Sample records for wastewater treatment processes

  1. [Ecological security of wastewater treatment processes: a review].

    PubMed

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  2. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  3. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.

    PubMed

    Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud

    2009-09-15

    Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.

  4. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  5. Forward Osmosis in Wastewater Treatment Processes.

    PubMed

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  6. Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units.

    PubMed

    Lou, Jie-Chung; Lin, Yung-Chang

    2008-02-01

    Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35-99.68% and 24.15-99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH(3)-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH(3)-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.

  7. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    PubMed

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  8. PROCESS DESIGN MANUAL: LAND TREATMENT OF MUNICIPAL WASTEWATER

    EPA Science Inventory

    The manual presents a rational procedure for the design of land treatment systems. Slow rate, rapid infiltration, and overland flow processes for the treatment of municipal wastewaters are discussed in detail, and the design concepts and criteria are presented. A two-phased plann...

  9. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    PubMed

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Application of Ozone MBBR Process in Refinery Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Lin, Wang

    2018-01-01

    Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.

  11. Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment.

    PubMed

    Lv, Junping; Liu, Yang; Feng, Jia; Liu, Qi; Nan, Fangru; Xie, Shulian

    2018-05-24

    Chlorella vulgaris was selected from five freshwater microalgal strains of Chlorophyta, and showed a good potential in nutrients removal from undiluted cattle farm wastewater. By the end of treatment, 62.30%, 81.16% and 85.29% of chemical oxygen demand (COD), ammonium (NH 4 + -N) and total phosphorus (TP) were removed. Then two two-stage processes were established to enhance nutrients removal efficiency for meeting the discharge standards of China. The process A was the biological treatment via C. vulgaris followed by the biological treatment via C. vulgaris, and the process B was the biological treatment via C. vulgaris followed by the activated carbon adsorption. After 3-5 d of treatment of wastewater via the two processes, the nutrients removal efficiency of COD, NH 4 + -N and TP were 91.24%-92.17%, 83.16%-94.27% and 90.98%-94.41%, respectively. The integrated two-stage process could strengthen nutrients removal efficiency from undiluted cattle farm wastewater with high organic substance and nitrogen concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Process Design Manual for Land Treatment of Municipal Wastewater.

    ERIC Educational Resources Information Center

    Crites, R.; And Others

    This manual presents a procedure for the design of land treatment systems. Slow rate, rapid infiltration, and overland flow processes for the treatment of municipal wastewaters are given emphasis. The basic unit operations and unit processes are discussed in detail, and the design concepts and criteria are presented. The manual includes design…

  13. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission.

    PubMed

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2015-08-01

    Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.

    PubMed

    Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun

    2017-04-01

    Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products. Copyright © 2016. Published by Elsevier Inc.

  15. Pathogen and Particle Associations in Wastewater: Significance and Implications for Treatment and Disinfection Processes.

    PubMed

    Chahal, C; van den Akker, B; Young, F; Franco, C; Blackbeard, J; Monis, P

    2016-01-01

    Disinfection guidelines exist for pathogen inactivation in potable water and recycled water, but wastewater with high numbers of particles can be more difficult to disinfect, making compliance with the guidelines problematic. Disinfection guidelines specify that drinking water with turbidity ≥1 Nephelometric Turbidity Units (NTU) is not suitable for disinfection and therefore not fit for purpose. Treated wastewater typically has higher concentrations of particles (1-10NTU for secondary treated effluent). Two processes widely used for disinfecting wastewater are chlorination and ultraviolet radiation. In both cases, particles in wastewater can interfere with disinfection and can significantly increase treatment costs by increasing operational expenditure (chemical demand, power consumption) or infrastructure costs by requiring additional treatment processes to achieve the required levels of pathogen inactivation. Many microorganisms (viruses, bacteria, protozoans) associate with particles, which can allow them to survive disinfection processes and cause a health hazard. Improved understanding of this association will enable development of cost-effective treatment, which will become increasingly important as indirect and direct potable reuse of wastewater becomes more widespread in both developed and developing countries. This review provides an overview of wastewater and associated treatment processes, the pathogens in wastewater, the nature of particles in wastewater and how they interact with pathogens, and how particles can impact disinfection processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  17. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  18. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  19. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  20. Integrated copper-containing wastewater treatment using xanthate process.

    PubMed

    Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming

    2002-09-02

    Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.

  1. Determination of the priority indexes for the oil refinery wastewater treatment process

    NASA Astrophysics Data System (ADS)

    Chesnokova, M. G.; Myshlyavtsev, A. V.; Kriga, A. S.; Shaporenko, A. P.; Markelov, V. V.

    2017-08-01

    The wastewater biological treatment intensity and effectiveness are influenced by many factors: temperature, pH, presence and concentration of toxic substances, the biomass concentration et al. Regulation of them allows controlling the biological treatment process. Using the Bayesian theorem the link between changes was determined and the wastewater indexes normative limits exceeding influence for activated sludge characteristics alteration probability was evaluated. The estimation of total, or aposterioric, priority index presence probability, which characterizes the wastewater treatment level, is an important way to use the Bayesian theorem in activated sludge swelling prediction at the oil refinery biological treatment unit.

  2. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; An, Guanfeng

    2015-05-01

    In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.

  3. Fate of four phthalate plasticizers under various wastewater treatment processes.

    PubMed

    Armstrong, Dana L; Rice, Clifford P; Ramirez, Mark; Torrents, Alba

    2018-05-18

    The fate of four phthalate plasticizers during wastewater treatment processes at six different wastewater treatment plants (WWTPs) was investigated. Concentrations of benzyl butyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and diisodecyl phthalate (DiDP) were determined prior to either aerobic or anaerobic (conventional and advanced) treatment, after treatment, and in final, dewatered solids. Despite their elevated use worldwide, the fate of DiNP and DiDP during wastewater treatment have not been well characterized. DEHP was readily degraded during aerobic treatments while anaerobic digestion resulted in either no significant change in concentrations or an increase in concentration, in the case of more advanced anaerobic processes (thermal hydrolysis pretreatment and a two-phase acid/gas process). Impacts of the various treatment systems on DiNP, DiDP, and BBP concentrations were more varied - anaerobic digestion led to significant decreases, increases, or no significant change for these compounds, depending on the treatment facility, while aerobic treatment was generally effective at degrading the compounds. Additionally, thermal hydrolysis pretreatment of sludge prior to anaerobic digestion resulted in increases in DiNP, DiDP, and BBP concentrations. The predicted environmental concentrations for all four compounds in soils after a single biosolids application were calculated and the risk quotients for DEHP in soils were determined. The estimated toxicity risk for DEHP in soils treated with a single application of sludge from any of the six studied WWTPs is lower than the level of concern for acute and chronic risk, as defined by the US EPA.

  4. Soft drink wastewater treatment by electrocoagulation-electrooxidation processes.

    PubMed

    Linares Hernández, Ivonne; Barrera Díaz, Carlos; Valdés Cerecero, Mario; Almazán Sánchez, Perla Tatiana; Castañeda Juárez, Monserrat; Lugo Lugo, Violeta

    2017-02-01

    The aim of this work was to implement a coupled system, a monopolar Electrocoagulation (EC)-Electrooxidation (EO) processes, for the treatment of soft drink wastewater. For the EC test, Cu-Cu, anode-cathode were used at current densities of 17, 51 and 68 mA cm -2 . Only 37.67% of chemical oxygen demand (COD) and 27% of total organic carbon (TOC) were removed at 20 min with an optimum pH of 8, this low efficiency can be associated with the high concentration of inorganic ions which inhibit the oxidation of organic matter due to their complexation with copper ions. Later EO treatment was performed with boron-doped diamond-Cu electrodes and a current density of 30 Am -2 . The coupled EC-EO system was efficient to reduce organic pollutants from initial values of 1875 mg L -1 TOC and 4300 mg L -1 COD, the removal efficiencies were 75% and 85%, respectively. Electric energy consumption to degrade a kilogram of a pollutant in the soft drink wastewater using EC was 3.19 kWh kg -1 TOC and 6.66 kWh kg -1 COD. It was concluded that the coupled system EC-EO was effective for the soft drink wastewater treatment, reducing operating costs and residence time, and allowing its reuse in indirect contact with humans, thus contributing to the sustainable reuse as an effluent of industrial wastewater.

  5. Cosmetic wastewater treatment by coagulation and advanced oxidation processes.

    PubMed

    Naumczyk, Jeremi; Bogacki, Jan; Marcinowski, Piotr; Kowalik, Paweł

    2014-01-01

    In this study, the treatment process of three cosmetic wastewater types has been investigated. Coagulation allowed to achieve chemical oxygen demand (COD) removal of 74.6%, 37.7% and 74.0% for samples A (Al2(SO4)3), B (Brentafloc F3) and C (PAX 16), respectively. The Fenton process proved to be effective as well - COD removal was equal to 75.1%, 44.7% and 68.1%, respectively. Coagulation with FeCl3 and the subsequent photo-Fenton process resulted in the best values of final COD removal equal to 92.4%, 62.8% and 90.2%. In case of the Fenton process, after coagulation these values were equal to 74.9%, 50.1% and 84.8%, while in case of the H2O2/UV process, the obtained COD removal was 83.8%, 36.2% and 80.9%. High value of COD removal in the Fenton process carried out for A and C wastewater samples was caused by a significant contribution of the final neutralization/coagulation. Very small effect of the oxidation reaction in the Fenton process in case of sample A resulting from the presence of antioxidants, 'OH radical scavengers' in the wastewater.

  6. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.

    PubMed

    Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F

    2007-01-01

    A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.

  8. Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance.

    PubMed

    Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang

    2018-03-15

    To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.

  9. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    PubMed

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  10. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  11. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    PubMed

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  12. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    NASA Astrophysics Data System (ADS)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  13. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    PubMed Central

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  14. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    PubMed

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  15. [Spectral Analysis of Dissolved Organic Matter of Tannery Wastewater in the Treatment Process].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Du, Bo; Song, Juan; Huai, Cui-qian; Wang, Jia-hong

    2015-06-01

    Tannery industry is one of the major traditional industries and important wastewater sources in China. The existing research mainly focus on the quality of inlet and outlet water, rather than the purification and transformation behavior of dissolved organic matter (DOM) in the treatment process of tannery wastewater. The UV spectra and fluorescence spectroscopy were used to detect the spectral characteristics of water samples in the treatment process, and it is analyzed that the formation process and the linear relationships between total fluorescence intensity and parameters. The results showed: the UV absorbance of DOM in wastewater increased firstly and then decreased with longer wavelength, and the wave peaks were found around the wavelength of 230 nr. The values of A253 /A203 and SUVA254 increased firstly and then decreased, indicating the complex reaction process related to free substituent and aromatic rings. The fluorescence peaks appeared at the regions of λ(ex/em) = 320-350/440- 460 and λ(ex/em) = 270-300/390-420, referred as visible humic-like and visible fulvic-like fluorescence, respectively. With the treatment process of tannery wastewater, the following fluorescence phenomenon were monitored, such as the blue-shift of humic-like fluorescence peak in the hydrolytic acidification tank, the appearance of tryptophan fluorescence peak in the second biochemical pond (λ(ex/em) = 290/340), the weak fluorescence peak in the fourth biochemical pond (λ(ex/em) = 350/520) and the stabilized fluorescence characteristics in the secondary sedimentation tank and water outlet. The achievements are helpful to investigate the degradation and formation behavior of water components, and significant for the fluorescence variation analysis in the treatment system. The removal rate of total fluorescence intensity of tannery wastewater fit better the removal rate of TOC with coefficient of r 0.835 5. The UV spectra and 3D-EEMs are effective to reveal the purification

  16. TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS

    EPA Science Inventory

    A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...

  17. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    PubMed

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  18. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    PubMed

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2018-01-01

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  19. A critical review on characterization strategies of organic matter for wastewater and water treatment processes.

    PubMed

    Tran, Ngoc Han; Ngo, Huu Hao; Urase, Taro; Gin, Karina Yew-Hoong

    2015-10-01

    The presence of organic matter (OM) in raw wastewater, treated wastewater effluents, and natural water samples has been known to cause many problems in wastewater treatment and water reclamation processes, such as treatability, membrane fouling, and the formation of potentially toxic by-products during wastewater treatment. This paper summarizes the current knowledge on the methods for characterization and quantification of OM in water samples in relation to wastewater and water treatment processes including: (i) characterization based on the biodegradability; (ii) characterization based on particle size distribution; (iii) fractionation based on the hydrophilic/hydrophobic properties; (iv) characterization based on the molecular weight (MW) size distribution; and (v) characterization based on fluorescence excitation emission matrix. In addition, the advantages, disadvantages and applications of these methods are discussed in detail. The establishment of correlations among biodegradability, hydrophobic/hydrophilic fractions, MW size distribution of OM, membrane fouling and formation of toxic by-products potential is highly recommended for further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  1. Nitrous oxide emissions from wastewater treatment processes

    PubMed Central

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  2. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    PubMed

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  3. Treatment of soft drink process wastewater by ozonation, ozonation-H₂O₂ and ozonation-coagulation processes.

    PubMed

    García-Morales, M A; Roa-Morales, G; Barrera-Díaz, C; Balderas-Hernández, P

    2012-01-01

    In this research, we studied the treatment of wastewater from the soft drink process using oxidation with ozone. A scheme composed of sequential ozonation-peroxide, ozonation-coagulation and coagulation-ozonation treatments to reduce the organic matter from the soft drink process was also used. The samples were taken from the conventional activated sludge treatment of the soft drink process, and the experiments using chemical oxidation with ozone were performed in a laboratory using a reactor through a porous plate glass diffuser with air as a feedstock for the generation of ozone. Once the sample was ozonated, the treatments were evaluated by considering the contact time, leading to greater efficiency in removing colour, turbidity and chemical oxygen demand (COD). The effect of ozonation and coagulant coupled with treatment efficiency was assessed under optimal conditions, and substantial colour and turbidity removal were found (90.52% and 93.33%, respectively). This was accompanied by a 16.78% reduction in COD (initial COD was 3410 mg/L). The absorbance spectra of the oxidised products were compared using UV-VIS spectroscopy to indicate the level of oxidation of the wastewater. We also determined the kinetics of decolouration and the removal of turbidity with the best treatment. The same treatment was applied to the sample taken from the final effluent of the activated sludge system, and a COD removal efficiency of 100% during the first minute of the reaction with ozone was achieved. As a general conclusion, we believe that the coagulant polyaluminum chloride - ozone (PAC- ozone) treatment of wastewater from the manufacturing of soft drinks is the most efficient for removing turbidity and colour and represents an advantageous option to remove these contaminants because their removal was performed in minutes compared to the duration of traditional physical, chemical and biological processes that require hours or days.

  4. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    PubMed

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  5. Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes.

    PubMed

    Yan, Xu; Li, Lin; Liu, Junxin

    2014-02-01

    Three full-scale wastewater treatment processes, Orbal oxidation ditch, anoxic/anaerobic/aerobic (reversed A2O) and anaerobic/anoxic/aerobic (A2O), were selected to investigate the emission characteristics of greenhouse gases (GHG), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Results showed that although the processes were different, the units presenting high GHG emission fluxes were remarkably similar, namely the highest CO2 and N2O emission fluxes occurred in the aerobic areas, and the highest CH4 emission fluxes occurred in the grit tanks. The GHG emission amount of each unit can be calculated from its area and GHG emission flux. The calculation results revealed that the maximum emission amounts of CO2, CH4 and N2O in the three wastewater treatment processes appeared in the aerobic areas in all cases. Theoretically, CH4 should be produced in anaerobic conditions, rather than aerobic conditions. However, results in this study showed that the CH4 emission fluxes in the forepart of the aerobic area were distinctly higher than in the anaerobic area. The situation for N2O was similar to that of CH4: the N2O emission flux in the aerobic area was also higher than that in the anoxic area. Through analysis of the GHG mass balance, it was found that the flow of dissolved GHG in the wastewater treatment processes and aerators may be the main reason for this phenomenon. Based on the monitoring and calculation results, GHG emission factors for the three wastewater treatment processes were determined. The A2O process had the highest CO2 emission factor of 319.3 g CO2/kg COD(removed), and the highest CH4 and N2O emission factors of 3.3 g CH4/kg COD(removed) and 3.6 g N2O/kg TN(removed) were observed in the Orbal oxidation ditch process.

  6. Orientation to Municipal Wastewater Treatment. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  7. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    PubMed

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process.

    PubMed

    Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie

    2018-03-01

    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

  9. Effect of process parameters on greenhouse gas generation by wastewater treatment plants.

    PubMed

    Yerushalmi, L; Shahabadi, M Bani; Haghighat, F

    2011-05-01

    The effect of key process parameters on greenhouse gas (GHG) emission by wastewater treatment plants was evaluated, and the governing parameters that exhibited major effects on the overall on- and off-site GHG emissions were identified. This evaluation used aerobic, anaerobic, and hybrid anaerobic/aerobic treatment systems with food processing industry wastewater. The operating temperature of anaerobic sludge digester was identified to have the highest effect on GHG generation in the aerobic treatment system. The total GHG emissions of 2694 kg CO2e/d were increased by 72.5% with the increase of anaerobic sludge digester temperature from 20 to 40 degrees C. The operating temperature of the anaerobic reactor was the dominant controlling parameter in the anaerobic and hybrid treatment systems. Raising the anaerobic reactor's temperature from 25 to 40 degrees C increased the total GHG emissions from 5822 and 6617 kg CO2e/d by 105.6 and 96.5% in the anaerobic and hybrid treatment systems, respectively.

  10. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  11. Economic valuation of environmental benefits from wastewater treatment processes: an empirical approach for Spain.

    PubMed

    Hernández-Sancho, Francesc; Molinos-Senante, María; Sala-Garrido, Ramón

    2010-01-15

    Economic research into the design and implementation of policies for the efficient management of water resources has been emphasized by the European Water Framework Directive (Directive 2000/60/EC). The efficient implementation of policies to prevent the degradation and depletion of water resources requires determining their value in social and economic terms and incorporating this information into the decision-making process. A process of wastewater treatment has many associated environmental benefits. However, these benefits are often not calculated because they are not set by the market, due to inadequate property rights, the presence of externalities, and the lack of perfect information. Nevertheless, the valuation of these benefits is necessary to justify a suitable investment policy and a limited number of studies exist on the subject of the economic valuation of environmental benefits. In this paper, we propose a methodology based on the estimation of shadow prices for the pollutants removed in a treatment process. This value represents the environmental benefit (avoided cost) associated with undischarged pollution. This is a pioneering approach to the economic valuation of wastewater treatment. The comparison of these benefits with the internal costs of the treatment process will provide a useful indicator for the feasibility of wastewater treatment projects. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    PubMed

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  13. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  14. Optimizing the selection of small-town wastewater treatment processes

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Zhang, Siqi

    2018-04-01

    Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.

  15. A Review on Advanced Treatment of Pharmaceutical Wastewater

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Qi, P. S.; Liu, Y. Z.

    2017-05-01

    The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.

  16. Comparative reduction of Giardia cysts, F+ coliphages, sulphite reducing clostridia and fecal coliforms by wastewater treatment processes.

    PubMed

    Nasser, Abidelfatah M; Benisti, Neta-Lee; Ofer, Naomi; Hovers, Sivan; Nitzan, Yeshayahu

    2017-01-28

    Advanced wastewater treatment processes are applied to prevent the environmental dissemination of pathogenic microorganisms. Giardia lamblia causes a severe disease called giardiasis, and is highly prevalent in untreated wastewater worldwide. Monitoring the microbial quality of wastewater effluents is usually based on testing for the levels of indicator microorganisms in the effluents. This study was conducted to compare the suitability of fecal coliforms, F+ coliphages and sulfide reducing clostridia (SRC) as indicators for the reduction of Giardia cysts in two full-scale wastewater treatment plants. The treatment process consists of activated sludge, coagulation, high rate filtration and either chlorine or UV disinfection. The results of the study demonstrated that Giardia cysts are highly prevalent in raw wastewater at an average concentration of 3600 cysts/L. Fecal coliforms, F+ coliphages and SRC were also detected at high concentrations in raw wastewater. Giardia cysts were efficiently removed (3.6 log 10 ) by the treatment train. The greatest reduction was observed for fecal coliforms (9.6 log 10 ) whereas the least reduction was observed for F+ coliphages (2.1 log 10 ) following chlorine disinfection. Similar reduction was observed for SRC by filtration and disinfection by either UV (3.6 log 10 ) or chlorine (3.3 log 10 ). Since F+ coliphage and SRC were found to be more resistant than fecal coliforms for the tertiary treatment processes, they may prove to be more suitable as indicators for Giardia. The results of this study demonstrated that advanced wastewater treatment may prove efficient for the removal of Giardia cysts and may prevent its transmission when treated effluents are applied for crop irrigation or streams restoration.

  17. Biotransformation of pharmaceuticals by ammonia oxidizing bacteria in wastewater treatment processes.

    PubMed

    Xu, Yifeng; Yuan, Zhiguo; Ni, Bing-Jie

    2016-10-01

    Pharmaceutical residues could potentially pose detrimental effects on aquatic ecosystems and human health, with wastewater treatment being one of the major pathways for pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals by ammonia oxidizing bacteria (AOB) has been widely observed in wastewater treatment processes. This article reviews the current knowledge on the biotransformation of pharmaceuticals by AOB. The relationship between the pharmaceuticals removal and nitrification process was revealed. The important role of AOB-induced cometabolism on the biotransformation of pharmaceuticals as well as their transformation products and pathways was elucidated. Kinetics and mathematical models describing the biotransformation of pharmaceuticals by AOB were also reviewed. The results highlighted the high degradation capabilities of AOB toward some refractory pharmaceuticals, with their degradations being clearly related to the nitrification rate and their transformation products being identified, which may exhibit similar or higher ecotoxicological impacts compared to the parent compound. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The roles of bacteriophages in membrane-based water and wastewater treatment processes: A review.

    PubMed

    Wu, Bing; Wang, Rong; Fane, Anthony G

    2017-03-01

    Membrane filtration processes have been widely applied in water and wastewater treatment for many decades. Concerns related to membrane treatment effectiveness, membrane lifespan, and membrane fouling control have been paid great attention. To achieve sustainable membrane operation with regards to low energy and maintenance cost, monitoring membrane performance and applying suitable membrane control strategies are required. As the most abundant species in water and wastewater, bacteriophages have shown great potential to be employed in membrane processes as (1) indicators to assess membrane performance considering their similar properties to human pathogenic waterborne viruses; (2) surrogate particles to monitor membrane integrity due to their nano-sized nature; and (3) biological agents to alleviate membrane fouling because of their antimicrobial properties. This study aims to provide a comprehensive review on the roles of bacteriophages in membrane-based water and wastewater treatment processes, with focuses on their uses for membrane performance examination, membrane integrity monitoring, and membrane biofouling control. The advantages, limitations, and influencing factors for bacteriophage-based applications are reported. Finally, the challenges and prospects of bacteriophage-based applications in membrane processes for water treatment are highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    NASA Astrophysics Data System (ADS)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  20. ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...

  1. IMPROVING INDUSTRIAL WASTEWATER TREATMENT PROCESS RELIABILITY TO ENHANCE SUSTAINABLE DEVELOPMENT

    EPA Science Inventory

    Sustainable development includes the recovery of resources from industrial manufacturing processes. One valuable resource that can often be purified and reused is process wastewater. Typically, pollutants are removed from process wastewater using physical, chemical, and biologica...

  2. Intuitionistic fuzzy analytical hierarchical processes for selecting the paradigms of mangroves in municipal wastewater treatment.

    PubMed

    Ouyang, Xiaoguang; Guo, Fen

    2018-04-01

    Municipal wastewater discharge is widespread and one of the sources of coastal eutrophication, and is especially uncontrolled in developing and undeveloped coastal regions. Mangrove forests are natural filters of pollutants in wastewater. There are three paradigms of mangroves for municipal wastewater treatment and the selection of the optimal one is a multi-criteria decision-making problem. Combining intuitionistic fuzzy theory, the Fuzzy Delphi Method and the fuzzy analytical hierarchical process (AHP), this study develops an intuitionistic fuzzy AHP (IFAHP) method. For the Fuzzy Delphi Method, the judgments of experts and representatives on criterion weights are made by linguistic variables and quantified by intuitionistic fuzzy theory, which is also used to weight the importance of experts and representatives. This process generates the entropy weights of criteria, which are combined with indices values and weights to rank the alternatives by the fuzzy AHP method. The IFAHP method was used to select the optimal paradigm of mangroves for treating municipal wastewater. The entropy weights were entrained by the valid evaluation of 64 experts and representatives via online survey. Natural mangroves were found to be the optimal paradigm for municipal wastewater treatment. By assigning different weights to the criteria, sensitivity analysis shows that natural mangroves remain to be the optimal paradigm under most scenarios. This study stresses the importance of mangroves for wastewater treatment. Decision-makers need to contemplate mangrove reforestation projects, especially where mangroves are highly deforested but wastewater discharge is uncontrolled. The IFAHP method is expected to be applied in other multi-criteria decision-making cases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Sequential chemical-biological processes for the treatment of industrial wastewaters: review of recent progresses and critical assessment.

    PubMed

    Guieysse, Benoit; Norvill, Zane N

    2014-02-28

    When direct wastewater biological treatment is unfeasible, a cost- and resource-efficient alternative to direct chemical treatment consists of combining biological treatment with a chemical pre-treatment aiming to convert the hazardous pollutants into more biodegradable compounds. Whereas the principles and advantages of sequential treatment have been demonstrated for a broad range of pollutants and process configurations, recent progresses (2011-present) in the field provide the basis for refining assessment of feasibility, costs, and environmental impacts. This paper thus reviews recent real wastewater demonstrations at pilot and full scale as well as new process configurations. It also discusses new insights on the potential impacts of microbial community dynamics on process feasibility, design and operation. Finally, it sheds light on a critical issue that has not yet been properly addressed in the field: integration requires complex and tailored optimization and, of paramount importance to full-scale application, is sensitive to uncertainty and variability in the inputs used for process design and operation. Future research is therefore critically needed to improve process control and better assess the real potential of sequential chemical-biological processes for industrial wastewater treatment. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Novel bioevaporation process for the zero-discharge treatment of highly concentrated organic wastewater.

    PubMed

    Yang, Benqin; Zhang, Lei; Lee, Yongwoo; Jahng, Deokjin

    2013-10-01

    A novel process termed as bioevaporation was established to completely evaporate wastewater by metabolic heat released from the aerobic microbial degradation of the organic matters contained in the highly concentrated organic wastewater itself. By adding the glucose solution and ground food waste (FW) into the biodried sludge bed, the activity of the microorganisms in the biodried sludge was stimulated and the water in the glucose solution and FW was evaporated. As the biodegradable volatile solids (BVS) concentration in wastewater increased, more heat was produced and the water removal ratio increased. When the volatile solids (VS) concentrations of both glucose and ground FW were 120 g L(-1), 101.7% and 104.3% of the added water was removed, respectively, by completely consuming the glucose and FW BVS. Therefore, the complete removal of water and biodegradable organic contents was achieved simultaneously in the bioevaporation process, which accomplished zero-discharge treatment of highly concentrated organic wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  6. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    PubMed Central

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  7. Performance of a commercial industrial-scale UF-based process for treatment of oily wastewaters.

    PubMed

    Karhu, M; Kuokkanen, T; Rämö, J; Mikola, M; Tanskanen, J

    2013-10-15

    An evaluation was made of the performance of a commercial industrial-scale ultrafiltration (UF)-based process for treatment of highly concentrated oily wastewaters. Wastewater samples were gathered from two plants treating industrial wastewaters in 2008, and in 2011 (only from one of the plants), from three points of a UF-based treatment train. The wastewater samples were analyzed by measuring the BOD7, COD, TOC and total surface charge (TSC). The inorganic content and zeta potentials of the samples were analyzed and GC-FID/MS analyses were performed. The removal performances of BOD7, COD, TOC and TSC in 2008 and 2011 for both plants were very high. Initial concentrations of contaminants in 2011 were lower than in 2008, therefore the COD and TSC reductions were also lower in 2011 than three years before. Regardless of the high performance of UF-based processes in both plants, at times the residual concentrations were considerable. This could be explained by the high initial concentrations and also by the presence of the dissolved compounds that were characterized. Linear correlation was observed between COD and TOC, and between COD and TSC. The correlation between COD and TSC could be utilized for process control purposes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A Guide for Developing Standard Operating Job Procedures for the Primary Sedimentation Process Wastewater Treatment Facility. SOJP No. 4.

    ERIC Educational Resources Information Center

    Charles County Community Coll., La Plata, MD.

    This guide describes standard operating job procedures for the primary sedimentation process of wastewater treatment plants. The primary sedimentation process involves removing settleable and suspended solids, in part, from wastewater by gravitational forces, and scum and other floatable solids from wastewater by mechanical means. Step-by-step…

  9. Resource recovery and epidemiology of anaerobic wastewater treatment process in a controlled ecological life support system

    NASA Technical Reports Server (NTRS)

    Li, Ku-Yen; Hunt, Madelyn D.

    1995-01-01

    The results of work accomplished under two different areas: (1) Resource Recovery of an Anaerobic Wastewater Treatment process, and (2) Epidemiological Study of an Anaerobic Wastewater Treatment Process are documented. The first part of the work was to set up and test three anaerobic digesters and then run these three digesters with a NASA-simulated wastewater. The second part of the work was to use a multi-drug resistant strain of Salmonella choleraesuis as the indicator bacteria for the epidemiological study. Details of these two parts can be found in two master's theses and are described in Sections 3 and 4 of this report. Several important results condensed from these two parts are summarized in Section 2.

  10. [Research on the treatment of wastewater containing PVA by ozonation-activated sludge process].

    PubMed

    Xing, Xiao-Qiong; Huang, Cheng-Lan; Liu, Min; Chen, Ying

    2012-11-01

    The wastewater containing polyvinyl alcohol (PVA) was characterized with poor biodegradability, and was difficult to remove. In order to find an economically reasonable and practical technology, the research on the removal efficiency of different concentration wastewater containing PVA by ozonation-activated sludge process was studied, and the result was compared with the traditional activated sludge process. The results showed that the ozonation-activated sludge process was not suitable for treating influent with COD below 500 mg x L(-1) and the wastewater PVA concentration was 10-30 mg x L(-1). When the influent COD was between 500-800 mg x L(-1) and the PVA concentration was 15-60 mg x L(-1), the system had advantages on dealing with this kind of wastewater, and the average removal efficiency of COD and PVA were 92.8% and 57.4%, which were better than the traditional activated sludge process 4.1% and 15.2% respectively. In addition, the effluent concentrations of COD could keep between 30-60 mg x L(-1). When the influent COD was 1 000-1 200 mg x L(-1) and the PVA concentration was 20-70 mg x L(-1), the average removal efficiencies of COD and PVA were 90.9% and 45.3%, which were better than the traditional activated sludge process 12.8% and 12.1% respectively, but the effluent should to be further treated. Compared with the traditional activated sludge process, ozonation-activated sludge process had high treatment efficiency, stable running effect, and effectively in dealing with industrial wastewater containing PVA.

  11. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  12. [Effect of pilot UASB-SFSBR-MAP process for the large scale swine wastewater treatment].

    PubMed

    Wang, Liang; Chen, Chong-Jun; Chen, Ying-Xu; Wu, Wei-Xiang

    2013-03-01

    In this paper, a treatment process consisted of UASB, step-fed sequencing batch reactor (SFSBR) and magnesium ammonium phosphate precipitation reactor (MAP) was built to treat the large scale swine wastewater, which aimed at overcoming drawbacks of conventional anaerobic-aerobic treatment process and SBR treatment process, such as the low denitrification efficiency, high operating costs and high nutrient losses and so on. Based on the treatment process, a pilot engineering was constructed. It was concluded from the experiment results that the removal efficiency of COD, NH4(+) -N and TP reached 95.1%, 92.7% and 88.8%, the recovery rate of NH4(+) -N and TP by MAP process reached 23.9% and 83.8%, the effluent quality was superior to the discharge standard of pollutants for livestock and poultry breeding (GB 18596-2001), mass concentration of COD, TN, NH4(+) -N, TP and SS were not higher than 135, 116, 43, 7.3 and 50 mg x L(-1) respectively. The process developed was reliable, kept self-balance of carbon source and alkalinity, reached high nutrient recovery efficiency. And the operating cost was equal to that of the traditional anaerobic-aerobic treatment process. So the treatment process could provide a high value of application and dissemination and be fit for the treatment pf the large scale swine wastewater in China.

  13. Carbon footprint of aerobic biological treatment of winery wastewater.

    PubMed

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  14. Applying fenton process in acrylic fiber wastewater treatment and practice teaching

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Jiang, Shan

    2018-02-01

    Acrylic fiber manufacturing wastewater, containing a wider range of pollutants, high concentration of refractory organics, poisonous and harmful matters, was significant to treat from the effluents of wastewater treatment plants (WWTPs). In this work, a Fenton reactor was employed for advanced treatment of the WWTP effluents. An orthogonal test and a parametric study were carried out to determine the effect of the main operating conditions and the Fenton process attain excellent performance on the degradation of pollutants under an optimal condition of ferrous dosage was 6.25 mM, hydrogen peroxide was 75 mM and initial pH value was 3.0 in 90 min reaction time. The removal efficiency of COD, TOC, NH4 +-N and TN reached from 45% to 69%. Lastly, as a teaching advice, the Fenton reactor was used in practicing teaching nicely.

  15. Microalgae and wastewater treatment

    PubMed Central

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  16. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes.

  17. An experimental investigation of wastewater treatment using electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  18. Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant.

    PubMed

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Damiani, Silvestro

    2018-02-01

    The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.

  19. Electrolytic treatment of Standard Malaysian Rubber process wastewater.

    PubMed

    Vijayaraghavan, Krishnan; Ahmad, Desa; Yazid, Ahmad Yuzri Ahmad

    2008-01-31

    A new method of Standard Malaysian Rubber (SMR) process wastewater treatment was developed based on in situ hypochlorous acid generation. The hypochlorous acid was generated in an undivided electrolytic cell consisting of two sets of graphite as anode and stainless sheets as cathode. The generated hypochlorous acid served as an oxidizing agent to destroy the organic matter present in the SMR wastewater. For an influent COD concentration of 2960 mg/L at an initial pH 4.5+/-0.1, current density 74.5 mA/cm(2), sodium chloride content 3% and electrolysis period of 75 min, resulted in the following residual values pH 7.5, COD 87 mg/L, BOD(5) 60 mg/L, TOC 65 mg/L, total chlorine 146 mg/L, turbidity 7 NTU and temperature 48 degrees C, respectively. In the case of 2% sodium chloride as an electrolyte for the above said operating condition resulted in the following values namely: pH 7.2, COD 165 mg/L, BOD(5) 105 mg/L, TOC 120 mg/L, total chlorine 120 mg/L, turbidity 27 NTU and temperature 53 degrees C, respectively. The energy requirement were found to be 30 and 46 Wh/L, while treating 24 L of SMR wastewater at 2 and 3% sodium chloride concentration at a current density 74.5 mA/cm(2). The observed energy difference was due to the improved conductivity at high sodium chloride content.

  20. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    PubMed

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  1. Textile wastewater reuse after additional treatment by Fenton's reagent.

    PubMed

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  2. 40 CFR 63.146 - Process wastewater provisions-reporting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...

  3. 40 CFR 63.146 - Process wastewater provisions-reporting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...

  4. 40 CFR 63.146 - Process wastewater provisions-reporting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...

  5. 40 CFR 63.146 - Process wastewater provisions-reporting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wastewater provisions—reporting. (a) For each waste management unit, treatment process, or control device... for Group 2 wastewater streams. This paragraph does not apply to Group 2 wastewater streams that are used to comply with § 63.138(g). For Group 2 wastewater streams, the owner or operator shall include...

  6. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    ERIC Educational Resources Information Center

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  7. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, J.; Hallett, K.; DeWolfe, J.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less

  8. Treatment of oilfield wastewater by combined process of micro-electrolysis, Fenton oxidation and coagulation.

    PubMed

    Zhang, Zhenchao

    2017-12-01

    In this study, a combined process was developed that included micro-electrolysis, Fenton oxidation and coagulation to treat oilfield fracturing wastewater. Micro-electrolysis and Fenton oxidation were applied to reduce chemical oxygen demand (COD) organic load and to enhance organic components gradability, respectively. Orthogonal experiment were employed to investigate the influence factors of micro-electrolysis and Fenton oxidation on COD removal efficiency. For micro-electrolysis, the optimum conditions were: pH, 3; iron-carbon dosage, 50 mg/L; mass ratio of iron-carbon, 2:3; reaction time, 60 min. For Fenton oxidation, a total reaction time of 90 min, a H 2 O 2 dosage of 12 mg/L, with a H 2 O 2 /Fe 2+ mole ratio of 30, pH of 3 were selected to achieve optimum oxidation. The optimum conditions in coagulation process: pH, cationic polyacrylamide dosage, mixing speed and time is 4.3, 2 mg/L, 150 rpm and 30 s, respectively. In the continuous treatment process under optimized conditions, the COD of oily wastewater fell 56.95%, 46.23%, 30.67%, respectively, from last stage and the total COD removal efficiency reached 83.94% (from 4,314 to 693 mg/L). In the overall treatment process under optimized conditions, the COD of oily wastewater was reduced from 4,314 to 637 mg/L, and the COD removal efficiency reached 85.23%. The contribution of each stage is 68.45% (micro-electrolysis), 24.07% (Fenton oxidation), 7.48% (coagulation), respectively. Micro-electrolysis is the uppermost influencing process on COD removal. Compared with the COD removal efficiency of three processes on raw wastewater under optimized conditions: the COD removal efficiency of single micro-electrolysis, single Fenton oxidation, single coagulation is 58.34%, 44.88% and 39.72%, respectively. Experiments proved the effect of combined process is marvelous and the overall water quality of the final effluent could meet the class III national wastewater discharge standard of petrochemical industry of China

  9. A comprehensive review on utilization of wastewater from coffee processing.

    PubMed

    Rattan, Supriya; Parande, A K; Nagaraju, V D; Ghiwari, Girish K

    2015-05-01

    The coffee processing industry is one of the major agro-based industries contributing significantly in international and national growth. Coffee fruits are processed by two methods, wet and dry process. In wet processing, coffee fruits generate enormous quantities of high strength wastewater requiring systematic treatment prior to disposal. Different method approach is used to treat the wastewater. Many researchers have attempted to assess the efficiency of batch aeration as posttreatment of coffee processing wastewater from an upflow anaerobic hybrid reactor (UAHR)-continuous and intermittent aeration system. However, wet coffee processing requires a high degree of processing know-how and produces large amounts of effluents which have the potential to damage the environment. Characteristics of wastewater from coffee processing has a biological oxygen demand (BOD) of up to 20,000 mg/l and a chemical oxygen demand (COD) of up to 50,000 mg/l as well as the acidity of pH below 4. In this review paper, various methods are discussed to treat coffee processing wastewaters; the constitution of wastewater is presented and the technical solutions for wastewater treatment are discussed.

