Sample records for wastewater treatment yeasts

  1. [Treatment of oil-manufacturing wastewater by yeast-SBR system].

    PubMed

    Lü, Wen-zhou; Liu, Ying; Huang, Yi-zhen

    2008-04-01

    Eight yeast strains were applied to a sequencing batch reactor (SBR) to treat high-strength oil-containing wastewater. The removal performance, yeast cultivation method and key factors affecting the stability of system were discussed. The results show yeast sludge with MLSS of 19 g/L and SVI of 35 mL/g can be obtained in 6 d in an open system without any molds and bacteria inhibitor addition; In 30 d continuous wastewater treatment, COD and oil removal rate achieve 86.8%-96.9% and above 99.5% respectively under the influent conditions of the COD of 9000-23000 mg/L and oil of 4500-16000 mg/L; Short period of pH impact brings reversible effects on the system and the sludge retention time can affect the SVI of the yeast; Absence of nitrogen induces morphology conversion of some yeast cells from single cell to filamentous one and impairs the settling capability of the yeast.

  2. The use of Fenton's system in the yeast industry wastewater treatment.

    PubMed

    Zak, S

    2005-01-01

    The paper presents the results of the research conducted with the use of hydrogen peroxide and iron (II) sulfate or chloride in the chemical pretreatment of Saccharomyces cerevisae yeast industry wastewater. It was found that the use of Fenton's system permitted a high reduction of sugar-like substances and total decolorizing of non-sugar compounds. The level of COD reduction depended on the amount and mutual proportions of COD:Fe(II):H2O2, as well as a type of the applied salt Fe(II). For iron concentrations: 1000-4000 mg l(-1) with molar excess [H2O2]:[Fe(II)] - 2-14:1 and reaction pH - 3.1-3.4, very high reproducibility of results and the COD reduction exceeding 75% were obtained. For this range of the reagent concentrations, the distribution of COD reduction values correlated with the equation: COD = - Ax4 + Bx3 - Cx2 + Dx - E (where: x = [H2O2]:[Fe(II)]). Additional neutralization with the use of lime milk made the secondary reduction of CODr(CaO) value possible, which resulted in the reduction of the total CODT above 90%. The method enabled us to consider the possibility of the preliminary chemical elimination of the wastewater load, which might increase the effectiveness of working wastewater treatment plants, especially in cases of continuous and occasional overloads above the level assumed by the project.

  3. Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification.

    PubMed

    Suehara, Ken-ichiro; Kawamoto, Yoshihiro; Fujii, Eiko; Kohda, Jiro; Nakano, Yasuhisa; Yano, Takuo

    2005-10-01

    The biological treatment of wastewater discharged from a biodiesel fuel (BDF) production plant conducting alkali catalysis transesterification was investigated. BDF wastewater has a high pH and high hexane-extracted oil and low nitrogen concentrations, and inhibits the growth of microorganisms. The biological treatment of BDF wastewater is difficult because the composition of such wastewater is not suitable for microbial growth. To apply the microbiological treatment of BDF wastewater using an oil degradable yeast, Rhodotorula mucilaginosa, the pH was adjusted to 6.8 and several nutrients such as a nitrogen source (ammonium sulfate, ammonium chloride or urea), yeast extract, KH2PO4 and MgSO4.7H2O were added to the wastewater. The optimal initial concentration of yeast extract was 1 g/l and the optimal C/N ratio was between 17 and 68 when using urea as a nitrogen source. A growth inhibitor was also present in the BDF wastewater, and this growth inhibitor could be detected by measuring the solid content in an aqueous phase after the hexane extraction of the wastewater. Microorganisms could not grow at solid contents higher than 2.14 g/l in the wastewater. To avoid the growth inhibition, the BDF wastewater was diluted with the same volume of water. Oil degradation in the diluted BDF wastewater was observed and the best result was obtained under the determined optimal conditions. This treatment system is simple because no controllers, except for a temperature, are necessary. These results suggest that the biological treatment system developed for BDF wastewater is useful for small-scale BDF production plants.

  4. Utilization of brewery wastewater for culturing yeast cells for use in river water remediation.

    PubMed

    Chang, Su-Yun; Sun, Jing-Mei; Song, Shu-Qiang; Sun, Bao-Sheng

    2012-01-01

    Successful in situ bio-augmentation of contaminated river water involves reducing the cost of the bio-agent. In this study, brewery wastewater was used to culture yeast cells for degrading the COD(Cr) from a contaminated river. The results showed that 15 g/L of yeast cells could be achieved after being cultured in the autoclaved brewery wastewater with 5 mL/L of saccharified starch and 9 g/L of corn steep liquor. The COD(Cr) removal efficiency was increased from 22% to 33% when the cells were cultured using the mentioned method. Based on the market price of materials used in this method, the cost of the medium for remediating 1 m3 of river water was 0.0076 US dollars. If the additional cost of field implementation is included, the total cost is less than 0.016 US dollars for treating 1 m3 of river water. The final cost was dependent on the size of remediation: the larger the scale, the lower the cost. By this method, the nutrient in the brewery wastewater was reused, the cost of brewery wastewater treatment was saved and the cost of the remediation using bio-augmentation was reduced. Hence, it is suggested that using brewery wastewater to culture a bio-agent for bio-augmentation is a cost-effective method.

  5. Synergic treatment for monosodium glutamate wastewater by Saccharomyces cerevisiae and Coriolus versicolor.

    PubMed

    Jia, Cuiying; Kang, Ruijuan; Zhang, Yuhui; Cong, Wei; Cai, Zhaoling

    2007-03-01

    Biodegradation and decolorization of monosodium glutamate wastewater were carried out by using an acidophilus yeast strain of Saccharomyces cerevisiae and Coriolus versicolor. For the yeast treatment, the highest COD removal and reducing sugar removal efficiency were 76.6% and 80.2%, respectively. The color removal was only 2%. For C. versicolor treatment, the highest COD removal, color removal and reducing sugar removal efficiencies were 78.7%, 56.5% and 90.9%, respectively. The synergic treatment process, in which the yeast and C. versicolor were successively applied,exhibited great advantage over the individual process.

  6. Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater.

    PubMed

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Seiman, Andrus; Loorits, Liis; Kroon, Kristel; Tomingas, Martin; Vabamäe, Priit; Tenno, Taavo

    2014-01-01

    Maintaining stability of low concentration (< 1 g L(-1)) floccular biomass in the nitritation-anaerobic ammonium oxidation (anammox) process in the sequencing batch reactor (SBR) system for the treatment of high COD (> 15,000 mg O2 L(-1)) to N (1680 mg N L(-1)) ratio real wastewater streams coming from the food industry is challenging. The anammox process was suitable for the treatment of yeast factory wastewater containing relatively high and abruptly increased organic C/N ratio and dissolved oxygen (DO) concentrations. Maximum specific total inorganic nitrogen (TIN) loading and removal rates applied were 600 and 280 mg N g(-1) VSS d(-1), respectively. Average TIN removal efficiency over the operation period of 270 days was 70%. Prior to simultaneous reduction of high organics (total organic carbon > 600mg L(-1)) and N concentrations > 400 mg L(-1), hydraulic retention time of 15 h and DO concentrations of 3.18 (+/- 1.73) mg O2 L(-1) were applied. Surprisingly, higher DO concentrations did not inhibit the anammox process efficiency demonstrating a wider application of cultivated anammox biomass. The SBR was fed rapidly over 5% of the cycle time at 50% volumetric exchange ratio. It maintained high free ammonia concentration, suppressing growth of nitrite-oxidizing bacteria. Partial least squares and response surface modelling revealed two periods of SBR operation and the SBR performances change at different periods with different total nitrogen (TN) loadings. Anammox activity tests showed yeast factory-specific organic N compound-betaine and inorganic N simultaneous biodegradation. Among other microorganisms determined by pyrosequencing, anammox microorganism (uncultured Planctomycetales bacterium clone P4) was determined by polymerase chain reaction also after applying high TN loading rates.

  7. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater.

    PubMed

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  8. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    PubMed Central

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  9. Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units.

    PubMed

    Lou, Jie-Chung; Lin, Yung-Chang

    2008-02-01

    Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35-99.68% and 24.15-99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH(3)-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH(3)-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.

  10. A Four-Hour Yeast Bioassay for the Direct Measure of Estrogenic Activity in Wastewater without Sample Extraction, Concentration, or Sterilization

    PubMed Central

    Balsiger, Heather A.; de la Torre, Roberto; Lee, Wen-Yee; Cox, Marc B.

    2010-01-01

    The assay described here represents an improved yeast bioassay that provides a rapid yet sensitive screening method for EDCs with very little hands-on time and without the need for sample preparation. Traditional receptor-mediated reporter assays in yeast were performed twelve to twenty four hours after ligand addition, used colorimetric substrates, and, in many cases, required high, non-physiological concentrations of ligand. With the advent of new chemiluminescent substrates a ligand-induced signal can be detected within thirty minutes using high picomolar to low nanomolar concentrations of estrogen. As a result of the sensitivity (EC50 for estradiol is ~ 0.7 nM) and the very short assay time (2-4 hours) environmental water samples can typically be assayed directly without sterilization, extraction, and concentration. Thus, these assays represent rapid and sensitive approaches for determining the presence of contaminants in environmental samples. As proof of principle, we directly assayed wastewater influent and effluent taken from a wastewater treatment plant in the El Paso, TX area for the presence of estrogenic activity. The data obtained in the four-hour yeast bioassay directly correlated with GC-mass spectrometry analysis of these same water samples. PMID:20074779

  11. A comparative study of ultrasonication, Fenton's oxidation and ferro-sonication treatment for degradation of carbamazepine from wastewater and toxicity test by Yeast Estrogen Screen (YES) assay.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Picard, P; Surampalli, R Y

    2013-03-01

    A comparative study of ultrasonication (US), Fenton's oxidation (FO) and ferro-sonication (FS) (combination of ultrasonication and Fenton's oxidation) advanced oxidation processes (AOPs) for degradation of carbamazepine (CBZ) from wastewater (WW) is reported for the first time. CBZ is a worldwide used antiepileptic drug, found as a persistent emerging contaminant in many wastewater treatment plants (WWTPs) effluents and other aquatic environments. The oxidation treatments of WW caused an effective removal of the drug. Among the various US, FO and FS pre-treatments carried out, higher soluble chemical oxygen demand (SCOD) and soluble organic carbon (SOC) increment (63 to 86% and 21 to 34%, respectively) was observed during FO pre-treatment process, resulting in higher removal of CBZ (84 to 100%) from WW. Furthermore, analysis of by-products formed during US, FO and FS pre-treatment in WW was carried out by using laser diode thermal desorption-atmospheric pressure chemical ionization (LDTD-APCI) coupled to tandem mass spectrometry (MS/MS). LDTD-APCI-MS/MS analysis indicated formation of two by-products, such as epoxycarbamazepine and hydroxycarbamazepine due to the reaction of hydroxyl radicals (OH) with CBZ during the three types of pre-treatment processes. In addition, the estrogenic activity of US, FO and FS pre-treated sample with CBZ and its by-products was carried out by Yeast Estrogen Screen (YES) assay method. Based upon the YES test results, none of the pre-treated samples showed estrogenic activity. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Wastewater treatment by nanofiltration membranes

    NASA Astrophysics Data System (ADS)

    Mulyanti, R.; Susanto, H.

    2018-03-01

    Lower energy consumption compared to reverse osmosis (RO) and higher rejection compared to ultrafiltration make nanofiltration (NF) membrane get more and more attention for wastewater treatment. NF has become a promising technology not only for treating wastewater but also for reusing water from wastewater. This paper presents various application of NF for wastewater treatments. The factors affecting the performance of NF membranes including operating conditions, feed characteristics and membrane characteristics were discussed. In addition, fouling as a severe problem during NF application is also presented. Further, future prospects and challenges of NF for wastewater treatments are explained.

  13. Marine carbohydrates of wastewater treatment.

    PubMed

    Sudha, Prasad N; Gomathi, Thandapani; Vinodhini, P Angelin; Nasreen, K

    2014-01-01

    Our natural heritage (rivers, seas, and oceans) has been exploited, mistreated, and contaminated because of industrialization, globalization, population growth, urbanization with increased wealth, and more extravagant lifestyles. The scenario gets worse when the effluents or contaminants are discharged directly. So wastewater treatment is a very important and necessary in nowadays to purify wastewater before it enters a body of natural water, or it is applied to the land, or it is reused. Various methods are available for treating wastewater but with many disadvantages. Recently, numerous approaches have been studied for the development of cheaper and more effective technologies, both to decrease the amount of wastewater produced and to improve the quality of the treated effluent. Biosorption is an emerging technology, which uses natural materials as adsorbents for wastewater treatment. Low-cost adsorbents of polysaccharide-based materials obtained from marine, such as chitin, chitosan, alginate, agar, and carrageenan, are acting as rescue for wastewater treatment. This chapter reviews the treatment of wastewater up to the present time using marine polysaccharides and its derivatives. Special attention is paid to the advantages of the natural adsorbents, which are a wonderful gift for human survival. © 2014 Elsevier Inc. All rights reserved.

  14. Organic contaminants in onsite wastewater treatment systems

    USGS Publications Warehouse

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  15. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon?

    PubMed

    Margot, Jonas; Kienle, Cornelia; Magnet, Anoÿs; Weil, Mirco; Rossi, Luca; de Alencastro, Luiz Felippe; Abegglen, Christian; Thonney, Denis; Chèvre, Nathalie; Schärer, Michael; Barry, D A

    2013-09-01

    Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand filtration (SF) and ii) powdered activated carbon (PAC) adsorption followed by either ultrafiltration (UF) or sand filtration. More than 70 potentially problematic substances (pharmaceuticals, pesticides, endocrine disruptors, drug metabolites and other common chemicals) were regularly measured at different stages of treatment. Additionally, several ecotoxicological tests such as the Yeast Estrogen Screen, a combined algae bioassay and a fish early life stage test were performed to evaluate effluent toxicity. Both treatments significantly improved the effluent quality. Micropollutants were removed on average over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg O3 l(-1) or a PAC dose between 10 and 20 mg l(-1). Depending on the chemical properties of the substances (presence of electron-rich moieties, charge and hydrophobicity), either ozone or PAC performed better. Both advanced treatments led to a clear reduction in toxicity of the effluents, with PAC-UF performing slightly better overall. As both treatments had, on average, relatively similar efficiency, further criteria relevant to their implementation were considered, including local constraints (e.g., safety, sludge disposal, disinfection), operational feasibility and cost. For sensitive receiving waters (drinking water resources or recreational waters), the PAC-UF treatment, despite its current higher cost, was considered to be the most suitable option, enabling good removal of most micropollutants

  16. Microbial Community Profiles in Wastewaters from Onsite Wastewater Treatment Systems Technology

    PubMed Central

    Jałowiecki, Łukasz; Chojniak, Joanna Małgorzata; Dorgeloh, Elmar; Hegedusova, Berta; Ejhed, Helene; Magnér, Jörgen; Płaza, Grażyna Anna

    2016-01-01

    The aim of the study was to determine the potential of community-level physiological profiles (CLPPs) methodology as an assay for characterization of the metabolic diversity of wastewater samples and to link the metabolic diversity patterns to efficiency of select onsite biological wastewater facilities. Metabolic fingerprints obtained from the selected samples were used to understand functional diversity implied by the carbon substrate shifts. Three different biological facilities of onsite wastewater treatment were evaluated: fixed bed reactor (technology A), trickling filter/biofilter system (technology B), and aerated filter system (the fluidized bed reactor, technology C). High similarities of the microbial community functional structures were found among the samples from the three onsite wastewater treatment plants (WWTPs), as shown by the diversity indices. Principal components analysis (PCA) showed that the diversity and CLPPs of microbial communities depended on the working efficiency of the wastewater treatment technologies. This study provided an overall picture of microbial community functional structures of investigated samples in WWTPs and discerned the linkages between microbial communities and technologies of onsite WWTPs used. The results obtained confirmed that metabolic profiles could be used to monitor treatment processes as valuable biological indicators of onsite wastewater treatment technologies efficiency. This is the first step toward understanding relations of technology types with microbial community patterns in raw and treated wastewaters. PMID:26807728

  17. Diversity of microbiota found in coffee processing wastewater treatment plant.

    PubMed

    Pires, Josiane Ferreira; Cardoso, Larissa de Souza; Schwan, Rosane Freitas; Silva, Cristina Ferreira

    2017-11-13

    Cultivable microbiota presents in a coffee semi-dry processing wastewater treatment plant (WTP) was identified. Thirty-two operational taxonomic units (OTUs) were detected, these being 16 bacteria, 11 yeasts and 4 filamentous fungi. Bacteria dominated the microbial population (11.61 log CFU mL - 1 ), and presented the highest total diversity index when observed in the WTP aerobic stage (Shannon = 1.94 and Simpson = 0.81). The most frequent bacterial species were Enterobacter asburiae, Sphingobacterium griseoflavum, Chryseobacterium bovis, Serratia marcescens, Corynebacterium flavescens, Acetobacter orientalis and Acetobacter indonesiensis; these showed the largest total bacteria populations in the WTP, with approximately 10 log CFU mL - 1 . Yeasts were present at 7 log CFU mL - 1 of viable cells, with Hanseniaspora uvarum, Wickerhamomyces anomalus, Torulaspora delbrueckii, Saturnispora gosingensis, and Kazachstania gamospora being the prevalent species. Filamentous fungi were found at 6 log CFU mL - 1 , with Fusarium oxysporum the most populous species. The identified species have the potential to act as a biological treatment in the WTP, and the application of them for this purpose must be better studied.

  18. Microalgae and wastewater treatment

    PubMed Central

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  19. ONSITE WASTEWATER TREATMENT AND DISPOSAL SYSTEMS (1980 EDITION) AND ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL (2002 EDITION)

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) first issued detailed guidance on the design, construction, and operation of onsite wastewater treatment systems (OWTSs) in 1980. Design Manual: Onsite Wastewater Treatment and Disposal Systems (USEPA.1980) was the most comprehens...

  20. Ecological and agriculture impacts of bakery yeast wastewater use on weed communities and crops in an arid environment.

    PubMed

    Abu-Dieyeh, Mohammed H; Diab, Mahmoud; Al-Ghouti, Mohammad A

    2017-06-01

    The goal of this study was to evaluate the impact of using yeast wastewater (YW) on weed communities. The study showed that all ecological parameters including species richness, dispersion, density, frequency, and % of vegetation cover were significantly increased in the site irrigated with YW compared to a natural rain fed site and another site irrigated with fresh water. The vegetation cover (%) was significantly increased by 2-folds in the site irrigated with YW (52%) than the one irrigated with fresh water (27%). Species richness increases to 23 in the site irrigated with yeast wastewater compared to 12 species in natural rain fed site and 7 species in areas irrigated with fresh water. The 10 studied weed species germinated better at 10 and 20% dilutions of baker's YW. However, only five species achieved few germination (3-25%) at 50% of YW and the two species Sisymbrim irio and Cardariia droba achieved (6-13%) germination using 100% YW. No germination occurred for the crop seeds (tomato, squash, lentil, and barley) at 50 and 100% YW. For tomato, 10 and 20% of YW achieved better germination (82 and 63%, respectively) than the seeds of other species, followed by barley with 80 and 53% of germination. Squash showed the lowest germination percentage with 59 and 42% at 10 and 20% of YW, respectively. Yeast wastewater seems to be crop specific and can affect weed species composition and relative abundances and care should be taken before using the effluent for irrigation of tree plantations and crops.

  1. Orientation to Municipal Wastewater Treatment. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  2. Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis.

    PubMed

    Tsioptsias, C; Petridis, D; Athanasakis, N; Lemonidis, I; Deligiannis, A; Samaras, P

    2015-12-01

    Molasses wastewater is a high strength effluent of food industry such as distilleries, sugar and yeast production plants etc. It is characterized by a dark brown color and exhibits a high content in substances of recalcitrant nature such as melanoidins. In this study, electrocoagulation (EC) was studied as a post treatment step for biologically treated molasses wastewater with high nitrogen content obtained from a baker's yeast industry. Iron and copper electrodes were used in various forms; the influence and interaction of current density, molasses wastewater dilution, and reaction time, on COD, color, ammonium and nitrate removal rates and operating cost were studied and optimized through Box Behnken's response surface analysis. Reaction time varied from 0.5 to 4 h, current density varied from 5 to 40 mA/cm(2) and dilution from 0 to 90% (v/v expressed as water concentration). pH, conductivity and temperature measurements were also carried out during each experiment. From preliminary experiments, it was concluded that the application of aeration and sample dilution, considerably influenced the kinetics of the process. The obtained results showed that COD removal varied between 10 and 54%, corresponding to an operation cost ranging from 0.2 to 33 euro/kg COD removed. Significant removal rates were obtained for nitrogen as nitrate and ammonium (i.e. 70% ammonium removal). A linear relation of COD and ammonium to the design parameters was observed, while operation cost and nitrate removal responded in a curvilinear function. A low ratio of electrode surface to treated volume was used, associated to a low investment cost; in addition, iron wastes could be utilized as low cost electrodes i.e. iron fillings from lathes, aiming to a low operation cost due to electrodes replacement. In general, electrocoagulation proved to be an effective and low cost process for biologically treated molasses-wastewater treatment for additional removal of COD and nitrogen content and

  3. Wastewater Treatment.

    ERIC Educational Resources Information Center

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  4. Mobile Wastewater Treatment Technology for Contingency Bases

    DTIC Science & Technology

    2012-05-24

    Def nse Cent rgy and Environment Contingency Base Wastewater Treatment Options Option Advantages Disadvantages Tanking and Trucking Offsite Low...National Defense Center for Energy and Environment Mobile Wastewater Treatment f or Contingency Bases, May 2012 1 National Def nse Cent rgy and...Environment DoD Executive Agent Mobile Wastewater Treatment Technology for Contingency Bases Shan Abeywickrama, NDCEE/CTC Elizabeth Keysar

  5. Winery wastewater treatment by combination of Cryptococcus laurentii and Fenton's reagent.

    PubMed

    Santos, Cátia; Lucas, Marco S; Dias, Albino A; Bezerra, Rui M F; Peres, José A; Sampaio, Ana

    2014-12-01

    Winery wastewaters (WW) have high levels of organic matter, resulting in high COD and BOD and suspended solids. This paper studies the combination of biological and chemical processes in WW treatment. Among 10 yeast isolates, Filobasidium sp. (AGG 577) and Cryptococcus laurentii (AGG 726) were selected due to their superior performance in COD removal. During WW degradation, COD and total polyphenols (TPP) content removal of 89-90% for Filobasidium sp. and 90-93% for C. laurentii were obtained. However, despite similar degradation efficiency for both yeasts, COD kinetics and pH evolution during treatment reveals that C. laurentii presents a faster response than Filobasidium sp. The toxicity (inhibition of Vibrio fischeri luminescence) of C. laurentii treated WW decreases to an inhibition value below 2.5%. However, treated WW exceeds the legal limits, making necessary an additional treatment. In this case, the selection of Fenton's reagent as a chemical final polish step process is a good compromise between efficiency and lower practical complexity. The best results for both COD and TPP removal were obtained with H2O2 initial concentration of 39.2mM and a H2O2:Fe(2+) molar ratio of 15:1. The combined C. laurentii - Fenton's reagent treatment of WW achieved a total reduction of 98% and 96%, for COD and TPP, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Evaluation of advanced wastewater treatment systems for water reuse in the era of advanced wastewater treatment

    NASA Astrophysics Data System (ADS)

    Kon, Hisao; Watanabe, Masahiro

    This study focuses on effluent COD concentration from wastewater treatment in regards to the reduction of pathogenic bacteria and trace substances in public waters. The main types of secondary wastewater treatment were conventional activated sludge processes. Recently, however, advance wastewater treatment processes have been developed aimed at the removal of nitrogen and phosphorus, and the effluent quality of these processes was analyzed in this study. Treatment processes for water reclamation that make effluent to meet the target water quality for reuse purposes were selected and also optimum design parameters for these processes were proposed. It was found that the treatment cost to water reclamation was greatly affected by the effluent COD of the secondary treatment. It is important to maintain low COD concentration in the secondary treated effluent. Therefore, it is considered that adequate cost benefits would be obtained by achieving target COD quality through shifting from a conventional activated sludge process to an advanced treatment process.

  7. Yeast Based Sensors

    NASA Astrophysics Data System (ADS)

    Shimomura-Shimizu, Mifumi; Karube, Isao

    Since the first microbial cell sensor was studied by Karube et al. in 1977, many types of yeast based sensors have been developed as analytical tools. Yeasts are known as facultative anaerobes. Facultative anaerobes can survive in both aerobic and anaerobic conditions. The yeast based sensor consisted of a DO electrode and an immobilized omnivorous yeast. In yeast based sensor development, many kinds of yeast have been employed by applying their characteristics to adapt to the analyte. For example, Trichosporon cutaneum was used to estimate organic pollution in industrial wastewater. Yeast based sensors are suitable for online control of biochemical processes and for environmental monitoring. In this review, principles and applications of yeast based sensors are summarized.

  8. Wastewater Treatment and Reuse Treatment Technology Evaluation and Development

    EPA Science Inventory

    This project will assess the effectiveness of a Biomass Concentrator Reactor (BCR) to remove endocrine disrupting chemicals (EDCs) from wastewater. This technology could provide an alternative to traditional wastewater treatment methods.

  9. Operation and Maintenance of Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Drury, Douglas D.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment: (1) operators, training, and certification; (2) solutions to operating problems; (3) collection systems; (4) operations manuals; (5) wastewater treatment facility case histories; (5) land application; and (6) treatment of industrial wastes. A list of 36 references is also presented. (HM)

  10. TENORM: Wastewater Treatment Residuals

    EPA Pesticide Factsheets

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  11. ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...

  12. A Review on Advanced Treatment of Pharmaceutical Wastewater

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Qi, P. S.; Liu, Y. Z.

    2017-05-01

    The composition of pharmaceutical wastewater is complex, which is high concentration of organic matter, microbial toxicity, high salt, and difficult to biodegrade. After secondary treatment, there are still trace amounts of suspended solids and dissolved organic matter. To improve the quality of pharmaceutical wastewater effluent, advanced treatment is essential. In this paper, the classification of the pharmaceutical technology was introduced, and the characteristics of pharmaceutical wastewater effluent quality were summarized. The methods of advanced treatment of pharmaceutical wastewater were reviewed afterwards, which included coagulation and sedimentation, flotation, activated carbon adsorption, membrane separation, advanced oxidation processes, membrane separation and biological treatment. Meanwhile, the characteristics of each process were described.

  13. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  14. [Ecological security of wastewater treatment processes: a review].

    PubMed

    Yang, Sai; Hua, Tao

    2013-05-01

    Though the regular indicators of wastewater after treatment can meet the discharge requirements and reuse standards, it doesn't mean the effluent is harmless. From the sustainable point of view, to ensure the ecological and human security, comprehensive toxicity should be considered when discharge standards are set up. In order to improve the ecological security of wastewater treatment processes, toxicity reduction should be considered when selecting and optimizing the treatment processes. This paper reviewed the researches on the ecological security of wastewater treatment processes, with the focus on the purposes of various treatment processes, including the processes for special wastewater treatment, wastewater reuse, and for the safety of receiving waters. Conventional biological treatment combined with advanced oxidation technologies can enhance the toxicity reduction on the base of pollutants removal, which is worthy of further study. For the process aimed at wastewater reuse, the integration of different process units can complement the advantages of both conventional pollutants removal and toxicity reduction. For the process aimed at ecological security of receiving waters, the emphasis should be put on the toxicity reduction optimization of process parameters and process unit selection. Some suggestions for the problems in the current research and future research directions were put forward.

  15. Conversion of activated-sludge reactors to microbial fuel cells for wastewater treatment coupled to electricity generation.

    PubMed

    Yoshizawa, Tomoya; Miyahara, Morio; Kouzuma, Atsushi; Watanabe, Kazuya

    2014-11-01

    Wastewater can be treated in microbial fuel cells (MFCs) with the aid of microbes that oxidize organic compounds using anodes as electron acceptors. Previous studies have suggested the utility of cassette-electrode (CE) MFCs for wastewater treatment, in which rice paddy-field soil was used as the inoculum. The present study attempted to convert an activated-sludge (AS) reactor to CE-MFC and use aerobic sludge in the tank as the source of microbes. We used laboratory-scale (1 L in capacity) reactors that were initially operated in an AS mode to treat synthetic wastewater, containing starch, yeast extract, peptone, plant oil, and detergents. After the organics removal became stable, the aeration was terminated, and CEs were inserted to initiate an MFC-mode operation. It was demonstrated that the MFC-mode operation treated the wastewater at similar efficiencies to those observed in the AS-mode operation with COD-removal efficiencies of 75-80%, maximum power densities of 150-200 mW m(-2) and Coulombic efficiencies of 20-30%. These values were similar to those of CE-MFC inoculated with the soil. Anode microbial communities were analyzed by pyrotag sequencing of 16S rRNA gene PCR amplicons. Comparative analyses revealed that anode communities enriched from the aerobic sludge were largely different from those from the soil, suggesting that similar reactor performances can be supported by different community structures. The study demonstrates that it is possible to construct wastewater-treatment MFCs by inserting CEs into water-treatment tanks. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Wastewater Treatment I. Instructor's Manual.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This instructor's manual provides an outline and guide for teaching Wastewater Treatment I. It consists of nine sections. An introductory note and a course outline comprise sections 1 and 2. Section 3 (the bulk of the guide) presents lesson outlines for teaching the ten chapters of the manual entitled "Operation of Wastewater Treatment…

  17. Gasification of yeast industry treatment plant sludge using downdraft Gasifier.

    PubMed

    Ayol, Azize; Tezer, Ozgun; Gurgen, Alim

    2018-01-01

    Sludges produced in biological wastewater treatment plants have rich organic materials in their characteristics. Recent research studies have focused on the energy recovery from sludge due to its high organic content. The gasification process is a thermal conversion technology transforming the chemical energy contained in a solid fuel into thermal energy and electricity. The produced syngas as a mixture of CO, CH 4 , H 2 and other gases can be used to generate electrical energy. The gasification of yeast industry sludge has been experimentally evaluated in a pilot scale downdraft-type gasifier as a route towards the energy recovery. The gasifier has 20 kg biomass/h fuel capacity. During gasification, the temperature achieved was more than 1,000°C in the gasifier, and then the syngas was transferred to the gas engine to yield the electricity. A load was connected to the grid box and approximately 1 kWh electrical power generation for 1 kg dry sludge was determined. The characteristics of residuals - ash, glassy material - were also analyzed. It was found that most of the heavy metals were fixed in the glassy material. Experimental results showed that the yeast industry sludge was an appropriate material for gasification studies and remarkable energy recovery was obtained in terms of power production by using syngas.

  18. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, J.; Hallett, K.; DeWolfe, J.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energymore » use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.« less

  19. Coke dust enhances coke plant wastewater treatment.

    PubMed

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Solutions to microplastic pollution - Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies.

    PubMed

    Talvitie, Julia; Mikola, Anna; Koistinen, Arto; Setälä, Outi

    2017-10-15

    Conventional wastewater treatment with primary and secondary treatment processes efficiently remove microplastics (MPs) from the wastewater. Despite the efficient removal, final effluents can act as entrance route of MPs, given the large volumes constantly discharged into the aquatic environments. This study investigated the removal of MPs from effluent in four different municipal wastewater treatment plants utilizing different advanced final-stage treatment technologies. The study included membrane bioreactor treating primary effluent and different tertiary treatment technologies (discfilter, rapid sand filtration and dissolved air flotation) treating secondary effluent. The MBR removed 99.9% of MPs during the treatment (from 6.9 to 0.005 MP L -1 ), rapid sand filter 97% (from 0.7 to 0.02 MP L -1 ), dissolved air flotation 95% (from 2.0 to 0.1 MP L -1 ) and discfilter 40-98.5% (from 0.5 - 2.0 to 0.03-0.3 MP L -1 ) of the MPs during the treatment. Our study shows that with advanced final-stage wastewater treatment technologies WWTPs can substantially reduce the MP pollution discharged from wastewater treatment plants into the aquatic environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Use of a Battery of Chemical and Ecotoxicological Methods for the Assessment of the Efficacy of Wastewater Treatment Processes to Remove Estrogenic Potency

    PubMed Central

    Beresford, Nicola; Baynes, Alice; Kanda, Rakesh; Mills, Matthew R.; Arias-Salazar, Karla; Collins, Terrence J.; Jobling, Susan

    2016-01-01

    Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies. PMID:27684328

  2. Textile wastewater reuse after additional treatment by Fenton's reagent.

    PubMed

    Ribeiro, Marília Cleto Meirelles; Starling, Maria Clara V M; Leão, Mônica Maria Diniz; de Amorim, Camila Costa

    2017-03-01

    This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H 2 O 2 . Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H 2 O 2 in treated wastewater. Results indicated Fenton's reagent, COD/[H 2 O 2 ]/[Fe 2+ ] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H 2 O 2 /UV tested in different conditions.

  3. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    NASA Astrophysics Data System (ADS)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  4. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Wastewater Treatment: The Natural Way

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  6. The treatment of hospital wastewater: an appraisal.

    PubMed

    Pauwels, B; Verstraete, W

    2006-12-01

    Hospitals discharge considerable amounts of chemicals and microbial agents in their wastewaters. Problem chemicals present in hospital wastewater belong to different groups, such as antibiotics, X-ray contrast agents, disinfectants and pharmaceuticals. Many of these chemical compounds resist normal wastewater treatment. They end up in surface waters where they can influence the aquatic ecosystem and interfere with the food chain. Humans are particularly exposed by the drinking water, produced from surface water. Microbial agents of special concern are multiresistant microbial strains. The latter are suspected to contribute to the spread of antibiotic resistance. In this paper, we will discuss the different approaches towards hospital wastewater treatment. The principle of uncoupling hospitals from public sewers warrants indepth evaluation by technologists and ecotoxicologists as well as public health specialists.

  7. Winery wastewater treatment using the land filter technique.

    PubMed

    Christen, E W; Quayle, W C; Marcoux, M A; Arienzo, M; Jayawardane, N S

    2010-08-01

    This study outlines a new approach to the treatment of winery wastewater by application to a land FILTER (Filtration and Irrigated cropping for Land Treatment and Effluent Reuse) system. The land FILTER system was tested at a medium size rural winery crushing approximately 20,000 tonnes of grapes. The approach consisted of a preliminary treatment through a coarse screening and settling in treatment ponds, followed by application to the land FILTER planted to pasture. The land FILTER system efficiently dealt with variable volumes and nutrient loads in the wastewater. It was operated to minimize pollutant loads in the treated water (subsurface drainage) and provide adequate leaching to manage salt in the soil profile. The land FILTER system was effective in neutralizing the pH of the wastewater and removing nutrient pollutants to meet EPA discharge limits. However, suspended solids (SS) and biological oxygen demand (BOD) levels in the subsurface drainage waters slightly exceeded EPA limits for discharge. The high organic content in the wastewater initially caused some soil blockage and impeded drainage in the land FILTER site. This was addressed by reducing the hydraulic loading rate to allow increased soil drying between wastewater irrigations. The analysis of soil characteristics after the application of wastewater found that there was some potassium accumulation in the profile but sodium and nutrients decreased after wastewater application. Thus, the wastewater application and provision of subsurface drainage ensured adequate leaching, and so was adequate to avoid the risk of soil salinisation. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  8. Fluorochemical Mass Flows in a Municipal Wastewater Treatment Facility

    PubMed Central

    Schultz, Melissa M.; Higgins, Christopher P.; Huset, Carin A.; Luthy, Richard G.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    Fluorochemicals have widespread applications and are released into municipal wastewater treatment plants via domestic wastewater. A field study was conducted at a full-scale municipal wastewater treatment plant to determine the mass flows of selected fluorochemicals. Flow-proportional, 24-h samples of raw influent, primary effluent, trickling filter effluent, secondary effluent, and final effluent and grab samples of primary, thickened, activated, and anaerobically-digested sludge were collected over ten days and analyzed by liquid chromatography electrospray-ionization tandem mass spectrometry. Significant decreases in the mass flows of perfluorohexane sulfonate and perfluorodecanoate occurred during trickling filtration and primary clarification, while activated sludge treatment decreased the mass flow of perfluorohexanoate. Mass flows of the 6:2 fluorotelomer sulfonate and perfluorooctanoate were unchanged as a result of wastewater treatment, which indicates that conventional wastewater treatment is not effective for removal of these compounds. A net increase in the mass flows for perfluorooctane and perfluorodecane sulfonates occurred from trickling filtration and activated sludge treatment. Mass flows for perfluoroalkylsulfonamides and perfluorononanoate also increased during activated sludge treatment and are attributed to degradation of precursor molecules. PMID:17180988

  9. Floating treatment wetlands for domestic wastewater treatment.

    PubMed

    Faulwetter, J L; Burr, M D; Cunningham, A B; Stewart, F M; Camper, A K; Stein, O R

    2011-01-01

    Floating islands are a form of treatment wetland characterized by a mat of synthetic matrix at the water surface into which macrophytes can be planted and through which water passes. We evaluated two matrix materials for treating domestic wastewater, recycled plastic and recycled carpet fibers, for chemical oxygen demand (COD) and nitrogen removal. These materials were compared to pea gravel or open water (control). Experiments were conducted in laboratory scale columns fed with synthetic wastewater containing COD, organic and inorganic nitrogen, and mineral salts. Columns were unplanted, naturally inoculated, and operated in batch mode with continuous recirculation and aeration. COD was efficiently removed in all systems examined (>90% removal). Ammonia was efficiently removed by nitrification. Removal of total dissolved N was ∼50% by day 28, by which time most remaining nitrogen was present as NO(3)-N. Complete removal of NO(3)-N by denitrification was accomplished by dosing columns with molasses. Microbial communities of interest were visualized with denaturing gradient gel electrophoresis (DGGE) by targeting specific functional genes. Shifts in the denitrifying community were observed post-molasses addition, when nitrate levels decreased. The conditioning time for reliable nitrification was determined to be approximately three months. These results suggest that floating treatment wetlands are a viable alternative for domestic wastewater treatment.

  10. Applications of nanotechnology in wastewater treatment--a review.

    PubMed

    Bora, Tanujjal; Dutta, Joydeep

    2014-01-01

    Water on Earth is a precious and finite resource, which is endlessly recycled in the water cycle. Water, whose physical, chemical, or biological properties have been altered due to the addition of contaminants such as organic/inorganic materials, pathogens, heavy metals or other toxins making it unsafe for the ecosystem, can be termed as wastewater. Various schemes have been adopted by industries across the world to treat wastewater prior to its release to the ecosystem, and several new concepts and technologies are fast replacing the traditional methods. This article briefly reviews the recent advances and application of nanotechnology for wastewater treatment. Nanomaterials typically have high reactivity and a high degree of functionalization, large specific surface area, size-dependent properties etc., which makes them suitable for applications in wastewater treatment and for water purification. In this article, the application of various nanomaterials such as metal nanoparticles, metal oxides, carbon compounds, zeolite, filtration membranes, etc., in the field of wastewater treatment is discussed.

  11. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  12. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  13. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  14. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  15. 40 CFR 35.2125 - Treatment of wastewater from industrial users.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Treatment of wastewater from industrial... Treatment of wastewater from industrial users. (a) Grant assistance shall not be provided for a project... project and the system is for the treatment of domestic wastewater of the entire community, area, region...

  16. ONSITE WASTEWATER TREATMENT SYSTEMS MANUAL - REVISED FEBRUARY 2002

    EPA Science Inventory

    This update of the 1980 Design Manual: Onsite Wastewater Treatment and Disposal Systems was developed to provide supplemental and new information for wastewater treatment professionals in both the public and private sectors. This manual is not intended to replace the previous man...

  17. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  18. Crystallization techniques in wastewater treatment: An overview of applications.

    PubMed

    Lu, Haijiao; Wang, Jingkang; Wang, Ting; Wang, Na; Bao, Ying; Hao, Hongxun

    2017-04-01

    As a by-product of industrial or domestic activities, wastewater of different compositions has caused serious environmental problems all over the world. Facing the challenge of wastewater treatment, researchers have begun to make use of crystallization techniques in wastewater treatment. Crystallization techniques have many advantages, such as high efficiency, energy saving, low costs, less space occupation and so on. In recent decades, crystallization is considered as one of promising techniques for wastewater treatment, especially for desalination, water and salt recovery. It has been widely used in engineering applications all over the world. In this paper, various crystallization techniques in wastewater treatment are summarized, mainly including evaporation crystallization, cooling crystallization, reaction crystallization, drowning-out crystallization and membrane distillation crystallization. Overall, they are mainly used for desalination, water and salt recovery. Their applications, advantages and disadvantages were compared and discussed in detail. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Antibiotics with anaerobic ammonium oxidation in urban wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Biofilter process is based on biological oxidation process on the introduction of fast water filter design ideas generated by an integrated filtration, adsorption and biological role of aerobic wastewater treatment process various purification processes. By engineering example, we show that the process is an ideal sewage and industrial wastewater treatment process of low concentration. Anaerobic ammonia oxidation process because of its advantage of the high efficiency and low consumption, wastewater biological denitrification field has broad application prospects. The process in practical wastewater treatment at home and abroad has become a hot spot. In this paper, anammox bacteria habitats and species diversity, and anaerobic ammonium oxidation process in the form of diversity, and one and split the process operating conditions are compared, focusing on a review of the anammox process technology various types of wastewater laboratory research and engineering applications, including general water quality and pressure filtrate sludge digestion, landfill leachate, aquaculture wastewater, monosodium glutamate wastewater, wastewater, sewage, fecal sewage, waste water salinity wastewater characteristics, research progress and application of the obstacles. Finally, we summarize the anaerobic ammonium oxidation process potential problems during the processing of the actual waste water, and proposed future research focus on in-depth study of water quality anammox obstacle factor and its regulatory policy, and vigorously develop on this basis, and combined process optimization.

  20. Forward osmosis for application in wastewater treatment: a review.

    PubMed

    Lutchmiah, Kerusha; Verliefde, A R D; Roest, K; Rietveld, L C; Cornelissen, E R

    2014-07-01

    Research in the field of Forward Osmosis (FO) membrane technology has grown significantly over the last 10 years, but its application in the scope of wastewater treatment has been slower. Drinking water is becoming an increasingly marginal resource. Substituting drinking water for alternate water sources, specifically for use in industrial processes, may alleviate the global water stress. FO has the potential to sustainably treat wastewater sources and produce high quality water. FO relies on the osmotic pressure difference across the membrane to extract clean water from the feed, however the FO step is still mostly perceived as a "pre-treatment" process. To prompt FO-wastewater feasibility, the focus lies with new membrane developments, draw solutions to enhance wastewater treatment and energy recovery, and operating conditions. Optimisation of these parameters are essential to mitigate fouling, decrease concentration polarisation and increase FO performance; issues all closely related to one another. This review attempts to define the steps still required for FO to reach full-scale potential in wastewater treatment and water reclamation by discussing current novelties, bottlenecks and future perspectives of FO technology in the wastewater sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Treatment of hydraulic fracturing wastewater by wet air oxidation.

    PubMed

    Wang, Wei; Yan, Xiuyi; Zhou, Jinghui; Ma, Jiuli

    2016-01-01

    Wastewater produced by hydraulic fracturing for oil and gas production is characterized by high salinity and high chemical oxygen demand (COD). We applied a combination of flocculation and wet air oxidation technology to optimize the reduction of COD in the treatment of hydraulic fracturing wastewater. The experiments used different values of flocculant, coagulant, and oxidizing agent added to the wastewater, as well as different reaction times and treatment temperatures. The use of flocculants for the pretreatment of fracturing wastewater was shown to improve treatment efficiency. The addition of 500 mg/L of polyaluminum chloride (PAC) and 20 mg/L of anionic polyacrylamide (APAM) during pretreatment resulted in a COD removal ratio of 8.2% and reduced the suspended solid concentration of fracturing wastewater to 150 mg/L. For a solution of pretreated fracturing wastewater with 12 mL of added H2O2, the COD was reduced to 104 mg/L when reacted at 300 °C for 75 min, and reduced to 127 mg/L when reacted at the same temperature for 45 min while using a 1 L autoclave. An optimal combination of these parameters produced treated wastewater that met the GB 8978-1996 'Integrated Wastewater Discharge Standard' level I emission standard.

  2. RARE EARTH ELEMENT IMPACTS ON BIOLOGICAL WASTEWATER TREATMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Y.; Barnes, J.; Fox, S.

