also the result of the census indicates that emergent plants such as reeds and wild rice modify the effect of nutrient-rich water by exploiting nutrients. Especially, it was suggested that the nursery effects of emergent grasslands that spread southern part of the pond protect the less robust plants, Nuphar subintegerrimum.

  16. Spatial Distribution of Nitrate in Mizoro-Ga a Pond with Floating Mat Bog

    NASA Astrophysics Data System (ADS)

    Shimamura, Tetsuya; Takemon, Yasuhiro; Osaka, Ken'ichi; Itoh, Masayuki; Ohte, Nobuhito

    Artificial nutrient loading has been linked to the decrease in plant diversity in peatlands, riparian areas, and swamps. Mizoro-ga-ike pond is one of the natural monuments of Japan and contains temperate floating mat and diverse plant community. The pond had experienced eutrophication by sewage and tap water. As the inflows of nutrient-rich water had been lessened, the amount of source area of the pond has decreased to 30%. We investigated factors that control water chemistry in and around the pond to assess the present situation of the pond. The pond has two mouths of inflows. One of the inflows includes leaked water from a tap water reserver. The other is the surface flow collected by a ditch. The result of water quality census indicates the pond has two sources of nutrient-rich water. One is the drainage from the surface water polluted by the road for automobile that flows into the northern coast of the pond, and the other is the tap water-contaminated water entering from the southern coast. Also the result of the census indicates that emergent plants such as reeds and wild rice modify the effect of nutrient-rich water by exploiting nutrients. Especially, it was suggested that the nursery effects of emergent grasslands that spread southern part of the pond protect the less robust plants, Nuphar subintegerrimum.

  17. Remediation of an oily leachate pond in Estonia.

    PubMed

    Kriipsalu, Mait; Marques, Marcia; Hogland, William

    2005-12-01

    Until recent years, waste oil and oil-contaminated waters commonly ended up in landfills. At some dump sites, ponds of oily liquids and leachate were formed. To remediate such ponds, an interdisciplinary approach is now required, keeping costs at an affordable level, particularly in countries with changing economies. From 1974 to 1993, liquid oily wastes taken to the Laguja landfill, in Estonia, were disposed of in a pond with a surface area of 9800 m2. It was estimated that the pond contained 4500-6000 m3 of oily water and 3500 m3 of oil-containing bottom sediments. This study aimed at developing an environmentally sound and cost-effective method for remediation of the oily liquids, leachate and contaminated underlying sediment material, to meet the existing legal demands. It was concluded that treatment of contaminated water is well established and the procedures carried out to meet the regulatory demands achieved satisfactory results. However, regarding treatment of sediments it was concluded that legal and technological aspects, as well as monitoring procedures are not fully established and are usually underestimated. Laboratory investigations can provide valuable information in decision-making, and contribute to effective full-scale remediation planning.

  18. Revisiting salt marsh resilience to sea level rise: Are ponds responsible for permanent land loss?

    NASA Astrophysics Data System (ADS)

    Mariotti, G.

    2016-12-01

    Ponds are un-vegetated rounded depressions commonly present on marsh platforms. The role of ponds on the long-term morphological evolution of tidal marshes is unclear - at times ponds expand but eventually recover the marsh platform, at other times ponds never recover and lead to permanent marsh loss. Existing field observations indicate that episodic disturbances of the marsh vegetation cause the formation of small (1-10 m) isolated ponds, even if the vegetated platform keeps pace with Relative Sea Level Rise (RSLR), and that isolated ponds tend to deepen and enlarge until they eventually connect to the channel network. Here I implement a simple model to study the vertical and planform evolution of a single connected pond. A newly connected pond recovers if its bed lies above the limit for marsh plant growth, or if the inorganic deposition rate is larger than the RSLR rate. A pond that cannot accrete faster than RSLR will deepen and enlarge, eventually entering a runaway erosion by wave edge retreat. A large tidal range, a large sediment supply, and a low rate of RSLR favor pond recovery. The model suggests that inorganic sediment deposition alone controls pond recovery, even in marshes where organic matter dominates accretion of the vegetated platform. As such, halting permanent marsh loss by pond collapse requires to increase inorganic sediment deposition. Because pond collapse is possible even if the vegetated platform keeps pace with RSLR, I conclude that marsh resilience to RSLR is less than previously quantified.

  19. Don Quixote Pond: A Small Scale Model of Weathering and Salt Accumulation

    NASA Technical Reports Server (NTRS)

    Englert, P.; Bishop, J. L.; Patel, S. N.; Gibson, E. K.; Koeberl, C.

    2015-01-01

    The formation of Don Quixote Pond in the North Fork of Wright Valley, Antarctica, is a model for unique terrestrial calcium, chlorine, and sulfate weathering, accumulation, and distribution processes. The formation of Don Quixote Pond by simple shallow and deep groundwater contrasts more complex models for Don Juan Pond in the South Fork of Wright Valley. Our study intends to understand the formation of Don Quixote Pond as unique terrestrial processes and as a model for Ca, C1, and S weathering and distribution on Mars.

  20. Carbon, nitrogen, and phosphorus budget in scampi (Macrobrachium rosenbergii) culture ponds.

    PubMed

    Sahu, Bharat Chandra; Adhikari, Subhendu; Mahapatra, Abhijit S; Dey, Lambodar

    2013-12-01

    Experiments were conducted for the study of nutrient budget in ten farmer's ponds (0.2-0.5 ha) in Orissa, India with a mean water depth of 1.0-1.2 m. Scampi (Macrobrachium rosenbergii) were stocked in these ponds at stocking density of 3.75-5.0/m(2). The average initial body weight of scampi was 0.02 mg. The culture period was for 4 months. Feed was the main input. Total feed applied to these ponds ranged from 945 to 2261 kg pond/cycle (crop). The feed conversion ratio varied 1.65 to 1.78. In addition to feed, rice straw, urea, and single super phosphate were applied to these ponds in small amounts for plankton production. At harvest time, the average weight of scampi varied from 60-90 g. The budget showed that feed was the major input of nitrogen (N), phosphorus (P), and carbon in these ponds. The inorganic fertilizer (urea and single super phosphate), organic fertilizer (rice straw and yeast extract), and inlet water, either from the initial fills or from rainwater, were the source of all other N, P, and organic carbon (OC) to these ponds. Total N applied to these ponds through all these inputs ranged from 44.45 to 103.98 kg N per crop, 12.23 to 28.79 kg P per crop, and from 381.54 to 905.22 kg OC per crop, respectively. Among all the inputs, feed alone accounted for 95.34 % N, 97.98 % P, and 94.27 % OC, respectively. Recovery of 16.34 to 38.66 kg N (average 29.27 kg), 1.28 to 3.02 kg P (average 2.29 kg), and 63.21 to 149.51 kg OC (average 113.20 kg), respectively, by the scampi harvest were observed in these ponds. Thus, harvest of scampi accounted for recovery of 35.18 to 39.01 (average 36.85%) of added N, 10.09 to 10.97 (average 10.44%) of added P, and 7.57 to 17.12 (average 16.34%) of added OC, respectively.

  1. Transport of fecal-derived microorganisms from latrine ponds to aquifers in Bangladesh

    NASA Astrophysics Data System (ADS)

    Knappett, P. S.; McKay, L. D.; Layton, A.; Alam, M.; Williams, D.; Huq, M. R.; Mailloux, B. J.; Ferguson, A.; Feighery, J. E.; Culligan, P. J.; Escamilla, V.; Emch, M.; Akita, Y.; Serre, M. L.; Perfect, E.; Gentry, R. W.; Ahmed, K. M.; van Geen, A.

    2009-12-01

    Groundwater has been the principal source of drinking water for over 100 million people in rural Bangladesh for the past twenty years. The shallow depths and simple construction of the private wells has raised concern that these wells may be receiving fecal contamination from the densely populated rural areas with poor sanitation, contributing to high rates of diarrheal disease. Ponds are ubiquitous in Bangladesh, serving multiple purposes, including receiving fecal effluent from latrines, and private wells are frequently located in close proximity to these potential groundwater contamination sources. After detecting E. coli in up to 70% of private and monitoring wells throughout a village in Araihazar, the numerous ponds throughout the village were hypothesized to be sources of this contamination. To test this hypothesis 9 lateral transects of 4 monitoring wells each, 7 m deep and placed 1 m apart, were installed radiating away from four ponds of contrasting ages and near surface geology. These transects were monitored throughout the year to look for evidence that the ponds were contributing E. coli to the groundwater system. During the dry season from September 2008 to May 2009 no E. coli was observed in the shallow monitoring wells. In contrast, when the rains began in June 2009 several of the transects showed increasing water levels and E. coli with proximity to the pond, providing evidence that some ponds were acting as a contamination point source. A major rainfall event was simulated in June 2009 in each of the four ponds, raising the water level by 20 to 30 cm while adjacent transects were monitored. In two recently dug, deep ponds E. coli travelled up to 6 m into the medium sand aquifer within 24 hours as a result of the simulated rainfall event. In the two older ponds, which had well developed silt layers on the bottom or were emplaced in silty aquifers little E. coli was detected in the adjacent monitoring wells under natural or forced gradient

  2. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  3. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  4. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  5. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  6. Flow cytometry used to assess genetic damage in frogs from farm ponds

    USGS Publications Warehouse

    Bly, B.L.; Knutson, M.G.; Sandheinrich, M.B.; Gray, B.R.; Jobe, D.A.

    2004-01-01

    Flow cytometry (FC) is a laboratory method used to detect genetic damage induced by environmental contaminants and other stressors in animals, including amphibians. We tested FC methods on three species of ranid frogs collected from farm ponds and natural wetlands in southeastern Minnesota. We compared FC metrics for Rana clamitans between ponds with direct exposure to agricultural contaminants and reference (unexposed) ponds. Concentrations of atrazine in water from our farm ponds ranged from 0.04 to 0.55 ppb. We found that R. clamitans from exposed ponds had DNA content similar to frogs from unexposed ponds. Pond-averaged C-values (a measure of DNA content) ranged from 6.53 to 7.08 for R. pipiens (n . 13), 6.55 to 6.60 for R. clamitans (n . 40) and 6.74 for R. palustris (n . 5). Among all species, the mean sample CVs ranged from 1.91 (R. palustris) to 6.31 (R. pipiens). Deformities were observed in only 2 of 796 individuals among all species and occurred in both reference and exposed ponds. Although we did not detect evidence of DNA damage associated with agriculture in our study, we demonstrated the potential of FC for screening amphibian populations for genetic damage. Metrics from a variety of amphibian species and locations as well as laboratory studies are needed to further assess the value of FC for monitoring amphibian genetic integrity in contaminated sites.

  7. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    PubMed Central

    Hubbard, Bryn; Luckman, Adrian; Ashmore, David W.; Bevan, Suzanne; Kulessa, Bernd; Kuipers Munneke, Peter; Philippe, Morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 °C warmer and ∼170 kg m−3 denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades. PMID:27283778

  8. The Little School Pond

    ERIC Educational Resources Information Center

    Rawitscher-Kunkel, Erika

    1973-01-01

    A small pond in a schoolyard provided year-round biological activities for children. As seasons changed, concepts and life relations also changed. Besides microscopic organisms in water, children learned about microscopic algae, detritus, and food chains. Concepts of predator-prey relationships and of ecosystems were successfully developed. (PS)

  9. Assessment of bacterial and archaeal community structure in Swine wastewater treatment processes.

    PubMed

    Da Silva, Marcio Luis Busi; Cantão, Mauricio Egídio; Mezzari, Melissa Paola; Ma, Jie; Nossa, Carlos Wolfgang

    2015-07-01

    Microbial communities from two field-scale swine wastewater treatment plants (WWTPs) were assessed by pyrosequencing analyses of bacterial and archaeal 16S ribosomal DNA (rDNA) fragments. Effluent samples from secondary (anaerobic covered lagoons and upflow anaerobic sludge blanket [UASB]) and tertiary treatment systems (open-pond natural attenuation lagoon and air-sparged nitrification-denitrification tank followed by alkaline phosphorus precipitation process) were analyzed. A total of 56,807 and 48,859 high-quality reads were obtained from bacterial and archaeal libraries, respectively. Dominant bacterial communities were associated with the phylum Firmicutes, Bacteroidetes, Proteobacteria, or Actinobacteria. Bacteria and archaea diversity were highest in UASB effluent sample. Escherichia, Lactobacillus, Bacteroides, and/or Prevotella were used as indicators of putative pathogen reduction throughout the WWTPs. Satisfactory pathogen reduction was observed after the open-pond natural attenuation lagoon but not after the air-sparged nitrification/denitrification followed by alkaline phosphorus precipitation treatment processes. Among the archaeal communities, 80% of the reads was related to hydrogeno-trophic methanogens Methanospirillum. Enrichment of hydrogenotrophic methanogens detected in effluent samples from the anaerobic covered lagoons and UASB suggested that CO2 reduction with H2 was the dominant methanogenic pathway in these systems. Overall, the results served to improve our current understanding of major microbial communities' changes downgradient from the pen and throughout swine WWTP as a result of different treatment processes.

  10. Balancing the Ecological Function of Residential Stormwater Ponds with Homeowner Landscaping Practices.

    PubMed

    Monaghan, Paul; Hu, Shangchun; Hansen, Gail; Ott, Emily; Nealis, Charles; Morera, Maria

    2016-11-01

    Stormwater ponds are installed in urban developments to provide the ecosystem services of flood control and water treatment. In coastal areas, these ponds are connected to watersheds that can drain directly into protected estuaries, making their design, function, and maintenance critical to environmental protection. However, stormwater ponds in residential areas are increasingly managed as aesthetic amenities that add value to real estate rather than as engineered devices with special maintenance requirements. To help extend the life of neighborhood stormwater systems and improve ecosystem services, homeowners should follow best management practices for nutrient management and add shoreline plantings and non-invasive, beneficial aquatic plants to their ponds. This study used focus group and survey research to document the knowledge, behaviors, and attitudes of homeowners living near stormwater ponds in a master-planned community in Florida. The study was designed to use a social marketing research approach to promote Extension best practices. Findings indicate that many residents were aware of the functional components of stormwater systems and respondents' receptivity to best management practices was mediated by age, their attitudes about water quality and whether their home was adjacent to a pond. These findings can be used to target Extension audiences and improve adoption of stormwater pond best management practices for increased protection of water quality.

  11. Balancing the Ecological Function of Residential Stormwater Ponds with Homeowner Landscaping Practices

    NASA Astrophysics Data System (ADS)

    Monaghan, Paul; Hu, Shangchun; Hansen, Gail; Ott, Emily; Nealis, Charles; Morera, Maria

    2016-11-01

    Stormwater ponds are installed in urban developments to provide the ecosystem services of flood control and water treatment. In coastal areas, these ponds are connected to watersheds that can drain directly into protected estuaries, making their design, function, and maintenance critical to environmental protection. However, stormwater ponds in residential areas are increasingly managed as aesthetic amenities that add value to real estate rather than as engineered devices with special maintenance requirements. To help extend the life of neighborhood stormwater systems and improve ecosystem services, homeowners should follow best management practices for nutrient management and add shoreline plantings and non-invasive, beneficial aquatic plants to their ponds. This study used focus group and survey research to document the knowledge, behaviors, and attitudes of homeowners living near stormwater ponds in a master-planned community in Florida. The study was designed to use a social marketing research approach to promote Extension best practices. Findings indicate that many residents were aware of the functional components of stormwater systems and respondents' receptivity to best management practices was mediated by age, their attitudes about water quality and whether their home was adjacent to a pond. These findings can be used to target Extension audiences and improve adoption of stormwater pond best management practices for increased protection of water quality.