  10. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Y.; Barnes, J.; Fox, S.

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. Wemore » have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.« less

  11. Microbial community and treatment ability investigation in AOAO process for the optoelectronic wastewater treatment using PCR-DGGE biotechnology.

    PubMed

    Chen, Hsi-Jien; Lin, Yi-Zi; Fanjiang, Jen-Mao; Fan, Chihhao

    2013-04-01

    This study aimed to explore the microbial community variation and treatment ability of a full-scale anoxic-aerobic-anoxic-aerobic (AOAO) process used for optoelectronic wastewater treatment. The sludge samples in the biological treatment units were collected and subsequently subjected to polymerase chain reaction (PCR) amplification and denaturing gradient gel electrophoresis identification and the wastewater components such as BOD5 and NH3-N were evaluated during the processes. The group specific primers selected were targeting at the kingdom Bacteria, the Acidobacterium, the α-proteobacteria, the β-proteobacteria ammonia oxidizers, Actinobacteria and methyllotrophs, and the 16S rDNA clone libraries were established. Ten different clones were obtained using the Bacteria primers and eight different clones were obtained using the β-proteobacteria ammonia oxidizer primers. Over 95 % of BOD5 and 90 % of NH3-N were removed from the system. The microbial community analysis showed that the Janthinobacterium sp. An8 and Nitrosospira sp. were the dominant species throughout the AOAO process. Across the whole clone library, six clones showed closely related to Janthinobacterium sp. and these species seemed to be the dominant species with more than 50 % occupancy of the total population. Nitrosospira sp. was the predominant species within the β-proteobacteria and occupied more than 30 % of the total population in the system. These two strains were the novel species specific to the AOAO process for optoelectronic treatment, and they were found strongly related to the system capability of removing aquatic contaminants by inspecting the wastewater concentration variation across the system.

  12. Composite wastewater treatment by aerated electrocoagulation and modified peroxi-coagulation processes.

    PubMed

    Kumar, Abhijeet; Nidheesh, P V; Suresh Kumar, M

    2018-08-01

    Treatment of composite wastewater generating from the industrial estates is a great challenge. The present study examines the applicability of aerated electrocoagulation and modified peroxi-coagulation processes for removing color and COD from composite wastewater. Iron plates were used as anodes and cathodes in both electrochemical processes and experiments were carried out in a working volume of 2 L. Aeration enhanced the efficiency of electrocoagulation process significantly. More than 50% of COD and 60% of color were removed after 1 h of electrocoagulation process operated at pH 3 and applied voltage of 1 V. Efficiency of the modified peroxi-coagulation process was significantly higher than that of aerated electrocoagulation. COD and color removal efficiencies of the modified peroxi-coagulation process were found as 77.7% and 97%, respectively after 1 h of electrolysis operated at 1 V, solution pH 3 and 50 mM hydrogen peroxide addition. This improved efficiency of modified peroxi-coagulation compared to aerated electrocoagulation is mainly due to the attack of in-situ generated hydroxyl radicals. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater.

    PubMed

    Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak

    2017-03-01

    In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.

  14. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater.

    PubMed

    Lucas, D; Castellet-Rovira, F; Villagrasa, M; Badia-Fabregat, M; Barceló, D; Vicent, T; Caminal, G; Sarrà, M; Rodríguez-Mozaz, S

    2018-01-01

    The contribution of the sorption processes in the elimination of pharmaceuticals (PhACs) during the fungal treatment of wastewater has been evaluated in this work. The sorption of four PhACs (carbamazepine, diclofenac, iopromide and venlafaxine) by 6 different fungi was first evaluated in batch experiments. Concentrations of PhACs in both liquid and solid (biomass) matrices from the fungal treatment were measured. Contribution of the sorption to the total removal of pollutants ranged between 3% and 13% in relation to the initial amount. The sorption of 47 PhACs in fungi was also evaluated in a fungal treatment performed in 26days in a continuous bioreactor treating wastewater from a veterinary hospital. PhACs levels measured in the fungal biomass were similar to those detected in conventional wastewater treatment (WWTP) sludge. This may suggest the necessity of manage fungal biomass as waste in the same manner that the WWTP sludge is managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    PubMed

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.

  16. N-ViroTech--a novel process for the treatment of nutrient limited wastewaters.

    PubMed

    Slade, A H; Gapes, D J; Stuthridge, T R; Anderson, S M; Dare, P H; Pearson, H G W; Dennis, M

    2004-01-01

    As pulp and paper wastewaters are mostly deficient in nitrogen and phosphorus, historical practice has dictated that they cannot be effectively treated using microbiological processes without the addition of supplementary nutrients, such as urea and phosphoric acid. Supplementation is a difficult step to manage efficiently, requiring extensive post-treatment monitoring and some degree of overdosing to ensure sufficient nutrient availability under all conditions. As a result, treated wastewaters usually contain excess amounts of both nutrients, leading to potential impacts on the receiving waters such as eutrophication. N-ViroTech is a highly effective alternative treatment technology which overcomes this nutrient deficiency/excess paradox. The process relies on communities of nitrogen-fixing bacteria, which are able to directly fix nitrogen from the atmosphere, thus satisfying their cellular nitrogen requirements. The process relies on manipulation of growth conditions within the biological system to maintain a nitrogen-fixing population whilst achieving target wastewater treatment performance. The technology has significant advantages over conventional activated sludge operation, including: Improved environmental performance. Nutrient loadings in the final treated effluent for selected nitrogen and phosphorus species (particularly ammonium and orthophosphate) may be reduced by over 90% compared to conventional systems; Elimination of nitrogen supplementation, and minimisation of phosphorus supplementation, thus achieving significant chemical savings and resulting in between 25% and 35% savings in operational costs for a typical system; Self-regulation of nutrient requirements, as the bacteria only use as much nitrogen as they require, allowing for substantially less operator intervention and monitoring. This paper will summarise critical performance outcomes of the N-ViroTech process utilising results from laboratory-, pilot-scale and recent alpha-adopter, full

  17. Evaluation of virus reduction efficiency in wastewater treatment unit processes as a credit value in the multiple-barrier system for wastewater reclamation and reuse.

    PubMed

    Ito, Toshihiro; Kato, Tsuyoshi; Hasegawa, Makoto; Katayama, Hiroyuki; Ishii, Satoshi; Okabe, Satoshi; Sano, Daisuke

    2016-12-01

    The virus reduction efficiency of each unit process is commonly determined based on the ratio of virus concentration in influent to that in effluent of a unit, but the virus concentration in wastewater has often fallen below the analytical quantification limit, which does not allow us to calculate the concentration ratio at each sampling event. In this study, left-censored datasets of norovirus (genogroup I and II), and adenovirus were used to calculate the virus reduction efficiency in unit processes of secondary biological treatment and chlorine disinfection. Virus concentration in influent, effluent from the secondary treatment, and chlorine-disinfected effluent of four municipal wastewater treatment plants were analyzed by a quantitative polymerase chain reaction (PCR) approach, and the probabilistic distributions of log reduction (LR) were estimated by a Bayesian estimation algorithm. The mean values of LR in the secondary treatment units ranged from 0.9 and 2.2, whereas those in the free chlorine disinfection units were from -0.1 and 0.5. The LR value in the secondary treatment was virus type and unit process dependent, which raised the importance for accumulating the data of virus LR values applicable to the multiple-barrier system, which is a global concept of microbial risk management in wastewater reclamation and reuse.

  18. State of the art of biological processes for coal gasification wastewater treatment.

    PubMed

    Zhao, Qian; Liu, Yu

    2016-01-01

    The treatment of coal gasification wastewater (CGW) poses a serious challenge on the sustainable development of the global coal industry. The CGW contains a broad spectrum of high-strength recalcitrant substances, including phenolic, monocyclic and polycyclic aromatic hydrocarbons, heterocyclic nitrogenous compounds and long chain aliphatic hydrocarbon. So far, biological treatment of CGW has been considered as an environment-friendly and cost-effective method compared to physiochemical approaches. Thus, this reviews aims to provide a comprehensive picture of state of the art of biological processes for treating CGW wastewater, while the possible biodegradation mechanisms of toxic and refractory organic substances were also elaborated together with microbial community involved. Discussion was further extended to advanced bioprocesses to tackle high-concentration ammonia and possible options towards in-plant zero liquid discharge. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Treatment of antibiotic fermentation wastewater by combined polyferric sulfate coagulation, Fenton and sedimentation process.

    PubMed

    Xing, Zi-Peng; Sun, De-Zhi

    2009-09-15

    Attempts were made in this study to examine the combined polyferric sulfate (PFS) coagulation, Fenton and sedimentation process for treatment of non-degradable antibiotic fermentation wastewater. The experimental results indicated that 66.6% of color and 72.4% of chemical oxygen demand (COD) were removed under the optimum conditions of PFS dosage 200mg/L and pH 4.0. In addition, optimal parameters of Fenton process were determined to be 150 mg/L of H(2)O(2) dosage, 120 mg/L of FeSO(4) and 1h of reaction time. When Fenton treated effluent was controlled at pH 7.0, the pollutants could be further removed by sedimentation process. The overall color, COD and suspended solids (SS) removal reached 97.3%, 96.9% and 86.7% under selected conditions, respectively. Thus this study might offer an effective way for wastewater treatment of antibiotics manufacturer and pharmaceutical industry.

  20. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment.

    PubMed

    Shin, D H; Shin, W S; Kim, Y H; Han, Myung Ho; Choi, S J

    2006-01-01

    A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.

  1. Treatment and toxicity reduction of textile dyeing wastewater using the electrocoagulation-electroflotation process.

    PubMed

    Kim, Han-Lae; Cho, Jong-Bok; Park, Yong-Jin; Cho, Il-Hyoung

    2016-07-02

    A pilot-scale study was conducted using the electrocoagulation-electroflotation (EC-EF) process to treat textile dyeing raw wastewater to evaluate treatment performance. The effects of some key factors, such as current density, hydraulic retention time (HRT), and removal of conductivity, total suspended solids (TSS), chemical oxygen demand (COD), and color were investigated. The operating variables were current density of 0-300 A m(-2), HRT of 0-30 min, and a coagulant (anionic polyacrylamide (A-PAM)) dosage of 0-30 mg L(-1). Daphnia magna was used to test acute toxicity in raw and treated wastewater. Under the operating conditions without added coagulant, maxima of 51%, 88%, 84%, and 99% of conductivity, TSS, COD, and color were removed, respectively, with a HRT of 30 min. The coagulant enhanced removal of all wastewater parameters. Removal maxima of 59%, 92%, 94%, and 98% for conductivity, TSS, COD, and color were observed, respectively, with an optimal dosage of 30 mg L(-1) and a shortened HRT of 20 min. The 48 h-LC50 D. magna test showed that the raw wastewater was highly toxic. However, the EC-EF process decreased toxicity of the treated samples significantly, and >70% toxicity reduction was achieved by the EC-EF process with the addition of 15-30 mg L(-1) coagulant, HRT of 20 min, and current density of 150-300 A m(-2). The pilot scale test (0.3 m(3 )h(-1)) shows that the EC-EF process with added coagulant effectively treated textile dyeing wastewater.

  2. Process wastewater treatability study for Westinghouse fluidized-bed coal gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winton, S.L.; Buvinger, B.J.; Evans, J.M.

    1983-11-01

    In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health,more » and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.« less

  3. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    PubMed

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    EPA Science Inventory

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  5. [FTIR and 13C NMR Analysis of Dissolved Organic Matter (DOM) in the Treatment Process of Tannery Wastewater].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Tang, Ze-heng; Wang, Jia-hong

    2015-05-01

    Nowadays, the wastewater quantity discharged yearly from tannery industry is around 0. 2 billion t in China. The contaminants of tannery wastewater include macromolecular organic matters, such as grease, fur scraps and collagen, and the alkaline wastewater appears to be of high content of salt and COD. The quality of tannery wastewater is monitored strictly among all kinds of industry wastewater. In the treatment process of tannery wastewater, the quality of inlet and outlet water is generally analyzed. In fact, the transformation behavior of contaminants should be additionally checked to optimize the treatment conditions. Dissolved organic matter (DOM) is commonly existed in water-bodies and helpful to understand the physicochemical characteristics, while the related work should be further studied on tannery wastewater. The approaches of elemental analysis, thermal gravimetric analysis (TG), Fourier infrared spectroscopy (FTIR) and 13C nuclear magnetic resonance (13C NMR) were used to reveal the characteristics of DOM in the treatment process of tannery wastewater. The results showed the carbon content of DOM samples increased gradually, atomic ratios of H/C increased firstly and then decreased, indicating the organic matters were decomposed into chain structures firstly, finally forming the component hard to degraded. The pyrolysis process of DOM mainly proceeded in the regions of 110~530 °C (aliphatic compound, protein, etc. ) and 530~800 °C (aromatic ring, single bond of C-C, etc. ). The functional groups of DOM included -OH, -NH2, C=O and so on, and the aromatic substances were detected, shown from FTIR figures, in the later period of the reaction, caused by the metabolism effect of micro-organism. The content of alkoxy-C increased to the maximum in the second biochemical pond, and the minimum content of aromatic-C appeared in the second biochemical pond, suggesting the transformation behavior of carbon functional groups. The investigation on DOM in tannery

  6. MBR/RO/ozone processes for TFT-LCD industrial wastewater treatment and recycling.

    PubMed

    Chen, T K; Ni, C H; Chan, Y C; Lu, M C

    2005-01-01

    This research is mainly to explore the treatment capacity for TFT-LCD industrial wastewater recycling by the processes combined with membrane bioreactor (MBR), reverse osmosis (RO) and ozone(O3). The organic wastewater from the TFT-LCD industry was selected as the target. MBR, RO and ozone plants were established for evaluation. An MBR plant consisted of a 2-stage anoxic/aerobic bioreactor and an immersed UF membrane unit was employed. The effluent of MBR was conducted into the RO system then into the ozone system. The RO system consisted of a spiral membrane in the vessel. One bubble column, 75 cm high and diameter 5 cm, were used as the ozonation reactor. On the bottom of ozonation reactor is a porous diffuser for releasing gas, with an aperture of 100 microm (0.1 cm). Over the whole experimental period, the MBR process achieved a satisfactory organic removal. The COD could be removed with an average of over 98.5%. For the TOC item, the average removal efficiency was 97.4%. The stable effluent quality and satisfactory removal performance were ensured by the efficient interception performance of an immersed UF membrane device incorporated with the biological reactor. Moreover, the MBR effluent did not contain any suspended solids and the SDI value was under 3. After the treatment of RO, excellent water quality was found. The water quality of permeate was under 5 mg/I, 2 mg/l and 50 micros/cm for COD, TOC and conductivity respectively. The treated water can be recycled and reused for the cooling tower make-up water or other purposes. After the treatment of ozone, the treated water quality was under 5 mg/l and 0.852 mg/l for COD and TOC respectively. The test results of MBR, MBR/RO and MBR/RO/ozone processes were compared as possible appropriate treatment technologies applied in TFT-LCD industrial wastewater reuse and recycling.

  7. Electrochemical and/or microbiological treatment of pyrolysis wastewater.

    PubMed

    Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L

    2017-10-01

    Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Process control, energy recovery and cost savings in acetic acid wastewater treatment.

    PubMed

    Vaiopoulou, E; Melidis, P; Aivasidis, A

    2011-02-28

    An anaerobic fixed bed loop (AFBL) reactor was applied for treatment of acetic acid (HAc) wastewater. Two pH process control concepts were investigated; auxostatic and chemostatic control. In the auxostatic pH control, feed pump is interrupted when pH falls below a certain pH value in the bioreactor, which results in reactor operation at maximum load. Chemostatic control assures alkaline conditions by setting a certain pH value in the influent, preventing initial reactor acidification. The AFBL reactor treated HAc wastewater at low hydraulic residence time (HRT) (10-12 h), performed at high space time loads (40-45 kg COD/m(3) d) and high space time yield (30-35 kg COD/m(3) d) to achieve high COD (Chemical Oxygen Demand) removal (80%). Material and cost savings were accomplished by utilizing the microbial potential for wastewater neutralization during anaerobic treatment along with application of favourable pH-auxostatic control. NaOH requirement for neutralization was reduced by 75% and HRT was increased up to 20 h. Energy was recovered by applying costless CO(2) contained in the biogas for neutralization of alkaline wastewater. Biogas was enriched in methane by 4 times. This actually brings in more energy profits, since biogas extra heating for CO(2) content during biogas combustion is minimized and usage of other acidifying agents is omitted. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources.

    PubMed

    Starling, Maria Clara V M; Castro, Luiz Augusto S; Marcelino, Rafaela B P; Leão, Mônica M D; Amorim, Camila C

    2017-03-01

    In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m -3 for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.

  10. Nitrous oxide and methane emissions from different treatment processes in full-scale municipal wastewater treatment plants.

    PubMed

    Rena, Y G; Wang, J H; Li, H F; Zhang, J; Qi, P Y; Hu, Z

    2013-01-01

    Nitrous oxide (N2O) and methane (CH4) are two important greenhouse gases (GHG) emitted from biological nutrient removal (BNR) processes in municipal wastewater treatment plants (WWTP). In this study, three typical biological wastewater treatment processes were studied in WWTP of Northern China: pre-anaerobic carrousel oxidation ditch (A+OD) process, pre-anoxic anaerobic-anoxic-oxic (A-A/ A/O) process and reverse anaerobic-anoxic-oxic (r-A/ A/O) process. The N2O and CH4 emissions from these three different processes were measured in every processing unit of each WWTP. Results showed that N2O and CH4 were mainly discharged during the nitrification/denitrification process and the anaerobic/anoxic treatment process, respectively and the amounts of their formation and release were significantly influenced by different BNR processes implemented in these WWTP. The N2O conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 10.9% and 18.6% lower than that of A-A/A/O process and A+OD process, respectively. Similarly, the CH4 conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 89. I% and 80.8% lower than that of A-A/ A/O process and A+OD process, respectively. The factors influencing N2O and CH4 formation and emission in the three WWTP were investigated to explain the difference between these processes. The nitrite concentration and oxidation-reduction potential (ORP) value were found to be the dominant influencing factors affecting N2O and CH4 production, respectively. The flow-based emission factors of N2O and CH4 of the WWTP were figured out for better quantification of GHG emissions and further technical assessments of mitigation options.

  11. Integrated Evaluation Concept to Assess the Efficacy of Advanced Wastewater Treatment Processes for the Elimination of Micropollutants and Pathogens.

    PubMed

    Ternes, Thomas A; Prasse, Carsten; Eversloh, Christian Lütke; Knopp, Gregor; Cornel, Peter; Schulte-Oehlmann, Ulrike; Schwartz, Thomas; Alexander, Johannes; Seitz, Wolfram; Coors, Anja; Oehlmann, Jörg

    2017-01-03

    A multidisciplinary concept has been developed to compare advanced wastewater treatment processes for their efficacy of eliminating micropollutants and pathogens. The concept is based on (i) the removal/formation of selected indicator substances and their transformation products (TPs), (ii) the assessment of ecotoxicity via in vitro tests, and (iii) the removal of pathogens and antibiotic resistant bacteria. It includes substances passing biological wastewater treatment plants regulated or proposed to be regulated in the European Water Framework Directive, TPs formed in biological processes or during ozonation, agonistic/antagonistic endocrine activities, mutagenic/genotoxic activities, cytotoxic activities, further activities like neurotoxicity as well as antibiotics resistance genes, and taxonomic gene markers for pathogens. At a pilot plant, ozonation of conventionally treated wastewater resulted in the removal of micropollutants and pathogens and the reduction of estrogenic effects, whereas the in vitro mutagenicity increased. Subsequent post-treatment of the ozonated water by granular activated carbon (GAC) significantly reduced the mutagenic effects as well as the concentrations of remaining micropollutants, whereas this was not the case for biofiltration. The results demonstrate the suitability of the evaluation concept to assess processes of advanced wastewater treatment including ozonation and GAC by considering chemical, ecotoxicological, and microbiological parameters.

  12. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    EPA Science Inventory

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  13. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation.

    PubMed

    Jing, Liang; Chen, Bing; Zhang, Baiyu; Li, Pu

    2015-09-15

    UV irradiation and advanced oxidation processes have been recently regarded as promising solutions in removing polycyclic aromatic hydrocarbons (PAHs) from marine oily wastewater. However, such treatment methods are generally not sufficiently understood in terms of reaction mechanisms, process simulation and process control. These deficiencies can drastically hinder their application in shipping and offshore petroleum industries which produce bilge/ballast water and produced water as the main streams of marine oily wastewater. In this study, the factorial design of experiment was carried out to investigate the degradation mechanism of a typical PAH, namely naphthalene, under UV irradiation in seawater. Based on the experimental results, a three-layer feed-forward artificial neural network simulation model was developed to simulate the treatment process and to forecast the removal performance. A simulation-based dynamic mixed integer nonlinear programming (SDMINP) approach was then proposed to intelligently control the treatment process by integrating the developed simulation model, genetic algorithm and multi-stage programming. The applicability and effectiveness of the developed approach were further tested though a case study. The experimental results showed that the influences of fluence rate and temperature on the removal of naphthalene were greater than those of salinity and initial concentration. The developed simulation model could well predict the UV-induced removal process under varying conditions. The case study suggested that the SDMINP approach, with the aid of the multi-stage control strategy, was able to significantly reduce treatment cost when comparing to the traditional single-stage process optimization. The developed approach and its concept/framework have high potential of applicability in other environmental fields where a treatment process is involved and experimentation and modeling are used for process simulation and control. Copyright

  14. Forward osmosis for application in wastewater treatment: a review.

    PubMed

    Lutchmiah, Kerusha; Verliefde, A R D; Roest, K; Rietveld, L C; Cornelissen, E R

    2014-07-01

    Research in the field of Forward Osmosis (FO) membrane technology has grown significantly over the last 10 years, but its application in the scope of wastewater treatment has been slower. Drinking water is becoming an increasingly marginal resource. Substituting drinking water for alternate water sources, specifically for use in industrial processes, may alleviate the global water stress. FO has the potential to sustainably treat wastewater sources and produce high quality water. FO relies on the osmotic pressure difference across the membrane to extract clean water from the feed, however the FO step is still mostly perceived as a "pre-treatment" process. To prompt FO-wastewater feasibility, the focus lies with new membrane developments, draw solutions to enhance wastewater treatment and energy recovery, and operating conditions. Optimisation of these parameters are essential to mitigate fouling, decrease concentration polarisation and increase FO performance; issues all closely related to one another. This review attempts to define the steps still required for FO to reach full-scale potential in wastewater treatment and water reclamation by discussing current novelties, bottlenecks and future perspectives of FO technology in the wastewater sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.

    PubMed

    An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan

    2018-05-08

    Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Development of a system for treatment of coconut industry wastewater using electrochemical processes followed by Fenton reaction.

    PubMed

    Gomes, Lúcio de Moura; Duarte, José Leandro da Silva; Pereira, Nathalia Marcelino; Martínez-Huitle, Carlos A; Tonholo, Josealdo; Zanta, Carmen Lúcia de Paiva E Silva

    2014-01-01

    The coconut processing industry generates a significant amount of liquid waste. New technologies targeting the treatment of industrial effluents have emerged, including advanced oxidation processes, the Fenton reaction, and electrochemical processes, which produce strong oxidizing species to remove organic matter. In this study we combined the Fenton reaction and electrochemical process to treat wastewater generated by the coconut industry. We prepared a synthetic wastewater consisting of a mixture of coconut milk and water and assessed how the Fenton reagents' concentration, the cathode material, the current density, and the implementation of associated technologies affect its treatment. Electrochemical treatment followed by the Fenton reaction diminished turbidity and chemical oxygen demand (COD) by 85 and 95%, respectively. The Fenton reaction followed by the electrochemical process reduced turbidity and COD by 93 and 85%, respectively. Therefore, a combination of the Fenton and electrochemical technologies can effectively treat the effluent from the coconut processing industry.

  17. Biological treatment of winery wastewater: an overview.

    PubMed

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  18. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    PubMed

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively).

  19. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    PubMed

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (p<0.05). Removal efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  20. Evaluation of a biological wastewater treatment system combining an OSA process with ultrasound for sludge reduction.

    PubMed

    Romero-Pareja, P M; Aragon, C A; Quiroga, J M; Coello, M D

    2017-05-01

    Sludge production is an undesirable by-product of biological wastewater treatment. The oxic-settling-anaerobic (OSA) process constitutes one of the most promising techniques for reducing the sludge produced at the treatment plant without negative consequences for its overall performance. In the present study, the OSA process is applied in combination with ultrasound treatment, a lysis technique, in a lab-scale wastewater treatment plant to assess whether sludge reduction is enhanced as a result of mechanical treatment. Reported sludge reductions of 45.72% and 78.56% were obtained for the two regimes of combined treatment tested in this study during two respective stages: UO1 and UO2. During the UO1 stage, the general performance and nutrient removal improved, obtaining 47.28% TN removal versus 21.95% in the conventional stage. However, the performance of the system was seriously damaged during the UO2 stage. Increases in dehydrogenase and protease activities were observed during both stages. The advantages of the combined process are not necessarily economic, but operational, as US treatment acts as contributing factor in the OSA process, inducing mechanisms that lead to sludge reduction in the OSA process and improving performance parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simulation and optimization of a coking wastewater biological treatment process by activated sludge models (ASM).

    PubMed

    Wu, Xiaohui; Yang, Yang; Wu, Gaoming; Mao, Juan; Zhou, Tao

    2016-01-01

    Applications of activated sludge models (ASM) in simulating industrial biological wastewater treatment plants (WWTPs) are still difficult due to refractory and complex components in influents as well as diversity in activated sludges. In this study, an ASM3 modeling study was conducted to simulate and optimize a practical coking wastewater treatment plant (CWTP). First, respirometric characterizations of the coking wastewater and CWTP biomasses were conducted to determine the specific kinetic and stoichiometric model parameters for the consecutive aeration-anoxic-aeration (O-A/O) biological process. All ASM3 parameters have been further estimated and calibrated, through cross validation by the model dynamic simulation procedure. Consequently, an ASM3 model was successfully established to accurately simulate the CWTP performances in removing COD and NH4-N. An optimized CWTP operation condition could be proposed reducing the operation cost from 6.2 to 5.5 €/m(3) wastewater. This study is expected to provide a useful reference for mathematic simulations of practical industrial WWTPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A hybrid process combining homogeneous catalytic ozonation and membrane distillation for wastewater treatment.

    PubMed

    Zhang, Yong; Zhao, Peng; Li, Jie; Hou, Deyin; Wang, Jun; Liu, Huijuan

    2016-10-01

    A novel catalytic ozonation membrane reactor (COMR) coupling homogeneous catalytic ozonation and direct contact membrane distillation (DCMD) was developed for refractory saline organic pollutant treatment from wastewater. An ozonation process took place in the reactor to degrade organic pollutants, whilst the DCMD process was used to recover ionic catalysts and produce clean water. It was found that 98.6% total organic carbon (TOC) and almost 100% salt were removed and almost 100% metal ion catalyst was recovered. TOC in the permeate water was less than 16 mg/L after 5 h operation, which was considered satisfactory as the TOC in the potassium hydrogen phthalate (KHP) feed water was as high as 1000 mg/L. Meanwhile, the membrane distillation flux in the COMR process was 49.8% higher than that in DCMD process alone after 60 h operation. Further, scanning electron microscope images showed less amount and smaller size of contaminants on the membrane surface, which indicated the mitigation of membrane fouling. The tensile strength and FT-IR spectra tests did not reveal obvious changes for the polyvinylidene fluoride membrane after 60 h operation, which indicated the good durability. This novel COMR hybrid process exhibited promising application prospects for saline organic wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    PubMed

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Nitrogen and Phosphorus Pollutants in Cosmetics Wastewater and Its Treatment Process of a Certain Brand

    NASA Astrophysics Data System (ADS)

    Ma, Guosheng; Chen, Juan

    2018-02-01

    Cosmetics wastewater is one of the sources of nitrogen and phosphorus pollutants that cause eutrophication of water bodies. This paper is to test the cosmetics wastewater in the production process with American Hach method, and the pH and other indicators would be detected during a whole production cycle. The results show that the pH value in wastewater is 8.6~8.7 (average 8.67), SS 880~1090 mg. L-1 (average 968.57), TN 65.2~100.4 mg.m-3 (average 80.50), TP 6.6~11.4 mg.m-3 (average 9.84), NH3-N 44.2~77.0 mg.m-3 (average 55.61), COD 4650~5900 mg.m-3 (average 5490). After pollutant treatment, the nitrogen and phosphorus pollutants in wastewater can reach the standard discharge.

  5. Decision support systems in water and wastewater treatment process selection and design: a review.

    PubMed

    Hamouda, M A; Anderson, W B; Huck, P M

    2009-01-01

    The continuously changing drivers of the water treatment industry, embodied by rigorous environmental and health regulations and the challenge of emerging contaminants, necessitates the development of decision support systems for the selection of appropriate treatment trains. This paper explores a systematic approach to developing decision support systems, which includes the analysis of the treatment problem(s), knowledge acquisition and representation, and the identification and evaluation of criteria controlling the selection of optimal treatment systems. The objective of this article is to review approaches and methods used in decision support systems developed to aid in the selection, sequencing of unit processes and design of drinking water, domestic wastewater, and industrial wastewater treatment systems. Not surprisingly, technical considerations were found to dominate the logic of the developed systems. Most of the existing decision-support tools employ heuristic knowledge. It has been determined that there is a need to develop integrated decision support systems that are generic, usable and consider a system analysis approach.

  6. Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse.

    PubMed

    Zhang, K; Farahbakhsh, K

    2007-06-01

    The efficacy of a conventional activated sludge wastewater treatment process and the membrane bioreactor technology in removing microbial pathogens was investigated. Total and fecal coliforms and somatic and F-specific coliphages were used as indicators of pathogenic bacteria and viruses. Up to 5.7 logs removal of coliforms and 5.5 logs of coliphages were observed in the conventional treatment process with advanced tertiary treatment. Addition of chemical coagulants seemed to improve the efficacy of primary and secondary treatment for microorganism removal. Complete removal of fecal coliforms and up to 5.8 logs removal of coliphages was observed in the MBR system. It was shown that the MBR system was capable of high removal of coliphages despite the variation in feed coliphage concentrations. The results of this study indicated that the MBR system can achieve better microbial removal in far fewer steps than the conventional activated sludge process with advanced tertiary treatment. The final effluent from either treatment processes can be potentially reused.

  7. The determination of nonylphenol and its precursors in a trickling filter wastewater treatment process.

    PubMed

    Petrie, Bruce; McAdam, Ewan J; Whelan, Mick J; Lester, John N; Cartmell, Elise

    2013-04-01

    An ultra performance liquid chromatography method coupled to a triple quadrupole mass spectrometer was developed to determine nonylphenol and 15 of its possible precursors (nonylphenol ethoxylates and nonylphenol carboxylates) in aqueous and particulate wastewater matrices. Final effluent method detection limits for all compounds ranged from 1.4 to 17.4 ng l(-1) in aqueous phases and from 1.4 to 39.4 ng g(-1) in particulate phases of samples. The method was used to measure the performance of a trickling filter wastewater treatment works, which are not routinely monitored despite their extensive usage. Relatively good removals of nonylphenol were observed over the biological secondary treatment process, accounting for a 53 % reduction. However, only an 8 % reduction in total nonylphenolic compound load was observed. This was explained by a shortening in ethoxylate chain length which initiated production of shorter polyethoxylates ranging from 1 to 4 ethoxylate units in length in final effluents. Modelling the possible impact of trickling filter discharge demonstrated that the nonylphenol environmental quality standard may be exceeded in receiving waters with low dilution ratios. In addition, there is a possibility that the EQS can be exceeded several kilometres downstream of the mixing zone due to the biotransformation of readily degradable short-chained precursors. This accentuates the need to monitor 'non-priority' parent compounds in wastewater treatment works since monitoring nonylphenol alone can give a false indication of process performance. It is thus recommended that future process performance monitoring and optimisation is undertaken using the full suite of nonylphenolic moieties which this method can facilitate.

  8. Application of Bioelectrochemical Process (BES) for Electricity Generation and Sustainable Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Kim, Jung Rae

    Bioelectrochemical system such as microbial fuel cells (MFCs) and microbial electrolysis cell are an emerging technology which converts biodegradable organic matter to electrical energy or hydrogen using a biofilm on the electrode as the biocatalyst. It has recently been shown that waste-to-energy technology based on MFC can treat organic contaminant in domestic or industrial wastewater and simultaneously produce electricity. The maximum power density increased up to 1kW/m3 based on reactor volume. Bioelectrochemical systems may reduce the energy consumption for wastewater treatment by replacing energy intensive aeration of present treatment systems, while generate electrical energy from waste. In addition, the biomass production in MFCs has been reported to be 10-50% of conventional wastewater treatment, leading to reduce environmental impact and disposal costs. Various electrochemically active bacteria metabolize biodegradable organic compounds then discharge electrons to an extracellular electron acceptor for bacterial respiration. These bacteria also transfer electrons to electrodes by direct electron transfer, electron mediators or shuttles, and electrically conductive nanowires. Investigation of bacterial electron transport mechanisms may improve understanding of the biomaterial involved and metabolic pathways as well as improving power from MFCs. Biofuel cell systems require interdisciplinary research ranging from electrochemistry, microbiology, material science and surface chemistry to engineering such as reactor design, operation and modelling. Collaboration within each study and integration of systems might increase the performance and feasibility of BES process for sustainable energy.

  9. Wastewater treatment by nanofiltration membranes

    NASA Astrophysics Data System (ADS)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  10. Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)

    NASA Astrophysics Data System (ADS)

    Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad

    2017-03-01

    The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.

  11. Advanced oxidation-based treatment of furniture industry wastewater.

    PubMed

    Tichonovas, Martynas; Krugly, Edvinas; Grybauskas, Arturas; Jankūnaitė, Dalia; Račys, Viktoras; Martuzevičius, Dainius

    2017-07-16

    The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO 2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.

  12. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

  13. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    PubMed

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  14. Treatment of textile wastewater with membrane bioreactor: A critical review.

    PubMed

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    PubMed

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Treatment of Actual Chemical Wastewater by a Heterogeneous Fenton Process Using Natural Pyrite

    PubMed Central

    Sun, Liang; Li, Yan; Li, Aimin

    2015-01-01

    Wastewater from chemical plants has remarkable antibiotic effects on the microorganisms in traditional biological treatment processes. An enhanced Fenton system catalyzed by natural pyrite was developed to degrade this kind of wastewater. Approximately 30% chemical oxygen demand (COD) was removed within 120 min when 50 mmol/L H2O2 and 10 g/L natural pyrite were used at initial pH from 1.8 to 7. A BOD5/COD enhancement efficiency of 210% and an acute biotoxicity removal efficiency of 84% were achieved. The COD removal efficiency was less sensitive to initial pH than was the classic Fenton process. Excessive amounts of pyrite and H2O2 did not negatively affect the pyrite Fenton system. The amount of aniline generated indicated that nitrobenzene reduction by pyrite was promoted using a low initial concentration of H2O2 (<5 mmol/L). Fluorescence excitation emission matrix analyses illustrated that H2O2 facilitated the reduction by natural pyrite of organic molecules containing an electron-withdrawing group to electron-donating group. Thus, the Fenton-like process catalyzed by pyrite can remediate wastewater containing organic pollutants under mild reaction conditions and provide an alternative environmentally friendly method by which to reuse natural pyrite. PMID:26516893

  17. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: a review.

    PubMed

    Gani, Khalid Muzamil; Tyagi, Vinay Kumar; Kazmi, Absar Ahmad

    2017-07-01

    Phthalates are plasticizers and are concerned environmental endocrine-disrupting compounds. Due to their extensive usage in plastic manufacturing and personal care products as well as the potential to leach out from these products, phthalates have been detected in various aquatic environments including drinking water, groundwater, surface water, and wastewater. The primary source of their environmental occurrence is the discharge of phthalate-laden wastewater and sludge. This review focuses on recent knowledge on the occurrence of phthalate in different aquatic environments and their fate in conventional and advanced wastewater treatment processes. This review also summarizes recent advances in biological removal and degradation mechanisms of phthalates, identifies knowledge gaps, and suggests future research directions.

  18. A Guide for Developing Standard Operating Job Procedures for the Tertiary Multimedia Filtration Process Wastewater Treatment Facility. SOJP No. 7.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary multimedia filtration process of wastewater treatment plants. The major objective of the filtration process is the removal of suspended solids from the reclaimed wastewater. The guide gives step-by-step instructions for pre-start up, start-up, continuous operation, and…

  19. PROCESS DESIGN MANUAL FOR LAND TREATMENT OF MUNICIPAL WASTEWATER

    EPA Science Inventory

    The USEPA guidance on land treatment of municipal and industrial wastewater is updated for the first time since 1984. The significant new technilogical changes include phytoremediation, vadose zone monitoring, new design approaches to surface irrigation, center pivot irrigation,...

  20. Contrast Experiment on Advanced Treatment of Pharmaceutical and Paper-making Wastewater through Cinder Fenton-like Process

    NASA Astrophysics Data System (ADS)

    Xiaofeng, Jia; Xiaoyu, Chen; Wenning, Mai

    2018-06-01

    The Fenton-like process of catalyzing H2O2 with Fe2+ and cinder is adopted to subject pharmaceutical and paper-making wastewater to advanced treatment. The influence of each factor is determined using orthogonal experiment and single factor test. The optimal combination of influencing factors is 0.3mmol · L-1 of FeSO4 · 7H2O, [H2O2]:[Fe2+]=8:1 and 10g · L-1 of pyrites cinder. The reaction time in pharmaceutical wastewater and paper-making wastewater is 30min and 60min respectively, testifying to the fact that the reaction in pharmaceutical wastewater is faster than that in paper-making wastewater and the lower utilization rate of cinder in pharmaceutical wastewater. Under the optimal reaction condition, the COD removal rate of these two kinds of wastewater can reach as high as 65% and 72%. Characterized by simple operation and requiring less reagent dosage, this method does not have to regulate the pH of flooding water and allows the repeated usage of cinder.