    Increasing demand for rare earth elements (REE) is expected to lead to new development and expansion in industries processing and or recycling REE. For some industrial operators, sending aqueous waste streams to a municipal wastewater treatment plant, or publicly owned treatment works (POTW), may be a cost effective disposal option. However, wastewaters that adversely affect the performance of biological wastewater treatment at the POTW will not be accepted. The objective of our research is to assess the effects of wastewaters that might be generated by new rare earth element (REE) beneficiation or recycling processes on biological wastewater treatment systems. Wemore » have been investigating the impact of yttrium and europium on the biological activity of activated sludge collected from an operating municipal wastewater treatment plant. We have also examined the effect of an organic complexant that is commonly used in REE extraction and separations; similar compounds may be a component of newly developed REE recycling processes. Our preliminary results indicate that in the presence of Eu, respiration rates for the activated sludge decrease relative to the no-Eu controls, at Eu concentrations ranging from <10 to 660 µM. Yttrium appears to inhibit respiration as well, although negative impacts have been observed only at the highest Y amendment level tested (660 µM). The organic complexant appears to have a negative impact on activated sludge activity as well, although results are variable. Ultimately the intent of this research is to help REE industries to develop environmentally friendly and economically sustainable beneficiation and recycling processes.« less

  3. Effect of White Charcoal on COD Reduction in Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Pijarn, Nuchanaporn; Butsee, Manipa; Buakul, Kanokwan; Seng, Hasan; Sribuarai, Tinnphat; Phonprasert, Pongtep; Taneeto, Kla; Atthameth, Prasertsil

    2017-06-01

    The objective of this study is to compare the COD reduction in wastewater between using coconut shell and coconut spathe white charcoal from Khlong Wat NongPra-Ong, Krathumbaen, SamutSakhon province, Thailand. The waste water samples were collected using composite sampling method. The experimental section can be divided into 2 parts. The first part was study the optimum of COD adsorption time using both white charcoals. The second part was study the optimum amount of white charcoal for chemical oxygen demand (COD) reduction. The pre-treatment of wastewater was examined in parameters include temperature, alkalinity (pH), conductivity, turbidity, suspended solid (SS), total dissolved solid (TDS), and COD. The results show that both white charcoals can reduce COD of wastewater. The pH of pre-treatment wastewater had pH 9 but post-treatment wastewaters using both white charcoals have pH 8. The COD of pre-treatment wastewater had COD as 258 mg/L but post-treatment wastewater using coconut shell white charcoal had COD steady at 40 mg/L in 30 min and the amount of white charcoals 4 g. The COD of post-treatment wastewater using coconut spathe white charcoal had COD steady at 71 mg/L in 30 min and the amount of white charcoals 4 g. Therefore comparison of COD reduction between coconut shell white charcoal versus coconut spathe white charcoal found that the coconut shell white charcoal had efficiency for COD reduction better than coconut spathe white charcoal.

  4. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    NASA Technical Reports Server (NTRS)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  5. Towards energy positive wastewater treatment by sludge treatment using free nitrous acid.

    PubMed

    Wang, Qilin; Hao, Xiaodi; Yuan, Zhiguo

    2016-02-01

    Free nitrous acid (FNA i.e. HNO2) was revealed to be effective in enhancing biodegradability of secondary sludge. Also, nitrite-oxidizing bacteria were found to be more susceptible to FNA than ammonium-oxidizing bacteria. Based on these findings, a novel FNA-based sludge treatment technology is proposed to enhance energy recovery from wastewater/sludge. Energy analysis indicated that the FNA-based technology would make wastewater treatment become an energy generating process (yielding energy at 4 kWh/PE/y; kWh/PE/y: kilowatt hours per population equivalent per year), rather than being a large energy consumer that it is today (consuming energy at 24 kWh/PE/y). Importantly, FNA required for the sludge treatment could be produced as a by-product of wastewater treatment. This proposed FNA-based technology is economically and environmentally attractive, and can be easily implemented in any wastewater treatment plants. It only involves the installation of a simple sludge mixing tank. This article presents the concept of the FNA-based technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. An experimental investigation of wastewater treatment using electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Emami-Meibodi, M.; Parsaeian, M. R.; Amraei, R.; Banaei, M.; Anvari, F.; Tahami, S. M. R.; Vakhshoor, B.; Mehdizadeh, A.; Fallah Nejad, N.; Shirmardi, S. P.; Mostafavi, S. J.; Mousavi, S. M. J.

    2016-08-01

    Electron beam (EB) is used for disinfection and treatment of different types of sewage and industrial wastewater. However, high capital investment required and the abundant energy consumed by this process raise doubts about its cost-effectiveness. In this paper, different wastewaters, including two textile sewages and one municipal wastewater are experimentally studied under different irradiation strategies (i.e. batch, 60 l/min and 1000 m3/day) in order to establish the reliability and the optimum conditions for the treatment process. According to the results, EB improves the efficiency of traditional wastewater treatment methods, but, for textile samples, coagulation before EB irradiation is recommended. The cost estimation of EB treatment compared to conventional methods shows that EB has been more expensive than chlorination and less expensive than activated sludge. Therefore, EB irradiation is advisable if and only if conventional methods of textile wastewater treatment are insufficient or chlorination of municipal wastewater is not allowed for health reasons. Nevertheless, among the advanced oxidation processes (AOP), EB irradiation process may be the most suitable one in industrial scale operations.

  7. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    PubMed

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m 3 was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m 3 for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  8. Landfill Leachate Toxicity Removal in Combined Treatment with Municipal Wastewater

    PubMed Central

    Kalka, J.

    2012-01-01

    Combined treatment of landfill leachate and municipal wastewater was performed in order to investigate the changes of leachate toxicity during biological treatment. Three laboratory A2O lab-scale reactors were operating under the same parameters (Q-8.5–10 L/d; HRT-1.4–1.6 d; MLSS 1.6–2.5 g/L) except for the influent characteristic and load. The influent of reactor I consisted of municipal wastewater amended with leachate from postclosure landfill; influent of reactor II consisted of leachate collected from transient landfill and municipal wastewater; reactor III served as a control and its influent consisted of municipal wastewater only. Toxicity of raw and treated wastewater was determinted by four acute toxicity tests with Daphnia magna, Thamnocephalus platyurus, Vibrio fischeri, and Raphidocelis subcapitata. Landfill leachate increased initial toxicity of wastewater. During biological treatment, significant decline of acute toxicity was observed, but still mixture of leachate and wastewater was harmful to all tested organisms. PMID:22623882

  9. Denitrifying bioreactor clogging potential during wastewater treatment.

    PubMed

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m 3 of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P 2 O 5 ) and along the bioreactor floor (0.04 vs. 0.12%P 2 O 5 ) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Aquatic Plants and Wastewater Treatment (an Overview)

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  11. Dynamics of Nutrients Transport in Onsite Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Toor, G.; De, M.

    2013-05-01

    Domestic wastewater is abundant in nutrients¬ that originate from various activities in the households. In developed countries, wastewater is largely managed by (1) centralized treatment where wastewater from large population is collected, treated, and discharged and (2) onsite treatment where wastewater is collected from an individual house, treated, and dispersed onsite; this system is commonly known as septic system or onsite wastewater treatment system (OWTS) and consist of a septic tank (collects wastewater) and drain-field (disperses wastewater in soil). In areas with porous sandy soils, the transport of nutrients from drain-field to shallow groundwater is accelerated. To overcome this limitation, elevated disposal fields (commonly called mounds) on top of the natural soil are constructed to provide unsaturated conditions for wastewater treatment. Our objective was to study the dynamics of nitrogen (N) and phosphorus (P) transport in the vadose zone and groundwater in traditional and advanced OWTS. Soil water samples were collected from the vadose zone by using suction cup lysimeters and groundwater samples were collected by using piezometers. Collected samples (wastewater, soil-water, groundwater) were analyzed for various water quality parameters. The pH (4.39-4.78) and EC (0.28-0.34 dS/m) of groundwater was much lower than both wastewater and soil-water. In contrast to >50 mg/L of ammonium-N in wastewater, concentrations in all lysimeters (0.02-0.81 mg/L) and piezometers (0.01-0.82 mg/L) were <1 mg/L; suggesting that >99% disappeared (primarily nitrified) in the vadose zone (<1.05-m soil profile depth). In the vadose zone of advanced system, heterotrophic and autrotrophic denitrification reduced nitrate-N concentrations to <0.12 mg/L, compared with >20 mg/L in the vadose zones of traditional systems (drip dispersal and gravel trench). Concentrations of chloride showed a distinct pattern of nitrate-N breakthrough in vadose zone and groundwater; the

  12. MANUAL - CONSTRUCTED WETLANDS TREATMENT OF MUNICIPAL WASTEWATERS

    EPA Science Inventory

    Constructed wetlands are man-made wastewater treatment systems. They usually have one or more cells less than 1 meter deep and are planted with aquatic greenery. Water outlet structures control the flow of wastewater through the system to keep detention times and water levels at ...

  13. Preparation of polyelectrolytes for wastewater treatment.

    PubMed

    Radoiu, Marilena T; Martin, Diana I; Calinescu, Ioan; Iovu, Horia

    2004-01-02

    Liquid-phase polymerisation of acrylamide-acrylic acid to form polyelectrolytes used in wastewater cleaning was examined using accelerated electron beam and microwave irradiation methods. Polymerisation was carried out in aqueous solutions at temperatures approximately 60 degrees C. Monomers total concentration was established at 40% (36% acrylamide and 4% acrylic acid). Only using the features of simultaneous radiation-induction and microwave heating can result in the formation of linear polymer chains with good water solubility and low residual monomer concentration. The flocculation capacity of the obtained polymers was tested using two wastewaters, one sampled from a slaughterhouse and the other from a vegetable oil plant. Quality indicators such as total suspended matters (TSM), chemical oxygen demand (COD), biological oxygen demand (BOD) and fat, oils and grease (FOG) were measured before and after the treatment with polymeric flocculants and compared with the results obtained in classical treatment with Al(2)(SO(4))(3). It was found that the combined treatment with polymers and Al(2)(SO(4))(3) increases the degree of purification of both wastewaters up to 99%.

  14. Carbon footprint of aerobic biological treatment of winery wastewater.

    PubMed

    Rosso, D; Bolzonella, D

    2009-01-01

    The carbon associated with wastewater and its treatment accounts for approximately 6% of the global carbon balance. Within the wastewater treatment industry, winery wastewater has a minor contribution, although it can have a major impact on wine-producing regions. Typically, winery wastewater is treated by biological processes, such as the activated sludge process. Biomass produced during treatment is usually disposed of directly, i.e. without digestion or other anaerobic processes. We applied our previously published model for carbon-footprint calculation to the areas worldwide producing yearly more than 10(6) m(3) of wine (i.e., France, Italy, Spain, California, Argentina, Australia, China, and South Africa). Datasets on wine production from the Food and Agriculture Organisation were processed and wastewater flow rates calculated with assumptions based on our previous experience. Results show that the wine production, hence the calculated wastewater flow, is reported as fairly constant in the period 2005-2007. Nevertheless, treatment process efficiency and energy-conservation may play a significant role on the overall carbon-footprint. We performed a sensitivity analysis on the efficiency of the aeration process (alphaSOTE per unit depth, or alphaSOTE/Z) in the biological treatment operations and showed significant margin for improvement. Our results show that the carbon-footprint reduction via aeration efficiency improvement is in the range of 8.1 to 12.3%.

  15. Biological treatment of winery wastewater: an overview.

    PubMed

    Andreottola, G; Foladori, P; Ziglio, G

    2009-01-01

    The treatment of winery wastewater can realised using several biological processes based both on aerobic or anaerobic systems using suspended biomass or biofilms. Several systems are currently offered by technology providers and current research envisages the availability of new promising technologies for winery wastewater treatment. The present paper intends to present a brief state of the art of the existing status and advances in biological treatment of winery wastewater in the last decade, considering both lab, pilot and full-scale studies. Advantages, drawbacks, applied organic loads, removal efficiency and emerging aspects of the main biological treatments were considered and compared. Nevertheless in most treatments the COD removal efficiency was around 90-95% (remaining COD is due to the un-biodegradable soluble fraction), the applied organic loads are very different depending on the applied technology, varying for an order of magnitude. Applied organic loads are higher in biofilm systems than in suspended biomass while anaerobic biofilm processes have the smaller footprint but in general a higher level of complexity.

  16. WASTEWATER TREATMENT AND ITS MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Research has shown that wastewater treatment (WWT) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WWT can include centralized wastewater treatment plants (WWTPs) or on-site WWT technologies. EDCs found in WWT effluents (aqueous and biosol...

  17. Chromium toxicity to nitrifying bacteria: implications to wastewater treatment

    EPA Science Inventory

    Chromium, a heavy metal that enters wastewater treatment plants (WWTPs) through industrial discharges, can be toxic to microorganisms carrying out important processes within biological wastewater treatment systems. The effect of Cr(III) and Cr(VI) on ammonia dependent specific ox...

  18. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    PubMed

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Anaerobic treatment of municipal wastewater using the UASB-technology.

    PubMed

    Urban, I; Weichgrebe, D; Rosenwinkel, K-H

    2007-01-01

    The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO(2) emission. With the anaerobic treatment of municipal wastewater, not only can the CO(2) emission be reduced but "clean" energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO(2) emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates.

  20. Instrumentation and Automation of Wastewater Collection and Treatment Systems.

    ERIC Educational Resources Information Center

    Roesler, Joseph F.; Cummins, Michael D.

    1978-01-01

    Presents a literature review of the use of instrumentation and automation of wastewater treatment systems, covering publications of 1976-77. This review includes automatic control systems and cost effectiveness of automation of wastewater treatment. A list of 115 references is also presented. (HM)

  1. Low technology systems for wastewater treatment: perspectives.

    PubMed

    Brissaud, F

    2007-01-01

    Low technology systems for the treatment of wastewater are sometimes presented as remnants of the past, nowadays supposedly only meant to serve developing countries and remote rural areas. However, considering their advantages and disadvantages together with enhanced treatment requirements and recent research and technological developments, the future of these systems still appears promising. Successful applications of low technology systems require that more care is taken of their design and operation than often observed. Correlatively, more efforts should be made to decipher the treatment mechanisms and determine the related reaction parameters, so as to provide more deterministic approaches of the natural wastewater treatment systems and better predict their performance.

  2. Treatment of cotton textile wastewater using lime and ferrous sulfate.

    PubMed

    Georgiou, D; Aivazidis, A; Hatiras, J; Gimouhopoulos, K

    2003-05-01

    This technical note summarizes the results of a textile wastewater treatment process aiming at the destruction of the wastewater's color by means of coagulation/flocculation techniques using ferrous sulfate and/or lime. All the experiments were run in a pilot plant that simulated an actual industrial wastewater treatment plant. Treatment with lime alone proved to be very effective in removing the color (70-90%) and part of the COD (50-60%) from the textile wastewater. Moreover, the treatment with ferrous sulfate regulating the pH in the range 9.0+/-0.5 using lime was equally effective. Finally, the treatment with lime in the presence of increasing doses of ferrous sulfate was tested successfully, however; it proved to be very costly mainly due to the massive production of solids that precipitated.

  3. Physicochemical treatments of anionic surfactants wastewater: Effect on aerobic biodegradability.

    PubMed

    Aloui, Fathi; Kchaou, Sonia; Sayadi, Sami

    2009-05-15

    The effect of different physicochemical treatments on the aerobic biodegradability of an industrial wastewater resulting from a cosmetic industry has been investigated. This industrial wastewater contains 11423 and 3148mgL(-1) of chemical oxygen demand (COD) and anionic surfactants, respectively. The concentration of COD and anionic surfactants were followed throughout the diverse physicochemical treatments and biodegradation experiments. Different pretreatments of this industrial wastewater using chemical flocculation process with lime and aluminium sulphate (alum), and also advanced oxidation process (electro-coagulation (Fe and Al) and electro-Fenton) led to important COD and anionic surfactants removals. The best results were obtained using electro-Fenton process, exceeding 98 and 80% of anionic surfactants and COD removals, respectively. The biological treatment by an isolated strain Citrobacter braakii of the surfactant wastewater, as well as the pretreated wastewater by the various physicochemical processes used in this study showed that the best results were obtained with electro-Fenton pretreated wastewater. The characterization of the treated surfactant wastewater by the integrated process (electro-coagulation or electro-Fenton)-biological showed that it respects Tunisian discharge standards.

  4. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  5. Evaluation of constructed wetland treatment performance for winery wastewater.

    PubMed

    Grismer, Mark E; Carr, Melanie A; Shepherd, Heather L

    2003-01-01

    Rapid expansion of wineries in rural California during the past three decades has created contamination problems related to winery wastewater treatment and disposal; however, little information is available about performance of on-site treatment systems. Here, the project objective was to determine full-scale, subsurface-flow constructed wetland retention times and treatment performance through assessment of water quality by daily sampling of total dissolved solids, pH, total suspended solids, chemical oxygen demand (COD), tannins, nitrate, ammonium, total Kjeldahl nitrogen, phosphate, sulfate, and sulfide across operating systems for winery wastewater treatment. Measurements were conducted during both the fall crush season of heavy loading and the spring following bottling and racking operations at the winery. Simple decay model coefficients for these constituents as well as COD and tannin removal efficiencies from winery wastewater in bench-scale reactors are also determined. The bench-scale study used upward-flow, inoculated attached-growth (pea-gravel substrate) reactors fed synthetic winery wastewater. Inlet and outlet tracer studies for determination of actual retention times were essential to analyses of treatment performance from an operational subsurface-flow constructed wetland that had been overloaded due to failure to install a pretreatment system for suspended solids removal. Less intensive sampling conducted at a smaller operational winery wastewater constructed wetland that had used pretreatment suspended solids removal and aeration indicated that the constructed wetlands were capable of complete organic load removal from the winery wastewater.

  6. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  7. Simultaneous wastewater treatment and biogas production using integrated anaerobic baffled reactor granular activated carbon from baker's yeast wastewater.

    PubMed

    Pirsaheb, Meghdad; Mohamadi, Samira; Rahmatabadi, Sama; Hossini, Hooshyar; Motteran, Fabrício

    2017-08-30

    In this study, simultaneous degradation of organic matter and color removal from food processing industries wastewater using an integrated anaerobic baffled reactor granular activated carbon (IABRGAC) was investigated. Theretofore, effective parameters such as hydraulic retention time (HRT) and granular activated carbon (GAC) filling ratio were studied. The bioreactor was operated at 3, 4 and 5 d of HRT and GAC filling ratio of 20%, 35% and 50%. To analyze and optimize the independent operating variables, response surface methodology was applied. Operating condition was optimized for HRT (4 d) and GAC filling ratio (50%). Better COD (94.6%) and BOD (93.7%) removal efficiency occurred with loading COD of 15,000 mg/L, with diminished wastewater color around 54% and turbidity to 54 NTU. In addition, methane production, methane yielding rate (Y m ) and specific methanogenic activity (SMA) test in an integrated system were investigated. The system IABRGAC was able to generate a volumetric rate about 0.31 and 0.44 L/g COD removed d at the experimental condition. The Y m was between 0.31 and 0.44 L/g COD removed .d and SMA was between 0.13 and 0.38 g COD/g volatile suspended solid. Based on results it can be concluded that the IABRGAC to be a successful pretreatment for highstrength wastewater before discharging the final effluent to sewerage and aerobic treating processes.

  8. Decision making tools for selecting sustainable wastewater treatment technologies in Thailand

    NASA Astrophysics Data System (ADS)

    Wongburi, Praewa; Park, Jae K.

    2018-05-01

    Wastewater consists of valuable resources that could be recovered or reused. Still it is under threat because of ineffective wastewater management and systems. In Thailand, less than 25% of wastewater generated may be treated while then rest is inadequately treated and sent back directly into waterbodies or the environment. Furthermore, the technologies that have been applied may be inefficient and unsustainable. Efficiency, sustainability, and simplicity are important concepts when designing an appropriate wastewater treatment system in developing countries. The objectives of this study were to review and evaluate wastewater treatment technologies and propose a method to improve or select an appropriate technology. An expert system in Excel® program was developed to determine the best solution. Sensitivity analysis was applied to compare and assess uncertainty factors. Due to the different conditions of each area, the key factor of interest was varied. Furthermore, Robust Decision Making tool was applied to determine the best way to improve existing wastewater treatment facility and to choose the most appropriate wastewater treatment technology.

  9. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    PubMed

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively).

  10. Electrochemical and/or microbiological treatment of pyrolysis wastewater.

    PubMed

    Silva, José R O; Santos, Dara S; Santos, Ubiratan R; Eguiluz, Katlin I B; Salazar-Banda, Giancarlo R; Schneider, Jaderson K; Krause, Laiza C; López, Jorge A; Hernández-Macedo, Maria L

    2017-10-01

    Electrochemical oxidation may be used as treatment to decompose partially or completely organic pollutants (wastewater) from industrial processes such as pyrolysis. Pyrolysis is a thermochemical process used to obtain bio-oil from biomasses, generating a liquid waste rich in organic compounds including aldehydes and phenols, which can be submitted to biological and electrochemical treatments in order to minimize its environmental impact. Thus, electrochemical systems employing dimensionally stable anodes (DSAs) have been proposed to enable biodegradation processes in subsurface environments. In order to investigate the organic compound degradation from residual coconut pyrolysis wastewater, ternary DSAs containing ruthenium, iridium and cerium synthetized by the 'ionic liquid method' at different calcination temperatures (500, 550, 600 and 700 °C) for the pretreatment of these compounds, were developed in order to allow posterior degradation by Pseudomonas sp., Bacillus sp. or Acinetobacter sp. bacteria. The electrode synthesized applying 500 °C displayed the highest voltammetric charge and was used in the pretreatment of pyrolysis effluent prior to microbial treatment. Regarding biological treatment, the Pseudomonas sp. exhibited high furfural degradation in wastewater samples electrochemically pretreated at 2.0 V. On the other hand, the use of Acinetobacter efficiently degraded phenolic compounds such as phenol, 4-methylphenol, 2,5-methylphenol, 4-ethylphenol and 3,5-methylphenol in both wastewater samples, with and without electrochemical pretreatment. Overall, the results indicate that the combination of both processes used in this study is relevant for the treatment of pyrolysis wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities.

    PubMed

    Jamaly, Sanaa; Giwa, Adewale; Hasan, Shadi Wajih

    2015-11-01

    Oily wastewater poses significant threats to the soil, water, air and human beings because of the hazardous nature of its oil contents. The objective of this review paper is to highlight the current and recently developed methods for oily wastewater treatment through which contaminants such as oil, fats, grease, and inorganics can be removed for safe applications. These include electrochemical treatment, membrane filtration, biological treatment, hybrid technologies, use of biosurfactants, treatment via vacuum ultraviolet radiation, and destabilization of emulsions through the use of zeolites and other natural minerals. This review encompasses innovative and novel approaches to oily wastewater treatment and provides scientific background for future work that will be aimed at reducing the adverse impact of the discharge of oily wastewater into the environment. The current challenges affecting the optimal performance of oily wastewater treatment methods and opportunities for future research development in this field are also discussed. Copyright © 2015. Published by Elsevier B.V.

  12. Treatment of Wastewater From Car Washes Using Natural Coagulation and Filtration System

    NASA Astrophysics Data System (ADS)

    Al-Gheethi, A. A.; Mohamed, R. M. S. R.; Rahman, M. A. A.; Johari, M. R.; Kassim, A. H. M.

    2016-07-01

    Wastewater generated from carwash is one of the main wastewater resources, which contribute effectively in the increasing of environmental contamination due to the chemical characteristics of the car wastes. The present work aimed to develop an integrated treatment system for carwash wastewater based on coagulation and flocculation using Moringa oleifera and Ferrous Sulphate (FeSO4.7H2O) as well as natural filtration system. The carwash wastewater samples were collected from carwash station located at Parit Raja, Johor, Malaysia. The treatment system of car wash wastewater was designed in the lab scale in four stages included, aeration, coagulation and flocculation, sedimentation and filtration. The coagulation and flocculation unit was carried out using different dosage (35, 70, 105 and 140 mg L-1) of M. oleifera and FeSO4.7H2O, respectively. The efficiency of the integrated treatment system to treat carwash wastewater and to meet Environmental Quality Act (EQA 1974) was evaluated based on the analysis of pH, dissolved oxygen (DO), chemical oxygen demand (COD) and turbidity (NTU). The integrated treatment system was efficient for treatment of raw carwash wastewater. The treated carwash wastewaters meet EQA 1974 regulation 2009 (Standards A) in the term of pH and DO while, turbidity and COD reduced in the wastewater to meet Standards B. The integrated treatment system designed here with natural coagulant (M. oleifera) and filtration unit were effective for primary treatment of carwash wastewater before the final disposal or to be reused again for carwash process.

  13. Analysis of Possibility of Yeast Production Increase at Maintained Carbon Dioxide Emission Level

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.

    2016-12-01

    Main parameters polluting of technological wastewater (dregs from decantation and thicken of the wort) from yeast industry are: nitrogen, potassium and COD. Such wastewater are utilized mostly on agricultural fields. Unfortunately, these fields can only accept a limited amount of wastes. The basic parameter limiting there the amount of wastewater is nitrogen. When capacity of the production is large sewages are often pretreated at an evaporator station. However, due to the fairly high running costs of the evaporator station currently such a solution is applied only to a small amount of wastes (just to meet legal requirements). Replacement of the earth gas with a biomass being supplied to the evaporator station from the agricultural fields will both allow to maintain the carbon dioxide emission level and enable the production growth. Moreover, the biomass growing on the agricultural fields being fertilized with the wastewater coming from the yeast production allows consequently to utilize the greater volume of wastewater. Theoretically, the possible increase in the yeasts production, with maintaining the carbon dioxide emission level, can reach even 70%. Therefore, the solution presented in this paper combines both intensification of the yeasts production and maintaining the carbon dioxide emission level.

  14. Sterols indicate water quality and wastewater treatment efficiency.

    PubMed

    Reichwaldt, Elke S; Ho, Wei Y; Zhou, Wenxu; Ghadouani, Anas

    2017-01-01

    As the world's population continues to grow, water pollution is presenting one of the biggest challenges worldwide. More wastewater is being generated and the demand for clean water is increasing. To ensure the safety and health of humans and the environment, highly efficient wastewater treatment systems, and a reliable assessment of water quality and pollutants are required. The advance of holistic approaches to water quality management and the increasing use of ecological water treatment technologies, such as constructed wetlands and waste stabilisation ponds (WSPs), challenge the appropriateness of commonly used water quality indicators. Instead, additional indicators, which are direct measures of the processes involved in the stabilisation of human waste, have to be established to provide an in-depth understanding of system performance. In this study we identified the sterol composition of wastewater treated in WSPs and assessed the suitability of human sterol levels as a bioindicator of treatment efficiency of wastewater in WSPs. As treatment progressed in WSPs, the relative abundance of human faecal sterols, such as coprostanol, epicoprostanol, 24-ethylcoprostanol, and sitostanol decreased significantly and the sterol composition in wastewater changed significantly. Furthermore, sterol levels were found to be correlated with commonly used wastewater quality indicators, such as BOD, TSS and E. coli. Three of the seven sterol ratios that have previously been used to track sewage pollution in the environment, detected a faecal signal in the effluent of WSPs, however, the others were influenced by high prevalence of sterols originating from algal and fungal activities. This finding poses a concern for environmental assessment studies, because environmental pollution from waste stabilisation ponds can go unnoticed. In conclusion, faecal sterols and their ratios can be used as reliable indicators of treatment efficiency and water quality during wastewater

  15. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process.

    PubMed

    Thomas, Paul M; Foster, Gregory D

    2005-01-01

    Pharmaceuticals are a class of emerging contaminants whose fate in the wastewater treatment process has received increasing attention in past years. Acidic pharmaceuticals (ibuprofen, naproxen, mefenamic acid, ketoprofen, and diclofenac), caffeine, and the antibacterial triclosan were quantified at four different steps of wastewater treatment from three urban wastewater treatment plants. The compounds were extracted from wastewater samples on Waters Oasis hydrophilic-lipophilic balance solid-phase extraction columns, silylated, and analyzed by gas chromatography-mass spectrometry. For the chemicals studied, it was found that the majority of the influent load was removed during secondary treatment (51-99%), yielding expected surface water concentrations of 13 to 56 ng/L.

  16. Constructed wetlands for saline wastewater treatment: A review

    USDA-ARS?s Scientific Manuscript database

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  17. Electrochemical wastewater treatment directly powered by photovoltaic panels: electrooxidation of a dye-containing wastewater.

    PubMed

    Valero, David; Ortiz, Juan M; Expósito, Eduardo; Montiel, Vicente; Aldaz, Antonio

    2010-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, but to enhance their green characteristics it seems interesting to use a green electric energy such as that provided by photovoltaic (PV) cells, which are actually under active research to decrease the economic cost of solar kW. The aim of this work is to demonstrate the feasibility and utility of using an electrooxidation system directly powered by a photovoltaic array for the treatment of a wastewater. The experimental system used was an industrial electrochemical filter press reactor and a 40-module PV array. The influence on the degradation of a dye-containing solution (Remazol RB 133) of different experimental parameters such as the PV array and electrochemical reactor configurations has been studied. It has been demonstrated that the electrical configuration of the PV array has a strong influence on the optimal use of the electric energy generated. The optimum PV array configuration changes with the intensity of the solar irradiation, the conductivity of the solution, and the concentration of pollutant in the wastewater. A useful and effective methodology to adjust the EO-PV system operation conditions to the wastewater treatment is proposed.

  18. Carbon footprint of four different wastewater treatment scenarios

    NASA Astrophysics Data System (ADS)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  19. Photocatalytic Treatment of a Synthetic Wastewater

    NASA Astrophysics Data System (ADS)

    Yerkinova, Azat; Balbayeva, Gaukhar; Inglezakis, Vassilis J.; Poulopoulos, Stavros G.

    2018-01-01

    This work aimed at investigating the photocatalytic treatment of a synthetic wastewater using UV light (254 nm, 6 W), TiO2 catalyst and H2O2 in a batch recycle annular photoreactor. The total volume of the solution was 250 mL while the irradiated volume in the annular photoreactor with 55.8 mL. Each experiment lasted 120 min and samples were sent for Total Carbon and HPLC analysis. The stock wastewater had initial total carbon 1118 mg L-1. The effect of the presence of phenol in the wastewater on total carbon (TC) removal was also studied. It was shown that the photocatalytic treatment was effective only when initial TC was decreased to 32 mg L-1, whereas the optimum TiO2 concentration was 0.5 g L-1, leading to a TC removal up to 56%. For the same initial carbon load, the optimum H2O2 concentration was found to be 67 mg L-1 resulting in 55% TC removal. Combining, however, TiO2 and H2O2 did not lead to better performance, as 51% TC removal was observed. In contrast, when initial carbon in the wastewater was partially substituted by phenol, the combination of catalyst and hydrogen peroxide was beneficial. Specifically, when 10 ppm of phenol were added keeping the same initial TC concentration, UV/TiO2 treatment resulted in 46% TC removal and 98% phenol conversion, whereas using additionally H2O2 led to 100% phenol conversion after 45 minutes and 81% TC removal.

  20. Design Seminar for Land Treatment of Municipal Wastewater Effluents.

    ERIC Educational Resources Information Center

    Demirjian, Y. A.

    This document reports the development and operation of a country-wide wastewater treatment program. The program was designed to treat liquid wastewater by biological treatment in aerated lagoons, store it, and then spray irrigate on crop farmland during the growing season. The text discusses the physical design of the system, agricultural aspects,…

  1. Occurrence and fate of organic contaminants during onsite wastewater treatment

    USGS Publications Warehouse

    Conn, K.E.; Barber, L.B.; Brown, G.K.; Siegrist, R.L.

    2006-01-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments. ?? 2006 American Chemical Society.

  2. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater.

    PubMed

    Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak

    2017-03-01

    In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.

  3. Advanced oxidation-based treatment of furniture industry wastewater.

    PubMed

    Tichonovas, Martynas; Krugly, Edvinas; Grybauskas, Arturas; Jankūnaitė, Dalia; Račys, Viktoras; Martuzevičius, Dainius

    2017-07-16

    The paper presents a study on the treatment of the furniture industry wastewater in a bench scale advanced oxidation reactor. The researched technology utilized a simultaneous application of ozone, ultraviolet radiation and surface-immobilized TiO 2 nanoparticle catalyst. Various combinations of processes were tested, including photolysis, photocatalysis, ozonation, catalytic ozonation, photolytic ozonation and photocatalytic ozonation were tested against the efficiency of degradation. The efficiency of the processes was primarily characterized by the total organic carbon (TOC) analysis, indicating the remaining organic material in the wastewater after the treatment, while the toxicity changes in wastewater were researched by Daphnia magna toxicity tests. Photocatalytic ozonation was confirmed as the most effective combination of processes (99.3% of TOC reduction during 180 min of treatment), also being the most energy efficient (4.49-7.83 MJ/g). Photocatalytic ozonation and photolytic ozonation remained efficient across a wide range of pH (3-9), but the pH was an important factor in photocatalysis. The toxicity of wastewater depended on the duration of the treatment: half treated water was highly toxic, while fully treated water did not possess any toxicity. Our results indicate that photocatalytic ozonation has a high potential for the upscaling and application in industrial settings.

  4. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee

    2010-08-20

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions ofmore » 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.« less

  5. Health Effects Associated with Wastewater Treatment and Disposal.

    ERIC Educational Resources Information Center

    Kowal, N. E.; Pahren, H. R.

    1978-01-01

    Presents a literature review of the potential health effects associated with: (1) wastewater treatment plants; (2) land application of municipal wastewater; and (3) use of renovated water. This review covers the publications of 1976-77. A list of 96 references is also presented. (HM)

  6. Greenhouse Gas Emissions From Urban Wastewater Treatment Plants

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Bellucci, F.; Gonzalez-Meler, M. A.; Heraty, L.; Kozak, J. A.

    2010-12-01

    Wastewater treatment plants are considered the seventh highest contributor of greenhouse gases (GHG) to the atmosphere. For instance, USEPA recently reported (http://epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-2010_Chapter8-Waste.pdf) that U.S. wastewater treatment released 24.3 Tg CO2e (i.e. CO2 GHG equivalents) via CH4 and 4.9 Tg CO2e via N20 during 2008. Emissions of GHG from wastewater treatment sources are often modeled using algorithms that rely on surrogates such as five-day Biological or Chemical Oxygen Demand [B(C)OD5] for CH4 and protein content of diets for N2O. Unfortunately, empirical validation of these models using field data is lacking. To fill this gap, we measured annual CH4 and N20 emissions from three wastewater treatment plants in the Chicago region that differ in size and design. Plants ranged from serving 0.17 to 2.3 million people, treating from 27 to 751 millions of gallons of wastewater per day, and having BOD5 from 101 to 220 mg/L. Primary settling tanks, exhausts, and aeration basins were the main sources of CH4 emissions, whereas N2O was mainly emitted by aeration basins at the three plants investigated. During 2009, per capita emissions for CH4 and N2O (for every thousand people) ranged from 61 to 1130 kg/yr and from 12 to 226 Kg/yr, respectively. These wide variations were in part due to chemistry of influent waters and plant design. We found that IPCC and USEPA algorithms were good predictors of CH4 emissions but they largely underestimated N20 emissions. Despite the differences in plant design and per capita emissions, we found that all three plants have a similar CH4:N2O flux ratio. If this flux ratio proves to be a general characteristic of wastewater treatment plants, it could provide a more accurate alternative to current models for estimation of N2O emissions.

  7. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR.

    PubMed

    An, Xin-Li; Su, Jian-Qiang; Li, Bing; Ouyang, Wei-Ying; Zhao, Yi; Chen, Qing-Lin; Cui, Li; Chen, Hong; Gillings, Michael R; Zhang, Tong; Zhu, Yong-Guan

    2018-05-08

    Wastewater treatment plants (WWTPs) contain diverse antibiotic resistance genes (ARGs), and thus are considered as a major pathway for the dissemination of these genes into the environments. However, comprehensive evaluations of ARGs dynamic during wastewater treatment process lack extensive investigations on a broad spectrum of ARGs. Here, we investigated the dynamics of ARGs and bacterial community structures in 114 samples from eleven Chinese WWTPs using high-throughput quantitative PCR and 16S rRNA-based Illumina sequencing analysis. Significant shift of ARGs profiles was observed and wastewater treatment process could significantly reduce the abundance and diversity of ARGs, with the removal of ARGs concentration by 1-2 orders of magnitude. Whereas, a considerable number of ARGs were detected and enriched in effluents compared with influents. In particular, seven ARGs mainly conferring resistance to beta-lactams and aminoglycosides and three mobile genetic elements persisted in all WWTPs samples after wastewater treatment. ARGs profiles varied with wastewater treatment processes, seasons and regions. This study tracked the footprint of ARGs during wastewater treatment process, which would support the assessment on the spread of ARGs from WWTPs and provide data for identifying management options to improve ARG mitigation in WWTPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The effect of public or private structures in wastewater treatment on the conditions for the design, construction and operation of wastewater treatment plants.

    PubMed

    Grünebaum, T; Bode, H

    2004-01-01

    Organised in public or private structures, wastewater services have to cope with different framework conditions as regards planning, construction, financing and operation. This leads quite often to different modes of management. In recent years there has been a push for privatisation on the water sector in general, the reasons for which are manifold, ranging from access to external know-how and capital to synergistic effects through integration of wastewater treatment into other tasks of similar or equal nature. Discussed are various models of public/private partnership (PPP) in wastewater treatment, encompassing for example the delegation of partial tasks or even the proportional or entire transfer of ownership of treatment facilities to private third parties. Decisive for high performance and efficiency is not the legal or organisational form, but rather the clear and unmistakable definition of tasks which are to be assigned to the different parties, customers and all other partners involved, as well as of clear-cut interfaces. On account of the (of course legitimate) profit-oriented perspective of the private sector, some decision-making processes in relation to project implementation (design and construction) and to operational aspects will differ from those typically found on the public sector. This does apply to decisions on investments, financing and on technical solutions too. On the other hand, core competencies in wastewater treatment should not be outsourced, but remain the public bodies' responsibility, even with 'far-reaching' privatisation models. Such core competencies are all efforts geared to sustainable wastewater treatment as life-supporting provision for the future or as contribution to the protection of health and the environment and to the development of infrastructure. Major areas of wastewater treatment and other related tasks are reviewed. The paper concludes with a list of questions on the issue of outsourcing.

  9. Nitrous oxide emissions from wastewater treatment processes

    PubMed Central

    Law, Yingyu; Ye, Liu; Pan, Yuting; Yuan, Zhiguo

    2012-01-01

    Nitrous oxide (N2O) emissions from wastewater treatment plants vary substantially between plants, ranging from negligible to substantial (a few per cent of the total nitrogen load), probably because of different designs and operational conditions. In general, plants that achieve high levels of nitrogen removal emit less N2O, indicating that no compromise is required between high water quality and lower N2O emissions. N2O emissions primarily occur in aerated zones/compartments/periods owing to active stripping, and ammonia-oxidizing bacteria, rather than heterotrophic denitrifiers, are the main contributors. However, the detailed mechanisms remain to be fully elucidated, despite strong evidence suggesting that both nitrifier denitrification and the chemical breakdown of intermediates of hydroxylamine oxidation are probably involved. With increased understanding of the fundamental reactions responsible for N2O production in wastewater treatment systems and the conditions that stimulate their occurrence, reduction of N2O emissions from wastewater treatment systems through improved plant design and operation will be achieved in the near future. PMID:22451112

  10. Clean Water State Revolving Fund (CWSRF): Decentralized Wastewater Treatment

    EPA Pesticide Factsheets

    Decentralized wastewater treatment is an onsite or clustered system used to collect, treat, and disperse or reclaim wastewater from a small community or service area (e.g., septic systems, cluster systems, lagoons).

  11. Current technologies for biological treatment of textile wastewater--a review.

    PubMed

    Sarayu, K; Sandhya, S

    2012-06-01

    The release of colored wastewater represents a serious environmental problem and public health concern. Color removal from textile wastewater has become a big challenge over the last decades, and up to now, there is no single and economically attractive treatment method that can effectively decolorize the wastewater. Effluents from textile manufacturing, dyeing, and finishing processes contain high concentrations of biologically difficult-to-degrade or even inert auxiliaries, chemicals like acids, waxes, fats, salts, binders, thickeners, urea, surfactants, reducing agents, etc. The various chemicals such as biocides and stain repellents used for brightening, sequestering, anticreasing, sizing, softening, and wetting of the yarn or fabric are also present in wastewater. Therefore, the textile wastewater needs environmental friendly, effective treatment process. This paper provides a critical review on the current technology available for decolorization and degradation of textile wastewater and also suggests effective and economically attractive alternatives.

  12. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater treatment...

  13. 40 CFR 721.10636 - Slimes and sludges, automotive coating, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., wastewater treatment, solid waste. 721.10636 Section 721.10636 Protection of Environment ENVIRONMENTAL..., wastewater treatment, solid waste. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as slimes and sludges, automotive coating, wastewater treatment...

  14. Wastewater Treatment

    MedlinePlus

    ... cleaned, water can carry disease. Since we live, work and play so close to water, harmful bacteria have to be removed to make water safe. Effects of wastewater pollutants If wastewater is not properly treated, then the environment and human health can be negatively impacted. These ...

  15. A review of virus removal in wastewater treatment pond systems.

    PubMed

    Verbyla, Matthew E; Mihelcic, James R

    2015-03-15

    Wastewater treatment ponds (lagoons) are one of the most common types of technologies used for wastewater management worldwide, especially in small cities and towns. They are particularly well-suited for systems where the effluent is reused for irrigation. However, the efficiency of virus removal in wastewater treatment pond systems is not very well understood. The main objective of this paper is to critically review the major findings related to virus removal in wastewater treatment pond systems and to statistically analyze results reported in the literature from field studies on virus removal in these systems. A comprehensive analysis of virus removal reported in the literature from 71 different wastewater treatment pond systems reveals only a weak to moderate correlation of virus removal with theoretical hydraulic retention time. On average, one log10 reduction of viruses was achieved for every 14.5-20.9 days of retention, but the 95th percentile value of the data analyzed was 54 days. The mechanisms responsible for virus removal in wastewater treatment ponds were also reviewed. One recent finding is that sedimentation may not be a significant virus removal mechanism in some wastewater ponds. Recent research has also revealed that direct and indirect sunlight-mediated mechanisms are not only dependent on pond water chemistry and optics, but also on the characteristics of the virus and its genome. MS2 coliphage is considered to be the best surrogate for studying sunlight disinfection in ponds. The interaction of viruses with particles, with other microorganisms, and with macroinvertebrates in wastewater treatment ponds has not been extensively studied. It is also unclear whether virus internalization by higher trophic-level organisms has a protective or a detrimental effect on virus viability and transport in pond systems. Similarly, the impact of virus-particle associations on sunlight disinfection in ponds is not well understood. Future research should focus on

  16. Antibiotic resistance in wastewater treatment plants: Tackling the black box.

    PubMed

    Manaia, Célia M; Rocha, Jaqueline; Scaccia, Nazareno; Marano, Roberto; Radu, Elena; Biancullo, Francesco; Cerqueira, Francisco; Fortunato, Gianuário; Iakovides, Iakovos C; Zammit, Ian; Kampouris, Ioannis; Vaz-Moreira, Ivone; Nunes, Olga C

    2018-06-01

    Wastewater is among the most important reservoirs of antibiotic resistance in urban environments. The abundance of carbon sources and other nutrients, a variety of possible electron acceptors such as oxygen or nitrate, the presence of particles onto which bacteria can adsorb, or a fairly stable pH and temperature are examples of conditions favouring the remarkable diversity of microorganisms in this peculiar habitat. The wastewater microbiome brings together bacteria of environmental, human and animal origins, many harbouring antibiotic resistance genes (ARGs). Although numerous factors contribute, mostly in a complex interplay, for shaping this microbiome, the effect of specific potential selective pressures such as antimicrobial residues or metals, is supposedly determinant to dictate the fate of antibiotic resistant bacteria (ARB) and ARGs during wastewater treatment. This paper aims to enrich the discussion on the ecology of ARB&ARGs in urban wastewater treatment plants (UWTPs), intending to serve as a guide for wastewater engineers or other professionals, who may be interested in studying or optimizing the wastewater treatment for the removal of ARB&ARGs. Fitting this aim, the paper overviews and discusses: i) aspects of the complexity of the wastewater system and/or treatment that may affect the fate of ARB&ARGs; ii) methods that can be used to explore the resistome, meaning the whole ARB&ARGs, in wastewater habitats; and iii) some frequently asked questions for which are proposed addressing modes. The paper aims at contributing to explore how ARB&ARGs behave in UWTPs having in mind that each plant is a unique system that will probably need a specific procedure to maximize ARB&ARGs removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Digital image processing and analysis for activated sludge wastewater treatment.

    PubMed

    Khan, Muhammad Burhan; Lee, Xue Yong; Nisar, Humaira; Ng, Choon Aun; Yeap, Kim Ho; Malik, Aamir Saeed

    2015-01-01

    Activated sludge system is generally used in wastewater treatment plants for processing domestic influent. Conventionally the activated sludge wastewater treatment is monitored by measuring physico-chemical parameters like total suspended solids (TSSol), sludge volume index (SVI) and chemical oxygen demand (COD) etc. For the measurement, tests are conducted in the laboratory, which take many hours to give the final measurement. Digital image processing and analysis offers a better alternative not only to monitor and characterize the current state of activated sludge but also to predict the future state. The characterization by image processing and analysis is done by correlating the time evolution of parameters extracted by image analysis of floc and filaments with the physico-chemical parameters. This chapter briefly reviews the activated sludge wastewater treatment; and, procedures of image acquisition, preprocessing, segmentation and analysis in the specific context of activated sludge wastewater treatment. In the latter part additional procedures like z-stacking, image stitching are introduced for wastewater image preprocessing, which are not previously used in the context of activated sludge. Different preprocessing and segmentation techniques are proposed, along with the survey of imaging procedures reported in the literature. Finally the image analysis based morphological parameters and correlation of the parameters with regard to monitoring and prediction of activated sludge are discussed. Hence it is observed that image analysis can play a very useful role in the monitoring of activated sludge wastewater treatment plants.