  12. Par Pond vegetation status Summer 1995 -- June survey descriptive summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, H.E. Jr.; Riley, R.S.

    1995-06-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the shoreline aquatic plant communities in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level, indicated that much of the original plant communities and the intermediate shoreline communities present on the exposed sediments havemore » been lost. The extensive old-field and emergent marsh communities that were present on the exposed shoreline during the drawdown have been flooded and much of the pre-drawdown Par Pond aquatic plant communities have not had sufficient time for re-establishment. The shoreline does, however, have extensive beds of maidencane which extend from the shoreline margin to areas as deep as 2 and perhaps 3 meters. Scattered individual plants of lotus and watershield are common and may indicate likely directions of future wetland development in Par Pond. In addition, within isolated coves, which apparently received ground water seepage and/or stream surface flows during the period of the Par Pond draw down, extensive beds of waterlilies and spike rush are common. Invasion of willow and red maple occurred along the lake shoreline as well. Although not absent from this survey, evidence of the extensive redevelopment of the large cattail and eel grass beds was not observed in this first survey of Par Pond. Future surveys during the growing seasons of 1995, 1996, and 1997 along with the evaluation of satellite date to map the areal extent of the macrophyte beds of Par Pond are planned.« less

  13. Non-newtonian enhancement of both stability and permeability of liquid membranes for detoxifying wastewater. Report for 1 July 1991-30 September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skelland, A.H.P.

    1995-06-01

    Emulsion liquid membrane processes constitute an emerging separations technology with widespread applications, including wastewater purification. However, they currently remain excessively vulnerable to one of more of four major problems. The difficulties lie in developing liquid membranes that combine high levels of both stability and permeability with acceptably low levels of swelling and ease of subsequent demulsification for membrane and solute recovery. This work provides a new technique for simultaneously overcoming the first three problems, while identifying physical indications that the proposed solution may have little adverse effect upon the fourth problem (demulsification) and may even alleviate it. The responsiveness ofmore » both aliphatic and aromatic membranes to the new technique has been demonstrated.« less

  14. The effect of under-ice melt ponds on their surroundings in the Arctic

    NASA Astrophysics Data System (ADS)

    Feltham, D. L.; Smith, N.; Flocco, D.

    2016-12-01

    In the summer months, melt water from the surface of the Arctic sea ice can percolate down through the ice and flow out of its base. This water is relatively warm and fresh compared to the ocean water beneath it, and so it floats between the ice and the oceanic mixed layer, forming pools of melt water called under-ice melt ponds. Sheets of ice, known as false bottoms, can subsequently form via double diffusion processes at the under-ice melt pond interface with the ocean, trapping the pond against the ice and completely isolating it from the ocean below. This has an insulating effect on the parent sea ice above the trapped pond, altering its rate of basal ablation. A one-dimensional, thermodynamic model of Arctic sea ice has been adapted to study the evolution of under-ice melt ponds and false bottoms over time. Comparing simulations of sea ice evolution with and without an under-ice melt pond provides a measure of how an under-ice melt pond affects the mass balance of the sea ice above it. Sensitivity studies testing the response of the model to a range of uncertain parameters have been performed, revealing some interesting implications of under-ice ponds during their life cycle. By changing the rate of basal ablation of the parent sea ice, and so the flux of fresh water and salt into the ocean, under-ice melt ponds affect the properties of the mixed layer beneath the sea ice. Our model of under-ice melt pond refreezing has been coupled to a simple oceanic mixed layer model to determine the effect on mixed layer depth, salinity and temperature.

  15. A comparison of Nannochloropsis salina growth performance in two outdoor pond designs: conventional raceways versus the ARID pond with superior temperature management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowe, Braden J.; Attalah, Said; Agrawal, Shweta

    2012-10-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L ARID (Algae Raceway Integrated Design) pond. The ARID culture system utilizes a series of 8 to 20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed tomore » its superior temperature management and shallower basins. On a night when the air temperature dropped to -9 °C, the water temperature was 18 °C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 - 25 % and 5 - 15 %, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acid comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 vs 0.013 g L-1day-1), areal biomass productivities were of similar magnitude in both pond systems (3.34 vs. 3.47 g m-2day-1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  16. Asteroid Pond Mineralogy: View from a Cognate Clast in LL3 NWA 8330

    NASA Technical Reports Server (NTRS)

    Zolensky, M.; Le, L.

    2017-01-01

    All asteroids surfaces imaged at the cm-scale reveal the presence of pond deposits. These ponds are important because it is likely all asteroid sample return missions will sample them, being the safest (very flat) places to touch down. Therefore, it is essential to understand the differences between the material at the pond surfaces and the host asteroid. Fortunately, some fine-grained cognate lithologies in chondrites show sedimentary features indicating that they sample asteroid ponds.

  17. Orientation and migration distances of a pond-breeding salamander (Notophthalmus perstriatus, Salamandridae)

    USGS Publications Warehouse

    Johnson, S. A.

    2003-01-01

    Habitat loss and modification have played a significant role in the decline of amphibian populations and species. Loss of wetlands, which are used as breeding sites for many amphibians, has contributed to the decline. The protection of small, isolated wetlands and core areas of associated uplands is one way in which population declines in certain species can be slowed or prevented. Nevertheless, migration distances of individuals of most amphibian species from their breeding sites are unknown. Using drift fences and pitfall traps, I studied migration distance and orientation of striped newts (Notophthalmus perstriatus) at a breeding pond in northern Florida, USA. Newts entered (immigration) and exited (emigration) the pond basin in a nonrandom fashion but no obvious effects of upland habitat were apparent. Patterns of emigration and immigration differed significantly between sexes, life-history stages, and migration events. Individuals tended to exit and enter the pond basin within the same quadrant, sometimes leaving and returning at the same point. Newts moved hundreds of meters into the sandhill uplands surrounding the pond. I found an inverse relationship between the proportion of newts migrating and distance from the pond. Nonetheless, I estimated that at least 16% of individuals breeding at the pond migrated in excess of 500 m from the pond. Thus, a core of protected upland with a radius of approximately 800 m from the pond would be needed to preserve the area used by the vast majority of individuals that breed at the pond. These data underscore the need to study upland habitat requirements for amphibians; findings for one taxon (e.g. ambystomatids) may not be applicable to others (e.g., salamandrids). Without such data, designating terrestrial core habitat to conserve aquatic-breeding amphibians will be difficult or impossible. However, without better protection of small, isolated wetlands, arguments to preserve surrounding uplands are irrelevant.

  18. Prediction of wastewater treatment plants performance based on artificial fish school neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Ruicheng; Li, Chong

    2011-10-01

    A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.

  19. Comparison of phytoplankton communities in catfish split-pond aquaculture systems with conventional ponds

    USDA-ARS?s Scientific Manuscript database

    There has been a growing interest and use of variations of partitioned aquaculture systems (PAS) in recent years by the southeastern United States of America farmed catfish industry. Split-pond systems, one type of PAS, are designed to better manage fish waste byproducts (e.g., ammonia) and dissolv...

  20. Mutagenicity and cytotoxicity of liquid waste, press water and pond water, produced in the cassava flour industry, and of antitoxic sodium thiosulfate.

    PubMed

    Viana, Lilian Ávila; Düsman, Elisângela; Vicentini, Veronica Elisa Pimenta

    2014-02-01

    Cassava (Manihot esculenta Crantz), a plant used as food and an ingredient in industry, contains cyanogenic glycosides. The cassava root contains wastewater, popularly known as manipueira, which is a toxic substance. Its ingestion by animals causes poisoning although they react positively to treatment with sodium thiosulfate. The present research evaluates the cytotoxicity and the mutagenicity of liquid waste produced in the process of industrialization of the bitter cassava, olho-junto variety. The liquid wastes are characterized as press water, which is obtained when the cassava roots are pressed; pond water, which is press water stored in impounded ponds; and a solution of sodium thiosulfate, pure and with other waste. The system tests comprised root meristematic cells of Allium cepa L. and bone marrow cells of Rattus norvegicus. Treatment with saline solution was cytotoxic for Allium cepa L. and significantly reduced cell division rate. Although no treatment was cytotoxic in any of the tests with rats, the thiosulfate solution was clastogenic for the chromosomal aberrations test. Since it is harmful to the genetic material submitted within the conditions of current research, sodium thiosulfate should only be used in emergency conditions in which the benefits exceed the risks. © 2013 Society of Chemical Industry.

  1. Stochastic dynamics of melt ponds and sea ice-albedo climate feedback

    NASA Astrophysics Data System (ADS)

    Sudakov, Ivan

    Evolution of melt ponds on the Arctic sea surface is a complicated stochastic process. We suggest a low-order model with ice-albedo feedback which describes stochastic dynamics of melt ponds geometrical characteristics. The model is a stochastic dynamical system model of energy balance in the climate system. We describe the equilibria in this model. We conclude the transition in fractal dimension of melt ponds affects the shape of the sea ice albedo curve.

  2. Determining the Chemical and Biological Availability of Zinc in Urban Stormwater Retention Ponds

    NASA Astrophysics Data System (ADS)

    Camponelli, K.; Casey, R.; Lev, S. M.; Landa, E. R.; Snodgrass, J.

    2005-12-01

    Highway runoff has the potential to negatively impact receiving systems due to transport of contaminants that accumulate on road surfaces. Metals such as copper and zinc are major components of automobile brake pads and tires, respectively. As these automobile parts are degraded, these metal containing particulates are deposited on the roadway and are washed into storm water retention ponds and surface water bodies during precipitation events. It has been estimated that 15 to 60% of the Zn in urban stormwater runoff comes from tire wear and that tire wear is a significant source of Zn to the environment with release inventories comparable to waste incineration sources. In urban and sub-urban systems, this large source of Zn can accumulate in stormwater retention ponds which serve as habitat for a variety of species. Understanding the chemical and biological availability of Zn to biota is integral to assessing the habitat quality of retention ponds. This study is a first effort to relate the amount and speciation of Zn in a retention pond to Zn inputs through highway-derived runoff events. In addition, results suggest that the chemical speciation and availability of particulate Zn can be related to the bioavailability and toxicity of Zn to pond organisms (i.e. larval amphibians). The study site in Owings Mills, MD is located next to a four-lane highway from which it receives runoff through a single culvert. Five species of anurans are known to utilize the pond as a breeding site and Zn in amphibian tissues and retention pond sediments were highly elevated at this site in 2001 and 2002. A recent analysis of pond sediments, soils, roadway dust and storm water collected at this site suggests that roadway particulate matter transported during runoff events is the dominant source of Zn in this system. Overall, Zn and other trace metals were found to be most abundant in the clay sized faction of pond sediments and soils. The pond cores were found to have higher Zn and Cu

  3. Aquatic vegetation and trophic condition of Cape Cod (Massachusetts, U.S.A.) kettle ponds

    USGS Publications Warehouse

    Roman, C.T.; Barrett, N.E.; Portnoy, J.W.

    2001-01-01

    The species composition and relative abundance of aquatic macrophytes was evaluated in five Cape Cod, Massachusetts, freshwater kettle ponds, representing a range of trophic conditions from oligotrophic to eutrophic. At each pond, aquatic vegetation and environmental variables (slope, water depth, sediment bulk density, sediment grain size, sediment organic content and porewater inorganic nutrients) were measured along five transects extending perpendicular to the shoreline from the upland border into the pond. Based on a variety of multivariate methods, including Detrended Correspondence Analysis (DCA), an indirect gradient analysis technique, and Canonical Correspondence Analysis (CCA), a direct gradient approach, it was determined that the eutrophic Herring Pond was dominated by floating aquatic vegetation (Brasenia schreberi, Nymphoides cordata, Nymphaea odorata), and the algal stonewort, Nitella. Partial CCA suggested that high porewater PO4-P concentrations and fine-grained sediments strongly influenced the vegetation of this eutrophic pond. In contrast, vegetation of the oligotrophic Duck Pond was sparse, contained no floating aquatics, and was dominated by emergent plants. Low porewater nutrients, low sediment organic content, high water clarity and low pH (4.8) best defined the environmental characteristics of this oligotrophic pond. Gull Pond, with inorganic nitrogen-enriched sediments, also exhibited a flora quite different from the oligotrophic Duck Pond. The species composition and relative abundance of aquatic macrophytes provide good indicators of the trophic status of freshwater ponds and should be incorporated into long-term monitoring programs aimed at detecting responses to anthropogenically-derived nutrient loading.

  4. Effects of marsh pond terracing on coastal wintering waterbirds before and after Hurricane Rita.

    PubMed

    O'Connell, Jessica L; Nyman, John A

    2011-11-01

    From February to March 2005-2006, we surveyed wintering waterbirds to test effects of terracing on coastal pond use before and after Hurricane Rita. Marsh terracing is intended to slow coastal marsh loss in the Chenier Plain by slowing marsh erosion and encouraging vegetation expansion. Terraces also increase marsh edge in ponds, possibly benefiting waterbirds. We monitored paired terraced and unterraced ponds in three sites within southwestern Louisiana's Chenier Plain. Waterbirds were 75% more numerous in terraced than unterraced ponds. Waterbird richness was similar among ponds when corrected for number of individuals, suggesting terracing increased bird density but did not provide habitat unique from unterraced ponds. Birds were 93% more numerous following Hurricane Rita, mostly due to an influx of migrating waterfowl. Year round residents were similar in number before and after Hurricane Rita. Resident richness did not differ among years after correcting for number of observed individuals. Wading and dabbling foragers were more abundant in terraced ponds and these two guilds represented 74% of birds observed. We detected no difference among ponds for other guilds, i.e., probing, aerial, and diving foragers. Increasing proportion of mash edge increased bird density disproportionately: On average ponds with 10% edge had 6 birds observed and ponds with 30% edge had 16 birds observed. Terraces increased habitat interspersion and were an effective tool for increasing numbers of wintering waterfowl and wading birds. The extent to which terraces were sustainable following hurricane forces is unknown.

  5. Effects of Marsh Pond Terracing on Coastal Wintering Waterbirds Before and After Hurricane Rita

    NASA Astrophysics Data System (ADS)

    O'Connell, Jessica L.; Nyman, John A.