  1. Removal of pharmaceuticals from wastewater by biological processes, hydrodynamic cavitation and UV treatment.

    PubMed

    Zupanc, Mojca; Kosjek, Tina; Petkovšek, Martin; Dular, Matevž; Kompare, Boris; Širok, Brane; Blažeka, Željko; Heath, Ester

    2013-07-01

    To augment the removal of pharmaceuticals different conventional and alternative wastewater treatment processes and their combinations were investigated. We tested the efficiency of (1) two distinct laboratory scale biological processes: suspended activated sludge and attached-growth biomass, (2) a combined hydrodynamic cavitation-hydrogen peroxide process and (3) UV treatment. Five pharmaceuticals were chosen including ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac, and an active metabolite of the lipid regulating agent clofibric acid. Biological treatment efficiency was evaluated using lab-scale suspended activated sludge and moving bed biofilm flow-through reactors, which were operated under identical conditions in respect to hydraulic retention time, working volume, concentration of added pharmaceuticals and synthetic wastewater composition. The suspended activated sludge process showed poor and inconsistent removal of clofibric acid, carbamazepine and diclofenac, while ibuprofen, naproxen and ketoprofen yielded over 74% removal. Moving bed biofilm reactors were filled with two different types of carriers i.e. Kaldnes K1 and Mutag BioChip™ and resulted in higher removal efficiencies for ibuprofen and diclofenac. Augmentation and consistency in the removal of diclofenac were observed in reactors using Mutag BioChip™ carriers (85%±10%) compared to reactors using Kaldnes carriers and suspended activated sludge (74%±22% and 48%±19%, respectively). To enhance the removal of pharmaceuticals hydrodynamic cavitation with hydrogen peroxide process was evaluated and optimal conditions for removal were established regarding the duration of cavitation, amount of added hydrogen peroxide and initial pressure, all of which influence the efficiency of the process. Optimal parameters resulted in removal efficiencies between 3-70%. Coupling the attached-growth biomass biological treatment, hydrodynamic cavitation/hydrogen peroxide process and UV treatment

  2. Oil refinery wastewater treatment using coupled electrocoagulation and fixed film biological processes

    NASA Astrophysics Data System (ADS)

    Pérez, Laura S.; Rodriguez, Oscar M.; Reyna, Silvia; Sánchez-Salas, José Luis; Lozada, J. Daniel; Quiroz, Marco A.; Bandala, Erick R.

    2016-02-01

    Oil refinery wastewater was treated using a coupled treatment process including electrocoagulation (EC) and a fixed film aerobic bioreactor. Different variables were tested to identify the best conditions using this procedure. After EC, the effluent was treated in an aerobic biofilter. EC was capable to remove over 88% of the overall chemical oxygen demand (COD) in the wastewater under the best working conditions (6.5 V, 0.1 M NaCl, 4 electrodes without initial pH adjustment) with total petroleum hydrocarbon (TPH) removal slightly higher than 80%. Aluminum release from the electrodes to the wastewater was found an important factor for the EC efficiency and closely related with several operational factors. Application of EC allowed to increase the biodegradability of the sample from 0.015, rated as non-biodegradable, up to 0.5 widely considered as biodegradable. The effluent was further treated using an aerobic biofilter inoculated with a bacterial consortium including gram positive and gram negative strains and tested for COD and TPH removal from the EC treated effluent during 30 days. Cell count showed the typical bacteria growth starting at day three and increasing up to a maximum after eight days. After day eight, cell growth showed a plateau which agreed with the highest decrease on contaminant concentration. Final TPHs concentration was found about 600 mgL-1 after 30 days whereas COD concentration after biological treatment was as low as 933 mgL-1. The coupled EC-aerobic biofilter was capable to remove up to 98% of the total TPH amount and over 95% of the COD load in the oil refinery wastewater.

  3. Current technologies for biological treatment of textile wastewater--a review.

    PubMed

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  4. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun

    2013-09-01

    Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.

  5. Modeling of wastewater treatment system of car parks from petroleum products

    NASA Astrophysics Data System (ADS)

    Savdur, S. N.; Stepanova, Yu V.; Kodolova, I. A.; Fesina, E. L.

    2018-05-01

    The paper discusses the technological complex of wastewater treatment of car parks from petroleum products. Based on the review of the main modeling methods of discrete-continuous chemical and engineering processes, it substantiates expediency of using the theory of Petri nets (PN) for modeling the process of wastewater treatment of car parks from petroleum products. It is proposed to use a modification of Petri nets which is focused on modeling and analysis of discrete-continuous chemical and engineering processes by prioritizing transitions, timing marks in positions and transitions. A model in the form of modified Petri nets (MPN) is designed. A software package to control the process for wastewater treatment is designed by means of SCADA TRACE MODE.

  6. Biomass characterization of laboratory-scale thermophilic-mesophilic wastewater treatment processes.

    PubMed

    Suvilampi, J; Lehtomäki, A; Rintala, J

    2006-01-01

    Two thermophilic-mesophilic wastewater treatment processes, one as the combination of the thermophilic activated sludge process (ASP), followed by the mesophilic ASP and the other as thermophilic suspended carrier biofilm process (SCBP), followed by the mesophilic ASP, were used to study sludge characteristics and floc formation. Thermophilic bacteria in both ASP and SCBP were able to form flocs, which were <50 microm in size and had a weak structure and irregular shape. Flocs in both the mesophilic ASPs were larger in size (50-500 microm) and had more compact structures. Filamentous bacteria played an important role in both the thermophilic and mesophilic processes by forming bridges between small flocs. Both thermophilic processes showed a high density of dispersed particles, such as free bacteria. When hydraulic retention time (HRT) was decreased the biofilm was retained in the thermophilic SCBP better than the flocs in the thermophilic ASP. The mesophilic ASPs efficiently removed dispersed particles originating from the thermophilic processes.

  7. Marine carbohydrates of wastewater treatment.

    PubMed

    Sudha, Prasad N; Gomathi, Thandapani; Vinodhini, P Angelin; Nasreen, K

    2014-01-01

    Our natural heritage (rivers, seas, and oceans) has been exploited, mistreated, and contaminated because of industrialization, globalization, population growth, urbanization with increased wealth, and more extravagant lifestyles. The scenario gets worse when the effluents or contaminants are discharged directly. So wastewater treatment is a very important and necessary in nowadays to purify wastewater before it enters a body of natural water, or it is applied to the land, or it is reused. Various methods are available for treating wastewater but with many disadvantages. Recently, numerous approaches have been studied for the development of cheaper and more effective technologies, both to decrease the amount of wastewater produced and to improve the quality of the treated effluent. Biosorption is an emerging technology, which uses natural materials as adsorbents for wastewater treatment. Low-cost adsorbents of polysaccharide-based materials obtained from marine, such as chitin, chitosan, alginate, agar, and carrageenan, are acting as rescue for wastewater treatment. This chapter reviews the treatment of wastewater up to the present time using marine polysaccharides and its derivatives. Special attention is paid to the advantages of the natural adsorbents, which are a wonderful gift for human survival. © 2014 Elsevier Inc. All rights reserved.

  8. A Guide for Developing Standard Operating Job Procedures for the Activated Sludge - Aeration & Sedimentation Process Wastewater Treatment Facility. SOJP No. 5.

    ERIC Educational Resources Information Center

    Mason, George J.

    This guide for developing standard operating job procedures for wastewater treatment facilities is devoted to the activated sludge aeration and sedimentation process. This process is for conversion of nonsettleable and nonfloatable materials in wastewater to settleable, floculated biological groups and separation of the settleable solids from the…

  9. Treatment of textile wastewaters using Eutectic Freeze Crystallization.

    PubMed

    Randall, D G; Zinn, C; Lewis, A E

    2014-01-01

    A water treatment process needs to recover both water and other useful products if the process is to be viewed as being financially and environmentally sustainable. Eutectic Freeze Crystallization (EFC) is one such sustainable water treatment process that is able to produce both pure ice (water) and pure salt(s) by operating at a specific temperature. The use of EFC for the treatment of water is particularly useful in the textile industry because ice crystallization excludes all impurities from the recovered water, including dyes. Also, EFC can produce various salts with the intention of reusing these salts in the process. This study investigated the feasibility of EFC as a treatment method for textile industry wastewaters. The results showed that EFC can be used to convert 95% of the wastewater stream to pure ice (98% purity) and sodium sulfate.

  10. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants.

    PubMed

    Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2015-10-01

    The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 μg L(-1), except for TDWTP-F (2.12 μg L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthetic olive mill wastewater treatment by Fenton's process in batch and continuous reactors operation.

    PubMed

    Esteves, Bruno M; Rodrigues, Carmen S D; Madeira, Luís M

    2017-11-04

    Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe 2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe 2+ ] = 100 ppm, [H 2 O 2 ] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD 5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD 5 /COD ratio also revealed an increase in the effluent's biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.

  12. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  13. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  14. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  15. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-wastewater tanks. 63.133 Section 63.133 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Chemical Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater...

  16. Real Science, Real Scientists: Student's Experiments with Natural and Artificial Wastewater Treatment in the Classroom

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim

    2006-01-01

    In this extended biology, ecology, and earth science activity, students construct hands-on models of natural wastewater treatment and wastewater treatment facilities to achieve an understanding of wastewater treatment process in nature and wastewater treatment facilities. During this simulation activity, students have opportunities to learn…

  17. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    PubMed

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  18. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes.

    PubMed

    Gao, Da-Wen; Wen, Zhi-Dan

    2016-01-15

    Phthalate esters are one of the most frequently detected persistent organic pollutants in the environment. A better understanding of their occurrence and degradation in the environment and during wastewater treatment processes will facilitate the development of strategies to reduce these pollutants and to bioremediate contaminated freshwater and soil. Phthalate esters occur at measurable levels in different environments worldwide. For example, the concentrations of dimethyl phthalate (DMP) in atmospheric particulate matter, fresh water and sediments, soil, and landfills are N.D.-10.4 ng/m(3), N.D.-31.7 μg/L, N.D.-316 μg/kg dry weight, and N.D.-200 μg/kg dry weight, N.D.-43.27 μg/L, respectively. Bis(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) are primary phthalate ester pollutants. Urbanization has increased the discharge of phthalate esters to atmospheric and aquatic environments, and the use of agricultural plastics has exacerbated soil contamination by phthalate esters in rural areas. Aerobic biodegradation is the primary manner of phthalate ester mineralization in the environment, and this process has been widely studied. Phthalate esters can be removed during wastewater treatment processes. The combination of different wastewater treatment technologies showed greater efficiency in the removal of phthalate esters than individual treatment steps, such as the combination of anaerobic wastewater treatment with a membrane bioreactor would increase the efficiency of phthalate ester removal from 65%-71% to 95%-97%. This review provides a useful framework to identify future research objectives to achieve the mineralization and elimination of phthalate esters in the environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Annealing optimization in the process of making membrane PSF19%DMFEVA2 for wastewater treatment of palm oil mill effluent

    NASA Astrophysics Data System (ADS)

    Said, A. A.; Mustafa

    2018-02-01

    A small proportion of the Palm Oil Mill Effluent (POME) treatment has used its wastewater to converted to methane gas which will then be converted again into electrical energy. However, for Palm Oil Mill whose has a value of Chemical Oxygen Demand in its wastewater is less than 60.000 mg / L this can’t so that the purpose wastewater treatment only to reach the standard that can be safe to dispose into the environment. Wastewater treatment systems that are general applied by Palm Oil Mill especially in North Sumatera are aerobic and anaerobic, this method takes a relatively long time due to very dependent on microbial activity. An alternative method for wastewater treatment offered is membrane technology because the process is much more effective, the time is relatively short, and expected to give more optimal result. The optimum membrane obtained is PSF19%DMFEVA2T75 membrane,while the parameter condition of the permeate analysis produced in the treatment of POME wastewater with membrane PSF19%DMFEVA2T75 obtained at pH = 7.0; TSS = 148 mg / L; BOD = 149 mg / L; And COD = 252 mg / L. The results obtained is accordance with the standard of the quality of POME.

  20. Analysis and treatment of industrial wastewater through chemical coagulation-adsorption process-A case study of Clariant Pakistan limited

    NASA Astrophysics Data System (ADS)

    Ali Shah, Syed Farman; Shah, Abdul Karim; Mehdi, Ahmad; Memon, Aziza Aftab; Harijan, Khanji; Ali, Zeenat M.

    2012-05-01

    Textile dye manufacture processes are known as the most polluting chemical processes of industrial sectors of the world. Colored wastewaters along with many polluting agents are troublesome. They are heavily polluted with dyes, textile auxiliaries and chemicals. Current study applies a coupled technology for wastewater treatment. Combined coagulation-adsorption process was utilized for treatment of complex nature effluents of dyes, binder emulsion, pigments and textile chemicals plants at Clariant Pakistan. Cost effective coagulant and adsorbent was selected by using waste material from a power generation unit of Water and Power Development Authority (WAPDA), Pakistan. The treated effluent could be reused. Alum+ Activated Carbon, Ferrous sulfate+ Activated Carbon, Ferric chloride + Activated Carbon. Almost complete decolourization was achieved along with reduction in COD up to 65%. Pre and post treatment, TDS, COD, Turbidity and suspended solids were improved.

  1. Engineering application of anaerobic ammonium oxidation process in wastewater treatment.

    PubMed

    Mao, Nianjia; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2017-08-01

    Anaerobic ammonium oxidation (Anammox), a promising biological nitrogen removal process, has been verified as an efficient, sustainable and cost-effective alternative to conventional nitrification and denitrification processes. To date, more than 110 full-scale anammox plants have been installed and are in operation, treating industrial NH 4 + -rich wastewater worldwide, and anammox-based technologies are flourishing. This review the current state of the art for engineering applications of the anammox process, including various anammox-based technologies, reactor selection and attempts to apply it at different wastewater plants. Process control and implementation for stable performance are discussed as well as some remaining issues concerning engineering application are exposed, including the start-up period, process disturbances, greenhouse gas emissions and especially mainstream anammox applications. Finally, further development of the anammox engineering application is proposed in this review.

  2. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Treatment of cotton textile wastewater using lime and ferrous sulfate.

    PubMed

    Georgiou, D; Aivazidis, A; Hatiras, J; Gimouhopoulos, K

    2003-05-01

    This technical note summarizes the results of a textile wastewater treatment process aiming at the destruction of the wastewater's color by means of coagulation/flocculation techniques using ferrous sulfate and/or lime. All the experiments were run in a pilot plant that simulated an actual industrial wastewater treatment plant. Treatment with lime alone proved to be very effective in removing the color (70-90%) and part of the COD (50-60%) from the textile wastewater. Moreover, the treatment with ferrous sulfate regulating the pH in the range 9.0+/-0.5 using lime was equally effective. Finally, the treatment with lime in the presence of increasing doses of ferrous sulfate was tested successfully, however; it proved to be very costly mainly due to the massive production of solids that precipitated.

  4. A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process.

    PubMed

    Choi, D J; Park, H

    2001-11-01

    For control and automation of biological treatment processes, lack of reliable on-line sensors to measure water quality parameters is one of the most important problems to overcome. Many parameters cannot be measured directly with on-line sensors. The accuracy of existing hardware sensors is also not sufficient and maintenance problems such as electrode fouling often cause trouble. This paper deals with the development of software sensor techniques that estimate the target water quality parameter from other parameters using the correlation between water quality parameters. We focus our attention on the preprocessing of noisy data and the selection of the best model feasible to the situation. Problems of existing approaches are also discussed. We propose a hybrid neural network as a software sensor inferring wastewater quality parameter. Multivariate regression, artificial neural networks (ANN), and a hybrid technique that combines principal component analysis as a preprocessing stage are applied to data from industrial wastewater processes. The hybrid ANN technique shows an enhancement of prediction capability and reduces the overfitting problem of neural networks. The result shows that the hybrid ANN technique can be used to extract information from noisy data and to describe the nonlinearity of complex wastewater treatment processes.

  5. The role of sulfate in aerobic granular sludge process for emerging sulfate-laden wastewater treatment.

    PubMed

    Xue, Weiqi; Hao, Tianwei; Mackey, Hamish R; Li, Xiling; Chan, Richard C; Chen, Guanghao

    2017-11-01

    Sulfate-rich wastewaters pose a major threat to mainstream wastewater treatment due to the unpreventable production of sulfide and associated shift in functional bacteria. Aerobic granular sludge could mitigate these challenges in view of its high tolerance and resilience against changes in various environmental conditions. This study aims to confirm the feasibility of aerobic granular sludge in the treatment of sulfate containing wastewater, investigate the impact of sulfate on nutrient removal and granulation, and reveal metabolic relationships in the above processes. Experiments were conducted using five sequencing batch reactors with different sulfate concentrations operated under alternating anoxic/aerobic condition. Results showed that effect of sulfate on chemical oxygen demand (COD) removal is negligible, while phosphate removal was enhanced from 12% to 87% with an increase in sulfate from 0 to 200 mg/L. However, a long acclimatization of the biomass (more than 70 days) is needed at a sulfate concentration of 500 mg/L and a total deterioration of phosphate removal at 1000 mg/L. Batch tests revealed that sulfide promoted volatile fatty acids (VFAs) uptake, producing more energy for phosphate uptake when sulfate concentrations were beneath 200 mg/L. However, sulfide detoxification became energy dominating, leaving insufficient energy for Polyhydroxyalkanoate (PHA) synthesis and phosphate uptake when sulfate content was further increased. Granulation accelerated with increasing sulfate levels by enhanced production of N-Acyl homoserine lactones (AHLs), a kind of quorum sensing (QS) auto-inducer, using S-Adenosyl Methionine (SAM) as primer. The current study demonstrates interactions among sulfate metabolism, nutrients removal and granulation, and confirms the feasibility of using the aerobic granular sludge process for sulfate-laden wastewaters treatment with low to medium sulfate content. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A multilevel reuse system with source separation process for printing and dyeing wastewater treatment: A case study.

    PubMed

    Wang, Rui; Jin, Xin; Wang, Ziyuan; Gu, Wantao; Wei, Zhechao; Huang, Yuanjie; Qiu, Zhuang; Jin, Pengkang

    2018-01-01

    This paper proposes a new system of multilevel reuse with source separation in printing and dyeing wastewater (PDWW) treatment in order to dramatically improve the water reuse rate to 35%. By analysing the characteristics of the sources and concentrations of pollutants produced in different printing and dyeing processes, special, highly, and less contaminated wastewaters (SCW, HCW, and LCW, respectively) were collected and treated separately. Specially, a large quantity of LCW was sequentially reused at multiple levels to meet the water quality requirements for different production processes. Based on this concept, a multilevel reuse system with a source separation process was established in a typical printing and dyeing enterprise. The water reuse rate increased dramatically to 62%, and the reclaimed water was reused in different printing and dyeing processes based on the water quality. This study provides promising leads in water management for wastewater reclamation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Economic feasibility study for new technological alternatives in wastewater treatment processes: a review.

    PubMed

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón

    2012-01-01

    The concept of sustainability involves the integration of economic, environmental, and social aspects and this also applies in the field of wastewater treatment. Economic feasibility studies are a key tool for selecting the most appropriate option from a set of technological proposals. Moreover, these studies are needed to assess the viability of transferring new technologies from pilot-scale to full-scale. In traditional economic feasibility studies, the benefits that have no market price, such as environmental benefits, are not considered and are therefore underestimated. To overcome this limitation, we propose a new methodology to assess the economic viability of wastewater treatment technologies that considers internal and external impacts. The estimation of the costs is based on the use of cost functions. To quantify the environmental benefits from wastewater treatment, the distance function methodology is proposed to estimate the shadow price of each pollutant removed in the wastewater treatment. The application of this methodological approach by decision makers enables the calculation of the true costs and benefits associated with each alternative technology. The proposed methodology is presented as a useful tool to support decision making.

  8. AUTOMATED MONITORING OF WASTEWATER TREATMENT EFFICIENCY - PHASE I

    EPA Science Inventory

    Wastewater treatments minimize the transmission of pathogens and are required by EPA with established treatment and monitoring requirements. The efficiency of treatment processes is determined by measuring the inactivation of indicator organisms (e.g., fecal coliform...

  9. Anaerobic treatment of municipal wastewater using the UASB-technology.

    PubMed

    Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2007-01-01

    The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO(2) emission. With the anaerobic treatment of municipal wastewater, not only can the CO(2) emission be reduced but "clean" energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO(2) emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates.

  10. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    PubMed

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  11. Occurrence of cyclophosphamide and ifosfamide in aqueous environment and their removal by biological and abiotic wastewater treatment processes.

    PubMed

    Česen, Marjeta; Kosjek, Tina; Laimou-Geraniou, Maria; Kompare, Boris; Širok, Brane; Lambropolou, Dimitra; Heath, Ester

    2015-09-15

    Cytostatic drug residues in the aqueous environment are of concern due to their possible adverse effects on non-target organisms. Here we report the occurrence and removal efficiency of cyclophosphamide (CP) and ifosfamide (IF) by biological and abiotic treatments including advanced oxidation processes (AOPs). Cyclophosphamide was detected in hospital wastewaters (14-22,000 ng L(-1)), wastewater treatment plant influents (19-27 ng L(-1)) and effluent (17 ng L(-1)), whereas IF was detected only in hospital wastewaters (48-6800 ng L(-1)). The highest removal efficiency during biological treatment (attached growth biomass in a flow through bioreactor) was 59 ± 15% and 35 ± 9.3% for CP and IF, respectively. Also reported are the removal efficiencies of both compounds from wastewater using hydrodynamic cavitation (HC), ozonation (O3) and/or UV, either individually or in combination with hydrogen peroxide (H2O2). Hydrodynamic cavitation did not remove CP and IF to any significant degree. The highest removal efficiencies: 99 ± 0.71% for CP and 94 ± 2.4% for IF, were achieved using UV/O3/H2O2 at 5 g L(-1) for 120 min. When combined with biological treatment, removal efficiencies were >99% for both compounds. This is the first report of combined biological and AOP treatment of CP and IF from wastewater with a removal efficiency >99%. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Survival, reproduction, growth, and parasite resistance of aquatic organisms exposed on-site to wastewater treated by advanced treatment processes.

    PubMed

    Schlüter-Vorberg, Lisa; Knopp, Gregor; Cornel, Peter; Ternes, Thomas; Coors, Anja

    2017-05-01

    Advanced wastewater treatment technologies are generally known to be an effective tool for reducing micropollutant discharge into the aquatic environment. Nevertheless, some processes such as ozonation result in stable transformation products with often unknown toxicity. In the present study, whole effluents originating from nine different steps of advanced treatment combinations were compared for their aquatic toxicity. Assessed endpoints were survival, growth and reproduction of Lumbriculus variegatus, Daphnia magna and Lemna minor chronically exposed in on-site flow-through tests based on standard guidelines. The treatment combinations were activated sludge treatment followed by ozonation with subsequent filtration by granular activated carbon or biofilters and membrane bioreactor treatment of raw wastewater followed by ozonation. Additionally, the impact of treated wastewater on the immune response of invertebrates was investigated by challenging D. magna with a bacterial endoparasite. Conventionally treated wastewater reduced reproduction of L. variegatus by up to 46%, but did not affect D. magna and L. minor with regard to survival, growth, reproduction and parasite resistance. Instead, parasite susceptibility was significantly reduced in D. magna exposed to conventionally treated as well as ozonated wastewater in comparison to D. magna exposed to the medium control. None of the three test organisms provided clear evidence that wastewater ozonation leads to increased aquatic toxicity. Rather than to the presence of toxic transformation products, the affected performance of L. variegatus could be linked to elevated concentrations of ammonium and nitrite that likely resulted from treatment failures. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Use of a Battery of Chemical and Ecotoxicological Methods for the Assessment of the Efficacy of Wastewater Treatment Processes to Remove Estrogenic Potency

    PubMed Central

    Beresford, Nicola; Baynes, Alice; Kanda, Rakesh; Mills, Matthew R.; Arias-Salazar, Karla; Collins, Terrence J.; Jobling, Susan

    2016-01-01

    Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies. PMID:27684328

  14. ETV REPORT - EVALUATION OF DAVIS TECHNOLOGIES INTERNATIONAL CORP. - INDUSTRIAL WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    Abstract: Evaluation of Davis Technologies International Corp. Industrial Wastewater Treatment Plant

    The Davis Technologies International Corp. (DTIC) Industrial Wastewater Treatment Plant (IWTP) was tested, under actual production conditions, processing metalworking and ...

  15. Efficacy of two wastewater treatment plants in removing genotoxins.

    PubMed

    Jolibois, B; Guerbet, M

    2005-04-01

    The genotoxic potential of influents and effluents of two different wastewater treatment plants (WTP-A and WTP-B) located in the Rouen, France, area was evaluated by the SOS chromotest without metabolic activation (on Escherichia coli PQ37) and the Ames fluctuation test (on Salmonella typhimurium strains TA 98, 100, TA 102) with and without metabolic activation. The wastewater samples were taken during two 1-week periods in January and April 2003. The simultaneous use of the SOS chromotest and Ames fluctuation test allowed us to evaluate the efficacy of the wastewater treatment plants at removing genotoxins. Genotoxins were detected with the Ames test but not with the SOS chromotest. Out of a total of 24 influents tested (14 for WTP-A and 10 for WTP-B), almost all were genotoxic in at least one Ames test strain (71% for WTP-A and 100% for WTP-B). In contrast, all of the tested effluents were nongenotoxic. This work showed that the treatment process used in the 2 wastewater treatment plants studied (activated sludge) was able to remove the genotoxins detected in their influents. Nevertheless, studies could be undertaken to determine which step of the treatment process removes genotoxins and whether WTP sludge use could be a source of genotoxic contamination for humans and the environment.

  16. Optimization of urban wastewater treatment plants process with low C/N ratio

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Xu, G. M.; Chen, J.; Chen, B.; Lv, Z.; Yang, Y. A.

    2016-08-01

    In southern China, the inflow of water to wastewater treatment plants has a lower concentration of organic matter. This causes treatment plants to face issues in the denitrification and phosphorus removal processes such as deficient carbon sources, high energy consumption, and unstable nitrogen removal. To resolve these issues, we propose the reconstruction of the internal reflux port, improvement of the internal reflux ratio to 200%, the addition of carbon source to anoxic zone, and the addition of phosphorus removal agents in secondary settling tank. The results of study show significantly improved efficiency of nitrogen and phosphorus removal, which ensures the stability of subsequent supply of reused water.

  17. A Guide for Developing Standard Operating Job Procedures for the Tertiary Chemical Treatment - Lime Precipitation Process Wastewater Treatment Facility. SOJP No. 6.

    ERIC Educational Resources Information Center

    Petrasek, Al, Jr.

    This guide describes the standard operating job procedures for the tertiary chemical treatment - lime precipitation process of wastewater treatment plants. Step-by-step instructions are given for pre-start up, start-up, continuous operation, and shut-down procedures. In addition, some theoretical material is presented along with some relevant…

  18. Removal of indicator organisms by chemical treatment of wastewater.

    PubMed

    De Zutter, L; van Hoof, J

    1981-01-01

    Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.

  19. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes.

    PubMed

    Ni, Bing-Jie; Yuan, Zhiguo

    2015-12-15

    Nitrous oxide (N2O) can be emitted from wastewater treatment contributing to its greenhouse gas footprint significantly. Mathematical modeling of N2O emissions is of great importance toward the understanding and reduction of the environmental impact of wastewater treatment systems. This article reviews the current status of the modeling of N2O emissions from wastewater treatment. The existing mathematical models describing all the known microbial pathways for N2O production are reviewed and discussed. These included N2O production by ammonia-oxidizing bacteria (AOB) through the hydroxylamine oxidation pathway and the AOB denitrification pathway, N2O production by heterotrophic denitrifiers through the denitrification pathway, and the integration of these pathways in single N2O models. The calibration and validation of these models using lab-scale and full-scale experimental data is also reviewed. We conclude that the mathematical modeling of N2O production, while is still being enhanced supported by new knowledge development, has reached a maturity that facilitates the estimation of site-specific N2O emissions and the development of mitigation strategies for a wastewater treatment plant taking into the specific design and operational conditions of the plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.

    PubMed

    Tsioptsias, C; Petridis, D; Athanasakis, N; Lemonidis, I; Deligiannis, A; Samaras, P

    2015-12-01

    Molasses wastewater is a high strength effluent of food industry such as distilleries, sugar and yeast production plants etc. It is characterized by a dark brown color and exhibits a high content in substances of recalcitrant nature such as melanoidins. In this study, electrocoagulation (EC) was studied as a post treatment step for biologically treated molasses wastewater with high nitrogen content obtained from a baker's yeast industry. Iron and copper electrodes were used in various forms; the influence and interaction of current density, molasses wastewater dilution, and reaction time, on COD, color, ammonium and nitrate removal rates and operating cost were studied and optimized through Box Behnken's response surface analysis. Reaction time varied from 0.5 to 4 h, current density varied from 5 to 40 mA/cm(2) and dilution from 0 to 90% (v/v expressed as water concentration). pH, conductivity and temperature measurements were also carried out during each experiment. From preliminary experiments, it was concluded that the application of aeration and sample dilution, considerably influenced the kinetics of the process. The obtained results showed that COD removal varied between 10 and 54%, corresponding to an operation cost ranging from 0.2 to 33 euro/kg COD removed. Significant removal rates were obtained for nitrogen as nitrate and ammonium (i.e. 70% ammonium removal). A linear relation of COD and ammonium to the design parameters was observed, while operation cost and nitrate removal responded in a curvilinear function. A low ratio of electrode surface to treated volume was used, associated to a low investment cost; in addition, iron wastes could be utilized as low cost electrodes i.e. iron fillings from lathes, aiming to a low operation cost due to electrodes replacement. In general, electrocoagulation proved to be an effective and low cost process for biologically treated molasses-wastewater treatment for additional removal of COD and nitrogen content and

  1. Domestic wastewater treatment as a net energy producer--can this be achieved?

    PubMed

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  2. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered processmore » equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.« less

  3. Bacterial community analysis of anoxic/aeration (A/O) system in a combined process for gibberellin wastewater treatment

    PubMed Central

    Ouyang, Erming; Lu, Yao; Ouyang, Jiating; Wang, Lele; Wang, Xiaohui

    2017-01-01

    Gibberellin wastewater cannot be directly discharged without treatment due to its high concentrations of sulfate and organic compounds and strong acidity. Therefore, multi-stage anaerobic bioreactor + micro-aerobic+ anoxic/aeration (A/O) + biological contact oxidation combined processes are used to treat gibberellin wastewater. However, knowledge of the treatment effects of the A/O process and bacterial community structure in the aeration tank reactors of such systems is sparse. Therefore, this study was conducted to investigate the treatment effects and operation of the A/O process on gibberellin wastewater, as well as changes in the bacterial community structure of activated sludge in the aeration tank during treatment. Moreover, removal was examined based on evaluation of effluent after A/O treatment. Although influent chemical oxygen demand (COD), NH3-N and total phosphorus (TP) fluctuated, effluent COD, NH3-N and TP remained stable. Moreover, average COD, NH3-N and TP removal efficiency were 68.41%, 93.67% and 45.82%, respectively, during the A/O process. At the phylum level, Proteobacteria was the dominant phylum in all samples, followed by Chloroflexi, Bacteroidetes and Actinobacteria. Proteobacteria played an important role in the removal of organic matter. Chloroflexi was found to be responsible for the degradation of carbohydrates and Bacteroidetes also had been found to be responsible for the degradation of complex organic matters. Actinobacteria are able to degrade a variety of environmental chemicals. Additionally, Anaerolineaceae_uncultured was the major genus in samples collected on May 25, 2015, while Novosphingobium and Nitrospira were dominant in most samples. Nitrosomonas are regarded as the dominant ammonia-oxidizing bacteria, while Nitrospira are the main nitrite-oxidizing bacteria. Bacterial community structure varied considerably with time, and a partial Mantel test showed a highly significant positive correlation between bacterial community

  4. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments.

    PubMed

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub; Romalde, Jesús L

    2016-07-01

    Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 10(3) genome copies [GC]/ml) and influents (2.7 × 10(3) GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions

  5. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments

    PubMed Central

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub

    2016-01-01

    ABSTRACT Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 103 genome copies [GC]/ml) and influents (2.7 × 103 GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. IMPORTANCE This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level

  6. Microwave enhanced chemical reduction process for nitrite-containing wastewater treatment using sulfaminic acid.

    PubMed

    Li, Nan; Wang, Peng; Liu, Qingsong; Cao, Hailei

    2010-01-01

    High-concentration nitrite-containing wastewater that presents extreme toxicity to human health and organisms is difficult to be treated using traditional biological process. In this study, a novel microwave-enhanced chemical reduction process (MECRP) using sulfaminic acid (SA) was proposed as a new manner to treat such type of wastewater. Based on lab-scale experiments, it was shown that 75%-80% nitrite (NO2-) could be removed within time as short as 4 min under 50 W microwave irradiation in pH range 5-10 when molar ratio of SA to nitrite (SA/NO2-) was 0.8. Pilot-scale investigations demonstrated that MECRP was able to achieve nitrite and chemical oxygen demand (COD) removal with efficiency up to 80% and 20%, respectively under operating conditions of SA concentration 80 kg/m3, SA/NO2- ratio 0.8, microwave power 3.4 kW, and stirring time 3 min. Five-day biological oxygen demand (BOD5)/COD value of treated effluent after MECRP was increased from 0.05 to 0.36 (by 620%), which clearly suggested a considerable improvement of biodegradability for subsequent biological treatment. This study provided a demonstration of using microwave irradiation to enhance reaction between SA and nitrite in a short time, in which nitrite in wastewater was completely converted into nitrogen gas without leaving any sludge and secondary pollutants.

  7. Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater.

    PubMed

    Han, Gang; Liang, Can-Zeng; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-03-15

    A novel combination of forward osmosis (FO) process with coagulation/flocculation (CF) (FO-CF) has been experimentally conceived for the treatment and reuse of textile wastewater. FO is employed to spontaneously recover water from the wastewater via osmosis and thus effectively reduces its volume with a dramatically enhanced dye concentration. CF is then applied to precipitate and remove dyes from the FO concentrated stream with much improved efficiency and reduced chemical dosage. The FO-CF hybrid system exhibits unique advantages of high water flux and recovery rate, well controlled membrane fouling, high efficiency, and minimal environmental impact. Using a lab-made thin-film composite (TFC) FO membrane, an initial water flux (Jw) of 36.0 L m(-2) h(-1) with a dye rejection of 99.9% has been demonstrated by using 2 M NaCl as the draw solution and synthetic textile wastewater containing multiple textile dyes, inorganic salts and organic additives as the feed under the FO mode. The Jw could be maintained at a high value of 12.0 L m(-2) h(-1) even when the recovery rate of the wastewater reaches 90%. Remarkable reverse fouling behavior has also been observed where the Jw of the fouled membrane can be almost fully restored to the initial value by physical flushing without using any chemicals. Due to the great dye concentration in the FO concentrated wastewater stream, the CF process could achieve more than 95% dye removal with a small dosage of coagulants and flocculants at 500-1000 ppm. The newly developed FO-CF hybrid process may open up new exploration of alternative technologies for the effective treatment and reuse of textile effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 40 CFR 63.145 - Process wastewater provisions-test methods and procedures to determine compliance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-test... Operations, and Wastewater § 63.145 Process wastewater provisions—test methods and procedures to determine... analytical method for wastewater which has that compound as a target analyte. (7) Treatment using a series of...

  9. 40 CFR 63.145 - Process wastewater provisions-test methods and procedures to determine compliance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-test... Operations, and Wastewater § 63.145 Process wastewater provisions—test methods and procedures to determine... analytical method for wastewater which has that compound as a target analyte. (7) Treatment using a series of...

  10. Review of cost versus scale: water and wastewater treatment and reuse processes.

    PubMed

    Guo, Tianjiao; Englehardt, James; Wu, Tingting

    2014-01-01

    The US National Research Council recently recommended direct potable water reuse (DPR), or potable water reuse without environmental buffer, for consideration to address US water demand. However, conveyance of wastewater and water to and from centralized treatment plants consumes on average four times the energy of treatment in the USA, and centralized DPR would further require upgradient distribution of treated water. Therefore, information on the cost of unit treatment processes potentially useful for DPR versus system capacity was reviewed, converted to constant 2012 US dollars, and synthesized in this work. A logarithmic variant of the Williams Law cost function was found applicable over orders of magnitude of system capacity, for the subject processes: activated sludge, membrane bioreactor, coagulation/flocculation, reverse osmosis, ultrafiltration, peroxone and granular activated carbon. Results are demonstrated versus 10 DPR case studies. Because economies of scale found for capital equipment are counterbalanced by distribution/collection network costs, further study of the optimal scale of distributed DPR systems is suggested.

  11. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  12. Comparison of coagulation, ozone and ferrate treatment processes for color, COD and toxicity removal from complex textile wastewater.

    PubMed

    Malik, Sameena N; Ghosh, Prakash C; Vaidya, Atul N; Waindeskar, Vishal; Das, Sera; Mudliar, Sandeep N

    2017-09-01

    In this study, the comparative performance of coagulation, ozone, coagulation + ozone + coagulation and potassium ferrate processes to remove chemical oxygen demand (COD), color, and toxicity from a highly polluted textile wastewater were evaluated. Experimental results showed that ferrate alone had no effect on COD, color and toxicity removal. Whereas, in combination with FeSO 4 , it has shown the highest removal efficiency of 96.5%, 83% and 75% for respective parameters at the optimal dose of 40 mgL -1 + 3 ml FeSO 4 (1 M) in comparison with other processes. A seed germination test using seeds of Spinach (Spinacia oleracea) also indicated that ferrate was more effective in removing toxicity from contaminated textile wastewater. Potassium ferrate also produces less sludge with maximum contaminant removal, thereby making the process more economically feasible. Fourier transform infrared spectroscopy (FTIR) analysis also shows the cleavage of the chromophore group and degradation of textile wastewater during chemical and oxidation treatment processes.

  13. Antibiotic resistance genes show enhanced mobilization through suspended growth and biofilm-based wastewater treatment processes.