  18. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghajanzadeh, Arian; Wray, Craig; McKane, Aimee

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered processmore » equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.« less

  19. Cost of phosphate removal in municipal wastewater treatment plants

    NASA Technical Reports Server (NTRS)

    Schuessler, H.

    1983-01-01

    Construction and operating costs of advanced wastewater treatment for phosphate removal at municipal wastewater treatment plants have been investigated on orders from the Federal Environmental Bureau in Berlin. Particular attention has been paid to applicable kinds of precipitants for pre-, simultaneous and post-precipitation as well as to different phosphate influent and effluent concentrations. The article offers detailed comments on determination of technical data, investments, capital costs, operating costs and annual costs as well as potential cost reductions resulting from precipitation. Selected results of the cost investigation are shown in graphical form as specific investments, operating and annual costs depending on wastewater flow.

  20. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    ERIC Educational Resources Information Center

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  1. SITE TECHNOLOGY CAPSULE: ZENOGEM™ WASTEWATER TREATMENT PROCESS

    EPA Science Inventory

    Zenon Environmental System's ZenoGem™ Wastewater Treatment Process treats aqueous media contaminated with volatile/semi-volatile organic compounds. This technology combines aerobic biological treatment to remove biodegradable organic compounds with ultrafiltration to separate res...

  2. Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.

    PubMed

    Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W

    2013-06-01

    Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Biological treatment and toxicity of low concentrations of oily wastewater (bilgewater).

    PubMed

    Stamper, David M; Montgomery, Michael T

    2008-08-01

    The biodegradability and toxicity of low concentrations of oily wastewater (bilgewater) were tested under simulated sanitary wastewater treatment conditions. This was done to establish the feasibility of a combined shipboard oily and nonoily wastewater treatment system. The biodegradability of oily wastewater was determined by proxy; 14C-labeled dodecane, toluene, and phenanthrene (representing alkane, aromatic, and polyaromatic compounds, respectively) were mineralized in petroleum fuels and lubricants. We found that low concentrations of oily wastewater components were mineralized, even in the presence of more abundant substrates (such as synthetic graywater, containing vegetable oil, detergent, gelatin, and starch). The toxic effects of diesel fuel and several other components of oily wastewater (such as surfactants and a synthetic lubricant) on a naïve wastewater assemblage was also tested. In concentrations much higher than would be expected under normal shipboard conditions, we found no evidence of toxic effects of the bilgewater compounds tested. Thus, a combined shipboard bilgewater and sanitary wastewater system might be feasible.

  4. Integrated risk framework for onsite wastewater treatment systems.

    PubMed

    Carroll, Steven; Goonetilleke, Ashantha; Thomas, Evan; Hargreaves, Megan; Frost, Ray; Dawes, Les

    2006-08-01

    Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.

  5. Integrated Risk Framework for Onsite Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Carroll, Steven; Goonetilleke, Ashantha; Thomas, Evan; Hargreaves, Megan; Frost, Ray; Dawes, Les

    2006-08-01

    Onsite wastewater treatment systems (OWTS) are becoming increasingly important for the treatment and dispersal of effluent in new urbanised developments that are not serviced by centralised wastewater collection and treatment systems. However, the current standards and guidelines adopted by many local authorities for assessing suitable site and soil conditions for OWTS are increasingly coming under scrutiny due to the public health and environmental impacts caused by poorly performing systems, in particular septic tank-soil adsorption systems. In order to achieve sustainable onsite wastewater treatment with minimal impacts on the environment and public health, more appropriate means of assessment are required. This paper highlights an integrated risk based approach for assessing the inherent hazards associated with OWTS in order to manage and mitigate the environmental and public health risks inherent with onsite wastewater treatment. In developing a sound and cohesive integrated risk framework for OWTS, several key issues must be recognised. These include the inclusion of relevant stakeholders throughout framework development, the integration of scientific knowledge, data and analysis with risk assessment and management ideals, and identification of the appropriate performance goals for successful management and mitigation of associated risks. These issues were addressed in the development of the risk framework to provide a generic approach to assessing risk from OWTS. The utilisation of the developed risk framework for achieving more appropriate assessment and management techniques for OWTS is presented in a case study for the Gold Coast region, Queensland State, Australia.

  6. Addressing social aspects associated with wastewater treatment facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders andmore » barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.« less

  7. Decentralized approaches to wastewater treatment and management: applicability in developing countries.

    PubMed

    Massoud, May A; Tarhini, Akram; Nasr, Joumana A

    2009-01-01

    Providing reliable and affordable wastewater treatment in rural areas is a challenge in many parts of the world, particularly in developing countries. The problems and limitations of the centralized approaches for wastewater treatment are progressively surfacing. Centralized wastewater collection and treatment systems are costly to build and operate, especially in areas with low population densities and dispersed households. Developing countries lack both the funding to construct centralized facilities and the technical expertise to manage and operate them. Alternatively, the decentralized approach for wastewater treatment which employs a combination of onsite and/or cluster systems is gaining more attention. Such an approach allows for flexibility in management, and simple as well as complex technologies are available. The decentralized system is not only a long-term solution for small communities but is more reliable and cost effective. This paper presents a review of the various decentralized approaches to wastewater treatment and management. A discussion as to their applicability in developing countries, primarily in rural areas, and challenges faced is emphasized all through the paper. While there are many impediments and challenges towards wastewater management in developing countries, these can be overcome by suitable planning and policy implementation. Understanding the receiving environment is crucial for technology selection and should be accomplished by conducting a comprehensive site evaluation process. Centralized management of the decentralized wastewater treatment systems is essential to ensure they are inspected and maintained regularly. Management strategies should be site specific accounting for social, cultural, environmental and economic conditions in the target area.

  8. NPDES Permit for Riverview Estates Wastewater Treatment Facility in North Dakota

    EPA Pesticide Factsheets

    Under National Pollutant Discharge Elimination System permit number ND-0031143, the Riverview Estates Wastewater Treatment Facility is authorized to discharge from its wastewater treatment facility in designated locations as described in the permit.

  9. Treatment of textile wastewater with membrane bioreactor: A critical review.

    PubMed

    Jegatheesan, Veeriah; Pramanik, Biplob Kumar; Chen, Jingyu; Navaratna, Dimuth; Chang, Chia-Yuan; Shu, Li

    2016-03-01

    Membrane bioreactor (MBR) technology has been used widely for various industrial wastewater treatments due to its distinct advantages over conventional bioreactors. Treatment of textile wastewater using MBR has been investigated as a simple, reliable and cost-effective process with a significant removal of contaminants. However, a major drawback in the operation of MBR is membrane fouling, which leads to the decline in permeate flux and therefore requires membrane cleaning. This eventually decreases the lifespan of the membrane. In this paper, the application of aerobic and anaerobic MBR for textile wastewater treatment as well as fouling and control of fouling in MBR processes have been reviewed. It has been found that long sludge retention time increases the degradation of pollutants by allowing slow growing microorganisms to establish but also contributes to membrane fouling. Further research aspects of MBR for textile wastewater treatment are also considered for sustainable operations of the process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Microalgae-based advanced municipal wastewater treatment for reuse in water bodies.

    PubMed

    Wang, Jing-Han; Zhang, Tian-Yuan; Dao, Guo-Hua; Xu, Xue-Qiao; Wang, Xiao-Xiong; Hu, Hong -Ying

    2017-04-01

    Reuse of secondary municipal effluent from wastewater treatment plants in water bodies could effectively alleviate freshwater resource shortage. However, excessive nutrients must be efficiently removed to prevent eutrophication. Compared with other means of advanced wastewater treatment, microalgae-based processes display overwhelming advantages including efficient and simultaneous N and P removal, no requirement of additional chemicals, O 2 generation, CO 2 mitigation, and potential value-added products from harvested biomass. One particular challenge of microalgae-based advanced municipal wastewater treatment compared to treatment of other types of wastewater is that concentrations of nutrients and N:P ratios in secondary municipal effluent are much lower and imbalanced. Therefore, there should be comprehensive considerations on nutrient removal from this specific type of effluent. Removal of nutrients and organic substances, and other environmental benefits of microalgae-based advanced municipal wastewater treatment systems were summarized. Among the existing studies on microalgal advanced nutrient removal, much information on major parameters is absent, rendering performances between studies not really comparable. Mechanisms of microalgae-based nitrogen and phosphorus removal were respectively analyzed to better understand advanced nutrient removal from municipal secondary effluent. Factors influencing microalgae-based nutrient removal were divided into intrinsic, environmental, and operational categories; several factors were identified in each category, and their influences on microalgal nutrient removal were discussed. A multiplicative kinetic model was integrated to estimate microalgal growth-related nutrient removal based majorly on environmental and intrinsic factors. Limitations and prospects of future full-scale microalgae-based advanced municipal wastewater treatment were also suggested. The manuscript could offer much valuable information for future

  11. Real Science, Real Scientists: Student's Experiments with Natural and Artificial Wastewater Treatment in the Classroom

    ERIC Educational Resources Information Center

    Erdogan, Ibrahim

    2006-01-01

    In this extended biology, ecology, and earth science activity, students construct hands-on models of natural wastewater treatment and wastewater treatment facilities to achieve an understanding of wastewater treatment process in nature and wastewater treatment facilities. During this simulation activity, students have opportunities to learn…

  12. Efficacy of two wastewater treatment plants in removing genotoxins.

    PubMed

    Jolibois, B; Guerbet, M

    2005-04-01

    The genotoxic potential of influents and effluents of two different wastewater treatment plants (WTP-A and WTP-B) located in the Rouen, France, area was evaluated by the SOS chromotest without metabolic activation (on Escherichia coli PQ37) and the Ames fluctuation test (on Salmonella typhimurium strains TA 98, 100, TA 102) with and without metabolic activation. The wastewater samples were taken during two 1-week periods in January and April 2003. The simultaneous use of the SOS chromotest and Ames fluctuation test allowed us to evaluate the efficacy of the wastewater treatment plants at removing genotoxins. Genotoxins were detected with the Ames test but not with the SOS chromotest. Out of a total of 24 influents tested (14 for WTP-A and 10 for WTP-B), almost all were genotoxic in at least one Ames test strain (71% for WTP-A and 100% for WTP-B). In contrast, all of the tested effluents were nongenotoxic. This work showed that the treatment process used in the 2 wastewater treatment plants studied (activated sludge) was able to remove the genotoxins detected in their influents. Nevertheless, studies could be undertaken to determine which step of the treatment process removes genotoxins and whether WTP sludge use could be a source of genotoxic contamination for humans and the environment.

  13. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  14. A preliminary study on the occurrence and dissipation of estrogen in livestock wastewater.

    PubMed

    Tang, Xianjin; Naveedullah; Hashmi, Muhammad Zaffar; Zhang, Hu; Qian, Mingrong; Yu, Chunna; Shen, Chaofeng; Qin, Zhihui; Huang, Ronglang; Qiao, Jiani; Chen, Yingxu

    2013-04-01

    Livestock wastewater has high estrogen activity because animal excreta contain estrogen. In the past, when biological technologies were applied to treat livestock wastewater, the removal efficiency of estrogen pollutants was always ignored. Therefore, the efficiency of estrogen removal by anaerobic/aerobic (A/O) treatment and by up flow anaerobic sludge blanket and step-fed sequencing batch reactor (UASB-SFSBR) treatment was investigated in the present study. The results showed that the A/O treatment had no significant estrogenic removal ability, whereas the removal rates of estrogen after UASB-SFSBR treatment reached approximately 78 %, as measured by liquid chromatography and tandem mass spectrometry. The estrogen concentration decreased from 31.5 ng/L to an undetectable level according to the yeast estrogen screen analysis. We found differences between the estrogen removal rates measured by the chemical assay and those measured using the bioassay. More attention must be paid to the removal of estrogen pollutants in livestock wastewater to reduce the environmental risk.

  15. Hydroponic root mats for wastewater treatment-a review.

    PubMed

    Chen, Zhongbing; Cuervo, Diego Paredes; Müller, Jochen A; Wiessner, Arndt; Köser, Heinz; Vymazal, Jan; Kästner, Matthias; Kuschk, Peter

    2016-08-01

    Hydroponic root mats (HRMs) are ecotechnological wastewater treatment systems where aquatic vegetation forms buoyant filters by their dense interwoven roots and rhizomes, sometimes supported by rafts or other floating materials. A preferential hydraulic flow is created in the water zone between the plant root mat and the bottom of the treatment system. When the mat touches the bottom of the water body, such systems can also function as HRM filter; i.e. the hydraulic flow passes directly through the root zone. HRMs have been used for the treatment of various types of polluted water, including domestic wastewater; agricultural effluents; and polluted river, lake, stormwater and groundwater and even acid mine drainage. This article provides an overview on the concept of applying floating HRM and non-floating HRM filters for wastewater treatment. Exemplary performance data are presented, and the advantages and disadvantages of this technology are discussed in comparison to those of ponds, free-floating plant and soil-based constructed wetlands. Finally, suggestions are provided on the preferred scope of application of HRMs.

  16. Toxicity assessment on combined biological treatment of pharmaceutical industry effluents.

    PubMed

    Inanc, B; Calli, B; Alp, K; Ciner, F; Mertoglu, B; Ozturk, I

    2002-01-01

    This paper describes the wastewater characterization and aerobic/anaerobic treatability (oxygen uptake rate and biogas production measurement) of chemical-synthesis based pharmaceutical industry effluents in a nearby baker's yeast industry treatment plant. Preliminary experiments by the industry had indicated strong anaerobic toxicity. On the other hand, aerobic treatability was also uncertain due to complexity and unknown composition of the wastewater. The work in this study has indicated that the effluents of the pharmaceutical industry can be treated without toxicity in the aerobic stage of the treatment plant. Methanogenic activity tests with anaerobic sludge from the anaerobic treatment stage of the wastewater treatment plant and acetate as substrate have confirmed the strong toxicity, while showing that 30 min aeration or coagulation with an alum dose of 300 mg/l is sufficient for reducing the toxicity almost completely. Powdered activated carbon, lime and ferric chloride (100-1,000 mg/l) had no effect on reduction of the toxicity. Consequently, the pharmaceutical industry was recommended to treat its effluents in the anaerobic stage of the nearby baker's yeast industry wastewater treatment plan at which there will be no VOC emission and toxicity problem, provided that pretreatment is done.

  17. Energy Data Management Manual for the Wastewater Treatment Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemar, Paul; De Fontaine, Andre

    Energy efficiency has become a higher priority within the wastewater treatment sector, with facility operators and state and local governments ramping up efforts to reduce energy costs and improve environmental performance. Across the country, municipal wastewater treatment plants are estimated to consume more than 30 terawatt hours per year of electricity, which equates to about $2 billion in annual electric costs. Electricity alone can constitute 25% to 40% of a wastewater treatment plant’s annual operating budget and make up a significant portion of a given municipality’s total energy bill. These energy needs are expected to grow over time, driven bymore » population growth and increasingly stringent water quality requirements. The purpose of this document is to describe the benefits of energy data management, explain how it can help drive savings when linked to a strong energy management program, and provide clear, step-by-step guidance to wastewater treatment plants on how to appropriately track energy performance. It covers the basics of energy data management and related concepts and describes different options for key steps, recognizing that a single approach may not work for all agencies. Wherever possible, the document calls out simpler, less time-intensive approaches to help smaller plants with more limited resources measure and track energy performance. Reviews of key, publicly available energy-tracking tools are provided to help organizations select a tool that makes the most sense for them. Finally, this document describes additional steps wastewater treatment plant operators can take to build on their energy data management systems and further accelerate energy savings.« less

  18. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants.

    PubMed

    Berglund, Björn; Dienus, Olaf; Sokolova, Ekaterina; Berglind, Emma; Matussek, Andreas; Pettersson, Thomas; Lindgren, Per-Eric

    2017-11-15

    Giardia intestinalis, Cryptosporidium spp., Entamoeba histolytica and Dientamoeba fragilis are parasitic protozoa and causative agents of gastroenteritis in humans. G. intestinalis and Cryptosporidium spp. in particular are the most common protozoa associated with waterborne outbreaks in high-income countries. Surveillance of protozoan prevalence in wastewater and evaluation of wastewater treatment removal efficiencies of protozoan pathogens is therefore imperative for assessment of human health risk. In this study, influent and effluent wastewater samples from three wastewater treatment plants in Sweden were collected over nearly one year and assessed for prevalence of parasitic protozoa. Quantitative real-time PCR using primers specific for the selected protozoa Cryptosporidium spp., G. intestinalis, E. histolytica, Entamoeba dispar and D. fragilis was used for protozoan DNA detection and assessment of wastewater treatment removal efficiencies. Occurrence of G. intestinalis, E. dispar and D. fragilis DNA was assessed in both influent (44, 30 and 39 out of 51 samples respectively) and effluent wastewater (14, 9 and 33 out of 51 samples respectively) in all three wastewater treatment plants. Mean removal efficiencies of G. intestinalis, E. dispar and D. fragilis DNA quantities, based on all three wastewater treatment plants studied varied between 67 and 87%, 37-75% and 20-34% respectively. Neither E. histolytica nor Cryptosporidium spp. were detected in any samples. Overall, higher quantities of protozoan DNA were observed from February to June 2012. The high prevalence of protozoa in influent wastewater indicates the need for continued monitoring of these pathogens in wastewater-associated aquatic environments to minimise the potential risk for human infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bacterial communities in full-scale wastewater treatment systems.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  20. Emergy Expenditure Among Municipal Wastewater Treatment Systems Across US

    EPA Science Inventory

    The urbanization of the modern community creates large population centers that generate concentrated wastewater. A large expenditure on wastewater treatment has to be invested to make a modern city function without human and environmental health problems. Society relies on syste...

  1. Optimizing the selection of small-town wastewater treatment processes

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Zhang, Siqi

    2018-04-01

    Municipal wastewater treatment is energy-intensive. This high energy consumption causes high sewage treatment plant operating costs and increases the energy burden. To mitigate the adverse impacts of China’s development, sewage treatment plants should adopt effective energy-saving technologies. Artificial fortified natural water treatment and use of activated sludge and biofilm are all suitable technologies for small-town sewage treatment. This study features an analysis of the characteristics of small and medium-sized township sewage, an overview of current technologies, and a discussion of recent progress in sewage treatment. Based on this, an analysis of existing problems in municipal wastewater treatment is presented, and countermeasures to improve sewage treatment in small and medium-sized towns are proposed.

  2. Green Systems for Wastewater Treatment

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1975

    1975-01-01

    Plants found in marshlands and wetlands in many parts of the world may play an increasing part in a very new, yet very old approach to treatment of water and wastewater--the application of biological methods. Biological water pollution control methods being utilized around the world are examined. (BT)

  3. Treatment of wastewater from flue gas desulphurization plants in the Netherlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vredenbregt, L.H.J.; Brugghen, F.W. van der; Enoch, G.D.

    1995-06-01

    In the Netherlands, all coal fired boilers of power stations are equipped with a wet lime(stone)-gypsum flue gas desulphurization (FGD) installation in order to fulfill the emission demands for SO{sub 2}. These wet FGD installations produce a wastewater stream containing impurities like suspended solids and traces of heavy metals like As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se and Za. As the target values stated by the licensing authorities are very stringent, most of these heavy metals and suspended solids have to be removed to very low concentration levels. Therefore, a very efficient treatment method, based on coprecipitation ofmore » heavy metal hydroxides and sulphides, which was developed by KEMA, has been installed at all, the coal fired power plants. This paper describes the operational experiences until now with these wastewater treatment installations at two coal fired power plants using sea-water for make-up and one using fresh water. The following aspects will be discussed in more detail: reliability of the wastewater treatment processes both with respect to removal efficiency of heavy metals and suspended solids and plant operation itself influence of a changing composition of the wastewater on the performance of these wastewater treatment installations. Finally, also the impact of co-firing of the sludge produced in these wastewater treatment installations will be discussed.« less

  4. Fossil organic carbon in wastewater and its fate in treatment plants.

    PubMed

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Diagnosis and Prognostic of Wastewater Treatment System Based on Bayesian Network

    NASA Astrophysics Data System (ADS)

    Li, Dan; Yang, Haizhen; Liang, XiaoFeng

    2010-11-01

    Wastewater treatment is a complicated and dynamic process. The treatment effect can be influenced by many variables in microbial, chemical and physical aspects. These variables are always uncertain. Due to the complex biological reaction mechanisms, the highly time-varying and multivariable aspects, the diagnosis and prognostic of wastewater treatment system are still difficult in practice. Bayesian network (BN) is one of the best methods for dealing with uncertainty in the artificial intelligence field. Because of the powerful inference ability and convenient decision mechanism, BN can be employed into the model description and influencing factor analysis of wastewater treatment system with great flexibility and applicability.In this paper, taking modified sequencing batch reactor (MSBR) as an analysis object, BN model was constructed according to the influent water quality, operational condition and effluent effect data of MSBR, and then a novel approach based on BN is proposed to analyze the influencing factors of the wastewater treatment system. The approach presented gives an effective tool for diagnosing and predicting analysis of the wastewater treatment system. On the basis of the influent water quality and operational condition, effluent effect can be predicted. Moreover, according to the effluent effect, the influent water quality and operational condition also can be deduced.

  6. MANAGING ENDOCRINE DISRUPTING CHEMICALS USING EXISTING AND INNOVATIVE WASTEWATER TREATMENT TECHNOLOGIES

    EPA Science Inventory

    Research has shown that wastewater (WW) can be a significant source of endocrine disrupting chemicals (EDCs) to the environment. WW treatment (WWT) may include centralized wastewater treatment plants (WWTPs) or smaller on-site WWT technologies. EDCs found in WWT effluents (aqueou...

  7. Trees are the solution to wastewater treatment for small communities

    Treesearch

    John G. Mexal; Walter H. Zachritz; T. W. Sammis

    2002-01-01

    The application of municipal wastewater to land for treatment and disposal, or "land farms," was one of the earliest forms of wastewater treatment technology. There has been renewed interest in using these systems in arid regions worldwide to supplement and reuse dwindling water resources. However, arid regions present complex challenges to the use of land...

  8. Tofu wastewater treatment using vetiver grass ( Vetiveria zizanioides) and zeliac

    NASA Astrophysics Data System (ADS)

    Seroja, Romi; Effendi, Hefni; Hariyadi, Sigid

    2018-03-01

    Tofu production is a domestic industry, that most of it has no appropriate wastewater treatment facilities. Wastewater of tofu contains high organic matter which can decrease the water quality. This study aimed to analyze capability of Vetiveria zizanioides, L and zeliac in treating tofu wastewater industry. Zeliac is a new adsorbent, which consists of zeolite, activated carbon, limestone, rice husk ash and cement. Response surface methodology was applied to analyze the data, using central composite design with two factors, i.e., time (3, 9, and 15 days) and waste concentration (20, 40, and 60%). The optimum treatment occurred at the time of 15 days and 38.41% of tofu wastewater concentration decreasing up to 76% of COD, 71.78% of BOD, and 75.28% of TSS.

  9. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants.

    PubMed

    Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2015-10-01

    The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 μg L(-1), except for TDWTP-F (2.12 μg L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Sustainable wastewater treatment: how might microbial fuel cells contribute.

    PubMed

    Oh, Sung T; Kim, Jung Rae; Premier, Giuliano C; Lee, Tae Ho; Kim, Changwon; Sloan, William T

    2010-01-01

    The need for cost-effective low-energy wastewater treatment has never been greater. Clean water for our expanding and predominantly urban global population will be expensive to deliver, eats into our diminishing carbon-based energy reserves and consequently contributes to green house gases in the atmosphere and climate change. Thus every potential cost and energy cutting measure for wastewater treatment should be explored. Microbial fuel cells (MFCs) could potentially yield such savings but, to achieve this, requires significant advances in our understanding in a few critical areas and in our designs of the overall systems. Here we review the research which might accelerate our progress towards sustainable wastewater treatment using MFCs: system control and modelling and the understanding of the ecology of the microbial communities that catalyse the generation of electricity. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Integration of biotechnological wastewater treatment units in textile finishing factories: from end of the pipe solutions to combined production and wastewater treatment units.

    PubMed

    Feitkenhauer, H; Meyer, U

    2001-08-23

    Increasing costs for water, wastewater and energy put pressure on textile finishing plants to increase the efficiency of wet processing. An improved water management can decrease the use of these resources and is a prerequisite for the integration of an efficient, anaerobic on-site pretreatment of effluents that will further cut wastewater costs. A two-phase anaerobic treatment is proposed, and successful laboratory experiments with model effluents from the cotton finishing industry are reported. The chemical oxygen demand of this wastewater was reduced by over 88% at retention times of 1 day or longer. The next step to boost the efficiency is to combine the production and wastewater treatment. The example of cotton fabric desizing (removing size from the fabric) illustrates how this final step of integration uses the acidic phase bioreactor as a part of the production and allows to close the water cycle of the system.

  12. AUTOMATED MONITORING OF WASTEWATER TREATMENT EFFICIENCY - PHASE I

    EPA Science Inventory

    Wastewater treatments minimize the transmission of pathogens and are required by EPA with established treatment and monitoring requirements. The efficiency of treatment processes is determined by measuring the inactivation of indicator organisms (e.g., fecal coliform...

  13. Interior microelectrolysis oxidation of polyester wastewater and its treatment technology.

    PubMed

    Yang, Xiaoyi

    2009-09-30

    This paper has investigated the effects of interior microelectrolysis pretreatment on polyester wastewater treatment and analyzed its mechanism on COD and surfactant removal. The efficiency of interior microelectrolysis is mainly influenced by solution pH, aeration and reaction time. Contaminants can be removed not only by redox reaction and flocculation in the result of ferrous and ferric hydroxides but also by electrophoresis under electric fields created by electron flow. pH confirms the chemical states of surfactants, Fe(II)/Fe(III) ratio and the redox potential, and thus influences the effects of electrophoresis, flocculation and redox action on contaminant removal. Anaerobic and aerobic batch tests were performed to study the degradation of polyester wastewater. The results imply that interior microelectrolysis and anaerobic pretreatment are lacking of effectiveness if applied individually in treating polyester wastewater in spite of their individual advantages. The interior microelectrolysis-anaerobic-aerobic process was investigated to treat polyester wastewater with comparison with interior microelectrolysis-aerobic process and anaerobic-aerobic process. High COD removal efficiencies have been gotten by the combination of interior microelectrolysis with anaerobic technology and aerobic technology. The results also imply that only biological treatment was less effective in polyester wastewater treatment.

  14. Catalytic Wastewater Treatment Using Pillared Clays

    NASA Astrophysics Data System (ADS)

    Perathoner, Siglinda; Centi, Gabriele

    After introduction on the use of solid catalysts in wastewater treatment technologies, particularly advanced oxidation processes (AOPs), this review discussed the use of pillared clay (PILC) materials in three applications: (i) wet air catalytic oxidation (WACO), (ii) wet hydrogen peroxide catalytic oxidation (WHPCO) on Cu-PILC and Fe-PILC, and (iii) behavior of Ti-PILC and Fe-PILC in the photocatalytic or photo-Fenton conversion of pollutants. Literature data are critically analyzed to evidence the main direction to further investigate, in particularly with reference to the possible practical application of these technologies to treat industrial, municipal, or agro-food production wastewater.

  15. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.

    PubMed

    Lotito, Adriana Maria; De Sanctis, Marco; Di Iaconi, Claudio; Bergna, Giovanni

    2014-05-01

    Textile effluents are characterised by high content of recalcitrant compounds and are often discharged (together with municipal wastewater to increase their treatability) into centralized wastewater treatment plants with a complex treatment scheme. This paper reports the results achieved adopting a granular sludge system (sequencing batch biofilter granular reactor - SBBGR) to treat mixed municipal-textile wastewater. Thanks to high average removals in SBBGR (82.1% chemical oxygen demand, 94.7% total suspended solids, 87.5% total Kjeldahl nitrogen, 77.1% surfactants), the Italian limits for discharge into a water receiver can be complied with the biological stage alone. The comparison with the performance of the centralized plant treating the same wastewater has showed that SBBGR system is able to produce an effluent of comparable quality with a simpler treatment scheme, a much lower hydraulic residence time (11 h against 30 h) and a lower sludge production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  17. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goshe, A.J.; Nodianos, M.J.

    1995-12-01

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  18. Discussion on Coking Wastewater Treatment and Control Measures in Iron and Steel Enterprises

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Hwang, Jiannyang; Leng, Ting; Xue, Gaifeng; Wu, Gaoming

    According to the water quality characteristics of coking wastewater and the environmental protection requirements, the status of coking wastewater treatment technologies at home and abroad was described. Several methods and control measures of coking wastewater treatment were discussed in the effluent from iron and steel enterprises. It is an effective way to makes use of cleaner production technologies to reduce the amount of coking phenol cyanide wastewater produced from the source, and then adopt water supply for different water quality or series classification in-house according to the demand of water characters. It is necessary though looking for the available disposal way to reduce the coking wastewater effluent, which can provide a reference for process selection and research on treatment of coking wastewater in iron and steel enterprise.

  19. The use of moving bed bio-reactor to laundry wastewater treatment

    NASA Astrophysics Data System (ADS)

    Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Waldemar Morawski, Antoni

    2017-11-01

    Large laboratory scale biological treatment test of industrial real wastewater, generated in industrial big laundry, has been conducted in the period of May 2016-August 2016. The research aimed at selection of laundry wastewater treatment technology included tests of two-stage Moving Bed Bio Reactor (MBBR), with two reactors filled with carriers Kaldnes K5 (specific area - 800 m2/m3), have been realized in aerobic condition. Operating on site, in the laundry, reactors have been fed real wastewater from laundry retention tank. To the laundry wastewater, contained mainly surfactants and impurities originating from washed fabrics, a solution of urea to supplement nitrogen content and a solution of acid to correct pH have been added. Daily flow of raw wastewater Qd was equal to 0.6-0.8 m3/d. The values of determined wastewater quality indicators showed that substantial decrease of pollutants content have been reached: BOD5 by 94.7-98.1%, COD by 86.9-93.5%, the sum of anionic and nonionic surfactants by 98.7-99.8%. The quality of the purified wastewater, after star-up period, meets the legal requirements regarding the standards for wastewater discharged to the environment.

  20. Wastewater Treatment Evaluation, Mather AFB, CA

    DTIC Science & Technology

    1974-06-01

    conveyed to the treatment facility is provided with secondary (biological) treatment and chlorination followed by polish- ing lagoons prior to bang...comminutor. b. Primary sedimentation (clarifier). c. Biological oxidation by trickling filter. d. Secondary sedimentation (clarifier). e. Chlorination . f...the entrance to the chlorine contact chamber. Following chlorination , the wastewater flows to the wet well of the effluent lift station from

  1. Wastewater Treatment I. Student's Guide.

    ERIC Educational Resources Information Center

    California Water Pollution Control Association, Sacramento. Joint Education Committee.

    This student's guide is designed to provide students with the job skills necessary for the safe and effective operation and maintenance of wastewater treatment plants. It consists of three sections. Section 1 consists of an introductory note outlining course objectives and the format of the guide. A course outline constitutes the second section.…

  2. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments.

    PubMed

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub; Romalde, Jesús L

    2016-07-01

    Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 10(3) genome copies [GC]/ml) and influents (2.7 × 10(3) GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions

  3. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments

    PubMed Central

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub

    2016-01-01

    ABSTRACT Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 103 genome copies [GC]/ml) and influents (2.7 × 103 GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. IMPORTANCE This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level

  4. ETV REPORT - EVALUATION OF DAVIS TECHNOLOGIES INTERNATIONAL CORP. - INDUSTRIAL WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    Abstract: Evaluation of Davis Technologies International Corp. Industrial Wastewater Treatment Plant

    The Davis Technologies International Corp. (DTIC) Industrial Wastewater Treatment Plant (IWTP) was tested, under actual production conditions, processing metalworking and ...

  5. Treatment of laundry wastewater by biological and electrocoagulation methods.

    PubMed

    Ramcharan, Terelle; Bissessur, Ajay

    2017-01-01

    The present study describes an improvement in the current electrocoagulation treatment process and focuses on a comparative study for the clean-up of laundry wastewater (LWW) after each wash and rinse cycle by biological and electrocoagulation treatment methods. For biological treatment, the wastewater was treated with a Bacillus strain of aerobic bacteria especially suited for the degradation of fats, lipids, protein, detergents and hydrocarbons. Treatment of the LWW by electrocoagulation involved the oxidation of aluminium metal upon the application of a controlled voltage which produces various aluminium hydroxy species capable of adsorbing pollutants from the wastewater. The efficiency of the clean-up of LWW using each method was assessed by determination of surfactant concentration, chemical oxygen demand and total dissolved solids. A rapid decrease in surfactant concentration was noted within 0.5 hour of electrocoagulation, whereas a notable decrease in the surfactant concentration was observed only after 12 hour of biological treatment. The rapid generation of aluminium hydroxy species in the electrocoagulation cell allowed adsorption of pollutants at a faster rate when compared to the aerobic degradation of the surfactant; hence a reduced period of time is required for treatment of LWW by electrocoagulation.

  6. Emergency Planning for Municipal Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Lemon, R. A.; And Others

    This manual for the development of emergency operating plans for municipal wastewater treatment systems was compiled using information provided by over two hundred municipal treatment systems. It covers emergencies caused by natural disasters, civil disorders and strikes, faulty maintenance, negligent operation, and accidents. The effects of such…

  7. Current status of urban wastewater treatment plants in China.

    PubMed

    Zhang, Q H; Yang, W N; Ngo, H H; Guo, W S; Jin, P K; Dzakpasu, Mawuli; Yang, S J; Wang, Q; Wang, X C; Ao, D

    2016-01-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Domestic wastewater treatment as a net energy producer--can this be achieved?

    PubMed

    McCarty, Perry L; Bae, Jaeho; Kim, Jeonghwan

    2011-09-01

    In seeking greater sustainability in water resources management, wastewater is now being considered more as a resource than as a waste-a resource for water, for plant nutrients, and for energy. Energy, the primary focus of this article, can be obtained from wastewater's organic as well as from its thermal content. Also, using wastewater's nitrogen and P nutrients for plant fertilization, rather than wasting them, helps offset the high energy cost of producing synthetic fertilizers. Microbial fuel cells offer potential for direct biological conversion of wastewater's organic materials into electricity, although significant improvements are needed for this process to be competitive with anaerobic biological conversion of wastewater organics into biogas, a renewable fuel used in electricity generation. Newer membrane processes coupled with complete anaerobic treatment of wastewater offer the potential for wastewater treatment to become a net generator of energy, rather than the large energy consumer that it is today.

  9. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    PubMed

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  10. Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges.

    PubMed

    Wiest, Laure; Chonova, Teofana; Bergé, Alexandre; Baudot, Robert; Bessueille-Barbier, Frédérique; Ayouni-Derouiche, Linda; Vulliet, Emmanuelle

    2018-04-01

    It is well known that pharmaceuticals are not completely removed by conventional activated sludge wastewater treatment plants. Hospital effluents are of major concern, as they present high concentrations of pharmaceutically active compounds. Despite this, these specific effluents are usually co-treated with domestic wastewaters. Separate treatment has been recommended. However, there is a lack of information concerning the efficiency of separate hospital wastewater treatment by activated sludge, especially on the removal of pharmaceuticals. In this context, this article presents the results of a 2-year monitoring of conventional parameters, surfactants, gadolinium, and 13 pharmaceuticals on the specific study site SIPIBEL. This site allows the characterization of urban and hospital wastewaters and their separate treatment using the same process. Flow proportional sampling, solid-phase extraction, and liquid chromatography coupled with tandem mass spectrometry were used in order to obtain accurate data and limits of quantification consistent with ultra-trace detection. Thanks to these consolidated data, an in-depth characterization of urban and hospital wastewaters was realized, as well as a comparison of treatment efficiency between both effluents. Higher concentrations of organic carbon, AOX, phosphates, gadolinium, paracetamol, ketoprofen, and antibiotics were observed in hospital wastewaters compared to urban wastewaters. Globally higher removals were observed in the hospital wastewater treatment plant, and some parameters were shown to be of high importance regarding removal efficiencies: hydraulic retention time, redox conditions, and ambient temperature. Eleven pharmaceuticals were still quantified at relevant concentrations in hospital and urban wastewaters after treatment (e.g., up to 1 μg/L for sulfamethoxazole). However, as the urban flow was about 37 times higher than the hospital flow, the hospital contribution appeared relatively low compared to

  11. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    EPA Pesticide Factsheets

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  12. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    NASA Astrophysics Data System (ADS)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  13. Determination of the priority indexes for the oil refinery wastewater treatment process

    NASA Astrophysics Data System (ADS)

    Chesnokova, M. G.; Myshlyavtsev, A. V.; Kriga, A. S.; Shaporenko, A. P.; Markelov, V. V.

    2017-08-01

    The wastewater biological treatment intensity and effectiveness are influenced by many factors: temperature, pH, presence and concentration of toxic substances, the biomass concentration et al. Regulation of them allows controlling the biological treatment process. Using the Bayesian theorem the link between changes was determined and the wastewater indexes normative limits exceeding influence for activated sludge characteristics alteration probability was evaluated. The estimation of total, or aposterioric, priority index presence probability, which characterizes the wastewater treatment level, is an important way to use the Bayesian theorem in activated sludge swelling prediction at the oil refinery biological treatment unit.

  14. Stainless-steel wires exclude gulls from a wastewater treatment plant

    USGS Publications Warehouse

    Clark, Daniel E.; Koenen, Kiana K. G.; MacKenzie, Kenneth G.; Pereira, Jillian W.; DeStefano, Stephen

    2013-01-01

    There is growing concern about the prevalence of pathogens and antibiotic-resistant bacteria in the environment and the role wildlife plays in their transmission and dissemination. Gulls feeding at wastewater treatment plants may provide a route for transmission of pathogens and bacteria to public water supplies or other critical areas. The authors identified gulls routinely feeding at a wastewater treatment plant in Millbury, Mass., and tested the effectiveness of overhead stainless-steel wires in excluding gulls from the plant. The number of gulls in certainstructures was compared before and after wiring and during an experimental approach using simultaneous treatments and controls. Stainless-steel wires spaced at 0.9-3.3 m (3-10 ft) effectively prevented gulls from using treatment structures (p < 0.0001) and were effective for > 24 months. Materials costs to wire all structures was about $5,700, and labor costs were $4,020. Overhead stainless-steel wires can provide a long-term, cost-efficient method of excluding ring-billed gulls from wastewater treatment plants.

  15. Municipal wastewater treatment in Mexico: current status and opportunities for employing ecological treatment systems.

    PubMed

    Zurita, Florentina; Roy, Eric D; White, John R

    2012-06-01

    The aim of this paper is to evaluate the current status of municipal wastewater (MWW) treatment in Mexico, as well as to assess opportunities for using ecological treatment systems, such as constructed wetlands. In 2008, Mexico had 2101 MWW treatment plants that treated only 84 m3/s of wastewater (208 m3/s ofMWW were collected in sewer systems). Unfortunately, most treatment plants operate below capacity owing to a lack of maintenance and paucity of properly trained personnel. The main types of treatment systems applied in Mexico are activated sludge and waste stabilization ponds, which treat 44.3% and 18% of the MWW collected, respectively. As in many other developing nations around the world, there is a great need in Mexico for low-cost, low-maintenance wastewater treatment systems that are both economically and environmentally sustainable. In 2005, 24.3 million Mexicans lived in villages of less than 2500 inhabitants and 14.1 million lived in towns with 2500-15,000 inhabitants. An opportunity exists to extend the use of ecological treatment systems to these low population density areas and considerably increase the percentage of MWW that is treated in Mexico. Small-scale and medium-size constructed wetlands have been built successfully in some states, primarily during the past five years. Several barriers need to be overcome to increase the adoption and utilization of ecological wastewater technology in Mexico, including: a lack of knowledge about this technology, scarce technical information in Spanish, and the government's concentration on constructing MWW treatment plants solely in urban areas.

  16. Treatment of textile wastewater by a hybrid electrocoagulation/nanofiltration process.

    PubMed

    Aouni, Anissa; Fersi, Cheïma; Ben Sik Ali, Mourad; Dhahbi, Mahmoud

    2009-09-15

    Untreated effluents from textile industries are usually highly coloured and contain a considerable amount of contaminants and pollutants. Stringent environmental regulation for the control of textile effluents is enforced in several countries. Previous studies showed that many techniques have been used for the treatment of textile wastewater, such as adsorption, biological treatment, oxidation, coagulation and/or flocculation, among them coagulation is one of the most commonly used techniques. Electrocoagulation is a process consisting in creating metallic hydroxide flocks within the wastewater by the electrodissolution of soluble anodes, usually made of iron or aluminium. This method has been practiced for most of the 20th century with limited success. In recent years, however, it started to regain importance with the progress of the electrochemical processes and the increase in environmental restrictions in effluent wastewater. This paper examines the use of electrocoagulation treatment process followed by nanofiltration process of a textile effluent sample. The electrocoagulation process was studied under several conditions such as various current densities and effect of experimental tense. Efficiencies of COD and turbidity reductions and colour removal were studied for each experiment. The electrochemical treatment was indented primarily to remove colour and COD of wastewater while nanofiltration was used to further improve the removal efficiency of the colour, COD, conductivity, alkalinity and total dissolved solids (TDS). The experimental results, throughout the present study, have indicated that electrocoagulation treatment followed by nanofiltration processes were very effective and were capable of elevating quality of the treated textile wastewater effluent.

  17. The use of mathematical models in teaching wastewater treatment engineering.

    PubMed

    Morgenroth, E; Arvin, E; Vanrolleghem, P

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.

  18. Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment.

    PubMed

    Lv, Junping; Liu, Yang; Feng, Jia; Liu, Qi; Nan, Fangru; Xie, Shulian

    2018-05-24

    Chlorella vulgaris was selected from five freshwater microalgal strains of Chlorophyta, and showed a good potential in nutrients removal from undiluted cattle farm wastewater. By the end of treatment, 62.30%, 81.16% and 85.29% of chemical oxygen demand (COD), ammonium (NH 4 + -N) and total phosphorus (TP) were removed. Then two two-stage processes were established to enhance nutrients removal efficiency for meeting the discharge standards of China. The process A was the biological treatment via C. vulgaris followed by the biological treatment via C. vulgaris, and the process B was the biological treatment via C. vulgaris followed by the activated carbon adsorption. After 3-5 d of treatment of wastewater via the two processes, the nutrients removal efficiency of COD, NH 4 + -N and TP were 91.24%-92.17%, 83.16%-94.27% and 90.98%-94.41%, respectively. The integrated two-stage process could strengthen nutrients removal efficiency from undiluted cattle farm wastewater with high organic substance and nitrogen concentration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Microbiological characterization of the biological treatment of aircraft paint stripping wastewater.

    PubMed

    Arquiaga, M C; Canter, L W; Robertson, J M

    1995-01-01

    Research on the treatment of potentially toxic wastewater produced at six US Navy aircraft paint stripping facilities has been conducted. The composition of the wastewater treated consisted of methylene chloride and phenol in concentrations of about 5000 and 1800 mg/l, respectively, and other organic compounds in a total concentration of 2200 mg/l. Biological treatment is an important means by which toxic or hazardous organic compounds can be economically converted to less noxious materials. Engineering studies conducted in the laboratory with activated sludge reactors and rotating biological contactors (RBC) demonstrated that both suspended and attached growths can be effective biological methods to treat this paint stripping wastewater when blended with domestic wastewater up to about 50% by volume. These studies were complemented with analyses of the bacterial communities inhabiting the treatment systems. The number and the genera of the microorganisms present in the blended wastewater, as well as their ability to biodegrade the potentially toxic organics were studied. The results indicate that paint stripping wastewater is able to support large bacterial populations consisting of various gram-negative rods and coccibacilli and a few gram-positive bacilli. Members of the genera Pseudomonas and Bacillus are suspected to play an important role in initiating the biodegradation process.

  20. Wastewater treatment of chemical laboratory using electro assisted-phytoremediation (EAPR)

    NASA Astrophysics Data System (ADS)

    Putra, Rudy Syah; Trahadinata, Gilang Ahmad; Latif, Arif; Solehudin, Mochamad

    2017-03-01

    The EAPR process using water hyacinth (Eichornia crassipes) on the wastewater treatment of chemical laboratory had been evaluated. The purpose of the EAPR process was to decrease the BOD, COD and heavy metal concentration in the wastewater. The effectiveness of the process on the wastewater treatment was evaluated using COD, BOD, and heavy metal (Pb, Cu) concentration, respectively. The result showed that the EAPR process decrease the COD, BOD, Pb and Cu in the 4 h of EAPR process. Those concentrations were met the water quality standard of class IV according to government regulation No. 82/2001 regarding the water quality management and water pollution control of the Republic of Indonesia.