    2011-11-01

    From February to March 2005-2006, we surveyed wintering waterbirds to test effects of terracing on coastal pond use before and after Hurricane Rita. Marsh terracing is intended to slow coastal marsh loss in the Chenier Plain by slowing marsh erosion and encouraging vegetation expansion. Terraces also increase marsh edge in ponds, possibly benefiting waterbirds. We monitored paired terraced and unterraced ponds in three sites within southwestern Louisiana's Chenier Plain. Waterbirds were 75% more numerous in terraced than unterraced ponds. Waterbird richness was similar among ponds when corrected for number of individuals, suggesting terracing increased bird density but did not provide habitat unique from unterraced ponds. Birds were 93% more numerous following Hurricane Rita, mostly due to an influx of migrating waterfowl. Year round residents were similar in number before and after Hurricane Rita. Resident richness did not differ among years after correcting for number of observed individuals. Wading and dabbling foragers were more abundant in terraced ponds and these two guilds represented 74% of birds observed. We detected no difference among ponds for other guilds, i.e., probing, aerial, and diving foragers. Increasing proportion of mash edge increased bird density disproportionately: On average ponds with 10% edge had 6 birds observed and ponds with 30% edge had 16 birds observed. Terraces increased habitat interspersion and were an effective tool for increasing numbers of wintering waterfowl and wading birds. The extent to which terraces were sustainable following hurricane forces is unknown.

  6. Transportation and Bioavailability of Copper and Zinc in a Storm Water Retention Pond

    NASA Astrophysics Data System (ADS)

    Camponelli, K.; Casey, R. E.; Wright, M. E.; Lev, S. M.; Landa, E. R.

    2006-05-01

    Highway runoff has been identified as a non-point source of metals to storm water retention ponds. Zinc and copper are major components of tires and brake pads, respectively. As these automobile parts degrade, they deposit particulates onto the roadway surface. During a storm event, these metal containing particulates are washed into a storm water retention pond where they can then accumulate over time. These metals may be available to organisms inhabiting the pond and surrounding areas. This study focuses on tracking the metals from their deposition on the roadway to their transport and accumulation into a retention pond. The retention pond is located in Owings Mills, MD and collects runoff from an adjacent four lane highway. Pond sediments, background soils, road dust samples, and storm events were collected and analyzed. Copper and zinc concentrations in the pond sediments are higher than local background soils indicating that the pond is storing anthropogenically derived metals. Storm event samples also reveal elevated levels of copper and zinc transported through runoff, along with a large concentration of total suspended solids. After looking at the particulate and dissolved fractions of both metals in the runoff, the majority of the Zn and Cu are in the particulate fraction. Changes in TSS are proportional with changes in particulate bound Zn, indicating that the solid particulates that are entering into the pond are a major contributor of the total metal loading. Sequential extractions carried out on the road dust show that the majority of zinc is extracted in the second and third fractions and could become available to organisms in the pond. There is a small amount of Cu that is being released in the more available stages of the procedure; however the bulk of the Cu is seen in the more recalcitrant steps. In the pond sediments however, both Cu and Zn are only being released from the sediments in the later steps and are most likely not highly available.

  7. Enteric luminous microflora of the pond-cultured milk fishChanos chanos (Forskal).

    PubMed

    Ramesh, A; Nandakumar, R; Venugopalan, V K

    1986-06-01

    Qualitative and quantitative investigations were made on the luminous bacteria associated with the gut of pond cultured milk fishChanos chanos. Significant differences in luminous bacterial numbers were found between gut and pond water and between gut and pond sediment, but not between pond water and sediment. No significant variation in luminous bacterial population among the gut regions was observed. The quantity of ingesta in the fish gut does not appear to influence the biomass of luminous bacteria.Vibrio harveyi andV. fischeri were the 2 most commonly encountered species, and of the 2 luminous species,V. harveyi was predominant.

  8. Tailings Pond Characterization And Designing Through Geophysical Surveys In Dipping Sedimentary Formations

    NASA Astrophysics Data System (ADS)

    Muralidharan, D.; Andrade, R.; Anand, K.; Sathish, R.; Goud, K.

    2009-12-01

    Mining activities results into generation of disintegrated waste materials attaining increased mobilization status and requires a safe disposal mechanism through back filling process or secluded storage on surface with prevention of its interaction with environment cycle. The surface disposal of waste materials will become more critical in case of mined minerals having toxic or radioactive elements. In such cases, the surface disposal site is to be characterized for its sub-surface nature to understand its role in environmental impact due to the loading of waste materials. Near surface geophysics plays a major role in mapping the geophysical characters of the sub-surface formations in and around the disposal site and even to certain extent helps in designing of the storage structure. Integrated geophysical methods involving resistivity tomography, ground magnetic and shallow seismic studies were carried out over proposed tailings pond area of 0.3 sq. kms underlined by dipping sedimentary rocks consisting of ferruginous shales and dolomitic to siliceous limestone with varying thicknesses. The investigated site being located in tectonically disturbed area, geophysical investigations were carried out with number of profiles to visualize the sub-surface nature with clarity. The integration of results of twenty profiles of resistivity tomography with 2 m (shallow) and 10 m (moderate depth) electrode spacing’s enabled in preparing probable sub-surface geological section along the strike direction of the formation under the tailings pond with some geo-tectonic structure inferred to be a fault. Similarly, two resistivity tomography profiles perpendicular to the strike direction of the formations brought out the existence of buried basic intrusive body on the northern boundary of the proposed tailings pond. Two resistivity tomography profiles in criss-cross direction over the suspected fault zone confirmed fault existence on the north-eastern part of tailings pond. Thirty

  9. A highly sensitive underwater video system for use in turbid aquaculture ponds.

    PubMed

    Hung, Chin-Chang; Tsao, Shih-Chieh; Huang, Kuo-Hao; Jang, Jia-Pu; Chang, Hsu-Kuang; Dobbs, Fred C

    2016-08-24

    The turbid, low-light waters characteristic of aquaculture ponds have made it difficult or impossible for previous video cameras to provide clear imagery of the ponds' benthic habitat. We developed a highly sensitive, underwater video system (UVS) for this particular application and tested it in shrimp ponds having turbidities typical of those in southern Taiwan. The system's high-quality video stream and images, together with its camera capacity (up to nine cameras), permit in situ observations of shrimp feeding behavior, shrimp size and internal anatomy, and organic matter residues on pond sediments. The UVS can operate continuously and be focused remotely, a convenience to shrimp farmers. The observations possible with the UVS provide aquaculturists with information critical to provision of feed with minimal waste; determining whether the accumulation of organic-matter residues dictates exchange of pond water; and management decisions concerning shrimp health.

  10. Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines.

    PubMed

    Miguel-Chinchilla, Leticia; González, Eduardo; Comín, Francisco A

    2014-08-01

    Constructing ponds to protect downstream ecosystems is a common practice in opencast coal mine reclamation. As these ponds remain integrated in the landscape, it is important to evaluate the extent of the effect of mine pollution on these ecosystems. However, this point has not been sufficiently addressed in the literature. The main objective of this work was to explore the metal pollution in man-made ponds constructed for runoff control in reclaimed opencast coal mines over time. To do so, we evaluated the concentration of ten heavy metals in the water, sediment, and Typha sp. in 16 runoff ponds ranging from 1 to 19 years old that were constructed in reclaimed opencast coal mines of northeastern Spain. To evaluate degree of mining pollution, we compared these data to those from a pit lake created in a local unreclaimed mine and to local streams as an unpolluted reference, as well as comparing toxicity levels in aquatic organisms. The runoff ponds showed toxic concentrations of Al, Cu, and Ni in the water and As and Ni in the sediment, which were maintained over time. Metal concentrations in runoff ponds were higher than in local streams, and macrophytes showed high metal concentrations. Nevertheless, metal concentrations in water and sediment in runoff ponds were lower than those in the pit lake. This study highlights the importance of mining reclamation to preserve the health of aquatic ecosystems and suggests the existence of chronic metal toxicity in the ponds, potentially jeopardizing pond ecological functions and services.

  11. Pretreatment of industrial wastewater containing phthalate esters by centrifugation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosky, C.J.; Vidic, R.D.

    1996-11-01

    In this study, a full-scale commercial centrifuge was used to treat, on a continuous basis, the entire wastewater stream generated by a chemical manufacturing facility which produces a variety of phthalate, adipate, maleate, and trimellitate esters. The wastewater from this facility is comprised of process water, equipment was water, and rain water runoff containing varying concentrations of bis(2-ethylhexyl) phthalate (BEHP), di-n-octyl phthalate (DNOP), and di-n-butyl phthalate (DNBP) esters in addition to mono-ester salts and alcohols. The wastewater is discharged to the local Publicly Owned Treatment Works (POTW) under pretreatment regulations which specify an effluent limitation of 5.0 mg/L on themore » total toxic organic (TTO) concentration which can be placed on the combined BEHP, DNOP, and DNBP ester concentration. Various esters and long chain alcohols present in the wastewater have very low water solubilities and are considered immiscible. They form a dispersed phase in the wastewater that has a specific gravity in the range of 0.88 to 0.93. Separation of the dispersed phase containing the regulated esters from the heavier water phase to consistently below 5.0 mg/L poses a challenge due to the stability of this colloidal suspension. The objective of this study was to evaluate the effectiveness of centrifugation in meeting the 5.0 mg/L effluent limit on the total BEHP, DNOP, and DNBP ester concentration.« less

  12. Precious Metals Recovery from Electroplating Wastewater: A Review

    NASA Astrophysics Data System (ADS)

    Azmi, A. A.; Jai, J.; Zamanhuri, N. A.; Yahya, A.

    2018-05-01

    Metal bearing electroplating wastewater posts great health and environmental concerns, but could also provide opportunities for precious and valuable metal recovery, which can make the treatment process more cost-effective and sustainable. Current conventional electroplating wastewater treatment and metal recovery methods include chemical precipitation, coagulation and flocculation, ion exchange, membrane filtration, adsorption, electrochemical treatment and photocatalysis. However, these physico-chemical methods have several disadvantages such as high initial capital cost, high operational cost due to expensive chemical reagents and electricity supply, generation of metal complexes sludge which requires further treatment, ineffective in diluted and/or concentrated wastewater, low precious metal selectivity, and slow recovery process. On the other hand, metal bio-reduction assisted by bioactive phytochemical compounds extracted from plants and plant parts is a new found technology explored by several researchers in recent years aiming to recover precious and valuable metals from secondary sources mainly industrial wastewater by utilizing low-cost and eco-friendly biomaterials as reagents. Extract of plants contains polyphenolic compounds which have great antioxidant properties and reducing capacities, able to reduce metal ions into zerovalent metal atoms and stabilize the metal particles formed. This green bio-recovery method has a value added in their end products since the metals are recovered in nano-sized particles which are more valuable and have high commercial demand in other fields ranging from electrochemistry to medicine.

  13. Transport of trace metals in runoff from soil and pond ash feedlot surfaces

    USGS Publications Warehouse

    Vogel, J.R.; Gilley, J.E.; Cottrell, G.L.; Woodbury, B.L.; Berry, E.D.; Eigenbert, R.A.

    2011-01-01

    The use of pond ash (fly ash that has been placed in evaporative ponds for storage and subsequently dewatered) for feedlot surfaces provides a drier environment for livestock and furnishes economic benefits. However, pond ash is known to have high concentrations of trace elements, and the runoff water-quality effects of feedlot surfaces amended with pond ash are not well defined. For this study, two experimental units (plots) were established in eight feedlot pens. Four of the pens contained unamended soil surfaces, and the remaining four pens had pond-ash amended surfaces. Before each test, unconsolidated surface material was removed from four of the plots for each of the amendment treatments, resulting in eight unamended plots and eight pond-ash amended plots. Concentrations for 23 trace elements were measured in cattle feedlot surface material and in the runoff water from three simulated rainfall events. Trace element concentrations in surface material and runoff did not differ between surface consolidation treatments. Amending the feedlot surface material with pond ash resulted in a significant increase in concentration for 14 of the 17 trace elements. Runoff concentrations for 21 trace elements were affected by pond-ash amendment. Sixteen of 21 trace element concentrations that differed significantly were greater in runoff from unamended soil surfaces. Concentrations in runoff were significantly correlated with concentrations in feedlot surface material for boron, manganese, molybdenum, selenium, and uranium.

  14. Estimation of methane flux from fish ponds of southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, K. H.; Hung, C. C.

    2016-02-01

    CH4 is one of the trace gases in the atmosphere, but it is an important greenhouse gas, with 15 times more effective than CO2 absorbing infrared radiation capability. To date, scientists generally consider that the methane production is mainly from livestock farming, such as pigs and cattle, but the source of methane emission from aquaculture ponds have been ignored. Due to overfishing in the ocean, aquaculture fishery in coastal zone has been increasing globally and the methane emission from those fish ponds has seldom been studied. To better evaluate the emission of methane from fish ponds, we measured methane concentrations in both atmosphere and fish ponds of the southwestern Taiwan from March to September in 2015. Besides an extremely high flux (829 mmol/m2/d), the fluxes of methane in different fish ponds ranged from 19 to 725 μmol/m2/d, which is lower than the global mean value of lakes (2.7 mmol/m2/d). The low methane fluxes during sampling period may be due to non-harvest season, because when the harvest season comes, the higher trophic status will appear, and there will be more organic matter supply for methanogenesis. Currently, we have no idea where the extremely high methane flux comes from. We will try to measure C-isotopes to understand the sources of highest methane fluxes. Overall, the preliminary results provide substantive evidence that methane emission from aquaculture ponds could be an important source and it needs long-term investigations.

  15. The role of rice fields, fish ponds and water canals for transmission of fish-borne zoonotic trematodes in aquaculture ponds in Nam Dinh Province, Vietnam.

    PubMed

    Madsen, Henry; Dung, Bui Thi; The, Dang Tat; Viet, Nguyen Khue; Dalsgaard, Anders; Van, Phan Thi

    2015-12-08

    Fish-borne zoonotic trematodes (FZT), such as Clonorchis sinensis, Opistorchis viverini (Opisthorchiidae) and intestinal trematodes of the family Heterophyidae, constitute a public health hazard in Vietnam and infections with these trematodes has been linked to consumption of raw or undercooked fish from aquaculture. The FZT transmission pathways, however, are more complicated than just the presence of intermediate snail hosts in aquaculture ponds as ponds may exchange water with surrounding habitats such as rice fields and irrigation canals and thereby these surrounding habitats may be a source of snails and cercariae and contribute to FZT infection in cultured fish. This is a longitudinal descriptive study on selected farms (n = 30) in Nam Dinh Province which is endemic for FZT. At each farm, we sampled one pond, a small irrigation canal used to supply the pond with water, and a nearby rice field. At each of these three sites, we estimated the density of the FZT intermediate snail hosts and determined their trematode infection status. Comparative analysis was performed for the prevalence and density of FZT infections in fish and snails. Species of the Thiaridae, and most notably Melanoides tuberculata, the most important host species for FZT belonging to the Heterophyidae, were particularly abundant in ponds and small canals, i.e. M. tuberculata was found in 27 ponds and 13 small canals. Bithynia fuchsiana, a potential host for both Heterophyidae and Opisthorchiidae, was rarely found in fish ponds but common in rice fields. A total of 12 types of cercariae were found in the snails and pleurolophocercous cercariae, primarily FZT, constituted about 40 % of all cercarial infections. The fish species cultured were mainly carp species and Haplorchis pumilio was the dominating trematode species infecting fish. Clonorchis spp. were not recorded in any of the ponds. FZT transmission to fish was intense during the summer period (May-June to November) but less intense

  16. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.