    PubMed

    Petrovich, Morgan; Chu, Binh; Wright, Dorothy; Griffin, Jim; Elfeki, Maryam; Murphy, Brian T; Poretsky, Rachel; Wells, George

    2018-05-01

    Wastewater treatment plants (WWTPs) are known to harbor antibiotic resistance genes (ARGs) that are disseminated into the environment via effluent. However, few studies have compared abundance, mobilization and selective pressures for ARGs in WWTPs as a function of variations in secondary treatment bioprocesses. We used shotgun metagenomics to provide a comprehensive analysis of ARG composition, relationship to mobile genetic elements and co-occurrences with antibiotic production genes (APGs) throughout two full-scale municipal WWTPs, one of which employs biofilm-based secondary treatment and another that uses a suspended growth system. Results showed that abundances of ARGs declined by over 90% per genome equivalent in both types of wastewater treatment processes. However, the fractions of ARGs associated with mobile genetic elements increased substantially between influent and effluent in each plant, indicating significant mobilization of ARGs throughout both treatment processes. Strong positive correlations between ARGs and APGs were found for the aminoglycoside antibiotic class in the suspended growth system and for the streptogramin antibiotic class in the biofilm system. The biofilm and suspended growth WWTPs exhibited similarities in ARG abundances, composition and mobilization trends. However, clear differences were observed for within-plant ARG persistence. These findings suggest that both biofilm and suspended growth-based WWTPs may promote genetic mobilization of persistent ARGs that are then disseminated in effluent to receiving water bodies.

  14. Carbon footprint of four different wastewater treatment scenarios

    NASA Astrophysics Data System (ADS)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  15. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    PubMed

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Catalytic ozonation-biological coupled processes for the treatment of industrial wastewater containing refractory chlorinated nitroaromatic compounds*

    PubMed Central

    Li, Bing-zhi; Xu, Xiang-yang; Zhu, Liang

    2010-01-01

    A treatability study of industrial wastewater containing chlorinated nitroaromatic compounds (CNACs) by a catalytic ozonation process (COP) with a modified Mn/Co ceramic catalyst and an aerobic sequencing batch reactor (SBR) was investigated. A preliminary attempt to treat the diluted wastewater with a single SBR resulted in ineffective removal of the color, ammonia, total organic carbon (TOC) and chemical oxygen demand (COD). Next, COP was applied as a pretreatment in order to obtain a bio-compatible wastewater for SBR treatment in a second step. The effectiveness of the COP pretreatment was assessed by evaluating wastewater biodegradability enhancement (the ratio of biology oxygen demand after 5 d (BOD5) to COD), as well as monitoring the evolution of TOC, carbon oxidation state (COS), average oxidation state (AOS), color, and major pollutant concentrations with reaction time. In the COP, the catalyst preserved its catalytic properties even after 70 reuse cycles, exhibiting good durability and stability. The performance of SBR to treat COP effluent was also examined. At an organic loading rate of 2.0 kg COD/(m3·d), with hydraulic retention time (HRT)=10 h and temperature (30±2) °C, the average removal efficiencies of NH3-N, COD, BOD5, TOC, and color in a coupled COP/SBR process were about 80%, 95.8%, 93.8%, 97.6% and 99.3%, respectively, with average effluent concentrations of 10 mg/L, 128 mg/L, 27.5 mg/L, 25.0 mg/L, and 20 multiples, respectively, which were all consistent with the national standards for secondary discharge of industrial wastewater into a public sewerage system (GB 8978-1996). The results indicated that the coupling of COP with a biological process was proved to be a technically and economically effective method for treating industrial wastewater containing recalcitrant CNACs. PMID:20205304

  17. Combined ultrasound and Fenton (US-Fenton) process for the treatment of ammunition wastewater.

    PubMed

    Li, Yangang; Hsieh, Wen-Pin; Mahmudov, Rovshan; Wei, Xiaomei; Huang, C P

    2013-01-15

    A wastewater collected from a regional ammunition process site was treated with combined US-Fenton process. Factors such as pH, temperature, reaction time, US energy intensity, initial TOC concentration, and the molar ratio of iron to hydrogen peroxide that might affect the treatment efficiency were investigated. The removal of TOC, COD, and color increased with decreasing pH and increasing temperature and US intensity. Color was removed rapidly reaching 85% in 10 min; whereas TOC and COD were removed slowly, only about 20% for both in 10 min and approaching 65 and 92% removal in 120 min, respectively. The optimal molar ratio of Fe(II) to H(2)O(2) for TOC and COD removal was 500. The results showed that the change in the average carbon oxidation number (ACON) was parallel to that of the removal efficiency of TOC, COD, and color. The toxicity of treated wastewater was reduced as assessed by the respiration rate of Escherichia coli. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Nanoparticles in Constanta-North Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  19. Treatment of winery wastewater by electrochemical methods and advanced oxidation processes.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Mikelic, Ivanka Lovrencic; Gustek, Stefica Findri

    2013-01-01

    The aim of this research was development of new system for the treatment of highly polluted wastewater (COD = 10240 mg/L; SS = 2860 mg/L) originating from vine-making industry. The system consisted of the main treatment that included electrochemical methods (electro oxidation, electrocoagulation using stainless steel, iron and aluminum electrode sets) with simultaneous sonication and recirculation in strong electromagnetic field. Ozonation combined with UV irradiation in the presence of added hydrogen peroxide was applied for the post-treatment of the effluent. Following the combined treatment, the final removal efficiencies of the parameters color, turbidity, suspended solids and phosphates were over 99%, Fe, Cu and ammonia approximately 98%, while the removal of COD and sulfates was 77% and 62%, respectively. A new approach combining electrochemical methods with ultrasound in the strong electromagnetic field resulted in significantly better removal efficiencies for majority of the measured parameters compared to the biological methods, advanced oxidation processes or electrocoagulation. Reduction of the treatment time represents another advantage of this new approach.

  20. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    PubMed

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia).

    PubMed

    Jemli, Meryem; Karray, Fatma; Feki, Firas; Loukil, Slim; Mhiri, Najla; Aloui, Fathi; Sayadi, Sami

    2015-04-01

    The present work presents a study of the biological treatment of fish processing wastewater at salt concentration of 55 g/L. Wastewater was treated by both continuous stirred-tank reactor (CSTR) and membrane bioreactor (MBR) during 50 and 100 days, respectively. These biological processes involved salt-tolerant bacteria from natural hypersaline environments at different organic loading rates (OLRs). The phylogenetic analysis of the corresponding excised DGGE bands has demonstrated that the taxonomic affiliation of the most dominant species includes Halomonadaceae and Flavobacteriaceae families of the Proteobacteria (Gamma-proteobacteria class) and the Bacteroidetes phyla, respectively. The results of MBR were better than those of CSTR in the removal of total organic carbon with efficiencies from 97.9% to 98.6%. Nevertheless, salinity with increasing OLR aggravates fouling that requires more cleaning for a membrane in MBR while leads to deterioration of sludge settleability and effluent quality in CSTR. Copyright © 2015. Published by Elsevier B.V.

  2. A process for polyhydroxyalkanoate (PHA) production from municipal wastewater treatment with biological carbon and nitrogen removal demonstrated at pilot-scale.

    PubMed

    Bengtsson, Simon; Karlsson, Anton; Alexandersson, Tomas; Quadri, Luca; Hjort, Markus; Johansson, Peter; Morgan-Sagastume, Fernando; Anterrieu, Simon; Arcos-Hernandez, Monica; Karabegovic, Lamija; Magnusson, Per; Werker, Alan

    2017-03-25

    A process was developed for biological treatment of municipal wastewater for carbon and nitrogen removal while producing added-value polyhydroxyalkanoates (PHAs). The process comprised steps for pre-denitrification, nitrification and post-denitrification and included integrated fixed-film activated sludge (IFAS) with biofilm carrier media to support nitrification. In a pilot-scale demonstration (500-800L), wastewater treatment performance, in line with European standards, were achieved for total chemical oxygen demand (83% removal) and total nitrogen (80% removal) while producing a biomass that was able to accumulate up to 49% PHA of volatile suspended solids with acetic acid or fermented organic residues as substrates. Robust performance in wastewater treatment and enrichment of PHA-producing biomass was demonstrated under realistic conditions including influent variability during 225days of operation. The IFAS system was found to be advantageous since maintaining nitrification on the biofilm allowed for a relatively low (2days) solids retention time (SRT) for the suspended biomass in the bulk phase. Lower SRT has advantages in higher biomass yield and higher active fraction in the biomass which leads to higher PHA productivity and content. The outcomes show that production of added-value biopolymers may be readily integrated with carbon and nitrogen removal from municipal wastewater. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. General Characteristics and Treatment Possibilities of
Dairy Wastewater – A Review

    PubMed Central

    2017-01-01

    Summary The milk processing industry is one of the world’s staple industries, thus the treatment possibilities of dairy effluents have been attracting more and more attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described. Different procedures applied for dairy wastewater management are summarised. Attention is focused on in-factory treatment technologies with the emphasis on biological processes. Aerobic and anaerobic methods with both their advantages and disadvantages are discussed in detail. Consecutive anaerobic and aerobic systems are analysed, too. Finally, future research niches are identified. PMID:28559730

  4. The use of mathematical models in teaching wastewater treatment engineering.

    PubMed

    Morgenroth, E; Arvin, E; Vanrolleghem, P

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.

  5. ONSITE WASTEWATER TREATMENT AND DISPOSAL SYSTEMS (1980 EDITION) AND ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL (2002 EDITION)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) first issued detailed guidance on the design, construction, and operation of onsite wastewater treatment systems (OWTSs) in 1980. Design Manual: Onsite Wastewater Treatment and Disposal Systems (USEPA.1980) was the most comprehens...

  6. Bio-desulfurization and denitrification by anaerobic-anoxic process for the treatment of wastewater from flue gas washing.

    PubMed

    Song, Ziyu; Zhou, Xuemei; Li, Yuguang; Yang, Maohua; Xing, Jianmin

    2013-01-01

    For amine-based carbon dioxide capture, nitrogen oxides and sulfur oxides were the main pollutants that had a negative effect on the regeneration of solvent. Before carbon dioxide capture, the sulfur oxides in flue gas should be removed by the method of calcium salt, and then washed by alkaline solution to eliminate the residual nitrogen oxides and sulfur oxides. The washing wastewater containing sulfate and nitrate needs to be treated. In this study, a novel anaerobic-anoxic process was built up for the treatment of this washing wastewater. Nitrate was reduced to nitrogen by denitrifying bacteria. Sulfate was firstly reduced to sulfide by sulfate reducing bacteria, and then selectively oxidized to element sulfur by sulfide oxidizing bacteria. The treated liquid could be reused as absorption after the adjustment of pH value. The performances of this bioprocess were investigated under various pH values and S/N ratios. It was found that the optimal pH value of influent was 6.0, the percentages of denitrification and sulfate reducing could reach 90 and 89%, respectively. Seventy-six percent of sulfate was transformed into element sulfur. Nitrate significantly had a negative effect on sulfate reduction above 10 mM. As 20 mM nitrate, the sulfate reducing percentage would drop to 67%. These results showed that the anaerobic-anoxic process was feasible for the treatment of flue gas washing wastewater. It would be prospectively applied to other wastewater with the higher ratio of SO4(2-)/NO3(-).

  7. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    PubMed

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  8. Biological and Physicochemical Wastewater Treatment Processes Reduce the Prevalence of Virulent Escherichia coli

    PubMed Central

    Biswal, Basanta Kumar; Mazza, Alberto; Masson, Luke; Gehr, Ronald

    2013-01-01

    Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands. PMID:23160132

  9. Catalytic Wastewater Treatment Using Pillared Clays

    NASA Astrophysics Data System (ADS)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  10. SUSTAINABLE WASTEWATER TREATMENT: NUTRIENT UPCYCLING OF AMMONIA INTO FERTILIZER

    EPA Science Inventory

    We intend to identify appropriate locations for treatment and feasibility of recovery for each of three types of wastewater treatment plants: municipal sewage treatment, manure digester, and cheese processing waste digester. We anticipate that a modular design for the elect...

  11. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes

    PubMed Central

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11–50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33–18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic. PMID:29293534

  12. Fate of artificial sweeteners through wastewater treatment plants and water treatment processes.

    PubMed

    Li, Shaoli; Ren, Yuhang; Fu, Yingying; Gao, Xingsheng; Jiang, Cong; Wu, Gang; Ren, Hongqiang; Geng, Jinju

    2018-01-01

    Five full-scale wastewater treatment plants (WWTPs) in China using typical biodegradation processes (SBR, oxidation ditch, A2/O) were selected to assess the removal of four popular artificial sweeteners (ASs). All four ASs (acesulfame (ACE), sucralose (SUC), cyclamate (CYC) and saccharin (SAC)) were detected, ranging from 0.43 to 27.34μg/L in the influent. Higher concentrations of ASs were measured in winter. ACE could be partly removed by 7.11-50.76% through biodegradation and especially through the denitrifying process. The A2/O process was the most efficient at biodegrading ASs. Adsorption (by granular activated carbon (GAC) and magnetic resin) and ultraviolet radiation-based advanced oxidation processes (UV/AOPs) were evaluated to remove ASs in laboratory-scale tests. The amounts of resin adsorbed were 3.33-18.51 times more than those of GAC except for SUC. The adsorption ability of resin decreased in the order of SAC > ACE > CYC > SUC in accordance with the pKa. Degradation of ASs followed pseudo-first-order kinetics in UV/H2O2 and UV/PDS. When applied to the secondary effluent, ASs could be degraded from 30.87 to 99.93% using UV/PDS in 30 minutes and UV/PDS was more efficient and economic.

  13. Reusing effluent of flue gas desulfurization wastewater treatment process as an economical calcium source for phosphorus removal.

    PubMed

    Dou, Weixiao; Zhou, Zhen; Ye, Jiongjiong; Huang, Rongwei; Jiang, Lu-Man; Chen, Guofeng; Fei, Xiaoyun

    2017-09-01

    Flue gas desulfurization (FGD) wastewater treatment by conventional neutralization, chemical precipitation and coagulation process removes most suspended solids and heavy metals, and provides an effluent rich in calcium, alkalinity and chloride, which obstructs its reclamation and reuse but is in favor of phosphorus (P) precipitation. The goals of this study were to investigate feasibility of reusing FGD effluent as a calcium source for P removal from P-rich wastewater. Results revealed that increasing the volumetric ratio between FGD effluent and P-rich wastewater achieved higher pH value and Ca/P ratio, and thus enhanced P removal efficiency to 94.3% at the ratio of 40%. X-ray diffraction and scanning electron microscope analysis of harvested precipitates showed that increasing pH from 8 to 10 induced the conversion of hydroxyapatite to tri-calcium phosphate, and then to whitlockite. This study demonstrated that for reusing FGD effluent for P removal was highly feasible, both technically and economically. This process not only saves the cost of precipitants for P removal, but also provides an economical alternative for current zero liquid discharge technology for FGD wastewater, which requires high energy consumption and capital costs.

  14. Biological aerated filter treated textile washing wastewater for reuse after ozonation pre-treatment.

    PubMed

    Wang, X J; Chen, S L; Gu, X Y; Wang, K Y; Qian, Y Z

    2008-01-01

    The combination of chemical and biological treatment processes is a promising technique to reduce refractory organics from wastewater. Ozonation can achieve high color removal, enhance biodegradability, and reduce the chemical oxygen demand (COD). The biological technique can further decrease COD of wastewater after ozonation as a pre-treatment. In this study the ozonizing-biological aerated filter processes were used to treat textile washing wastewater for reuse after conventional treatment. The result showed that when the influent qualities were COD about 80 mg/L, color 16 degree and turbidity about 8 NTU, using the combination processes with the dosages of ozone at 30-45 mg/L with the hydraulic retention time (HRT) of biological aerated filter (BAF) at 3-4 hours respectively, gave effluent qualities of COD less than 30 mg/L, color 2 degree and turbidity less than 1NTU. The cost of treatment was less than one yuan/t wastewater, and these processes could enable high quality washing water reuse in textile industry. Copyright IWA Publishing 2008.

  15. 40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater treatment...

  16. 40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater treatment...

  17. 40 CFR 63.11980 - What are the test methods and calculation procedures for process wastewater?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... calculation procedures for process wastewater? 63.11980 Section 63.11980 Protection of Environment... § 63.11980 What are the test methods and calculation procedures for process wastewater? (a) Performance... performance tests during worst-case operating conditions for the PVCPU when the process wastewater treatment...

  18. STATISTICS-BASED APPROACH TO WASTEWATER TREATMENT PLANT OPERATIONS

    EPA Science Inventory

    This paper describes work toward development of a convenient decision support system to improve everyday operation and control of the wastewater treatment process. The goal is to help the operator detect problems in the process and select appropriate control actions. The system...

  19. Mobile Wastewater Treatment Technology for Contingency Bases

    DTIC Science & Technology

    2012-05-24

    Def nse Cent rgy and Environment Contingency Base Wastewater Treatment Options Option Advantages Disadvantages Tanking and Trucking Offsite Low...National Defense Center for Energy and Environment Mobile Wastewater Treatment f or Contingency Bases, May 2012 1 National Def nse Cent rgy and...Environment DoD Executive Agent Mobile Wastewater Treatment Technology for Contingency Bases Shan Abeywickrama, NDCEE/CTC Elizabeth Keysar

  20. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    NASA Astrophysics Data System (ADS)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  1. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants

    NASA Astrophysics Data System (ADS)

    Krishnan, S.; Rawindran, H.; Sinnathambi, C. M.; Lim, J. W.

    2017-06-01

    Due to the scarcity of water, it has become a necessity to improve the quality of wastewater that is discharged into the environment. Conventional wastewater treatment can be either a physical, chemical, and/or biological processes, or in some cases a combination of these operations. The main purpose of wastewater treatment is to eliminate nutrients, solids, and organic compounds from effluents. Current wastewater treatment technologies are deemed ineffective in the complete removal of pollutants, particularly organic matter. In many cases, these organic compounds are resistant to conventional treatment methods, thus creating the necessity for tertiary treatment. Advanced oxidation process (AOP), constitutes as a promising treatment technology for the management of wastewater. AOPs are characterised by a common chemical feature, where they utilize the highly reactive hydroxyl radicals for achieving complete mineralization of the organic pollutants into carbon dioxide and water. This paper delineates advanced oxidation processes currently used for the remediation of water and wastewater. It also provides the cost estimation of installing and running an AOP system. The costs are separated into three categories: capital, operational, and operating & maintenance.

  2. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities

    PubMed Central

    2013-01-01

    Background Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Results Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. Conclusions Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic

  3. Potential of combining mechanical and physicochemical municipal wastewater pre-treatment with direct membrane filtration.

    PubMed

    Hey, Tobias; Väänänen, Janne; Heinen, Nicolas; la Cour Jansen, Jes; Jönsson, Karin

    2017-01-01

    At a full-scale wastewater treatment plant, raw municipal wastewater from the sand trap outlet was mechanically and physicochemically pre-treated before microfiltration (MF) in a large pilot-scale study. MF was performed using a low transmembrane pressure (0.03 bar) without backflushing for up to 159 h (∼6.6 d). Pre-filtration ensured stable MF operation compared with the direct application of raw wastewater on the membrane. The combination of physicochemical pre-treatment, such as coagulation, flocculation, and microsieving, with MF meets the European and Swedish discharge limits for small- and medium-sized wastewater treatment plants (WWTPs). The specific electricity footprint was 0.3-0.4 kWh·m -3 , which is an improvement compared to the median footprint of 0.75 kWh·m -3 found in 105 traditional Swedish WWTPs with sizes of 1500-10,000 person equivalents. Furthermore, the biological treatment step can be omitted, and the risk of releasing greenhouse gases was eliminated. The investigated wastewater treatment process required less space than conventional wastewater treatment processes, and more carbon was made available for biogas production.

  4. Microbial ecology of denitrification in biological wastewater treatment.

    PubMed

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    USGS Publications Warehouse

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  6. Application of dielectric constant measurement in microwave sludge disintegration and wastewater purification processes.

    PubMed

    Kovács, Petra Veszelovszki; Lemmer, Balázs; Keszthelyi-Szabó, Gábor; Hodúr, Cecilia; Beszédes, Sándor

    2018-05-01

    It has been numerously verified that microwave radiation could be advantageous as a pre-treatment for enhanced disintegration of sludge. Very few data related to the dielectric parameters of wastewater of different origins are available; therefore, the objective of our work was to measure the dielectric constant of municipal and meat industrial wastewater during a continuous flow operating microwave process. Determination of the dielectric constant and its change during wastewater and sludge processing make it possible to decide on the applicability of dielectric measurements for detecting the organic matter removal efficiency of wastewater purification process or disintegration degree of sludge. With the measurement of dielectric constant as a function of temperature, total solids (TS) content and microwave specific process parameters regression models were developed. Our results verified that in the case of municipal wastewater sludge, the TS content has a significant effect on the dielectric constant and disintegration degree (DD), as does the temperature. The dielectric constant has a decreasing tendency with increasing temperature for wastewater sludge of low TS content, but an adverse effect was found for samples with high TS and organic matter contents. DD of meat processing wastewater sludge was influenced significantly by the volumetric flow rate and power level, as process parameters of continuously flow microwave pre-treatments. It can be concluded that the disintegration process of food industry sludge can be detected by dielectric constant measurements. From technical purposes the applicability of dielectric measurements was tested in the purification process of municipal wastewater, as well. Determination of dielectric behaviour was a sensitive method to detect the purification degree of municipal wastewater.

  7. Treatment of HMX-production wastewater in an aerobic granular reactor.

    PubMed

    Zhang, Jin-Hua; Wang, Min-Hui; Zhu, Xiao-Meng

    2013-04-01

    Aerobic granules were applied to the treatment of HMX-production wastewater using a gradual domestication method in a SBR. During the process, the granules showed a good settling ability, a high biomass retention rate, and high biological activity. After 40 days of stable operation, aerobic granular sludge performed very effectively in the removal of carbon and nitrogen compounds from HMX-production wastewater. Organic matter removal rates up to 97.57% and nitrogen removal efficiencies up to 80% were achieved during the process. Researchers conclude that using aerobic granules to treat explosive wastewater has good prospects for success.

  8. A Guide for Developing Standard Operating Job Procedures for the Digestion Process Wastewater Treatment Facility. SOJP No. 10.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the digestion process of wastewater treatment facilities. This process is for reducing the volume of sludge to be treated in subsequent units and to reduce the volatile content of sludge. The guide gives step-by-step instructions for pre-startup, startup, continuous operating, shutdown,…

  9. Effective swine wastewater treatment by combining microbial fuel cells with flocculation.

    PubMed

    Ding, Weijun; Cheng, Shaoan; Yu, Liliang; Huang, Haobin

    2017-09-01

    Microbial fuel cells (MFCs) provide a cost-effective method for treating swine wastewater treatment and simultaneously producing electricity, yet they need to be combined with other wastewater treatment processes to improve the effluent water quality. In this paper, we constructed single-chamber air-cathode MFCs with a compact configuration for nitrogen and COD removal and high electricity production and combined them with a low-cost flocculation process to discharge higher quality wastewater. We show that MFCs could remove ammonia at a rate of 269.2 ± 0.5 g m -3 d -1 (99.1± 0.1% ammonia removal efficiency) with a maximum power density of 37.5 W m -3 and 21.6% of coulombic efficiency at a 40:60 ratio of raw swine wastewater to denitrification effluent of swine wastewater. Up to 82.5 ± 0.5% COD could be removed with MFCs, from 2735 ± 15 mg L -1 to 480 ± 15 mg L -1 , and flocculation further reduced levels to 90 ± 1 mg L -1 for a 96.6 ± 0.2% overall COD removal efficiency of the combination technology. Cost analysis of the combined MFC and flocculation process showed a net economic benefit of $ 0.026 m -3 . In summary, this novel combination wastewater treatment method provides an effective way to treat swine wastewater to low pollutant levels in the effluent at low cost (a net gain). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Municipal Wastewater Processes. Instructor Guide. Working for Clean Water: An Information Program for Advisory Groups.

    ERIC Educational Resources Information Center

    Stoltzfus, Lorna

    Described is a one-hour overview of the unit processes which comprise a municipal wastewater treatment system. Topics covered in this instructor's guide include types of pollutants encountered, treatment methods, and procedures by which wastewater treatment processes are selected. A slide-tape program is available to supplement this component of…

  11. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  12. Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes.

    PubMed

    Zayas Pérez, Teresa; Geissler, Gunther; Hernandez, Fernando

    2007-01-01

    The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H2O2, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.

  13. Online total organic carbon (TOC) monitoring for water and wastewater treatment plants processes and operations optimization

    NASA Astrophysics Data System (ADS)

    Assmann, Céline; Scott, Amanda; Biller, Dondra

    2017-08-01

    Organic measurements, such as biological oxygen demand (BOD) and chemical oxygen demand (COD) were developed decades ago in order to measure organics in water. Today, these time-consuming measurements are still used as parameters to check the water treatment quality; however, the time required to generate a result, ranging from hours to days, does not allow COD or BOD to be useful process control parameters - see (1) Standard Method 5210 B; 5-day BOD Test, 1997, and (2) ASTM D1252; COD Test, 2012. Online organic carbon monitoring allows for effective process control because results are generated every few minutes. Though it does not replace BOD or COD measurements still required for compliance reporting, it allows for smart, data-driven and rapid decision-making to improve process control and optimization or meet compliances. Thanks to the smart interpretation of generated data and the capability to now take real-time actions, municipal drinking water and wastewater treatment facility operators can positively impact their OPEX (operational expenditure) efficiencies and their capabilities to meet regulatory requirements. This paper describes how three municipal wastewater and drinking water plants gained process insights, and determined optimization opportunities thanks to the implementation of online total organic carbon (TOC) monitoring.

  14. Discussion on Coking Wastewater Treatment and Control Measures in Iron and Steel Enterprises

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hwang, Jiannyang; Leng, Ting; Xue, Gaifeng; Wu, Gaoming

    According to the water quality characteristics of coking wastewater and the environmental protection requirements, the status of coking wastewater treatment technologies at home and abroad was described. Several methods and control measures of coking wastewater treatment were discussed in the effluent from iron and steel enterprises. It is an effective way to makes use of cleaner production technologies to reduce the amount of coking phenol cyanide wastewater produced from the source, and then adopt water supply for different water quality or series classification in-house according to the demand of water characters. It is necessary though looking for the available disposal way to reduce the coking wastewater effluent, which can provide a reference for process selection and research on treatment of coking wastewater in iron and steel enterprise.

  15. Analysis and optimization of process parameters for production of polyhydroxyalkanoates along with wastewater treatment by Serratia sp. ISTVKR1.

    PubMed

    Gupta, Asmita; Kumar, Madan; Thakur, Indu Shekhar

    2017-10-01

    A previously reported biodegrading bacterial strain Serratia sp. ISTVKR1 was studied for polyhydroxyalkanoate (PHA) production along with wastewater contaminant removal. Nile red fluorescence, GC-MS, FT-IR, NMR and TEM confirmed the accumulation of homopolymer poly-3-hydroxyvalerate (PHV) within the bacterial cells. Analysis of culture after 72h of bacterial treatment showed maximum COD removal (8.4-fold), non-detection of organic contaminants such as 1H-Cyclopropa [a] naphthalene (R.T.=10.12) using GC-MS and increased proportion of elements like Cr, Mn, Fe, Ni, Cu, Cd and Pb in the bacterial cell pellets by SEM-EDX analysis. Optimization of process parameters for enhanced PHA production along with wastewater treatment done using Response Surface Methodology (RSM) showed 5% and 0.74% increase in the PHA production (0.3368±0.13gL -1 ) and % COD reduction (88.93±2.41) of wastewater, respectively. The study, thus established the production of PHA along with wastewater contaminant removal by Serratia sp. ISTVKR1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Review on Physicochemical, Chemical, and Biological Processes for Pharmaceutical Wastewater

    NASA Astrophysics Data System (ADS)

    Li, Zhenchen; Yang, Ping

    2018-02-01

    Due to the needs of human life and health, pharmaceutical industry has made great progress in recent years, but it has also brought about severe environmental problems. The presence of pharmaceuticals in natural waters which might pose potential harm to the ecosystems and humans raised increasing concern worldwide. Pharmaceuticals cannot be effectively removed by conventional wastewater treatment plants (WWTPs) owing to the complex composition, high concentration of organic contaminants, high salinity and biological toxicity of pharmaceutical wastewater. Therefore, the development of efficient methods is needed to improve the removal effect of pharmaceuticals. This review provides an overview on three types of treatment technologies including physicochemical, chemical and biological processes and their advantages and disadvantages respectively. In addition, the future perspectives of pharmaceutical wastewater treatment are given.

  17. Integration of biotechnological wastewater treatment units in textile finishing factories: from end of the pipe solutions to combined production and wastewater treatment units.

    PubMed

    Feitkenhauer, H; Meyer, U

    2001-08-23

    Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.

  18. A Guide for Developing Standard Operating Job Procedures for the Screening & Grinding Process Wastewater Treatment Facility. SOJP No. 1.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  19. A Guide for Developing Standard Operating Job Procedures for the Sludge Thickening Process Wastewater Treatment Facility. SOJP No. 9.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the screening and grinding process of wastewater treatment facilities. The objective of this process is the removal of coarse materials from the raw waste stream for the protection of subsequent equipment and processes. The guide gives step-by-step instructions for safety inspection,…

  20. Integrating algaculture into small wastewater treatment plants: process flow options and life cycle impacts.

    PubMed

    Steele, Muriel M; Anctil, Annick; Ladner, David A

    2014-05-01

    Algaculture has the potential to be a sustainable option for nutrient removal at wastewater treatment plants. The purpose of this study was to compare the environmental impacts of three likely algaculture integration strategies to a conventional nutrient removal strategy. Process modeling was used to determine life cycle inventory data and a comparative life cycle assessment was used to determine environmental impacts. Treatment scenarios included a base case treatment plant without nutrient removal, a plant with conventional nutrient removal, and three other cases with algal unit processes placed at the head of the plant, in a side stream, and at the end of the plant, respectively. Impact categories included eutrophication, global warming, ecotoxicity, and primary energy demand. Integrating algaculture prior to activated sludge proved to be most beneficial of the scenarios considered for all impact categories; however, this scenario would also require primary sedimentation and impacts of that unit process should be considered for implementation of such a system.

  1. Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch

    NASA Astrophysics Data System (ADS)

    Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao

    2016-10-01

    Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.

  2. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    PubMed Central

    Barancheshme, Fateme; Munir, Mariya

    2018-01-01

    The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs). It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1) study innovative strategies in large scale and over a long time to reach an actual evaluation, (2) develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3) consider operating and environmental factors that affect the efficiency of each

  3. Effects of soluble and particulate substrate on the carbon and energy footprint of wastewater treatment processes.

    PubMed

    Gori, Riccardo; Jiang, Lu-Man; Sobhani, Reza; Rosso, Diego

    2011-11-15

    Most wastewater treatment plants monitor routinely carbonaceous and nitrogenous load parameters in influent and effluent streams, and often in the intermediate steps. COD fractionation discriminates the selective removal of VSS components in different operations, allowing accurate quantification of the energy requirements and mass flows for secondary treatment, sludge digestion, and sedimentation. We analysed the different effects of COD fractions on carbon and energy footprint in a wastewater treatment plant with activated sludge in nutrient removal mode and anaerobic digestion of the sludge with biogas energy recovery. After presenting a simple rational procedure for COD and solids fractions quantification, we use our carbon and energy footprint models to quantify the effects of varying fractions on carbon equivalent flows, process energy demand and recovery. A full-scale real process was modelled with this procedure and the results are reported in terms of energy and carbon footprint. For a given process, the increase of the ratio sCOD/COD increases the energy demand on the aeration reactors, the associated CO(2) direct emission from respiration, and the indirect emission for power generation. Even though it appears as if enhanced primary sedimentation is a carbon and energy footprint mitigation practice, care must be used since the nutrient removal process downstream may suffer from an excessive bCOD removal and an increased mean cell retention time for nutrient removal may be required. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  5. Structure-biodegradability relationship of nonylphenol isomers during biological wastewater treatment process.

    PubMed

    Hao, Ruixia; Li, Jianbing; Zhou, Yuwen; Cheng, Shuiyuan; Zhang, Yi

    2009-05-01

    The relationship between nonylphenol (NP) isomer structure and its biodegradability within the wastewater treatment process of sequencing batch reactor (SBR) was investigated. The GC-MS method was used for detecting the NP isomers existing in the SBR influent, activated sludge and effluent. Fifteen NP isomers were detected in the influent, with significant biodegradability variations being observed among these isomers. It was found that the NP isomers associated with retention time of 10.553, 10.646, 10.774, and 10.906 min in the GC-MS analysis showed higher biodegradability, while the isomers with retention time of 10.475, 10.800, and 10.857 min illustrated lower biodegradability. Through analyzing the mass spectrograms, the chemical structures of four selected NP isomers in the wastewater were further deduced. The higher correlation coefficients of 0.9421 and 0.9085 were observed between the NP isomer biodegradation rates and the molecular connectivity indexes with the order of two and four, respectively. Such correlation analysis indicated that a more complex side branch structure (such as a larger side carbon-chain branch or more branches in the nonyl) of NP isomer would lead to lower biodegradability, and a longer nonyl chain of the isomer would result in a higher biodegradability.

  6. Centralized waste treatment of industrial wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzberg, E.R.; Cushnie, G.C. Jr.

    1985-01-01

    Centralized waste treatment (CWT) for industrial wastewater is described in this book. With the CWT approach, industrial firms send their wastes to a common processing plant. The book addresses the engineering and business-related problems that are encountered by private CWT firms, local governments, and industry in creating sufficient CWT capacity to meet the growing demand for CWT services.

  7. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    PubMed

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.

  8. Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Nelson, S.M.

    2005-01-01

    Constructed wetlands that mimic natural marshes have been used as low-cost alternatives to conventional secondary or tertiary wastewater treatment in the U.S. for at least 30 years. However, the general level of understanding of internal treatment processes and their relation to vegetation and habitat quality has not grown in proportion to the popularity of these systems. We have studied internal processes in surface-flow constructed wastewater-treatment wetlands throughout the southwestern U.S. since 1990. At any given time, the water quality, hydraulics, water temperature, soil chemistry, available oxygen, microbial communities, macroinvertebrates, and vegetation each greatly affect the treatment capabilities of the wetland. Inside the wetland, each of these components plays a functional role and the treatment outcome depends upon how the various components interact. Vegetation plays a uniquely important role in water treatment due to the large number of functions it supports, particularly with regard to nitrogen transformations. However, it has been our experience that vegetation management is critical for achieving and sustaining optimal treatment function. Effective water treatment function and good wildlife quality within a surface-flow constructed wetland depend upon the health and sustainability of the vegetation. We suggest that an effective tool to manage and sustain healthy vegetation is the use of hummocks, which are shallow emergent plant beds within the wetland, positioned perpendicular to the water flow path and surrounded by water sufficiently deep to limit further emergent vegetation expansion. In this paper, we describe the use of a hummock configuration, in conjunction with seasonal water level fluctuations, to manage the vegetation and maintain the treatment function of wastewater-treatment wetlands on a sustainable basis.

  9. Inhibitory effects of toxic compounds on nitrification process for cokes wastewater treatment.

    PubMed

    Kim, Young Mo; Park, Donghee; Lee, Dae Sung; Park, Jong Moon

    2008-04-15

    Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of toxic compounds such as phenols, cyanides and thiocyanate. Although activated sludge process has been adapted to treat this wastewater, nitrification process has been occasionally upset by serious inhibitory effects of toxic compounds. In this study, therefore, we examined inhibitory effects of ammonia, thiocyanate, free cyanide, ferric cyanide, phenol and p-cresol on nitrification in an activated sludge system, and then correlated their threshold concentrations with the full-scale pre-denitrification process for treating cokes wastewater. Ammonia below 350 mg/L did not cause substrate inhibition for nitrifying bacteria. Thiocyanate above 200mg/L seemed to inhibit nitrification, but it was due to the increased loading of ammonia produced from its biodegradation. Free cyanide above 0.2mg/L seriously inhibited nitrification, but ferric cyanide below 100mg/L did not. Phenol and p-cresol significantly inhibited nitrification above 200 mg/L and 100mg/L, respectively. Meantime, activated carbon was added to reduce inhibitory effects of phenol and free cyanide.

  10. Assessment of bacterial and archaeal community structure in Swine wastewater treatment processes.

    PubMed

    Da Silva, Marcio Luis Busi; Cantão, Mauricio Egídio; Mezzari, Melissa Paola; Ma, Jie; Nossa, Carlos Wolfgang

    2015-07-01

    Microbial communities from two field-scale swine wastewater treatment plants (WWTPs) were assessed by pyrosequencing analyses of bacterial and archaeal 16S ribosomal DNA (rDNA) fragments. Effluent samples from secondary (anaerobic covered lagoons and upflow anaerobic sludge blanket [UASB]) and tertiary treatment systems (open-pond natural attenuation lagoon and air-sparged nitrification-denitrification tank followed by alkaline phosphorus precipitation process) were analyzed. A total of 56,807 and 48,859 high-quality reads were obtained from bacterial and archaeal libraries, respectively. Dominant bacterial communities were associated with the phylum Firmicutes, Bacteroidetes, Proteobacteria, or Actinobacteria. Bacteria and archaea diversity were highest in UASB effluent sample. Escherichia, Lactobacillus, Bacteroides, and/or Prevotella were used as indicators of putative pathogen reduction throughout the WWTPs. Satisfactory pathogen reduction was observed after the open-pond natural attenuation lagoon but not after the air-sparged nitrification/denitrification followed by alkaline phosphorus precipitation treatment processes. Among the archaeal communities, 80% of the reads was related to hydrogeno-trophic methanogens Methanospirillum. Enrichment of hydrogenotrophic methanogens detected in effluent samples from the anaerobic covered lagoons and UASB suggested that CO2 reduction with H2 was the dominant methanogenic pathway in these systems. Overall, the results served to improve our current understanding of major microbial communities' changes downgradient from the pen and throughout swine WWTP as a result of different treatment processes.

  11. Comparative performance evaluation of full-scale anaerobic and aerobic wastewater treatment processes in Brazil.

    PubMed

    von Sperling, M; Oliveira, S C

    2009-01-01

    This article evaluates and compares the actual behavior of 166 full-scale anaerobic and aerobic wastewater treatment plants in operation in Brazil, providing information on the performance of the processes in terms of the quality of the generated effluent and the removal efficiency achieved. The observed results of effluent concentrations and removal efficiencies of the constituents BOD, COD, TSS (total suspended solids), TN (total nitrogen), TP (total phosphorus) and FC (faecal or thermotolerant coliforms) have been compared with the typical expected performance reported in the literature. The treatment technologies selected for study were: (a) predominantly anaerobic: (i) septic tank + anaerobic filter (ST + AF), (ii) UASB reactor without post-treatment (UASB) and (iii) UASB reactor followed by several post-treatment processes (UASB + POST); (b) predominantly aerobic: (iv) facultative pond (FP), (v) anaerobic pond followed by facultative pond (AP + FP) and (vi) activated sludge (AS). The results, confirmed by statistical tests, showed that, in general, the best performance was achieved by AS, but closely followed by UASB reactor, when operating with any kind of post-treatment. The effluent quality of the anaerobic processes ST + AF and UASB reactor without post-treatment was very similar to the one presented by facultative pond, a simpler aerobic process, regarding organic matter.