  1. Cod Fractions In Mechanical-Biological Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Płuciennik-Koropczuk, Ewelina; Jakubaszek, Anita; Myszograj, Sylwia; Uszakiewicz, Sylwia

    2017-03-01

    The paper presents results of studies concerning the designation of COD fraction in the raw, mechanically treated and biologically treated wastewater. The test object was a wastewater treatment plant with the output of over 20,000 PE. The results were compared with data received in the ASM models. During investigation following fractions of COD were determined: dissolved non-biodegradable SI, dissolved easily biodegradable SS, in organic suspension slowly degradable XS and in organic suspension non-biodegradable XI. Methodology for determining the COD fraction was based on the guidelines ATV-A 131. The real percentage of each fraction in total COD in raw wastewater are different from data received in ASM models.

  2. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    PubMed

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  3. Nanoparticles in Constanta-North Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  4. Soft drink wastewater treatment by electrocoagulation-electrooxidation processes.

    PubMed

    Linares Hernández, Ivonne; Barrera Díaz, Carlos; Valdés Cerecero, Mario; Almazán Sánchez, Perla Tatiana; Castañeda Juárez, Monserrat; Lugo Lugo, Violeta

    2017-02-01

    The aim of this work was to implement a coupled system, a monopolar Electrocoagulation (EC)-Electrooxidation (EO) processes, for the treatment of soft drink wastewater. For the EC test, Cu-Cu, anode-cathode were used at current densities of 17, 51 and 68 mA cm -2 . Only 37.67% of chemical oxygen demand (COD) and 27% of total organic carbon (TOC) were removed at 20 min with an optimum pH of 8, this low efficiency can be associated with the high concentration of inorganic ions which inhibit the oxidation of organic matter due to their complexation with copper ions. Later EO treatment was performed with boron-doped diamond-Cu electrodes and a current density of 30 Am -2 . The coupled EC-EO system was efficient to reduce organic pollutants from initial values of 1875 mg L -1 TOC and 4300 mg L -1 COD, the removal efficiencies were 75% and 85%, respectively. Electric energy consumption to degrade a kilogram of a pollutant in the soft drink wastewater using EC was 3.19 kWh kg -1 TOC and 6.66 kWh kg -1 COD. It was concluded that the coupled system EC-EO was effective for the soft drink wastewater treatment, reducing operating costs and residence time, and allowing its reuse in indirect contact with humans, thus contributing to the sustainable reuse as an effluent of industrial wastewater.

  5. Constructed wetlands for wastewater treatment: five decades of experience.

    PubMed

    Vymazal, Jan

    2011-01-01

    The first experiments on the use of wetland plants to treat wastewaters were carried out in the early 1950s by Dr. Käthe Seidel in Germany and the first full-scale systems were put into operation during the late 1960s. Since then, the subsurface systems have been commonly used in Europe while free water surface systems have been more popular in North America and Australia. During the 1970s and 1980s, the information on constructed wetland technology spread slowly. But since the 1990 s the technology has become international, facilitated by exchange among scientists and researchers around the world. Because of the need for more effective removal of ammonia and total nitrogen, during the 1990 s and 2000s vertical and horizontal flow constructed wetlands were combined to complement each other to achieve higher treatment efficiency. Today, constructed wetlands are recognized as a reliable wastewater treatment technology and they represent a suitable solution for the treatment of many types of wastewater.

  6. Adsorption, sedimentation, and inactivation of E. coli within wastewater treatment wetlands.

    PubMed

    Boutilier, L; Jamieson, R; Gordon, R; Lake, C; Hart, W

    2009-09-01

    Bacteria fate and transport within constructed wetlands must be understood if engineered wetlands are to become a reliable form of wastewater treatment. This study investigated the relative importance of microbial treatment mechanisms in constructed wetlands treating both domestic and agricultural wastewater. Escherichia coli (E. coli) inactivation, adsorption, and settling rates were measured in the lab within two types of wastewater (dairy wastewater lagoon effluent and domestic septic tank effluent). In situ E. coli inactivation was also measured within a domestic wastewater treatment wetland and the adsorption of E. coli was also measured within the wetland effluent. Inactivation of E. coli appears to be the most significant contributor to E. coli removal within the wastewaters and wetland environments examined in this study. E. coli survived longer within the dairy wastewater (DW) compared to the domestic wastewater treatment wetland water (WW). First order rate constants for E. coli inactivation within the WW in the lab ranged from 0.09 day(-1) (d(-1)) at 7.6 degrees C to 0.18d(-1) at 22.8 degrees C. The average in situ rate constant observed within the domestic wetland ranged from 0.02 d(-1) to 0.03 d(-1) at an average water temperature of 17 degrees C. First order rate constants for E. coli inactivation within the DW ranged from 0.01 d(-1) at 7.7 degrees C to 0.04 d(-1) at 24.6 degrees C. Calculated distribution coefficients (K(d)) were 19,000 mL g(-1), 324,000 mL g(-1), and 293 mL g(-1) for E. coli with domestic septic tank effluent (STE), treated wetland effluent (WLE), and DW, respectively. Approximately 50%, 20%, and 90% of E. coli were "free floating" or associated with particles <5 microm in size within the STE, WLE, and DW respectively. Although 10-50% of E. coli were found to associate with particles >5 microm within both the STE and DW, settling did not appear to contribute to E. coli removal within sedimentation experiments, indicating that the

  7. Planning of wastewater treatment and disposal systems of Istanbul metropolitan area.

    PubMed

    Eroglu, V; Sarikaya, H Z; Aydin, A F

    2001-01-01

    Current and future wastewater treatment and disposal strategies of Istanbul city are presented. Istanbul is the largest city of Turkey and has a population of 10 million that may reach about 20 million in 2032. The city is divided into Asian and European sides by the Bosphorus Strait. The Sea of Marmara is an enclosed sea, connected to the Black Sea and Aegean Sea by the straits of Bosphorus and Dardanelles. Therefore, there is very strong and permanent stratification in the Sea of Marmara throughout the year, lower layers carrying Mediterranean and the upper layers carrying Black Sea water. This unique coastal structure of Istanbul necessitated a detailed study to determine the level of wastewater treatment and the location and depth of marine outfalls. A comprehensive three-dimensional water quality modelling study concluded that tertiary treatment including nitrogen and phosphorus removal is required for the effluent discharges into the Marmara Sea. However, enhanced primary or even primary treatment has been found satisfactory for discharges into the lower layers of the Bosphorus and into the Black Sea. Provisions for upgrading to secondary treatment were recommended. The status of existing and planned wastewater treatment plants and sea outfalls of Istanbul city are also presented. Although the amount of treated wastewater was only 63 percent in 1998, a target of 95 percent treatment level by the end of 2000 has been adopted in implementation plans. All treatment plants are located at or close to the coast except Pasakoy WWTP which is in the catchment area of Omerli Reservoir, the major source of drinking water for Istanbul city. The Pasakoy WWTP has been designed to treat wastewaters collected from the catchment area of Omerli Reservoir to tertiary level before ultimate disposal. The implementation programme together with the cost estimates are given. Total investment on water, wastewater and stormwater projects up to year 2032 is estimated at about 10

  8. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    PubMed

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  9. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    PubMed

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  10. The microbial community of a biofilm contact reactor for the treatment of winery wastewater.

    PubMed

    de Beer, D M; Botes, M; Cloete, T E

    2018-02-01

    To utilize a three-tiered approach to provide insight into the microbial community structure, the spatial distribution and the metabolic capabilities of organisms of a biofilm in the two towers of a high-rate biological contact reactor treating winery wastewater. Next-generation sequencing indicated that bacteria primarily responsible for the removal of carbohydrates, sugars and alcohol were more abundant in tower 1 than tower 2 while nitrifying and denitrifying bacteria were more abundant in tower 2. Yeast populations differed in each tower. Fluorescent in situ hybridization coupled with confocal microscopy showed distribution of organisms confirming an oxygen gradient across the biofilm depth. The Biolog system (ECO plates) specified the different carbon-metabolizing profiles of the two biofilms. The three-tiered approach confirmed that the addition of a second subunit to the bioreactor, expanded the treatment capacity by augmenting the microbial and metabolic diversity of the system, improving the treatment scope of the system. A three-tiered biofilm analysis provided data required to optimize the design of a bioreactor to provide favourable conditions for the development of a microbial consortium, which has optimal waste removal properties for the treatment requirements at hand. © 2017 The Society for Applied Microbiology.

  11. Biohydrogen production and wastewater treatment from organic wastewater by anaerobic fermentation with UASB

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Li, Yong-feng; Wang, Yi-xuan; Yang, Chuan-ping

    2010-11-01

    In order to discuss the ability of H2-production and wastewater treatment, an up-flow anaerobic sludge bed (UASB) using a synthesized substrate with brown sugar wastewater was conducted to investigate the hydrogen yield, hydrogen producing rate, fermentation type of biohydrogen production, and the chemical oxygen demand (COD) removal rate, respectively. The results show that when the biomass of inoculants was 22.5 g SSṡL-1 and the influent concentration, hydraulic retention time (HRT) and initial pH were within the ranges of 4000˜6000 mg CODṡL-1, 8 h and 5-5.5, respectively, and the biohydrogen producing reactor could work effectively. The maximum hydrogen production rate is 5.98 Lṡd-1. Simultaneously, the concentration of ethanol and acetic acid is around 80% of the aqueous terminal production in the system, which presents the typical ethanol type fermentation. pH is at the range of 4˜4.5 during the whole performing process, however, the removal rate of COD is just about 20%. Therefore, it's still needs further research to successfully achieve the biohydrogen production and wastewater treatment, simultaneously.

  12. Synthesis of adsorbent from Tamarix hispida and modified by lanthanum metal for fluoride ions removal from wastewater: Adsorbent characteristics and real wastewater treatment data.

    PubMed

    Habibi, Nasim; Rouhi, Parham; Ramavandi, Bahman

    2017-08-01

    This data article describes a facile method for production of an adsorbent from Tamarix hispida wasted wood and modified by lanthanum metal for fluoride ions removal from wastewater. The main characteristics of the adsorbent consist of BET surface area, functional groups, and elemental analysis is presented. The data for attenuating the pollutants from a real wastewater treatment which was provided from a glass factory is also represented. More than 90% of fluoride content of the real wastewater was treated by the adsorbent. Generally, these data would be informative for extend research aim to industrial wastewater treatment and those who work in the wastewater treatment plants.

  13. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...

  14. 40 CFR 721.10667 - Slimes and sludges, aluminum and iron casting, wastewater treatment, solid waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... casting, wastewater treatment, solid waste. 721.10667 Section 721.10667 Protection of Environment... iron casting, wastewater treatment, solid waste. (a) Chemical substance and significant new uses... and iron casting, wastewater treatment, solid waste (PMN P-12-560; CAS No. 1391739-82-4; chemical...

  15. Treatment of kitchen wastewater using Eichhornia crassipes

    NASA Astrophysics Data System (ADS)

    Parwin, Rijwana; Karar Paul, Kakoli

    2018-03-01

    The efficiency of Eichhornia crassipes for treatment of raw kitchen wastewater was studied in the present research work. An artificial wetland of 30 liter capacity was created for phytoremediation of kitchen wastewater using Eichhornia crassipes. Kitchen wastewater samples were collected from hostel of an educational institute in India. Samples were characterized based on physical and chemical parameters such as pH, turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid. The physico-chemical parameter of kitchen wastewater samples were analysed for durations of 0 (initial day), 4 and 8 days. After 8 days of retention period, it was observed that pH value increases from 6.25 to 6.63. However, percentage reduction for turbidity, total hardness, nitrate-nitrogen, ammonium-nitrogen, sulphate, dissolved oxygen, total organic carbon and total dissolved solid were found to be 74.71%, 50%, 78.75%, 60.28%, 25.31%, 33.33%, 15.38% and 69.97%, respectively. Hence water hyacinth (Eichhornia crassipes) is found efficient and easy to handle and it can be used for low cost phytoremediation technique.

  16. Municipal-wastewater treatment using upflow-anaerobic filters.

    PubMed

    Manariotis, loannis D; Grigoropoulos, Sotirios G

    2006-03-01

    Three 12.5-L upflow-anaerobic filters (AF), with ceramic-saddle, plastic-ring, and crushed-stone packing, were used to evaluate the sustained treatment of municipal wastewater. The reactors were initially fed dogfood-fortified wastewater and then raw municipal wastewater, and operated at 25.4 degrees C (32 months) and 15.5 degrees C (2 months). During 23 months, the AF units treated municipal wastewater (mean chemical oxygen demand [COD] 442 mg/L and total suspended solids [TSS] 247 mg/L), the hydraulic retention time (HRT) ranged from 3.1 to 0.30 d (empty bed), and the organic loading rate ranged from 0.115 to 1.82 kg COD/m3d. At the higher temperature and an HRT (void volume) of 1.0 d, COD and TSS removals ranged from 74 to 79% and 95 to 96%, respectively; however, efficiencies declined substantially at HRT values less than 0.4 d. Reactor performance, under the same hydraulic and organic loadings, deteriorated with time and was adversely affected by lower temperature.

  17. Sequential solar photo-fenton-biological system for the treatment of winery wastewaters.

    PubMed

    Mosteo, R; Sarasa, J; Ormad, Maria P; Ovelleiro, J L

    2008-08-27

    In this study, winery wastewaters are considered for degradation using heterogeneous photo-Fenton as a preliminary step before biotreatment. The heterogeneous photo-Fenton process assisted by solar light is able to partially degrade the organic matter present in winery wastewaters. When an initial hydrogen peroxide concentration of 0.1 M is used over 24 h of treatment, a degradation yield of organic matter (measured as TOC) of around 50% is reached. The later treatment (activated sludge process) allows the elimination of 90% of the initial TOC present in pretreated winery wastewaters without producing nondesired side-effects, such as the bulking phenomenon, which is usually detected when this treatment is used alone. The final effluent contains a concentration of organic matter (measured as COD) of 128 mg O2/L. The coupled system comprising the heterogeneous photo-Fenton process and biological treatment based on activated sludge in simple stage is a real alternative for the treatment of winery wastewater.

  18. Treatment of textile wastewaters using Eutectic Freeze Crystallization.

    PubMed

    Randall, D G; Zinn, C; Lewis, A E

    2014-01-01

    A water treatment process needs to recover both water and other useful products if the process is to be viewed as being financially and environmentally sustainable. Eutectic Freeze Crystallization (EFC) is one such sustainable water treatment process that is able to produce both pure ice (water) and pure salt(s) by operating at a specific temperature. The use of EFC for the treatment of water is particularly useful in the textile industry because ice crystallization excludes all impurities from the recovered water, including dyes. Also, EFC can produce various salts with the intention of reusing these salts in the process. This study investigated the feasibility of EFC as a treatment method for textile industry wastewaters. The results showed that EFC can be used to convert 95% of the wastewater stream to pure ice (98% purity) and sodium sulfate.

  19. Forward Osmosis in Wastewater Treatment Processes.

    PubMed

    Korenak, Jasmina; Basu, Subhankar; Balakrishnan, Malini; Hélix-Nielsen, Claus; Petrinic, Irena

    2017-01-01

    In recent years, membrane technology has been widely used in wastewater treatment and water purification. Membrane technology is simple to operate and produces very high quality water for human consumption and industrial purposes. One of the promising technologies for water and wastewater treatment is the application of forward osmosis. Essentially, forward osmosis is a process in which water is driven through a semipermeable membrane from a feed solution to a draw solution due to the osmotic pressure gradient across the membrane. The immediate advantage over existing pressure driven membrane technologies is that the forward osmosis process per se eliminates the need for operation with high hydraulic pressure and forward osmosis has low fouling tendency. Hence, it provides an opportunity for saving energy and membrane replacement cost. However, there are many limitations that still need to be addressed. Here we briefly review some of the applications within water purification and new developments in forward osmosis membrane fabrication.

  20. Managing vegetation in surface-flow wastewater-treatment wetlands for optimal treatment performance

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Nelson, S.M.

    2005-01-01

    Constructed wetlands that mimic natural marshes have been used as low-cost alternatives to conventional secondary or tertiary wastewater treatment in the U.S. for at least 30 years. However, the general level of understanding of internal treatment processes and their relation to vegetation and habitat quality has not grown in proportion to the popularity of these systems. We have studied internal processes in surface-flow constructed wastewater-treatment wetlands throughout the southwestern U.S. since 1990. At any given time, the water quality, hydraulics, water temperature, soil chemistry, available oxygen, microbial communities, macroinvertebrates, and vegetation each greatly affect the treatment capabilities of the wetland. Inside the wetland, each of these components plays a functional role and the treatment outcome depends upon how the various components interact. Vegetation plays a uniquely important role in water treatment due to the large number of functions it supports, particularly with regard to nitrogen transformations. However, it has been our experience that vegetation management is critical for achieving and sustaining optimal treatment function. Effective water treatment function and good wildlife quality within a surface-flow constructed wetland depend upon the health and sustainability of the vegetation. We suggest that an effective tool to manage and sustain healthy vegetation is the use of hummocks, which are shallow emergent plant beds within the wetland, positioned perpendicular to the water flow path and surrounded by water sufficiently deep to limit further emergent vegetation expansion. In this paper, we describe the use of a hummock configuration, in conjunction with seasonal water level fluctuations, to manage the vegetation and maintain the treatment function of wastewater-treatment wetlands on a sustainable basis.

  1. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Breach, Patrick A.; Simonovic, Slobodan P.

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  2. Wastewater Treatment Energy Recovery Potential For Adaptation To Global Change: An Integrated Assessment.

    PubMed

    Breach, Patrick A; Simonovic, Slobodan P

    2018-04-01

    Approximately 20% of wastewaters globally do not receive treatment, whereas wastewater discharges are projected to increase, thereby leading to excessive water quality degradation of surface waters on a global scale. Increased treatment could help alleviate water quality issues by constructing more treatment plants; however, in many areas there exist economic constraints. Energy recovery methods including the utilization of biogas and incineration of biosolids generated during the treatment process may help to alleviate treatment costs. This study explores the potential for investments in energy recovery from wastewater to increase treatment levels and thus improve surface water quality. This was done by examining the relationships between nutrient over-enrichment, wastewater treatment, and energy recovery at a global scale using system dynamics simulation as part of the ANEMI integrated assessment model. The results show that a significant amount of energy can be recovered from wastewater, which helps to alleviate some of the costs of treatment. It was found that wastewater treatment levels could be increased by 34%, helping to offset the higher nutrient loading from a growing population with access to improved sanitation. The production of renewable natural gas from biogas was found to have the potential to prolong the depletion of natural gas resources used to produce electricity and heat. It is recommended that agricultural nutrient discharges be better managed to help reduce nutrient over-enrichment on global scale. To increase the utility of the simulation, a finer spatial scale should be used to consider regional treatment, economic, and water quality characteristics.

  3. Modeling of wastewater treatment system of car parks from petroleum products

    NASA Astrophysics Data System (ADS)

    Savdur, S. N.; Stepanova, Yu V.; Kodolova, I. A.; Fesina, E. L.

    2018-05-01

    The paper discusses the technological complex of wastewater treatment of car parks from petroleum products. Based on the review of the main modeling methods of discrete-continuous chemical and engineering processes, it substantiates expediency of using the theory of Petri nets (PN) for modeling the process of wastewater treatment of car parks from petroleum products. It is proposed to use a modification of Petri nets which is focused on modeling and analysis of discrete-continuous chemical and engineering processes by prioritizing transitions, timing marks in positions and transitions. A model in the form of modified Petri nets (MPN) is designed. A software package to control the process for wastewater treatment is designed by means of SCADA TRACE MODE.

  4. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  5. Changes in estrogenicity and micropollutant concentrations across unit processes in a biological wastewater treatment system.

    PubMed

    Chen, Jian Lin; Ravindran, Shanthinie; Swift, Simon; Singhal, Naresh

    2018-03-01

    The behavior of 10 micropollutants, i.e. four estrogens (estrone, 17β-estradiol, estriol, 17α-ethynylestradiol), carbamazepine (CBZ), sulfamethoxazole (SMX), triclosan, oxybenzone, 4-nonylphenol, and bisphenol A, was investigated in a typical domestic wastewater treatment plant. LC-MS and yeast estrogen screen bioassay were used to study the changes in micropollutants and estrogenicity across unit processes in the treatment system. Primary treatment via sedimentation showed that only 4-nonylphenol was removed, but led to no significant change in estrogenicity. Secondary treatment by the biological nitrification-dentrification process showed complete removal of oxybenzone and partial removal of the estrogens, which led to a decrease in estrogenic activity from 80 to 48 ng/L as estradiol equivalent (EEq). Ultraviolet treatment completely degraded the estrogens and triclosan, but failed to lower the concentrations of bisphenol A, SMX, and CBZ; a decrease in estrogenic activity from 48 to 5 ng/L EEq across the unit, a value that was only slightly larger than the observed EEq of 1 ng/L for the deionized control. Similarly, the anaerobic digestion of sludge completely degraded estrogens, oxybenzone, and SMX, but had no impact on bisphenol A, triclosan, and CBZ. The study emphasises the need to complement chemical analyses with estrogenic bioassays to evaluate the efficacy of waste water treatment plants.

  6. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission.

    PubMed

    Ashrafi, Omid; Yerushalmi, Laleh; Haghighat, Fariborz

    2015-08-01

    Pulp-and-paper mills produce various types of contaminants and a significant amount of wastewater depending on the type of processes used in the plant. Since the generated wastewaters can be potentially polluting and very dangerous, they should be treated in wastewater treatment plants before being released to the environment. This paper reviews different wastewater treatment processes used in the pulp-and-paper industry and compares them with respect to their contaminant removal efficiencies and the extent of greenhouse gas (GHG) emission. It also evaluates the impact of operating parameters on the performance of different treatment processes. Two mathematical models were used to estimate GHG emission in common biological treatment processes used in the pulp-and-paper industry. Nutrient removal processes and sludge treatment are discussed and their associated GHG emissions are calculated. Although both aerobic and anaerobic biological processes are appropriate for wastewater treatment, their combination known as hybrid processes showed a better contaminant removal capacity at higher efficiencies under optimized operating conditions with reduced GHG emission and energy costs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Volatile Organic Compound Emissions from USAF Wastewater Treatment Plants in Ozone Nonattainment Areas

    DTIC Science & Technology

    1994-09-01

    Wastewater Treatment 39 Industrial Sources 39 Household Products 39 Fate Mechanisms for VOCs in Wastewater 40 Volatilization 40 Gas Stripping 40...industrial sources, and household products (16:33-35; 51:51-53; 52:56; 53:6-7). Water and Wastewater Treatment. Chlorine is typically added to...of tetrachloroethene. Household Products . Cleaners, personal care items (deodorants, cosmetics, deodorizers), lawn and garden products, paints and

  8. Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities.

    ERIC Educational Resources Information Center

    Leffel, R. E.; And Others

    This manual attempts to describe new treatment methods, and discuss the application of new techniques for more effectively removing a broad spectrum of contaminants from wastewater. Topics covered include: fundamental design considerations, flow equalization, headworks components, clarification of raw wastewater, activated sludge, package plants,…

  9. Preliminary Study of Thermal Treatment of Coke Wastewater Sludge Using Plasma Torch

    NASA Astrophysics Data System (ADS)

    Li, Mingshu; Li, Shengli; Sun, Demao; Liu, Xin; Feng, Qiubao

    2016-10-01

    Thermal plasma was applied for the treatment of coke wastewater sludge derived from the steel industry in order to investigate the feasibility of the safe treatment and energy recovery of the sludge. A 30 kW plasma torch system was applied to study the vitrification and gas production of coke wastewater sludge. Toxicity leaching results indicated that the sludge treated via the thermal plasma process converted into a vitrified slag which resisted the leaching of heavy metals. CO2 was utilized as working gas to study the production and heat energy of the syngas. The heating value of the gas products by thermal plasma achieved 8.43 kJ/L, indicating the further utilization of the gas products. Considering the utilization of the syngas and recovery heat from the gas products, the estimated treatment cost of coke wastewater sludge via plasma torch was about 0.98 CNY/kg sludge in the experiment. By preliminary economic analysis, the dehydration cost takes an important part of the total sludge treatment cost. The treatment cost of the coke wastewater sludge with 50 wt.% moisture was calculated to be about 1.45 CNY/kg sludge dry basis. The treatment cost of the coke wastewater sludge could be effectively controlled by decreasing the water content of the sludge. These findings suggest that an economic dewatering pretreatment method could be combined to cut the total treatment cost in an actual treatment process.

  10. Energy intensity modeling for wastewater treatment technologies.

    PubMed

    Molinos-Senante, María; Sala-Garrido, Ramón; Iftimi, Adina

    2018-07-15

    Wastewater treatment plants (WWTPs) are energy intensive facilities; therefore increased pressure has been placed on managers and policy makers to reduce the facilities' energy use. Several studies were conducted to compare the energy intensity (EI) of WWTPs, which showed large dispersion in EI among the facilities. In the present study, the degree EI influenced WWTPs was tested using a set of technical variables by modeling the EI of a 305 WWTP sample grouped into five secondary treatment technologies. Results indicated the following two major findings: i) WWTPs using conventional activated sludge, extended aeration, trickling biofilters, and biodisks exhibited significant economies of scale in energy use; and ii) pollutant removal efficiency demonstrated low impacts on WWTP EI. The methodology and results of this study are of value to policy makers in planning new WWTPs and developing management plans to improve energy efficiency of wastewater treatment. Copyright © 2018. Published by Elsevier B.V.

  11. Potential of combining mechanical and physicochemical municipal wastewater pre-treatment with direct membrane filtration.

    PubMed

    Hey, Tobias; Väänänen, Janne; Heinen, Nicolas; la Cour Jansen, Jes; Jönsson, Karin

    2017-01-01

    At a full-scale wastewater treatment plant, raw municipal wastewater from the sand trap outlet was mechanically and physicochemically pre-treated before microfiltration (MF) in a large pilot-scale study. MF was performed using a low transmembrane pressure (0.03 bar) without backflushing for up to 159 h (∼6.6 d). Pre-filtration ensured stable MF operation compared with the direct application of raw wastewater on the membrane. The combination of physicochemical pre-treatment, such as coagulation, flocculation, and microsieving, with MF meets the European and Swedish discharge limits for small- and medium-sized wastewater treatment plants (WWTPs). The specific electricity footprint was 0.3-0.4 kWh·m -3 , which is an improvement compared to the median footprint of 0.75 kWh·m -3 found in 105 traditional Swedish WWTPs with sizes of 1500-10,000 person equivalents. Furthermore, the biological treatment step can be omitted, and the risk of releasing greenhouse gases was eliminated. The investigated wastewater treatment process required less space than conventional wastewater treatment processes, and more carbon was made available for biogas production.

  12. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.

    PubMed

    Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun

    2017-04-01

    Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products. Copyright © 2016. Published by Elsevier Inc.

  13. PROCESS DESIGN MANUAL: LAND TREATMENT OF MUNICIPAL WASTEWATER

    EPA Science Inventory

    The manual presents a rational procedure for the design of land treatment systems. Slow rate, rapid infiltration, and overland flow processes for the treatment of municipal wastewaters are discussed in detail, and the design concepts and criteria are presented. A two-phased plann...

  14. Treatment of winery wastewater in a conventional municipal activated sludge process: five years of experience.

    PubMed

    Bolzonella, D; Zanette, M; Battistoni, P; Cecchi, F

    2007-01-01

    A full-scale wastewater treatment plant where municipal and winery wastewaters were co-treated was studied for five years. The experimental results showed that suspended solids, COD, nitrogen and phosphorous were effectively removed both during the treatment of municipal wastewater and the cotreatment of municipal and winery wastewater. The sludge production increase from 4 tons to 5.5 tons per day during the harvesting and wine making period. In any case the specific sludge production was 0.2 kgMLVSS per kgCOD(removed) despite the organic loading increasing. About 70% of the COD was removed through respiration. Also the energy demand increased from 6,000 to 7,000 kWh per day. The estimated costs for the treatment of the winery wastewater was 0.2-0.3 Euros per m3 of treated wastewater. With reference to the process efficiency, the nitrogen removal was just 20%. The co-treatment of municipal and winery wastewater in conventional activated sludge processes can be a feasible solution for the treatment of these streams at relatively low costs.

  15. The effects of physicochemical wastewater treatment operations on forward osmosis.

    PubMed

    Hey, Tobias; Bajraktari, Niada; Vogel, Jörg; Hélix Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Raw municipal wastewater from a full-scale wastewater treatment plant was physicochemically pretreated in a large pilot-scale system comprising coagulation, flocculation, microsieve and microfiltration operated in various configurations. The produced microsieve filtrates and microfiltration permeates were then concentrated using forward osmosis (FO). Aquaporin Inside TM FO membranes were used for both the microsieve filtrate and microfiltration permeates, and Hydration Technologies Inc.-thin-film composite membranes for the microfiltration permeate using only NaCl as the draw solution. The FO performance was evaluated in terms of the water flux, water flux decline and solute rejections of biochemical oxygen demand, and total and soluble phosphorus. The obtained results were compared with the results of FO after only mechanical pretreatment. The FO permeates satisfied the Swedish discharge demands for small and medium-sized wastewater treatment plants. The study demonstrates that physicochemical pretreatment can improve the FO water flux by up to 20%. In contrast, the solute rejection decreases significantly compared to the FO-treated wastewater with mechanical pretreatment.

  16. Synthesis and Technological Innovation of Applying Oxide Nanomaterials in Wastewater Treatment by Flotation

    NASA Astrophysics Data System (ADS)

    Covaliu, C. I.; Moga, I. C.; Matache, M. G.; Paraschiv, G.; Gageanu, I.; Vasile, E.

    2018-06-01

    The appearance and development of nanotechnology gave new and efficient modalities for pollutants removal from wastewaters by using new compounds called nanomaterials which possess unique structural and morphological properties. In this paper we investigated the application of CoFe2O4 nanomaterial for increasing the efficiency of oily wastewater treatment by flotation. CoFe2O4 nanomaterial was prepared by precipitation method. Prior testing their application in wastewater treatment by flotation, the oxide nanomaterial was structural and morphological characterized by XRD and TEM analyses. The influence of CoFe2O4nanomaterial on oily wastewater depollution by flotation process was investigated by measuring the following parameters: treatment efficiency [%] and the stability of froth.

  17. Methicillin-Resistant Staphylococcus aureus (MRSA) Detected at Four U.S. Wastewater Treatment Plants

    PubMed Central

    Goldstein, Rachel E. Rosenberg; Micallef, Shirley A.; Gibbs, Shawn G.; Davis, Johnnie A.; He, Xin; George, Ashish; Kleinfelter, Lara M.; Schreiber, Nicole A.; Mukherjee, Sampa; Joseph, Sam W.

    2012-01-01

    Background: The incidence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections is increasing in the United States, and it is possible that municipal wastewater could be a reservoir of this microorganism. To date, no U.S. studies have evaluated the occurrence of MRSA in wastewater. Objective: We examined the occurrence of MRSA and methicillin-susceptible S. aureus (MSSA) at U.S. wastewater treatment plants. Methods: We collected wastewater samples from two Mid-Atlantic and two Midwest wastewater treatment plants between October 2009 and October 2010. Samples were analyzed for MRSA and MSSA using membrane filtration. Isolates were confirmed using biochemical tests and PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed by Sensititre® microbroth dilution. Staphylococcal cassette chromosome mec (SCCmec) typing, Panton-Valentine leucocidin (PVL) screening, and pulsed field gel electrophoresis (PFGE) were performed to further characterize the strains. Data were analyzed by two-sample proportion tests and analysis of variance. Results: We detected MRSA (n = 240) and MSSA (n = 119) in 22 of 44 (50%) and 24 of 44 (55%) wastewater samples, respectively. The odds of samples being MRSA-positive decreased as treatment progressed: 10 of 12 (83%) influent samples were MRSA-positive, while only one of 12 (8%) effluent samples was MRSA-positive. Ninety-three percent and 29% of unique MRSA and MSSA isolates, respectively, were multidrug resistant. SCCmec types II and IV, the pvl gene, and USA types 100, 300, and 700 (PFGE strain types commonly found in the United States) were identified among the MRSA isolates. Conclusions: Our findings raise potential public health concerns for wastewater treatment plant workers and individuals exposed to reclaimed wastewater. Because of increasing use of reclaimed wastewater, further study is needed to evaluate the risk of exposure to antibiotic-resistant bacteria in treated

  18. SUSTAINABLE WASTEWATER TREATMENT: NUTRIENT UPCYCLING OF AMMONIA INTO FERTILIZER

    EPA Science Inventory

    We intend to identify appropriate locations for treatment and feasibility of recovery for each of three types of wastewater treatment plants: municipal sewage treatment, manure digester, and cheese processing waste digester. We anticipate that a modular design for the elect...

  19. Technologies for reducing sludge production in wastewater treatment plants: State of the art.

    PubMed

    Wang, Qilin; Wei, Wei; Gong, Yanyan; Yu, Qiming; Li, Qin; Sun, Jing; Yuan, Zhiguo

    2017-06-01

    This review presents the state-of-the-art sludge reduction technologies applied in both wastewater and sludge treatment lines. They include chemical, mechanical, thermal, electrical treatment, addition of chemical un-coupler, and predation of protozoa/metazoa in wastewater treatment line, and physical, chemical and biological pretreatment in sludge treatment line. Emphasis was put on their effect on sludge reduction performance, with 10% sludge reduction to zero sludge production in wastewater treatment line and enhanced TS (total solids) or volatile solids removal of 5-40% in sludge treatment line. Free nitrous acid (FNA) technology seems good in wastewater treatment line but it is only under the lab-scale trial. In sludge treatment line, thermal, ultrasonic (<4400kJ/kg TS), FNA pretreatment and temperature-phased anaerobic digestion (TPAD) are promising if pathogen inactivation is not a concern. However, thermal pretreatment and TPAD are superior to other pretreatment technologies when pathogen inactivation is required. The new wastewater treatment processes including SANI®, high-rate activated sludge coupled autotrophic nitrogen removal and anaerobic membrane bioreactor coupled autotrophic nitrogen removal also have a great potential to reduce sludge production. In the future, an effort should be put on the effect of sludge reduction technologies on the removal of organic micropollutants and heavy metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A Primer on Wastewater Treatment, July 1976 Edition.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Public Affairs.

    This general information pamphlet is concerned with the types of wastewater treatment systems, the need for further treatment, and advanced methods of treating waste. Current methods are described, illustrated and evaluated. Pollution problems from oxygen-demanding wastes, disease-causing agents, plant nutrients, synthetic chemicals, inorganic…

  1. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    PubMed

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.

  2. Economy of precipitating agent application in municipal wastewater treatment facilities

    NASA Technical Reports Server (NTRS)

    Neis, U.; Geppert, B.; Hahn, H. H.; Gleisberg, D.

    1983-01-01

    Purification by precipitation in this study is not considered primarily as a means of phosphate removal but as a method for reduction of suspended solids BOD and COD. A dynamic calculation procedure is used to allow for exact determination of time dependent variation of costs. The results show that costs of wastewater treatment by precipitation may equal those of conventional primary clarification and secondary biological treatment, especially with low-cost iron-II-salts in simultaneous precipitation and in larger plants ( 20,000 PF). Cost advantages may be accrued in smaller plants by using the more expensive trivalent salts in pre-precipitation as compared to conventional low-load biological treatment. This is due mainly to better effluent quality and, consequently, lower wastewater fees (Wastewater Discharge Act). If the precipitant is dosed temporarily only during periods of highest pollution the savings can be about 5 to 10%.

  3. Biogas Production from Brewer’s Yeast Using an Anaerobic Sequencing Batch Reactor

    PubMed Central

    2017-01-01

    Summary Renewable energy sources are becoming increasingly important in the beverage and food industries. In the brewing industry, a significant percentage of the used raw materials finishes the process as secondary resource or waste. The research on the anaerobic digestion of brewer’s yeast has been scarce until recent years. One of the reasons for this is its use as a secondary resource in the food industry and as cattle feed. Additionally, market value of brewer’s yeast is higher than its energy value. Due to the increase of energy prices, brewer’s yeast has become of interest as energy substrate despite its difficult degradability in anaerobic conditions. The anaerobic co-digestion of brewer’s yeast and anaerobically treated brewery wastewater was studied using a pilot-scale anaerobic sequencing batch reactor (ASBR) seeded with granular biomass. The experiments showed very good and stable operation with an organic loading rate of up to 8.0 kg/(m3·day), and with a maximum achieved organic loading rate of 13.6 kg/(m3·day) in a single cycle. A specific biogas productivity of over 0.430 m3/kg of the total chemical oxygen demand (COD) inserted, and total COD removal efficiencies of over 90% were achieved. This study suggests that the brewer’s yeast can be successfully digested in an ASBR without adverse effects on the biogas production from brewer’s yeast/wastewater mixtures of up to 8% (by volume). By using the brewer’s yeast in the ASBR process, the biogas production from brewery wastewater could be increased by 50%. PMID:28867948

  4. A critical review on textile wastewater treatments: Possible approaches.

    PubMed

    Holkar, Chandrakant R; Jadhav, Ananda J; Pinjari, Dipak V; Mahamuni, Naresh M; Pandit, Aniruddha B

    2016-11-01

    Waste water is a major environmental impediment for the growth of the textile industry besides the other minor issues like solid waste and resource waste management. Textile industry uses many kinds of synthetic dyes and discharge large amounts of highly colored wastewater as the uptake of these dyes by fabrics is very poor. This highly colored textile wastewater severely affects photosynthetic function in plant. It also has an impact on aquatic life due to low light penetration and oxygen consumption. It may also be lethal to certain forms of marine life due to the occurrence of component metals and chlorine present in the synthetic dyes. So, this textile wastewater must be treated before their discharge. In this article, different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water. Treatment methods discussed in this paper involve oxidation methods (cavitation, photocatalytic oxidation, ozone, H2O2, fentons process), physical methods (adsorption and filtration), biological methods (fungi, algae, bacteria, microbial fuel cell). This review article will also recommend the possible remedial measures to treat different types of effluent generated from each textile operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant.

    PubMed

    Bhuptawat, Hitendra; Folkard, G K; Chaudhari, Sanjeev

    2007-04-02

    Moringa oleifera is a pan tropical, multipurpose tree whose seeds contain a high quality edible oil (up to 40% by weight) and water soluble proteins that act as effective coagulants for water and wastewater treatment. The use of this natural coagulant material has not yet realised its potential. A water extract of M. oleifera seed was applied to a wastewater treatment sequence comprising coagulation-flocculation-sedimentation-sand filtration. The study was laboratory based using an actual wastewater. Overall COD removals of 50% were achieved at both 50 and 100mg/l M. oleifera doses. When 50 and 100mg/l seed doses were applied in combination with 10mg/l of alum, COD removal increased to 58 and 64%, respectively. The majority of COD removal occurred during the filtration process. In the tests incorporating alum, sludge generation and filter head loss increased by factors of 3 and 2, respectively. These encouraging treatment results indicate that this may be the first treatment application that can move to large scale adoption. The simple water extract may be obtained at minimal cost from the presscake residue remaining after oil extraction from the seed. The regulatory compliance issues of adopting 'new materials' for wastewater treatment are significantly less stringent than those applying to the production of potable water.

  6. Community composition of known and uncultured archaeal lineages in anaerobic or anoxic wastewater treatment sludge.

    PubMed

    Kuroda, Kyohei; Hatamoto, Masashi; Nakahara, Nozomi; Abe, Kenichi; Takahashi, Masanobu; Araki, Nobuo; Yamaguchi, Takashi

    2015-04-01

    Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.

  7. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge--fate of bisphenol A.

    PubMed

    Mohapatra, D P; Brar, S K; Tyagi, R D; Surampalli, R Y

    2010-02-01

    Bisphenol A (BPA), an endocrine disrupting compound largely used in plastic and paper industry, ends up in aquatic systems via wastewater treatment plants (WWTPs) among other sources. The identification and quantification of BPA in wastewater (WW) and wastewater sludge (WWS) is of major interest to assess the endocrine activity of treated effluent discharged into the environment. Many treatment technologies, including various pre-treatment methods, such as hydrolysis, Fenton oxidation, peroxidation, ultrasonication and ozonation have been developed in order to degrade BPA in WW and WWS and for the production of WWS based value-added products (VAPs). WWS based VAPs, such as biopesticides, bioherbicides, biofertilizers, bioplastics and enzymes are low cost biological alternatives that can compete with chemicals or other cost intensive biological products in the current markets. However, this field application is disputable due to the presence of these organic compounds which has been discussed with a perspective of simultaneous degradation. The pre-treatment produces an impact on rheology as well as value-addition which has been reviewed in this paper. Various analytical techniques available for the detection of BPA in WW and WWS are also discussed. Presence of heavy metals and possible thermodynamical behavior of the compound in WW and WWS can have major impact on BPA removal, which is also included in the review.

  8. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  9. A review on full-scale decentralized wastewater treatment systems: techno-economical approach.

    PubMed

    Singh, Nitin Kumar; Kazmi, A A; Starkl, M

    2015-01-01

    As a solution to the shortcomings of centralized systems, over the last two decades large numbers of decentralized wastewater treatment plants of different technology types have been installed all over the world. This paper aims at deriving lessons learned from existing decentralized wastewater treatment plants that are relevant for smaller towns (and peri-urban areas) as well as rural communities in developing countries, such as India. Only full-scale implemented decentralized wastewater treatment systems are reviewed in terms of performance, land area requirement, capital cost, and operation and maintenance costs. The results are presented in tables comparing different technology types with respect to those parameters.

  10. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA.

    PubMed

    Karthikeyan, K G; Meyer, Michael T

    2006-05-15

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H(2)O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%)>sulfamethoxazole (70%)>erythromycin-H(2)O (45%)>ciprofloxacin (40%)>sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study.

  11. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    EPA Pesticide Factsheets

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  12. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; An, Guanfeng

    2015-05-01

    In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.

  13. Define of internal recirculation coefficient for biological wastewater treatment in anoxic and aerobic bioreactors

    NASA Astrophysics Data System (ADS)

    Rossinskyi, Volodymyr

    2018-02-01

    The biological wastewater treatment technologies in anoxic and aerobic bioreactors with recycle of sludge mixture are used for the effective removal of organic compounds from wastewater. The change rate of sludge mixture recirculation between bioreactors leads to a change and redistribution of concentrations of organic compounds in sludge mixture in bioreactors and change hydrodynamic regimes in bioreactors. Determination of the coefficient of internal recirculation of sludge mixture between bioreactors is important for the choice of technological parameters of biological treatment (wastewater treatment duration in anoxic and aerobic bioreactors, flow capacity of recirculation pumps). Determination of the coefficient of internal recirculation of sludge mixture requires integrated consideration of hydrodynamic parameter (flow rate), kinetic parameter (rate of oxidation of organic compounds) and physical-chemical parameter of wastewater (concentration of organic compounds). The conducted numerical experiment from the proposed mathematical equations allowed to obtain analytical dependences of the coefficient of internal recirculation sludge mixture between bioreactors on the concentration of organic compounds in wastewater, the duration of wastewater treatment in bioreactors.

  14. Natural treatment system models for wastewater management: a study from Hyderabad, India.

    PubMed

    Sonkamble, Sahebrao; Wajihuddin, Md; Jampani, Mahesh; Sarah, S; Somvanshi, V K; Ahmed, Shakeel; Amerasinghe, Priyanie; Boisson, Alexandre

    2018-01-01

    Wastewater generated on a global scale has become a significant source of water resources which necessitates appropriate management strategies. However, the complexities associated with wastewater are lack of economically viable treatment systems, especially in low- and middle-income countries. While many types of treatment systems are needed to serve the various local issues, we propose natural treatment systems (NTS) such as natural wetlands that are eco-friendly, cost-effective, and can be jointly driven by public bodies and communities. In order for it to be part of wastewater management, this study explores the NTS potential for removal of pollutants, cost-effectiveness, and reuse options for the 1.20 million m 3 /day of wastewater generated in Hyderabad, India. The pilot study includes hydro-geophysical characterization of natural wetland to determine pollutant removal efficiency and its effective utilization for treated wastewater in the peri-urban habitat. The results show the removal of organic content (76-78%), nutrients (77-97%), and microbes (99.5-99.9%) from the wetland-treated wastewater and its suitability for agriculture applications. Furthermore, the wetland efficiency integrated with engineered interventions led to the development of NTS models with different application scenarios: (i) constructed wetlands, (ii) minimized community wetlands, and (iii) single outlet system, suitable for urban, peri-urban and rural areas, respectively.

  15. Denitrifying bioreactor clogging potential during wastewater treatment

    USDA-ARS?s Scientific Manuscript database

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  16. Effective swine wastewater treatment by combining microbial fuel cells with flocculation.