    PubMed

    Kang, Zion; Kim, Byung-Hyuk; Ramanan, Rishiram; Choi, Jong-Eun; Yang, Ji-Won; Oh, Hee-Mock; Kim, Hee-Sik

    2015-01-01

    Open raceway ponds are cost-efficient for mass cultivation of microalgae compared with photobioreactors. Although low-cost options like wastewater as nutrient source is studied to overcome the commercialization threshold for biodiesel production from microalgae, a cost analysis on the use of wastewater and other incremental increases in productivity has not been elucidated. We determined the effect of using wastewater and wavelength filters on microalgal productivity. Experimental results were then fitted into a model, and cost analysis was performed in comparison with control raceways. Three different microalgal strains, Chlorella vulgaris AG10032, Chlorella sp. JK2, and Scenedesmus sp. JK10, were tested for nutrient removal under different light wavelengths (blue, green, red, and white) using filters in batch cultivation. Blue wavelength showed an average of 27% higher nutrient removal and at least 42% higher chemical oxygen demand removal compared with white light. Naturally, the specific growth rate of microalgae cultivated under blue wavelength was on average 10.8% higher than white wavelength. Similarly, lipid productivity was highest in blue wavelength, at least 46.8% higher than white wavelength, whereas FAME composition revealed a mild increase in oleic and palmitic acid levels. Cost analysis reveals that raceways treating wastewater and using monochromatic wavelength would decrease costs from 2.71 to 0.73 $/kg biomass. We prove that increasing both biomass and lipid productivity is possible through cost-effective approaches, thereby accelerating the commercialization of low-value products from microalgae, like biodiesel.

  17. Regional applicability and potential of salt-gradient solar ponds in the United States. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H.

    1982-01-01

    A comprehensive assessment of the regional applicability and potential of salt-gradient solar ponds in the United States is provided. The assessment is focused on the general characteristics of twelve defined geographic regions. Natural resources essential to solar ponds are surveyed. Meteorological and hydrogeological conditions affecting pond performance are examined. Potentially favorable pond sites are identified. Regional thermal and electrical energy output from solar ponds is calculated. Selected pond design cases are studied. Five major potential market sectors are evaluated in terms of technical and energy-consumption characteristics, and solar-pond applicability and potential. Relevant pond system data and financial factors are analyzed. Solar-pond energy costs are compared with conventional energy costs. The assessment concludes that, excepting Alaska, ponds are applicable in all regions for at least two market sectors. Total solar pond energy supply potential in the five market sectors examined is estimated to be 8.94 quads/yr by the year 2000, approximately 7.2% of the projected total national energy demand.

  18. Regional applicability and potential of salt-gradient solar ponds in the United States. Volume 2: Detailed report

    NASA Astrophysics Data System (ADS)

    Lin, E. I. H.

    1982-03-01

    A comprehensive assessment of the regional applicability and potential of salt-gradient solar ponds in the United States is provided. The assessment is focused on the general characteristics of twelve defined geographic regions. Natural resources essential to solar ponds are surveyed. Meteorological and hydrogeological conditions affecting pond performance are examined. Potentially favorable pond sites are identified. Regional thermal and electrical energy output from solar ponds is calculated. Selected pond design cases are studied. Five major potential market sectors are evaluated in terms of technical and energy-consumption characteristics, and solar-pond applicability and potential. Relevant pond system data and financial factors are analyzed. Solar-pond energy costs are compared with conventional energy costs. The assessment concludes that, excepting Alaska, ponds are applicable in all regions for at least two market sectors. Total solar pond energy supply potential in the five market sectors examined is estimated to be 8.94 quads/yr by the year 2000, approximately 7.2% of the projected total national energy demand.

  19. A Comparison of Nannochloropsis salina Growth Performance in Two Outdoor Pond Designs: Conventional Raceways versus the ARID Pond with Superior Temperature Management

    DOE PAGES

    Crowe, Braden; Attalah, Said; Agrawal, Shweta; ...

    2012-01-01

    The present study examines how climatic conditions and pond design affect the growth performance of microalgae. From January to April of 2011, outdoor batch cultures of Nannochloropsis salina were grown in three replicate 780 L conventional raceways, as well as in an experimental 7500 L algae raceway integrated design (ARID) pond. The ARID culture system utilizes a series of 8-20 cm deep basins and a 1.5 m deep canal to enhance light exposure and mitigate temperature variations and extremes. The ARID culture reached the stationary phase 27 days earlier than the conventional raceways, which can be attributed to its superiormore » temperature management and shallower basins. On a night when the air temperature dropped to -9°C, the water temperature was 18°C higher in the ARID pond than in the conventional raceways. Lipid and fatty acid content ranged from 16 to 25% and from 5 to15%, respectively, as a percentage of AFDW. Palmitic, palmitoleic, and eicosapentaenoic acids comprised the majority of fatty acids. While the ARID culture system achieved nearly double the volumetric productivity relative to the conventional raceways (0.023 versus 0.013 g L -1day -1), areal biomass productivities were of similar magnitude in both pond systems (3.47 versus 3.34 g m -2day -1), suggesting that the ARID pond design has to be further optimized, most likely by increasing the culture depth or operating at higher cell densities while maintaining adequate mixing.« less

  20. An alternate lining scheme for solar ponds - Results of a liner test rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, P.; Kishore, V.V.N.

    1990-01-01

    Solar pond lining schemes consisting of combinations of clays and Low Density Polyethylene (LDPE) films have been experimentally evaluated by means of a Solar Pond Liner Test Rig. Results indicate that LDPE film sandwiched between two layers of clay can be effectively used for lining solar ponds.

  1. Aerobic granulation in a sequencing batch reactor (SBR) for industrial wastewater treatment.

    PubMed

    Inizan, M; Freval, A; Cigana, J; Meinhold, J

    2005-01-01

    Aerobic granulation seems to be an a attractive process for COD removal from industrial wastewater, characterised by a high content of soluble organic compounds. In order to evaluate the practical aspects of the process, comparative experimental tests are performed on synthetic and on industrial wastewater, originating from pharmaceutical industry. Two pilot plants are operated as sequencing batch bubble columns. Focus was put on the feasibility of the process for high COD removal and on its operational procedure. For both wastewaters, a rapid formation of aerobic granules is observed along with a high COD removal rate. Granule characteristics are quite similar with respect to the two types of wastewater. It seems that filamentous bacteria are part of the granule structure and that phosphorus precipitation can play an important role in granule formation. For both wastewaters similar removal performances for dissolved biodegradable COD are observed (> 95%). However, a relatively high concentration of suspended solids in the outlet deteriorates the performance with regard to total COD removal. Biomass detachment seems to play a non-negligible role in the current set-up. After a stable operational phase the variation of the pharmaceutical wastewater caused a destabilisation and loss of the granules, despite the control for balanced nutrient supply. The first results with real industrial wastewater demonstrate the feasibility of this innovative process. However, special attention has to be paid to the critical aspects such as granule stability as well as the economic competitiveness, which both will need further investigation and evaluation.

  2. Characterisation of MR reactor pond in nNRC 'Kurchatov institute' before dismantling work

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanov, Alexey; Simirsky, Yury; Semin, Ilya

    2013-07-01

    In this work complex α-, β-, γ-spectrometric research of water, bottom slimes and deposits on walls of the reactor pond and the storage pond of the MR reactor was made. Identify, that the main dose forming radionuclide, during dismantling work on the reactor MR, is Cs-137. It is shown, that specific activity of radionuclides in bottom slimes considerably exceed specific activity of radionuclides in water from ponds, and near to high level radioactive waste. It is detected that decreasing the water level in reactor ponds on 1 m, increase the exposure dose rate at a distance 1 m from themore » pond in 2 times. The observed increase in exposure dose rate can be explained by contribution on dose rate the cesium-137 deposed on walls of the storage pond. Effectiveness of cleaning of walls of the pool of storage from deposits by a water jet of high pressure is investigated. (authors)« less

  3. Evaluating the performance of a retrofitted stormwater wet pond for treatment of urban runoff.

    PubMed

    Schwartz, Daniel; Sample, David J; Grizzard, Thomas J

    2017-06-01

    This paper describes the performance of a retrofitted stormwater retention pond (Ashby Pond) in Northern Virginia, USA. Retrofitting is a common practice which involves modifying existing structures and/or urban landscapes to improve water quality treatment, often compromising standards to meet budgetary and site constraints. Ashby Pond is located in a highly developed headwater watershed of the Potomac River and the Chesapeake Bay. A total maximum daily load (TMDL) was imposed on the Bay watershed by the US Environmental Protection Agency in 2010 due to excessive sediment and nutrient loadings leading to eutrophication of the estuary. As a result of the TMDL, reducing nutrient and sediment discharged loads has become the key objective of many stormwater programs in the Bay watershed. The Ashby Pond retrofit project included dredging of accumulated sediment to increase storage, construction of an outlet structure to control flows, and repairs to the dam. Due to space limitations, pond volume was less than ideal. Despite this shortcoming, Ashby Pond provided statistically significant reductions of phosphorus, nitrogen, and suspended sediments. Compared to the treatment credited to retention ponds built to current state standards, the retrofitted pond provided less phosphorus but more nitrogen reduction. Retrofitting the existing stock of ponds in a watershed to at least partially meet current design standards could be a straightforward way for communities to attain downstream water quality goals, as these improvements represent reductions in baseline loads, whereas new ponds in new urban developments simply limit future load increases or maintain the status quo.

  4. Optimization studies on production of a salt-tolerant protease from Pseudomonas aeruginosa strain BC1 and its application on tannery saline wastewater treatment

    PubMed Central

    Sivaprakasam, Senthilkumar; Dhandapani, Balaji; Mahadevan, Surianarayanan

    2011-01-01

    Treatment and safe disposal of tannery saline wastewater, a primary effluent stream that is generated by soaking salt-laden hides and skin is one of the major problems faced by the leather manufacturing industries. Conventional treatment methods like solar evaporation ponds and land composting are not eco-friendly as they deteriorate the ground water quality. Though, this waste stream is comprised of high concentration of dissolved proteins the presence of high salinity (1–6 % NaCl by wt) makes it non-biodegradable. Enzymatic treatment is one of the positive alternatives for management of such kind of waste streams. A novel salt-tolerant alkaline protease obtained from P.aeruginosa (isolated from tannery saline wastewater) was used for enzymatic degradation studies. The effect of various physical factors including pH, temperature, incubation time, protein source and salinity on the activity of identified protease were investigated. Kinetic parameters (Km , Vmax) were calculated for the identified alkaline protease at varying substrate concentrations. Tannery saline wastewater treated with identified salt tolerant protease showed 75 % protein removal at 6 h duration and 2 % (v/v) protease addition was found to be the optimum dosage value. PMID:24031785

  5. Detection of Free-Living Amoebae Using Amoebal Enrichment in a Wastewater Treatment Plant of Gauteng Province, South Africa

    PubMed Central

    Muchesa, P.; Mwamba, O.; Barnard, T. G.; Bartie, C.

    2014-01-01

    Free-living amoebae pose a potential health risk in water systems as they may be pathogenic and harbor potential pathogenic bacteria known as amoebae resistant bacteria. Free-living amoebae were observed in 150 (87.2%) of the environmental water samples. In particular, Acanthamoeba sp. was identified in 22 (12.8%) using amoebal enrichment and confirmed by molecular analysis. FLA were isolated in all 8 stages of the wastewater treatment plant using the amoebal enrichment technique. A total of 16 (9.3%) samples were positive for FLA from influent, 20 (11.6%) from bioreactor feed, 16 (9.3%) from anaerobic zone, 16 (9.3%) from anoxic zone, 32 (18.6%) from aerators, 16 (9.3%) from bioreactor effluent, 11 (6.4%) from bioreactor final effluent, and 45 (26.2%) from maturation pond. This study provides baseline information on the occurrence of amoebae in wastewater treatment plant. This has health implications on receiving water bodies as some FLA are pathogenic and are also involved in the transmission and dissemination of pathogenic bacteria. PMID:25530964

  6. Potential Re-utilization of Composted Mangrove Litters for Pond Environment Quality Improvement

    NASA Astrophysics Data System (ADS)

    Dwi Hastuti, Endah; Budi Hastuti, Rini; Hariyati, Riche

    2018-05-01

    Production of mangrove litter from pruning and thinning activities is potential source of organic materials which could be re-utilized to improve pond environment quality and fertility. This research aimed to analyze the nutrient composition compost produced from mangrove litter and to describe the effect of compost application on pond quality. This research was conducted through two phases, including composting trial and application of compost on pond trial. Composting process was conducted for 45-60 days on mangrove litter achieved from pruning activities in the silvofishery pond using composting container, while application of compost in pond was conducted by pouring 2 kg of compost in 25 m2 pond. Production of compost included solid compost and liquid compost. Nutrient concentration of solid compost was ranged from 0.47-0.52% for N; 0.36-0.44% for P; and 5.45-6.39% for organic C, while liquid compost provided 0.62-0.69%; 0.24-0.32%; and 3.98-4.45% respectively for N, P and organic C. While C/N ratio was ranged from 11.60-12.78 and 5.77-7.18 respectively for solid and liquid compost. Solid compost quality resulted that N, P and C/N ration had fulfilled the standart criteria defined by Indonesia National Standart for compost. Observed impact of compost application on pond water quality were the improvement of water clarity and increasing abundance of klekap (lab-lab). This showed that mangrove litters could be converted into a more productive materials to enhance pond environment quality and productivity, decrease management cost and increase benefit. Scheduled fertilization with compost is suggested to be conducted to provide best benefit on silvofishery management.

  7. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    PubMed

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Attributes of successful stock water ponds in southern Arizona

    Treesearch

    Barry L. Imler; Richard H. Wawkins; D. Phillip Guertin; Don W. Young

    2000-01-01

    The attributes of 20 ponds (or stock tanks) on the Nogales Ranger District of the Coronado National Forest were studied in detail by groups. Two contrasting groups, judged to be either functional (n = 11) or nonfunctional (n = 9) were used in the study. Differences between the groups were evaluated on the basis of attributes of the ponds themselves, the contributing...

  9. Carbonate deposition on tail feathers of ruddy ducks using evaporation ponds

    USGS Publications Warehouse

    Euliss, N.H.; Jarvis, R.L.; Gilmer, D.S.

    1989-01-01

    Substantial carbonate deposits were observed on rectrices of Ruddy Ducks (Oxyura jamaicensis) collected during 1982-1984 on evaporation ponds in the San Joaquin Valley, California. Carbonate deposits were composed of about 75% aragonite and 25% calcite, both polymorphous forms of CaCO3. Significantly more carbonate deposits were observed on Ruddy Ducks as length of exposure to agricultural drain water increased, during the 1983-1984 field season when salt concentrations in the ponds were higher, and in certain evaporation-pond systems.