  12. The effect of public or private structures in wastewater treatment on the conditions for the design, construction and operation of wastewater treatment plants.

    PubMed

    Grünebaum, T; Bode, H

    2004-01-01

    Organised in public or private structures, wastewater services have to cope with different framework conditions as regards planning, construction, financing and operation. This leads quite often to different modes of management. In recent years there has been a push for privatisation on the water sector in general, the reasons for which are manifold, ranging from access to external know-how and capital to synergistic effects through integration of wastewater treatment into other tasks of similar or equal nature. Discussed are various models of public/private partnership (PPP) in wastewater treatment, encompassing for example the delegation of partial tasks or even the proportional or entire transfer of ownership of treatment facilities to private third parties. Decisive for high performance and efficiency is not the legal or organisational form, but rather the clear and unmistakable definition of tasks which are to be assigned to the different parties, customers and all other partners involved, as well as of clear-cut interfaces. On account of the (of course legitimate) profit-oriented perspective of the private sector, some decision-making processes in relation to project implementation (design and construction) and to operational aspects will differ from those typically found on the public sector. This does apply to decisions on investments, financing and on technical solutions too. On the other hand, core competencies in wastewater treatment should not be outsourced, but remain the public bodies' responsibility, even with 'far-reaching' privatisation models. Such core competencies are all efforts geared to sustainable wastewater treatment as life-supporting provision for the future or as contribution to the protection of health and the environment and to the development of infrastructure. Major areas of wastewater treatment and other related tasks are reviewed. The paper concludes with a list of questions on the issue of outsourcing.

  13. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2014-01-01

    Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Treatment of slaughter wastewater by coagulation sedimentation-anaerobic biological filter and biological contact oxidation process

    NASA Astrophysics Data System (ADS)

    Sun, M.; Yu, P. F.; Fu, J. X.; Ji, X. Q.; Jiang, T.

    2017-08-01

    The optimal process parameters and conditions for the treatment of slaughterhouse wastewater by coagulation sedimentation-AF - biological contact oxidation process were studied to solve the problem of high concentration organic wastewater treatment in the production of small and medium sized slaughter plants. The suitable water temperature and the optimum reaction time are determined by the experiment of precipitation to study the effect of filtration rate and reflux ratio on COD and SS in anaerobic biological filter and the effect of biofilm thickness and gas water ratio on NH3-N and COD in biological contact oxidation tank, and results show that the optimum temperature is 16-24°C, reaction time is 20 min in coagulating sedimentation, the optimum filtration rate is 0.6 m/h, and the optimum reflux ratio is 300% in anaerobic biological filter reactor. The most suitable biological film thickness range of 1.8-2.2 mm and the most suitable gas water ratio is 12:1-14:1 in biological contact oxidation pool. In the coupling process of continuous operation for 80 days, the average effluent’s mass concentrations of COD, TP and TN were 15.57 mg/L, 40 mg/L and 0.63 mg/L, the average removal rates were 98.93%, 86.10%, 88.95%, respectively. The coupling process has stable operation effect and good effluent quality, and is suitable for the industrial application.

  15. Powdered ZELIAC augmented sequencing batch reactors (SBR) process for co-treatment of landfill leachate and domestic wastewater.

    PubMed

    Mojiri, Amin; Aziz, Hamidi Abdul; Zaman, Nastaein Q; Aziz, Shuokr Qarani; Zahed, Mohammad Ali

    2014-06-15

    Sequencing batch reactor (SBR) is one of the various methods of biological treatments used for treating wastewater and landfill leachate. This study investigated the treatment of landfill leachate and domestic wastewater by adding a new adsorbent (powdered ZELIAC; PZ) to the SBR technique. ZELIAC consists of zeolite, activated carbon, lime stone, rice husk ash, and Portland cement. The response surface methodology and central composite design were used to elucidate the nature of the response surface in the experimental design and describe the optimum conditions of the independent variables, including aeration rate (L/min), contact time (h), and ratio of leachate to wastewater mixture (%; v/v), as well as their responses (dependent variables). Appropriate conditions of operating variables were also optimized to predict the best value of responses. To perform an adequate analysis of the aerobic process, four dependent parameters, namely, chemical oxygen demand (COD), color, ammonia-nitrogen (NH3-N), and phenols, were measured as responses. The results indicated that the PZ-SBR showed higher performance in removing certain pollutants compared with SBR. Given the optimal conditions of aeration rate (1.74 L/min), leachate to wastewater ratio (20%), and contact time (10.31 h) for the PZ-SBR, the removal efficiencies for color, NH3-N, COD, and phenols were 84.11%, 99.01%, 72.84%, and 61.32%, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Decentralized approaches to wastewater treatment and management: applicability in developing countries.

    PubMed

    Massoud, May A; Tarhini, Akram; Nasr, Joumana A

    2009-01-01

    Providing reliable and affordable wastewater treatment in rural areas is a challenge in many parts of the world, particularly in developing countries. The problems and limitations of the centralized approaches for wastewater treatment are progressively surfacing. Centralized wastewater collection and treatment systems are costly to build and operate, especially in areas with low population densities and dispersed households. Developing countries lack both the funding to construct centralized facilities and the technical expertise to manage and operate them. Alternatively, the decentralized approach for wastewater treatment which employs a combination of onsite and/or cluster systems is gaining more attention. Such an approach allows for flexibility in management, and simple as well as complex technologies are available. The decentralized system is not only a long-term solution for small communities but is more reliable and cost effective. This paper presents a review of the various decentralized approaches to wastewater treatment and management. A discussion as to their applicability in developing countries, primarily in rural areas, and challenges faced is emphasized all through the paper. While there are many impediments and challenges towards wastewater management in developing countries, these can be overcome by suitable planning and policy implementation. Understanding the receiving environment is crucial for technology selection and should be accomplished by conducting a comprehensive site evaluation process. Centralized management of the decentralized wastewater treatment systems is essential to ensure they are inspected and maintained regularly. Management strategies should be site specific accounting for social, cultural, environmental and economic conditions in the target area.

  17. Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network

    NASA Astrophysics Data System (ADS)

    Li, Dan; Yang, Haizhen; Liang, XiaoFeng

    2010-11-01

    Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.

  18. Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review.

    PubMed

    Nidheesh, Puthiya Veetil

    2017-12-01

    Advanced oxidation processes (AOPs) received much attention in the field of water and wastewater treatment due to its ability to mineralize persistent organic pollutants from water medium. The addition of graphene-based materials increased the efficiency of all AOPs significantly. The present review analyzes the performance of graphene-based materials that supported AOPs in detail. Recent developments in this field are highlighted. A special focus has been awarded for the performance enhancement mechanism of AOPs in the presence of graphene-based materials.

  19. Sterols indicate water quality and wastewater treatment efficiency.

    PubMed

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  20. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    PubMed

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Process optimization via response surface methodology in the treatment of metal working industry wastewater with electrocoagulation.

    PubMed

    Guvenc, Senem Yazici; Okut, Yusuf; Ozak, Mert; Haktanir, Birsu; Bilgili, Mehmet Sinan

    2017-02-01

    In this study, process parameters in chemical oxygen demand (COD) and turbidity removal from metal working industry (MWI) wastewater were optimized by electrocoagulation (EC) using aluminum, iron and steel electrodes. The effects of process variables on COD and turbidity were investigated by developing a mathematical model using central composite design method, which is one of the response surface methodologies. Variance analysis was conducted to identify the interaction between process variables and model responses and the optimum conditions for the COD and turbidity removal. Second-order regression models were developed via the Statgraphics Centurion XVI.I software program to predict COD and turbidity removal efficiencies. Under the optimum conditions, removal efficiencies obtained from aluminum electrodes were found to be 76.72% for COD and 99.97% for turbidity, while the removal efficiencies obtained from iron electrodes were found to be 76.55% for COD and 99.9% for turbidity and the removal efficiencies obtained from steel electrodes were found to be 65.75% for COD and 99.25% for turbidity. Operational costs at optimum conditions were found to be 4.83, 1.91 and 2.91 €/m 3 for aluminum, iron and steel electrodes, respectively. Iron electrode was found to be more suitable for MWI wastewater treatment in terms of operational cost and treatment efficiency.

  2. Treatment of wastewater from flue gas desulphurization plants in the Netherlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vredenbregt, L.H.J.; Brugghen, F.W. van der; Enoch, G.D.

    1995-06-01

    In the Netherlands, all coal fired boilers of power stations are equipped with a wet lime(stone)-gypsum flue gas desulphurization (FGD) installation in order to fulfill the emission demands for SO{sub 2}. These wet FGD installations produce a wastewater stream containing impurities like suspended solids and traces of heavy metals like As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se and Za. As the target values stated by the licensing authorities are very stringent, most of these heavy metals and suspended solids have to be removed to very low concentration levels. Therefore, a very efficient treatment method, based on coprecipitation ofmore » heavy metal hydroxides and sulphides, which was developed by KEMA, has been installed at all, the coal fired power plants. This paper describes the operational experiences until now with these wastewater treatment installations at two coal fired power plants using sea-water for make-up and one using fresh water. The following aspects will be discussed in more detail: reliability of the wastewater treatment processes both with respect to removal efficiency of heavy metals and suspended solids and plant operation itself influence of a changing composition of the wastewater on the performance of these wastewater treatment installations. Finally, also the impact of co-firing of the sludge produced in these wastewater treatment installations will be discussed.« less

  3. Fossil organic carbon in wastewater and its fate in treatment plants.

    PubMed

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Combined quantity management and biological treatment of sludge liquor at Hamburg's wastewater treatment plants--first experience in operation with the Store and Treat process.

    PubMed

    Laurich, F

    2004-01-01

    Store and Treat (SAT) is a new concept for the management of ammonium-rich process waste waters at wastewater treatment plants. It combines the advantages of quantity management and separate biological treatment, whereby both operations are carried out in the same tank. Now the first full-scale application of that method was realized in Hamburg. As first experience shows the process can help to increase nitrogen removal and to reduce energy consumption.

  5. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.

    PubMed

    Wang, Jing-Han; Zhang, Tian-Yuan; Dao, Guo-Hua; Xu, Xue-Qiao; Wang, Xiao-Xiong; Hu, Hong -Ying

    2017-04-01

    Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O 2 generation, CO 2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future

  6. Antibiotic Resistance in Czech Urban Wastewater Treatment Plants: Microbial and Molecular Genetic Characterization.

    PubMed

    Svobodová, Kateřina; Semerád, Jaroslav; Petráčková, Denisa; Novotný, Čeněk

    2018-05-30

    Quantitative changes in antibiotic resistance genes (ARGs) were investigated in six urban wastewater treatment plants (WWTPs) treating municipal and industrial wastewaters. In a selected WWTP, the fate of ARGs was studied in a 1-year time interval and in two phases of wastewater treatment process. Nine ARGs (tetW, tetO, tetA, tetB, tetM, bla TEM , ermB, sul1, and intl1) were quantified in total and their relative abundance assessed by ARG copies/16SrRNA copies. From the tetracycline resistance genes, tetW was the only one detected in all sampled WWTPs. Its relative abundance in the nitrification tank of WWTP5 was found stable during the 1-year period, but was lowered by secondary sedimentation processes in the wastewater treatment down to 24% compared to the nitrification tank. Bacterial isolates showing high tetracycline resistance (minimal inhibition concentrations >100 μg/mL) were identified as members of Acinetobacter, Klebsiella, Citrobacter, Bacillus, and Enterobacter genera. Dynamic shifts in the relative abundance of ermB and sul1 were also demonstrated in wastewater samples from WWTP5.

  7. A Guide for Developing Standard Operating Job Procedures for the Grit Removal Process Wastewater Treatment Facility. SOJP No. 2.

    ERIC Educational Resources Information Center

    Deal, Gerald A.; Montgomery, James A.

    This guide describes standard operating job procedures for the grit removal process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up, continuous operation, and shut-down procedures. A description of the equipment used in the process is given. Some theoretical material is presented. (BB)

  8. A Guide for Developing Standard Operating Job Procedures for the Pump Station Process Wastewater Treatment Facility. SOJP No. 3.

    ERIC Educational Resources Information Center

    Perley, Gordon F.

    This is a guide for standard operating job procedures for the pump station process of wastewater treatment plants. Step-by-step instructions are given for pre-start up inspection, start-up procedures, continuous routine operation procedures, and shut-down procedures. A general description of the equipment used in the process is given. Two…

  9. Wastewater Treatment and Reuse Treatment Technology Evaluation and Development

    EPA Science Inventory

    This project will assess the effectiveness of a Biomass Concentrator Reactor (BCR) to remove endocrine disrupting chemicals (EDCs) from wastewater. This technology could provide an alternative to traditional wastewater treatment methods.

  10. IMPACT OF INFLUENT MICROORGANISMS UPON POOR SOLIDS SEPARATION IN THE QUIESCENT ZONE OF AN INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    EPA Science Inventory

    One of the most common biological treatment systems used to clean wastewater is suspended growth activated sludge wastewater treatment (AS). When AS is adapted for the treatment of wastewater from industrial manufacturing processes, unanticipated difficulties can arise. For the s...

  11. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    PubMed

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving

  12. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  13. Synthesis and Technological Innovation of Applying Oxide Nanomaterials in Wastewater Treatment by Flotation

    NASA Astrophysics Data System (ADS)

    Covaliu, C. I.; Moga, I. C.; Matache, M. G.; Paraschiv, G.; Gageanu, I.; Vasile, E.

    2018-06-01

    The appearance and development of nanotechnology gave new and efficient modalities for pollutants removal from wastewaters by using new compounds called nanomaterials which possess unique structural and morphological properties. In this paper we investigated the application of CoFe2O4 nanomaterial for increasing the efficiency of oily wastewater treatment by flotation. CoFe2O4 nanomaterial was prepared by precipitation method. Prior testing their application in wastewater treatment by flotation, the oxide nanomaterial was structural and morphological characterized by XRD and TEM analyses. The influence of CoFe2O4nanomaterial on oily wastewater depollution by flotation process was investigated by measuring the following parameters: treatment efficiency [%] and the stability of froth.

  14. Polyhydroxyalkanoate (PHA) accumulation potential and PHA-accumulating microbial communities in various activated sludge processes of municipal wastewater treatment plants.

    PubMed

    Sakai, K; Miyake, S; Iwama, K; Inoue, D; Soda, S; Ike, M

    2015-01-01

    To clarify the polyhydroxyalkanoate (PHA) accumulation potential and the PHA-accumulating microbial community structure in activated sludge in municipal wastewater treatment plants (WWTPs) and to identify their influential factors. Nine activated sludge samples were collected from municipal WWTPs employing various biological treatment processes. In acetate-fed 24-h batch experiments under aerobic and nitrogen- and phosphorus-limited conditions, polyhydroxybutyrate (PHB) content of activated sludge increased from 0-1·3 wt% to 7·9-24 wt%, with PHB yields of 0·22-0·50 C-mol 3-hydroxybutyrate (C-mol acetate)(-1). Microbial community analyses found that activated sludge samples that accumulated >20 wt% of PHB after 24-h PHA accumulation experiments had >5·0 × 10(8) copies g(-1)-mixed liquor-suspended solid of phaC genes. Results indicated that (i) activated sludge in municipal WWTPs can accumulate up to approx. 20 wt% of PHA without enrichment processes, (ii) PHA accumulation potential of activated sludge varied depending on the operational conditions (treatment processes) of WWTPs, and (iii) phaC gene number can provide a simple indication of PHA accumulation potential. This is the first study to compare the PHA accumulation potential and PHA-accumulating microbial communities in activated sludge of various treatment processes. Our findings may be useful for enhancing the resource recovery potential of wastewater treatment systems. © 2014 The Society for Applied Microbiology.

  15. Treatment of laundry wastewater by biological and electrocoagulation methods.

    PubMed

    Ramcharan, Terelle; Bissessur, Ajay

    2017-01-01

    The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.

  16. Operation and Maintenance of Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Drury, Douglas D.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment: (1) operators, training, and certification; (2) solutions to operating problems; (3) collection systems; (4) operations manuals; (5) wastewater treatment facility case histories; (5) land application; and (6) treatment of industrial wastes. A list of 36 references is also presented. (HM)

  17. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...

  18. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...

  19. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...

  20. 40 CFR 63.147 - Process wastewater provisions-recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.147 Process wastewater provisions—recordkeeping. (a) The owner or operator transferring a Group 1 wastewater stream or...

  1. Integration of biofiltration and advanced oxidation processes for tertiary treatment of an oil refinery wastewater aiming at water reuse.

    PubMed

    Nogueira, A A; Bassin, J P; Cerqueira, A C; Dezotti, M

    2016-05-01

    The combination of biological and chemical oxidation processes is an interesting approach to remove ready, poor, and non-biodegradable compounds from complex industrial wastewaters. In this study, biofiltration followed by H2O2/UV oxidation (or microfiltration) and final reverse osmosis (RO) step was employed for tertiary treatment of an oil refinery wastewater. Biofiltration alone allowed obtaining total organic carbon (TOC), chemical oxygen demand (COD), UV absorbance at 254 nm (UV254), ammonium, and turbidity removal of around 46, 46, 23, 50, and 61 %, respectively. After the combined biological-chemical oxidation treatment, TOC and UV254 removal amounted to 88 and 79 %, respectively. Whereas, the treatment performance achieved with different UV lamp powers (55 and 95 W) and therefore distinct irradiance levels (26.8 and 46.3 mW/cm(2), respectively) were very similar and TOC and UV254 removal rates were highly affected by the applied C/H2O2 ratio. Silt density index (SDI) was effectively reduced by H2O2/UV oxidation, favoring further RO application. C/H2O2 ratio of 1:4, 55 W UV lamp, and 20-min oxidation reaction corresponded to the experimental condition which provided the best cost/benefit ratio for TOC, UV254, and SDI reduction from the biofilter effluent. The array of treatment processes proposed in this study has shown to be adequate for tertiary treatment of the oil refinery wastewater, ensuring the mitigation of membrane fouling problems and producing a final effluent which is suitable for reuse applications.

  2. Industrial wastewater treatment with a bioelectrochemical process: assessment of depuration efficiency and energy production.

    PubMed

    Molognoni, Daniele; Chiarolla, Stefania; Cecconet, Daniele; Callegari, Arianna; Capodaglio, Andrea G

    2018-01-01

    Development of renewable energy sources, efficient industrial processes, energy/chemicals recovery from wastes are research issues that are quite contemporary. Bioelectrochemical processes represent an eco-innovative technology for energy and resources recovery from both domestic and industrial wastewaters. The current study was conducted to: (i) assess bioelectrochemical treatability of industrial (dairy) wastewater by microbial fuel cells (MFCs); (ii) determine the effects of the applied organic loading rate (OLR) on MFC performance; (iii) identify factors responsible for reactor energy recovery losses (i.e. overpotentials). For this purpose, an MFC was built and continuously operated for 72 days, during which the anodic chamber was fed with dairy wastewater and the cathodic chamber with an aerated mineral solution. The study demonstrated that industrial effluents from agrifood facilities can be treated by bioelectrochemical systems (BESs) with >85% (average) organic matter removal, recovering power at an observed maximum density of 27 W m -3 . Outcomes were better than in previous (shorter) analogous experiences, and demonstrate that this type of process could be successfully used for dairy wastewater with several advantages.

  3. TENORM: Wastewater Treatment Residuals

    EPA Pesticide Factsheets

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  4. Cosmetic wastewater treatment using the Fenton, Photo-Fenton and H2O2/UV processes.

    PubMed

    Marcinowski, Piotr P; Bogacki, Jan P; Naumczyk, Jeremi H

    2014-01-01

    Advanced Oxidation Processes (AOPs), such as the Fenton, photo-Fenton and H2O2/UV processes, have been investigated for the treatment of cosmetic wastewaters that were previously coagulated by FeCl3. The Photo-Fenton process at pH 3.0 with 1000/100 mg L(-1) H2O2/Fe(2+) was the most effective (74.0% Chemical Oxygen Demand (COD) removal). The Fenton process with 1200/500 mg L(-1) H2O2/Fe(2+) achieved a COD removal of 72.0%, and the H2O2/UV process achieved a COD removal of 47.0%. Spreading the H2O2 doses over time to obtain optimal conditions did not improve COD removal. The kinetics of the Fenton and photo-Fenton processes may be described by the following equation: d[COD]/dt = -a[COD] t(m) (t represents time and a and m are constants). The rate of COD removal by the H2O2/UV process may be described by a second-order reaction equation. Head Space, Solid-Phase MicroExtraction, Gas Chromatography and Mass Spectrometry (HS-SPME-GC-MS) were used to identify 48 substances in precoagulated wastewater. Among these substances, 26 were fragrances. Under optimal AOP conditions, over 99% of the identified substances were removed in 120 min.

  5. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.

    PubMed

    Cema, G; Żabczyński, S; Ziembińska-Buczyńska, A

    2016-01-01

    Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.

  6. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  7. Assessment of wastewater treatment alternatives for small communities: An analytic network process approach.

    PubMed

    Molinos-Senante, María; Gómez, Trinidad; Caballero, Rafael; Hernández-Sancho, Francesc; Sala-Garrido, Ramón

    2015-11-01

    The selection of the most appropriate wastewater treatment (WWT) technology is a complex problem since many alternatives are available and many criteria are involved in the decision-making process. To deal with this challenge, the analytic network process (ANP) is applied for the first time to rank a set of seven WWT technology set-ups for secondary treatment in small communities. A major advantage of ANP is that it incorporates interdependent relationships between elements. Results illustrated that extensive technologies, constructed wetlands and pond systems are the most preferred alternatives by WWT experts. The sensitivity analysis performed verified that the ranking of WWT alternatives is very stable since constructed wetlands are almost always placed in the first position. This paper showed that ANP analysis is suitable to deal with complex decision-making problems, such as the selection of the most appropriate WWT system contributing to better understand the multiple interdependences among elements involved in the assessment. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Combining micelle-clay sorption to solar photo-Fenton processes for domestic wastewater treatment.

    PubMed

    Brienza, Monica; Nir, Shlomo; Plantard, Gael; Goetz, Vincent; Chiron, Serge

    2018-06-08

    A tertiary treatment of effluent from a biological domestic wastewater treatment plant was tested by combining filtration and solar photocatalysis. Adsorption was carried out by a sequence of two column filters, the first one filled with granular activated carbon (GAC) and the second one with granulated nano-composite of micelle-montmorillonite mixed with sand (20:100, w/w). The applied solar advanced oxidation process was homogeneous photo-Fenton photocatalysis using peroxymonosulfate (PMS) as oxidant agent. This combination of simple, robust, and low-cost technologies aimed to ensure water disinfection and emerging contaminants (ECs, mainly pharmaceuticals) removal. The filtration step showed good performances in removing dissolved organic matter and practically removing all bacteria such as Escherichia coli and Enterococcus faecalis from the secondary treated water. Solar advanced oxidation processes were efficient in elimination of trace levels of ECs. The final effluent presented an improved sanitary level with acceptable chemical and biological characteristics for irrigation.

  9. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    PubMed

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  10. Feasibility of using ornamental plants in subsurface flow wetlands for domestic wastewater treatment

    Treesearch

    Marco A. Belmont

    2000-01-01

    Constructed wetlands are possible low-cost solutions for treating domestic and industrial wastewater in developing countries such as Mexico. However, treatment of wastewater is not a priority in most developing countries unless communities can derive economic benefit from the water resources that are created by the treatment process. As part of our studies directed at...

  11. Diversity of microbiota found in coffee processing wastewater treatment plant.

    PubMed

    Pires, Josiane Ferreira; Cardoso, Larissa de Souza; Schwan, Rosane Freitas; Silva, Cristina Ferreira

    2017-11-13

    Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL - 1 ), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL - 1 . Yeasts were present at 7 log CFU mL - 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL - 1 , with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.

  12. A simple empirical model for the clarification-thickening process in wastewater treatment plants.

    PubMed

    Zhang, Y K; Wang, H C; Qi, L; Liu, G H; He, Z J; Fan, H T

    2015-01-01

    In wastewater treatment plants (WWTPs), activated sludge is thickened in secondary settling tanks and recycled into the biological reactor to maintain enough biomass for wastewater treatment. Accurately estimating the activated sludge concentration in the lower portion of the secondary clarifiers is of great importance for evaluating and controlling the sludge recycled ratio, ensuring smooth and efficient operation of the WWTP. By dividing the overall activated sludge-thickening curve into a hindered zone and a compression zone, an empirical model describing activated sludge thickening in the compression zone was obtained by empirical regression. This empirical model was developed through experiments conducted using sludge from five WWTPs, and validated by the measured data from a sixth WWTP, which fit the model well (R² = 0.98, p < 0.001). The model requires application of only one parameter, the sludge volume index (SVI), which is readily incorporated into routine analysis. By combining this model with the conservation of mass equation, an empirical model for compression settling was also developed. Finally, the effects of denitrification and addition of a polymer were also analysed because of their effect on sludge thickening, which can be useful for WWTP operation, e.g., improving wastewater treatment or the proper use of the polymer.

  13. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  14. Carbon wastewater treatment process

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F.; Simmons, G. M.; Dowler, W. L.

    1974-01-01

    A new powdered-carbon treatment process is being developed for the elimination of the present problems, associated with the disposal of biologically active sewage waste solids, and with water reuse. This counter-current flow process produces an activated carbon, which is obtained from the pyrolysis of the sewage solids, and utilizes this material to remove the adulterating materials from the water. Additional advantages of the process are the elimination of odors, the removal of heavy metals, and the potential for energy conservation.

  15. Problematic effects of antibiotics on anaerobic treatment of swine wastewater.

    PubMed

    Cheng, D L; Ngo, H H; Guo, W S; Chang, S W; Nguyen, D D; Kumar, S Mathava; Du, B; Wei, Q; Wei, D

    2018-05-04

    Swine wastewaters with high levels of organic pollutants and antibiotics have become serious environmental concerns. Anaerobic technology is a feasible option for swine wastewater treatment due to its advantage in low costs and bioenergy production. However, antibiotics in swine wastewater have problematic effects on micro-organisms, and the stability and performance of anaerobic processes. Thus, this paper critically reviews impacts of antibiotics on pH, COD removal efficiencies, biogas and methane productions as well as the accumulation of volatile fatty acids (VFAs) in the anaerobic processes. Meanwhile, impacts on the structure of bacteria and methanogens in anaerobic processes are also discussed comprehensively. Furthermore, to better understand the effect of antibiotics on anaerobic processes, detailed information about antimicrobial mechanisms of antibiotics and microbial functions in anaerobic processes is also summarized. Future research on deeper knowledge of the effect of antibiotics on anaerobic processes are suggested to reduce their adverse environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Wastewater Treatment I. Instructor's Manual.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  17. Electrophoretic Process For Purifying Wastewater

    NASA Technical Reports Server (NTRS)

    Sammons, David W.; Twitty, Garland E.; Sharnez, Rizwan; Egen, Ned B.

    1992-01-01

    Microbes, poisonous substances, and colloidal particles removed by combination of electric fields. Electrophoretic process removes pathogenicorganisms, toxins, toxic metals, and cooloidal soil particles from wastewater. Used to render domestic, industrial, and agricultural wastewater streams potable. Process also useful in bioregenerative and other closed systems like in space stations and submarines, where water must be recycled.

  18. Coke dust enhances coke plant wastewater treatment.

    PubMed

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. An innovative integrated oxidation ditch with vertical circle (IODVC) for wastewater treatment.

    PubMed

    Xia, Shi-bin; Liu, Jun-xin

    2004-01-01

    The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle (IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single-channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.

  20. An integrated AMBBR and IFAS-SBR process for municipal wastewater treatment towards enhanced energy recovery, reduced energy consumption and sludge production.

    PubMed

    Gu, Jun; Xu, Guangjing; Liu, Yu

    2017-03-01

    The conventional activated sludge (CAS) process has been widely employed for wastewater treatment for more than one hundred years. Recently, more and more concerns have been raised on the CAS process due to its high energy consumption and production of huge amount of waste activated sludge, which are inevitably linked to the issue of environmental sustainability and global climate change. Facing to such emerging and challenging situation, this study reported a novel A-B process in which an anaerobic moving bed biofilm reactor (AMBBR) served a lead A-stage for COD capture towards biogas production and an integrated fixed-biofilm and activated sludge sequencing batch reactor (IFAS-SBR) was employed as B-stage for biological nitrogen removal. Results showed that about 85% of wastewater COD was removed in the steady-state AMBBR with a total energy production rate of 0.28 kWh/m 3 wastewater treated, while 85% of N-removal was achieved when the stable nitrite shunt was established in the IFAS-SBR. Moreover, 90% of dissolved methane in the AMBBR effluent could be removed by the proposed flash chamber at the lower energy demand of 0.12 kWh/m 3 which could be offset by the potential energy harvested from produced methane. Compared to the CAS process, the production of waste sludge was reduced by about 75% in the proposed A-B process due to the efficient COD capture at the A-stage, leading to significant energy savings from aeration for COD oxidation and post-treatment of waste sludge at the B-stage. Consequently, this study offers in-depth insights into A-B process which should be considered as an ideal candidate for achieving the energy-neutral or even energy positive operation of a municipal wastewater treatment. Given the complex situation in A-B process, future study is needed to look into the system optimization towards the operational synergy between A- and B-stage in terms of energy recovery and nitrogen removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  2. Car wash wastewater treatment and water reuse - a case study.

    PubMed

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  3. Microbiological characterization of the biological treatment of aircraft paint stripping wastewater.

    PubMed

    Arquiaga, M C; Canter, L W; Robertson, J M

    1995-01-01

    Research on the treatment of potentially toxic wastewater produced at six US Navy aircraft paint stripping facilities has been conducted. The composition of the wastewater treated consisted of methylene chloride and phenol in concentrations of about 5000 and 1800 mg/l, respectively, and other organic compounds in a total concentration of 2200 mg/l. Biological treatment is an important means by which toxic or hazardous organic compounds can be economically converted to less noxious materials. Engineering studies conducted in the laboratory with activated sludge reactors and rotating biological contactors (RBC) demonstrated that both suspended and attached growths can be effective biological methods to treat this paint stripping wastewater when blended with domestic wastewater up to about 50% by volume. These studies were complemented with analyses of the bacterial communities inhabiting the treatment systems. The number and the genera of the microorganisms present in the blended wastewater, as well as their ability to biodegrade the potentially toxic organics were studied. The results indicate that paint stripping wastewater is able to support large bacterial populations consisting of various gram-negative rods and coccibacilli and a few gram-positive bacilli. Members of the genera Pseudomonas and Bacillus are suspected to play an important role in initiating the biodegradation process.

  4. Innovative Treatment Technologies for Natural Waters and Wastewaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energymore » usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.« less

  5. Nitrogen Control Through Decentralized Wastewater Treatment: Process Performance and Alternative Management Strategies

    EPA Science Inventory

    Decentralized or onsite wastewater treatment (OWT) systems have long been implicated in being a major source of N inputs to surface and ground waters and numerous regulatory bodies have promulgated strict total N (TN) effluent standards in N-sensitive areas. These standards, howe...

  6. Wastewater treatment process impact on energy savings and greenhouse gas emissions.

    PubMed

    Mamais, D; Noutsopoulos, C; Dimopoulou, A; Stasinakis, A; Lekkas, T D

    2015-01-01

    The objective of this research was to assess the energy consumption of wastewater treatment plants (WWTPs), to apply a mathematical model to evaluate their carbon footprint, and to propose energy saving strategies that can be implemented to reduce both energy consumption and greenhouse gas (GHG) emissions in Greece. The survey was focused on 10 WWTPs in Greece with a treatment capacity ranging from 10,000 to 4,000,000 population equivalents (PE). Based on the results, annual specific energy consumption ranged from 15 to 86 kWh/PE. The highest energy consumer in all the WWTPs was aeration, accounting for 40-75% of total energy requirements. The annual GHG emissions varied significantly according to the treatment schemes employed and ranged between 61 and 161 kgCO₂e/PE. The highest values of CO₂emissions were obtained in extended aeration systems and the lowest in conventional activated sludge systems. Key strategies that the wastewater industry could adopt to mitigate GHG emissions are identified and discussed. A case study is presented to demonstrate potential strategies for energy savings and GHG emission reduction. Given the results, it is postulated that the reduction of dissolved oxygen (DO) set points and sludge retention time can provide significant energy savings and decrease GHG emissions.

  7. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    PubMed

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment.

    PubMed

    Zhang, Chiqian; Hu, Zhiqiang; Li, Ping; Gajaraj, Shashikanth

    2016-12-01

    Silver nanoparticles (nanosilver or AgNPs) enter municipal wastewater from various sources, raising concerns about their potential adverse effects on wastewater treatment processes. We argue that the biological effects of silver nanoparticles at environmentally realistic concentrations (μgL -1 or lower) on the performance of a full-scale municipal water resource recovery facility (WRRF) are minimal. Reactor configuration is a critical factor that reduces or even mutes the toxicity of silver nanoparticles towards wastewater microbes in a full-scale WRRF. Municipal sewage collection networks transform silver nanoparticles into silver(I)-complexes/precipitates with low ecotoxicity, and preliminary/primary treatment processes in front of biological treatment utilities partially remove silver nanoparticles to sludge. Microbial functional redundancy and microbial adaptability to silver nanoparticles also greatly alleviate the adverse effects of silver nanoparticles on the performance of a full-scale WRRF. Silver nanoparticles in a lab-scale bioreactor without a sewage collection system and/or a preliminary/primary treatment process, in contrast to being in a full scale system, may deteriorate the reactor performance at relatively high concentrations (e.g., mgL -1 levels or higher). However, in many cases, silver nanoparticles have minimal impacts on lab-scale bioreactors, such as sequencing batch bioreactors (SBRs), especially when at relatively low concentrations (e.g., less than 1mgL -1 ). The susceptibility of wastewater microbes to silver nanoparticles is species-specific. In general, silver nanoparticles have higher toxicity towards nitrifying bacteria than heterotrophic bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    PubMed

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  10. Control of Cryptosporidium with wastewater treatment to prevent its proliferation in the water cycle.

    PubMed

    Suwa, M; Suzuki, Y

    2003-01-01

    The outbreak of Cryptosporidiosis in 1996 in Japan is thought to have been enlarged by the proliferation of Cryptosporidium in the water cycle from wastewater to drinking water through the river system. From this experience, the wastewater system must have functions to remove Cryptosporidium oocysts effectively. Efficiencies of wastewater treatment processes to remove oocysts were investigated using pilot plants receiving municipal wastewater. An activated sludge process and a following sand filter showed removal efficiencies of 2 log and 0.5 log, respectively. Poly-aluminium chloride dosage improved the efficiencies by 3 log for the activated sludge process and by 2 log for the sand filter. Chemical precipitation of raw wastewater with poly-aluminium chloride could achieve 1 to 3 log removal according on the coagulant concentration.

  11. Modelling the energy costs of the wastewater treatment process: The influence of the aging factor.

    PubMed

    Castellet-Viciano, Lledó; Hernández-Chover, Vicent; Hernández-Sancho, Francesc

    2018-06-01

    Wastewater treatment plants (WWTPs) are aging and its effects on the process are more evident as time goes by. Due to the deterioration of the facilities, the efficiency of the treatment process decreases gradually. Within this framework, this paper proves the increase in the energy consumption of the WWTPs with time, and finds differences among facilities size. Accordingly, the paper aims to develop a dynamic energy cost function capable of predicting the energy cost of the process in the future. The time variable is used to introduce the aging effects on the energy cost estimation in order to increase the accuracy of the estimation. For this purpose, the evolution of energy costs will be assessed and modelled for a group of WWTPs using the methodology of cost functions. The results will be useful for the managers of the facilities in the decision making process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Wastewater Treatment from Batik Industries Using TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Arifan, Fahmi; Nugraheni, FS; Rama Devara, Hafiz; Lianandya, Niken Elsa

    2018-02-01

    Batik is cultural patterned fabric, and the this industries produce wastewater that can pollute the aquatic environment. Besides dyes, batik wastewater also contains synthetic compounds that are hard degraded, such as heavy metals, suspended solids, or organic compounds. In this study, photocatalitic membrane TiO2 coated plastic sheets have been used to degrade batik wastewater under solar exposure. A total of 8 pieces of catalyst sheets are added on 1000 ml of the waste, and managed to degrade 50.41% of the initial concentration during 5-days irradiation. In this study, several parameters of the water quality such as chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspensed solids (TSS) of the wastewater were observed to be decreasing during photodegradation process. The catalyst sheet also is stable to be used repeatedly in wastewater treatment.

  13. Examination of the operator and compensator tank role in urban wastewater treatment using activated sludge method.

    PubMed

    Mokhtari Azar, Akbar; Ghadirpour Jelogir, Ali; Nabi Bidhendi, Gholam Reza; Zaredar, Narges

    2011-04-01

    No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are usable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.

  14. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  15. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    EPA Science Inventory

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  16. A Guide for Developing Standard Operating Job Procedures for the Sludge Conditioning & Dewatering Process Wastewater Treatment Facility. SOJP No. 11.

    ERIC Educational Resources Information Center

    Schwing, Carl M.

    This guide describes standard operating job procedures for the sludge conditioning and dewatering process of wastewater treatment facilities. In this process, sludge is treated with chemicals to make the sludge coagulate and give up its water more easily. The treated sludge is then dewatered using a vacuum filter. The guide gives step-by-step…

  17. Current status of urban wastewater treatment plants in China.

    PubMed

    Zhang, Q H; Yang, W N; Ngo, H H; Guo, W S; Jin, P K; Dzakpasu, Mawuli; Yang, S J; Wang, Q; Wang, X C; Ao, D

    2016-01-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A novel anoxic-aerobic biofilter process using new composite packing material for the treatment of rural domestic wastewater.

    PubMed

    Pan, L T; Han, Y

    2016-01-01

    A pilot scale experiment was conducted to evaluate the characteristics of contaminants removal in a continuously two-stage biological process composed of an anoxic biofilter (AF) and an biological aerated filter (BAF). This novel process was developed by introducing new composite packing material (MZF) into bioreactors to treat rural domestic wastewater. A comparative study conducted by the same process with ceramsite as packing material under the same conditions showed that a MZF system with a Fe proportion in the packing material performed better in chemical oxygen demand (COD) removal (average 91.5%), ammonia (NH4(+)-N) removal (average 98.3%), total nitrogen (TN) removal (average 64.8%) and total phosphorus (TP) removal (average 90%). After treatment of the MZF system, the concentrations of COD, NH4(+)-N, TN and TP in effluent were 20.3 mg/L, 0.5 mg/L, 11.5 mg/L and 0.3 mg/L, respectively. The simultaneously high efficiencies of nitrification, denitrification and phosphorus removal were achieved by the coupling effects of biological and chemical processes in the MZF system. The results of this study showed that the application of MZF might be a favorable choice as packing material in biofilters for treatment of rural domestic wastewater.