    PubMed

    Ding, Weijun; Cheng, Shaoan; Yu, Liliang; Huang, Haobin

    2017-09-01

    Microbial fuel cells (MFCs) provide a cost-effective method for treating swine wastewater treatment and simultaneously producing electricity, yet they need to be combined with other wastewater treatment processes to improve the effluent water quality. In this paper, we constructed single-chamber air-cathode MFCs with a compact configuration for nitrogen and COD removal and high electricity production and combined them with a low-cost flocculation process to discharge higher quality wastewater. We show that MFCs could remove ammonia at a rate of 269.2 ± 0.5 g m -3 d -1 (99.1± 0.1% ammonia removal efficiency) with a maximum power density of 37.5 W m -3 and 21.6% of coulombic efficiency at a 40:60 ratio of raw swine wastewater to denitrification effluent of swine wastewater. Up to 82.5 ± 0.5% COD could be removed with MFCs, from 2735 ± 15 mg L -1 to 480 ± 15 mg L -1 , and flocculation further reduced levels to 90 ± 1 mg L -1 for a 96.6 ± 0.2% overall COD removal efficiency of the combination technology. Cost analysis of the combined MFC and flocculation process showed a net economic benefit of $ 0.026 m -3 . In summary, this novel combination wastewater treatment method provides an effective way to treat swine wastewater to low pollutant levels in the effluent at low cost (a net gain). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pathogen and Particle Associations in Wastewater: Significance and Implications for Treatment and Disinfection Processes.

    PubMed

    Chahal, C; van den Akker, B; Young, F; Franco, C; Blackbeard, J; Monis, P

    2016-01-01

    Disinfection guidelines exist for pathogen inactivation in potable water and recycled water, but wastewater with high numbers of particles can be more difficult to disinfect, making compliance with the guidelines problematic. Disinfection guidelines specify that drinking water with turbidity ≥1 Nephelometric Turbidity Units (NTU) is not suitable for disinfection and therefore not fit for purpose. Treated wastewater typically has higher concentrations of particles (1-10NTU for secondary treated effluent). Two processes widely used for disinfecting wastewater are chlorination and ultraviolet radiation. In both cases, particles in wastewater can interfere with disinfection and can significantly increase treatment costs by increasing operational expenditure (chemical demand, power consumption) or infrastructure costs by requiring additional treatment processes to achieve the required levels of pathogen inactivation. Many microorganisms (viruses, bacteria, protozoans) associate with particles, which can allow them to survive disinfection processes and cause a health hazard. Improved understanding of this association will enable development of cost-effective treatment, which will become increasingly important as indirect and direct potable reuse of wastewater becomes more widespread in both developed and developing countries. This review provides an overview of wastewater and associated treatment processes, the pathogens in wastewater, the nature of particles in wastewater and how they interact with pathogens, and how particles can impact disinfection processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. General Characteristics and Treatment Possibilities of
Dairy Wastewater – A Review

    PubMed Central

    2017-01-01

    Summary The milk processing industry is one of the world’s staple industries, thus the treatment possibilities of dairy effluents have been attracting more and more attention. The purpose of the paper is to review contemporary research on dairy wastewater. The origin, categories, as well as liquid by-products and general indicators of real dairy wastewater are described. Different procedures applied for dairy wastewater management are summarised. Attention is focused on in-factory treatment technologies with the emphasis on biological processes. Aerobic and anaerobic methods with both their advantages and disadvantages are discussed in detail. Consecutive anaerobic and aerobic systems are analysed, too. Finally, future research niches are identified. PMID:28559730

  19. An Innovative Membrane Bioreactor Process For Achieving Sustainable Advanced Wastewater Treatment

    EPA Science Inventory

    Chemicals of concern (COCs), such as pharmaceutical chemicals, steroid hormones, and pesticides, have been found to be widely distributed in water and wastewater. Conventionally operated wastewater treatment plants do not provide an effective barrier against the release of these...

  20. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    PubMed

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2018-01-01

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  1. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use-A One Year Study from Vietnam.

    PubMed

    Lien, La Thi Quynh; Hoa, Nguyen Quynh; Chuc, Nguyen Thi Kim; Thoa, Nguyen Thi Minh; Phuc, Ho Dang; Diwan, Vishal; Dat, Nguyen Thanh; Tamhankar, Ashok J; Lundborg, Cecilia Stålsby

    2016-06-14

    Hospital effluents represent an important source for the release of antibiotics and antibiotic resistant bacteria into the environment. This study aims to determine concentrations of various antibiotics in wastewater before and after wastewater treatment in a rural hospital (60 km from the center of Hanoi) and in an urban hospital (in the center of Hanoi) in Vietnam, and it aims to explore the relationship between antibiotic concentrations in wastewater before wastewater treatment and quantities of antibiotics used in the rural hospital, over a period of one year in 2013. Water samples were collected using continuous sampling for 24 h in the last week of every month. The data on quantities of antibiotics delivered to all inpatient wards were collected from the Pharmacy department in the rural hospital. Solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry were used for chemical analysis. Significant concentrations of antibiotics were present in the wastewater both before and after wastewater treatment of both the rural and the urban hospital. Ciprofloxacin was detected at the highest concentrations in the rural hospital's wastewater (before treatment: mean = 42.8 µg/L; after treatment: mean = 21.5 µg/L). Metronidazole was detected at the highest concentrations in the urban hospital's wastewater (before treatment: mean = 36.5 µg/L; after treatment: mean = 14.8 µg/L). A significant correlation between antibiotic concentrations in wastewater before treatment and quantities of antibiotics used in the rural hospital was found for ciprofloxacin (r = 0.78; p = 0.01) and metronidazole (r = 0.99; p < 0.001).

  2. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use—A One Year Study from Vietnam

    PubMed Central

    Lien, La Thi Quynh; Hoa, Nguyen Quynh; Chuc, Nguyen Thi Kim; Thoa, Nguyen Thi Minh; Phuc, Ho Dang; Diwan, Vishal; Dat, Nguyen Thanh; Tamhankar, Ashok J.; Lundborg, Cecilia Stålsby

    2016-01-01

    Hospital effluents represent an important source for the release of antibiotics and antibiotic resistant bacteria into the environment. This study aims to determine concentrations of various antibiotics in wastewater before and after wastewater treatment in a rural hospital (60 km from the center of Hanoi) and in an urban hospital (in the center of Hanoi) in Vietnam, and it aims to explore the relationship between antibiotic concentrations in wastewater before wastewater treatment and quantities of antibiotics used in the rural hospital, over a period of one year in 2013. Water samples were collected using continuous sampling for 24 h in the last week of every month. The data on quantities of antibiotics delivered to all inpatient wards were collected from the Pharmacy department in the rural hospital. Solid-phase extraction and high performance liquid chromatography-tandem mass spectrometry were used for chemical analysis. Significant concentrations of antibiotics were present in the wastewater both before and after wastewater treatment of both the rural and the urban hospital. Ciprofloxacin was detected at the highest concentrations in the rural hospital’s wastewater (before treatment: mean = 42.8 µg/L; after treatment: mean = 21.5 µg/L). Metronidazole was detected at the highest concentrations in the urban hospital’s wastewater (before treatment: mean = 36.5 µg/L; after treatment: mean = 14.8 µg/L). A significant correlation between antibiotic concentrations in wastewater before treatment and quantities of antibiotics used in the rural hospital was found for ciprofloxacin (r = 0.78; p = 0.01) and metronidazole (r = 0.99; p < 0.001). PMID:27314366

  3. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    NASA Astrophysics Data System (ADS)

    Szeląg, Bartosz; Barbusiński, Krzysztof; Studziński, Jan; Bartkiewicz, Lidia

    2017-11-01

    In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline) method, artificial neural networks (ANN) of the multilayer perceptron type combined with the classification model (SOM) and cascade neural networks (CNN). The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.

  4. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    PubMed

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  5. Effect of treatment in a constructed wetland on toxicity of textile wastewater

    USGS Publications Warehouse

    Baughman, G.L.; Perkins, W.S.; Lasier, P.J.; Winger, P.V.

    2003-01-01

    Constructed wetlands for treating wastewater have proliferated in recent years and their characteristics have been studied extensively. In most cases, constructed wetlands have been used primarily for removal of nutrients and heavy metals. Extensive literature is available concerning construction and use of wetlands for treatment of wastewater. Even so, quantitative descriptions of wetland function and processes are highly empirical and difficult to extrapolate. The processes involved in removal of pollutants by wetlands are poorly understood, especially for waste streams as complex as textile effluents. The few studies conducted on treatment of textile wastewater in constructed wetlands were cited in earlier publications. Results of a two-year study of a full-scale wetland treating textile effluent are presented here. The paper describes the effects of the wetland on aquatic toxicity of the wastewater and draws conclusions about the utility and limitations of constructed wetlands for treatment of textile effluents.

  6. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    PubMed Central

    Barancheshme, Fateme; Munir, Mariya

    2018-01-01

    The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs). It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1) study innovative strategies in large scale and over a long time to reach an actual evaluation, (2) develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3) consider operating and environmental factors that affect the efficiency of each

  7. Treatment of variable and intermittently flowing wastewaters.

    PubMed

    Kocasoy, Günay

    1993-11-01

    The biological treatment of wastewaters originating from hotels and residential areas of seasonal use, flowing intermittently, is difficult due to the fact that bacteria cannot survive during periods of no-flow. An investigation has been conducted in order to develop a system which will be able to overcome the difficulties encountered. After a long investigation the following system has given satisfactory results. The wastewater was taken initially into an aeration tank operating as a sequential batch reactor. Waste was taken after the sedimentation phase of the reactor into a coagulation-flocculation tank where it was treated by chemical means, and then settled in order to separate the floes. When the population of bacteria in the aeration tank reached the required level, the physico-chemical treatment was terminated and the tank used for chemical treatment has been started to be used as an equalization tank while the aeration and sedimentation tanks have been used as an activated sludge unit. This system has been proved to be a satisfactory method for the above mentioned wastes.

  8. Wastewater Treatment from Batik Industries Using TiO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Arifan, Fahmi; Nugraheni, FS; Rama Devara, Hafiz; Lianandya, Niken Elsa

    2018-02-01

    Batik is cultural patterned fabric, and the this industries produce wastewater that can pollute the aquatic environment. Besides dyes, batik wastewater also contains synthetic compounds that are hard degraded, such as heavy metals, suspended solids, or organic compounds. In this study, photocatalitic membrane TiO2 coated plastic sheets have been used to degrade batik wastewater under solar exposure. A total of 8 pieces of catalyst sheets are added on 1000 ml of the waste, and managed to degrade 50.41% of the initial concentration during 5-days irradiation. In this study, several parameters of the water quality such as chemical oxygen demand (COD), biological oxygen demand (BOD), and total suspensed solids (TSS) of the wastewater were observed to be decreasing during photodegradation process. The catalyst sheet also is stable to be used repeatedly in wastewater treatment.

  9. Carbon footprints of Scandinavian wastewater treatment plants.

    PubMed

    Gustavsson, D J I; Tumlin, S

    2013-01-01

    This study estimates the carbon footprints of 16 municipal wastewater treatment plants (WWTPs), all situated in Scandinavian countries, by using a simple model. The carbon footprint calculations were based on operational data, literature emission factors (efs) and measurements of greenhouse gas emissions at some of the studied WWTPs. No carbon neutral WWTPs were found. The carbon footprints ranged between 7 and 108 kg CO2e P.E.(-1) year(-1). Generally, the major positive contributors to the carbon footprint were direct emissions of nitrous oxide from wastewater treatment. Whether heat pumps for effluents have high coefficient of performance or not is extremely important for the carbon footprint. The choice of efs largely influenced the carbon footprint. Increased biogas production, efficient biogas usage, and decreased addition of external fossil carbon source for denitrification are important activities to decrease the carbon footprint of a WWTP.

  10. Cultivation of aerobic granular sludge for rubber wastewater treatment.

    PubMed

    Rosman, Noor Hasyimah; Nor Anuar, Aznah; Othman, Inawati; Harun, Hasnida; Sulong Abdul Razak, Muhammad Zuhdi; Elias, Siti Hanna; Mat Hassan, Mohd Arif Hakimi; Chelliapan, Shreesivadass; Ujang, Zaini

    2013-02-01

    Aerobic granular sludge (AGS) was successfully cultivated at 27±1 °C and pH 7.0±1 during the treatment of rubber wastewater using a sequential batch reactor system mode with complete cycle time of 3 h. Results showed aerobic granular sludge had an excellent settling ability and exhibited exceptional performance in the organics and nutrients removal from rubber wastewater. Regular, dense and fast settling granule (average diameter, 1.5 mm; settling velocity, 33 m h(-1); and sludge volume index, 22.3 mL g(-1)) were developed in a single reactor. In addition, 96.5% COD removal efficiency was observed in the system at the end of the granulation period, while its ammonia and total nitrogen removal efficiencies were up to 94.7% and 89.4%, respectively. The study demonstrated the capabilities of AGS development in a single, high and slender column type-bioreactor for the treatment of rubber wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Centralized waste treatment of industrial wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saltzberg, E.R.; Cushnie, G.C. Jr.

    1985-01-01

    Centralized waste treatment (CWT) for industrial wastewater is described in this book. With the CWT approach, industrial firms send their wastes to a common processing plant. The book addresses the engineering and business-related problems that are encountered by private CWT firms, local governments, and industry in creating sufficient CWT capacity to meet the growing demand for CWT services.

  12. Prediction of wastewater treatment plants performance based on artificial fish school neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Ruicheng; Li, Chong

    2011-10-01

    A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.

  13. Treatment of winery wastewater by physicochemical, biological and advanced processes: a review.

    PubMed

    Ioannou, L A; Li Puma, G; Fatta-Kassinos, D

    2015-04-09

    Winery wastewater is a major waste stream resulting from numerous cleaning operations that occur during the production stages of wine. The resulting effluent contains various organic and inorganic contaminants and its environmental impact is notable, mainly due to its high organic/inorganic load, the large volumes produced and its seasonal variability. Several processes for the treatment of winery wastewater are currently available, but the development of alternative treatment methods is necessary in order to (i) maximize the efficiency and flexibility of the treatment process to meet the discharge requirements for winery effluents, and (ii) decrease both the environmental footprint, as well as the investment/operational costs of the process. This review, presents the state-of-the-art of the processes currently applied and/or tested for the treatment of winery wastewater, which were divided into five categories: i.e., physicochemical, biological, membrane filtration and separation, advanced oxidation processes, and combined biological and advanced oxidation processes. The advantages and disadvantages, as well as the main parameters/factors affecting the efficiency of winery wastewater treatment are discussed. Both bench- and pilot/industrial-scale processes have been considered for this review. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Distribution of injected wastewater in the saline-lava aquifer, Wailuku-Kahului wastewater treatment facility, Kahului, Maui, Hawaii

    USGS Publications Warehouse

    Burnham, Willis L.; Larson, S.P.; Cooper, Hilton Hammond

    1977-01-01

    Field studies and digital modeling of a lava rock aquifer system near Kahului, Maui, Hawaii, describe the distribution of planned injected wastewater from a secondary treatment facility. The aquifer contains water that is almost as saline as seawater. The saline water is below a seaward-discharging freshwater lens, and separated from it by a transition zone of varying salinity. Injection of wastewater at an average rate of 6.2 cubic feet per second is planned through wells open only to the aquifer deep within the saline water zone. The lava rock aquifer is overlain by a sequence of residual soil, clay, coral reef deposits, and marine sand that form a low-permeability caprock which semiconfines the lava rock aquifer. Under conditions measured and assumed without significant change. After reaching a new steady state, the wastewater will discharge into and through the caprock sequence within an area measuring approximately 1,000 feet inland, 1,000 feet laterally on either side of the injection site, and about 2,000 feet seaward. Little, if any, of the injected wastewater may be expected to reach the upper part of the caprock flow system landward of the treatment plant facility. (Woodard-USGS)

  15. Immobilisation increases yeast cells' resistance to dehydration-rehydration treatment.

    PubMed

    Borovikova, Diana; Rozenfelde, Linda; Pavlovska, Ilona; Rapoport, Alexander

    2014-08-20

    This study was performed with the goal of revealing if the dehydration procedure used in our new immobilisation method noticeably decreases the viability of yeast cells in immobilised preparations. Various yeasts were used in this research: Saccharomyces cerevisiae cells that were rather sensitive to dehydration and had been aerobically grown in an ethanol-containing medium, a recombinant strain of S. cerevisiae grown in aerobic conditions which were completely non-resistant to dehydration and an anaerobically grown bakers' yeast strain S. cerevisiae, as well as a fairly resistant Pichia pastoris strain. Experiments performed showed that immobilisation of all these strains essentially increased their resistance to a dehydration-rehydration treatment. The increase of cells' viability (compared with control cells dehydrated in similar conditions) was from 30 to 60%. It is concluded that a new immobilisation method, which includes a dehydration stage, does not lead to an essential loss of yeast cell viability. Correspondingly, there is no risk of losing the biotechnological activities of immobilised preparations. The possibility of producing dry, active yeast preparations is shown, for those strains that are very sensitive to dehydration and which can be used in biotechnology in an immobilised form. Finally, the immobilisation approach can be used for the development of efficient methods for the storage of recombinant yeast strains. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Duckweed based wastewater stabilization ponds for wastewater treatment (a low cost technology for small urban areas in Zimbabwe)

    NASA Astrophysics Data System (ADS)

    Dalu, J. M.; Ndamba, J.

    A three-year investigation into the potential use of duckweed based wastewater stabilizations ponds for wastewater treatment was carried out at two small urban areas in Zimbabwe. The study hoped to contribute towards improved environmental management through improving the quality of effluent being discharged into natural waterways. This was to be achieved through the development and facilitation of the use of duckweed based wastewater stabilizations ponds. The study was carried out at Nemanwa and Gutu Growth Points both with a total population of 23 000. The two centers, like more than 70% of Zimbabwe’s small urban areas, relied on algae based ponds for domestic wastewater treatment. The final effluent is used to irrigate gum plantations before finding its way into the nearest streams. Baseline wastewater quality information was collected on a monthly basis for three months after which duckweed ( Lemna minor) was introduced into the maturation ponds to at least 50% pond surface cover. The influent and effluent was then monitored on a monthly basis for chemical, physical and bacteriological parameters as stipulated in the Zimbabwe Water (Waste and Effluent Disposal) regulations of 2000. After five months, the range of parameters tested for was narrowed to include only those that sometimes surpassed the limits. These included: phosphates, nitrates, pH, biological oxygen demand, iron, conductivity, chemical oxygen demand, turbidity, total dissolved solids and total suspended solids. Significant reductions to within permissible limits were obtained for most of the above-mentioned parameters except for phosphates, chemical and biological oxygen demand and turbidity. However, in these cases, more than 60% reductions were observed when the influent and effluent levels were compared. It is our belief that duckweed based waste stabilization ponds can now be used successfully for the treatment of domestic wastewater in small urban areas of Zimbabwe.

  17. N-nitrosodimethylamine (NDMA) formation during ozonation of wastewater and water treatment polymers.

    PubMed

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg; Snyder, Shane A

    2016-02-01

    N-Nitrosodimethylamine (NDMA) formation by ozonation was investigated in the effluents of four different wastewater treatment plants destined for alternative reuse. Very high levels of NDMA formation were observed in wastewaters from treatment plants non operating with biological nitrogen removal. Selected experiments showed that hydroxyl radical did not have a significant role in NDMA formation during ozonation of wastewater. Furthermore, ozonation of three different polymers used for water treatment, including polyDADMAC, anionic polyacrylamide, and cationic polyacrylamide, spiked in wastewater did not increase the NDMA formation. Effluent organic matter (EfOM) likely reduced the availability of ozone in water able to react with polymers and quenched the produced ·OH radicals which limited polymer degradation and subsequent NDMA production. Excellent correlations were observed between NDMA formation, UV absorbance at 254 nm, and total fluorescence reduction. These data provide evidence that UV and fluorescence surrogates could be used for monitoring and/or controlling NDMA formation during ozonation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants.

    PubMed

    Monteith, Hugh D; Sahely, Halla R; MacLean, Heather L; Bagley, David M

    2005-01-01

    Municipal wastewater treatment may lead to the emission of greenhouse gases. The current Intergovenmental Panel on Climate Change (Geneva, Switzerland) approach attributes only methane emissions to wastewater treatment, but this approach may overestimate greenhouse gas emissions from the highly aerobic processes primarily used in North America. To better estimate greenhouse gas emissions, a procedure is developed that can be used either with plant-specific data or more general regional data. The procedure was evaluated using full-scale data from 16 Canadian wastewater treatment facilities and then applied to all 10 Canadian provinces. The principal greenhouse gas emitted from municipal wastewater treatment plants was estimated to be carbon dioxide (CO2), with very little methane expected. The emission rates ranged from 0.005 kg CO2-equivalent/m3 treated for primary treatment facilities to 0.26 kg CO2-equivalent/m3 for conventional activated sludge, with anaerobic sludge digestion to over 0.8 kg CO2-equivalent/m3 for extended aeration with aerobic digestion. Increasing the effectiveness of biogas generation and use will decrease the greenhouse gas emissions that may be assigned to the wastewater treatment plant.

  19. The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment.

    PubMed

    Bering, Sławomira; Mazur, Jacek; Tarnowski, Krzysztof; Janus, Magdalena; Mozia, Sylwia; Morawski, Antoni Waldemar

    2018-06-15

    Large, laboratory scale biological treatment tests of real industrial wastewater, generated in a large industrial laundry facility, was conducted from October 2014 to January 2015. This research sought to develop laundry wastewater treatment technology which included tests of a two-stage Moving Bed Bio Reactor (MBBR); this had two reactors, was filled with carriers Kaldnes K5 (specific area - 800 m 2 /m 3 ) and were realized in aerobic condition. Operating on site, in the laundry, reactors were fed actual wastewater from the laundry retention tank. The laundry wastewater contained mainly surfactants and impurities originating from washed fabrics; a solution of urea to supplement nitrogen content and a solution of acid to correct pH were added. The daily flow of raw wastewater Qd varied from 0.6-1.0 m 3 /d. Wastewater quality indicators showed that the reduction of pollutants was obtained: BOD 5 by 95-98%, COD by 89-94%, the sum of anionic and nonionic surfactants by 85-96%. The quality of the purified wastewater after the start-up period met legal requirements regarding the standards for wastewater discharged into the environment. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Phenol degradation and heavy metal tolerance of Antarctic yeasts.

    PubMed

    Fernández, Pablo Marcelo; Martorell, María Martha; Blaser, Mariana G; Ruberto, Lucas Adolfo Mauro; de Figueroa, Lucía Inés Castellanos; Mac Cormack, Walter Patricio

    2017-05-01

    In cold environments, biodegradation of organic pollutants and heavy metal bio-conversion requires the activity of cold-adapted or cold-tolerant microorganisms. In this work, the ability to utilize phenol, methanol and n-hexadecane as C source, the tolerance to different heavy metals and growth from 5 to 30 °C were evaluated in cold-adapted yeasts isolated from Antarctica. Fifty-nine percent of the yeasts were classified as psychrotolerant as they could grow in all the range of temperature tested, while the other 41% were classified as psychrophilic as they only grew below 25 °C. In the assimilation tests, 32, 78, and 13% of the yeasts could utilize phenol, n-hexadecane, and methanol as C source, respectively, but only 6% could assimilate the three C sources evaluated. In relation to heavy metals ions, 55, 68, and 80% were tolerant to 1 mM of Cr(VI), Cd(II), and Cu(II), respectively. Approximately a half of the isolates tolerated all of them. Most of the selected yeasts belong to genera previously reported as common for Antarctic soils, but several other genera were also isolated, which contribute to the knowledge of this cold environment mycodiversity. The tolerance to heavy metals of the phenol-degrading cold-adapted yeasts illustrated that the strains could be valuable as inoculant for cold wastewater treatment in extremely cold environments.

  1. Study on industrial wastewater treatment using superconducting magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Zhao, Zhengquan; Xu, Xiangdong; Li, Laifeng

    2011-06-01

    The mechanism of industrial wastewater treatment using superconducting magnetic separation is investigated. Fe 3O 4 nanoparticles were prepared by liquid precipitation and characterized by X-ray diffraction (XRD). Polyacrylic acid (PAA) film was coated on the magnetic particles using plasma coating technique. Transmission electron microscope (TEM) observation and infrared spectrum measurement indicate that the particle surface is well coated with PAA, and the film thickness is around 1 nm. Practical paper factory wastewater treatment using the modified magnetic seeds in a superconducting magnet (SCM) was carried out. The results show that the maximum removal rate of chemical oxygen demand (COD) by SCM method can reach 76%.

  2. R-plasmid transfer in a wastewater treatment plant.

    PubMed Central

    Mach, P A; Grimes, D J

    1982-01-01

    Enteric bacteria have been examined for their ability to transfer antibiotic resistance in a wastewater treatment plant. Resistant Salmonella enteritidis, Proteus mirabilis, and Escherichia coli were isolated from clinical specimens and primary sewage effluent. Resistance to ampicillin, chloramphenicol, streptomycin, sulfadiazine, and tetracycline was demonstrated by spread plate and tube dilution techniques. Plasmid mediation of resistance was shown by ethidium bromide curing, agarose gel electrophoresis, and direct cell transfer. Each donor was mated with susceptible E. coli and Shigella sonnei. Mating pairs (and recipient controls) were suspended in unchlorinated primary effluent that had been filtered and autoclaved. Suspensions were added to membrane diffusion chambers which were then placed in the primary and secondary setting tanks of the wastewater treatment plant. Resistant recombinants were detected by replica plating nutrient agar master plates onto xylose lysine desoxycholate agar plates that contained per milliliter of medium 10 micrograms of ampicillin, 30 micrograms of chloramphenicol, 10 micrograms of streptomycin, 100 micrograms of sulfadiazine, or 30 micrograms of tetracycline. Mean transfer frequencies for laboratory matings were 2.1 X 10(-3). In situ matings for primary and secondary settling resulted in frequencies of 4.9 X 10(-5) and 7.5 X 10(-5), respectively. These values suggest that a significant level of resistance transfer occurs in wastewater treatment plants in the absence of antibiotics as selective agents. Images PMID:6760813

  3. Environmental Pollution, Toxicity Profile and Treatment Approaches for Tannery Wastewater and Its Chemical Pollutants.

    PubMed

    Saxena, Gaurav; Chandra, Ram; Bharagava, Ram Naresh

    Leather industries are key contributors in the economy of many developing countries, but unfortunately they are facing serious challenges from the public and governments due to the associated environmental pollution. There is a public outcry against the industry due to the discharge of potentially toxic wastewater having alkaline pH, dark brown colour, unpleasant odour, high biological and chemical oxygen demand, total dissolved solids and a mixture of organic and inorganic pollutants. Various environment protection agencies have prioritized several chemicals as hazardous and restricted their use in leather processing however; many of these chemicals are used and discharged in wastewater. Therefore, it is imperative to adequately treat/detoxify the tannery wastewater for environmental safety. This paper provides a detail review on the environmental pollution and toxicity profile of tannery wastewater and chemicals. Furthermore, the status and advances in the existing treatment approaches used for the treatment and/or detoxification of tannery wastewater at both laboratory and pilot/industrial scale have been reviewed. In addition, the emerging treatment approaches alone or in combination with biological treatment approaches have also been considered. Moreover, the limitations of existing and emerging treatment approaches have been summarized and potential areas for further investigations have been discussed. In addition, the clean technologies for waste minimization, control and management are also discussed. Finally, the international legislation scenario on discharge limits for tannery wastewater and chemicals has also been discussed country wise with discharge standards for pollution prevention due to tannery wastewater.

  4. Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis.

    PubMed

    Lofrano, G; Libralato, G; Casaburi, A; Siciliano, A; Iannece, P; Guida, M; Pucci, L; Dentice, E F; Carotenuto, M

    2018-05-15

    This study assessed the effects and removal options of the macrolide spiramycin, currently used for both in human and veterinary medicine- with a special focus on advanced oxidation processes based on heterogeneous TiO 2 _ assisted photocatalysis. Spiramycin real concentrations were investigated on a seasonal basis in a municipal wastewater treatment plant (up to 35μgL -1 ), while its removal kinetics were studied considering both aqueous solutions and real wastewater samples, including by-products toxicity assessment. High variability of spiramycin removal by activated sludge treatments (from 9% (wintertime) to >99.9% (summertime)) was observed on a seasonal basis. Preliminary results showed that a total spiramycin removal (>99.9%) is achieved with 0.1gL -1 of TiO 2 in aqueous solution after 80min. Integrated toxicity showed residual slight acute effects in the photocatalytic treated solutions, independently from the amount of TiO 2 used, and could be linked to the presence of intermediate compounds. Photolysis of wastewater samples collected after activated sludge treatment during summer season (SPY 5μgL -1 ) allowed a full SPY removal after 80min. When photocatalysis with 0.1gL -1 of TiO 2 was carried out in wastewater samples collected in winter season (SPY 30μgL -1 ) after AS treatment, SPY removal was up to 91% after 80min. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA

    USGS Publications Warehouse

    Karthikeyan, K.G.; Meyer, M.T.

    2006-01-01

    Samples from several wastewater treatment facilities in Wisconsin were screened for the presence of 21 antibiotic compounds. These facilities spanned a range of community size served (average daily flow from 0.0212 to 23.6 million gallons/day), secondary treatment processes, geographic locations across the state, and they discharged the treated effluents to both surface and ground waters (for ground water after a soil passage). A total of six antibiotic compounds were detected (1-5 compounds per site), including two sulfonamides (sulfamethazine, sulfamethoxazole), one tetracycline (tetracycline), fluoroquinolone (ciprofloxacin), macrolide (erythromycin-H2O) and trimethoprim. The frequency of detection of antibiotics was in the following order: tetracycline and trimethoprim (80%) > sulfamethoxazole (70%) > erythromycin-H2O (45%) > ciprofloxacin (40%) > sulfamethazine (10%). However, the soluble concentrations were in the parts-per-billion (ppb) range (??? 1.3 ??g/L), and importantly were unaffected by the size of the wastewater treatment facility. The concentrations detected were within an order of magnitude of those reported for similar systems in Europe and Canada: they were within a factor of two in comparison to those reported for Canada but generally lower relative to those measured in wastewater systems in Europe. Only sulfamethoxazole and tetracycline were detected in groundwater monitoring wells adjacent to the treatment systems. Future intensive wastewater monitoring programs in Wisconsin may be limited to the six antibiotic compounds detected in this study. ?? 2005 Elsevier B.V. All rights reserved.

  6. Continuous treatment of high strength wastewaters using air-cathode microbial fuel cells.

    PubMed

    Kim, Kyoung-Yeol; Yang, Wulin; Evans, Patrick J; Logan, Bruce E

    2016-12-01

    Treatment of low strength wastewaters using microbial fuel cells (MFCs) has been effective at hydraulic retention times (HRTs) similar to aerobic processes, but treatment of high strength wastewaters can require longer HRTs. The use of two air-cathode MFCs hydraulically connected in series was examined to continuously treat high strength swine wastewater (7-8g/L of chemical oxygen demand) at an HRT of 16.7h. The maximum power density of 750±70mW/m 2 was produced after 12daysof operation. However, power decreased by 85% after 185d of operation due to serious cathode fouling. COD removal was improved by using a lower external resistance, and COD removal rates were substantially higher than those previously reported for a low strength wastewater. However, removal rates were inconsistent with first order kinetics as the calculated rate constant was an order of magnitude lower than rate constant for the low strength wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An innovative integrated oxidation ditch with vertical circle (IODVC) for wastewater treatment.

    PubMed

    Xia, Shi-bin; Liu, Jun-xin

    2004-01-01

    The oxidation ditch process is economic and efficient for wastewater treatment, but its application is limited in case where land is costly due to its large land area required. An innovative integrated oxidation ditch with vertical circle (IODVC) system was developed to treat domestic and industrial wastewater aiming to save land area. The new system consists of a single-channel divided into two ditches(the top one and the bottom one by a plate), a brush, and an innovative integral clarifier. Different from the horizontal circle of the conventional oxidation ditch, the flow of IODVC system recycles from the top zone to the bottom zone in the vertical circle as the brush is running, and then the IODVC saved land area required by about 50% compared with a conventional oxidation ditch with an intrachannel clarifier. The innovative integral clarifier is effective for separation of liquid and solids, and is preferably positioned at the opposite end of the brush in the ditch. It does not affect the hydrodynamic characteristics of the mixed liquor in the ditch, and the sludge can automatically return to the down ditch without any pump. In this study, experiments of domestic and dye wastewater treatment were carried out in bench scale and in full scale, respectively. Results clearly showed that the IODVC efficiently removed pollutants in the wastewaters, i.e., the average of COD removals for domestic and dye wastewater treatment were 95% and 90%, respectively, and that the IODVC process may provide a cost effective way for full scale dye wastewater treatment.

  8. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  9. Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater.

    PubMed

    Güneş, Elçin; Çifçi, Deniz İzlen; Çelik, Suna Özden

    2018-04-01

    The present study aims to explore the characterization of industrial container and drum cleaning (ICDC) industry wastewater and treatment alternatives of this wastewater using Fenton and adsorption processes. Wastewater derived from ICDC industry is usually treated by chemical coagulation and biological treatment in Turkey and then discharged in a centralized wastewater treatment facility. It is required that the wastewater COD is below 1500 mg/L to treat in a centralized wastewater treatment facility. The wastewater samples were characterized for parameters of pH, conductivity, COD, BOD 5 , TSS, NH 3 -N, TN, TOC, TP, Cd, Cr, Cu, Fe, Ni, Pb, Zn, and Hg. Initial COD values were in the range of 11,300-14,200 mg/L. The optimum conditions for Fenton treatment were 35-40 g/L for H 2 O 2 , 2-5 g/L for Fe 2+ , and 13-36 for H 2 O 2 /Fe 2+ molar ratio. The optimum conditions of PAC doses and contact times in adsorption studies were 20-30 g/L and 5-12 h, respectively. Removal efficiencies of characterized parameters for the three samples were compared for both Fenton and adsorption processes under optimum conditions. The results suggest that these wastewaters are suitable for discharge to a centralized wastewater treatment plant.

  10. Highly Polluted Wastewaters Treatment by Improved Dissolved Air Flotation Technology

    NASA Astrophysics Data System (ADS)

    Moga, I. C.; Covaliu, C. I.; Matache, M. G.; Doroftei, B. I.

    2017-06-01

    Numerous investigations are oriented towards the development of new wastewater treatment technologies, having high efficiencies for removing even low concentrations of pollutants found in water. These efforts were determined by the destroyer impact of the pollutants to the environment and human’s health. For this reason this paper presents our study concerning an improved dissolved air flotation technology for wastewater treatment. There is described a dissolved air flotation (DAF) installation composed by two equipments: pressurized capsule and lamellar settling. Also, there are presented some advantages of using nanoparticles as flotation collectors.

  11. Dielectric Barrier Discharge Plasma-Induced Photocatalysis and Ozonation for the Treatment of Wastewater

    NASA Astrophysics Data System (ADS)

    Mok, Young Sun; Jo, Jin-Oh; Lee, Heon-Ju

    2008-02-01

    The physicochemical processes of dielectric barrier discharge (DBD) such as in-situ formation of chemically active species and emission of ultraviolet (UV)/visible light were utilized for the treatment of a simulated wastewater formed with Acid Red 4 as the model organic contaminant. The chemically active species (mostly ozone) produced in the DBD reactor were well distributed in the wastewater using a porous gas diffuser, thereby increasing the gas-liquid contact area. For the purpose of making the best use of the light emission, a titanium oxide-based photocatalyst was incorporated in the wastewater treating system. The experimental parameters chosen were the voltage applied to the DBD reactor, the initial pH of the wastewater, and the concentration of hydrogen peroxide added to the wastewater. The results have clearly shown that the present system capable of degrading organic contaminants in two ways (photocatalysis and ozonation) may be a promising wastewater treatment technology.

  12. Characterization, modeling and application of aerobic granular sludge for wastewater treatment.

    PubMed

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    2009-01-01

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  13. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  14. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    PubMed

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  15. Removal of heavy metal from industrial effluents using Baker's yeast

    NASA Astrophysics Data System (ADS)

    Ferdous, Anika; Maisha, Nuzhat; Sultana, Nayer; Ahmed, Shoeb

    2016-07-01

    Bioremediation of wastewater containing heavy metals is one of the major challenges in environmental biotechnology. Heavy metals are not degraded and as a result they remain in the ecosystem, and pose serious health hazards as it comes in contact with human due to anthropogenic activities. Biological treatment with various microorganisms has been practiced widely in recent past, however, accessing and maintaining the microorganisms have always been a challenge. Microorganisms like Baker's yeast can be very promising biosorbents as they offer high surface to volume ratio, large availability, rapid kinetics of adsorption and desorption and low cost. The main aim of this study is to evaluate the applicability of the biosorption process using baker's yeast. Here we present an experimental investigation of biosorption of Chromium (Cr) from water using commercial Baker's Yeast. It was envisaged that yeast, dead or alive, would adsorb heavy metals, however, operating parameters could play vital roles in determining the removal efficiency. Parameters, such as incubation time, pH, amount of biosorbent and heavy metal concentration were varied to investigate the impacts of those parameters on removal efficiency. Rate of removal was found to be inversely proportional to the initial Cr (+6) concentrations but the removal rate per unit biomass was a weakly dependent on initial Cr(+6) concentrations. Biosorption process was found to be more efficient at lower pH and it exhibited lower removal with the increase in solution pH. The optimum incubation time was found to be between 6-8 hours and optimum pH for the metal ion solution was 2. The effluents produced in leather industries are the major source of chromium pollution in Bangladesh and this study has presented a very cost effective yet efficient heavy metal removal approach that can be adopted for such kind of wastewater.

  16. Alpine infrastructure in Central Europe: integral evaluation of wastewater treatment systems at mountain refuges.

    PubMed

    Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R

    2008-01-01

    Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.

  17. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    USGS Publications Warehouse

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  18. Ecological surveys of the proposed high explosives wastewater treatment facility region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluentsmore » at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.« less

  19. Applications of nanotechnology in water and wastewater treatment.

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-08-01

    Providing clean and affordable water to meet human needs is a grand challenge of the 21st century. Worldwide, water supply struggles to keep up with the fast growing demand, which is exacerbated by population growth, global climate change, and water quality deterioration. The need for technological innovation to enable integrated water management cannot be overstated. Nanotechnology holds great potential in advancing water and wastewater treatment to improve treatment efficiency as well as to augment water supply through safe use of unconventional water sources. Here we review recent development in nanotechnology for water and wastewater treatment. The discussion covers candidate nanomaterials, properties and mechanisms that enable the applications, advantages and limitations as compared to existing processes, and barriers and research needs for commercialization. By tracing these technological advances to the physicochemical properties of nanomaterials, the present review outlines the opportunities and limitations to further capitalize on these unique properties for sustainable water management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants.

    PubMed

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antibiotic Resistance in Czech Urban Wastewater Treatment Plants: Microbial and Molecular Genetic Characterization.

    PubMed

    Svobodová, Kateřina; Semerád, Jaroslav; Petráčková, Denisa; Novotný, Čeněk

    2018-05-30

    Quantitative changes in antibiotic resistance genes (ARGs) were investigated in six urban wastewater treatment plants (WWTPs) treating municipal and industrial wastewaters. In a selected WWTP, the fate of ARGs was studied in a 1-year time interval and in two phases of wastewater treatment process. Nine ARGs (tetW, tetO, tetA, tetB, tetM, bla TEM , ermB, sul1, and intl1) were quantified in total and their relative abundance assessed by ARG copies/16SrRNA copies. From the tetracycline resistance genes, tetW was the only one detected in all sampled WWTPs. Its relative abundance in the nitrification tank of WWTP5 was found stable during the 1-year period, but was lowered by secondary sedimentation processes in the wastewater treatment down to 24% compared to the nitrification tank. Bacterial isolates showing high tetracycline resistance (minimal inhibition concentrations >100 μg/mL) were identified as members of Acinetobacter, Klebsiella, Citrobacter, Bacillus, and Enterobacter genera. Dynamic shifts in the relative abundance of ermB and sul1 were also demonstrated in wastewater samples from WWTP5.

  2. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis.

    PubMed

    Hey, Tobias; Zarebska, Agata; Bajraktari, Niada; Vogel, Jörg; Hélix-Nielsen, Claus; la Cour Jansen, Jes; Jönsson, Karin

    2017-09-01

    Municipal wastewater treatment involves mechanical, biological and chemical treatment steps for protecting the environment from adverse effects. The biological treatment step consumes the most energy and can create greenhouse gases. This study investigates municipal wastewater treatment without the biological treatment step, including the effects of different pretreatment configurations, for example, direct membrane filtration before forward osmosis. Forward osmosis was tested using raw wastewater and wastewater subjected to different types of mechanical pretreatment, for example, microsieving and microfiltration permeation, as a potential technology for municipal wastewater treatment. Forward osmosis was performed using Aquaporin Inside™ and Hydration Technologies Inc. (HTI) membranes with NaCl as the draw solution. Both types of forward osmosis membranes were tested in parallel for the different types of pretreated feed and evaluated in terms of water flux and solute rejection, that is, biochemical oxygen demand (BOD 7 ) and total and soluble phosphorus contents. The Aquaporin and HTI membranes achieved a stable water flux with rejection rates of more than 96% for BOD 7 and total and soluble phosphorus, regardless of the type of mechanical pretreated wastewater considered. This result indicates that forward osmosis membranes can tolerate exposure to municipal waste water and that the permeate can fulfil the Swedish discharge limits.

  3. Radiological Risk Assessment for King County Wastewater Treatment Division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strom, Daniel J.

    Staff of the King County Wastewater Treatment Division (WTD) have concern about the aftermath of a radiological dispersion event (RDE) leading to the introduction of significant quantities of radioactive material into the combined sanitary and storm sewer system in King County, Washington. Radioactive material could come from the use of a radiological dispersion device (RDD). RDDs include "dirty bombs" that are not nuclear detonations but are explosives designed to spread radioactive material (National Council on Radiation Protection and Measurements (NCRP) 2001). Radioactive material also could come from deliberate introduction or dispersion of radioactive material into the environment, including waterways andmore » water supply systems. This document develops plausible and/or likely scenarios, including the identification of likely radioactive materials and quantities of those radioactive materials to be involved. These include 60Co, 90Sr, 137Cs, 192Ir, 226Ra, plutonium, and 241Am. Two broad categories of scenarios are considered. The first category includes events that may be suspected from the outset, such as an explosion of a "dirty bomb" in downtown Seattle. The explosion would most likely be heard, but the type of explosion (e.g., sewer methane gas or RDD) may not be immediately known. Emergency first responders must be able to quickly detect the radioisotopes previously listed, assess the situation, and deploy a response to contain and mitigate (if possible) detrimental effects resulting from the incident. In such scenarios, advance notice of about an hour or two might be available before any contaminated wastewater reaches a treatment plant. The second category includes events that could go initially undetected by emergency personnel. Examples of such a scenario would be the inadvertent or surreptitious introduction of radioactive material into the sewer system. Intact rogue radioactive sources from industrial radiography devices, well-logging apparatus

  4. Options to reduce greenhouse gas emissions during wastewater treatment for agricultural use.

    PubMed

    Fine, Pinchas; Hadas, Efrat

    2012-02-01

    Treatment of primarily-domestic sewage wastewater involves on-site greenhouse gas (GHG) emissions due to energy inputs, organic matter degradation and biological nutrient removal (BNR). BNR causes both direct emissions and loss of fertilizer value, thus eliminating possible reduction of emissions caused by fertilizer manufacture. In this study, we estimated on-site GHG emissions under different treatment scenarios, and present options for emission reduction by changing treatment methods, avoiding BNR and by recovering energy from biogas. Given a typical Israeli wastewater strength (1050mg CODl(-1)), the direct on-site GHG emissions due to energy use were estimated at 1618 and 2102g CO(2)-eq m(-3), respectively, at intermediate and tertiary treatment levels. A potential reduction of approximately 23-55% in GHG emissions could be achieved by fertilizer preservation and VS conversion to biogas. Wastewater fertilizers constituted a GHG abatement potential of 342g CO(2)-eq m(-3). The residual component that remained in the wastewater effluent following intermediate (oxidation ponds) and enhanced (mechanical-biological) treatments was 304-254g CO(2)-eq m(-3) and 65-34g CO(2)-eq m(-3), respectively. Raw sludge constituted approximately 47% of the overall wastewater fertilizers load with an abatement potential of 150g CO(2)-eq m(-3) (385kg CO(2)-eq dry tonne(-1)). Inasmuch as anaerobic digestion reduced it to 63g CO(2)-eq m(-3) (261kg CO(2)-eq dry tonne(-1)), the GHG abatement gained through renewable biogas energy (approx. 428g CO(2)-eq m(-3)) favored digestion. However, sludge composting reduced the fertilizer value to 17g CO(2)-eq m(-3) (121kg CO(2)-eq dry tonne(-1)) or less (if emissions, off-site inputs and actual phytoavailability were considered). Taking Israel as an example, fully exploiting the wastewater derived GHG abatement potential could reduce the State overall GHG emissions by almost 1%. This demonstrates the possibility of optional carbon credits which

  5. Removal of indicator organisms by chemical treatment of wastewater.

    PubMed

    De Zutter, L; van Hoof, J

    1981-01-01

    Recently a new chemical wastewater treatment process based upon precipitation of proteins by sodium lignosulphonate under acid conditions is used to purify the wastewater from slaughterhouses and poultry processing plants. In order to determine the reduction of indicator organisms due to this treatment process, influent and effluent samples from two of such plants (plant A in a pig slaughterhouse and plant B in a poultry processing plant) were examined. The results demonstrated that the pH used in the process, has a considerable influence on the reduction of the indicator organisms. On the first sampling day in plant A the initial working-pH was 4 and the corresponding reduction of the different microorganisms varied from 0.7 to 1.5 log. According to the decrease of the pH to 2.3, the reduction increased to a minimum of at least 1.9 and a maximum of at least 4.5 log. In the other samples from this plant (working-pH 2.4) the elimination ranged from 1.8 to 4.0 log. In plant B, the removal of the indicator organisms brought about by a working-pH of 3.0 ranged from 2.1 to 3.1 log. The results showed that in comparison with the biological treatment processes this chemical wastewater treatment process realized a significant greater removal of indicator organisms.