  10. Investigation of the environmental impacts of sedimentation in Anzali Pond

    NASA Astrophysics Data System (ADS)

    Barmal, Milad; Neshaei, Seyed Ahmad; Farzan, Niloofar

    2016-04-01

    Anzali harbor is the most essential transportation pole between Iran and other countries of the Caspian Sea basin. Anzali pond is an important ecosystem in the region due to its unique plant and animal species. In order to determine the effects of interaction between pond and sea, a series of in-depth studies and analysis on the pattern of sedimentation in Anzali harbor and pond were performed. The study area is Anzali harbor and pond which is located in southwest of the Caspian Sea in Iran. In recent years the economical importance and improvement program of this region has devoted many scientists and authorities attention to itself. In this paper, researches on environmental impact by sediment and pollution in this zone are performed. Analysis indicates that by disposal of sediment and pollution in this area, the physical and chemical quality of water has declined. Some practical suggestions are made to improve the quality of the studied region in terms of environmental aspects.

  11. Sub-tropical coastal lagoon salinization associated to shrimp ponds effluents

    NASA Astrophysics Data System (ADS)

    Cardoso-Mohedano, José-Gilberto; Lima-Rego, Joao; Sanchez-Cabeza, Joan-Albert; Ruiz-Fernández, Ana-Carolina; Canales-Delgadillo, Julio; Sánchez-Flores, Eric-Ivan; Páez-Osuna, Federico

    2018-04-01

    Anthropogenic salinization impacts the health of aquatic and terrestrial ecosystems worldwide. In tropical and subtropical areas, shrimp farm aquaculture uses water from adjacent ecosystems to fill the culture ponds, where enhanced evaporation cause salinization of discharged water. In this study, we studied water salinity before and after shrimp farm harvest and implemented a three-dimensional hydrodynamic model to assess the impact on a subtropical coastal lagoon that receives water releases from shrimp ponds. The shrimp pond discharge significantly increased the salinity of receiving waters, at least 3 psu over the local variation. In the worst-case salinization scenario, when harvest occurs after a long dry season, salinity could increase by up to 6 psu. The induced salinization due to shrimp pond effluents remained up to 2 tidal cycles after harvest, and could affect biota. The methodology and results of this study can be used to assess the impacts of shrimp aquaculture worldwide.

  12. Retrieval of sea ice thickness during Arctic summer using melt pond color

    NASA Astrophysics Data System (ADS)

    Istomina, L.; Nicolaus, M.; Heygster, G.

    2016-12-01

    The thickness of sea ice is an important climatic variable. Together with the ice concentration, it defines the total sea ice volume, is linked within the climatic feedback mechanisms and affects the Arctic energy balance greatly. During Arctic summer, the sea ice cover changes rapidly, which includes the presence of melt ponds, as well as reduction of ice albedo and ice thickness. Currently available remote sensing retrievals of sea ice thickness utilize data from altimeter, microwave, thermal infrared sensors and their combinations. All of these methods are compromised in summer in the presence of melt. This only leaves in situ and airborne sea ice thickness data available in summer. At the same time, data of greater coverage is needed for assimilation in global circulation models and correct estimation of ice mass balance.This study presents a new approach to estimate sea ice thickness in summer in the presence of melt ponds. Analysis of field data obtained during the RV "Polarstern" cruise ARK27/3 (August - October 2012) has shown a clear connection of ice thickness under melt ponds to their measured spectral albedo and to melt pond color in the hue-saturation-luminance color space from field photographs. An empirical function is derived from the HSL values and applied to aerial imagery obtained during various airborne campaigns. Comparison to in situ ice thickness shows a good correspondence to the ice thickness value retrieved in the melt ponds. A similar retrieval is developed for satellite spectral bands using the connection of the measured pond spectral albedo to the ice thickness within the melt ponds. Correction of the retrieved ice thickness in ponds to derive total thickness of sea ice is discussed. Case studies and application to very high resolution optical data are presented, as well as a concept to transfer the method to satellite data of lower spatial resolution where melt ponds become subpixel features.

  13. Provenance and environmental risk of windblown materials from mine tailing ponds, Murcia, Spain.

    PubMed

    Khademi, Hossein; Abbaspour, Ali; Martínez-Martínez, Silvia; Gabarrón, María; Shahrokh, Vajihe; Faz, Angel; Acosta, Jose A

    2018-05-31

    well as their tailing ponds should be rehabilitated by proper technologies and then well stabilized and/or covered by appropriate plant vegetation to control the transfer, particularly by air, of environmentally hazardous materials to other areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Shrew species richness and abundance in relation to vernal pond habitat in southern New England

    Treesearch

    Robert T. Brooks; Katherine L. Doyle

    2001-01-01

    Vernal ponds are important aquatic habitat for many species of amphibians and invertebrates. While many aspects of such ponds have been investigated, small mammal populations in the adjacent upland [catchment] habitat are largely unstudied. We selected three ponds in central Massachusetts to determine whether the presence of vernal ponds in forested habitat influences...

  15. Suppression of Ice Fog from Cooling Ponds

    DTIC Science & Technology

    1976-11-01

    Data evaporation . rnge of spad (gmn2 day") (mm day) C ) meas. (mm day’) Ohtake (1970) 5040 5.0 4 -15 10 0.9- 5.9 Behlke and McDougall (1973) 4464 4.5...plant cooling pond at -23* C . On the left side of the pond ice fog has been nearly eliminated by the formation of an ice cover. (Photograph by Terry...unlimited. 17. cISTRISUTION STATEMIENT (of S. absauat eod Sm BerS8. If 4fforIon vRepot) t. KEY WORDS ( C €t an o rewoosi .e* I eo~ra md identJ by Week

  16. Wartime scars or reservoirs of biodiversity? The value of bomb crater ponds in aquatic conservation

    PubMed Central

    Vad, Csaba F.; Péntek, Attila L.; Cozma, Nastasia J.; Földi, Angéla; Tóth, Adrienn; Tóth, Bence; Böde, NóraA.; Móra, Arnold; Ptacnik, Robert; Ács, Éva; Zsuga, Katalin; Horváth, Zsófia

    2017-01-01

    Considering the ongoing loss of aquatic habitats, anthropogenic ponds are gaining importance as substitute habitats. It is therefore important to assess their functioning in comparison to their natural precursors. Here we assess the biodiversity value of sodic bomb crater ponds by comparing their gamma diversity to that of natural reference habitats, astatic soda pans, and assess their importance on the landscape level by studying alpha and beta diversity. We studied aquatic organisms ranging from algae to vertebrates in a dense cluster of 54 sodic bomb crater ponds in Central Europe. Despite the overall small area of the pond cluster, gamma diversity was comparable to that found in surveys of natural habitats that encompassed much wider spatial and temporal scales. We also found a considerable number of species shared with reference habitats, indicating that these anthropogenic habitats function as important refuge sites for several species that are associated with the endangered soda pans. Moreover, we found a number of regionally or worldwide rare species. Among the components of beta diversity, species replacement dominated community assembly. Individual ponds contributed similarly to beta diversity in terms of replacement, being equally important for maintaining high gamma diversity and emphasising the role of the pond network rather than individual ponds. This pattern was seen in all studied groups. Bomb crater ponds therefore acted as important contributors to aquatic biodiversity. Considering the tremendous losses of ponds throughout Europe, anthropogenic ponds should be taken into consideration in nature conservation, especially when occurring in pond networks. PMID:28529346

  17. Accumulation, distribution, and toxicity of copper in sediments of catfish ponds receiving periodic copper sulfate applications.

    PubMed

    Han, F X; Hargreaves, J A; Kingery, W L; Huggett, D B; Schlenk, D K

    2001-01-01

    Copper sulfate (CuSO4) is applied periodically to commercial channel catfish (Ictalurus panctatus) ponds as an algicide or parasiticide. Current understanding of the chemistry of copper in soil-water systems suggests that copper may accumulate in pond sediments, although the forms and potential bioavailability of copper in catfish pond sediments are not known. This study investigated the accumulation and distribution of copper in the sediment of catfish ponds receiving periodic additions of CuSO4.5H2O. All ponds were constructed in Sharkey (very-fine, smectitic, thermic Chromic Epiaquert) soil. Nine 0.40-ha ponds received 59 applications of 2.27 kg CuSO4.5H2O per application per pond over 3 yr; no CuSO4.5H2O applications were made to nine additional ponds. Total Cu concentration in the sediments of CuSO4.5H2O-amended catfish ponds (172.5 mg kg(-1)) was four to five times higher than that in the sediments of nonamended ponds (36.1 mg kg(-1)). Copper accumulated in catfish pond sediments at a rate of 41 microg kg(-1) dry sediment for each 1 kg ha(-1) of CuSO4. 5H2O applied to ponds. Copper in the sediments of amended ponds was mainly in the organic matter-bound (30.7%), carbonate-bound (31.8%), and amorphous iron oxide-bound (22.1%) fractions with a considerable fraction (3.4%; 3 to 8 mg kg(-1)) in soluble and exchangeable fractions. This indicates that Cu accumulates differentially in various fractions, with proportionally greater initial accumulation in potentially bioavailable forms. However, toxicity bioassays with amphipods (Hyallela azteca) and common cattail (Typha latifolia L.) indicated that the effect of exposure to amended or nonamended pond sediments was not different.

  18. Phytoremediation Capabilities of Spirodela polyrhiza and Salvinia molesta in Fish Farm Wastewater: A Preliminary Study

    NASA Astrophysics Data System (ADS)

    Ng, Y. S.; Samsudin, N. I. S.; Chan, D. J. C.

    2017-06-01

    Fish farm wastewater needs to be treated as it contains considerably high loading of suspended solids and dissolved nutrients from accumulation of by-products e.g. fish excretions and uneaten feed. In this study, macrophytes, namely Spirodela polyrhiza and Salvinia molesta were examined for their phytoremediation efficiency in treating fish farm wastewater in a raceway pond rig. It was carried out indoor for 14 days under controlled environment. Water samples was collected once every 2 days for analysis of NO3 -- N, PO4 3-, NH3-N, COD, turbidity, MLVSS and pH. The results showed that there was decrement of phosphate in fish farm wastewater using either S. polyrhiza or S. molesta. Interestingly, S. polyrhiza was found to be more efficient in phosphate uptake as it removed 72% phosphate at day 4 and up to 95% in the end of the experiment whereas 72% phosphate removal was only achieved by S. molesta at day 10. Similar ammonia decrement was observed for both plants and most of the ammonia were not detected in the wastewater by day 10 for S. polyrhiza, while by day 8 for S. molesta. Nitrate showed increment for both plants which could be due to nitrification. Both plants achieved highest COD removal on day 12, whereby 68% for S. polyrhiza and 63% for S. molesta. They were able to reduce turbidity and total suspended solids (TSS) to very low level and significantly increase clarity of wastewater. S. polyrhiza reduced up to 96% of initial turbidity value and 86% of TSS. 82% reduction of initial turbidity and 79% TSS decrement were observed for S. molesta. pH fluctuations were minimum for both plants, with a range between 7.62 to 7.77. Both plants demonstrated biomass increment for fresh weight in which 84% for S. polyrhiza while 85% for S. molesta. This study proved that the macrophytes were able to treat fish farm wastewater by significantly removing phosphate, ammonia, turbidity and TSS. It aids in minimizing pollutants released to receiving waters and producing biomass

  19. Economic Evaluation and Overall Assessment of Water Harvesting Ponds based on Scorecard System: A Case Study

    NASA Astrophysics Data System (ADS)

    Dabral, P. P.; Kumar, Santosh; Kiku, Karmchand

    2017-12-01

    In the present study, an attempt has been made to carry out an economic analysis of three (03) water harvesting ponds situated in the district of Lakhimpur (Assam), India. Economic analysis was carried out using three important economic criteria, namely Benefit Cost Ratio (BCR), Net Present Worth (NPW) and the Internal Rate of Returns (IRR). Ponds of the study area were compared with adopting score card system. All the water harvesting ponds were found economically viable as the BCR was more than unity at 12% discount rate. Net present worth was the highest for the water harvesting pond of Radhapukheri Fish Seed Farm, Department of Fisheries, Govt. of Assam, Narayanpur and the least for water harvesting pond of St. Xavier's School, Harmoti. The IRR was found to be the highest (60%) for water harvesting ponds of St. Xavier's School, Harmoti followed by water harvesting pond of a farmer of Narayanpur (48%) and water harvesting pond of Radhapukheri Fish Seed Farm (19.2%).Water harvesting pond of Radhapukheri Fish Seed Farm, Narayanpur scored the highest score (84 marks) followed by water harvesting pond of a farmer of Narayanpur (80 marks) and St. Xavier's school, Harmoti (61 marks).

  20. Restoration of a shady urban pond - The pros and cons.

    PubMed

    Jurczak, Tomasz; Wojtal-Frankiewicz, Adrianna; Kaczkowski, Zbigniew; Oleksińska, Zuzanna; Bednarek, Agnieszka; Zalewski, Maciej

    2018-07-01

    The Bzura-7 pond (Łódź, Poland) is a typical shallow and shady urban reservoir situated on the Bzura River that is exposed to pollutants introduced mainly by internal loads and the supply from the catchment. In 2010-2012, the following characteristics were observed in the pond: a high allochthonous input of organic matter, high concentration of ammonium, low concentration of dissolved oxygen and low diversity of zooplankton, dominated mainly by Daphnia spp. From January to June 2013, restoration measures were performed, including sediment removal, increasing light access to the pond and construction of a sequential sedimentation-biofiltration system (SSBS). The aim of the present study was to investigate how the water quality in the Bzura-7 pond was affected by the restoration process, which included reducing pollutant inflows and enhancing habitat potential, thus increasing the diversity of this ecosystem. Restoration efforts improved the chemical and physical parameters of the water. The oxygen concentration increased, and the concentrations of TN and ammonium significantly decreased. Despite the increase in pond lighting, the growth of cyanobacteria was limited. However, we observed increased abundance of green algae and diatoms but less than adequate changes in the zooplankton community structures. Although we observed a significant increase in the zooplankton species richness after restoration, this increase was related to the small-bodied groups of zooplankton, rotifers and bosminiids, characteristic of eutrophic ecosystems. In addition, a planktivorous fish - sunbleak (Leucaspius delineatus) - was identified as an unintended side effect of the restoration effort. Further conservation efforts in the Bzura-7 pond and monitoring of results are still needed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Increasing the collected energy and reducing the water requirements in salt-gradient solar ponds

    NASA Astrophysics Data System (ADS)

    Suarez, F. I.; Ruskowitz, J. A.; Tyler, S. W.; Childress, A. E.

    2013-12-01

    Salt-gradient solar ponds are low-cost, large-scale solar collectors with integrated storage that can be used as an energy source in many thermal systems. For instance, solar ponds have proven to be a promising solution to drive thermal desalination in arid zones. However, in zones with limited water availability, where evaporation constrains the use of solar ponds in areas with the greatest potential for solar energy development, evaporation losses at the surface of the pond constrain their use. Therefore, evaporation represents a significant challenge for development of these low-cost solar systems in arid settings. In this investigation, different transparent floating elements were tested to suppress evaporation: flat discs, hemispheres, and a continuous cover. Flat discs were the most effective evaporation suppression element. Evaporation decreased from 4.8 to 2.5 mm/day when 88% of the pond was covered with the flat discs. In addition, the highest temperature increased from 34 to 43°C and the heat content increased from 179 to 220 MJ (a 22% increase). Reduced evaporative losses at the surface of the pond resulted in lower conductive losses from the storage zone and increased the collected energy. The magnitude of evaporation reduction observed in this work is important as it allows solar pond operation in locations with limited water supply for replenishment. The increase in stored heat allows more energy to be withdrawn from the pond for use in external applications, which significantly improves the thermal efficiencies of solar ponds.