  19. Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants

    NASA Astrophysics Data System (ADS)

    Rodrigo, Manuel A.; Cañizares, Pablo; Lobato, Justo; Sáez, Cristina

    Electrocoagulation and electrooxidation are promising electrochemical technologies that can be used to remove organic pollutants contained in wastewaters. To make these technologies competitive with the conventional technologies that are in use today, a better understanding of the processes involved must be achieved. In this context, the development of mathematical models that are consistent with the processes occurring in a physical system is a relevant advance, because such models can help to understand what is happening in the treatment process. In turn, a more detailed knowledge of the physical system can be obtained, and tools for a proper design of the processes, or for the analysis of operating problems, are attained. The modeling of these technologies can be carried out using single-variable or multivariable models. Likewise, the position dependence of the model species can be described with different approaches. In this work, a review of the basics of the modeling of these processes and a description of several representative models for electrochemical oxidation and coagulation are carried out. Regarding electrooxidation, two models are described: one which summarizes the pollution of a wastewater in only one model species and that considers a macroscopic approach to formulate the mass balances and other that considers more detailed profile of concentration to describe the time course of pollutants and intermediates through a mixed maximum gradient/macroscopic approach. On the topic of electrochemical coagulation, two different approaches are also described in this work: one that considers the hydrodynamic conditions as the main factor responsible for the electrochemical coagulation processes and the other that considers the chemical interaction of the reagents and the pollutants as the more significant processes in the description of the electrochemical coagulation of organic compounds. In addition, in this work it is also described a multivariable model

  20. Prediction of wastewater treatment plants performance based on artificial fish school neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Ruicheng; Li, Chong

    2011-10-01

    A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.

  1. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  2. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges.

    PubMed

    Wiest, Laure; Chonova, Teofana; Bergé, Alexandre; Baudot, Robert; Bessueille-Barbier, Frédérique; Ayouni-Derouiche, Linda; Vulliet, Emmanuelle

    2018-04-01

    It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to

  3. Treatment of vegetable oily wastewater using an integrated microfiltration-reverse osmosis system.

    PubMed

    Yu, Xiaoli; Zhong, Zhaoxiang; Xing, Weihong

    2010-01-01

    Vegetable oil processing plants and catering trade often generate a large amount of oil-containing wastewater, which causes serious environmental problems. The objective of this work was to explore the feasibility of vegetable oil wastewater treatment with an integrated microfiltration-reverse osmosis (MF-RO) process. The influence of operational parameters on the separation behaviors were investigated in MF process. In MF continuous process the steady flux was around 90 (L/m(2) h) when the concentrated multiple reached 16, and the oil content in permeate was less than 12 mg/L. In the RO continuous process, antifouling membrane was used to treat permeate from the ceramic membrane process in order to improve the water quality. The RO process had a permeate flux of 24 (L/m(2) h) and water recovery rate of 95%. The permeate from the RO stage was free of oil, and its TOC and conductivity were less than 0.6 mg/L and 50 micros/cm, respectively. The results demonstrated that the two stage membrane process combining MF and RO is highly efficient in the treatment of oil-containing wastewater.

  4. 40 CFR 63.132 - Process wastewater provisions-general.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...

  5. 40 CFR 63.132 - Process wastewater provisions-general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...

  6. 40 CFR 63.132 - Process wastewater provisions-general.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...

  7. 40 CFR 63.132 - Process wastewater provisions-general.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...

  8. 40 CFR 63.132 - Process wastewater provisions-general.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-general... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.132 Process wastewater provisions—general. (a) Existing sources. This paragraph specifies the requirements applicable to...

  9. Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction.

    PubMed

    Zheng, He-Shan; Guo, Wan-Qian; Wu, Qu-Li; Ren, Nan-Qi; Chang, Jo-Shu

    2018-06-01

    Hospital wastewater is one of the possible sources responsible for antibiotic resistant bacteria spread into the environment. This study proposed a promising strategy, electro-peroxone (E-peroxone) pretreatment followed by a sequencing batch reactor (SBR) for simulated hospital wastewater treatment, aiming to enhance the wastewater treatment performance and to reduce antibiotic resistance genes production simultaneously. The highest chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiency of 94.3% and 92.8% were obtained using the E-peroxone-SBR process. The microbial community analysis through high-throughput sequencing showed that E-peroxone pretreatment could guarantee microbial richness and diversity in SBR, as well as reduce the microbial inhibitions caused by antibiotic and raise the amount of nitrification and denitrification genera. Specially, quantitative real-time PCRs revealed that E-peroxone pretreatment could largely reduce the numbers and contents of antibiotic resistance genes (ARGs) production in the following biological treatment unit. It was indicated that E-peroxone-SBR process may provide an effective way for hospital wastewater treatment and possible ARGs reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A critical review on textile wastewater treatments: Possible approaches.

    PubMed

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Application of the SCADA system in wastewater treatment plants.

    PubMed

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  12. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    NASA Astrophysics Data System (ADS)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  13. Carbon and energy footprint of electrochemical vinegar wastewater treatment

    NASA Astrophysics Data System (ADS)

    Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer

    2017-11-01

    Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.

  14. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Wastewater Treatment: The Natural Way

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  16. Treatment of food waste recycling wastewater using anaerobic ceramic membrane bioreactor for biogas production in mainstream treatment process of domestic wastewater.

    PubMed

    Jeong, Yeongmi; Hermanowicz, Slawomir W; Park, Chanhyuk

    2017-10-15

    A bench-scale anaerobic membrane bioreactor (AnMBR) equipped with submerged flat-sheet ceramic membranes was operated at mesophilic conditions (30-35 °C) treating domestic wastewater (DWW) supplemented with food wasterecycling wastewater (FRW) to increase the organic loading rate (OLR) for better biogas production. Coupling ceramic membrane filtration with AnMBR treatment provides an alternative strategy for high organic wastewater treatment at short hydraulic retention times (HRTs) with the potential benefits of membrane fouling because they have a high hydrophilicity and more robust at extreme conditions. The anaerobic ceramic MBR (AnCMBR) treating mixture of actual FRW with DWW (with an influent chemical oxygen demand (COD) of 2,115 mg/L) was studied to evaluate the treatment performance in terms of organic matter removal and methane production. COD removal during actual FRW with DWW operation averaged 98.3 ± 1.0% corresponding to an average methane production of 0.21 ± 0.1 L CH 4 /g COD removed . Biogas sparging, relaxation and permeate back-flushing were concurrently employed to manage membrane fouling. A flux greater than 9.2 L m -2  h -1 (LMH) was maintained at 13 h HRT for approximately 200 days without chemical cleaning at an OLR of 2.95 kg COD m -3  d -1 . On day 100, polyvinyl alcohol (PVA)-gel beads were added into the AnCMBR to alleviate the membrane fouling, suggesting that their mechanical scouring effect contributed positively in reducing the fouling index (FI). Although these bio-carriers might accelerate the breaking up of bio-flocs, which released a higher amount of soluble microbial products (SMP), a 95.4% SMP rejection was achieved. Although the retention efficiency of dissolved organic carbons (DOC) was 91.4% across the ceramic membrane, a meaningful interpretation of organic carbon detection (OCD) fingerprints was conducted to better understand the ceramic membrane performance. Copyright © 2017 Elsevier Ltd. All rights

  17. Development of downflow hanging sponge (DHS) reactor as post treatment of existing combined anaerobic tank treating natural rubber processing wastewater.

    PubMed

    Watari, Takahiro; Cuong Mai, Trung; Tanikawa, Daisuke; Hirakata, Yuga; Hatamoto, Masashi; Syutsubo, Kazuaki; Fukuda, Masao; Nguyen, Ngoc Bich; Yamaguchi, Takashi

    2017-01-01

    Conventional aerated tank technology is widely applied for post treatment of natural rubber processing wastewater in Southeast Asia; however, a long hydraulic retention time (HRT) is required and the effluent standards are exceeded. In this study, a downflow hanging sponge (DHS) reactor was installed as post treatment of anaerobic tank effluent in a natural rubber factory in South Vietnam and the process performance was evaluated. The DHS reactor demonstrated removal efficiencies of 64.2 ± 7.5% and 55.3 ± 19.2% for total chemical oxygen demand (COD) and total nitrogen, respectively, with an organic loading rate of 0.97 ± 0.03 kg-COD m -3 day -1 and a nitrogen loading rate of 0.57 ± 0.21 kg-N m -3 day -1 . 16S rRNA gene sequencing analysis of the sludge retained in the DHS also corresponded to the result of reactor performance, and both nitrifying and denitrifying bacteria were detected in the sponge carrier. In addition, anammox bacteria was found in the retained sludge. The DHS reactor reduced the HRT of 30 days to 4.8 h compared with the existing algal tank. This result indicates that the DHS reactor could be an appropriate post treatment for the existing anaerobic tank for natural rubber processing wastewater treatment.

  18. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Breach, Patrick A.; Simonovic, Slobodan P.

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  19. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment.

    PubMed

    Breach, Patrick A; Simonovic, Slobodan P

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  20. The treatment of hospital wastewater: an appraisal.

    PubMed

    Pauwels, B; Verstraete, W

    2006-12-01

    Hospitals discharge considerable amounts of chemicals and microbial agents in their wastewaters. Problem chemicals present in hospital wastewater belong to different groups, such as antibiotics, X-ray contrast agents, disinfectants and pharmaceuticals. Many of these chemical compounds resist normal wastewater treatment. They end up in surface waters where they can influence the aquatic ecosystem and interfere with the food chain. Humans are particularly exposed by the drinking water, produced from surface water. Microbial agents of special concern are multiresistant microbial strains. The latter are suspected to contribute to the spread of antibiotic resistance. In this paper, we will discuss the different approaches towards hospital wastewater treatment. The principle of uncoupling hospitals from public sewers warrants indepth evaluation by technologists and ecotoxicologists as well as public health specialists.

  1. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale.

    PubMed

    Foteinis, Spyros; Monteagudo, Jose Maria; Durán, Antonio; Chatzisymeon, Efthalia

    2018-01-15

    The environmental sustainability of a semi-industrial solar photo-Fenton reactor, treating real effluents emanating from a pharmaceutical laboratory, is assessed herein. The life cycle assessment/analysis (LCA) methodology was employed and real life cycle inventory (LCI) data was collected from a ferrioxalate-assisted homogeneous solar photo-Fenton wastewater treatment plant (WWTP), at Ciudad Real, Spain. Electricity was provided by photovoltaic (PV) panels in tandem with a battery bank, making the plant autonomous from the local grid. The effective treatment of 1m 3 of secondary-treated pharmaceutical wastewater, containing antipyrine, was used as a functional unit. The main environmental hotspot was identified to be the chemical reagents used to enhance treatment efficiency, mainly hydrogen peroxide (H 2 O 2 ) and to a smaller degree oxalic acid. On the other hand, land use, PV panels, battery units, compound parabolic collectors (CPC), tanks, pipes and pumps, as materials, had a low contribution, ranging from as little as 0.06% up to about 2% on the total CO 2eq emissions. Overall, the solar photo-Fenton process was found to be a sustainable technology for treating wastewater containing micropollutants at semi-industrial level, since the total environmental footprint was found to be 2.71kgCO 2 m -3 or 272mPtm -3 , using IPCC 2013 and ReCiPe impact assessment methods, respectively. A sensitivity analysis revealed that if the excess of solar power is fed back into the grid then the total environmental footprint is reduced. Depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    PubMed

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant.

    PubMed

    Bhuptawat, Hitendra; Folkard, G K; Chaudhari, Sanjeev

    2007-04-02

    Moringa oleifera is a pan tropical, multipurpose tree whose seeds contain a high quality edible oil (up to 40% by weight) and water soluble proteins that act as effective coagulants for water and wastewater treatment. The use of this natural coagulant material has not yet realised its potential. A water extract of M. oleifera seed was applied to a wastewater treatment sequence comprising coagulation-flocculation-sedimentation-sand filtration. The study was laboratory based using an actual wastewater. Overall COD removals of 50% were achieved at both 50 and 100mg/l M. oleifera doses. When 50 and 100mg/l seed doses were applied in combination with 10mg/l of alum, COD removal increased to 58 and 64%, respectively. The majority of COD removal occurred during the filtration process. In the tests incorporating alum, sludge generation and filter head loss increased by factors of 3 and 2, respectively. These encouraging treatment results indicate that this may be the first treatment application that can move to large scale adoption. The simple water extract may be obtained at minimal cost from the presscake residue remaining after oil extraction from the seed. The regulatory compliance issues of adopting 'new materials' for wastewater treatment are significantly less stringent than those applying to the production of potable water.

  4. Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Evans, Patrick J; Logan, Bruce E

    2016-12-01

    Treatment of low strength wastewaters using microbial fuel cells (MFCs) has been effective at hydraulic retention times (HRTs) similar to aerobic processes, but treatment of high strength wastewaters can require longer HRTs. The use of two air-cathode MFCs hydraulically connected in series was examined to continuously treat high strength swine wastewater (7-8g/L of chemical oxygen demand) at an HRT of 16.7h. The maximum power density of 750±70mW/m 2 was produced after 12daysof operation. However, power decreased by 85% after 185d of operation due to serious cathode fouling. COD removal was improved by using a lower external resistance, and COD removal rates were substantially higher than those previously reported for a low strength wastewater. However, removal rates were inconsistent with first order kinetics as the calculated rate constant was an order of magnitude lower than rate constant for the low strength wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Technologies for reducing sludge production in wastewater treatment plants: State of the art.

    PubMed

    Wang, Qilin; Wei, Wei; Gong, Yanyan; Yu, Qiming; Li, Qin; Sun, Jing; Yuan, Zhiguo

    2017-06-01

    This review presents the state-of-the-art sludge reduction technologies applied in both wastewater and sludge treatment lines. They include chemical, mechanical, thermal, electrical treatment, addition of chemical un-coupler, and predation of protozoa/metazoa in wastewater treatment line, and physical, chemical and biological pretreatment in sludge treatment line. Emphasis was put on their effect on sludge reduction performance, with 10% sludge reduction to zero sludge production in wastewater treatment line and enhanced TS (total solids) or volatile solids removal of 5-40% in sludge treatment line. Free nitrous acid (FNA) technology seems good in wastewater treatment line but it is only under the lab-scale trial. In sludge treatment line, thermal, ultrasonic (<4400kJ/kg TS), FNA pretreatment and temperature-phased anaerobic digestion (TPAD) are promising if pathogen inactivation is not a concern. However, thermal pretreatment and TPAD are superior to other pretreatment technologies when pathogen inactivation is required. The new wastewater treatment processes including SANI®, high-rate activated sludge coupled autotrophic nitrogen removal and anaerobic membrane bioreactor coupled autotrophic nitrogen removal also have a great potential to reduce sludge production. In the future, an effort should be put on the effect of sludge reduction technologies on the removal of organic micropollutants and heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Winery wastewater treatment using the land filter technique.

    PubMed

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  7. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  8. A novel integrated step-feed biofilm process for the treatment of decentralized domestic wastewater in rural areas of China.

    PubMed

    Liang, Hanwen; Gao, Min; Liu, Junxin; Wei, Yuansong; Guo, Xuesong

    2010-01-01

    For wastewater treatment in rural areas, a novel three-stage step-feed wastewater treatment system, combined with a drop-aeration biofilm process, was tested in the laboratory to investigate its performance in removing suspended solids (SS), chemical oxygen demand (COD), NH4(+)-N, total nitrogen (TN), and total phosphorus (TP). The removal rates of SS, COD and NH4(+)-N were 90%, 80%, and 90% in effluent concentrations less than 10 mg/L, 50 mg/L and 8 mg/L, respectively. The TP removal rate was less satisfactory. The C/N ratio in the raw wastewater was often less than 3.5, and the removal efficiency of TN was therefore limited. A carbon-release batch experiment was carried out to measure the feasibility of enhancing denitrification at low influent C/N ratios. The result showed that the C/N could be over 9.0 in the supernatant. Polymerase chain reaction denaturing gradient gel electrophoresis technology was used to reveal the changes in the bacterial community during different stages of the integrated step-feed biofilm process. The results showed that banding patterns and the distribution of dominant bands for the same experimental period in different aerobic zones were similar. Phylogenetic analysis indicated that lanes 10, 11 and 12, which presented three aerobic zones at the same operation period, had the closest phylogenetic relationship among the lanes.

  9. Floating treatment wetlands for domestic wastewater treatment.

    PubMed

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.

  10. The toxicity of ammonia/ammonium to the vermifiltration wastewater treatment process.

    PubMed

    Hughes, R J; Nair, J; Ho, G

    2008-01-01

    This study was undertaken to assess the toxicity of ammonia/ammonium to key species within the vermifiltration process. The key species, the earthworm Eisenia fetida, was subjected to a series of tests in solid phase mesocosms and full-scale units. The solid phase tests showed a relatively low toxicity to ammonium with ammonium chloride having an LC50 for ammonium of 1.49 g/kg. Ammonium sulfate did not show an effect on mortality at 2 g/kg ammonium. The full-scale units showed that ammonia hydroxide can change the pH and concentration of ammonia in wastewater and while it caused some mortality to the worms its overall affect on system functioning was minimal with no significant difference in terms of worm survival found between treatments. The affect on nitrifying bacteria was also minimal with no linear trend shown with ammonia concentration. IWA Publishing 2008.

  11. MIUS wastewater technology evaluation

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.

    1976-01-01

    A modular integrated utility system wastewater-treatment process is described. Research in the field of wastewater treatment is reviewed, treatment processes are specified and evaluated, and recommendations for system use are made. The treatment processes evaluated are in the broad categories of preparatory, primary, secondary, and tertiary treatment, physical-chemical processing, dissolved-solids removal, disinfection, sludge processing, and separate systems. Capital, operating, and maintenance costs are estimated, and extensive references are given.

  12. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    NASA Astrophysics Data System (ADS)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  13. Advanced treatment of biologically pretreated coal gasification wastewater by a novel heterogeneous Fenton oxidation process.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Ma, Wencheng; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2015-07-01

    Sewage sludge from a biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl2 as activation agent, which was used as a support for ferric oxides to form a catalyst (FeOx/SBAC) by a simple impregnation method. The new material was then used to improve the performance of Fenton oxidation of real biologically pretreated coal gasification wastewater (CGW). The results indicated that the prepared FeOx/SBAC significantly enhanced the pollutant removal performance in the Fenton process, so that the treated wastewater was more biodegradable and less toxic. The best performance was obtained over a wide pH range from 2 to 7, temperature 30°C, 15 mg/L of H2O2 and 1g/L of catalyst, and the treated effluent concentrations of COD, total phenols, BOD5 and TOC all met the discharge limits in China. Meanwhile, on the basis of significant inhibition by a radical scavenger in the heterogeneous Fenton process as well as the evolution of FT-IR spectra of pollutant-saturated FeOx/BAC with and without H2O2, it was deduced that the catalytic activity was responsible for generating hydroxyl radicals, and a possible reaction pathway and interface mechanism were proposed. Moreover, FeOx/SBAC showed superior stability over five successive oxidation runs. Thus, heterogeneous Fenton oxidation of biologically pretreated CGW by FeOx/SBAC, with the advantages of being economical, efficient and sustainable, holds promise for engineering application. Copyright © 2015. Published by Elsevier B.V.

  14. A modeling understanding on the phosphorous removal performances of A2O and reversed A2O processes in a full-scale wastewater treatment plant.

    PubMed

    Xie, Wen-Ming; Zeng, Raymond J; Li, Wen-Wei; Wang, Guo-Xiang; Zhang, Li-Min

    2018-05-31

    Reversed A 2 O process (anoxic-anaerobic-aerobic) and conventional A 2 O process (anaerobic-anoxic-aerobic) are widely used in many wastewater treatment plants (WWTPs) in Asia. However, at present, there are still no consistent results to figure out which process has better total phosphorous (TP) removal performance and the mechanism for this difference was not clear yet. In this study, the treatment performances of both processes were compared in the same full-scale WWTP and the TP removal dynamics was analyzed by a modeling method. The treatment performance of full-scale WWTP showed the TP removal efficiency of the reversed A 2 O process was more efficient than in the conventional A 2 O process. The modeling results further reveal that the TP removal depends highly on the concentration and composition of influent COD. It had more efficient TP removal than the conventional A 2 O process only under conditions of sufficient influent COD and high fermentation products content. This study may lay a foundation for appropriate selection and optimization of treatment processes to suit practical wastewater properties.

  15. Energy saving processes for nitrogen removal in organic wastewater from food processing industries in Thailand.

    PubMed

    Johansen, N H; Suksawad, N; Balslev, P

    2004-01-01

    Nitrogen removal from organic wastewater is becoming a demand in developed communities. The use of nitrite as intermediate in the treatment of wastewater has been largely ignored, but is actually a relevant energy saving process compared to conventional nitrification/denitrification using nitrate as intermediate. Full-scale results and pilot-scale results using this process are presented. The process needs some additional process considerations and process control to be utilized. Especially under tropical conditions the nitritation process will round easily, and it must be expected that many AS treatment plants in the food industry already produce NO2-N. This uncontrolled nitrogen conversion can be the main cause for sludge bulking problems. It is expected that sludge bulking problems in many cases can be solved just by changing the process control in order to run a more consequent nitritation. Theoretically this process will decrease the oxygen consumption for oxidation by 25% and the use of carbon source for the reduction will be decreased by 40% compared to the conventional process.

  16. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA.

    PubMed

    Karthikeyan, K G; Meyer, Michael T

    2006-05-15

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H(2)O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%)>sulfamethoxazole (70%)>erythromycin-H(2)O (45%)>ciprofloxacin (40%)>sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study.

  17. Applications of nanotechnology in water and wastewater treatment.

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Applications of nanotechnology in wastewater treatment--a review.

    PubMed

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  19. Coagulation-flocculation as pre-treatment for micro-scale Fe/Cu/O3 process (CF-mFe/Cu/O3) treatment of the coating wastewater from automobile manufacturing.

    PubMed

    Xiong, Zhaokun; Cao, Jinyan; Yang, Dan; Lai, Bo; Yang, Ping

    2017-01-01

    A coagulation-flocculation as pre-treatment combined with mFe/Cu/O 3 (CF-mFe/Cu/O 3 ) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al 2 (SO 4 ) 3 ·18H 2 O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O 3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O 3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O 3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O 3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O 3 process was about 1.83 USD t -1 for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production

    NASA Astrophysics Data System (ADS)

    Ansari, Abeera A.; Khoja, Asif Hussain; Nawar, Azra; Qayyum, Muneeb; Ali, Ehsan

    2017-11-01

    Currently, the scientific community is keenly working on environmental-friendly processes for the production of clean energy and sustainable development. The study was conducted to cultivate microalgae in raw institutional wastewater for water treatment, enriched production of biomass and CO2 sequestration. The strains which were used in this study are Scenedesmus sp. and Chlorella sp. which were isolated from Kallar Kahar Lake, Pakistan. Both strains were cultivated in synthetic growth medium (Bold's Basal Medium) to enhance biomass production. Afterward, microalgae cultures were inoculated in wastewater sample in mixotrophic mode under ambient conditions. The impurities in wastewater were successfully removed from the original sample by the 7th day of operation. COD 95%, nitrate 99.7% and phosphate 80.5% were removed by applying Scenedesmus sp. Meanwhile, Chlorella sp. reduced 84.86% COD, 98.2% nitrate and 70% phosphate, respectively. Interestingly, sulfates were removed from wastewater completely by both strains. Besides being useful in wastewater remediation, these microalgae strains were subsequently harvested for lipid extraction and potential biofuel production was determined. Therefore, the applied method is an environmentally safe, cost-effective and alternative technology for wastewater treatment. Furthermore, the achieved biomass through this process can be used for the production of biofuels.

  1. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  2. Introduction of new process technology into the wastewater treatment sector.

    PubMed

    Parker, Denny S

    2011-06-01

    Innovative wastewater treatment technologies are developed to respond to changing regulatory requirements, increase efficiency, and enhance sustainability or to reduce capital or operating costs. Drawing from experience of five successful new process introductions from both the inventor/developer's and adopter's viewpoints coupled with the application of marketing analysis tools (an S curve), the phases of new technology market penetration can be identified along with the influence of market drivers, marketing, patents and early adopters. The analysis is used to identify measures that have increased the capture of benefits from new technology introduction. These have included funding by the government for research and demonstrations, transparency of information, and the provision of independent technology evaluations. To reduce the barriers and speed the introduction of new technology, and thereby harvest the full benefits from it, our industry must develop mechanisms for sharing risks and any consequences of failure more broadly than just amongst the early adopters. WEF and WERF will continue to have the central role in providing reliable information networks and independent technology evaluations.

  3. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  4. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  5. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  6. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  7. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  8. Azo dyes wastewater treatment and simultaneous electricity generation in a novel process of electrolysis cell combined with microbial fuel cell.

    PubMed

    Zou, Haiming; Wang, Yan

    2017-07-01

    A new process of electrolysis cell (EC) coupled with microbial fuel cell (MFC) was developed here and its feasibility in methyl red (MR) wastewater treatment and simultaneous electricity generation was assessed. Results indicate that an excellent MR removal and electricity production performance was achieved, where the decolorization and COD removal efficiencies were 100% and 89.3%, respectively and a 0.56V of cell voltage output was generated. Electrolysis voltage showed a positive influence on decolorization rate (DR) but also cause a rapid decrease in current efficiency (CE). Although a low COD removal rate of 38.5% was found in EC system, biodegradability of MR solution was significantly enhanced, where the averaged DR was 85.6%. Importantly, COD removal rate in EC-MFC integrated process had a 50.8% improvement compared with the single EC system. The results obtained here would be beneficial to provide a prospective alternative for azo dyes wastewater treatment and power production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL - REVISED FEBRUARY 2002

    EPA Science Inventory

    This update of the 1980 Design Manual: Onsite Wastewater Treatment and Disposal Systems was developed to provide supplemental and new information for wastewater treatment professionals in both the public and private sectors. This manual is not intended to replace the previous man...

  10. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants.

    PubMed

    Monteith, Hugh D; Sahely, Halla R; MacLean, Heather L; Bagley, David M

    2005-01-01

    Municipal wastewater treatment may lead to the emission of greenhouse gases. The current Intergovenmental Panel on Climate Change (Geneva, Switzerland) approach attributes only methane emissions to wastewater treatment, but this approach may overestimate greenhouse gas emissions from the highly aerobic processes primarily used in North America. To better estimate greenhouse gas emissions, a procedure is developed that can be used either with plant-specific data or more general regional data. The procedure was evaluated using full-scale data from 16 Canadian wastewater treatment facilities and then applied to all 10 Canadian provinces. The principal greenhouse gas emitted from municipal wastewater treatment plants was estimated to be carbon dioxide (CO2), with very little methane expected. The emission rates ranged from 0.005 kg CO2-equivalent/m3 treated for primary treatment facilities to 0.26 kg CO2-equivalent/m3 for conventional activated sludge, with anaerobic sludge digestion to over 0.8 kg CO2-equivalent/m3 for extended aeration with aerobic digestion. Increasing the effectiveness of biogas generation and use will decrease the greenhouse gas emissions that may be assigned to the wastewater treatment plant.

  11. Ozone-UV-catalysis based advanced oxidation process for wastewater treatment.

    PubMed

    Tichonovas, Martynas; Krugly, Edvinas; Jankunaite, Dalia; Racys, Viktoras; Martuzevicius, Dainius

    2017-07-01

    A bench-scale advanced oxidation (AO) reactor was investigated for the degradation of six pollutants (2-naphthol, phenol, oxalic acid, phthalate, methylene blue, and D-glucose) in a model wastewater at with the aim to test opportunities for the further upscale to industrial applications. Six experimental conditions were designed to completely examine the experimental reactor, including photolysis, photocatalysis, ozonation, photolytic ozonation, catalytic ozonation, and photocatalytic ozonation. The stationary catalyst construction was made from commercially available TiO 2 nanopowder by mounting it on a glass support and subsequently characterized for morphology (X-ray diffraction analysis and scanning electron microscopy) as well as durability. The ozone was generated in a dielectrical barrier discharge reactor using air as a source of oxygen. The degradation efficiency was estimated by the decrease in total organic carbon (TOC) concentration as well as toxicity using Daphnia magna, and degradation by-products by ultra-performance liquid chromatography-mass spectrometry. The photocatalytic ozonation was the most effective for the treatment of all model wastewater. The photocatalytic ozonation was most effective against ozonation and photolytic ozonation at tested pH values. A complete toxicity loss was obtained after the treatment using photocatalytic ozonation. The possible degradation pathway of the phthalate by oxidation was suggested based on aromatic ring opening reactions. The catalyst used at this experiment confirmed as a durable for continuous use with almost no loss of activity over time. The design of the reactor was found to be very effective for water treatment using photocatalytic ozonation. Such design has a high potential and can be further upscaled to industrial applications due to the simplicity and versatility of manufacturing and maintenance.

  12. Crystallization techniques in wastewater treatment: An overview of applications.

    PubMed

    Lu, Haijiao; Wang, Jingkang; Wang, Ting; Wang, Na; Bao, Ying; Hao, Hongxun

    2017-04-01

    As a by-product of industrial or domestic activities, wastewater of different compositions has caused serious environmental problems all over the world. Facing the challenge of wastewater treatment, researchers have begun to make use of crystallization techniques in wastewater treatment. Crystallization techniques have many advantages, such as high efficiency, energy saving, low costs, less space occupation and so on. In recent decades, crystallization is considered as one of promising techniques for wastewater treatment, especially for desalination, water and salt recovery. It has been widely used in engineering applications all over the world. In this paper, various crystallization techniques in wastewater treatment are summarized, mainly including evaporation crystallization, cooling crystallization, reaction crystallization, drowning-out crystallization and membrane distillation crystallization. Overall, they are mainly used for desalination, water and salt recovery. Their applications, advantages and disadvantages were compared and discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structural redundancy of data from wastewater treatment systems. Determination of individual balance equations.

    PubMed

    Spindler, A

    2014-06-15

    Although data reconciliation is intensely applied in process engineering, almost none of its powerful methods are employed for validation of operational data from wastewater treatment plants. This is partly due to some prerequisites that are difficult to meet including steady state, known variances of process variables and absence of gross errors. However, an algorithm can be derived from the classical approaches to data reconciliation that allows to find a comprehensive set of equations describing redundancy in the data when measured and unmeasured variables (flows and concentrations) are defined. This is a precondition for methods of data validation based on individual mass balances such as CUSUM charts. The procedure can also be applied to verify the necessity of existing or additional measurements with respect to the improvement of the data's redundancy. Results are given for a large wastewater treatment plant. The introduction aims at establishing a link between methods known from data reconciliation in process engineering and their application in wastewater treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Organic pollutant removal from edible oil process wastewater using electrocoagulation

    NASA Astrophysics Data System (ADS)

    Sharma, S.; Can, O. T.; Hammed, M.; Nawarathna, D.; Simsek, H.

    2018-03-01

    Wastewaters generated from vegetable oil industries contain a high concentration of organic pollutants that are detrimental to the aquatic ecosystem. Electrochemical processes are gaining importance in the treatment of inorganic and resistant organic pollutants in wastewaters. In this study, electrocoagulation (EC) was applied to remove organic pollutants and oil and grease from canola oil wastewater using aluminum (Al) and iron (Fe) electrodes. The application of EC in the wastewater achieved more than 80% removal of organic carbon and nearly 100% removal of suspended solids (SS). The effectiveness of EC is influenced mainly by current density, pH, electrolyte (NaCl), electrode contact time and electrode type. It was observed that Al electrode combination yielded better removal at a lesser time compared to that of Fe electrodes. However, varying current densities had its significance in terms of coagulation time only. Increase in current density achieved decrease in coagulation time. Both Al and Fe could remove between 52-59% of oil and grease from canola oil wastewater

  15. Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes.

    PubMed

    Schwermer, Carsten Ulrich; Krzeminski, Pawel; Wennberg, Aina Charlotte; Vogelsang, Christian; Uhl, Wolfgang

    2018-02-01

    The effectivity of different treatment stages at two large wastewater treatment plants (WWTPs) located in Oslo, Norway, to remove antibiotic resistant Escherichia coli from municipal wastewater was investigated. The WWTPs were effective in reducing the total cultivable E. coli. The E. coli in WWTP samples were mainly resistant to ampicillin (6-27%) and trimethoprim-sulfamethoxazole (5-24%), and, to a lesser extent, tetracycline (3-14%) and ciprofloxacin (0-7%). In the first WWTP, a clear decrease in the percentage of E. coli resistant to these antibiotics was found, with the main removal occurring during physical/chemical treatment. In the second WWTP, the percentage of cultivable resistant E. coli did not display a considerable change. During laboratory-scale membrane filtration of WWTP effluents using ultrafiltration (UF) and nanofiltration (NF) membranes, all E. coli, including those resistant to antibiotics, were removed completely. The results imply that UF and NF processes are potent measures to remove antibiotic resistant bacteria (ARB) during post-treatment of WWTP effluents, thus reducing the potential spread of antibiotic resistance in the receiving aquatic environment.

  16. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  17. Investigating the performance of three modified activated sludge processes treating municipal wastewater in organic pollutants removal and toxicity reduction.

    PubMed

    Han, Xue; Zuo, Yu-Ting; Hu, Yu; Zhang, Jie; Zhou, Meng-Xuan; Chen, Mo; Tang, Fei; Lu, Wen-Qing; Liu, Ai-Lin

    2018-02-01

    This study investigated the treatment performance of three types of modified activated sludge processes, i.e., anoxic/oxic (A/O), anaerobic/anoxic/oxic (A2/O) and oxidation ditch process, in treating municipal wastewater by measuring physicochemical and spectroscopic parameters, and the toxicity of the influents and effluents collected from 8 full-scale municipal wastewater treatment plants (MWTPs). The relationships between spectroscopic and physicochemical parameters of the wastewater samples and the applicability of the nematode Caenorhabditis elegans (C. elegans) bioassays for the assessment of the toxic properties of municipal wastewater were also evaluated. The results indicated that the investigated MWTPs employing any of A/O, A2/O and oxidation ditch processes could effectively control the discharge of major wastewater pollutants including biochemical oxygen demand (BOD), chemical oxygen demand, nitrogen and phosphorus. The oxidation ditch process appeared to have the advantage of removing tyrosine-like substances and presented slightly better removal efficiency of tryptophan-like fluorescent (peak T) substances than the A/O and A2/O processes. Both ultraviolet absorbance at 254nm and peak T may be used to characterize the organic load of municipal wastewater, and peak T can be adopted as a gauge of the BOD removal efficacy of municipal wastewater treatment. Using C. elegans-based oxygen consumption rate assay for monitoring municipal wastewater toxicity deserves further investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    ERIC Educational Resources Information Center

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  19. Synthetic hospital wastewater treatment by coupling submerged membrane bioreactor and electrochemical advanced oxidation process: Kinetic study and toxicity assessment.

    PubMed

    Ouarda, Yassine; Tiwari, Bhagyashree; Azaïs, Antonin; Vaudreuil, Marc-Antoine; Ndiaye, Sokhna Dieng; Drogui, Patrick; Tyagi, Rajeshwhar Dayal; Sauvé, Sébastien; Desrosiers, Mélanie; Buelna, Gerardo; Dubé, Rino

    2018-02-01

    In this work, the combination of membrane bioreactor (MBR) and electro-oxidation (EO) process was studied for the treatment of a synthetic hospital wastewater fortified with four pharmaceutical pollutants namely carbamazepine (CBZ), ibuprofen (IBU), estradiol (E-E) at a concentration of 10 μg L -1 venlafaxine (VEN) at 0.2 μg L -1 . Two treatment configurations were studied: EO process as pre-treatment and post-treatment. Wastewater treatment with MBR alone shows high removal percentages of IBU and E-E (∼90%). Unlikely for CBZ and VEN, a low elimination percentage (∼10%) was observed. The hydraulic and the solid retention times (HRT and SRT) were 18 h and 140 d respectively, while the biomass concentration in the MBR was 16.5 g L -1 . To enhance pharmaceuticals elimination, an EO pretreatment was conducted during 40 min at 2 A. This configuration allowed a 92% removal for VEN, which was far greater than both treatments alone, with lower than 30% and 50% for MBR and EO, respectively. The MBR-EO coupling (EO as post-treatment) allows high removal percentages (∼97%) of the four pharmaceutical pollutants after 40 min of treatment at a current intensity of 0.5 A with Nb/BDD as electrodes. This configuration appears to be very effective compared to the first configuration (EO-MBR) where EO process is used as a pre-treatment. Toxicity assessment showed that the treated effluent of this configuration is not toxic to Daphnia magna except at 100% v/v. The MBR-EO coupling appears to be a promising treatment for contaminated hospital effluents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Treatment of heavy metal polluted industrial wastewater by a new water treatment process: ballasted electroflocculation.

    PubMed

    Brahmi, Khaled; Bouguerra, Wided; Harbi, Soumaya; Elaloui, Elimame; Loungou, Mouna; Hamrouni, Béchir

    2018-02-15

    This laboratory study investigated the parameters efficiency of the new technology: ballasted electro-flocculation (BEF) using aluminum (Al) electrodes to remove cadmium and zinc from industrial mining wastewater (MWW). The principle of the BEF process is based on the use of micro-sand and polymer together to increase the weight of the flocs and the rate at which they settle is radically changing the electrocoagulation-electroflocculation settling methodology. Based on the examination of the operation parameters one by one, the best removal percentage was obtained at a current intensity of 2A, a the flow rate of 20L/h, a micro-sand dose of 6g/L, a polyéthylèneimine (PEI) polymer dose of 100mg, the contact times of 30min, a stirring speed of 50 RPM, a monopolar configuration of the electrodes, and an electrodes number of 10. The results showed that the flow rate and the current density have a preponderant effect on the variability of the quality of the settled water. In comparison, filterability was found to be more sensitive to number of electrodes, micro sand dosages and current density. It was dependent on the ratio of microsand to PEI polymer dosage, and improved when this ratio increased. Response surface methodology was applied to evaluate the main effects and interactions among stirring speed, polymer dose, current intensity, and electrodes number. The removal of Cd and Zn from industrial MWW was done for very low cost of 0.1TND/m 3 equivalent to 0.04€/m 3 . The investigation of BEF process proposes a highly cost-effective wastewater treatment method if compared to Actiflo TM and electrocoagulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Advanced treatment of sodium dithionite wastewater using the combination of coagulation, catalytic ozonation, and SBR.