  6. Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment.

    PubMed

    Han, Songfang; Jin, Wenbiao; Chen, Yangguang; Tu, Renjie; Abomohra, Abd El-Fatah

    2016-11-01

    Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the feasibility of using magnetic treatment for enhancement of algal lipid production and wastewater treatment in outdoor-cultivated Chlorella pyrenoidosa. Results confirmed that magnetic treatment significantly enhances biomass and lipid productivity of C. pyrenoidosa by 12 and 10 %, respectively. Application of magnetic field in a semi-continuous culture resulted in highly treated wastewater with total nitrogen maintained under 15 mg L -1 , ammonia nitrogen below 5 mg L -1 , total phosphorus less than 0.5 mg L -1 , and COD Cr less than 50 mg L -1 . In addition, magnetic treatment resulted in a decrease of wastewater turbidity, an increase of bacterial numbers, and an increase of active oxygen in wastewater which might be attributed to the enhancement of growth and lipid production of C. pyrenoidosa.

  7. Treatment of HMX-production wastewater in an aerobic granular reactor.

    PubMed

    Zhang, Jin-Hua; Wang, Min-Hui; Zhu, Xiao-Meng

    2013-04-01

    Aerobic granules were applied to the treatment of HMX-production wastewater using a gradual domestication method in a SBR. During the process, the granules showed a good settling ability, a high biomass retention rate, and high biological activity. After 40 days of stable operation, aerobic granular sludge performed very effectively in the removal of carbon and nitrogen compounds from HMX-production wastewater. Organic matter removal rates up to 97.57% and nitrogen removal efficiencies up to 80% were achieved during the process. Researchers conclude that using aerobic granules to treat explosive wastewater has good prospects for success.

  8. Phytotoxicity testing of winery wastewater for constructed wetland treatment.

    PubMed

    Arienzo, Michele; Christen, Evan W; Quayle, Wendy C

    2009-09-30

    Rapid and inexpensive phytotoxicity bioassays for winery wastewater (WW) are important when designing winery wastewater treatment systems involving constructed wetlands. Three macrophyte wetland species (Phragmites australis, Schoenoplectus validus and Juncus ingens) were tested using a pot experiment simulating a wetland microcosm. The winery wastewater concentration was varied (0.5%, 5%, 10%, 25%, 50%, 75% and 100%) and pH was corrected for some concentrations using lime as an amendment. The tolerance of the three aquatic macrophytes species to winery wastewater was studied through biomass production, total chlorophyll and nitrogen, phosphorous and potassium tissue concentrations. The results showed that at greater than 25% wastewater concentration all the macrophytes died and that Phragmites was the least hardy species. At less than 25% wastewater concentration the wetland microcosms were effective in reducing chemical oxygen demand, phenols and total soluble solids. We also evaluated the performance of two laboratory phytotoxicity assays; (1) Garden Cress (Lepidium sativum), and (2) Onion (Allium coepa). The results of these tests revealed that the effluent was highly toxic with effective concentration, EC(50), inhibition values, as low as 0.25%. Liming the WW increased the EC(50) by 10 fold. Comparing the cress and onion bioassays with the wetland microcosm results indicated that the thresholds for toxicity were of the same order of magnitude. As such we suggest that the onion and cress bioassays could be effectively used in the wine industry for rapid wastewater toxicity assessment.

  9. Study on evaluation index system of operational performance of municipal wastewater treatment plants in China

    NASA Astrophysics Data System (ADS)

    Xiaoxin, Zhang; Jin, Huang; Ling, Lin; Yan, Li

    2018-05-01

    According to the undeveloped evaluation method for the operational performance of the municipal wastewater treatment plants, this paper analyzes the policies related to sewage treatment industry based on the investigation of the municipal wastewater treatment plants. The applicable evaluation method for the operational performance was proposed from environmental protection performance, resources and energy consumption, technical and economic performance, production management and main equipment, providing a reliable basis for scientific evaluation of the operation as well as improving the operational performance of municipal wastewater treatment plant.

  10. Post treatment of antibiotic wastewater by adsorption on activated carbon

    NASA Astrophysics Data System (ADS)

    Mullai, P.; Rajesh, V.

    2018-02-01

    The most common method of treating industrial wastewater involves biomethanation in anaerobic digesters. This biological treatment process is ineffective in color removal and it requires post-treatment methods. The color is the first contaminant in wastewater which affects the water bodies in several ways. As the anaerobically digested antibiotic wastewater was found with color, an attempt was made to remove color using granulated activated carbon as an adsorbent. Experiments were carried out in batch reactors to find out the color removal efficiency of the wastewater at four different dosages such as 25, 50, 75 and 100 mg of adsorbent material at each of the four different initial concentrations of effluent like 1956, 1450, 1251 and 1040 mg COD/L. The steady state values of color removal efficiencies were 96.6, 97.64, 98.64 and 99.63%, respectively, using 100 mg of activated carbon under shaking condition at the end of the 120th min. The effect of contact time on the percentage of color removal was also studied. It was observed that the adsorption of effluent obtained equilibrium at 120 minutes. The equilibrium data fitted well with the Langmuir and Freundlich isotherms.

  11. Nutrient recovery from airplane wastewater: composition, treatment and ecotoxicological assay.

    PubMed

    Filho, Jorge Luiz da Paixão; Tonetti, Adriano Luiz; Guimarães, Martha Tavanielli; Silva, Dailto

    2017-04-01

    For the 2014 World Cup and the 2016 Olympic Games, Brazil has expanded its airport infrastructure. This will lead to an increase in wastewater generation from aircrafts. This wastewater is traditionally taken from the aircrafts and disposed in the public sewage collection system. However, this residual water may have a different composition than the usual sanitary sewage. Therefore, it is important to study an alternative to treat this kind of wastewater. Thus, the objective of this study was to characterize and analyze the treatment of wastewater from airplane toilets through chemical precipitation for the removal of ammonia in the form of struvite. The airplanes' effluent showed a composition similar to human urine with pH 8.9, ammonia nitrogen 4,215 mg L -1 , phosphorus 430 mg L -1 and a very high acute toxicity (Vibrio fischeri). The best treatment for struvite formation was with pH 9.0 and molar ratio Mg:NH 4 :PO 4 equal to 1.5:1.0:1.0. In this case, the removal of ammonia and phosphorus achieved 97.0% and 95.3%, respectively. After this procedure, the toxicity by Vibrio fischeri decreased.

  12. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    PubMed

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Examination of the operator and compensator tank role in urban wastewater treatment using activated sludge method.

    PubMed

    Mokhtari Azar, Akbar; Ghadirpour Jelogir, Ali; Nabi Bidhendi, Gholam Reza; Zaredar, Narges

    2011-04-01

    No doubt, operator is one of the main fundaments in wastewater treatment plants. By identifying the inadequacies, the operator could be considered as an important key in treatment plant. Several methods are used for wastewater treatment that requires spending a lot of cost. However, all investments of treatment facilities are usable when the expected efficiency of the treatment plant was obtained. Using experienced operator, this goal is more easily accessible. In this research, the wastewater of an urban community contaminated with moderated, diluted and highly concentrated pollution has been treated using surface and deep aeration treatment method. Sampling of these pilots was performed during winter 2008 to summer 2009. The results indicate that all analyzed parameters were eliminated using activated sludge and surface aeration methods. However, in activated sludge and deep aeration methods in combination with suitable function of operator, more pollutants could be eliminated. Hence, existence of operator in wastewater treatment plants is the basic principle to achieve considered efficiency. Wastewater treatment system is not intelligent itself and that is the operator who can organize even an inefficient system by its continuous presence. The converse of this fact is also real. Despite the various units and appropriate design of wastewater treatment plant, without an operator, the studied process cannot be expected highly efficient. In places frequently affected by the shock of organic and hydraulic loads, the compensator tank is important to offset the wastewater treatment process. Finally, in regard to microbial parameters, existence of disinfection unit is very useful.

  14. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  15. Novel Solar Photocatalytic Reactor for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Sutisna; Rokhmat, M.; Wibowo, E.; Murniati, R.; Khairurrijal; Abdullah, M.

    2017-07-01

    A new solar photocatalytic reactor (photoreactor) using TiO2 nanoparticles coated onto plastic granules has been designed. Catalyst granules are placed into the cavity of a reactor panel made of glass. A pump is used to circulate wastewater in the photoreactor. Methylene blue (MB) dissolved in water was chosen as the wastewater model. The performance of the photoreactor was evaluated based on changes in MB concentration with respect to time. The photoreactor showed a good performance by degrading 10 L of MB solution up to 96.54% after 48 h of solar irradiation. The photoreactor was scaled up by enlarging the panel area to twice its original size. The increase in the surface area of the reactor panel and therefore of the mass of catalyst granules and reactor volume led to a three-fold increase of the photodegradation rate. In addition, the MB degradation kinetics were also studied. Data analysis confirmed the applicability of the pseudo-first-order Langmuir-Hinshelwood model. The proposed photoreactor has great potential for use in large-scale wastewater treatment.

  16. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    PubMed

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  17. Energy-nutrients-water nexus: integrated resource recovery in municipal wastewater treatment plants.

    PubMed

    Mo, Weiwei; Zhang, Qiong

    2013-09-30

    Wastewater treatment consumes large amounts of energy and materials to comply with discharge standards. At the same time, wastewater contains resources, which can be recovered for secondary uses if treated properly. Hence, the goal of this paper is to review the available resource recovery methods onsite or offsite of municipal wastewater treatment plants. These methods are categorized into three major resource recovery approaches: onsite energy generation, nutrient recycling and water reuse. Under each approach, the review provides the advantages and disadvantages, recovery potentials and current application status of each method, as well as the synthesized results of the life cycle studies for each approach. From a comprehensive literature review, it was found that, in addition to technology improvements, there is also a need to evaluate the applications of the resource recovery methods in wastewater treatment plants from a life cycle perspective. Future research should investigate the integration of the resource recovery methods to explore the combined benefits and potential tradeoffs of these methods under different scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Removal of micro-organisms in a small-scale hydroponics wastewater treatment system.

    PubMed

    Ottoson, J; Norström, A; Dalhammar, G

    2005-01-01

    To measure the microbial removal capacity of a small-scale hydroponics wastewater treatment plant. Paired samples were taken from untreated, partly-treated and treated wastewater and analysed for faecal microbial indicators, i.e. coliforms, Escherichia coli, enterococci, Clostridium perfringens spores and somatic coliphages, by culture based methods. Escherichia coli was never detected in effluent water after >5.8-log removal. Enterococci, coliforms, spores and coliphages were removed by 4.5, 4.1, 2.3 and 2.5 log respectively. Most of the removal (60-87%) took place in the latter part of the system because of settling, normal inactivation (retention time 12.7 d) and sand filtration. Time-dependent log-linear removal was shown for spores (k = -0.17 log d(-1), r(2) = 0.99). Hydroponics wastewater treatment removed micro-organisms satisfactorily. Investigations on the microbial removal capacity of hydroponics have only been performed for bacterial indicators. In this study it has been shown that virus and (oo)cyst process indicators were removed and that hydroponics can be an alternative to conventional wastewater treatment.

  19. Enterobius vermicularis as a Novel Surrogate for the Presence of Helminth Ova in Tertiary Wastewater Treatment Plants

    PubMed Central

    Rudko, Sydney P.; Ruecker, Norma J.; Ashbolt, Nicholas J.; Neumann, Norman F.

    2017-01-01

    ABSTRACT Significant effort has gone into assessing the fate and removal of viruses, bacteria, and protozoan parasites during wastewater treatment to provide data addressing potential health risks associated with reuse options. Comparatively less is known about the fate of parasitic worm species ova in these complex systems. It is largely assumed that these helminths settle, are removed with the sludge, and consequently represent a relatively low risk for wastewater reuse applications. However, helminths are a highly diverse group of organisms that display a wide range of physical properties that complicate the application of a single treatment for helminth reduction during wastewater treatment. Moreover, their diverse biological and physical properties make some ova highly resistant to both disinfection (i.e., with chlorine or UV treatment) and physical removal (settling) through the wastewater treatment train, indicating that there may be reason to broaden the scope of our investigations into whether parasitic worm eggs can be identified in treated wastewater. The ubiquitous human parasitic nematode Enterobius vermicularis (pinworm) produces small, buoyant ova. Utilizing a novel diagnostic quantitative PCR (qPCR), this study monitored E. vermicularis presence at two full-scale wastewater treatment plants over the course of 8 months and demonstrated incomplete physical removal of E. vermicularis ova through tertiary treatment, with removal efficiencies approximating only 0.5 and 1.6 log10 at the two wastewater treatment plants based on qPCR. These findings demonstrate the need for more-diverse surrogates of helminthic ova to fully assess treatment performance with respect to reclaimed wastewaters. IMPORTANCE Helminths, despite being a diverse and environmentally resistant class of pathogens, are often underestimated and ignored when treatment performance at modern wastewater treatment plants is considered. A one-size-fits-all surrogate for removal of helminth ova

  20. The supply and demand for pollution control: Evidence from wastewater treatment

    USGS Publications Warehouse

    McConnell, V.D.; Schwarz, G.E.

    1992-01-01

    This paper analyzes the determination of pollution control from wastewater treatment plants as an economic decision facing local or regional regulators. Pollution control is measured by plant design effluent concentration levels and is fully endogenous in a supply- and-demand model of treatment choice. On the supply side, plant costs are a function of the design treatment level of the plant, and on the demand side, treatment level is a function of both the costs of control and the regional or regulatory preferences for control. We find evidence that the economic model of effluent choice by local regulators has a good deal of explanatory power. We find evidence that wastewater treatment plant removal of biological oxygen demand (BOD) is sensitive to many local factors including the size of the treatment plant, the flow rate of the receiving water, the population density of the surrounding area, regional growth, state sensitivity to environmental issues, state income, and the extent to which the damages from pollution fall on other states. We find strong evidence that regulators are sensitive to capital costs in determining the design level of BOD effluent reduction at a plant. Thus, proposed reductions in federal subsidies for wastewater treatment plant construction are likely to have significant adverse effects on water quality. ?? 1992.

  1. Sustainable wastewater treatment of temporary events: the Dranouter Music Festival case study.

    PubMed

    Van Hulle, S W H; Audenaert, W; Decostere, B; Hogie, J; Dejans, P

    2008-01-01

    Music festivals and other temporary events, such as bicycle races, lay a heavy burden on the surrounding environment. Treatment of the wastewater originating from such events is necessary if no municipal treatment plant is available. This study demonstrated that activated carbon is a performant technique for the treatment of wastewaters originating from these temporary events. Freundlich isotherms and maximum operational linear velocity (6 m/h) were determined on a lab-scale set-up. A pilot-scale set up was used to treat part (5%) of the total volume of the Dranouter Music Festival shower wastewater. On average 90% removal of COD and suspended solids concentration was obtained. Application of the activated carbon filter resulted in the fact that the local discharge limits were met without operational problems. IWA Publishing 2008.

  2. The assessment of the coke wastewater treatment efficacy in rotating biological contractor.

    PubMed

    Cema, G; Żabczyński, S; Ziembińska-Buczyńska, A

    2016-01-01

    Coke wastewater is known to be relatively difficult for biological treatment. Nonetheless, biofilm-based systems seem to be promising tool for such treatment. That is why a rotating biological contactor (RBC) system focused on the Anammox process was used in this study. The experiment was divided into two parts with synthetic and then real wastewater. It was proven that it is possible to treat coke wastewater with RBC but such a procedure requires a very long start-up period for the nitritation (190 days), as well as for the Anammox process, where stable nitrogen removal over 70% was achieved after 400 days of experiment. Interestingly, it was possible at a relatively low (20.2 ± 2.2 °C) temperature. The polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) based monitoring of the bacterial community showed that its biodiversity decreased when the real wastewater was treated and it was composed mainly of GC-rich genotypes, probably because of the modeling influence of this wastewater and the genotypes specialization.

  3. Fate of four phthalate plasticizers under various wastewater treatment processes.

    PubMed

    Armstrong, Dana L; Rice, Clifford P; Ramirez, Mark; Torrents, Alba

    2018-05-18

    The fate of four phthalate plasticizers during wastewater treatment processes at six different wastewater treatment plants (WWTPs) was investigated. Concentrations of benzyl butyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), and diisodecyl phthalate (DiDP) were determined prior to either aerobic or anaerobic (conventional and advanced) treatment, after treatment, and in final, dewatered solids. Despite their elevated use worldwide, the fate of DiNP and DiDP during wastewater treatment have not been well characterized. DEHP was readily degraded during aerobic treatments while anaerobic digestion resulted in either no significant change in concentrations or an increase in concentration, in the case of more advanced anaerobic processes (thermal hydrolysis pretreatment and a two-phase acid/gas process). Impacts of the various treatment systems on DiNP, DiDP, and BBP concentrations were more varied - anaerobic digestion led to significant decreases, increases, or no significant change for these compounds, depending on the treatment facility, while aerobic treatment was generally effective at degrading the compounds. Additionally, thermal hydrolysis pretreatment of sludge prior to anaerobic digestion resulted in increases in DiNP, DiDP, and BBP concentrations. The predicted environmental concentrations for all four compounds in soils after a single biosolids application were calculated and the risk quotients for DEHP in soils were determined. The estimated toxicity risk for DEHP in soils treated with a single application of sludge from any of the six studied WWTPs is lower than the level of concern for acute and chronic risk, as defined by the US EPA.

  4. Feasibility of using ornamental plants in subsurface flow wetlands for domestic wastewater treatment

    Treesearch

    Marco A. Belmont

    2000-01-01

    Constructed wetlands are possible low-cost solutions for treating domestic and industrial wastewater in developing countries such as Mexico. However, treatment of wastewater is not a priority in most developing countries unless communities can derive economic benefit from the water resources that are created by the treatment process. As part of our studies directed at...

  5. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  6. Microbial ecology of denitrification in biological wastewater treatment.

    PubMed

    Lu, Huijie; Chandran, Kartik; Stensel, David

    2014-11-01

    Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. However, substantial knowledge gaps remain concerning the overall community structure, population dynamics and metabolism of different organic carbon sources. This systematic review provides a summary of current findings pertaining to the microbial ecology of denitrification in biological wastewater treatment processes. DNA fingerprinting-based analysis has revealed a high level of microbial diversity in denitrification reactors and highlighted the impacts of carbon sources in determining overall denitrifying community composition. Stable isotope probing, fluorescence in situ hybridization, microarrays and meta-omics further link community structure with function by identifying the functional populations and their gene regulatory patterns at the transcriptional and translational levels. This review stresses the need to integrate microbial ecology information into conventional denitrification design and operation at full-scale. Some emerging questions, from physiological mechanisms to practical solutions, for example, eliminating nitrous oxide emissions and supplementing more sustainable carbon sources than methanol, are also discussed. A combination of high-throughput approaches is next in line for thorough assessment of wastewater denitrifying community structure and function. Though denitrification is used as an example here, this synergy between microbial ecology and process engineering is applicable to other biological wastewater treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Use of ozone in a pilot-scale plant for textile wastewater pre-treatment: physico-chemical efficiency, degradation by-products identification and environmental toxicity of treated wastewater.

    PubMed

    Somensi, Cleder A; Simionatto, Edésio L; Bertoli, Sávio L; Wisniewski, Alberto; Radetski, Claudemir M

    2010-03-15

    In this study, ozonation of raw textile wastewater was conducted in a pilot-scale plant and the efficiency of this treatment was evaluated based on the parameters color removal and soluble organic matter measured as chemical oxygen demand (COD), at two pH values (9.1 and 3.0). Identification of intermediate and final degradation products of ozone pre-treatment, as well as the evaluation of the final ecotoxicity (Lumistox test) of pre-treated wastewater, was also carried out. After 4h of ozone treatment with wastewater recirculation (flow rate of 0.45 m(3)h(-1)) the average efficiencies for color removal were 67.5% (pH 9.1) and 40.6% (pH 3.0), while COD reduction was 25.5% (pH 9.1) and 18.7% (pH 3.0) for an ozone production capacity of 20 g h(-1). Furthermore, ozonation enhances the biodegradability of textile wastewater (BOD(5)/COD ratios) by a factor of up to 6.8-fold. A GC-MS analysis of pre-treated textile wastewater showed that some products were present at the end of the pre-treatment time. In spite of this fact, the bacterial luminescence inhibition test (Lumistox test) showed a significant toxicity reduction on comparing the raw and treated textile wastewater. In conclusion, pre-ozonation of textile wastewater is an important step in terms of improving wastewater biodegradability, as well as reducing acute ecotoxicity, which should be removed completely through sequential biological treatment. (c) 2009. Published by Elsevier B.V.

  8. Optimization of wastewater treatment alternative selection by hierarchy grey relational analysis.

    PubMed

    Zeng, Guangming; Jiang, Ru; Huang, Guohe; Xu, Min; Li, Jianbing

    2007-01-01

    This paper describes an innovative systematic approach, namely hierarchy grey relational analysis for optimal selection of wastewater treatment alternatives, based on the application of analytic hierarchy process (AHP) and grey relational analysis (GRA). It can be applied for complicated multicriteria decision-making to obtain scientific and reasonable results. The effectiveness of this approach was verified through a real case study. Four wastewater treatment alternatives (A(2)/O, triple oxidation ditch, anaerobic single oxidation ditch and SBR) were evaluated and compared against multiple economic, technical and administrative performance criteria, including capital cost, operation and maintenance (O and M) cost, land area, removal of nitrogenous and phosphorous pollutants, sludge disposal effect, stability of plant operation, maturity of technology and professional skills required for O and M. The result illustrated that the anaerobic single oxidation ditch was the optimal scheme and would obtain the maximum general benefits for the wastewater treatment plant to be constructed.

  9. Biological aerated filter treated textile washing wastewater for reuse after ozonation pre-treatment.

    PubMed

    Wang, X J; Chen, S L; Gu, X Y; Wang, K Y; Qian, Y Z

    2008-01-01

    The combination of chemical and biological treatment processes is a promising technique to reduce refractory organics from wastewater. Ozonation can achieve high color removal, enhance biodegradability, and reduce the chemical oxygen demand (COD). The biological technique can further decrease COD of wastewater after ozonation as a pre-treatment. In this study the ozonizing-biological aerated filter processes were used to treat textile washing wastewater for reuse after conventional treatment. The result showed that when the influent qualities were COD about 80 mg/L, color 16 degree and turbidity about 8 NTU, using the combination processes with the dosages of ozone at 30-45 mg/L with the hydraulic retention time (HRT) of biological aerated filter (BAF) at 3-4 hours respectively, gave effluent qualities of COD less than 30 mg/L, color 2 degree and turbidity less than 1NTU. The cost of treatment was less than one yuan/t wastewater, and these processes could enable high quality washing water reuse in textile industry. Copyright IWA Publishing 2008.

  10. Fate of wastewater effluent hER-agonists and hER-antagonists during soil aquifer treatment.

    PubMed

    Otakuye, Conroy; Quanrud, David M; Ela, Wendell P; Wicke, Daniel; Lansey, Kevin E; Arnold, Robert G

    2005-04-01

    Estrogen activity was measured in wastewater effluent before and after polishing via soil-aquifer treatment (SAT) using both a (hER-beta) competitive binding assay and a transcriptional activation (yeast estrogen screen, YES) assay. From the competitive binding assay, the equivalent 17alpha-ethinylestradiol (EE2) concentration in secondary effluent was 4.7 nM but decreased to 0.22 nM following SAT. The YES assay indicated that the equivalent EE2 concentration in the same effluent sample was below the method-detection limit (<2.5 x 10(-3) nM) but increased to 0.68 nM in effluent polished via SAT processes. It was hypothesized thattest-dependent differences arose because the competitive binding assay responds positively to both estrogen mimics and anti-estrogens; the YES assay responds to estrogen mimics, but test response is inhibited by anti-estrogens. The hypothesis was supported when organics extracted from wastewater effluent inhibited the YES test response to EE2 (anti-estrogenic effect). A similar extract prepared from SAT-polished effluent augmented the EE2 curve (agonist response). When hydrophobic organics in secondary effluent were fractionated, assay results indicated that several physically distinct anti-estrogens were present in the sample. From this work, it is evident that transcription-activation bioassays alone should not be relied upon to measure estrogenic activity in complex environmental samples because the simultaneous presence of both agonists and antagonist compounds can yield false negatives. Multiple in vitro bioassays, sample fractionation or tests designed to measure anti-estrogenic activity can be used to overcome this problem. It is also clear that there are circumstances under which SAT does not completely remove estrogenic activity during municipal wastewater effluent polishing.

  11. Supported graphene oxide hollow fibre membrane for oily wastewater treatment

    NASA Astrophysics Data System (ADS)

    Othman, Nur Hidayati; Alias, Nur Hashimah; Shahruddin, Munawar Zaman; Hussein, Siti Nurliyana Che Mohamed; Dollah, Aqilah

    2017-12-01

    Oil and gas industry deals with a large amount of undesirable discharges of liquid, solid, and gaseous wastes and the amounts can considerably change during the production phases. Oilfield wastewater or produced water is known to constitute various organic and inorganic components. Discharging the produced water can pollute surface and underground water and therefore the necessity to treat this oily wastewater is an inevitable challenge. The current technologies for the treatment of this metastable oil-in-water are not really effective and very pricey. As a result, there is a great interest from many parties around the world in finding cost-effective technologies. In recent years, membrane processes have been utilized for oily wastewater treatment. In these work, a graphene oxide membrane supported on a highly porous Al2O3 hollow fibre was prepared using vacuum assisted technique and its performance in treating oily wastewater was investigated. Graphene oxide (GO) was prepared using a modified Hummer's method and further characterized using XRD, FTIR, TGA and SEM. The results showed that the GO was successfully synthesized. The GO membrane was deposited on alumina hollow fibre substrates. The membrane performance was then investigated using dead-end filtration setup with synthetic oily wastewater as a feed. The effects of operating times on rejection rate and permeate flux were investigated. The experimental results showed that the oil rejections were over 90%. It was concluded that the supported GO membrane developed in this study may be considered feasible in treating oily wastewater. Detail study on the effects of transmembrane pressure, oil concentration, pH and fouling should be carried out in the future

  12. Assessment of wastewater treatment plant design for small communities: environmental and economic aspects.

    PubMed

    Molinos-Senante, M; Garrido-Baserba, M; Reif, R; Hernández-Sancho, F; Poch, M

    2012-06-15

    The preliminary design and economic assessment of small wastewater treatment plants (less than 2000 population equivalent) are issues of particular interest since wastewaters from most of these agglomerations are not covered yet. This work aims to assess nine different technologies set-up for the secondary treatment in such type of facilities embracing both economic and environmental parameters. The main novelty of this work is the combination of an innovative environmental decision support system (EDSS) with a pioneer approach based on the inclusion of the environmental benefits derived from wastewater treatment. The integration of methodologies based on cost-benefit analysis tools with the vast amount of knowledge from treatment technologies contained in the EDSS was applied in nine scenarios comprising different wastewater characteristics and reuse options. Hence, a useful economic feasibility indicator is obtained for each technology including internal and external costs and, for the first time, benefits associated with the environmental damage avoided. This new methodology proved to be crucial for supporting the decision process, contributing to improve the sustainability of new treatment facilities and allows the selection of the most feasible technologies of a wide set of possibilities. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. IMPACT OF INFLUENT MICROORGANISMS UPON POOR SOLIDS SEPARATION IN THE QUIESCENT ZONE OF AN INDUSTRIAL WASTEWATER TREATMENT SYSTEM

    EPA Science Inventory

    One of the most common biological treatment systems used to clean wastewater is suspended growth activated sludge wastewater treatment (AS). When AS is adapted for the treatment of wastewater from industrial manufacturing processes, unanticipated difficulties can arise. For the s...

  14. Reduction of Cryptosporidium, Giardia, and Fecal Indicators by Bardenpho Wastewater Treatment.

    PubMed

    Schmitz, Bradley W; Moriyama, Hitoha; Haramoto, Eiji; Kitajima, Masaaki; Sherchan, Samendra; Gerba, Charles P; Pepper, Ian L

    2018-06-19

    Increased demand for water reuse and reclamation accentuates the importance for optimal wastewater treatment to limit protozoa in effluents. Two wastewater treatment plants utilizing advanced Bardenpho were investigated over a 12-month period to determine the incidence and reduction of Cryptosporidium, Giardia, Cyclospora, and fecal indicators. Results were compared to facilities that previously operated in the same geographical area. Protozoa (oo)cysts were concentrated using an electronegative filter and subsequently detected by fluorescent microscopy and/or PCR methods. Cryptosporidium and Giardia were frequently detected in raw sewage, but Cyclospora was not detected in any wastewater samples. Facilities with Bardenpho treatment exhibited higher removals of (oo)cysts than facilities utilizing activated sludge or trickling filters. This was likely due to Bardenpho systems having increased solid wasting rates; however, this mechanism cannot be confirmed as sludge samples were not analyzed. Use of dissolved-air-flotation instead of sedimentation tanks did not result in more efficient removal of (oo)cysts. Concentrations of protozoa were compared with each other, Escherichia coli, somatic coliphage, and viruses (pepper mild mottle virus, Aichi virus 1, adenovirus, and polyomaviruses JC and BK). Although significant correlations were rare, somatic coliphage showed the highest potential as an indicator for the abundance of protozoa in wastewaters.

  15. A comparative study on the anaerobic membrane bioreactor performance during the treatment of domestic wastewaters of various origins.

    PubMed

    Saddoud, A; Ellouze, M; Dhouib, A; Sayadi, S

    2006-09-01

    This study examined the practical performance of a cross-flow ultrafiltration membrane coupled to an anaerobic bioreactor, for treatment of raw domestic wastewater (RDW), at a pilot-scale plant. Wastewaters used in this study originated from two different domestic wastewater treatment plans (DWTPs) (Sfax and Ksour Essef). During the treatment in the membrane bioreactor (MBR) of the RDW originating from Sfax DWTP, the bioreactor did not reach its stationary phase because the anaerobic biomass was unable to adapt to the wastewater. This was explained by the considerable fluctuations in the domestic wastewater composition and a possible contamination of Sfax wastewater by industrial discharges. However, the treatment of RDW originating from Ksour Essef (DWTP) was successful. In both cases, the treatment led to a total removal of all tested pathogens. The quality of treated wastewater fits largely with WHO guidelines for unrestricted irrigation. The phytotoxicity and the microtoxicity tests, using Lepidium sativum and Vibrio fischeri respectively, demonstrated that wastewater from Sfax exhibited higher toxicity than that from Ksour Sssef.

  16. Specifically Designed Constructed Wetlands: A Novel Treatment Approach for Scrubber Wastewater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John H. Rodgers Jr; James W. Castle; Chris Arrington: Derek Eggert

    2005-09-01

    A pilot-scale wetland treatment system was specifically designed and constructed at Clemson University to evaluate removal of mercury, selenium, and other constituents from flue gas desulfurization (FGD) wastewater. Specific objectives of this research were: (1) to measure performance of a pilot-scale constructed wetland treatment system in terms of decreases in targeted constituents (Hg, Se and As) in the FGD wastewater from inflow to outflow; (2) to determine how the observed performance is achieved (both reactions and rates); and (3) to measure performance in terms of decreased bioavailability of these elements (i.e. toxicity of sediments in constructed wetlands and toxicity ofmore » outflow waters from the treatment system). Performance of the pilot-scale constructed wetland treatment systems was assessed using two criteria: anticipated NPDES permit levels and toxicity evaluations using two sentinel toxicity-testing organisms (Ceriodaphnia dubia and Pimephales promelas). These systems performed efficiently with varied inflow simulations of FGD wastewaters removing As, Hg, and Se concentrations below NPDES permit levels and reducing the toxicity of simulated FGD wastewater after treatment with the constructed wetland treatment systems. Sequential extraction procedures indicated that these elements (As, Hg, and Se) were bound to residual phases within sediments of these systems, which should limit their bioavailability to aquatic biota. Sediments collected from constructed wetland treatment systems were tested to observe toxicity to Hyalella azteca or Chironomus tetans. Complete survival (100%) was observed for H. azteca in all cells of the constructed wetland treatment system and C. tentans had an average of 91% survival over the three treatment cells containing sediments. Survival and growth of H. azteca and C. tentans did not differ significantly between sediments from the constructed wetland treatment system and controls. Since the sediments of the

  17. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    USDA-ARS?s Scientific Manuscript database

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  18. Performance intensification of Prague wastewater treatment plant.

    PubMed

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  19. Beyond the conventional life cycle inventory in wastewater treatment plants.

    PubMed

    Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater

    PubMed Central

    2017-01-01

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10–30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO2/IrO2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO2/IrO2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine). PMID:28538093

  1. Toxic Byproduct Formation during Electrochemical Treatment of Latrine Wastewater.

    PubMed

    Jasper, Justin T; Yang, Yang; Hoffmann, Michael R

    2017-06-20

    Electrochemical systems are an attractive option for onsite latrine wastewater treatment due to their high efficiency and small footprint. While concerns remain over formation of toxic byproducts during treatment, rigorous studies examining byproduct formation are lacking. Experiments treating authentic latrine wastewater over variable treatment times, current densities, chloride concentrations, and anode materials were conducted to characterize byproducts and identify conditions that minimize their formation. Production of inorganic byproducts (chlorate and perchlorate) and indicator organic byproducts (haloacetic acids and trihalomethanes) during electrolysis dramatically exceeded recommendations for drinking water after one treatment cycle (∼10-30 000 times), raising concerns for contamination of downstream water supplies. Stopping the reaction after ammonium was removed (i.e., the chlorination breakpoint) was a promising method to minimize byproduct formation without compromising disinfection and nutrient removal. Though treatment was accelerated at increased chloride concentrations and current densities, byproduct concentrations remained similar near the breakpoint. On TiO 2 /IrO 2 anodes, haloacetic acids (up to ∼50 μM) and chlorate (up to ∼2 μM) were of most concern. Although boron-doped diamond anodes mineralized haloacetic acids after formation, high production rates of chlorate and perchlorate (up to ∼4 and 25 μM) made them inferior to TiO 2 /IrO 2 anodes in terms of toxic byproduct formation. Organic byproduct formation was similar during chemical chlorination and electrolysis of wastewater, suggesting that organic byproducts are formed by similar pathways in both cases (i.e., reactions with chloramines and free chlorine).

  2. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    PubMed Central

    Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid. PMID:29098157

  3. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources.

    PubMed

    Gientka, Iwona; Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua , Debaryomyces hansenii , Kluyveromyces marxianus , Kazachstania unispora , and Zygotorulaspora florentina . We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L -1 . Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  4. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent.

    PubMed

    Mason, Sherri A; Garneau, Danielle; Sutton, Rebecca; Chu, Yvonne; Ehmann, Karyn; Barnes, Jason; Fink, Parker; Papazissimos, Daniel; Rogers, Darrin L

    2016-11-01

    Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the 'microbeads' found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge. Published by Elsevier Ltd.

  5. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    PubMed

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm.

  6. Nitrosamines in pilot-scale and full-scale wastewater treatment plants with ozonation.

    PubMed

    Gerrity, Daniel; Pisarenko, Aleksey N; Marti, Erica; Trenholm, Rebecca A; Gerringer, Fred; Reungoat, Julien; Dickenson, Eric

    2015-04-01

    Ozone-based treatment trains offer a sustainable option for potable reuse applications, but nitrosamine formation during ozonation poses a challenge for municipalities seeking to avoid reverse osmosis and high-dose ultraviolet (UV) irradiation. Six nitrosamines were monitored in full-scale and pilot-scale wastewater treatment trains. The primary focus was on eight treatment trains employing ozonation of secondary or tertiary wastewater effluents, but two treatment trains with chlorination or UV disinfection of tertiary wastewater effluent and another with full advanced treatment (i.e., reverse osmosis and advanced oxidation) were also included for comparison. N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) were the most prevalent nitrosamines in untreated (up to 89 ng/L and 67 ng/L, respectively) and treated wastewater. N-nitrosomethylethylamine (NMEA) and N-nitrosodiethylamine (NDEA) were detected at one facility each, while N-nitrosodipropylamine (NDPrA) and N-nitrosodibutylamine (NDBA) were less than their method reporting limits (MRLs) in all samples. Ozone-induced NDMA formation ranging from <10 to 143 ng/L was observed at all but one site, but the reasons for the variation in formation remain unclear. Activated sludge, biological activated carbon (BAC), and UV photolysis were effective for NDMA mitigation. NMOR was also removed with activated sludge but did not form during ozonation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance.

    PubMed

    Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang

    2018-03-15

    To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.

  8. Mechanical properties of water desalination and wastewater treatment membranes

    DOE PAGES

    Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.; ...

    2017-07-13

    Applications of membrane technology in water desalination and wastewater treatment have increased significantly in the past fewdecades due to itsmany advantages over otherwater treatment technologies.Water treatment membranes provide high flux and contaminant rejection ability and require good mechanical strength and durability. Thus, assessing the mechanical properties of water treatment membranes is critical not only to their design, but also for studying their failure mechanisms, including the surface damage, mechanical and chemical ageing, delamination and loss of dimensional stability of the membranes. The various experimental techniques to assess themechanical properties ofwastewater treatment and desalinationmembranes are reviewed. Uniaxial tensile test, bending test,more » dynamic mechanical analysis, nanoindentation and bursting tests are the most widely used mechanical characterization methods for water treatment membranes. Mechanical degradations induced by fouling, chemical cleaning as well as membrane delamination are then discussed. Moreover, in order to study the membranesmechanical responses under similar loading conditions, the stress-state of the membranes are analyzed and advanced mechanical testing approaches are proposed. Lastly, some perspectives are highlighted to study the structure-properties relationship for wastewater treatment and water desalination membranes.« less

  9. Mechanical properties of water desalination and wastewater treatment membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kui; Abdalla, Ahmed A.; Khaleel, Mohammad A.

    Applications of membrane technology in water desalination and wastewater treatment have increased significantly in the past fewdecades due to itsmany advantages over otherwater treatment technologies.Water treatment membranes provide high flux and contaminant rejection ability and require good mechanical strength and durability. Thus, assessing the mechanical properties of water treatment membranes is critical not only to their design, but also for studying their failure mechanisms, including the surface damage, mechanical and chemical ageing, delamination and loss of dimensional stability of the membranes. The various experimental techniques to assess themechanical properties ofwastewater treatment and desalinationmembranes are reviewed. Uniaxial tensile test, bending test,more » dynamic mechanical analysis, nanoindentation and bursting tests are the most widely used mechanical characterization methods for water treatment membranes. Mechanical degradations induced by fouling, chemical cleaning as well as membrane delamination are then discussed. Moreover, in order to study the membranesmechanical responses under similar loading conditions, the stress-state of the membranes are analyzed and advanced mechanical testing approaches are proposed. Lastly, some perspectives are highlighted to study the structure-properties relationship for wastewater treatment and water desalination membranes.« less

  10. Treatment of Wastewater with High Conductivity by Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Jiang, Song; Liu, Kefu

    2014-07-01

    A wastewater treatment system was established by means of pulsed dielectric barrier discharge (DBD). The main advantage of this system is that the wastewater is employed as one of the electrodes for the degradation of rhodamine B, which makes use of the high conductivity and lessenes its negative influence on the discharge process. At the same time, the reactive species like ozone and ultraviolet (UV) light generated by the DBD can be utilized for the treatment of wastewater. The effects of some factors like conductivity, peak pulse voltage, discharge frequency and pH values were investigated. The results show that the combination of these reactive species could enhance the degradation of the dye while the ozone played the most important role in the process. The degradation efficiency was enhanced with the increase of energy supplied. The reduction in the concentration of rhodamine B was much more effective with high solution conductivity; under the highest conductivity condition, the degradation rate could rise to 99%.

  11. Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants

    EPA Pesticide Factsheets

    Detail for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems, on complying with part 68 with respect to chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.

  12. A Cost-Effectiveness Analysis of Seminatural Wetlands and Activated Sludge Wastewater-Treatment Systems

    NASA Astrophysics Data System (ADS)

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  13. A cost-effectiveness analysis of seminatural wetlands and activated sludge wastewater-treatment systems.

    PubMed

    Mannino, Ilda; Franco, Daniel; Piccioni, Enrico; Favero, Laura; Mattiuzzo, Erika; Zanetto, Gabriele

    2008-01-01

    A cost-effectiveness analysis was performed to evaluate the competitiveness of seminatural Free Water Surface (FWS) wetlands compared to traditional wastewater-treatment plants. Six scenarios of the service costs of three FWS wetlands and three different wastewater-treatment plants based on active sludge processes were compared. The six scenarios were all equally effective in their wastewater-treatment capacity. The service costs were estimated using real accounting data from an experimental wetland and by means of a market survey. Some assumptions had to be made to perform the analysis. A reference wastewater situation was established to solve the problem of the different levels of dilution that characterize the inflow water of the different systems; the land purchase cost was excluded from the analysis, considering the use of public land as shared social services, and an equal life span for both seminatural and traditional wastewater-treatment plants was set. The results suggest that seminatural systems are competitive with traditional biotechnological systems, with an average service cost improvement of 2.1-fold to 8-fold, according to the specific solution and discount rate. The main improvement factor was the lower maintenance cost of the seminatural systems, due to the self-regulating, low artificial energy inputs and the absence of waste to be disposed. In this work, only the waste-treatment capacity of wetlands was considered as a parameter for the economic competitiveness analysis. Other goods/services and environmental benefits provided by FWS wetlands were not considered.

  14. Application of the SCADA system in wastewater treatment plants.

    PubMed

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  15. Treatment of Dyeing Wastewater by Using Positive Pulsed Corona Discharge to Water Surface

    NASA Astrophysics Data System (ADS)

    Young, Sun Mok; Hyun, Tae Ahn; Joeng, Tai Kim

    2007-02-01

    This study investigated the treatment of textile-dyeing wastewater by using an electrical discharge technique (positive pulsed corona discharge). The high-voltage electrode was placed above the surface of the wastewater while the ground electrode was submerged in the wastewater. The electrical discharge starting at the tip of the high voltage electrode propagated toward the surface of the wastewater, producing various oxidative radicals and ozone. Oxygen was used as the working gas instead of air to prevent nitrogen oxides from forming. The simulated wastewater was made up with amaranth, which is a kind of azo dye. The results obtained showed that the chromaticity of the wastewater was almost completely removed within an hour. The ultraviolet/visible spectra of the wastewater treated by the electrical discharge revealed that the total hydrocarbon level also decreased significantly.

  16. Electricity Generation and Community Wastewater Treatment by Microbial Fuel Cells (MFCs)

    NASA Astrophysics Data System (ADS)

    Rakthai, S.; Potchanakunakorn, R.; Changjan, A.; Intaravicha, N.; Pramuanl, P.; Srigobue, P.; Soponsathien, S.; Kongson, C.; Maksuwan, A.

    2018-05-01

    The attractive solution to the pressing issues of energy production and community wastewater treatment was using of Microbial Fuel Cells (MFCs). The objective of this research was to study the efficiency of electricity generation and community wastewater treatment of MFCs. This study used an experimental method completely randomized design (CRD), which consisted of two treatment factors (4×5 factorial design). The first factor was different solution containing organic matter (T) and consisting of 4 level factors including T1 (tap water), T2 (tap water with soil), T3 (50 % V/V community wastewater with soil), and T4 (100% community wastewater with soil). The second factor was the time (t), consisting of 5 level factors t1 (day 1), t2 (day 2), t3 (day 3), t4 (day 4), and t5 (day 5). There were 4 experimental models depending on containing organic matter (T1-T4). The parameter measured consisted of Open Circuit Voltage (OCV), Chemical Oxygen Demand (COD), Total Dissolve Solid (TDS), acidity (pH), Electric Conductivity (EC) and number of bacteria. Data were analysed by ANOVA, followed by Duncan test. The results of this study showed that, the T3 was the highest voltage at 0.816 V (P<0.05) and T4, T2, and Ti were 0.800, 0.797 and 0.747 V, respectively. The T3 was the lowest COD at 24.120 mg/L and T4 was 38.067 mg/L (P<0.05). The best model for electricity generation and community wastewater treatment by Microbial Fuel Cells was T3. This model generated highest voltage at 0.816 V, and reduction of COD at 46.215%.

  17. STATISTICS-BASED APPROACH TO WASTEWATER TREATMENT PLANT OPERATIONS

    EPA Science Inventory

    This paper describes work toward development of a convenient decision support system to improve everyday operation and control of the wastewater treatment process. The goal is to help the operator detect problems in the process and select appropriate control actions. The system...