  2. Electric Trees and Pond Creatures.

    ERIC Educational Resources Information Center

    Weaver, Helen; Hounshell, Paul B.

    1978-01-01

    Two learning activities are presented to develop observation and classification skills at the elementary level. The first is an electric box that associates tree names with leaf and bark specimens, and the second is a pond water observation and slide preparation activity. (BB)

  3. BLDG. - MISC - VIEW ACROSS POND

    NASA Image and Video Library

    1965-08-01

    S65-41769 (1965) --- View of facilities at the Manned Spacecraft Center, Houston, Texas. Photo is taken from across the fish pond. NOTE: The Manned Spacecraft Center was named Lyndon B. Johnson Space Center in memory of the late President following his death.

  4. A simple model for the evolution of melt pond coverage on permeable Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Popović, Predrag; Abbot, Dorian

    2017-05-01

    As the melt season progresses, sea ice in the Arctic often becomes permeable enough to allow for nearly complete drainage of meltwater that has collected on the ice surface. Melt ponds that remain after drainage are hydraulically connected to the ocean and correspond to regions of sea ice whose surface is below sea level. We present a simple model for the evolution of melt pond coverage on such permeable sea ice floes in which we allow for spatially varying ice melt rates and assume the whole floe is in hydrostatic balance. The model is represented by two simple ordinary differential equations, where the rate of change of pond coverage depends on the pond coverage. All the physical parameters of the system are summarized by four strengths that control the relative importance of the terms in the equations. The model both fits observations and allows us to understand the behavior of melt ponds in a way that is often not possible with more complex models. Examples of insights we can gain from the model are that (1) the pond growth rate is more sensitive to changes in bare sea ice albedo than changes in pond albedo, (2) ponds grow slower on smoother ice, and (3) ponds respond strongest to freeboard sinking on first-year ice and sidewall melting on multiyear ice. We also show that under a global warming scenario, pond coverage would increase, decreasing the overall ice albedo and leading to ice thinning that is likely comparable to thinning due to direct forcing. Since melt pond coverage is one of the key parameters controlling the albedo of sea ice, understanding the mechanisms that control the distribution of pond coverage will help improve large-scale model parameterizations and sea ice forecasts in a warming climate.

  5. Phosphorus in a ground-water contaminant plume discharging to Ashumet Pond, Cape Cod, Massachusetts, 1999

    USGS Publications Warehouse

    McCobb, Timothy D.; LeBlanc, Denis R.; Walter, Donald A.; Hess, Kathryn M.; Kent, Douglas B.; Smith, Richard L.

    2003-01-01

    The discharge of a plume of sewagecontaminated ground water emanating from the Massachusetts Military Reservation to Ashumet Pond on Cape Cod, Massachusetts, has caused concern about excessive loading of nutrients, particularly phosphorus, to the pond. The U.S. Air Force is considering remedial actions to mitigate potentially adverse effects on the ecological characteristics of the pond from continued phosphorus loading. Concentrations as great as 3 milligrams per liter of dissolved phosphorus (as P) are in ground water near the pond's shoreline; concentrations greater than 5 milligrams per liter of phosphorus are in ground water farther upgradient. Temporary drive-point wells were used to collect water samples from 2 feet below the pond bottom to delineate concentration distributions in the pore waters of the pond-bottom sediments. Measurements in the field of specific conductance and colorimetrically determined orthophosphate concentrations provided real-time data to guide the sampling. The contaminant plume discharges to the Fishermans Cove area of Ashumet Pond as evidenced by elevated levels of specific conductance and boron, which are chemically conservative indicators of the sewage-contaminated ground water. Concentrations of nonconservative species, such as dissolved phosphorus, manganese, nitrate, and ammonium, also were elevated above background levels in ground water discharging to the pond, but in spatially complex distributions that reflect their distributions in ground water upgradient of the pond. Phosphorus concentrations exceeded background levels (greater than 0.10 milligram per liter) in the pond-bottom pore water along 875 feet of shoreline. Greatest concentrations (greater than 2 milligrams per liter) occurred within 30 feet of the shore in an area about 225 feet long. Calculations of phosphorus flux in the aquifer upgradient of Ashumet Pond, as determined from water-flux estimates from a steady-state ground-water-flow model and phosphorus

  6. Emergency power for fish produced in intensive, pond-based systems

    USDA-ARS?s Scientific Manuscript database

    Power failure in a heavily stocked and fed pond-based culture system can result in massive fish losses within minutes. Even in a conventional pond with a stand-by tractor powered aerator, the shock of a sudden loss of power can dramatically affect production resulting in mortalities and reduced perf...

  7. Environmental Problems Associated with Decommissioning of Chernobyl Power Plant Cooling Pond

    NASA Astrophysics Data System (ADS)

    Foley, T. Q.; Oskolkov, B. Y.; Bondarkov, M. D.; Gashchak, S. P.; Maksymenko, A. M.; Maksymenko, V. M.; Martynenko, V. I.; Jannik, G. T.; Farfan, E. B.; Marra, J. C.

    2009-12-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination is a fairly pressing issue. Significant problems may result from decommissioning of cooling ponds. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained bodies of water in the Chernobyl Region and Ukrainian Polesye with a water surface area of 22.9 km2. The major hydrological feature of the ChNPP Cooling Pond is that its water level is 6-7 m higher than the water level in the Pripyat River and water losses due to seepage and evaporation are replenished by pumping water from the Pripyat River. In 1986, the accident at the ChNPP #4 Reactor Unit significantly contaminated the ChNPP Cooling Pond. According to the 2001 data, the total radionuclide inventory in the ChNPP Cooling Pond bottom deposits was as follows: 16.28 ± 2.59 TBq for 137Cs; 2.4 ± 0.48 TBq for 90Sr, and 0.00518 ± 0.00148 TBq for 239+240Pu. Since ChNPP is being decommissioned, the ChNPP Cooling Pond of such a large size will no longer be needed and cost effective to maintain. However, shutdown of the water feed to the Pond would expose the contaminated bottom deposits and change the hydrological features of the area, destabilizing the radiological and environmental situation in the entire region in 2007 - 2008, in order to assess potential consequences of draining the ChNPP Cooling Pond, the authors conducted preliminary radio-ecological studies of its shoreline ecosystems. The radioactive contamination of the ChNPP Cooling Pond shoreline is fairly variable and ranges from 75 to 7,500 kBq/m2. Three areas with different contamination levels were selected to sample soils, vegetation, small mammals, birds, amphibians, and reptilians in order to measure their 137Cs and 90Sr content. Using the ERICA software, their dose exposures were estimated. For the 2008 conditions, the estimated dose rates were found to be as follows: amphibians - 11

  8. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    NASA Astrophysics Data System (ADS)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  9. Agricultural Freshwater Pond Supports Diverse and Dynamic Bacterial and Viral Populations

    PubMed Central

    Chopyk, Jessica; Allard, Sarah; Nasko, Daniel J.; Bui, Anthony; Mongodin, Emmanuel F.; Sapkota, Amy R.

    2018-01-01

    Agricultural ponds have a great potential as a means of capture and storage of water for irrigation. However, pond topography (small size, shallow depth) leaves them susceptible to environmental, agricultural, and anthropogenic exposures that may influence microbial dynamics. Therefore, the aim of this project was to characterize the bacterial and viral communities of pond water in the Mid-Atlantic United States with a focus on the late season (October–December), where decreasing temperature and nutrient levels can affect the composition of microbial communities. Ten liters of freshwater from an agricultural pond were sampled monthly, and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, and the bacterial communities were characterized using 16S rRNA gene sequencing. The remaining filtrate was chemically concentrated for viruses, DNA-extracted, and shotgun sequenced. Bacterial community profiling showed significant fluctuations over the sampling period, corresponding to changes in the condition of the pond freshwater (e.g., pH, nutrient load). In addition, there were significant differences in the alpha-diversity and core bacterial operational taxonomic units (OTUs) between water fractions filtered through different pore sizes. The viral fraction was dominated by tailed bacteriophage of the order Caudovirales, largely those of the Siphoviridae family. Moreover, while present, genes involved in virulence/antimicrobial resistance were not enriched within the viral fraction during the study period. Instead, the viral functional profile was dominated by phage associated proteins, as well as those related to nucleotide production. Overall, these data suggest that agricultural pond water harbors a diverse core of bacterial and bacteriophage species whose abundance and composition are influenced by environmental variables characteristic of pond topology and the late season. PMID:29740420

  10. Development of Low-Toxicity Urine Stabilization for Spacecraft Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Adam, Niklas; Mitchell, Julie L.; Pickering, Karen D.

    2012-01-01

    Wastewater stabilization is an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater is two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort is to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper.

  11. Seal Formation Mechanism Beneath Animal Waste Holding Ponds

    NASA Astrophysics Data System (ADS)

    Cihan, A.; Tyner, J. S.; Wright, W. C.

    2005-12-01

    Infiltration of animal waste from holding ponds can cause contamination of groundwater. Typically, the initial flux from a pond decreases rapidly as a seal of animal waste particulates is deposited at the base of the pond. The purpose of this study was to investigate the mechanism of the seal formation. Twenty-four soil columns (10-cm diameter by 43-cm long) were hand-packed with sand, silty loam or clay soils. A 2.3 m column of dairy or swine waste was applied to the top of the each column. The leakage rate from each column was measured with respect to time to analyze the effect of seal formation on different soil textures and animal waste types. We tested our hypothesis that seal growth and the subsequent decrease of leachate production adheres to a filter cake growth model. Said model predicts that the cumulative leakage rate is proportional to the square root of time and to the square root of the height of the waste.

  12. Preparation of a new Fenton-like catalyst from red mud using molasses wastewater as partial acidifying agent.

    PubMed

    Wei, Guangtao; Shao, Luhua; Mo, Jihua; Li, Zhongmin; Zhang, Linye

    2017-06-01

    Using molasses wastewater as partial acidifying agent, a new Fenton-like catalyst (ACRM sm ) was prepared through a simple process of acidification and calcination using red mud as main material. With molasses wastewater, both the free alkali and the chemically bonded alkali in red mud were effectively removed under the action of H 2 SO 4 and molasses wastewater, and the prepared ACRM sm was a near-neutral catalyst. The ACRM sm preparation conditions were as follows: for 3 g of red mud, 9 mL of 0.7 mol/L H 2 SO 4 plus 2 g of molasses wastewater as the acidifying agent, calcination temperature 573 K, and calcination time 1 h. Iron phase of ACRM sm was mainly α-Fe 2 O 3 and trace amount of carbon existed in ACRM sm . The addition of molasses wastewater not only effectively reduced the consumption of H 2 SO 4 in acidification of red mud but also resulted in the generation of carbon and significantly improved the distribution of macropore in prepared ACRM sm . It was found that near-neutral pH of catalyst, generated carbon, and wide distribution of macropore were the main reasons for the high catalytic activity of ACRM sm . The generated carbon and wide distribution of macropore were entirely due to the molasses wastewater added. In degradation of orange II, ACRM sm retained most of its catalytic stability and activity after five recycling times, indicating ACRM sm had an excellent long-term stability in the Fenton-like process. Furthermore, the performance test of settling showed ACRM sm had an excellent settleability. ACRM sm was a safe and green catalytic material used in Fenton-like oxidation for wastewater treatment.

  13. NUTRIENT-BASED ECOLOGICAL CONSIDERATIONS FOR STORMWATER MANAGEMENT BASINS: PONDS AND WETLANDS

    EPA Science Inventory

    The effects of stormwater pond and wetland best management practice (BMP) designs on phosphorus and nitrogen concentrations in effluent were considered using extant data and experimental observations from pond and wetland mesocosms. Relative difference between BMP types were eva...

  14. Beaver Ponds: Resurgent Nitrogen Sinks for Rural Watersheds in the Northeastern United States.

    PubMed

    Lazar, Julia G; Addy, Kelly; Gold, Arthur J; Groffman, Peter M; McKinney, Richard A; Kellogg, Dorothy Q

    2015-09-01

    Beaver-created ponds and dams, on the rise in the northeastern United States, reshape headwater stream networks from extensive, free-flowing reaches to complexes of ponds, wetlands, and connecting streams. We examined seasonal and annual rates of nitrate transformations in three beaver ponds in Rhode Island under enriched nitrate-nitrogen (N) conditions through the use of N mass balance techniques on soil core mesocosm incubations. We recovered approximately 93% of the nitrate N from our mesocosm incubations. Of the added nitrate N, 22 to 39% was transformed during the course of the incubation. Denitrification had the highest rates of transformation (97-236 mg N m d), followed by assimilation into the organic soil N pool (41-93 mg N m d) and ammonium generation (11-14 mg N m d). Our denitrification rates exceeded those in several studies of freshwater ponds and wetlands; however, rates in those ecosystems may have been limited by low concentrations of nitrate. Assuming a density of 0.7 beaver ponds km of catchment area, we estimated that in nitrate-enriched watersheds, beaver pond denitrification can remove approximately 50 to 450 kg nitrate N km catchment area. In rural watersheds of southern New England with high N loading (i.e., 1000 kg km), denitrification from beaver ponds may remove 5 to 45% of watershed nitrate N loading. Beaver ponds represent a relatively new and substantial sink for watershed N if current beaver populations persist. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. Effects of riparian buffers on hydrology of northern seasonal ponds

    Treesearch

    Randall K. Kolka; Brian J. Palik; Daniel P. Tersteeg; James C. Bell

    2011-01-01

    Although seasonal ponds are common in northern, glaciated, forested landscapes, forest management guidelines are generally lacking for these systems. The objective of this study was to determine the effect of riparian buffer type on seasonal pond hydrology following harvest of the adjacent upland forest. A replicated block design consisting of four buffer treatments...

  16. Cost-benefit evaluation of a decentralized water system for wastewater reuse and environmental protection.

    PubMed

    Chen, R; Wang, X C

    2009-01-01

    This paper proposed a net benefit value (NBV) model for cost-benefit evaluation of wastewater treatment and reuse projects, and attention was mainly paid to decentralized systems which are drawing wide interests all over the world especially in the water-deficient countries and regions. In the NBV model, all the factors related to project costs are monetary ones which can be calculated by using traditional methods, while many of the factors related to project benefits are non-monetary ones which need sophisticated methods for monetization. In this regard, the authors elaborated several methods for monetization of the benefits from wastewater discharge reduction, local environment improvement, and human health protection. The proposed model and methods were applied for the cost-benefit evaluation of a decentralized water reclamation and reuse project in a newly developed residential area in Xi'an, China. The system with dual-pipe collection and grey water treatment and reuse was found to be economically ineligible (NBV > 0) when all the treated water is reused for artificial pond replenishment, gardening and other non-potable purposes by taking into account the benefit of water saving. As environmental benefits are further considered, the economic advantage of the project is more significant.

  17. Interactions of an insecticide with competition and pond drying in amphibian communities

    USGS Publications Warehouse

    Boone, M.D.; Semlitsch, R.D.