    PubMed

    Zou, Xiao-Ling

    2017-10-01

    A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.

  2. Low-temperature thermal pre-treatment of municipal wastewater sludge: Process optimization and effects on solubilization and anaerobic degradation.

    PubMed

    Nazari, Laleh; Yuan, Zhongshun; Santoro, Domenico; Sarathy, Siva; Ho, Dang; Batstone, Damien; Xu, Chunbao Charles; Ray, Madhumita B

    2017-04-15

    The present study examines the relationship between the degree of solubilization and biodegradability of wastewater sludge in anaerobic digestion as a result of low-temperature thermal pre-treatment. The main effect of thermal pre-treatment is the disintegration of cell membranes and thus solubilization of organic compounds. There is an established correlation between chemical oxygen demand (COD) solubilization and temperature of thermal pre-treatment, but results of thermal pre-treatment in terms of biodegradability are not well understood. Aiming to determine the impact of low temperature treatments on biogas production, the thermal pre-treatment process was first optimized based on an experimental design study on waste activated sludge in batch mode. The optimum temperature, reaction time and pH of the process were determined to be 80 °C, 5 h and pH 10, respectively. All three factors had a strong individual effect (p < 0.001), with a significant interaction effect for temp. pH 2 (p = 0.002). Thermal pre-treatments, carried out on seven different municipal wastewater sludges at the above optimum operating conditions, produced increased COD solubilization of 18.3 ± 7.5% and VSS reduction of 27.7 ± 12.3% compared to the untreated sludges. The solubilization of proteins was significantly higher than carbohydrates. Methane produced in biochemical methane potential (BMP) tests, indicated initial higher rates (p = 0.0013) for the thermally treated samples (k hyd up to 5 times higher), although the ultimate methane yields were not significantly affected by the treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    PubMed

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    particles the bacteria were associated with had very small settling velocities. The results of this study highlight the importance of wastewater characterization when designing a treatment wetland system for bacterial removal. This study illustrated the level of variability in E. coli removal processes that can be observed within different wastewater, and wetland environments.

  4. Poultry slaughterhouse wastewater treatment plant for high quality effluent.

    PubMed

    Del Nery, V; Damianovic, M H Z; Moura, R B; Pozzi, E; Pires, E C; Foresti, E

    2016-01-01

    This paper assesses a wastewater treatment plant (WWTP) regarding the technology used, as well as organic matter and nutrient removal efficiencies aiming to optimize the treatment processes involved and wastewater reclamation. The WWTP consists of a dissolved air flotation (DAF) system, an upflow anaerobic sludge blanket (UASB) reactor, an aerated-facultative pond (AFP) and a chemical-DAF system. The removal efficiencies of chemical oxygen demand (COD) (97.9 ± 1.0%), biochemical oxygen demand (BOD) (98.6 ± 1.0%) and oil and grease (O&G) (91.1 ± 5.2%) at the WWTP, the nitrogen concentration of 17 ± 11 mg N-NH3 and phosphorus concentration of 1.34 ± 0.93 mg PO4(-3)/L in the final effluent indicate that the processes used are suitable to comply with discharge standards in water bodies. Nitrification and denitrification tests conducted using biomass collected at three AFP points indicated that nitrification and denitrification could take place in the pond.

  5. Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes.

    PubMed

    Yavuz, Y; Ögütveren, Ü B

    2018-02-01

    In this study electrocoagulation (EC) of industrial estate wastewater taken from the inlet of wastewater treatment plant was investigated using sacrificial iron electrodes. Employing a pole changer to homogenous consumption of electrodes, studies on the parameters such as current density, supporting electrolyte concentration and initial pH, which have significant effects on COD removal and hence the energy consumption, were performed. Hydrogen peroxide was used in different concentrations to observe its effects on COD removal efficiency and the energy consumption. Sludge productions were also calculated for all experiments. COD removal efficiency of ∼92% was obtained at the best experimental conditions (i = 30 mA/cm 2 , SE = 3 mM Na 2 SO 4 , pH = original pH (∼6) of the wastewater, 1500 mg/L H 2 O 2 ) with an energy cost of €3.41/m 3 wastewater treated and the sludge production of 5.45 g per g COD removed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sulfur flows and biosolids processing: Using Material Flux Analysis (MFA) principles at wastewater treatment plants.

    PubMed

    Fisher, R M; Alvarez-Gaitan, J P; Stuetz, R M; Moore, S J

    2017-08-01

    High flows of sulfur through wastewater treatment plants (WWTPs) may cause noxious gaseous emissions, corrosion of infrastructure, inhibit wastewater microbial communities, or contribute to acid rain if the biosolids or biogas is combusted. Yet, sulfur is an important agricultural nutrient and the direct application of biosolids to soils enables its beneficial re-use. Flows of sulfur throughout the biosolids processing of six WWTPs were investigated to identify how they were affected by biosolids processing configurations. The process of tracking sulfur flows through the sites also identified limitations in data availability and quality, highlighting future requirements for tracking substance flows. One site was investigated in more detail showing sulfur speciation throughout the plant and tracking sulfur flows in odour control systems in order to quantify outflows to air, land and ocean sinks. While the majority of sulfur from WWTPs is removed as sulfate in the secondary effluent, the sulfur content of biosolids is valuable as it can be directly returned to soils to combat the potential sulfur deficiencies. Biosolids processing configurations, which focus on maximising solids recovery, through high efficiency separation techniques in primary sedimentation tanks, thickeners and dewatering centrifuges retain more sulfur in the biosolids. However, variations in sulfur loads and concentrations entering the WWTPs affect sulfur recovery in the biosolids, suggesting industrial emitters, and chemical dosing of iron salts are responsible for differences in recovery between sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. The flocculation mechanism and treatment of oily wastewater by flocculation.

    PubMed

    Zhang, Zhenchao

    2017-11-01

    In the present study, the performance of compound flocculants composed of different concentrations of polyaluminum chloride (PAC) and cationic polyacrylamide (CPAM), the influencing mechanism of the flocculation process and the effects of temperature, settling time, and speed and time of stirring were investigated. The results show that the poor water quality with high concentrations of oil, suspended solids (SS) and polymer greatly increases the oily wastewater emulsion stability and the difficulty of the flocculation treatment process. The compound flocculant in oily wastewater treatment can achieve best results at optimum conditions of temperature 45 °C, settling time 60 min, and two stirring stages, 250 r·min -1 for 3 min followed by 100 r·min -1 for 7 min. At the PAC dosage of 80 mg·L -1 and the CPAM dosage of 0.8 mg·L -1 , the turbidity of oily wastewater is reduced from 153.8 NTU to 11.2 NTU, and the turbidity removal rate reaches 92.69%. Through further measurements, oil content and SS content are less than 10 mg·L -1 , which meets the requirement of the Daqing oilfield re-injection standard.

  8. Dielectric barrier discharge-based investigation and analysis of wastewater treatment and pollutant removal.

    PubMed

    Ramdani, N; Lousdad, A; Tilmatine, A; Nemmich, S

    2016-01-01

    Current research reveals that the oxidation by ozone is considered as an effective solution and offers irrefutable advantages in wastewater treatment. It is also well known that ozone is used to treat different types of water due to its effectiveness in water purification and for its oxidation potential. This process of ozonation is becoming progressively an alternative technology and is inscribed in a sustainable development perspective in Algeria. In this regards, the present paper investigates the wastewater treatment process by ozone produced by dielectric barrier discharge (DBD) under high potential. Three (DBD) ozone generators of cylindrical form have been used, at a laboratory scale, for treating collected samples from the wastewater treatment plant (WWTP) of the city of Sidi-Bel-Abbes located in the west of Algeria. Our experimental results reveal the efficiency of this type of treatment on the basis of the physicochemical analysis (pH, turbidity, chemical oxygen demand, biological oxygen demand, heavy metals) and microbial analysis downstream of the WWTP, which showed a high rate of elimination of all the parameters.

  9. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis.

    PubMed

    Zeng, Guangming; Jiang, Ru; Huang, Guohe; Xu, Min; Li, Jianbing

    2007-01-01

    This paper describes an innovative systematic approach, namely hierarchy grey relational analysis for optimal selection of wastewater treatment alternatives, based on the application of analytic hierarchy process (AHP) and grey relational analysis (GRA). It can be applied for complicated multicriteria decision-making to obtain scientific and reasonable results. The effectiveness of this approach was verified through a real case study. Four wastewater treatment alternatives (A(2)/O, triple oxidation ditch, anaerobic single oxidation ditch and SBR) were evaluated and compared against multiple economic, technical and administrative performance criteria, including capital cost, operation and maintenance (O and M) cost, land area, removal of nitrogenous and phosphorous pollutants, sludge disposal effect, stability of plant operation, maturity of technology and professional skills required for O and M. The result illustrated that the anaerobic single oxidation ditch was the optimal scheme and would obtain the maximum general benefits for the wastewater treatment plant to be constructed.

  10. Application of Electrocoagulation In Various Wastewater And Leachate Treatment-A Review

    NASA Astrophysics Data System (ADS)

    Zailani, L. W. M.; Zin, N. S. M.

    2018-04-01

    Electrocoagulation is a method that has a great ability on various wastewater and leachate treatment. It has a potential in removing various pollutants such as chemical oxygen demand, turbidity, ammonia, color, and suspended solid. The effectiveness of electrocoagulation method depends on several factors such as electrode, current density, operation time and pH. The aim of this paper is to review the relevant literature that publishes from 2000 to 2015 on the factor that influence Electrocoagulation (EC). The review describes, discussing and compare the factors that influence the EC process in various wastewater and leachate treatment.

  11. Biosolids accumulation and biodegradation of domestic wastewater treatment plant sludge by developed liquid state bioconversion process using a batch fermenter.

    PubMed

    Alam, Md Zahangir; Fakhru'l-Razi, A; Molla, Abul H

    2003-09-01

    The biosolids accumulation and biodegradation of domestic wastewater treatment plant (DWTP) sludge by filamentous fungi have been investigated in a batch fermenter. The filamentous fungi Aspergillus niger and Penicillium corylophilum isolated from wastewater and DWTP sludge was used to evaluate the treatment performance. The optimized mixed inoculum (A. niger and P. corylophilum) and developed process conditions (co-substrate and its concentration, temperature, initial pH, inoculum size, and aeration and agitation rate) were incorporated to accelerate the DWTP sludge treatment process. The results showed that microbial treatment of higher strength of DWTP sludge (4% w/w of TSS) was highly influenced by the liquid state bioconversion (LSB) process. In developed bioconversion processes, 93.8 g/kg of biosolids was enriched with fungal biomass protein of 30 g/kg. Enrichment of nutrients such as nitrogen (N), phosphorous (P), potassium (K) in biosolids was recorded in 6.2% (w/w), 3.1% (w/w) and 0.15% (w/w) from its initial values of 4.8% (w/w), 2.0% (w/w) and 0.08% (w/w) respectively after 10 days of fungal treatment. The biodegradation results revealed that 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of COD in treated DWTP sludge supernatant were removed after 8 days of microbial treatment. The specific resistance to filtration (SRF) in treated sludge (1.4x10(12) m/kg) was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation compared to untreated sample (85x10(12) m/kg).

  12. A consistent modelling methodology for secondary settling tanks in wastewater treatment.

    PubMed

    Bürger, Raimund; Diehl, Stefan; Nopens, Ingmar

    2011-03-01

    The aim of this contribution is partly to build consensus on a consistent modelling methodology (CMM) of complex real processes in wastewater treatment by combining classical concepts with results from applied mathematics, and partly to apply it to the clarification-thickening process in the secondary settling tank. In the CMM, the real process should be approximated by a mathematical model (process model; ordinary or partial differential equation (ODE or PDE)), which in turn is approximated by a simulation model (numerical method) implemented on a computer. These steps have often not been carried out in a correct way. The secondary settling tank was chosen as a case since this is one of the most complex processes in a wastewater treatment plant and simulation models developed decades ago have no guarantee of satisfying fundamental mathematical and physical properties. Nevertheless, such methods are still used in commercial tools to date. This particularly becomes of interest as the state-of-the-art practice is moving towards plant-wide modelling. Then all submodels interact and errors propagate through the model and severely hamper any calibration effort and, hence, the predictive purpose of the model. The CMM is described by applying it first to a simple conversion process in the biological reactor yielding an ODE solver, and then to the solid-liquid separation in the secondary settling tank, yielding a PDE solver. Time has come to incorporate established mathematical techniques into environmental engineering, and wastewater treatment modelling in particular, and to use proven reliable and consistent simulation models. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.

    PubMed

    Ottoson, J; Norström, A; Dalhammar, G

    2005-01-01

    To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.

  14. Human enteric viruses in a wastewater treatment plant: evaluation of activated sludge combined with UV disinfection process reveals different removal performances for viruses with different features.

    PubMed

    Lizasoain, A; Tort, L F L; García, M; Gillman, L; Alberti, A; Leite, J P G; Miagostovich, M P; Pou, S A; Cagiao, A; Razsap, A; Huertas, J; Berois, M; Victoria, M; Colina, R

    2018-03-01

    This study assess the quality of wastewater through the detection and quantification of important viruses causing gastroenteritis at different stages of the wastewater treatment process in an activated-sludge wastewater treatment plant with ultraviolet disinfection. Ten sampling events were carried out in a campaign along a period of 18 months collecting wastewater samples from the influent, after the activated-sludge treatment, and after the final disinfection with UV radiation. Samples were concentrated through ultracentrifugation and analysed using retro-transcription, PCR and real time quantitative PCR protocols, for detection and quantification of Group A Rotavirus (RVA), Human Astrovirus (HAstV), Norovirus Genogroup II (NoV GII) and Human Adenovirus (HAdV). HAdV (100%), NoV GII (90%), RVA (70%) and HAstV (60%) were detected in influent samples with concentration from 1·4 (NoV GII) to 8·0 (RVA) log 10  gc l -1 . Activated-sludge treatment reached well quality effluents with low organic material concentration, although nonstatistical significant differences were registered among influent and postactivated sludge treatment samples, regarding the presence and concentration for most viruses. All post-UV samples were negative for NoV GII and HAstV, although RVA and HAdV were detected in 38% and 63% of those samples respectively, with concentration ranging from 2·2 to 5·5 and 3·1 to 3·4 log 10  gc l -1 . This study demonstrates that an activated-sludge wastewater treatment plant with UV disinfection reduces to levels below the detection limit those single-stranded RNA viruses as noroviruses and astroviruses and reach significant lower levels of rotaviruses and adenoviruses after the complete treatment process. © 2017 The Society for Applied Microbiology.

  15. [Analysis and research on the degradation and migration of organic pollutants in textile wastewater treatment process by GC-MS].

    PubMed

    Liu, Wei-jing; Zhang, Long; Wu, Wei; Tu, Yong

    2010-04-01

    In order to analyze the advantages/disadvantages of the combined treatment process between "physicochemical + biochemical" and "biochemical + physicochemical" in treatment of textile wastewater, gas chromatography-mass spectrometry (GC-MS) was used to determine the degradation process of organic pollutants in this two totally different treatment processes. The same analysis was also conducted to the sludge and discharged water. The results showed that the "physicochemical + biochemical" process displayed a poorer effect than "biochemical + physicochemical" in degrading the organic pollutants. The latter was 6.2% higher than the former in removing the organic pollutants averagely. The difference was mainly manifested in the efficiency of anaerobic hydrolysis in the two coupled processes. Moreover, the implement of "physicochemical + biochemical" process resulted in the migration of plenty of typical organic pollutants to sludge from primary coagulation sedimentation process and to the discharged water, which would cause secondary pollution easily.

  16. ED-WAVE tool design approach: Case of a textile wastewater treatment plant in Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Chipofya, V.; Kraslawski, A.; Avramenko, Y.

    The ED-WAVE tool is a PC based package for imparting training on wastewater treatment technologies. The system consists of four modules viz. Reference Library, Process Builder, Case Study Manager, and Treatment Adviser. The principles of case-based design and case-based reasoning as applied in the ED-WAVE tool are utilised in this paper to evaluate the design approach of the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory, Blantyre, Malawi. The case being compared with MDW&S in the ED-WAVE tool is Textile Case 4 in Sri Lanka (2003). Equalisation, coagulation and rotating biological contactors is the sequencing of treatment units at Textile Case 4 in Sri Lanka. Screening, oxidation ditches and sedimentation is the sequencing of treatment units at MDW&S textile and garments factory. The study suggests that aerobic biological treatment is necessary in the treatment of wastewater from a textile and garments factory. MDW&S incorporates a sedimentation process which is necessary for the removal of settleable matter before the effluent is discharged to the municipal wastewater treatment plant. The study confirmed the practical use of the ED-WAVE tool in the design of wastewater treatment systems, where after encountering a new situation; already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects.

  17. Cosmetic wastewater treatment by the ZVI/H2O2 process.

    PubMed

    Bogacki, Jan; Marcinowski, Piotr; Zapałowska, Ewa; Maksymiec, Justyna; Naumczyk, Jeremi

    2017-10-01

    The ZVI/H 2 O 2 process was applied for cosmetic wastewater treatment. Two commercial zero-valent iron (ZVI) types with different granulations were chosen: Hepure Ferrox PRB and Hepure Ferrox Target. In addition, the pH and stirring method influence on ZVI/H 2 O 2 process efficiency was studied. During the ZVI and ZVI/H 2 O 2 processes, linear Fe ions concentration increase was observed. The addition of H 2 O 2 significantly accelerated the iron dissolution process. The highest COD removal was obtained using finer ZVI (Hepure Ferrox Target) for doses of reagents ZVI/H 2 O 2 1500/1600 mg/L, in a H 2 O 2 /COD weight ratio 2:1, at pH 3.0 with stirring on a magnetic stirrer. After 120 min of the process, 84.0% COD removal (from 796 to 127 mg/L) was achieved. It was found that the efficiency of the process depends, as in the case of the Fenton process, on the ratio of the reagents (ZVI/H 2 O 2 ) and their dose in relation to the COD (H 2 O 2 /COD) but does not depend on the dose of the iron itself. Statistical analysis confirms that COD removal efficiency depends primarily on H 2 O 2 /COD ratio and ZVI granulation, but ZVI dose influence is not statistically significant. The head space, solid-phase microextraction, gas chromatography, mass spectrometry results confirm high efficiency of the ZVI/H 2 O 2 process.

  18. Use of Alum for Odor Reduction in Sludge and Biosolids from Different Wastewater Treatment Processes.

    PubMed

    Gruchlik, Yolanta; Fouché, Lise; Joll, Cynthia A; Heitz, Anna

    2017-12-01

      Applicability of alum addition to wastewater sludge and biosolids produced from different treatment processes was evaluated as a means of odor reduction. Four water resource recovery facilities (WRRFs) were chosen for this study: two used mesophilic anaerobic digestion and two used oxidation ditch processes. The experiments were conducted on a laboratory scale and in all cases the alum was added prior to dewatering. This is the first report of the application of alum for odor reduction in oxidation ditch processes. Alum addition was effective in reducing odors in anaerobically digested biosolids. Addition of 4% alum to anaerobically digested liquid biosolids prior to dewatering resulted in a 60% reduction in the peak odor concentration in the laboratory dewatered cake, relative to the control sample. Alum addition did not reduce odors in dewatered sludge from oxidation ditch processes.

  19. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    PubMed

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.

  20. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control.

    PubMed

    Balogh, Steven J; Nollet, Yabing H

    2008-01-15

    Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

  1. Post treatment of antibiotic wastewater by adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Mullai, P.; Rajesh, V.

    2018-02-01

    The most common method of treating industrial wastewater involves biomethanation in anaerobic digesters. This biological treatment process is ineffective in color removal and it requires post-treatment methods. The color is the first contaminant in wastewater which affects the water bodies in several ways. As the anaerobically digested antibiotic wastewater was found with color, an attempt was made to remove color using granulated activated carbon as an adsorbent. Experiments were carried out in batch reactors to find out the color removal efficiency of the wastewater at four different dosages such as 25, 50, 75 and 100 mg of adsorbent material at each of the four different initial concentrations of effluent like 1956, 1450, 1251 and 1040 mg COD/L. The steady state values of color removal efficiencies were 96.6, 97.64, 98.64 and 99.63%, respectively, using 100 mg of activated carbon under shaking condition at the end of the 120th min. The effect of contact time on the percentage of color removal was also studied. It was observed that the adsorption of effluent obtained equilibrium at 120 minutes. The equilibrium data fitted well with the Langmuir and Freundlich isotherms.

  2. Integrated ecotechnology approach towards treatment of complex wastewater with simultaneous bioenergy production.

    PubMed

    Hemalatha, Manupati; Sravan, J Shanthi; Yeruva, Dileep Kumar; Venkata Mohan, S

    2017-10-01

    Sequential integration of three stage diverse biological processes was studied by exploiting the individual process advantage towards enhanced treatment of complex chemical based wastewater. A successful attempt to integrate sequence batch reactor (SBR) with bioelectrochemical treatment (BET) and finally with microalgae treatment was studied. The sequential integration has showed individual substrate degradation (COD) of 55% in SBR, 49% in BET and 56% in microalgae, accounting for a consolidated treatment efficiency of 90%. Nitrates removal efficiency of 25% was observed in SBR, 31% in BET and 44% in microalgae, with a total efficiency of 72%. The SBR treated effluents fed to BET with the electrode intervention showed TDS removal. BET exhibited relatively higher process performance than SBR. The integration approach significantly overcame the individual process limitations along with value addition as biomass (1.75g/L), carbohydrates (640mg/g), lipids (15%) and bioelectricity. The study resulted in providing a strategy of combining SBR as pretreatment step to BET process and finally polishing with microalgae cultivation achieving the benefits of enhanced wastewater treatment along with value addition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Comparison of nitrogen removal and microbial distribution in wastewater treatment process under different electron donor conditions.

    PubMed

    Park, Sora; Seon, Jiyun; Byun, Imgyu; Cho, Sunja; Park, Taejoo; Lee, Taeho

    2010-05-01

    The applicability of modified spent caustic (MSC) as an electron donor for denitrification was evaluated in a lab-scale reactor for the Bardenpho process under various electron donor conditions: (A) no electron donor, (B) methanol, (C) thiosulfate and (D) MSC conditions. TN removal efficiency varied in each condition, 23.1%, 87.8%, 83.7% and 71.7%, respectively. The distribution ratio of nitrifying bacteria and DGGE profile including sulfur-reducing or oxidizing bacteria also varied depending on the conditions. These results indicated that the MSC would be used as an efficient electron donor for denitrification by autotrophic denitrifier in wastewater treatment process. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Effect of White Charcoal on COD Reduction in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil

    2017-06-01

    The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.

  5. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    NASA Technical Reports Server (NTRS)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  6. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    PubMed

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  7. Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis.

    PubMed

    Lofrano, G; Libralato, G; Casaburi, A; Siciliano, A; Iannece, P; Guida, M; Pucci, L; Dentice, E F; Carotenuto, M

    2018-05-15

    This study assessed the effects and removal options of the macrolide spiramycin, currently used for both in human and veterinary medicine- with a special focus on advanced oxidation processes based on heterogeneous TiO 2 _ assisted photocatalysis. Spiramycin real concentrations were investigated on a seasonal basis in a municipal wastewater treatment plant (up to 35μgL -1 ), while its removal kinetics were studied considering both aqueous solutions and real wastewater samples, including by-products toxicity assessment. High variability of spiramycin removal by activated sludge treatments (from 9% (wintertime) to >99.9% (summertime)) was observed on a seasonal basis. Preliminary results showed that a total spiramycin removal (>99.9%) is achieved with 0.1gL -1 of TiO 2 in aqueous solution after 80min. Integrated toxicity showed residual slight acute effects in the photocatalytic treated solutions, independently from the amount of TiO 2 used, and could be linked to the presence of intermediate compounds. Photolysis of wastewater samples collected after activated sludge treatment during summer season (SPY 5μgL -1 ) allowed a full SPY removal after 80min. When photocatalysis with 0.1gL -1 of TiO 2 was carried out in wastewater samples collected in winter season (SPY 30μgL -1 ) after AS treatment, SPY removal was up to 91% after 80min. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    USGS Publications Warehouse

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.

  9. Alpine infrastructure in Central Europe: integral evaluation of wastewater treatment systems at mountain refuges.

    PubMed

    Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R

    2008-01-01

    Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.

  10. 40 CFR 63.134 - Process wastewater provisions-surface impoundments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater provisions-surface... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.134 Process wastewater provisions—surface impoundments. (a) For each surface impoundment that receives, manages, or...

  11. Evaluation of the process performance of a down-flow hanging sponge reactor for direct treatment of domestic wastewater in Bangkok, Thailand.

    PubMed

    Miyaoka, Yuma; Yoochatchaval, Wilasinee; Sumino, Haruhiko; Banjongproo, Pathan; Yamaguchi, Takashi; Onodera, Takashi; Okadera, Tomohiro; Syutsubo, Kazuaki

    2017-08-24

    This study assesses the performance of an aerobic trickling filter, down-flow hanging sponge (DHS) reactor, as a decentralized domestic wastewater treatment technology. Also, the characteristic eukaryotic community structure in DHS reactor was investigated. Long-term operation of a DHS reactor for direct treatment of domestic wastewater (COD = 150-170 mg/L and BOD = 60-90 mg/L) was performed under the average ambient temperature ranged from 28°C to 31°C in Bangkok, Thailand. Throughout the evaluation period of 550 days, the DHS reactor at a hydraulic retention time of 3 h showed better performance than the existing oxidation ditch process in the removal of organic carbon (COD removal rate = 80-83% and BOD removal rate = 91%), nitrogen compounds (total nitrogen removal rate = 45-51% and NH 4 + -N removal rate = 95-98%), and low excess sludge production (0.04 gTS/gCOD removed). The clone library based on the 18S ribosomal ribonucleic acid gene sequence revealed that phylogenetic diversity of 18S rRNA gene in the DHS reactor was higher than that of the present oxidation ditch process. Furthermore, the DHS reactor also demonstrated sufficient COD and NH 4 + -N removal efficiency under flow rate fluctuation conditions that simulates a small-scale treatment facility. The results show that a DHS reactor could be applied as a decentralized domestic wastewater treatment technology in tropical regions such as Bangkok, Thailand.

  12. Method and apparatus for energy efficient self-aeration in chemical, biochemical, and wastewater treatment processes

    DOEpatents

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR

    2002-05-28

    The present invention is a pulse spilling self-aerator (PSSA) that has the potential to greatly lower the installation, operation, and maintenance cost associated with aerating and mixing aqueous solutions. Currently, large quantities of low-pressure air are required in aeration systems to support many biochemical production processes and wastewater treatment plants. Oxygen is traditionally supplied and mixed by a compressor or blower and a mechanical agitator. These systems have high-energy requirements and high installation and maintenance costs. The PSSA provides a mixing and aeration capability that can increase operational efficiency and reduce overall cost.

  13. Changes in estrogenicity and micropollutant concentrations across unit processes in a biological wastewater treatment system.

    PubMed

    Chen, Jian Lin; Ravindran, Shanthinie; Swift, Simon; Singhal, Naresh

    2018-03-01

    The behavior of 10 micropollutants, i.e. four estrogens (estrone, 17β-estradiol, estriol, 17α-ethynylestradiol), carbamazepine (CBZ), sulfamethoxazole (SMX), triclosan, oxybenzone, 4-nonylphenol, and bisphenol A, was investigated in a typical domestic wastewater treatment plant. LC-MS and yeast estrogen screen bioassay were used to study the changes in micropollutants and estrogenicity across unit processes in the treatment system. Primary treatment via sedimentation showed that only 4-nonylphenol was removed, but led to no significant change in estrogenicity. Secondary treatment by the biological nitrification-dentrification process showed complete removal of oxybenzone and partial removal of the estrogens, which led to a decrease in estrogenic activity from 80 to 48 ng/L as estradiol equivalent (EEq). Ultraviolet treatment completely degraded the estrogens and triclosan, but failed to lower the concentrations of bisphenol A, SMX, and CBZ; a decrease in estrogenic activity from 48 to 5 ng/L EEq across the unit, a value that was only slightly larger than the observed EEq of 1 ng/L for the deionized control. Similarly, the anaerobic digestion of sludge completely degraded estrogens, oxybenzone, and SMX, but had no impact on bisphenol A, triclosan, and CBZ. The study emphasises the need to complement chemical analyses with estrogenic bioassays to evaluate the efficacy of waste water treatment plants.

  14. A Guide to the Selection of Cost-Effective Wastewater Treatment Systems. Technical Report.

    ERIC Educational Resources Information Center

    Van Note, Robert H.; And Others

    The data within this publication provide guidelines for planners, engineers and decision-makers at all governmental levels to evaluate cost-effectiveness of alternative wastewater treatment proposals. The processes described include conventional and advanced treatment units as well as most sludge handling and processing units. Flow sheets, cost…

  15. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    PubMed

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  16. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    PubMed Central

    Kalka, J.

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms. PMID:22623882

  17. Denitrifying bioreactor clogging potential during wastewater treatment.

    PubMed

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m 3 of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P 2 O 5 ) and along the bioreactor floor (0.04 vs. 0.12%P 2 O 5 ) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Aquatic Plants and Wastewater Treatment (an Overview)

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  19. Investigation of titanium dioxide/ tungstic acid -based photocatalyst for human excrement wastewater treatment

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Wang, Can; Xiao, Kemeng; Gao, Yufeng; Zhou, Tong; Xu, Heng

    2018-05-01

    An activated carbon (AC) coated with tungstic acid (WO3)/titanium dioxide (TiO2) nanocomposites photocatalytic material (ACWT) combined with Three-phase Fluidized Bed (TFB) was investigated for human excrement wastewater treatment. Under the ultraviolet (UV) and fluorescent lamp illumination, the ACWT had shown a good performance on chemical oxygen demand (COD) and total nitrogen (TN) removal but inefficient on ammonia nitrogen (NH3-N) removal. Optimized by Taguchi method, COD and TN removal efficiency was up to 88.39% and 55.07%, respectively. Among all the parameters, the dosage of ACWT had the largest contribution on the process. Bacterial community changes after treatment demonstrated that this photocatalytic system had a great sterilization effect on wastewater. These results confirmed that ACWT could be applied for the human excrement wastewater treatment.

  20. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were <1 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05-m soil profile depth). In the vadose zone of advanced system, heterotrophic and autrotrophic denitrification reduced nitrate-N concentrations to <0.12 mg/L, compared with >20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the

  1. Assessment of wastewater treatment plant design for small communities: environmental and economic aspects.

    PubMed

    Molinos-Senante, M; Garrido-Baserba, M; Reif, R; Hernández-Sancho, F; Poch, M

    2012-06-15

    The preliminary design and economic assessment of small wastewater treatment plants (less than 2000 population equivalent) are issues of particular interest since wastewaters from most of these agglomerations are not covered yet. This work aims to assess nine different technologies set-up for the secondary treatment in such type of facilities embracing both economic and environmental parameters. The main novelty of this work is the combination of an innovative environmental decision support system (EDSS) with a pioneer approach based on the inclusion of the environmental benefits derived from wastewater treatment. The integration of methodologies based on cost-benefit analysis tools with the vast amount of knowledge from treatment technologies contained in the EDSS was applied in nine scenarios comprising different wastewater characteristics and reuse options. Hence, a useful economic feasibility indicator is obtained for each technology including internal and external costs and, for the first time, benefits associated with the environmental damage avoided. This new methodology proved to be crucial for supporting the decision process, contributing to improve the sustainability of new treatment facilities and allows the selection of the most feasible technologies of a wide set of possibilities. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  3. Wastewater treatments and the impact on environment and agriculture: A case city of Annaba (north eastern of Algeria)

    NASA Astrophysics Data System (ADS)

    Abour, Fella; Hannouche, Mani; Belksier, Mohamed Salah

    2018-05-01

    The present study deals with wastewater treatment which represents a real challenge in the world especially for developing countries. Our investigation takes place in the Annaba (North Eastern of Algeria) which represents one of big cities in the country. The wastewater is treated collectively in the Allalik station which provides a global wastewater treatment to guarantee the sustainability of the ecosystem. The obtained results on treated wastewater show a contamination with Selenium (IS index for Selenium = 5.9). Whereas the other analysed parameters highlight values without exceeding standards excepting the nitrites. The microbiological analyses and Bourgeois index indicate the human origin for pollution (IB >1). In spite of the actual treatment, the pollution selenium and nitrites suggest the improvement of the process of wastewater treatment.

  4. An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2013-10-15

    Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Characterization, modeling and application of aerobic granular sludge for wastewater treatment.

    PubMed

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    2009-01-01

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  6. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  7. Preparation of polyelectrolytes for wastewater treatment.

    PubMed

    Radoiu, Marilena T; Martin, Diana I; Calinescu, Ioan; Iovu, Horia

    2004-01-02

    Liquid-phase polymerisation of acrylamide-acrylic acid to form polyelectrolytes used in wastewater cleaning was examined using accelerated electron beam and microwave irradiation methods. Polymerisation was carried out in aqueous solutions at temperatures approximately 60 degrees C. Monomers total concentration was established at 40% (36% acrylamide and 4% acrylic acid). Only using the features of simultaneous radiation-induction and microwave heating can result in the formation of linear polymer chains with good water solubility and low residual monomer concentration. The flocculation capacity of the obtained polymers was tested using two wastewaters, one sampled from a slaughterhouse and the other from a vegetable oil plant. Quality indicators such as total suspended matters (TSM), chemical oxygen demand (COD), biological oxygen demand (BOD) and fat, oils and grease (FOG) were measured before and after the treatment with polymeric flocculants and compared with the results obtained in classical treatment with Al(2)(SO(4))(3). It was found that the combined treatment with polymers and Al(2)(SO(4))(3) increases the degree of purification of both wastewaters up to 99%.

  8. Comparison of different advanced oxidation process to reduce toxicity and mineralisation of tannery wastewater.

    PubMed

    Schrank, S G; José, H J; Moreira, R F P M; Schröder, H Fr

    2004-01-01

    Many organic compounds contained in wastewater are resistant to conventional chemical and/or biological treatment. Because of this reason different degradation techniques are studied as an alternative to biological and classical physico-chemical processes. Advanced Oxidation Processes (AOPs) probably have developed to become the best options in the near future. AOP while making use of different reaction systems, are all characterised by the same chemical feature: production of OH radicals (*OH). The versatility of AOPs is also enhanced by the fact that they offer different possibilities for OH radical production, thus allowing them to conform to specific treatment requirements. The main problem with AOPs is their high cost. The application of solar technologies to these processes could help to diminish that problem by reducing the energy consumption required for generating UV radiation. In this work, different AOPs (O3, TiO2/UV, Fenton and H2O2/UV) were examined to treat tannery wastewater or as a pre-treatment step for improving the biodegradation of tannery wastewater, at different pH and dosage of the chemicals. Under certain circumstances retardation in biodegradation and/or an increase in toxicity may be observed within these treatment steps. Two different bioassays (Daphnia magna and Vibrio fischeri) have been used for testing the progress of toxicity during the treatment. In parallel other objectives were to analyse and identify organic compounds present in the untreated wastewater and arising degradation products in AOP treated wastewater samples. For this purpose substance specific techniques, e.g., gas chromatography-mass spectrometry (GC-MS) in positive electron impact (El(+)) mode and atmospheric pressure ionisation (API) in combination with flow injection analysis (FIA) or liquid chromatography-mass and tandem mass spectrometry (LC-MS or LC-MS-MS) were performed.

  9. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    PubMed

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater.

    PubMed

    Luo, Jianquan; Ding, Luhui; Qi, Benkun; Jaffrin, Michel Y; Wan, Yinhua

    2011-08-01

    A two-stage ultrafiltration and nanofiltration (UF/NF) process for the treatment of model dairy wastewater was investigated to recycle nutrients and water from the wastewater. Ultracel PLGC and NF270 membranes were found to be the most suitable for this purpose. In the first stage, protein and lipid were concentrated by the Ultracel PLGC UF membrane and could be used for algae cultivation to produce biodiesel and biofuel, and the permeate from UF was concentrated by the NF270 membrane in the second stage to obtain lactose in retentate and reusable water in permeate, while the NF retentate could be recycled for anaerobic digestion to produce biogas. With this approach, most of dairy wastewater could be recycled to produce reusable water and substrates for bioenergy production. Compared with the single NF process, this two-stage UF/NF process had a higher efficiency and less membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. WASTEWATER TREATMENT AND ITS MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Research has shown that wastewater treatment (WWT) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WWT can include centralized wastewater treatment plants (WWTPs) or on-site WWT technologies. EDCs found in WWT effluents (aqueous and biosol...

  12. Electron beam treatment of textile dyeing wastewater: operation of pilot plant and industrial plant construction.

    PubMed

    Han, B; Kim, J; Kim, Y; Choi, J S; Makarov, I E; Ponomarev, A V

    2005-01-01

    A pilot plant for treating 1000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with an electron beam in this plant, and it gave rise to elaborating the optimal technology of the electron beam treatment of wastewater with increased reliability for instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in the flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day each, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

  13. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  14. Full-scale treatment of wastewater from a biodiesel fuel production plant with alkali-catalyzed transesterification.

    PubMed

    De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni

    2013-01-01

    The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.

  15. Integrating Fenton's process and ion exchange for olive mill wastewater treatment and iron recovery.

    PubMed

    Reis, Patrícia M; Martins, Pedro J M; Martins, Rui C; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2018-02-01

    A novel integrated methodology involving Fenton's process followed by ion exchange (IE) was proposed for the treatment of olive mill wastewater. Fenton's process was optimized and it was able to remove up to 81% of chemical oxygen demand when pH 3.5, reaction time 1 h, [Fe 2+ ] = 50 mg L -1 and [Fe 2+ ]/[H 2 O 2 ] = 0.002 were applied. In spite of the potential of this treatment approach, final iron removal from the liquid typically entails pH increase and iron sludge production. The integration of an IE procedure using Lewatit TP 207 resin was found to be able to overcome this important environmental shortcoming. The resin showed higher affinity toward Fe 3+ than to Fe 2+ . However, the iron removal efficiency of an effluent coming from Fenton's was independent of the type of the initial iron used in the process. The presence of organic matter had no significant effect over the resin iron removal efficiency. Even if some efficiency decrease was observed when a high initial iron load was applied, the adsorbent mass quantity can be easily adapted to reach the desired iron removal. The use of IE is an interesting industrial approach able to surpass Fenton's peroxidation drawback and will surely boost its full-scale application in the treatment of bio-refractory effluents.