  18. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    PubMed

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Enterobius vermicularis as a Novel Surrogate for the Presence of Helminth Ova in Tertiary Wastewater Treatment Plants.

    PubMed

    Rudko, Sydney P; Ruecker, Norma J; Ashbolt, Nicholas J; Neumann, Norman F; Hanington, Patrick C

    2017-06-01

    Significant effort has gone into assessing the fate and removal of viruses, bacteria, and protozoan parasites during wastewater treatment to provide data addressing potential health risks associated with reuse options. Comparatively less is known about the fate of parasitic worm species ova in these complex systems. It is largely assumed that these helminths settle, are removed with the sludge, and consequently represent a relatively low risk for wastewater reuse applications. However, helminths are a highly diverse group of organisms that display a wide range of physical properties that complicate the application of a single treatment for helminth reduction during wastewater treatment. Moreover, their diverse biological and physical properties make some ova highly resistant to both disinfection (i.e., with chlorine or UV treatment) and physical removal (settling) through the wastewater treatment train, indicating that there may be reason to broaden the scope of our investigations into whether parasitic worm eggs can be identified in treated wastewater. The ubiquitous human parasitic nematode Enterobius vermicularis (pinworm) produces small, buoyant ova. Utilizing a novel diagnostic quantitative PCR (qPCR), this study monitored E. vermicularis presence at two full-scale wastewater treatment plants over the course of 8 months and demonstrated incomplete physical removal of E. vermicularis ova through tertiary treatment, with removal efficiencies approximating only 0.5 and 1.6 log 10 at the two wastewater treatment plants based on qPCR. These findings demonstrate the need for more-diverse surrogates of helminthic ova to fully assess treatment performance with respect to reclaimed wastewaters. IMPORTANCE Helminths, despite being a diverse and environmentally resistant class of pathogens, are often underestimated and ignored when treatment performance at modern wastewater treatment plants is considered. A one-size-fits-all surrogate for removal of helminth ova may be

  20. Benchmarking wastewater treatment plants under an eco-efficiency perspective.

    PubMed

    Lorenzo-Toja, Yago; Vázquez-Rowe, Ian; Amores, María José; Termes-Rifé, Montserrat; Marín-Navarro, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-10-01

    The new ISO 14045 framework is expected to slowly start shifting the definition of eco-efficiency toward a life-cycle perspective, using Life Cycle Assessment (LCA) as the environmental impact assessment method together with a system value assessment method for the economic analysis. In the present study, a set of 22 wastewater treatment plants (WWTPs) in Spain were analyzed on the basis of eco-efficiency criteria, using LCA and Life Cycle Costing (LCC) as a system value assessment method. The study is intended to be useful to decision-makers in the wastewater treatment sector, since the combined method provides an alternative scheme for analyzing the relationship between environmental impacts and costs. Two midpoint impact categories, global warming and eutrophication potential, as well as an endpoint single score indicator were used for the environmental assessment, while LCC was used for value assessment. Results demonstrated that substantial differences can be observed between different WWTPs depending on a wide range of factors such as plant configuration, plant size or even legal discharge limits. Based on these results the benchmarking of wastewater treatment facilities was performed by creating a specific classification and certification scheme. The proposed eco-label for the WWTPs rating is based on the integration of the three environmental indicators and an economic indicator calculated within the study under the eco-efficiency new framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Process Design Manual for Land Treatment of Municipal Wastewater.

    ERIC Educational Resources Information Center

    Crites, R.; And Others

    This manual presents a procedure for the design of land treatment systems. Slow rate, rapid infiltration, and overland flow processes for the treatment of municipal wastewaters are given emphasis. The basic unit operations and unit processes are discussed in detail, and the design concepts and criteria are presented. The manual includes design…

  2. Re-thinking wastewater landscapes: combining innovative strategies to address tomorrow's urban wastewater treatment challenges.

    PubMed

    Smith, B R

    2009-01-01

    Most major cities worldwide face urban water management challenges relating to drinking supply, stormwater and wastewater treatment, and ecological preservation. In light of climate change and finite natural resources, addressing these challenges in sustainable ways will require innovative solutions arising from interdisciplinary collaboration. This article summarizes five major urban water management strategies that bridge the fields of engineering, ecology, landscape architecture, and urban planning. A conceptual implementation of these strategies is demonstrated through a design for a small constructed wetland treatment system in San Francisco, California. The proposed decentralized system described in this article consists of a detention basin, vegetated and open free water surface wetlands, and ultraviolet disinfection. In wet weather, the system would detain and treat combined sewer discharges (CSD), and in dry weather it would treat residential greywater for toilet flushing and irrigation in a nearby neighborhood. It is designed to adapt over time to changing climatic conditions and treatment demands. Importantly, this proposal demonstrates how constructed wetland engineers can incorporate multiple benefits into their systems, offering a vision of how wastewater infrastructure can be an attractive community, educational, recreational, and habitat amenity through the integration of engineering, ecology, and landscape design.

  3. NPDES Permit: Shiprock Wastewater Treatment Facility, Shiprock, New Mexico

    EPA Pesticide Factsheets

    NPDES Permit, Fact Sheet, and Response to Comments explaining EPA's issue of NPDES Permit No. NN0020621 to the Navajo Tribal Utility Authority Shiprock Wastewater Treatment Facility, Shiprock, San Juan County, New Mexico.

  4. Wastewater Treatment: A Pilot Plant on the Move

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    Reports that there are currently three companies that own mobile physical-chemical wastewater treatment vans that investigate such parameters as chemical coagulation, sedimentation, sand filtration and carbon adsorption. Information is provided regarding the potential of utilizing this type of facility and rental agreements. (MLB)

  5. Car wash wastewater treatment and water reuse - a case study.

    PubMed

    Zaneti, R N; Etchepare, R; Rubio, J

    2013-01-01

    Recent features of a car wash wastewater reclamation system and results from a full-scale car wash wastewater treatment and recycling process are reported. This upcoming technology comprises a new flocculation-column flotation process, sand filtration, and a final chlorination. A water usage and savings audit (22 weeks) showed that almost 70% reclamation was possible, and fewer than 40 L of fresh water per wash were needed. Wastewater and reclaimed water were characterized by monitoring chemical, physicochemical and biological parameters. Results were discussed in terms of aesthetic quality (water clarification and odour), health (pathological) and chemical (corrosion and scaling) risks. A microbiological risk model was applied and the Escherichia coli proposed criterion for car wash reclaimed water is 200 CFU 100 mL(-1). It is believed that the discussions on car wash wastewater reclamation criteria may assist institutions to create laws in Brazil and elsewhere.

  6. Wastewater collection and treatment technologies for semi-urban areas of India: a case study.

    PubMed

    Sundaravadivel, M; Vigneswaran, S

    2001-01-01

    Sanitation and wastewater management problems in small and medium towns in India (referred to as "semi-urban areas"--SUAs) are distinctly different from those of large cities or rural villages. There is an apparent lack of choices of appropriate sanitation options for these semi-urban areas, leading them to adopt on-site sanitation technologies. A field study of four such small towns in India was conducted to evaluate the suitability of available low-cost wastewater collection and treatment technologies, in light of their current practice. Based on the field study, this paper suggests a system comprising "combined surface sewers" and "reed-bed channel" for collection and treatment of wastewater for semi-urban areas, that can utilize all the existing infrastructure to effect better sanitation at lower costs. The suggested system involves converting the existing open wastewater collection drains on the road sides, as "decentralized" networks of covered drains with simple structural modifications to collect both wastewater and stormwater; and, converting the large open drains on the outskirts of SUAs that carry wastewater to agricultural fields, as gravel media filled beds planted with local reeds. Cost estimates for the towns studied indicate this system to be over 70% cheaper compared to conventional collection and treatment systems.

  7. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    PubMed

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  8. Carbon and energy footprint of electrochemical vinegar wastewater treatment

    NASA Astrophysics Data System (ADS)

    Gerek, Emine Esra; Yilmaz, Seval; Savaş Koparal, A.; Nezih Gerek, Ömer

    2017-11-01

    Electrochemical treatment of wastewaters that are rich in organic compounds is a popular method, due to its acidic nature that avoids biological treatment. In many cases, the pollution hazard is considered as the chemical oxygen demand (COD) from active carbon, and the success of the treatment is measured in terms of how much this specific parameter is reduced. However, if electricity is used during the treatment process, the treatment "itself" has manufacturing and operational energy costs. Many of the studies consider energy utilization as a monetary cost, and try to reduce its amount. However, the energy cost of the treatment also causes emission of carbon at the energy producing side of the closed loop. This carbon emission can be converted into oxygen demand, too. Therefore, it can be argued that one must look for the total optimal carbon efficiency (or oxygen demand), while reducing the COD. We chose a highly acidic wastewater case of vinegar production, which is a popular food product in Turkey, to demonstrate the high energy consumption and carbon emission problem of the electrochemical treatment approach. A novel strategy is presented to monitor total oxygen demand simultaneously at the treatment and energy production sides. Necessity of renewable energy utilization and conditions on process termination points are discussed.

  9. Economic feasibility study for new technological alternatives in wastewater treatment processes: a review.

    PubMed

    Molinos-Senante, María; Hernández-Sancho, Francesc; Sala-Garrido, Ramón

    2012-01-01

    The concept of sustainability involves the integration of economic, environmental, and social aspects and this also applies in the field of wastewater treatment. Economic feasibility studies are a key tool for selecting the most appropriate option from a set of technological proposals. Moreover, these studies are needed to assess the viability of transferring new technologies from pilot-scale to full-scale. In traditional economic feasibility studies, the benefits that have no market price, such as environmental benefits, are not considered and are therefore underestimated. To overcome this limitation, we propose a new methodology to assess the economic viability of wastewater treatment technologies that considers internal and external impacts. The estimation of the costs is based on the use of cost functions. To quantify the environmental benefits from wastewater treatment, the distance function methodology is proposed to estimate the shadow price of each pollutant removed in the wastewater treatment. The application of this methodological approach by decision makers enables the calculation of the true costs and benefits associated with each alternative technology. The proposed methodology is presented as a useful tool to support decision making.

  10. A Course on Operational Considerations in Wastewater Treatment Plant Design. Instructor's Manual.

    ERIC Educational Resources Information Center

    Cooper, John W.; And Others

    This manual contains 17 instructional units (sequenced to correspond to parallel chapters in a student's manual) focusing on upgrading the design of wastewater plant facilities and serving as a reference source for establishing criteria for upgrading wastewater treatment plants. The manual also furnishes information for modifying plant design to…

  11. Integrated copper-containing wastewater treatment using xanthate process.

    PubMed

    Chang, Yi-Kuo; Chang, Juu-En; Lin, Tzong-Tzeng; Hsu, Yu-Ming

    2002-09-02

    Although, the xanthate process has been shown to be an effective method for heavy metal removal from contaminated water, a heavy metal contaminated residual sludge is produced by the treatment process and the metal-xanthate sludge must be handled in accordance with the Taiwan EPA's waste disposal requirements. This work employed potassium ethyl xanthate (KEX) to remove copper ions from wastewater. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) were used to determine the leaching potential and stability characteristics of the residual copper xanthate (Cu-EX) complexes. Results from metal removal experiments showed that KEX was suitable for the treatment of copper-containing wastewater over a wide copper concentration range (50, 100, 500, and 1000 mg/l) to the level that meets the Taiwan EPA's effluent regulations (3mg/l). The TCLP results of the residual Cu-EX complexes could meet the current regulations and thus the Cu-EX complexes could be treated as a non-hazardous material. Besides, the results of SDLT indicated that the complexes exhibited an excellent performance for stabilizing metals under acidic conditions, even slight chemical changes of the complexes occurred during extraction. The xanthate process, mixing KEX with copper-bearing solution to form Cu-EX precipitates, offered a comprehensive strategy for solving both copper-containing wastewater problems and subsequent sludge disposal requirements.

  12. Performance assessment of aquatic macrophytes for treatment of municipal wastewater

    PubMed Central

    2014-01-01

    The objective of the study was to evaluate the performance of three different aquatic macrophytes for treatment of municipal wastewater collected from Taxila (Pakistan). A physical model of treatment plant was constructed and was operated for six experimental runs with each species of macrophyte. Every experimental run consist of thirty days period. Regular monitoring of influent and effluent concentrations were made during each experimental run. For the treatment locally available macrophyte species i.e. water hyacinth, duckweed & water lettuce were selected to use. To evaluate the treatment performance of each macrophyte, BOD5, COD, and Nutrients (Nitrogen and Phosphorus) were monitored in effluent from model at different detention time of every experimental run after ensuring steady state conditions. The average reduction of effluent value of each parameter using water hyacinth were 50.61% for BOD5, 46.38% for COD, 40.34% for Nitrogen and 18.76% for Phosphorus. For duckweed the average removal efficiency for selected parameters were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus and for Water Lettuce the average removal efficiency were 33.43% for BOD5, 26.37% for COD, 17.59% for Nitrogen and 15.25% for Phosphorus. The mechanisms of pollutant removal in this system include both aerobic and anaerobic microbiological conversions, sorption, sedimentation, volatilization and chemical transformations. The rapid growth of the biomass was measured within first ten days detention time. It was also observed that performance of macrophytes is influenced by variation of pH and Temperature. A pH of 6-9 and Temperature of 15-38°C is most favorable for treatment of wastewater by macrophytes. The option of macrophytes for treatment of Municipal sewage under local environmental conditions can be explored by further verifying the removal efficiency under variation of different environmental conditions. Also this is need of time that macrophyte

  13. Characteristics of microbial community functional structure of a biological coking wastewater treatment system.

    PubMed

    Joshi, Dev Raj; Zhang, Yu; Zhang, Hong; Gao, Yingxin; Yang, Min

    2018-01-01

    Nitrogenous heterocyclic compounds are key pollutants in coking wastewater; however, the functional potential of microbial communities for biodegradation of such contaminants during biological treatment is still elusive. Herein, a high throughput functional gene array (GeoChip 5.0) in combination with Illumina HiSeq2500 sequencing was used to compare and characterize the microbial community functional structure in a long run (500days) bench scale bioreactor treating coking wastewater, with a control system treating synthetic wastewater. Despite the inhibitory toxic pollutants, GeoChip 5.0 detected almost all key functional gene (average 61,940 genes) categories in the coking wastewater sludge. With higher abundance, aromatic ring cleavage dioxygenase genes including multi ring1,2diox; one ring2,3diox; catechol represented significant functional potential for degradation of aromatic pollutants which was further confirmed by Illumina HiSeq2500 analysis results. Response ratio analysis revealed that three nitrogenous compound degrading genes- nbzA (nitro-aromatics), tdnB (aniline), and scnABC (thiocyanate) were unique for coking wastewater treatment, which might be strong cause to increase ammonia level during the aerobic process. Additionally, HiSeq2500 elucidated carbozole and isoquinoline degradation genes in the system. These findings expanded our understanding on functional potential of microbial communities to remove organic nitrogenous pollutants; hence it will be useful in optimization strategies for biological treatment of coking wastewater. Copyright © 2017. Published by Elsevier B.V.

  14. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam.

    PubMed

    Nguyen, Lan Huong; Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge.

  15. A critical review on characterization strategies of organic matter for wastewater and water treatment processes.

    PubMed

    Tran, Ngoc Han; Ngo, Huu Hao; Urase, Taro; Gin, Karina Yew-Hoong

    2015-10-01

    The presence of organic matter (OM) in raw wastewater, treated wastewater effluents, and natural water samples has been known to cause many problems in wastewater treatment and water reclamation processes, such as treatability, membrane fouling, and the formation of potentially toxic by-products during wastewater treatment. This paper summarizes the current knowledge on the methods for characterization and quantification of OM in water samples in relation to wastewater and water treatment processes including: (i) characterization based on the biodegradability; (ii) characterization based on particle size distribution; (iii) fractionation based on the hydrophilic/hydrophobic properties; (iv) characterization based on the molecular weight (MW) size distribution; and (v) characterization based on fluorescence excitation emission matrix. In addition, the advantages, disadvantages and applications of these methods are discussed in detail. The establishment of correlations among biodegradability, hydrophobic/hydrophilic fractions, MW size distribution of OM, membrane fouling and formation of toxic by-products potential is highly recommended for further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Low-Carbon Watershed Management: Potential of Greenhouse Gas Reductions from Wastewater Treatment in Rural Vietnam

    PubMed Central

    Mohan, Geetha; Jian, Pu; Takemoto, Kazuhiko; Fukushi, Kensuke

    2016-01-01

    Currently in many cities and rural areas of Vietnam, wastewater is discharged to the environment without any treatment, which emits considerable amount of greenhouse gas (GHG), particularly methane. In this study, four GHG emission scenarios were examined, as well as the baseline scenario, in order to verify the potential of GHG reduction from domestic wastewater with adequate treatment facilities. The ArcGIS and ArcHydro tools were employed to visualize and analyze GHG emissions resulting from discharge of untreated wastewater, in rural areas of Vu Gia Thu Bon river basin, Vietnam. By applying the current IPCC guidelines for GHG emissions, we found that a reduction of GHG emissions can be achieved through treatment of domestic wastewater in the studied area. Compared with baseline scenario, a maximum 16% of total GHG emissions can be reduced, in which 30% of households existing latrines are substituted by Japanese Johkasou technology and other 20% of domestic wastewater is treated by conventional activated sludge. PMID:27699202

  17. Electron beam treatment of textile dyeing wastewater: operation of pilot plant and industrial plant construction.

    PubMed

    Han, B; Kim, J; Kim, Y; Choi, J S; Makarov, I E; Ponomarev, A V

    2005-01-01

    A pilot plant for treating 1000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with an electron beam in this plant, and it gave rise to elaborating the optimal technology of the electron beam treatment of wastewater with increased reliability for instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in the flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day each, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

  18. Process Control Manual for Aerobic Biological Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This Environmental Protection Agency (EPA) publication is an operations manual for activated sludge and trickling filter wastewater treatment facilities. The stated purpose of the manual is to provide an on-the-job reference for operators of these two types of treatment plants. The overall objective of the manual is to aid the operator in…

  19. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    PubMed

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  20. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Renewable Energy in Water and Wastewater Treatment Applications; Period of Performance: April 1, 2001--September 1, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Argaw, N.

    2003-06-01

    This guidebook will help readers understand where and how renewable energy technologies can be used for water and wastewater treatment applications. It is specifically designed for rural and small urban center water supply and wastewater treatment applications. This guidebook also provides basic information for selecting water resources and for various kinds of commercially available water supply and wastewater treatment technologies and power sources currently in the market.

  2. Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment.

    PubMed

    Abinandan, Sudharsanam; Subashchandrabose, Suresh R; Venkateswarlu, Kadiyala; Megharaj, Mallavarapu

    2018-05-17

    Owing to certain drawbacks, such as energy-intensive operations in conventional modes of wastewater treatment (WWT), there has been an extensive search for alternative strategies in treatment technology. Biological modes for treating wastewaters are one of the finest technologies in terms of economy and efficiency. An integrated biological approach with chemical flocculation is being conventionally practiced in several-sewage and effluent treatment plants around the world. Overwhelming responsiveness to treat wastewaters especially by using microalgae is due to their simplest photosynthetic mechanism and ease of acclimation to various habitats. Microalgal technology, also known as phycoremediation, has been in use for WWT since 1950s. Various strategies for the cultivation of microalgae in WWT systems are evolving faster. However, the availability of innovative approaches for maximizing the treatment efficiency, coupled with biomass productivity, remains the major bottleneck for commercialization of microalgal technology. Investment costs and invasive parameters also delimit the use of microalgae in WWT. This review critically discusses the merits and demerits of microalgal cultivation strategies recently developed for maximum pollutant removal as well as biomass productivity. Also, the potential of algal biofilm technology in pollutant removal, and harvesting the microalgal biomass using different techniques have been highlighted. Finally, an economic assessment of the currently available methods has been made to validate microalgal cultivation in wastewater at the commercial level.

  3. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  4. Investigation of titanium dioxide/ tungstic acid -based photocatalyst for human excrement wastewater treatment

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Wang, Can; Xiao, Kemeng; Gao, Yufeng; Zhou, Tong; Xu, Heng

    2018-05-01

    An activated carbon (AC) coated with tungstic acid (WO3)/titanium dioxide (TiO2) nanocomposites photocatalytic material (ACWT) combined with Three-phase Fluidized Bed (TFB) was investigated for human excrement wastewater treatment. Under the ultraviolet (UV) and fluorescent lamp illumination, the ACWT had shown a good performance on chemical oxygen demand (COD) and total nitrogen (TN) removal but inefficient on ammonia nitrogen (NH3-N) removal. Optimized by Taguchi method, COD and TN removal efficiency was up to 88.39% and 55.07%, respectively. Among all the parameters, the dosage of ACWT had the largest contribution on the process. Bacterial community changes after treatment demonstrated that this photocatalytic system had a great sterilization effect on wastewater. These results confirmed that ACWT could be applied for the human excrement wastewater treatment.

  5. Simultaneous domestic wastewater treatment and renewable energy production using microbial fuel cells (MFCs).

    PubMed

    Puig, S; Serra, M; Coma, M; Balaguer, M D; Colprim, J

    2011-01-01

    Microbial fuel cells (MFCS) can be used in wastewater treatment and to simultaneously produce electricity (renewable energy). MFC technology has already been applied successfully in lab-scale studies to treat domestic wastewater, focussing on organic matter removal and energy production. However, domestic wastewater also contains nitrogen that needs to be treated before being discharged. The goal of this paper is to assess simultaneous domestic wastewater treatment and energy production using an air-cathode MFC, paying special attention to nitrogen compound transformations. An air-cathode MFC was designed and run treating 1.39 L d(-1) of wastewater with an organic load rate of 7.2 kg COD m(-3) d(-1) (80% removal efficiency) and producing 1.42 W m(-3). In terms of nitrogen transformations, the study demonstrates that two different processes took place in the MFC: physical-chemical and biological. Nitrogen loss was observed increasing in line with the power produced. A low level of oxygen was present in the anodic compartment, and ammonium was oxidised to nitrite and nitrate.

  6. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process.

    PubMed

    Badmus, Kassim Olasunkanmi; Tijani, Jimoh Oladejo; Massima, Emile; Petrik, Leslie

    2018-03-01

    Persistent organic pollutants (POPs) are very tenacious wastewater contaminants. The consequences of their existence have been acknowledged for negatively affecting the ecosystem with specific impact upon endocrine disruption and hormonal diseases in humans. Their recalcitrance and circumvention of nearly all the known wastewater treatment procedures are also well documented. The reported successes of POPs treatment using various advanced technologies are not without setbacks such as low degradation efficiency, generation of toxic intermediates, massive sludge production, and high energy expenditure and operational cost. However, advanced oxidation processes (AOPs) have recently recorded successes in the treatment of POPs in wastewater. AOPs are technologies which involve the generation of OH radicals for the purpose of oxidising recalcitrant organic contaminants to their inert end products. This review provides information on the existence of POPs and their effects on humans. Besides, the merits and demerits of various advanced treatment technologies as well as the synergistic efficiency of combined AOPs in the treatment of wastewater containing POPs was reported. A concise review of recently published studies on successful treatment of POPs in wastewater using hydrodynamic cavitation technology in combination with other advanced oxidation processes is presented with the highlight of direction for future research focus.

  7. Governing factors affecting the impacts of silver nanoparticles on wastewater treatment.

    PubMed

    Zhang, Chiqian; Hu, Zhiqiang; Li, Ping; Gajaraj, Shashikanth

    2016-12-01

    Silver nanoparticles (nanosilver or AgNPs) enter municipal wastewater from various sources, raising concerns about their potential adverse effects on wastewater treatment processes. We argue that the biological effects of silver nanoparticles at environmentally realistic concentrations (μgL -1 or lower) on the performance of a full-scale municipal water resource recovery facility (WRRF) are minimal. Reactor configuration is a critical factor that reduces or even mutes the toxicity of silver nanoparticles towards wastewater microbes in a full-scale WRRF. Municipal sewage collection networks transform silver nanoparticles into silver(I)-complexes/precipitates with low ecotoxicity, and preliminary/primary treatment processes in front of biological treatment utilities partially remove silver nanoparticles to sludge. Microbial functional redundancy and microbial adaptability to silver nanoparticles also greatly alleviate the adverse effects of silver nanoparticles on the performance of a full-scale WRRF. Silver nanoparticles in a lab-scale bioreactor without a sewage collection system and/or a preliminary/primary treatment process, in contrast to being in a full scale system, may deteriorate the reactor performance at relatively high concentrations (e.g., mgL -1 levels or higher). However, in many cases, silver nanoparticles have minimal impacts on lab-scale bioreactors, such as sequencing batch bioreactors (SBRs), especially when at relatively low concentrations (e.g., less than 1mgL -1 ). The susceptibility of wastewater microbes to silver nanoparticles is species-specific. In general, silver nanoparticles have higher toxicity towards nitrifying bacteria than heterotrophic bacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Microorganisms in bioaerosol emissions from wastewater treatment plants during summer at a Mediterranean site.

    PubMed

    Karra, Styliani; Katsivela, Eleftheria

    2007-03-01

    Measurements were conducted at a Mediterranean site (latitude 35 degrees 31' north and longitude 24 degrees 03' east) during summer, to study the concentration of microorganisms emitted from a wastewater treatment plant under intensive solar radiation (520-840 W/m2) and at elevated air temperatures (25-31 degrees C). Air samples were taken with the Air Sampler MAS 100 (Merck) at each stage of an activated-sludge wastewater treatment (pretreatment, primary settling tanks, aeration tanks, secondary settling tanks, chlorination, and sludge processors). Cultivation methods based on the viable counts of mesophilic heterotrophic bacteria, as well as of indicator microorganisms of faecal contamination (total and faecal coliforms and enterococci), and fungi were performed. During air sampling, temperature, solar radiation, relative humidity and wind speed were measured. The highest concentrations of airborne microorganisms were observed at the aerated grit removal of wastewater at the pretreatment stage. A gradual decrease of bioaerosol emissions was observed during the advanced wastewater treatment from the pretreatment to the primary, secondary and tertiary treatment (97.4% decrease of mesophilic heterotrophic bacteria, and 100% decrease of total coliforms, faecal coliforms and enterococci), 95.8% decrease of fungi. The concentration of the airborne microorganisms at the secondary and tertiary treatment of the wastewater was lower than in the outdoor control. At the same time, the reduction of the microbial load at the waste sludge processors was 19.7% for the mesophilic heterotrophic bacteria, 99.4% for the total coliforms, and 100% for the faecal coliforms and the enterococci, 84.2% for the fungi. The current study concludes that the intensive solar radiation, together with high ambient temperatures, as well as optimal wastewater treatment are the most important factors for low numbers of microbes in the air.

  9. Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater.

    PubMed

    Friha, Inès; Bradai, Mohamed; Johnson, Daniel; Hilal, Nidal; Loukil, Slim; Ben Amor, Fatma; Feki, Firas; Han, Junkuy; Isoda, Hiroko; Sayadi, Sami

    2015-09-01

    The performance of a pilot-scale membrane bioreactor (MBR) system for the treatment of textile wastewater was investigated. The MBR was continuously operated for 7 months. Very high treatment efficiencies were achieved (color, 100%; chemical oxygen demand (COD), 98%; biochemical oxygen demand (BOD5), 96%; suspended solids (SS), 100%). Furthermore, the MBR treatment efficiency was analyzed from a toxicological-risk assessment point of view, via different In vitro bioassays using Caco-2 cells, a widely used cell model in toxicological studies. Results showed that MBR treatment significantly reduced the raw textile wastewater (RTWW) cytotoxicity on Caco-2 cells by 53% for a hydraulic retention time (HRT) of 2 days. Additionally, the RTWW-induced disruption in the barrier function (BF) of the Caco-2 cell monolayer was also significantly reduced after MBR treatment under a HRT of 2 days (no disruption of BF was observed). Moreover, the effect of RTWW and treated wastewater on stress response was investigated using different stress genes: AHSA1, HSPD1, HSPA1A, HSPA5 and HSPA8. The cell exposure to RTWW significantly increased the expression of all used stress genes; interestingly, the treated wastewater (HRT 2 days) did not show any significant modulation of the stress genes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. NPDES Permit for Charlo Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0022551, the Consolidated Charlo-Lake County Water & Sewer District is authorized to discharge from its wastewater treatment facility located in Lake County, Montana to an unnamed swale that runs to Dublin Gulch.

  11. Recycling of treated domestic effluent from an on-site wastewater treatment system for hydroponics.

    PubMed

    Oyama, N; Nair, J; Ho, G E

    2005-01-01

    An alternative method to conserve water and produce crops in arid regions is through hydroponics. Application of treated wastewater for hydroponics will help in stripping off nutrients from wastewater, maximising reuse through reduced evaporation losses, increasing control on quality of water and reducing risk of pathogen contamination. This study focuses on the efficiency of treated wastewater from an on-site aerobic wastewater treatment unit. The experiment aimed to investigate 1) nutrient reduction 2) microbial reduction and 3) growth rate of plants fed on wastewater compared to a commercial hydroponics medium. The study revealed that the chemical and microbial quality of wastewater after hydroponics was safe and satisfactory for irrigation and plant growth rate in wastewater hydroponics was similar to those grown in a commercial medium.

  12. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain).

    PubMed

    Santos, J L; Aparicio, I; Callejón, M; Alonso, E

    2009-05-30

    Several pharmaceutically active compounds have been monitored during 1-year period in influent and effluent wastewater from wastewater treatment plants (WWTPs) to evaluate their temporal evolution and removal from wastewater and to know which variables have influence in their removal rates. Pharmaceutical compounds monitored were four antiinflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine). All of the pharmaceutically active compounds monitored, except diclofenac, were detected in influent and effluent wastewater. Mean concentrations measured in influent wastewater were 6.17, 0.48, 93.6, 1.83 and 5.41 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean concentrations measured in effluent wastewater were 2.02, 0.56, 8.20, 0.84 and 2.10 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean removal rates of the pharmaceuticals varied from 8.1% (carbamazepine) to 87.5% (ibuprofen). The existence of relationships between the concentrations of the pharmaceutical compounds, their removal rates, the characterization parameters of influent wastewaters and the WWTP control design parameters has been studied by means of statistical analysis (correlation and principal component analysis). With both statistical analyses, high correlations were obtained between the concentration of the pharmaceutical compounds and the characterization parameters of influent wastewaters; and between the removal rates of the pharmaceutical compounds, the removal rates of the characterization parameters of influent wastewaters and the WWTP hydraulic retention times. Principal component analysis showed the existence of two main components accounting for 76% of the total variability.

  13. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  14. Electro-peroxone pretreatment for enhanced simulated hospital wastewater treatment and antibiotic resistance genes reduction.

    PubMed

    Zheng, He-Shan; Guo, Wan-Qian; Wu, Qu-Li; Ren, Nan-Qi; Chang, Jo-Shu

    2018-06-01

    Hospital wastewater is one of the possible sources responsible for antibiotic resistant bacteria spread into the environment. This study proposed a promising strategy, electro-peroxone (E-peroxone) pretreatment followed by a sequencing batch reactor (SBR) for simulated hospital wastewater treatment, aiming to enhance the wastewater treatment performance and to reduce antibiotic resistance genes production simultaneously. The highest chemical oxygen demand (COD) and total organic carbon (TOC) removal efficiency of 94.3% and 92.8% were obtained using the E-peroxone-SBR process. The microbial community analysis through high-throughput sequencing showed that E-peroxone pretreatment could guarantee microbial richness and diversity in SBR, as well as reduce the microbial inhibitions caused by antibiotic and raise the amount of nitrification and denitrification genera. Specially, quantitative real-time PCRs revealed that E-peroxone pretreatment could largely reduce the numbers and contents of antibiotic resistance genes (ARGs) production in the following biological treatment unit. It was indicated that E-peroxone-SBR process may provide an effective way for hospital wastewater treatment and possible ARGs reduction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant.

    PubMed

    Hu, Tai-Ho; Whang, Liang-Ming; Liu, Pao-Wen Grace; Hung, Yu-Ching; Chen, Hung-Wei; Lin, Li-Bin; Chen, Chia-Fu; Chen, Sheng-Kun; Hsu, Shu Fu; Shen, Wason; Fu, Ryan; Hsu, Romel

    2012-06-01

    This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Application of Ozone MBBR Process in Refinery Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Lin, Wang

    2018-01-01

    Moving Bed Biofilm Reactor (MBBR) is a kind of sewage treatment technology based on fluidized bed. At the same time, it can also be regarded as an efficient new reactor between active sludge method and the biological membrane method. The application of ozone MBBR process in refinery wastewater treatment is mainly studied. The key point is to design the ozone +MBBR combined process based on MBBR process. The ozone +MBBR process is used to analyze the treatment of concentrated water COD discharged from the refinery wastewater treatment plant. The experimental results show that the average removal rate of COD is 46.0%~67.3% in the treatment of reverse osmosis concentrated water by ozone MBBR process, and the effluent can meet the relevant standard requirements. Compared with the traditional process, the ozone MBBR process is more flexible. The investment of this process is mainly ozone generator, blower and so on. The prices of these items are relatively inexpensive, and these costs can be offset by the excess investment in traditional activated sludge processes. At the same time, ozone MBBR process has obvious advantages in water quality, stability and other aspects.

  17. Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals

    PubMed Central

    Balcom, Ian N.; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm. PMID:27610223

  18. Application of Electrocoagulation In Various Wastewater And Leachate Treatment-A Review

    NASA Astrophysics Data System (ADS)

    Zailani, L. W. M.; Zin, N. S. M.

    2018-04-01

    Electrocoagulation is a method that has a great ability on various wastewater and leachate treatment. It has a potential in removing various pollutants such as chemical oxygen demand, turbidity, ammonia, color, and suspended solid. The effectiveness of electrocoagulation method depends on several factors such as electrode, current density, operation time and pH. The aim of this paper is to review the relevant literature that publishes from 2000 to 2015 on the factor that influence Electrocoagulation (EC). The review describes, discussing and compare the factors that influence the EC process in various wastewater and leachate treatment.

  19. Experimental investigation of oily wastewater treatment using combined membrane systems.

    PubMed

    Salahi, A; Mohammadi, T

    2010-01-01

    Investigations were carried out for purification of oily wastewater by a combined of ultrafiltration/reverse osmosis (UF/RO) processes. Laboratory-scale UF using polysulfone (PS) and polyacrylonitrile (PAN) membranes were employed with typical oily wastewater collected from API unit of Tehran refinery. The PAN membrane showed higher rejection, more permeation flux and less fouling resistance than the PS membrane. Both membranes produced permeate with oil and grease contents generally less than 5 ppm. Rejection of chemical oxygen demand (COD) and biological oxygen demand (BOD5) were found to be 65% for UF treatment. In this work, Hermia's models were used to investigate the fouling mechanism involved in UF of the oily wastewater. The results showed that the best fit to experimental data corresponds to the cake layer formation model followed by the intermediate blocking model for both the UF membranes. For further treatment of the UF permeates, RO was applied using a thin film composite polyamide membrane. The rejection of COD, BOD5 and total dissolved solid (TDS) after UF/RO treatment increased up to 98%, 98% and 95%, respectively. The results showed that the final permeate has very high quality and even better than that is currently introduced to the cooling towers in Tehran refinery.

  20. The OMEGA system for marine bioenergy, wastewater treatment, environmental enhancement, and aquaculture

    NASA Astrophysics Data System (ADS)

    Trent, J. D.

    2013-12-01

    OMEGA is an acronym for Offshore Membrane Enclosure for Growing Algae. The OMEGA system consists of photobioreactors (PBRs) made of flexible, inexpensive clear plastic tubes attached to floating docks, anchored offshore in naturally or artificially protected bays [1]. The system uses domestic wastewater and CO2 from coastal facilities to provide water, nutrients, and carbon for algae cultivation [2]. The surrounding seawater maintains the temperature inside the PBRs and prevents the cultivated (freshwater) algae from becoming invasive species in the marine environment (i.e., if a PBR module accidentally leaks, the freshwater algae that grow in wastewater cannot survive in the marine environment). The salt gradient between seawater and wastewater is used for forward osmosis (FO) to concentrate nutrients and facilitate algae harvesting [3]. Both the algae and FO clean the wastewater, removing nutrients as well as pharmaceuticals and personal-care products [4]. The offshore infrastructure provides a large surface area for solar-photovoltaic arrays and access to offshore wind or wave generators. The infrastructure can also support shellfish, finfish, or seaweed aquaculture. The economics of the OMEGA system are supported by a combination of biofuels production, wastewater treatment, alternative energy generation, and aquaculture. By using wastewater and operating offshore from coastal cities, OMEGA can be located close to wastewater and CO2 sources and it can avoid competing with agriculture for water, fertilizer, and land [5]. By combining biofuels production with wastewater treatment and aquaculture, the OMEGA system provides both products and services, which increase its economic feasibility. While the offshore location has engineering challenges and concerns about the impact and control of biofouling [6], large OMEGA structure will be floating marine habitats and will create protected 'no-fishing' zones that could increase local biodiversity and fishery

  1. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants.

    PubMed

    Ma, Qiao; Qu, Yuan-Yuan; Zhang, Xu-Wang; Shen, Wen-Li; Liu, Zi-Yan; Wang, Jing-Wei; Zhang, Zhao-Jing; Zhou, Ji-Ti

    2015-06-01

    The wastewater from coal-mine industry varies greatly and is resistant to biodegradation for containing large quantities of inorganic and organic pollutants. Microorganisms in activated sludge are responsible for the pollutants' removal, whereas the microbial community composition and structure are far from understood. In the present study, the sludges from five coal-mine wastewater treatment plants were collected and the microbial communities were analyzed by Illumina high-throughput sequencing. The diversities of these sludges were lower than that of the municipal wastewater treatment systems. The most abundant phylum was Proteobacteria ranging from 63.64% to 96.10%, followed by Bacteroidetes (7.26%), Firmicutes (5.12%), Nitrospira (2.02%), Acidobacteria (1.31%), Actinobacteria (1.30%) and Planctomycetes (0.95%). At genus level, Thiobacillus and Comamonas were the two primary genera in all sludges, other major genera included Azoarcus, Thauera, Pseudomonas, Ohtaekwangia, Nitrosomonas and Nitrospira. Most of these core genera were closely related with aromatic hydrocarbon degradation and denitrification processes. Identification of the microbial communities in coal-mine wastewater treatment plants will be helpful for wastewater management and control. Copyright © 2015 Elsevier GmbH. All rights reserved.

  2. Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment.

    PubMed

    Cid, Clément A; Jasper, Justin T; Hoffmann, Michael R

    2018-03-05

    Electrolysis of toilet wastewater with TiO 2 -coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm -2 (∼3.4 V), with greater than 20 m 2 m -3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer.

  3. Wastewater treatments and the impact on environment and agriculture: A case city of Annaba (north eastern of Algeria)

    NASA Astrophysics Data System (ADS)

    Abour, Fella; Hannouche, Mani; Belksier, Mohamed Salah

    2018-05-01

    The present study deals with wastewater treatment which represents a real challenge in the world especially for developing countries. Our investigation takes place in the Annaba (North Eastern of Algeria) which represents one of big cities in the country. The wastewater is treated collectively in the Allalik station which provides a global wastewater treatment to guarantee the sustainability of the ecosystem. The obtained results on treated wastewater show a contamination with Selenium (IS index for Selenium = 5.9). Whereas the other analysed parameters highlight values without exceeding standards excepting the nitrites. The microbiological analyses and Bourgeois index indicate the human origin for pollution (IB >1). In spite of the actual treatment, the pollution selenium and nitrites suggest the improvement of the process of wastewater treatment.

  4. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  5. Occurrence of illicit drugs in water and wastewater and their removal during wastewater treatment.

    PubMed

    Yadav, Meena K; Short, Michael D; Aryal, Rupak; Gerber, Cobus; van den Akker, Ben; Saint, Christopher P

    2017-11-01

    This review critically evaluates the types and concentrations of key illicit drugs (cocaine, amphetamines, cannabinoids, opioids and their metabolites) found in wastewater, surface water and drinking water sources worldwide and what is known on the effectiveness of wastewater treatment in removing such compounds. It is also important to amass information on the trends in specific drug use as well as the sources of such compounds that enter the environment and we review current international knowledge on this. There are regional differences in the types and quantities of illicit drug consumption and this is reflected in the quantities detected in water. Generally, the levels of illicit drugs in wastewater effluents are lower than in raw influent, indicating that the majority of compounds can be at least partially removed by conventional treatment processes such as activated sludge or trickling filters. However, the literature also indicates that it is too simplistic to assume non-detection equates to drug removal and/or mitigation of associated risks, as there is evidence that some compounds may avoid detection via inadequate sampling and/or analysis protocols, or through conversion to transformation products. Partitioning of drugs from the water to the solids fraction (sludge/biosolids) may also simply shift the potential risk burden to a different environmental compartment and the review found no information on drug stability and persistence in biosolids. Generally speaking, activated sludge-type processes appear to offer better removal efficacy across a range of substances, but the lack of detail in many studies makes it difficult to comment on the most effective process configurations and operations. There is also a paucity of information on the removal effectiveness of alternative treatment processes. Research is also required on natural removal processes in both water and sediments that may over time facilitate further removal of these compounds in receiving

  6. ELECTRICITY GENERATION FROM ANAEROBIC WASTEWATER TREATMENT IN MICROBIAL FUEL CELLS (MFCS) - PHASE I

    EPA Science Inventory

    Municipal wastewater treatment plants represent a huge energy ‘sink’ in the United States. Estimates are that these plants consume up to 3 percent of the total amount of power consumed annually. Ironically, the wastewater is concentrated with materials (carbohydrates) which ...

  7. Wastewater treatment by local microalgae strains for CO2 sequestration and biofuel production

    NASA Astrophysics Data System (ADS)

    Ansari, Abeera A.; Khoja, Asif Hussain; Nawar, Azra; Qayyum, Muneeb; Ali, Ehsan

    2017-11-01

    Currently, the scientific community is keenly working on environmental-friendly processes for the production of clean energy and sustainable development. The study was conducted to cultivate microalgae in raw institutional wastewater for water treatment, enriched production of biomass and CO2 sequestration. The strains which were used in this study are Scenedesmus sp. and Chlorella sp. which were isolated from Kallar Kahar Lake, Pakistan. Both strains were cultivated in synthetic growth medium (Bold's Basal Medium) to enhance biomass production. Afterward, microalgae cultures were inoculated in wastewater sample in mixotrophic mode under ambient conditions. The impurities in wastewater were successfully removed from the original sample by the 7th day of operation. COD 95%, nitrate 99.7% and phosphate 80.5% were removed by applying Scenedesmus sp. Meanwhile, Chlorella sp. reduced 84.86% COD, 98.2% nitrate and 70% phosphate, respectively. Interestingly, sulfates were removed from wastewater completely by both strains. Besides being useful in wastewater remediation, these microalgae strains were subsequently harvested for lipid extraction and potential biofuel production was determined. Therefore, the applied method is an environmentally safe, cost-effective and alternative technology for wastewater treatment. Furthermore, the achieved biomass through this process can be used for the production of biofuels.

  8. Reducing microplastics from facial exfoliating cleansers in wastewater through treatment versus consumer product decisions.

    PubMed

    Chang, Michelle

    2015-12-15

    Microplastics (<5mm) have been discovered in fresh and saltwater ecosystems, sediments, and wastewater effluent around the world. Their ability to persist and accumulate up food chains should be a concern as research is still experimenting with techniques to assess their long-term effects on the environment. I sought to characterize the microbeads found in facial exfoliating cleansers so as to better understand how to reduce this source of pollution through consumer use and wastewater treatment solutions. By sampling products from national-grossing cosmetic personal care brands, I was able to gather information on the size, color, volume, mass, and concentration of polyethylene beads in the cleansers. From that data, I modeled onto a consumer survey the estimated volume of microplastics entering a wastewater stream. Through inquiry, I learned the practices of two local wastewater treatment facilities. My findings show that consumer decisions and treatment protocols both play crucial parts in minimizing microplastic pollution. Copyright © 2015. Published by Elsevier Ltd.

  9. "Living off the land": resource efficiency of wetland wastewater treatment.

    PubMed

    Nelson, M; Odum, H T; Brown, M T; Alling, A

    2001-01-01

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens(TM)) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require the electrical energy of conventional sewage treatment (package plants), and save of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  10. ``Living off the land'': resource efficiency of wetland wastewater treatment

    NASA Astrophysics Data System (ADS)

    Nelson, M.; Odum, H. T.; Brown, M. T.; Alling, A.