    2002-01-01

    Amphibian populations are often imbedded in agricultural landscapes. Therefore the potential for contamination of their habitat is considerable. Our study examined the effects of an insecticide (carbaryl, a neurotoxin), on larval amphibian communities experiencing natural stresses of competition for resources, predation, and pond drying. In a set of experimental ponds, tadpoles of three anuran species (southern leopard frog [Rana sphenocephala], plains leopard frog [R. blairi], and the Woodhouse's toad [Bufo woodhousii]) were added to 1000-L ponds containing leaf litter, plankton, two newts (Notophthalmus viridescens), and four overwintered green frog (R. clamitans) tadpoles. We manipulated the overall tadpole density (low or high), pond hydroperiod (constant or drying), and chemical exposure (0, 3.5, 5.0, or 7.0 mg/L carbaryl) of the ponds. We measured mass, time, and survival to metamorphosis to determine treatment effects. Carbaryl positively affected Woodhouse's toad survival, although it had a negligible effect on both leopard frog species. Tadpole density interacted with the chemical treatment: Proportionately more Woodhouse's toads survived to metamorphosis in high-density environments than in low-density or control environments. Greater survival may be an indirect effect of increased algal food resources from carbaryl exposure. Most newts lost mass over the course of the experiment, although ponds with drying hydroperiods and high anuran density were the least favorable environments. Overwintered green frogs exposed to carbaryl had longer larval periods on average than did green frogs in control ponds. Our study demonstrated that even sublethal, short-lived contaminants can alter natural communities in ways that cannot be predicted from simple, one-factor studies.

  18. Holocene closure of Lib Pond, Marshall Islands.

    PubMed

    Myhrvold, Conor L; Janny, Fran; Nelson, Daniel; Ladd, S Nemiah; Atwood, Alyssa; Sachs, Julian P

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18' 48.99″ N, 167 22' 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water.

  19. Holocene Closure of Lib Pond, Marshall Islands

    PubMed Central

    Myhrvold, Conor L.; Janny, Fran; Nelson, Daniel; Ladd, S. Nemiah; Atwood, Alyssa; Sachs, Julian P.

    2014-01-01

    Well-preserved sediment from closed water bodies of atolls such as Lib Pond are rare opportunities to reconstruct the past regional climate, which pieced together across a latitude and longitude range identify the range of movement patterns of wider scale climate phenomena such as the Intertropical Convergence Zone (ITCZ) and El Niño Southern Oscillation (ENSO). We conducted the first physico-chemical survey of Lib Pond, a shallow, closed-water saline lake located on remote and difficult to access Lib Island in the Marshall Islands at 8° 18′ 48.99″ N, 167 22′ 51.90″ E in the Pacific Ocean, in July 2009. We performed a bathymetric survey, recorded salinity, dissolved oxygen, pH, and temperature profiles, monitored the tidal variability, and conducted a vegetation survey surrounding the lake. From bathymetric data we calculated the lake volume, which we used to estimate the lake's salt budget, and ultimately the residence time of water in the lake basin. We took a series of sediment cores from the lake, cores which indicate Lib Island's changing environment and climate. Radiocarbon measurements determined sediment age, and reveal significant mixing over the last 2 ka of deposition. We conclude that prior to 3 ka, Lib Island was an atoll with a central lagoon connected to the open ocean, which was then closed off from the open ocean to form the brackish system that exists today. We predict that the sediment accumulation in Lib Pond evident today will continue. As seawater is inhibited from exchanging with fresh water, Lib Pond will become a shallower lake with increasingly fresh water. PMID:24638020

  20. Passive flow heat exchanger simulation for power generation from solar pond using thermoelectric generators

    NASA Astrophysics Data System (ADS)

    Baharin, Nuraida'Aadilia; Arzami, Amir Afiq; Singh, Baljit; Remeli, Muhammad Fairuz; Tan, Lippong; Oberoi, Amandeep

    2017-04-01

    In this study, a thermoelectric generator heat exchanger system was designed and simulated for electricity generation from solar pond. A thermoelectric generator heat exchanger was studied by using Computational Fluid Dynamics to simulate flow and heat transfer. A thermoelectric generator heat exchanger designed for passive in-pond flow used in solar pond for electrical power generation. A simple analysis simulation was developed to obtain the amount of electricity generated at different conditions for hot temperatures of a solar pond at different flow rates. Results indicated that the system is capable of producing electricity. This study and design provides an alternative way to generate electricity from solar pond in tropical countries like Malaysia for possible renewable energy applications.

  1. Hydrogeology and chemical quality of water and bottom sediment at three stormwater detention ponds, Pinellas County, Florida

    USGS Publications Warehouse

    Fernandez, Mario; Hutchinson, C.B.

    1993-01-01

    An investigation of three detention ponds in Pinellas County, Florida indicated little potential for chemical contamination of surficial-aquifer ground water; however, concentrations of contami- nants in some sediments are sufficient to indicate possible hazardous levels of bioconcentration in benthic organisms. The general direction of ground- water movement at three pond sites indicates that the ponds are ground-water discharge points. Shallow ground water tends to move laterally toward these ponds, which have surface outflow, instead of from the ponds into the aquifer. Surface-water and pond-sediment samples from a 1-year-old pond were collected and analyzed for inorganic constituents and organic compounds. The concentrations were either near or below analytical detection limits. Surface-water and pond-sediment samples from the other two ponds, 20- and 30-years old, respectively, also were analyzed for inorganic constituents and organic compounds. The water quality of these older ponds was not significantly different from that of the 1-year-old pond. However, bottom sediments in the 20- and 30-year-old ponds contained 16 and 23 organic compounds, respectively. None of the organic compounds were in sufficient concentrations to cause concern about their chronic effects on aquatic life. Concentrations of dichlordiphenyl-trichlorethane, dieldrin, and heptachlor were above the hazardous level with respect to bioconcentration in the food chain.

  2. Lethal and sublethal effects of embryonic and larval exposure of Hyla versicolor to Stormwater pond sediments.

    PubMed

    Brand, Adrianne B; Snodgrass, Joel W; Gallagher, Matthew T; Casey, Ryan E; Van Meter, Robin

    2010-02-01

    Stormwater ponds are common features of modern stormwater management practices. Stormwater ponds often retain standing water for extended periods of time, develop vegetative characteristics similar to natural wetlands, and attract wildlife. However, because stormwater ponds are designed to capture pollutants, wildlife that utilize ponds might be exposed to pollutants and suffer toxicological effects. To investigate the toxicity of stormwater pond sediments to Hyla versicolor, an anuran commonly found using retention ponds for breeding, we exposed embryos and larvae to sediments in laboratory microcosms. Exposure to pond sediments reduced survival of embryos by approximately 50% but did not affect larval survival. Larvae exposed to stormwater pond sediment developed significantly faster (x = 39 days compared to 42 days; p = 0.005) and were significantly larger at metamorphosis (x = 0.49 g compared to 0.36 g; p < 0.001) than controls that were exposed to clean sand. Substantial amounts (712-2215 mg/l) of chloride leached from pond sediments into the water column of treatment microcosms; subsequently, survival of embryos was negatively correlated (r (2) = 0.50; p < 0.001) with water conductivity during development. Our results, along with the limited number of other toxicological studies of stormwater ponds, suggest that road salt contributes to the degradation of stormwater pond habitat quality for amphibian reproduction and that future research should focus on understanding interactions among road salts and other pollutants and stressors characteristic of urban environments.

  3. Environmental problems associated with decommissioning the Chernobyl Nuclear Power Plant Cooling Pond.

    PubMed

    Oskolkov, B Ya; Bondarkov, M D; Gaschak, S P; Maksymenko, A M; Maksymenko, V M; Martynenko, V I; Farfán, E B; Jannik, G T; Marra, J C

    2010-11-01

    Decommissioning of nuclear power plants and other nuclear fuel cycle facilities associated with residual radioactive contamination of their territories is an imperative issue. Significant problems may result from decommissioning of cooling ponds with residual radioactive contamination. The Chernobyl Nuclear Power Plant (ChNPP) Cooling Pond is one of the largest self-contained water reservoirs in the Chernobyl region and Ukrainian and Belorussian Polesye region. The 1986 ChNPP Reactor Unit Number Four significantly contaminated the ChNPP Cooling Pond. The total radionuclide inventory in the ChNPP Cooling Pond bottom deposits are as follows: ¹³⁷Cs: 16.28 ± 2.59 TBq; ⁹⁰Sr: 2.4 ± 0.48 TBq; and ²³⁹+²⁴⁰Pu: 0.00518 ± 0.00148 TBq. The ChNPP Cooling Pond is inhabited by over 500 algae species and subspecies, over 200 invertebrate species, and 36 fish species. The total mass of the living organisms in the ChNPP Cooling Pond is estimated to range from about 60,000 to 100,000 tons. The territory adjacent to the ChNPP Cooling Pond attracts many birds and mammals (178 bird species and 47 mammal species were recorded in the Chernobyl Exclusion Zone). This article describes several options for the ChNPP Cooling Pond decommissioning and environmental problems associated with its decommissioning. The article also provides assessments of the existing and potential exposure doses for the shoreline biota. For the 2008 conditions, the estimated total dose rate values were 11.4 40 μGy h⁻¹ for amphibians, 6.3 μGy h⁻¹ for birds, 15.1 μGy h⁻¹ for mammals, and 10.3 μGy h⁻¹ for reptiles, with the recommended maximum dose rate being equal to 40 μGy h⁻¹. However, drying the ChNPP Cooling Pond may increase the exposure doses to 94.5 μGy h⁻¹ for amphibians, 95.2 μGy h⁻¹ for birds, 284.0 μGy h⁻¹ for mammals, and 847.0 μGy h⁻¹ for reptiles. All of these anticipated dose rates exceed the recommended values.

  4. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident.

    PubMed

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-03-31

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium ((137)Cs) in four irrigation ponds, ~4-5 months after the Fukushima Dai-ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of (137)Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total (137)Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more (137)Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of (137)Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of (137)Cs in pond sediment, as well as the amount lost through hydraulic flushing.

  5. Sediment particle size and initial radiocesium accumulation in ponds following the Fukushima DNPP accident

    PubMed Central

    Yoshimura, Kazuya; Onda, Yuichi; Fukushima, Takehiko

    2014-01-01

    This study used particle size analysis to investigate the initial accumulation and trap efficiency of radiocesium (137Cs) in four irrigation ponds, ~4–5 months after the Fukushima Dai–ichi nuclear power plant (DNPP) accident. Trap efficiency, represented by the inventory of 137Cs in pond sediment to the inventory of radiocesium in soil surrounding the pond (i.e., total 137Cs inventory), was less than 100% for all but one pond. Trap efficiency decreased as sediment particle size increased, indicating that sediments with a smaller particle size accumulate more 137Cs. In ponds showing low trap efficiency, fine sediment containing high concentrations of 137Cs appeared to be removed from the system by hydraulic flushing, leaving behind mostly coarse sediment. The results of this study suggest that sediment particle size can be used to estimate the initial accumulation and trap efficiency of 137Cs in pond sediment, as well as the amount lost through hydraulic flushing. PMID:24682011

  6. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis.

    PubMed

    Zeng, Guangming; Jiang, Ru; Huang, Guohe; Xu, Min; Li, Jianbing

    2007-01-01

    This paper describes an innovative systematic approach, namely hierarchy grey relational analysis for optimal selection of wastewater treatment alternatives, based on the application of analytic hierarchy process (AHP) and grey relational analysis (GRA). It can be applied for complicated multicriteria decision-making to obtain scientific and reasonable results. The effectiveness of this approach was verified through a real case study. Four wastewater treatment alternatives (A(2)/O, triple oxidation ditch, anaerobic single oxidation ditch and SBR) were evaluated and compared against multiple economic, technical and administrative performance criteria, including capital cost, operation and maintenance (O and M) cost, land area, removal of nitrogenous and phosphorous pollutants, sludge disposal effect, stability of plant operation, maturity of technology and professional skills required for O and M. The result illustrated that the anaerobic single oxidation ditch was the optimal scheme and would obtain the maximum general benefits for the wastewater treatment plant to be constructed.

  7. Sulfide production kinetics and model of stormwater retention ponds.

    PubMed

    D'Aoust, P M; Pick, F R; Wang, R; Poulain, A; Rennie, C; Chen, L; Kinsley, C; Delatolla, R

    2018-06-01

    Stormwater retention ponds can play a critical role in mitigating the detrimental effects of urbanization on receiving waters that result from increases in polluted runoff. However, the benthic oxygen demand of stormwater facilities may cause significant hypoxia and trigger the production of hydrogen sulfide (H 2 S). This process is not well-documented and further research is needed to characterize benthic processes in stormwater retention ponds in order to improve their design and operation. In this study, sediment oxygen demand (SOD), sediment ammonia release (SAR) and sediment sulfide production (SSP) kinetics were characterized in situ and in the laboratory. In situ SOD and SSP data were utilized to develop a stormwater retention pond water sulfide concentration model which demonstrates strong correlation with sulfide concentrations observed in situ (r = 0.724, N = 91, p < 0.001) and in laboratory experiments (r = 0.691, N = 38, p < 0.001). At 4 °C, in situ rates of SOD, SAR and SSP were higher than those measured in laboratory. Sulfate-reducing bacteria (SRB) represented 4.99% of the bacteria present in the top 30 cm of the pond sediment, with Desulfobulbaceae spp., Desulfobacteraceae spp. and Desulfococcus spp. being the dominant SRB taxa identified.

  8. Parameters for the Operation of Bacterial Thiosalt Oxidation Ponds

    PubMed Central

    Silver, M.

    1985-01-01

    Shake flask and pH-controlled reactor tests were used to determine the mathematical parameters for a mixed-culture bacterial thiosalt treatment pond. Values determined were as follows: Km and Vmax (thiosulfate), 9.83 g/liter and 243.9 mg/liter per h, respectively; Ki (lead), 3.17 mg/liter; Ki (copper), 1.27 mg/liter; Q10 between 10 and 30°C, 1.95. From these parameters, the required bioxidation pond volume and residence time could be calculated. Soluble zinc (0.2 g/liter) and particulate mill products and by-products (0.25 g/liter) were not inhibitory. Correlation with an operating thiosalt biooxidation pond showed the parameters used to be valid for thiosalt concentrations up to at least 2 g/liter, lead concentrations of at least 10 mg/liter, and temperatures of >2°C. PMID:16346885

  9. Snow Dunes: A Controlling Factor of Melt Pond Distribution on Arctic Sea Ice

    NASA Technical Reports Server (NTRS)

    Petrich, Chris; Eicken, Hajo; Polashenski, Christopher M.; Sturm, Matthew; Harbeck, Jeremy P.; Perovich, Donald K.; Finnegan, David C.

    2012-01-01

    The location of snow dunes over the course of the ice-growth season 2007/08 was mapped on level landfast first-year sea ice near Barrow, Alaska. Landfast ice formed in mid-December and exhibited essentially homogeneous snow depths of 4-6 cm in mid-January; by early February distinct snow dunes were observed. Despite additional snowfall and wind redistribution throughout the season, the location of the dunes was fixed by March, and these locations were highly correlated with the distribution of meltwater ponds at the beginning of June. Our observations, including ground-based light detection and ranging system (lidar) measurements, show that melt ponds initially form in the interstices between snow dunes, and that the outline of the melt ponds is controlled by snow depth contours. The resulting preferential surface ablation of ponded ice creates the surface topography that later determines the melt pond evolution.