  16. Performance optimization of coagulant/flocculant in the treatment of wastewater from a beverage industry.

    PubMed

    Amuda, O S; Amoo, I A; Ajayi, O O

    2006-02-28

    This study investigated the effect of coagulation/flocculation treatment process on wastewater of Fumman Beverage Industry, Ibadan, Nigeria. The study also compared different dosages of coagulant, polyelectrolyte (non-ionic polyacrylamide) and different pH values of the coagulation processes. The effect of different dosages of polyelectrolyte in combination with coagulant was also studied. The results reveal that low pH values (3-8), enhance removal efficiency of the contaminants. Percentage removal of 78, 74 and 75 of COD, TSS and TP, respectively, were achieved by the addition of 500 mg/L Fe2(SO4)3.3H2O and 93, 94 and 96% removal of COD, TSS and TP, respectively, were achieved with the addition of 25 mg/L polyelectrolyte to the coagulation process. The volume of sludge produced, when coagulant was used solely, was higher compared to the use of polyelectrolyte combined with Fe2(SO4)3.3H2O. This may be as a result of non-ionic nature of the polyelectrolyte; hence, it does not chemically react with solids of the wastewater. Coagulation/flocculation may be useful as a pre-treatment process for beverage industrial wastewater prior to biological treatment.

  17. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    NASA Astrophysics Data System (ADS)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  18. Advanced wastewater treatment simplified through research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souther, R.H.

    A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less

  19. Instrumentation and Automation of Wastewater Collection and Treatment Systems.

    ERIC Educational Resources Information Center

    Roesler, Joseph F.; Cummins, Michael D.

    1978-01-01

    Presents a literature review of the use of instrumentation and automation of wastewater treatment systems, covering publications of 1976-77. This review includes automatic control systems and cost effectiveness of automation of wastewater treatment. A list of 115 references is also presented. (HM)

  20. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    PubMed

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  1. Low technology systems for wastewater treatment: perspectives.

    PubMed

    Brissaud, F

    2007-01-01

    Low technology systems for the treatment of wastewater are sometimes presented as remnants of the past, nowadays supposedly only meant to serve developing countries and remote rural areas. However, considering their advantages and disadvantages together with enhanced treatment requirements and recent research and technological developments, the future of these systems still appears promising. Successful applications of low technology systems require that more care is taken of their design and operation than often observed. Correlatively, more efforts should be made to decipher the treatment mechanisms and determine the related reaction parameters, so as to provide more deterministic approaches of the natural wastewater treatment systems and better predict their performance.

  2. Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.

    PubMed

    Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying

    2015-05-05

    Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum

  3. Combination of ozonation and photocatalysis for pharmaceutical wastewater treatment

    NASA Astrophysics Data System (ADS)

    Ratnawati, Enjarlis, Slamet

    2017-11-01

    The chemical oxygen demand (COD) and phenol removal from pharmaceutical wastewater were investigated using configuration of two circulation batch reactors in a series with ozonation and photocatalytic processes. The ozonation is conducted with O3/granulated activated carbon (O3/GAC), whereas photocatalysis with TiO2 that immobilized on pumice stone (PS-TiO2). The effect of circulation flow rate (10; 12; 15 L/min) and the amount PS-TiO2 (200 g, 250 g, 300 g) were examined. Wastewater of 20 L was circulated pass through the pipe that injected with O3 by the ozone generator, and subsequently flow through two GAC columns, and finally, go through photoreactor that contains photocatalyst PS-TiO2 which equipped with mercury lamp as a photon source. At a time interval, COD and phenol concentration were measured to assess the performance of the process. FESEM imaging confirmed that TiO2 was successfully impregnated on PS, as corroborated by EDX spectra. Meanwhile, degradation process indicated that the combined ozonation and photocatalytic processes (O3/GAC-TiO2) is more efficient compared to the ozonation and photocatalysis alone. For combination process with the circulation flow rate of 10 L/min and 300 g of PS-TiO2,the influent COD of around 1000 ppm are effectively degraded to a final effluent COD of 290 ppm (71% removal) and initial phenol concentration of 4.75 ppm down to 0 ppm for 4 h which this condition fulfill the discharge standards quality. Therefore, this portable prototype reactor is effective that can be used in the pharmaceutical wastewater treatment. For the future, this process condition will be developed for orientation on the industrial applications (portable equipment) since pharmaceutical industries produce wastewater relatively in the small amount.

  4. Evaluation of constructed wetland treatment performance for winery wastewater.

    PubMed

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.

  5. Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA).

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, Indra Mani

    2017-01-01

    Purified terephthalic acid (PTA) plant of a petrochemical unit generates wastewater having high pollution load. Acid treatment of this wastewater reduces the chemical oxygen demand (COD) load by more than 50%, still leaving substantial COD load (>1500 mg/L) which should be removed. The present study reports on the use of a bio-waste-adsorbent bagasse fly ash (BFA) for the reduction of COD and other recalcitrant acids from this wastewater. The BFA showed basic character and was mesoporous with a BET specific surface area of 82.4 m 2 /g. Optimum conditions for the adsorptive treatment of acid-pretreated PTA wastewater were found to be as follows: initial pH (pH i ) = 4, BFA dosage = 15 g/L, and contact time = 3 h. Adsorption treatment resulted in 58.2% removal of COD, 96.3% removal of terephthalic acid (TA), and 99.9% removal of benzoic acid (BA). TA and BA were removed from the pretreated PTA wastewater through precipitation and sedimentation of un-dissociated acid molecules inside the mesopores of the BFA. The results showed that the COD removed by the BFA followed pseudo-second-order kinetics. Equilibrium sorption data were best correlated by the Freundlich isotherm. The process of adsorptive removal of COD was found to be exothermic. The change in the Gibbs free energy was found to be negative, suggesting that the adsorption process is spontaneous and feasible for the treatment of PTA wastewater.

  6. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  7. An integrated electrocoagulation-phytoremediation process for the treatment of mixed industrial wastewater.

    PubMed

    Cano, Rodríguez Claudia Teodora; Amaya-Chávez, Araceli; Roa-Morales, Gabriela; Barrera-Díaz, Carlos Eduardo; Ureña-Núñez, Fernando

    2010-01-01

    The elimination of organic contaminants in highly complex wastewater was tested using a combination of the techniques: electrocoagulation with aluminum electrodes and phytoremediation with Myriophyllum aquaticum. Under optimal operating conditions at a pH of 8 and a current density of 45.45 A m(-2), the electrochemical method produces partial elimination of contaminants, which was improved using phytoremediation as a polishing technique. The combined treatment reduced chemical oxygen demand (COD) by 91%, color by 97% and turbidity by 98%. Initial and final values of contaminants in wastewaters were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and the elemental composition of the biomass were characterized with using scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The presence of Al in the roots of plants in the system indicates that the aluminum present in the test solution could be absorbed.

  8. Study on fermentation kinetics and extraction process of rhamnolipid production by papermaking wastewater

    NASA Astrophysics Data System (ADS)

    Yu, Keer

    2018-01-01

    Paper mill wastewater (PMW) is the outlet water generated during pulp and papermaking process in the paper industry. Fermentation by wastewater can lower the cost of production as well as alleviate the pressure of wastewater treatment. Rhamnolipids find broad placations as natural surfactants. This paper studied the rhamnolipids fermentation by employing Pseudomonas aeruginosa isolated by the laboratory, and determined to use wastewater which filtered by medium speed filter paper and strain Z2, the culture conditions were optimized, based on the flask shaking fermentation. On the basis of 5L tank fermentation, batch fermentation was carried out, the yield of fermentation reached 7.067g/L and the fermentation kinetics model of cell growth, product formation and substrate consumption was established by using origin software, and the fermentation process could be simulated well. And studied on the extraction process of rhamnolipids, through fermentation dynamic equation analysis can predict the in fill material yield can be further improved. Research on the extraction process of rhamnolipid simplifies the operation of extraction, and lays the foundation for the industrial extraction.

  9. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs).

    PubMed

    Puig, S; Serra, M; Coma, M; Balaguer, M D; Colprim, J

    2011-01-01

    Microbial fuel cells (MFCS) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that needs to be treated before being discharged. The goal of this paper is to assess simultaneous domestic wastewater treatment and energy production using an air-cathode MFC, paying special attention to nitrogen compound transformations. An air-cathode MFC was designed and run treating 1.39 L d(-1) of wastewater with an organic load rate of 7.2 kg COD m(-3) d(-1) (80% removal efficiency) and producing 1.42 W m(-3). In terms of nitrogen transformations, the study demonstrates that two different processes took place in the MFC: physical-chemical and biological. Nitrogen loss was observed increasing in line with the power produced. A low level of oxygen was present in the anodic compartment, and ammonium was oxidised to nitrite and nitrate.

  10. Photocatalytic Nanofiltration Membranes with Self-Cleaning Property for Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yan; Zhang, Chao; He, Ai

    Membrane fouling is one of the most severe problems restricting membrane separation technology for wastewater treatment. This work reports a photocatalytic nanofiltration membrane (NFM) with self-cleaning property fabricated using a facile biomimetic mineralization process. In this strategy, a polydopamine (PDA)/polyethyleneimine (PEI) intermediate layer is fabricated on an ultrafiltration membrane via a co-deposition method followed by mineralization of a photocatalytic layer consisting of beta-FeOOH nanorods. The PDA-PEI layer acts both as a nanofiltration selective layer and an intermediate layer for anchoring the beta-FeOOH nanorods via strong coordination complexes between Fe3+ and catechol groups. In visible light, the beta-(F)eOOH layer exhibits efficientmore » photocatalytic activity for degrading dyes through the photo-Fenton reaction in the presence of hydrogen peroxide, endowing the NFM concurrently with effective nanofiltration performance and self-cleaning capability. Moreover, the mineralized NFMs exhibit satisfactory stability under simultaneous filtration and photocatalysis processing, showing great potential in advanced wastewater treatment.« less

  11. Operating aerobic wastewater treatment at very short sludge ages enables treatment and energy recovery through anaerobic sludge digestion.

    PubMed

    Ge, Huoqing; Batstone, Damien J; Keller, Jurg

    2013-11-01

    Conventional abattoir wastewater treatment processes for carbon and nutrient removal are typically designed and operated with a long sludge retention time (SRT) of 10-20 days, with a relatively high energy demand and physical footprint. The process also generates a considerable amount of waste activated sludge that is not easily degradable due to the long SRT. In this study, an innovative high-rate sequencing batch reactor (SBR) based wastewater treatment process with short SRT and hydraulic retention time (HRT) is developed and characterised. The high-rate SBR process was shown to be most effective with SRT of 2-3 days and HRT of 0.5-1 day, achieving >80% reduction in chemical oxygen demand (COD) and phosphorus and approximately 55% nitrogen removal. A majority of carbon removal (70-80%) was achieved by biomass assimilation and/or accumulation, rather than oxidation. Anaerobic degradability of the sludge generated in the high-rate SBR process was strongly linked to SRT, with measured degradability extent being 85% (2 days SRT), 73% (3 days), and 63% (4 days), but it was not influenced by digestion temperature. However, the rate of degradation for 3 and 4 days SRT sludge was increased by 45% at thermophilic conditions compared to mesophilic conditions. Overall, the treatment process provides a very compact and energy efficient treatment option for highly degradable wastewaters such as meat and food processing, with a substantial space reduction by using smaller reactors and a considerable net energy output through the reduced aerobic oxidation and concurrent increased methane production potential through the efficient sludge digestion. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Online biochemical oxygen demand monitoring for wastewater process control--full-scale studies at Los Angeles Glendale wastewater plant, California.

    PubMed

    Iranpour, Reza; Zermeno, Miguel

    2008-04-01

    The main objective of this investigation is to determine whether or not it would be feasible to use the measured values of biochemical oxygen demand (BOD) of wastewater obtained by an online instrument at the Los Angeles/Glendale Water Reclamation Plant (California) for controlling its activated sludge process. This investigation is part of a project to develop online BOD monitoring for process control in the City of Los Angeles wastewater treatment plants. Tests studied the Siepmann und Teutscher GmbH (ISCO-STIP Inc., Lincoln, Nebraska) BIOX-1010, which uses a bioreactor containing a culture of microbes from the wastewater to measure soluble BOD in 2 minutes. This rapid approximation to the operation of secondary treatment allows anticipation of system response. Calibration measurements allow the operators to find a conversion factor for the instrument's microprocessor to compute values of BOD that agree well with the standard 5-day BOD (BOD5) measurement, despite the differences in the details of the two testing methods. This instrument has recently been used at other wastewater treatment plants, at a number of airports in Europe and the United States to monitor runway runoff, and is also being used on waste streams at an increasing number of food processing plants. A comparison was made between the plant influent BOD values obtained by the BIOX-1010 online monitor from the end of August, 2000, to late January, 2001, and the individual and average values obtained for the same period using the standard BOD5, 20 degrees C test, to determine the effectiveness of the Biox-1010 to identify shock loads and their duration. Individual BOD estimates and averages over periods of overly high biological loads (shock loads) were compared, and the instrument readings were evaluated for their effectiveness in detecting shock loads. The results were highly satisfactory, so the instrument was used to trigger a shock-load warning alarm since late September, 2000. This allowed flow

  13. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian

    2014-08-01

    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Depth treatment of coal-chemical engineering wastewater by a cost-effective sequential heterogeneous Fenton and biodegradation process.

    PubMed

    Fang, Yili; Yin, Weizhao; Jiang, Yanbin; Ge, Hengjun; Li, Ping; Wu, Jinhua

    2018-05-01

    In this study, a sequential Fe 0 /H 2 O 2 reaction and biological process was employed as a low-cost depth treatment method to remove recalcitrant compounds from coal-chemical engineering wastewater after regular biological treatment. First of all, a chemical oxygen demand (COD) and color removal efficiency of 66 and 63% was achieved at initial pH of 6.8, 25 mmol L -1 of H 2 O 2 , and 2 g L -1 of Fe 0 in the Fe 0 /H 2 O 2 reaction. According to the gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID) analysis, the recalcitrant compounds were effectively decomposed into short-chain organic acids such as acetic, propionic, and butyric acids. Although these acids were resistant to the Fe 0 /H 2 O 2 reaction, they were effectively eliminated in the sequential air lift reactor (ALR) at a hydraulic retention time (HRT) of 2 h, resulting in a further decrease of COD and color from 120 to 51 mg L -1 and from 70 to 38 times, respectively. A low operational cost of 0.35 $ m -3 was achieved because pH adjustment and iron-containing sludge disposal could be avoided since a total COD and color removal efficiency of 85 and 79% could be achieved at an original pH of 6.8 by the above sequential process with a ferric ion concentration below 0.8 mg L -1 after the Fe 0 /H 2 O 2 reaction. It indicated that the above sequential process is a promising and cost-effective method for the depth treatment of coal-chemical engineering wastewaters to satisfy discharge requirements.

  15. Application of response surface methodology (RSM) for optimizing coagulation process of paper recycling wastewater using Ocimum basilicum.

    PubMed

    Mosaddeghi, Mohammad Reza; Pajoum Shariati, Farshid; Vaziri Yazdi, Seyed Ali; Nabi Bidhendi, Gholamreza

    2018-06-21

    The wastewater produced in a pulp and paper industry is one of the most polluted industrial wastewaters, and therefore its treatment requires complex processes. One of the simple and feasible processes in pulp and paper wastewater treatment is coagulation and flocculation. Overusing a chemical coagulant can produce a large volume of sludge and increase costs and health concerns. Therefore, the use of natural and plant-based coagulants has been recently attracted the attention of researchers. One of the advantages of using Ocimum basilicum as a coagulant is a reduction in the amount of chemical coagulant required. In this study, the effect of basil mucilage has been investigated as a plant-based coagulant together with alum for treatment of paper recycling wastewater. Response surface methodology (RSM) was used to optimize the process of chemical coagulation based on a central composite rotatable design (CCRD). Quadratic models for colour reduction and TSS removal with coefficients of determination of R 2 >96 were obtained using the analysis of variance. Under optimal conditions, removal efficiencies of colour and total suspended solids (TSS) were 85% and 82%, respectively.

  16. Decision making tools for selecting sustainable wastewater treatment technologies in Thailand

    NASA Astrophysics Data System (ADS)

    Wongburi, Praewa; Park, Jae K.

    2018-05-01

    Wastewater consists of valuable resources that could be recovered or reused. Still it is under threat because of ineffective wastewater management and systems. In Thailand, less than 25% of wastewater generated may be treated while then rest is inadequately treated and sent back directly into waterbodies or the environment. Furthermore, the technologies that have been applied may be inefficient and unsustainable. Efficiency, sustainability, and simplicity are important concepts when designing an appropriate wastewater treatment system in developing countries. The objectives of this study were to review and evaluate wastewater treatment technologies and propose a method to improve or select an appropriate technology. An expert system in Excel® program was developed to determine the best solution. Sensitivity analysis was applied to compare and assess uncertainty factors. Due to the different conditions of each area, the key factor of interest was varied. Furthermore, Robust Decision Making tool was applied to determine the best way to improve existing wastewater treatment facility and to choose the most appropriate wastewater treatment technology.

  17. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    PubMed

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Small wastewater treatment plants in mountain areas: combination of septic tank and biological filter.

    PubMed

    Maunoir, S; Philip, H; Rambaud, A

    2007-01-01

    Research work has been carried out for more than 20 years by Eparco and the University of Montpellier (France) on the application of biological wastewater treatment processes for small communities. This research has led to a new process which is particularly suitable for remote populations, taking into account several specificities such as as the seasonal fluctuations in the population, the accessibility of the site, the absence of a power supply on site, the reduced area of land available and the low maintenance. Thus, the process, which combines a septic tank operating under anaerobic conditions and a biological aerobic filter, is a solution for wastewater treatment in mountain areas. This paper presents the process and three full-scale applications in the region of the Alps.

  19. Mathematical Simulation of the Process of Aerobic Treatment of Wastewater under Conditions of Diffusion and Mass Transfer Perturbations

    NASA Astrophysics Data System (ADS)

    Bomba, A. Ya.; Safonik, A. P.

    2018-05-01

    A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.

  20. Mathematical Simulation of the Process of Aerobic Treatment of Wastewater under Conditions of Diffusion and Mass Transfer Perturbations

    NASA Astrophysics Data System (ADS)

    Bomba, A. Ya.; Safonik, A. P.

    2018-03-01

    A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.

  1. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    NASA Astrophysics Data System (ADS)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  2. A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems.

    PubMed

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  3. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    PubMed

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  4. Application of Fenton oxidation to cosmetic wastewaters treatment.

    PubMed

    Bautista, P; Mohedano, A F; Gilarranz, M A; Casas, J A; Rodriguez, J J

    2007-05-08

    The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.

  5. 40 CFR 420.08 - Non-process wastewater and storm water.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 30 2012-07-01 2012-07-01 false Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...

  6. 40 CFR 420.08 - Non-process wastewater and storm water.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...

  7. 40 CFR 420.08 - Non-process wastewater and storm water.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 30 2013-07-01 2012-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...

  8. 40 CFR 420.08 - Non-process wastewater and storm water.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 29 2014-07-01 2012-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...

  9. 40 CFR 420.08 - Non-process wastewater and storm water.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Non-process wastewater and storm water...-process wastewater and storm water. Permit and pretreatment control authorities may provide for increased loadings for non-process wastewaters defined at § 420.02 and for storm water from the immediate process...

  10. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities.

    PubMed

    Jamaly, Sanaa; Giwa, Adewale; Hasan, Shadi Wajih

    2015-11-01

    Oily wastewater poses significant threats to the soil, water, air and human beings because of the hazardous nature of its oil contents. The objective of this review paper is to highlight the current and recently developed methods for oily wastewater treatment through which contaminants such as oil, fats, grease, and inorganics can be removed for safe applications. These include electrochemical treatment, membrane filtration, biological treatment, hybrid technologies, use of biosurfactants, treatment via vacuum ultraviolet radiation, and destabilization of emulsions through the use of zeolites and other natural minerals. This review encompasses innovative and novel approaches to oily wastewater treatment and provides scientific background for future work that will be aimed at reducing the adverse impact of the discharge of oily wastewater into the environment. The current challenges affecting the optimal performance of oily wastewater treatment methods and opportunities for future research development in this field are also discussed. Copyright © 2015. Published by Elsevier B.V.

  11. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    NASA Astrophysics Data System (ADS)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  12. Nitrous Oxide Production at a Fully Covered Wastewater Treatment Plant: Results of a Long-Term Online Monitoring Campaign.

    PubMed

    Kosonen, Heta; Heinonen, Mari; Mikola, Anna; Haimi, Henri; Mulas, Michela; Corona, Francesco; Vahala, Riku

    2016-06-07

    The nitrous oxide emissions of the Viikinmäki wastewater treatment plant were measured in a 12 month online monitoring campaign. The measurements, which were conducted with a continuous gas analyzer, covered all of the unit operations of the advanced wastewater-treatment process. The relation between the nitrous oxide emissions and certain process parameters, such as the wastewater temperature, influent biological oxygen demand, and ammonium nitrogen load, was investigated by applying online data obtained from the process-control system at 1 min intervals. Although seasonal variations in the measured nitrous oxide emissions were remarkable, the measurement data indicated no clear relationship between these emissions and seasonal changes in the wastewater temperature. The diurnal variations of the nitrous oxide emissions did, however, strongly correlate with the alternation of the influent biological oxygen demand and ammonium nitrogen load to the aerated zones of the activated sludge process. Overall, the annual nitrous oxide emissions of 168 g/PE/year and the emission factor of 1.9% of the influent nitrogen load are in the high range of values reported in the literature but in very good agreement with the results of other long-term online monitoring campaigns implemented at full-scale wastewater-treatment plants.

  13. A combined upflow anaerobic sludge bed and trickling biofilter process for the treatment of swine wastewater.

    PubMed

    Zhao, Bowei; Li, Jiangzheng; Buelna, Gerardo; Dubé, Rino; Le Bihan, Yann

    2016-01-01

    A combined upflow anaerobic sludge blanket (UASB)-trickling biofilter (TBF) process was constructed to treat swine wastewater, a typical high-strength organic wastewater with low carbon/nitrogen ratio and ammonia toxicity. The results showed that the UASB-TBF system can remarkably enhance the removal of pollutants in the swine wastewater. At an organic loading rate of 2.29 kg/m(3) d and hydraulic retention time of 48 h in the UASB, the chemical oxygen demand (COD), Suspended Solids and Total Kjeldahl Nitrogen removals of the combined process reached 83.6%, 84.1% and 41.2%, respectively. In the combined system the UASB served as a pretreatment process for COD removal while nitrification and denitrification occurred only in the TBF process. The TBF performed reasonably well at a surface hydraulic load as high as 0.12 m(3)/m(2) d. Since the ratio of influent COD to total mineral nitrogen was less than 3.23, it is reasonable to suggest that the wood chips in TBF can serve as a new carbon source for denitrification.

  14. Wastewater treatment to enhance the economic viability of microalgae culture.

    PubMed

    Pires, J C M; Alvim-Ferraz, M C M; Martins, F G; Simões, M

    2013-08-01

    Microalgae culture is still not economically viable and it presents some negative environmental impacts, concerning water, nutrient and energy requirements. In this context, this study aims to review the recent advances on microalgal cultures in wastewaters to enhance their economic viability. We focused on three different culture concepts: (1) suspended cell systems, (2) cell immobilization, and (3) microalgae consortia. Cultures with suspended cells are the most studied. The nutrient removal efficiencies are usually high for wastewaters of different sources. However, biomass harvesting is difficult and a costly process due to the small cell size and lower culture density. On the other hand, the cell immobilization systems showed to be the solution for this problem, having as main limitation the nutrient diffusion from bulk to cells, which results in a reduced nutrient removal efficiency. The consortium between microalgae and bacteria enhances the growth of both microorganisms. This culture concept showed to be a promising technology to improve wastewater treatment, regarding not only nutrient removal but also biomass harvesting by bioflocculation. The aggregation mechanism must be studied in depth to find the process parameters that would lead to an effective and cheap harvesting process.

  15. Treatment of concentrated industrial wastewaters originating from oil shale and the like by electrolysis polyurethane foam interaction

    DOEpatents

    Tiernan, Joan E.

    1990-01-01

    Highly concentrated and toxic petroleum-based and synthetic fuels wastewaters such as oil shale retort water are treated in a unit treatment process by electrolysis in a reactor containing oleophilic, ionized, open-celled polyurethane foams and subjected to mixing and laminar flow conditions at an average detention time of six hours. Both the polyurethane foams and the foam regenerate solution are re-used. The treatment is a cost-effective process for waste-waters which are not treatable, or are not cost-effectively treatable, by conventional process series.

  16. Effects of 4-chlorophenol wastewater treatment on sludge acute toxicity, microbial diversity and functional genes expression in an activated sludge process.

    PubMed

    Zhao, Jianguo; Li, Yahe; Li, Yu; Yu, Zeya; Chen, Xiurong

    2018-05-31

    In this study, the effects of 4-chlorophenol (4-CP) wastewater treatment on sludge acute toxicity of luminescent bacteria, microbial diversity and functional genes expression of Pseudomonas were explored. Results showed that in the entire operational process, the sludge acute toxicity acclimated by 4-CP in a sequencing batch bioreactor (SBR) was significantly higher than the control SBR without 4-CP. The dominant phyla in acclimated SBR were Proteobacteria and Firmicutes, which also existed in control SBR. Some identified genera in acclimated SBR were responsible for 4-CP degradation. At the stable operational stages, the functional genes expression of Pseudomonas in acclimated SBR was down-regulated at the end of SBR cycle, and their expression mechanisms needed further research. This study provides a theoretical support to comprehensively understand the sludge performance in industrial wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Constructed wetlands for saline wastewater treatment: A review

    USDA-ARS?s Scientific Manuscript database

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  18. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants.

    PubMed

    Ma, Qiao; Qu, Yuan-Yuan; Zhang, Xu-Wang; Shen, Wen-Li; Liu, Zi-Yan; Wang, Jing-Wei; Zhang, Zhao-Jing; Zhou, Ji-Ti

    2015-06-01

    The wastewater from coal-mine industry varies greatly and is resistant to biodegradation for containing large quantities of inorganic and organic pollutants. Microorganisms in activated sludge are responsible for the pollutants' removal, whereas the microbial community composition and structure are far from understood. In the present study, the sludges from five coal-mine wastewater treatment plants were collected and the microbial communities were analyzed by Illumina high-throughput sequencing. The diversities of these sludges were lower than that of the municipal wastewater treatment systems. The most abundant phylum was Proteobacteria ranging from 63.64% to 96.10%, followed by Bacteroidetes (7.26%), Firmicutes (5.12%), Nitrospira (2.02%), Acidobacteria (1.31%), Actinobacteria (1.30%) and Planctomycetes (0.95%). At genus level, Thiobacillus and Comamonas were the two primary genera in all sludges, other major genera included Azoarcus, Thauera, Pseudomonas, Ohtaekwangia, Nitrosomonas and Nitrospira. Most of these core genera were closely related with aromatic hydrocarbon degradation and denitrification processes. Identification of the microbial communities in coal-mine wastewater treatment plants will be helpful for wastewater management and control. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment.

    PubMed

    Cid, Clément A; Jasper, Justin T; Hoffmann, Michael R

    2018-03-05

    Electrolysis of toilet wastewater with TiO 2 -coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm -2 (∼3.4 V), with greater than 20 m 2 m -3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer.

  20. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    PubMed

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  1. A combined electrocoagulation-sorption process applied to mixed industrial wastewater.

    PubMed

    Linares-Hernández, Ivonne; Barrera-Díaz, Carlos; Roa-Morales, Gabriela; Bilyeu, Bryan; Ureña-Núñez, Fernando

    2007-06-01

    The removal of organic pollutants from a highly complex industrial wastewater by a aluminium electrocoagulation process coupled with biosorption was evaluated. Under optimal conditions of pH 8 and 45.45 Am(-2) current density, the electrochemical method yields a very effective reduction of all organic pollutants, this reduction was enhanced when the biosorption treatment was applied as a polishing step. Treatment reduced chemical oxygen demand (COD) by 84%, biochemical oxygen demand (BOD(5)) by 78%, color by 97%, turbidity by 98% and fecal coliforms by 99%. The chemical species formed in aqueous solution were determined. The initial and final pollutant levels in the wastewater were monitored using UV-vis spectrometry and cyclic voltammetry. Finally, the morphology and elemental composition of the biosorbent was characterized with scanning electron microscopy (SEM) and energy dispersion spectra (EDS).

  2. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater.

    PubMed

    García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique

    2013-03-01

    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Wastewater treatment evaluation for enterprises based on fuzzy-AHP comprehensive evaluation: a case study in industrial park in Taihu Basin, China.

    PubMed

    Hu, Wei; Liu, Guangbing; Tu, Yong

    2016-01-01

    This paper applied the fuzzy comprehensive evaluation (FCE) technique and analytic hierarchy process (AHP) procedure to evaluate the wastewater treatment for enterprises. Based on the characteristics of wastewater treatment for enterprises in Taihu basin, an evaluating index system was established for enterprise and analysis hierarchy process method was applied to determine index weight. Then the AHP and FCE methods were combined to validate the wastewater treatment level of 3 representative enterprises. The results show that the evaluation grade of enterprise 1, enterprise 2 and enterprise 3 was middle, good and excellent, respectively. Finally, the scores of 3 enterprises were calculated according to the hundred-mark system, and enterprise 3 has the highest wastewater treatment level, followed by enterprise 2 and enterprises 1. The application of this work can make the evaluation results more scientific and accurate. It is expected that this work may serve as an assistance tool for managers of enterprise in improving the wastewater treatment level.

  4. Photocatalytic Treatment of a Synthetic Wastewater

    NASA Astrophysics Data System (ADS)

    Yerkinova, Azat; Balbayeva, Gaukhar; Inglezakis, Vassilis J.; Poulopoulos, Stavros G.

    2018-01-01

    This work aimed at investigating the photocatalytic treatment of a synthetic wastewater using UV light (254 nm, 6 W), TiO2 catalyst and H2O2 in a batch recycle annular photoreactor. The total volume of the solution was 250 mL while the irradiated volume in the annular photoreactor with 55.8 mL. Each experiment lasted 120 min and samples were sent for Total Carbon and HPLC analysis. The stock wastewater had initial total carbon 1118 mg L-1. The effect of the presence of phenol in the wastewater on total carbon (TC) removal was also studied. It was shown that the photocatalytic treatment was effective only when initial TC was decreased to 32 mg L-1, whereas the optimum TiO2 concentration was 0.5 g L-1, leading to a TC removal up to 56%. For the same initial carbon load, the optimum H2O2 concentration was found to be 67 mg L-1 resulting in 55% TC removal. Combining, however, TiO2 and H2O2 did not lead to better performance, as 51% TC removal was observed. In contrast, when initial carbon in the wastewater was partially substituted by phenol, the combination of catalyst and hydrogen peroxide was beneficial. Specifically, when 10 ppm of phenol were added keeping the same initial TC concentration, UV/TiO2 treatment resulted in 46% TC removal and 98% phenol conversion, whereas using additionally H2O2 led to 100% phenol conversion after 45 minutes and 81% TC removal.

  5. Use of solar advanced oxidation processes for wastewater treatment: Follow-up on degradation products, acute toxicity, genotoxicity and estrogenicity.

    PubMed

    Brienza, M; Mahdi Ahmed, M; Escande, A; Plantard, G; Scrano, L; Chiron, S; Bufo, S A; Goetz, V

    2016-04-01

    Wastewater tertiary treatment by advanced oxidation processes is thought to produce a treated effluent with lower toxicity than the initial influent. Here we performed tertiary treatment of a secondary effluent collected from a Waste Water Treatment Plant via homogeneous (solar/HSO5(-)/Fe(2+)) and heterogeneous (solar/TiO2) solar advanced oxidation aiming at the assessment of their effectiveness in terms of contaminants' and toxicity abatement in a plain solar reactor. A total of 53 organic contaminants were qualitatively identified by liquid chromatography coupled to high-resolution mass spectrometry after solid phase extraction. Solar advanced oxidation totally or partially removed the major part of contaminants detected within 4.5 h. Standard toxicity tests were performed using Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata and Brachionus calyciflorus organisms to evaluate acute and chronic toxicity in the secondary or tertiary effluents, and the EC50% was calculated. Estrogenic and genotoxic tests were carried out in an attempt to obtain an even sharper evaluation of potential hazardous effects due to micropollutants or their degradation by-products in wastewater. Genotoxic effects were not detected in effluent before or after treatment. However, we observed relevant estrogenic activity due to the high sensitivity of the HELN ERα cell line. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent.

    PubMed

    Mason, Sherri A; Garneau, Danielle; Sutton, Rebecca; Chu, Yvonne; Ehmann, Karyn; Barnes, Jason; Fink, Parker; Papazissimos, Daniel; Rogers, Darrin L

    2016-11-01

    Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the 'microbeads' found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge. Published by Elsevier Ltd.

  7. Occurrence, fate and effects of Di (2-ethylhexyl) Phthalate in wastewater treatment plants: a review.

    PubMed

    Zolfaghari, M; Drogui, P; Seyhi, B; Brar, S K; Buelna, G; Dubé, R

    2014-11-01

    Phthalates, such as Di (2-ethylhexyl) Phthalate (DEHP) are compounds extensively used as plasticizer for long time around the world. Due to the extensive usage, DEHP is found in many surface waters (0.013-18.5 μg/L), wastewaters (0.716-122 μg/L), landfill leachate (88-460 μg/L), sludge (12-1250 mg/kg), soil (2-10 mg/kg). DEHP is persistent in the environment and the toxicity of the byproducts resulting from the degradation of DEHP sometime exacerbates the parent compound toxicity. Water/Wastewater treatment processes might play a key role in delivering safe, reliable supplies of water to households, industry and in safeguarding the quality of water in rivers, lakes and aquifers. This review addresses state of knowledge concerning the worldwide production, occurrence, fate and effects of DEHP in the environment. Moreover, the fate and behavior of DEHP in various treatment processes, including biological, physicochemical and advanced processes are reviewed and comparison (qualitative and quantitative) has been done between the processes. The trends and perspectives for treatment of wastewaters contaminated by DEHP are also analyzed in this review. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Experimental investigation of oily wastewater treatment using combined membrane systems.

    PubMed

    Salahi, A; Mohammadi, T

    2010-01-01

    Investigations were carried out for purification of oily wastewater by a combined of ultrafiltration/reverse osmosis (UF/RO) processes. Laboratory-scale UF using polysulfone (PS) and polyacrylonitrile (PAN) membranes were employed with typical oily wastewater collected from API unit of Tehran refinery. The PAN membrane showed higher rejection, more permeation flux and less fouling resistance than the PS membrane. Both membranes produced permeate with oil and grease contents generally less than 5 ppm. Rejection of chemical oxygen demand (COD) and biological oxygen demand (BOD5) were found to be 65% for UF treatment. In this work, Hermia's models were used to investigate the fouling mechanism involved in UF of the oily wastewater. The results showed that the best fit to experimental data corresponds to the cake layer formation model followed by the intermediate blocking model for both the UF membranes. For further treatment of the UF permeates, RO was applied using a thin film composite polyamide membrane. The rejection of COD, BOD5 and total dissolved solid (TDS) after UF/RO treatment increased up to 98%, 98% and 95%, respectively. The results showed that the final permeate has very high quality and even better than that is currently introduced to the cooling towers in Tehran refinery.

  9. 40 CFR 63.140 - Process wastewater provisions-delay of repair.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...

  10. 40 CFR 63.140 - Process wastewater provisions-delay of repair.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 10 2012-07-01 2012-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...

  11. 40 CFR 63.140 - Process wastewater provisions-delay of repair.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...

  12. 40 CFR 63.140 - Process wastewater provisions-delay of repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Process wastewater provisions-delay of... Manufacturing Industry for Process Vents, Storage Vessels, Transfer Operations, and Wastewater § 63.140 Process wastewater provisions—delay of repair. (a) Delay of repair of equipment for which a control equipment failure...

  13. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    ERIC Educational Resources Information Center

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  14. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  15. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  16. Microbial biotechnology and circular economy in wastewater treatment.

    PubMed

    Nielsen, Per Halkjaer

    2017-09-01

    Microbial biotechnology is essential for the development of circular economy in wastewater treatment by integrating energy production and resource recovery into the production of clean water. A comprehensive knowledge about identity, physiology, ecology, and population dynamics of process-critical microorganisms will improve process stability, reduce CO2 footprints, optimize recovery and bioenergy production, and help finding new approaches and solutions. Examples of research needs and perspectives are provided, demonstrating the great importance of microbial biotechnology. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  17. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    PubMed

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  18. Upgrading of the STP Uithoorn: treatment of nutrient rich wastewater from horticulture.

    PubMed

    Piekema, P; Neef, R

    2005-01-01

    The STP Uithoorn will be upgraded to accommodate the treatment of wastewater from a growing population and to meet more stringent nutrient discharge limits in 2006. In 2003 a system choice and preliminary design was made for the upgrading. A special feature is the nutrient rich wastewater flow from the rapidly developing horticulture in the area. Since the future loads from horticulture are highly uncertain, flexibility of the STP after upgrading is an important issue. A three stage system was selected: improved physical-chemical primary treatment, secondary treatment by activated sludge, and tertiary treatment by denitrifying filters. In this way an important part of the existing infrastructure can be reused, and flexibility is assured by constructing the tertiary treatment in modules and by providing a wide range of operational control possibilities. In this paper the process of system choice and selection of type of tertiary treatment are described, as well as the optimisation of the existing treatment. In order to determine the feasibility of allowing a high loading rate on the existing secondary clarifiers, a two-dimensional hydraulic model of the clarification process was used.

  19. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee

    2010-08-20

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions ofmore » 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.« less

  20. Ammonia stripping, activated carbon adsorption and anaerobic biological oxidation as process combination for the treatment of oil shale wastewater.

    PubMed

    Alexandre, Verônica M F; do Nascimento, Felipe V; Cammarota, Magali C

    2016-10-01

    Anaerobic biodegradability of oil shale wastewater was investigated after the following pretreatment sequence: ammonia stripping and activated carbon adsorption. Anaerobic biological treatment of oil shale wastewater is technically feasible after stripping at pH 11 for reducing the N-NH3 concentration, adsorption with 5 g/L of activated carbon in order to reduce recalcitrance and pH adjustment with CO2 so that the sulphate concentration in the medium remains low. After this pretreatment sequence, it was possible to submit the wastewater without dilution to an anaerobic treatment with 62.7% soluble chemical oxygen demand removal and specific methane production of 233.2 mL CH4STP/g CODremoved.