  10. Determination of Summertime VOC Emission Rates from Produced Water Ponds in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Martin, R. S.; Woods, C.; Lyman, S.

    2013-12-01

    The observance of excess ozone concentrations in Utah's Uintah Basin over past several years has prompted several investigations into the extent and causes of the elevated ozone. Among these is the assessment of potential emissions of reactive VOCs. Evaporation ponds, used a remediation technique for treatment of contaminated production and other waters, are one potential source of significant VOC emissions and is estimated that there are around 160 such ponds within the Uintah Basin's oil and gas production areas. In June 2012 VOC emission rates for several reactive VOCs were derived for an evaporation facility consisting of a small inlet pond (≈0.03 acres) and two larger, serial ponds (≈4.3 acres each). The emission rates were determined over three sampling periods using an inverse modeling approach. Under this methodology, ambient VOC concentrations are determined at several downwind locations through whole-air collection into SUMMA canisters, followed by GC/MS quantification and compared with predicted concentrations using an EPA-approved dispersion model, AERMOD. The presumed emission rates used within the model were then adjusted until the modeled concentrations approach the observed concentrations. The derived emission rates for the individual VOCs were on the order of 10-3 g/s/m2 from the inlet pond and 10-6 g/s/m2 from the larger ponds. The emissions from the 1st pond in series after the inlet pond were about 3-4x the emissions from the 2nd pond. These combined emission rates are about an order of magnitude those reported for a single study in Colorado (Thoma, 2009). It should be noted, however, that the variability about each of the VOC emission rates was significant (often ×100% at the 95% confidence interval). Extrapolating these emission rates to the estimated total areas of all the evaporation ponds within Basin resulted in calculated Basin-wide VOC emissions 292,835 tons/yr. However, Bar-Ilan et al. (2009) estimated 2012 VOC oil and gas related

  11. Habitat selection by breeding waterbirds at ponds with size-structured fish populations

    NASA Astrophysics Data System (ADS)

    Kloskowski, Janusz; Nieoczym, Marek; Polak, Marcin; Pitucha, Piotr

    2010-07-01

    Fish may significantly affect habitat use by birds, either as their prey or as competitors. Fish communities are often distinctly size-structured, but the consequences for waterbird assemblages remain poorly understood. We examined the effects of size structure of common carp ( Cyprinus carpio) cohorts together with other biotic and abiotic pond characteristics on the distribution of breeding waterbirds in a seminatural system of monocultured ponds, where three fish age classes were separately stocked. Fish age corresponded to a distinct fish size gradient. Fish age and total biomass, macroinvertebrate and amphibian abundance, and emergent vegetation best explained the differences in bird density between ponds. Abundance of animal prey other than fish (aquatic macroinvertebrates and larval amphibians) decreased with increasing carp age in the ponds. Densities of ducks and smaller grebes were strongly negatively associated with fish age/size gradient. The largest of the grebes, the piscivorous great crested grebe ( Podiceps cristatus), was the only species that preferred ponds with medium-sized fish and was positively associated with total fish biomass. Habitat selection by bitterns and most rallids was instead strongly influenced by the relative amount of emergent vegetation cover in the ponds. Our results show that fish size structure may be an important cue for breeding habitat choice and a factor affording an opportunity for niche diversification in avian communities.

  12. Bacteriophage removal efficiency as a validation and operational monitoring tool for virus reduction in wastewater reclamation: Review.

    PubMed

    Amarasiri, Mohan; Kitajima, Masaaki; Nguyen, Thanh H; Okabe, Satoshi; Sano, Daisuke

    2017-09-15

    The multiple-barrier concept is widely employed in international and domestic guidelines for wastewater reclamation and reuse for microbiological risk management, in which a wastewater reclamation system is designed to achieve guideline values of the performance target of microbe reduction. Enteric viruses are one of the pathogens for which the target reduction values are stipulated in guidelines, but frequent monitoring to validate human virus removal efficacy is challenging in a daily operation due to the cumbersome procedures for virus quantification in wastewater. Bacteriophages have been the first choice surrogate for this task, because of the well-characterized nature of strains and the presence of established protocols for quantification. Here, we performed a meta-analysis to calculate the average log 10 reduction values (LRVs) of somatic coliphages, F-specific phages, MS2 coliphage and T4 phage by membrane bioreactor, activated sludge, constructed wetlands, pond systems, microfiltration and ultrafiltration. The calculated LRVs of bacteriophages were then compared with reported human enteric virus LRVs. MS2 coliphage LRVs in MBR processes were shown to be lower than those of norovirus GII and enterovirus, suggesting it as a possible validation and operational monitoring tool. The other bacteriophages provided higher LRVs compared to human viruses. The data sets on LRVs of human viruses and bacteriophages are scarce except for MBR and conventional activated sludge processes, which highlights the necessity of investigating LRVs of human viruses and bacteriophages in multiple treatment unit processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Valuating Ecosystem Services of Urban Ponds - case study from Bangladesh

    NASA Astrophysics Data System (ADS)

    Carle, Nina

    2016-04-01

    A climate risk assessment for the city of Barisal was carried out by a consultancy firm, financed by KfW Development Bank of Germany. Due to high dependencies on natural capital of people in developing countries they are facing high vulnerability when it comes to changes of the asset category 'natural capital' (here: urban ponds), whether due to the exposition on climate (change) related impacts, implemented measures or land use change. With a closer view on the city's assets, the question remained open to the author 1) Under current conditions, what is the demand for ecosystem services (ES) 2) What is the value of the benefits and the how much is the contribution to the city's welfare? 3) What are the future changes in the demand for ES? And what are the future changes on the supply side (pressures and threats to the ecosystem)? Methodology: The City of Barisal in Bangladesh has a calculated number of around 10.000 urban rain-fed ponds,representing 6.5% of the city area, which represents a huge natural water supply and gives the city its characteristic face. In August 2015 a user survey was conducted in the city of Barisal, in every ward (administrative unit), to determine the demand for ecosystem services related to urban ponds, evaluating over 600 ponds. The findings will present the huge variation of provisioning ecosystem services and an important regulating service, related to economic and domestic use, in a spatial resolution. It will be shown, how the importance of ES changes, by changing the unit of analysis (families or ponds or the city) and the importance for the livelihood of pond owners and users. A relationship between pond area(m2) and number of users was detected, also the role of compensation payments for the pond owners by the users. It will be shown how natural capital, privately and publicly owned,contributes in an important way in buffering unequal distribution of societies resources in the short- and long-run. However society's demand for ES

  14. Shrinking ponds in subarctic Alaska based on 1950-2002 remotely sensed images

    USGS Publications Warehouse

    Riordan, B.; Verbyla, D.; McGuire, A.D.

    2006-01-01

    Over the past 50 years, Alaska has experienced a warming climate with longer growing seasons, increased potential evapotranspiration, and permafrost warming. Research from the Seward Peninsula and Kenai Peninsula has demonstrated a substantial landscape-level trend in the reduction of surface water and number of closed-basin ponds. We investigated whether this drying trend occurred at nine other regions throughout Alaska. One study region was from the Arctic Coastal Plain where depp permafrost occurs continuously across the landscape. The other eight study regions were from the boreal forest regions where discontinuous permafrost occurs. Mean annual precipitation across the study regions ranged from 100 to over 700 min yr-1. We used remotely sensed imagery from the 1950s to 2002 to inventory over 10,000 closed-basin ponds from at least three periods from this time span. We found a reduction in the area and number of shallow, closed-basin ponds for all boreal regions. In contrast, the Arctic Coastal Plain region had negligible change in the area of closed-basin ponds. Since the 1950s, surface water area of closed-basin ponds included in this analysis decreased by 31 to 4 percent, and the total number of closed-basin ponds surveyed within each study region decreased from 54 to 5 percent. There was a significant increasing trend in annual mean temperature and potential evapotranspiration since the 1950s for all study regions. There was no significant trend in annual precipitation during the same period. The regional trend of shrinking ponds may be due to increased drainage as permafrost warms, or increased evapotranspiration during a warmer and extended growing season. Copyright 2006 by the American Geophysical Union.

  15. This Pond Is Not for Ducks.

    ERIC Educational Resources Information Center

    American School and University, 1980

    1980-01-01

    The latest development in solar energy is a four-acre pond planned for Clark College in Vancouver (Washington). Filled with brine, it will serve both as collector and heat storage tank for the entire campus. (Author)

  16. Water quality of an urban wet detention pond in Madison, Wisconsin, 1987-88

    USGS Publications Warehouse

    House, L.B.; Waschbusch, R.J.; Hughes, P.E.

    1993-01-01

    A 5,670-sq m wet detention pond was monitored by the U.S. Geological Survey to determine its effect on the water quality of urban runoff. The pond has a drainage area of 0.96-sq km, composed primarily of single-family residential land use. Event-mean concentrations (EMC) were determined from samples collected for sediment, nutrients, and selected metals at the pond's inflow and outflow sites. EMC samples were collected for 64 runoff events during the study period from February 1987 to April 1988. Storm precipitation ranged from 1 to 51 mm during these events. Inflow and outflow EMC and constituent loads were compared to determine the trap efficiency of the pond. Trap efficiency varied considerably among water-quality constituents. In general, the detention pond decreased the EMC of sampled constituents at the outlet compared to the inlet. The median decrease in EMC for suspended solids was 88 percent, 60 percent for total chemical oxygen demand (COD), 43 percent for total phosphorus, 38 percent for total Kjeldahl nitrogen, 65 percent for total nitrite plus nitrate, and 71 percent for total lead. A notable exception to the general decrease in EMC is for chloride. The EMC for chloride was generally higher in outflow from the pond than in the inflow. This is attributed to an unmonitored influx of chloride to the pond during the winter that subsequently was flushed out during monitored runoff events. The total study-period loads of most constituents were less leaving the pond than the loads entering it. This decrease is attributed to the constituents transported on suspended sediment being deposited in the pond. The decrease in total load of suspended solids was 88 percent, 62 percent for total COD, 58 percent for total phosphorus, 46 percent for total Kjeldahl nitrogen, 62 percent for total nitrite plus nitrate, 97 percent for total copper, and 93 percent for total lead. (USGS)

  17. The analysis of Stability reliability of Qian Tang River seawall

    NASA Astrophysics Data System (ADS)

    Wu, Xue-Xiong

    2017-11-01

    Qiantang River seawall due to high water soaking pond by foreshore scour, encountered during the low tide prone slope overall instability. Considering the seawall beach scour in front of random change, using the simplified Bishop method, combined with the variability of soil mechanics parameters, calculation and analysis of Qiantang River Xiasha seawall segments of the overall stability.

  18. Avian communities in baylands and artificial salt evaporation ponds of the San Francisco Bay estuary

    USGS Publications Warehouse

    Takekawa, John Y.; Lu, C.T.; Pratt, R.T.

    2001-01-01

    San Francisco Bay wetlands, seasonal and tidal marshes between the historic low and high tide lines, are now highly fragmented because of development during the past 150 years. Artificial salt pond systems in the Bay are hypersaline and typically support simple assemblages of algae and invertebrates. In order to establish the value of salt ponds for migratory waterbirds, we used datasets to conduct a meta-analysis of avian communities in the baylands and salt ponds of San Pablo Bay. Fifty-three species of waterbirds in the salt ponds represented six foraging guilds: surface feeders, shallow probers, deep probers, dabblers, diving benthivores and piscivores. The total number of species and the Shannon-Weiner diversity index was higher in baylands than in salt ponds during all four seasons. However, overall bird density (number/ha) was higher in salt ponds compared with baylands in the winter and spring, primarily because of large concentrations of benthivores. Cessation of salt production in 1993 and subsequent reduction in water depth resulted in a decline of some diving duck populations that used the salt ponds.

  19. Sediments in marsh ponds of the Gulf Coast Chenier Plain: Effects of structural marsh management and salinity

    USGS Publications Warehouse

    Bolduc, F.; Afton, A.D.

    2005-01-01

    Physical characteristics of sediments in coastal marsh ponds (flooded zones of marsh associated with little vegetation) have important ecological consequences because they determine compositions of benthic invertebrate communities, which in turn influence compositions of waterbird communities. Sediments in marsh ponds of the Gulf Coast Chenier Plain potentially are affected by (1) structural marsh management (levees, water control structures and impoundments; SMM), and (2) variation in salinity. Based on available literature concerning effects of SMM on sediments in emergent plant zones (zones of marsh occasionally flooded and associated with dense vegetation) of coastal marshes, we predicted that SMM would increase sediment carbon content and sediment hardness, and decrease oxygen penetration (O2 depth) and the silt-clay fraction in marsh pond sediments. Assuming that freshwater marshes are more productive than are saline marshes, we also predicted that sediments of impounded freshwater marsh ponds would contain more carbon than those of impounded oligohaline and mesohaline marsh ponds, whereas C:N ratio, sediment hardness, silt-clay fraction, and O2 depth would be similar among pond types. Accordingly, we measured sediment variables within ponds of impounded and unimpounded marshes on Rockefeller State Wildlife Refuge, near Grand Chenier, Louisiana. To test the above predictions, we compared sediment variables (1) between ponds of impounded (IM) and unimpounded mesohaline marshes (UM), and (2) among ponds of impounded freshwater (IF), oligohaline (IO), and mesohaline (IM) marshes. An a priori multivariate analysis of variance (MANOVA) contrast indicated that sediments differed between IM and UM marsh ponds. As predicted, the silt-clay fraction and O2 depth were lower and carbon content, C:N ratio, and sediment hardness were higher in IM than in UM marsh ponds. An a priori MANOVA contrast also indicated that sediments differed among IF, IO, and IM marsh ponds. As

  20. Effects of season on ecological processes in extensive earthen tilapia ponds in Southeastern Brazil.

    PubMed

    Favaro, E G P; Sipaúba-Tavares, L H; Milstein, A

    2015-11-01

    In Southeastern Brazil tilapia culture is conducted in extensive and semi-intensive flow-through earthen ponds, being water availability and flow management different in the rainy and dry seasons. In this region lettuce wastes are a potential cheap input for tilapia culture. This study examined the ecological processes developing during the rainy and dry seasons in three extensive flow-through earthen tilapia ponds fertilized with lettuce wastes. Water quality, plankton and sediment parameters were sampled monthly during a year. Factor analysis was used to identify the ecological processes occurring within the ponds and to construct a conceptual graphic model of the pond ecosystem functioning during the rainy and dry seasons. Processes related to nitrogen cycling presented differences between both seasons while processes related to phosphorus cycling did not. Ecological differences among ponds were due to effects of wind protection by surrounding vegetation, organic loading entering, tilapia density and its grazing pressure on zooplankton. Differences in tilapia growth among ponds were related to stocking density and ecological process affecting tilapia food availability and intraspecific competition. Lettuce wastes addition into the ponds did not produce negative effects, thus this practice may be considered a disposal option and a low-cost input source for tilapia, at least at the amounts applied in this study.