    Bioregenerative life support technologies for space application are advantageous if they can be constructed using locally available materials, and rely on renewable energy resources, lessening the need for launch and resupply of materials. These same characteristics are desirable in the global Earth environment because such technologies are more affordable by developing countries, and are more sustainable long-term since they utilize less non-renewable, imported resources. Subsurface flow wetlands (wastewater gardens™) were developed and evaluated for wastewater recycling along the coast of Yucatan. Emergy evaluations, a measure of the environmental and human economic resource utilization, showed that compared to conventional sewage treatment, wetland wastewater treatment systems use far less imported and purchased materials. Wetland systems are also less energy-dependent, lessening dependence on electrical infrastructure, and require simpler maintenance since the system largely relies on the ecological action of microbes and plants for their efficacy. Detailed emergy evaluations showed that wetland systems use only about 15% the purchased emergy of conventional sewage systems, and that renewable resources contribute 60% of total emergy used (excluding the sewage itself) compared to less than 1% use of renewable resources in the high-tech systems. Applied on a larger scale for development in third world countries, wetland systems would require 1/5 the electrical energy of conventional sewage treatment (package plants), and save 2/3 of total capital and operating expenses over a 20-year timeframe. In addition, there are numerous secondary benefits from wetland systems including fiber/fodder/food from the wetland plants, creation of ecosystems of high biodiversity with animal habitat value, and aesthestic/landscape enhancement of the community. Wetland wastewater treatment is an exemplar of ecological engineering in that it creates an interface ecosystem to handle

  11. Bilateral waste-water land-treatment research by China and the US EPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, L.E.; Duan, Z.B.; Wang, S.T.

    1991-01-01

    The study was conducted to evaluate the rapid infiltration (R.I.) method of land treatment as a partial solution to wastewater treatment and reuse for the 0.45 billion cu m/yr (15.75 billion cu ft/yr) of safe irrigation water needed by the year 2000. Chinese environmental scientists and water supply managers are considering the use of the technology for diluting high concentrations of nitrate in the ground water while simultaneously recharging severely overdrafted aquifers. The wastewater used in the study contained synthetic organic compounds found on EPA's list of priority pollutants. During the development of EPA's Land Treatment Design Manuals, research wasmore » terminated before a thorough evaluation of the treatability of these compounds could be completed. Therefore, during the study, an evaluation of R.I. systems ability to treat selected priority pollutants as well as fecal coliform bacteria was carried out in the interest of RSKERL's research objectives. Even though the research was focused on operations to optimize the removal of various nitrogen species from primary effluent, the normal wastewater parameters of BOD, COD, SS, Total - P, and TOC were also studied. The volatile organic compounds most prominent in the wastewater, dichloroethene, dichloroethane, chloroform and carbon tetrachloride were also evaluated for treatability in the cooperative study.« less

  12. ED-WAVE tool design approach: Case of a textile wastewater treatment plant in Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Chipofya, V.; Kraslawski, A.; Avramenko, Y.

    The ED-WAVE tool is a PC based package for imparting training on wastewater treatment technologies. The system consists of four modules viz. Reference Library, Process Builder, Case Study Manager, and Treatment Adviser. The principles of case-based design and case-based reasoning as applied in the ED-WAVE tool are utilised in this paper to evaluate the design approach of the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory, Blantyre, Malawi. The case being compared with MDW&S in the ED-WAVE tool is Textile Case 4 in Sri Lanka (2003). Equalisation, coagulation and rotating biological contactors is the sequencing of treatment units at Textile Case 4 in Sri Lanka. Screening, oxidation ditches and sedimentation is the sequencing of treatment units at MDW&S textile and garments factory. The study suggests that aerobic biological treatment is necessary in the treatment of wastewater from a textile and garments factory. MDW&S incorporates a sedimentation process which is necessary for the removal of settleable matter before the effluent is discharged to the municipal wastewater treatment plant. The study confirmed the practical use of the ED-WAVE tool in the design of wastewater treatment systems, where after encountering a new situation; already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects.

  13. PROCESS DESIGN MANUAL FOR LAND TREATMENT OF MUNICIPAL WASTEWATER

    EPA Science Inventory

    The USEPA guidance on land treatment of municipal and industrial wastewater is updated for the first time since 1984. The significant new technilogical changes include phytoremediation, vadose zone monitoring, new design approaches to surface irrigation, center pivot irrigation,...

  14. Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Ibrahim, N. A.; Wirzal, M. D. H.; Nordin, N. A. H.; Halim, N. S. Abd

    2018-04-01

    Nowadays, the water shortage problem following the urbanization and increasing pollution of natural water source have increased the awareness to treat wastewater. Membrane filtration is often used in wastewater treatment plants to filter out more residual activated sludge from aeration process in the secondary stage. However, fouling is the main concern due to the fact it can happen to any membrane application. Antifouling properties in membrane can be improved by blending membranes with fillers or additives to make them more hydrophilic. This study aims to improve the antifouling properties in polyvinylidene fluoride (PVDF) membranes while optimizing the loading of Zeolitic imidazolate framework-8 (ZIF-8) fillers; at different loading (2.0 wt. %, 4.0 wt. %, 6.0 wt. %, 8.0 wt. % and 10.0 wt. %). Manual hand-casting of flat sheet membrane was done and the fabricated membranes were tested for their filterability against pure water and domestic wastewater. Both permeability tests showed that PVDF with 8% ZIF-8 membrane was the most permeable with a pure water and wastewater permeability of 150 L/m2.h.bar and 94 L/m2.h.bar, respectively. The pure water permeability of PVDF with 8% ZIF-8 membrane increases for about 130% compared to the pure PVDF membrane. The turbidity test of the initial feed and final permeate of wastewater, PVDF with 8% ZIF-8 membrane also gave out the highest reduction rate at 87%, which is 36% higher than that of pure PVDF membrane. It can be deduced that 8% of ZIF-8 is the ideal loading to PVDF in improving its antifouling properties to be used in domestic wastewater treatment.

  15. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  16. Biological treatment of wastewaters from a dye manufacturing company using a trickling filter.

    PubMed

    Kornaros, M; Lyberatos, G

    2006-08-10

    The aim of this work was to assess the effectiveness of a biological trickling filter for the treatment of wastewaters produced by a company manufacturing organic dyes and varnishes. The combined wastewater effluent was fed to a pilot-scale trickling filter in two feeding modes, continuously and as a sequencing batch reactor (SBR). The biodegradability of the diluted wastewaters that were subjected to physicochemical treatment, using Ca(OH)(2) and FeSO(4), was initially studied using a continuously operated trickling filter. The system efficiency ranged up to 60-70% for a hydraulic loading of 1.1 m(3)/m(2)day and up to 80-85% for a hydraulic loading 0.6 m(3)/m(2)day. A stable chemical oxygen demand (COD) removal efficiency of 60-70% was achieved even in the case of undiluted wastewater at a hydraulic loading of 1.1 m(3)/m(2)day. The effectiveness of biological treatment of a mixture of the company's main wastewater streams was also examined. The microorganisms developed in the trickling filter were able to efficiently remove COD levels up to 36,000 mg/L, under aerobic conditions at pH values between 5.5 and 8.0. Depending on the operating conditions of the system, about 30-60% of the total COD removal was attributed to air stripping caused by the air supply at the bottom of the filter, whereas the rest of the COD was clearly removed through biological action. The proposed biological treatment process based on a trickling filter, which was operated either continuously or even better in an SBR mode, appears as a promising pretreatment step for coping with dye manufacturing wastewaters in terms of removing a significant portion of the organic content.

  17. A Manual of Simplified Laboratory Methods for Operators of Wastewater Treatment Facilities.

    ERIC Educational Resources Information Center

    Westerhold, Arnold F., Ed.; Bennett, Ernest C., Ed.

    This manual is designed to provide the small wastewater treatment plant operator, as well as the new or inexperienced operator, with simplified methods for laboratory analysis of water and wastewater. It is emphasized that this manual is not a replacement for standard methods but a guide for plants with insufficient equipment to perform analyses…

  18. Use of hydrodynamic cavitation in (waste)water treatment.

    PubMed

    Dular, Matevž; Griessler-Bulc, Tjaša; Gutierrez-Aguirre, Ion; Heath, Ester; Kosjek, Tina; Krivograd Klemenčič, Aleksandra; Oder, Martina; Petkovšek, Martin; Rački, Nejc; Ravnikar, Maja; Šarc, Andrej; Širok, Brane; Zupanc, Mojca; Žitnik, Miha; Kompare, Boris

    2016-03-01

    The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. An ecological vegetation-activated sludge process (V-ASP) for decentralized wastewater treatment: system development, treatment performance, and mathematical modeling.

    PubMed

    Yuan, Jiajia; Dong, Wenyi; Sun, Feiyun; Li, Pu; Zhao, Ke

    2016-05-01

    An environment-friendly decentralized wastewater treatment process that is comprised of activated sludge process (ASP) and wetland vegetation, named as vegetation-activated sludge process (V-ASP), was developed for decentralized wastewater treatment. The long-term experimental results evidenced that the vegetation sequencing batch reactor (V-SBR) process had consistently stable higher removal efficiencies of organic substances and nutrients from domestic wastewater compared with traditional sequencing batch reactor (SBR). The vegetation allocated into V-SBR system could not only remove nutrients through its vegetation transpiration ratio but also provide great surface area for microorganism activity enhancement. This high vegetation transpiration ratio enhanced nutrients removal effectiveness from wastewater mainly by flux enhancement, oxygen and substrate transportation acceleration, and vegetation respiration stimulation. A mathematical model based on ASM2d was successfully established by involving the specific function of vegetation to simulate system performance. The simulation results on the influence of operational parameters on V-ASP treatment effectiveness demonstrated that V-SBR had a high resistance to seasonal temperature fluctuations and influent loading shocking.

  20. COMPARISON OF ESCHERICHIA COLI, TOTAL COLIFORM, AND FECAL COLIFORM POPULATIONS AS INDICATORS OF WASTEWATER TREATMENT EFFICIENCY

    EPA Science Inventory

    Escherichia coli, total coliform, and fecal coliform data were collected from two wastewater treatment facilities, a subsurface constructed wetlands, and the receiving stream. Results are presented from individual wastewater treatment process streams, final effluent and river sit...

  1. Recent advances in mathematical modeling of nitrous oxides emissions from wastewater treatment processes.

    PubMed

    Ni, Bing-Jie; Yuan, Zhiguo

    2015-12-15

    Nitrous oxide (N2O) can be emitted from wastewater treatment contributing to its greenhouse gas footprint significantly. Mathematical modeling of N2O emissions is of great importance toward the understanding and reduction of the environmental impact of wastewater treatment systems. This article reviews the current status of the modeling of N2O emissions from wastewater treatment. The existing mathematical models describing all the known microbial pathways for N2O production are reviewed and discussed. These included N2O production by ammonia-oxidizing bacteria (AOB) through the hydroxylamine oxidation pathway and the AOB denitrification pathway, N2O production by heterotrophic denitrifiers through the denitrification pathway, and the integration of these pathways in single N2O models. The calibration and validation of these models using lab-scale and full-scale experimental data is also reviewed. We conclude that the mathematical modeling of N2O production, while is still being enhanced supported by new knowledge development, has reached a maturity that facilitates the estimation of site-specific N2O emissions and the development of mitigation strategies for a wastewater treatment plant taking into the specific design and operational conditions of the plant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process.

    PubMed

    Chakinala, Anand G; Gogate, Parag R; Burgess, Arthur E; Bremner, David H

    2008-01-01

    For the first time, hydrodynamic cavitation induced by a liquid whistle reactor (LWR) has been used in conjunction with the advanced Fenton process (AFP) for the treatment of real industrial wastewater. Semi-batch experiments in the LWR were designed to investigate the performance of the process for two different industrial wastewater samples. The effect of various operating parameters such as pressure, H2O2 concentration and the initial concentration of industrial wastewater samples on the extent of mineralization as measured by total organic carbon (TOC) content have been studied with the aim of maximizing the extent of degradation. It has been observed that higher pressures, sequential addition of hydrogen peroxide at higher loadings and lower concentration of the effluent are more favourable for a rapid TOC mineralization. In general, the novel combination of hydrodynamic cavitation with AFP results in about 60-80% removal of TOC under optimized conditions depending on the type of industrial effluent samples. The combination described herein is most useful for treatment of bio-refractory materials where the diminution in toxicity can be achieved up to a certain level and then conventional biological oxidation can be employed for final treatment. The present work is the first to report the use of a hydrodynamic cavitation technique for real industrial wastewater treatment.

  3. Extracellular enzymatic activity of two hydrolases in wastewater treatment for biological nutrient removal.

    PubMed

    Berrio-Restrepo, Jorge Mario; Saldarriaga, Julio César; Correa, Mauricio Andrés; Aguirre, Néstor Jaime

    2017-10-01

    Due to the complex nature of the wastewater (both domestic and non-domestic) composition, biological processes are widely used to remove nutrients, such as carbon (C), nitrogen (N), and phosphorous (P), which cause instability and hence contribute to the damage of water bodies. Systems with different configurations have been developed (including anaerobic, anoxic, and aerobic conditions) for the joint removal of carbon, nitrogen, and phosphorus. The goal of this research is to evaluate the extracellular activity of β-glucosidase and phosphatase enzymes in a University of Cape Town (UCT) system fed with two synthetic wastewaters of different molecular complexity. Both types of waters have medium strength characteristics similar to those of domestic wastewater with a mean C/N/P ratio of 100:13:1. The operation parameters were hydraulic retention time (HRT) of 10 h, solid retention time (SRT) of 12 days, mean concentration of the influent in terms of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) of 600, 80, and 6 mg/L, respectively. According to the results obtained, statistically significant differences have been found in the extracellular enzyme activities with the evaluated wastewaters and in the units comprising the treatment system in some of the cases. An analysis of principal components showed that the extracellular enzymatic activity has been correlated to nutrient concentration in wastewater, biomass concentration in the system, and metabolic conditions of treatment phases. Additionally, this research has allowed determining an inverse relationship between wastewater biodegradability and the extracellular enzyme activity of β-glucosidase and phosphatase. These results highlight the importance of including the analysis of biomass biochemical characteristics as control methods in wastewater treatment systems for the nutrient removal.

  4. A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

    NASA Astrophysics Data System (ADS)

    Dexter, Z. D.; Joseph, C. G.; Zahrim, A. Y.

    2016-06-01

    Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry

  5. Recent advances and industrial viewpoint for biological treatment of wastewaters by oleaginous microorganisms.

    PubMed

    Huang, Chao; Luo, Mu-Tan; Chen, Xue-Fang; Xiong, Lian; Li, Xiao-Mei; Chen, Xin-De

    2017-05-01

    Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Meta-Analysis of Mass Balances Examining Chemical Fate during Wastewater Treatment

    PubMed Central

    2008-01-01

    Mass balances are an instructive means for investigating the fate of chemicals during wastewater treatment. In addition to the aqueous-phase removal efficiency (Φ), they can inform on chemical partitioning, transformation, and persistence, as well as on the chemical loading to streams and soils receiving, respectively, treated effluent and digested sewage sludge (biosolids). Release rates computed on a per-capita basis can serve to extrapolate findings to a larger scale. This review examines over a dozen mass balances conducted for various organic wastewater contaminants, including prescription drugs, estrogens, fragrances, antimicrobials, and surfactants of differing sorption potential (hydrophobicity), here expressed as the 1-octanol−water partition coefficient (KOW) and the organic carbon normalized sorption coefficient (KOC). Major challenges to mass balances are the collection of representative samples and accurate quantification of chemicals in sludge. A meta-analysis of peer-reviewed data identified sorption potential as the principal determinant governing chemical persistence in biosolids. Occurrence data for organic wastewater compounds detected in digested sludge followed a simple nonlinear model that required only KOW or KOC as the input and yielded a correlation coefficient of 0.9 in both instances. The model predicted persistence in biosolids for the majority (>50%) of the input load of organic wastewater compounds featuring a log10KOW value of greater than 5.2 (log10KOC > 4.4). In contrast, hydrophobicity had no or only limited value for estimating, respectively, Φ and the overall persistence of a chemical during conventional wastewater treatment. PMID:18800497

  7. Stochastic modeling to identify requirements for centralized monitoring of distributed wastewater treatment.

    PubMed

    Hug, T; Maurer, M

    2012-01-01

    Distributed (decentralized) wastewater treatment can, in many situations, be a valuable alternative to a centralized sewer network and wastewater treatment plant. However, it is critical for its acceptance whether the same overall treatment performance can be achieved without on-site staff, and whether its performance can be measured. In this paper we argue and illustrate that the system performance depends not only on the design performance and reliability of the individual treatment units, but also significantly on the monitoring scheme, i.e. on the reliability of the process information. For this purpose, we present a simple model of a fleet of identical treatment units. Thereby, their performance depends on four stochastic variables: the reliability of the treatment unit, the respond time for the repair of failed units, the reliability of on-line sensors, and the frequency of routine inspections. The simulated scenarios show a significant difference between the true performance and the observations by the sensors and inspections. The results also illustrate the trade-off between investing in reactor and sensor technology and in human interventions in order to achieve a certain target performance. Modeling can quantify such effects and thereby support the identification of requirements for the centralized monitoring of distributed treatment units. The model approach is generic and can be extended and applied to various distributed wastewater treatment technologies and contexts.

  8. Impact of Vegetative Treatment Systems on Multiple Measures of Antibiotic Resistance in Agricultural Wastewater.

    PubMed

    Durso, Lisa M; Miller, Daniel N; Henry, Christopher G

    2018-06-21

    Wastewater is an important vector of antibiotic resistant bacteria and antibiotic resistance genes (ARB/G). While there is broad agreement that ARB/G from agricultural (ag) wastewaters can be transported through the environment and may contribute to untreatable infectious disease in humans and animals, there remain large knowledge gaps surrounding applied details on the types and amounts of ARB/G associated with different agricultural wastewater treatment options and different ag production systems. This study evaluates a vegetative treatment system (VTS) built to treat the wastewater from a beef cattle feedlot. Samples were collected for three years, and plated on multiple media types to enumerate tetracycline and cefotaxime-resistant bacteria. Enterobacteriaceae isolates ( n = 822) were characterized for carriage of tetracycline resistance genes, and E. coli isolates ( n = 673) were phenotyped to determine multi-drug resistance (MDR) profiles. Tetracycline resistance in feedlot runoff wastewater was 2-to-3 orders of magnitude higher compared to rainfall runoff from the VTS fields, indicating efficacy of the VTA for reducing ARB over time following wastewater application. Clear differences in MDR profiles were observed based on the specific media on which a sample was plated. This result highlights the importance of method, especially in the context of isolate-based surveillance and monitoring of ARB in agricultural wastewaters.

  9. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review.

    PubMed

    Lofrano, Giusy; Meriç, Sureyya; Zengin, Gülsüm Emel; Orhon, Derin

    2013-09-01

    Although the leather tanning industry is known to be one of the leading economic sectors in many countries, there has been an increasing environmental concern regarding the release of various recalcitrant pollutants in tannery wastewater. It has been shown that biological processes are presently known as the most environmental friendly but inefficient for removal of recalcitrant organics and micro-pollutants in tannery wastewater. Hence emerging technologies such as advanced oxidation processes and membrane processes have been attempted as integrative to biological treatment for this sense. This paper, as the-state-of-the-art, attempts to revise the over world trends of treatment technologies and advances for pollution prevention from tannery chemicals and wastewater. It can be elucidated that according to less extent advances in wastewater minimization as well as in leather production technology and chemicals substitution, biological and chemical treatment processes have been progressively studied. However, there has not been a full scale application yet of those emerging technologies using advanced oxidation although some of them proved good achievements to remove xenobiotics present in tannery wastewater. It can be noted that advanced oxidation technologies integrated with biological processes will remain in the agenda of the decision makers and water sector to apply the best prevention solution for the future tanneries. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. WHAT HAPPENS TO FLUOROTELOMER POLYMER PRODUCTS DURING WASTEWATER TREATMENT?

    EPA Science Inventory

    Fluorotelomer based polymers formulate numerous products relied upon by society. Despite their widespread use and high opportunity for down-the-drain disposal, the fate and stability of fluorotelomer polymer products in wastewater treatment systems remains unknown. To address thi...

  11. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  12. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  13. 40 CFR 63.138 - Process wastewater provisions-performance standards for treatment processes managing Group 1...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... each treatment process. (b) Control options: Group 1 wastewater streams for Table 9 compounds. The... section. (c) Control options: Group 1 wastewater streams for Table 8 compounds. The owner or operator...) Residuals. For each residual removed from a Group 1 wastewater stream, the owner or operator shall control...

  14. Vertical Subsurface Flow (VSSF) constructed wetland for domestic wastewater treatment

    NASA Astrophysics Data System (ADS)

    Perdana, M. C.; Sutanto, H. B.; Prihatmo, G.

    2018-04-01

    Vertical Subsurface Flow Constructed Wetland (VSSF) is appraised to become an alternative solution for treating domestic wastewater effectively and efficiently. The system which imitates the natural wetland concept is able to reduce organic material and nutrients in wastewater; therefore, it will be more feasible to be discharged to the environment. This study aimed to compare which species is more recommended to be applied for reducing organic material and nutrients in domestic wastewater. This experimental study applied four treatments, i.e 1) control (unplanted), 2) single species Iris pseudacorus, 3) single species Echinodorus palaefolius, and 4) combination (Iris pseudacorus and Echinodorus palaefolius) with three days of retention time. The application of those plants aims for holding the role in increasing wastewater quality and adding aesthetic impression at once. The plants were planted on VSSF media, in relatively same of weight and size to compare their effectiveness in decreasing organic and inorganic load. The parameters measured pervade TDS, pH, BOD5, COD, Nitrate, and Phosphate. The plants’ condition was also observed during and after the system worked. The result showed that the best average value of effectiveness for each of parameters: COD by combination treatment (50.76%), BOD5 by single I. pseudacorus (30.15%), Nitrate by single E. palaefolius (58.06%), Phosphate by single E. palaefolius (99.5%), and TDS by E.palaefolius (3.25%). The result showed that there was a significant difference of Nitrate and Phosphate reduction between control and three other treatments, while pH parameter showed non-significant change among them. In term of performance, I.pseudacorus seemed showed a preferable achievement.

  15. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sumantri, Indro; Purwanto,; Budiyono

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and highmore » efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.« less

  16. Kinetic study of treatment of wastewater contains food preservative agent by anaerobic baffled reactor : An overview

    NASA Astrophysics Data System (ADS)

    Sumantri, Indro; Purwanto, Budiyono

    2015-12-01

    The characteristic of wastewater of food industries with preservative substances is high content of organic substances, degradable and high total suspended solid. High organic content in this waste forced the treatment is biologically and pointed out to anaerobic treatment. Anaerobic showed the better performance of degradation than aerobic for high content organic and also for toxic materials. During that day the treatment of food wastewater is aerobically which is high consume of energy required and high volume of sludge produced. The advantage of anaerobic is save high energy, less product of sludge, less requirement of nutrients of microorganism and high efficiency reduction of organic load. The high efficiency of reduction will reduce the load of further treatment, so that, the threshold limit based on the regulation would be easy to achieve. Research of treatment of wastewater of food industries would be utilized by both big scale industries and small industries using addition of preservative substances. The type reactor of anaerobic process is anaerobic baffled reactor that will give better contact between wastewater and microorganism in the sludge. The variables conducted in this research are the baffled configuration, sludge height, preservative agent contents, hydralic retention time and influence of micro nutrients. The respons of this research are the COD effluent, remaining preservative agent, pH, formation of volatile fatty acid and total suspended solid. The result of this research is kinetic model of the anaerobic baffled reactor, reaction kinetic of preservative agent degradation and technology of treatment wastewater contains preservative agent. The benefit of this research is to solve the treatment of wastewater of food industries with preservative substance in order to achieve wastewater limit regulation and also to prevent the environmental deterioration.

  17. Operation of Wastewater Treatment Plants. Volume 1. A Field Study Training Program. Third Edition. Revised.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    The purpose of this wastewater treatment field study training program is to: (1) develop new qualified wastewater treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  18. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  19. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  20. TECHNOLOGY ASSESSMENT OF AQUACULTURE SYSTEMS FOR MUNICIPAL WASTEWATER TREATMENT

    EPA Science Inventory

    The innovative and alternative technology provisions of the Clean Water Act of 1977 (PL 95-217) provide financial incentives to communities that use wastewater treatment alternatives to reduce costs or energy consumption over conventional systems. Some of these technologies have ...

  1. Estimation of contamination sources of human enteroviruses in a wastewater treatment and reclamation system by PCR-DGGE.

    PubMed

    Ji, Zheng; Wang, Xiaochang C; Xu, Limei; Zhang, Chongmiao; Funamizu, Naoyuki; Okabe, Satoshi; Sano, Daisuke

    2014-06-01

    A polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method was employed to estimate the contamination sources of human enteroviruses and understand how their dominant strains vary in a wastewater treatment and reclamation system consisting of sewage collection, wastewater treatment with membrane bioreactor and open lakes for reclaimed water storage and reuse. After PCR-DGGE using a selected primer set targeting enteroviruses, phylogenetic analysis of acquired enterovirus gene sequences was performed. Enteroviruses identified from the septic tank were much more diverse than those from grey water and kitchen wastewater. Several unique types of enterovirus different from those in wastewater samples were dominant in a biological wastewater treatment unit. Membrane filtration followed by chlorination was proved effective for physically eliminating enteroviruses; however, secondary contamination likely occurred as the reclaimed water was stored in artificial lakes. Enterovirus 71 (EV71), a hand-foot-and-mouth disease (HFMD) viral pathogen, was detected mainly from the artificial lakes, implying that wastewater effluent was not the contamination source of EV71 and that there were unidentified non-point sources of the contamination with the HFMD viral pathogen in the reclaimed water stored in the artificial lakes. The PCR-DGGE targeting enteroviruses provided robust evidence about viral contamination sources in the wastewater treatment and reclamation system.

  2. Food-processes wastewaters treatment using food solid-waste materials as adsorbents or absorbents

    NASA Astrophysics Data System (ADS)

    Rapti, Ilaira; Georgopoulos, Stavros; Antonopoulou, Maria; Konstantinou, Ioannis; Papadaki, Maria

    2016-04-01

    The wastewaters generated by olive-mills during the production of olive oil, wastewaters from a dairy and a cow-farm unit and wastewaters from a small food factory have been treated by means of selected materials, either by-products of the same units, or other solid waste, as absorbents or adsorbents in order to identify the capacity of those materials to remove organic load and toxicity from the aforementioned wastewaters. The potential of both the materials used as absorbents as well as the treated wastewaters to be further used either as fertilizers or for agricultural irrigation purposes are examined. Dry olive leaves, sheep wool, rice husks, etc. were used either in a fixed-bed or in a stirred batch arrangemen,t employing different initial concentrations of the aforementioned wastewaters. The efficiency of removal was assessed using scpectrophotometric methods and allium test phytotoxicity measurements. In this presentation the response of each material employed is shown as a function of absorbent/adsorbent quantity and kind, treatment time and wastewater kind and initial organic load. Preliminary results on the potential uses of the adsorbents/absorbents and the treated wastewaters are also shown. Keywords: Olive-mill wastewaters, dairy farm wastewaters, olive leaves, zeolite, sheep wool

  3. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    ERIC Educational Resources Information Center

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  4. High-performance TiO(2) from Baker's yeast.

    PubMed

    He, Wen; Cui, Jingjie; Yue, Yuanzheng; Zhang, Xudong; Xia, Xi; Liu, Hong; Lui, Suwen

    2011-02-01

    Based on the biomineralization assembly concept, a biomimetic approach has been developed to synthesize high-performance mesoporous TiO(2). The key step of this approach is to apply Baker's yeast cells as biotemplates for deriving the hierarchically ordered mesoporous anatase structure. The mechanism of formation of the yeast-TiO(2) is revealed by characterizing its morphology, microstructure, and chemical composition. The yeast-TiO(2) exhibits outstanding photocatalytic performance. Under visible-light irradiation, the removal efficiency of chemical oxygen demand (COD) and color of the paper industry wastewater has reached 80.3% and nearly 100%, respectively. The approach may open new vistas for fabricating advanced mesoporous materials under ambient condition. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control.

    PubMed

    Balogh, Steven J; Nollet, Yabing H

    2008-01-15

    Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

  6. Model Test of Proposed Loading Rates for Onsite Wastewater Treatment Systems

    EPA Science Inventory

    State regulatory agencies set standards for onsite wastewater treatment system (OWTS), commonly known as septic systems, based on expected hydraulic performance and nitrogen (N) treatment in soils of differing texture. In a previous study, hydraulic loading rates were proposed fo...

  7. Study on bubble column humidification and dehumidification system for coal mine wastewater treatment.

    PubMed

    Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai

    2018-04-01

    Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.

  8. Phosphate Recovery from Human Waste via the Formation of Hydroxyapatite during Electrochemical Wastewater Treatment

    PubMed Central

    2018-01-01

    Electrolysis of toilet wastewater with TiO2-coated semiconductor anodes and stainless steel cathodes is a potentially viable onsite sanitation solution in parts of the world without infrastructure for centralized wastewater treatment. In addition to treating toilet wastewater, pilot-scale and bench-scale experiments demonstrated that electrolysis can remove phosphate by cathodic precipitation as hydroxyapatite at no additional energy cost. Phosphate removal could be predicted based on initial phosphate and calcium concentrations, and up to 80% total phosphate removal was achieved. While calcium was critical for phosphate removal, magnesium and bicarbonate had only minor impacts on phosphate removal rates at concentrations typical of toilet wastewater. Optimal conditions for phosphate removal were 3 to 4 h treatment at about 5 mA cm–2 (∼3.4 V), with greater than 20 m2 m–3 electrode surface area to reactor volume ratios. Pilot-scale systems are currently operated under similar conditions, suggesting that phosphate removal can be viewed as an ancillary benefit of electrochemical wastewater treatment, adding utility to the process without requiring additional energy inputs. Further value may be provided by designing reactors to recover precipitated hydroxyapatite for use as a low solubility phosphorus-rich fertilizer. PMID:29607266

  9. Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1.

    PubMed

    Zhang, Tian-Yuan; Wu, Yin-Hu; Hu, Hong-Ying

    2014-01-01

    Cultivation of microalgae for biomass production is a promising way to dispose of wastewater and recover nutrients simultaneously. The properties of nutrient removal and biomass production in domestic wastewater of a newly isolated microalga Scenedesmus sp. ZTY1 were investigated in this study. Scenedesmus sp. ZTY1, which was isolated from a wastewater treatment plant in Beijing, grew well in both the primary and secondary effluents of a wastewater treatment plant during the 21-day cultivation, with a maximal algal density of 3.6 × 10(6) and 1.9 × 10(6) cells · mL(-1), respectively. The total phosphorus concentrations in both effluents could be efficiently removed by over 97% after the cultivation. A high removal rate (over 90%) of total nitrogen (TN) was also observed. After cultivation in primary effluent for 21 days, the lipid content of Scenedesmus sp. ZTY1 in dry weight had reached about 32.2%. The lipid and triacylglycerol (TAG) production of Scenedesmus sp. ZTY1 was increased significantly with the extension of cultivation time. The TAG production of Scenedesmus sp. ZTY1 increased from 32 mg L(-1) at 21 d to 148 mg L(-1) at 45 d in primary effluent. All the experiments were carried out in non-sterilized domestic wastewater and Scenedesmus sp. ZTY1 showed good adaptability to the domestic wastewater environment.

  10. Contaminant removal by wastewater treatment plants in the Stillaguamish River Basin, Washington

    USGS Publications Warehouse

    Barbash, Jack E.; Moran, Patrick W.; Wagner, Richard J.; Wolanek, Michael

    2015-01-01

    Human activities in most areas of the developed world typically release nutrients, pharmaceuticals, personal care products, pesticides, and other contaminants into the environment, many of which reach freshwater ecosystems. In urbanized areas, wastewater treatment plants (WWTPs) are critical facilities for collecting and reducing the amounts of wastewater contaminants (WWCs) that ultimately discharge to rivers, coastal areas, and groundwater. Most WWTPs use multiple methods to remove contaminants from wastewater. These include physical methods to remove solid materials (primary treatment), biological and chemical methods to remove most organic matter (secondary treatment), advanced methods to reduce the concentrations of various contaminants such as nitrogen, phosphorus and (or) synthetic organic compounds (tertiary treatment), and disinfection prior to discharge (Metcalf and Eddy, Inc., 1979). This study examined the extent to which 114 organic WWCs were removed by each of three WWTPs, prior to discharge to freshwater and marine ecosystems, in a rapidly developing area in northwestern Washington State. Removal percentages for each WWC were estimated by comparing the concentrations measured in the WWTP influents with those measured in the effluents. The investigation was carried out in the 700-mi2Stillaguamish River Basin, the fifth largest watershed that discharges to Puget Sound (fig. 1).

  11. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents.

    PubMed

    Loos, Robert; Carvalho, Raquel; António, Diana C; Comero, Sara; Locoro, Giovanni; Tavazzi, Simona; Paracchini, Bruno; Ghiani, Michela; Lettieri, Teresa; Blaha, Ludek; Jarosova, Barbora; Voorspoels, Stefan; Servaes, Kelly; Haglund, Peter; Fick, Jerker; Lindberg, Richard H; Schwesig, David; Gawlik, Bernd M

    2013-11-01

    In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides

  12. Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.

    PubMed

    Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying

    2015-05-05

    Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum

  13. Slaughterhouse Wastewater Treatment by Combined Chemical Coagulation and Electrocoagulation Process

    PubMed Central

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD5 removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater. PMID:22768233

  14. Slaughterhouse wastewater treatment by combined chemical coagulation and electrocoagulation process.

    PubMed

    Bazrafshan, Edris; Kord Mostafapour, Ferdos; Farzadkia, Mehdi; Ownagh, Kamal Aldin; Mahvi, Amir Hossein

    2012-01-01

    Slaughterhouse wastewater contains various and high amounts of organic matter (e.g., proteins, blood, fat and lard). In order to produce an effluent suitable for stream discharge, chemical coagulation and electrocoagulation techniques have been particularly explored at the laboratory pilot scale for organic compounds removal from slaughterhouse effluent. The purpose of this work was to investigate the feasibility of treating cattle-slaughterhouse wastewater by combined chemical coagulation and electrocoagulation process to achieve the required standards. The influence of the operating variables such as coagulant dose, electrical potential and reaction time on the removal efficiencies of major pollutants was determined. The rate of removal of pollutants linearly increased with increasing doses of PACl and applied voltage. COD and BOD(5) removal of more than 99% was obtained by adding 100 mg/L PACl and applied voltage 40 V. The experiments demonstrated the effectiveness of chemical and electrochemical techniques for the treatment of slaughterhouse wastewaters. Consequently, combined processes are inferred to be superior to electrocoagulation alone for the removal of both organic and inorganic compounds from cattle-slaughterhouse wastewater.

  15. Innovative Treatment Technologies for Natural Waters and Wastewaters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energymore » usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.« less

  16. Research trends in electrochemical technology for water and wastewater treatment

    NASA Astrophysics Data System (ADS)

    Zheng, Tianlong; Wang, Juan; Wang, Qunhui; Meng, Huimin; Wang, Lihong

    2017-03-01

    It is difficult to completely degrade wastewater containing refractory pollutants without secondary pollution by biological treatment, as well as physical-chemical process. Therefore, electrochemical technology has attracted much attention for its environmental compatibility, high removal efficiency, and potential cost effectiveness, especially on the industrial wastewater treatment. An effective bibliometric analysis based on the Science Citation Index Core Collection database was conducted to evaluate electrochemical technology for water and wastewater treatment related research from 1994 to 2013. The amount of publications significantly increased in the last two decades. Journal of the Electrochemical Society published the most articles in this field with a top h-index of 90, taking 5.8 % of all, followed by Electrochimica Acta and Journal of Electroanalytical Chemistry. The researchers focused on categories of chemistry, electrochemistry, and materials science. China and Chinese Academy of Sciences were the most productive country and institution, respectively, while the USA, with the most international collaborative articles and highest h-index of 130, was the major collaborator with 15 other countries in top 20 most productive countries. Moreover, based on the analysis of author keywords, title, abstract, and `KeyWords Plus', a new method named "word cluster analysis" was successfully applied to trace the research hotspot. Nowadays, researchers mainly focused on novel anodic electrode, especially on its physiochemical and electrochemical properties.

  17. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    PubMed

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  18. The flocculation mechanism and treatment of oily wastewater by flocculation.

    PubMed

    Zhang, Zhenchao

    2017-11-01

    In the present study, the performance of compound flocculants composed of different concentrations of polyaluminum chloride (PAC) and cationic polyacrylamide (CPAM), the influencing mechanism of the flocculation process and the effects of temperature, settling time, and speed and time of stirring were investigated. The results show that the poor water quality with high concentrations of oil, suspended solids (SS) and polymer greatly increases the oily wastewater emulsion stability and the difficulty of the flocculation treatment process. The compound flocculant in oily wastewater treatment can achieve best results at optimum conditions of temperature 45 °C, settling time 60 min, and two stirring stages, 250 r·min -1 for 3 min followed by 100 r·min -1 for 7 min. At the PAC dosage of 80 mg·L -1 and the CPAM dosage of 0.8 mg·L -1 , the turbidity of oily wastewater is reduced from 153.8 NTU to 11.2 NTU, and the turbidity removal rate reaches 92.69%. Through further measurements, oil content and SS content are less than 10 mg·L -1 , which meets the requirement of the Daqing oilfield re-injection standard.

  19. Study on emission characteristics and reduction strategy of nitrous oxide during wastewater treatment by different processes.

    PubMed

    Sun, Shichang; Bao, Zhiyuan; Sun, Dezhi

    2015-03-01

    Given the inexorable increase in global wastewater treatment, increasing amounts of nitrous oxide are expected to be emitted from wastewater treatment plants and released to the atmosphere. It has become imperative to study the emission and control of nitrous oxide in the various wastewater treatment processes currently in use. In the present investigation, the emission characteristics and the factors affecting the release of nitrous oxide were studied via full- and pilot-scale experiments in anoxic-oxic, sequencing batch reactor and oxidation ditch processes. We propose an optimal treatment process and relative strategy for nitrous oxide reduction. Our results show that both the bio-nitrifying and bio-denitrifying treatment units in wastewater treatment plants are the predominant sites for nitrous oxide production in each process, while the aerated treatment units are the critical sources for nitrous oxide emission. Compared with the emission of nitrous oxide from the anoxic-oxic (1.37% of N-influent) and sequencing batch reactor (2.69% of N-influent) processes, much less nitrous oxide (0.25% of N-influent) is emitted from the oxidation ditch process, which we determined as the optimal wastewater treatment process for nitrous oxide reduction, given the current technologies. Nitrous oxide emissions differed with various operating parameters. Controlling the dissolved oxygen concentration at a proper level during nitrification and denitrification and enhancing the utilization rate of organic carbon in the influent for denitrification are the two critical methods for nitrous oxide reduction in the various processes considered.

  20. Opportunities for Combined Heat and Power at Wastewater Treatment Facilities: Market Analysis and Lessons from the Field

    EPA Pesticide Factsheets

    This report presents the opportunities for combined heat and power (CHP) applications in the municipal wastewater treatment sector, and it documents the experiences of the wastewater treatment facility (WWTF) operators who have employed CHP.

  1. Training Centers for Onsite Wastewater Treatment

    EPA Pesticide Factsheets

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  2. Production of baker's yeast using date juice.

    PubMed

    Beiroti, A; Hosseini, S N

    2007-07-01

    Baker's yeast is an important additive among the products which improves bread quality and for present time is being produced in different countries by batch, fed batch or continuous cultures. Saccharomyces cerevisiae is used in fermentation of starch in dough, giving a favourable taste and produces a variety of vitamins and proteins. The main ingredient in yeast production is carbon source such as beet molasses, cane molasses, and so on. Since beet molasses has other major function as in high yield alcohol production and also due to the bioenvironmental issues and related wastewater treatment, the use of other carbohydrate sources may be considered. One of these carbohydrate sources is date which is wasted a great deal annually in this country (Iran) . In this study, the capability of date to act as a suitable carbon sources was investigated. The waste date turned into juice and consequently production and growth rate of Sacchromyces cervisiae were studied with this juice. A maximum possible yield of 50% was obtained by the optimum medium (P3), at pH 3.4, 30 degrees C, 1.4 vvm aeration rate and agitation of 500 r/min.

  3. Economics of social trade-off: Balancing wastewater treatment cost and ecosystem damage.

    PubMed

    Jiang, Yu; Dinar, Ariel; Hellegers, Petra

    2018-04-01

    We have developed a social optimization model that integrates the financial and ecological costs associated with wastewater treatment and ecosystem damage. The social optimal abatement level of water pollution is determined by finding the trade-off between the cost of pollution control and its resulting ecosystem damage. The model is applied to data from the Lake Taihu region in China to demonstrate this trade-off. A wastewater treatment cost function is estimated with a sizable sample from China, and an ecological damage cost function is estimated following an ecosystem service valuation framework. Results show that the wastewater treatment cost function has economies of scale in facility capacity, and diseconomies in pollutant removal efficiency. Results also show that a low value of the ecosystem service will lead to serious ecological damage. One important policy implication is that the assimilative capacity of the lake should be enhanced by forbidding over extraction of water from the lake. It is also suggested that more work should be done to improve the accuracy of the economic valuation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Research on treatment of wastewater containing heavy metal by microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Chen, Zixuan; Lu, Xun; Yin, Ruixia; Luo, Yunyi; Mai, Hanjian; Zhang, Nan; Xiong, Jingfang; Zhang, Hongguo; Tang, Jinfeng; Luo, Dinggui

    2018-02-01

    With rapid development of social economy, serious problem has been caused by wastewater containing heavy metals, which was difficult to be treated by many kinds of traditional treatment methods, such as complex processes, high cost or easy to cause secondary pollution. As a novel biological treatment technology, microbial fuel cells (MFC) can generate electric energy while dealing with wastewater, which was proposed and extensively studied. This paper introduced the working principle of MFC, the classification of cathode, and the research progress on the treatment of wastewater containing Cr(VI), Cu(II), Ag(I), Mn(II) and Cd(II) by MFC. The study found that different cathode, different heavy metals anddifferent hybrid systems would affect the performance of the system and removal effect for heavy metal in MFC. MFC was a highly potential pollution control technology. Until now, the research was still in the laboratory stage. Its industrial application for recovery of heavy metal ion, improving the energy recovery rate and improvement or innovation of system were worthy of further research.

  5. Wastewater treatment in tsunami affected areas of Thailand by constructed wetlands.

    PubMed

    Brix, H; Koottatep, T; Laugesen, C H

    2007-01-01

    The tsunami of December 2004 destroyed infrastructure in many coastal areas in South-East Asia. In January 2005, the Danish Government gave a tsunami relief grant to Thailand to re-establish the wastewater management services in some of the areas affected by the tsunami. This paper describes the systems which have been built at three locations: (a) Baan Pru Teau: A newly-built township for tsunami victims which was constructed with the contribution of the Thai Red Cross. Conventional septic tanks were installed for the treatment of blackwater from each household and its effluent and grey water (40 m3/day) are collected and treated at a 220 m2 subsurface flow constructed wetland. (b) Koh Phi Phi Don island: A wastewater collection system for the main business and hotel area of the island, a pumping station and a pressure pipe to the treatment facility, a multi-stage constructed wetland system and a system for reuse of treated wastewater. The constructed wetland system (capacity 400 m3/day) consists of vertical flow, horizontal subsurface flow, free water surface flow and pond units. Because the treatment plant is surrounded by resorts, restaurants and shops, the constructed wetland systems are designed with terrains as scenic landscaping. (c) Patong: A 5,000 m2 constructed wetland system has been established to treat polluted water from drainage canals which collect overflow from septic tanks and grey water from residential areas. It is envisaged that these three systems will serve as prototype demonstration systems for appropriate wastewater management in Thailand and other tropical countries.

  6. Treatment and desalination of domestic wastewater for water reuse in a four-chamber microbial desalination cell.

    PubMed

    Lu, Yaobin; Abu-Reesh, Ibrahim M; He, Zhen

    2016-09-01

    Microbial desalination cells (MDCs) have been studied for contaminant removal from wastewater and salinity reduction in saline water. However, in an MDC wastewater treatment and desalination occurs in different streams, and high salinity of the treated wastewater creates challenges for wastewater reuse. Herein, a single-stream MDC (SMDC) with four chambers was developed for simultaneous organic removal and desalination in the same synthetic wastewater. This SMDC could achieve a desalination rate of 12.2-31.5 mg L(-1) h(-1) and remove more than 90 % of the organics and 75 % of NH4 (+)-N; the pH imbalance between the anode and cathode chambers was also reduced. Several strategies such as controlling catholyte pH, increasing influent COD concentration, adopting the batch mode, applying external voltage, and increasing the alkalinity of wastewater were investigated for improving the SMDC performance. Under a condition of 0.4 V external voltage, anolyte pH adjustment, and a batch mode, the SMDC decreased the wastewater salinity from 1.45 to below 0.75 mS cm(-1), which met the salinity standard of wastewater for irrigation. Those results encourage further development of the SMDC technology for sustainable wastewater treatment and reuse.

  7. An integrated anaerobic digestion and UV photocatalytic treatment of distillery wastewater.

    PubMed

    Apollo, Seth; Onyango, Maurice S; Ochieng, Aoyi

    2013-10-15

    Anaerobic up-flow fixed bed reactor and annular photocatalytic reactor were used to study the efficiency of integrated anaerobic digestion (AD) and ultraviolet (UV) photodegradation of real distillery effluent and raw molasses wastewater (MWW). It was found that UV photodegradation as a stand-alone technique achieved colour removal of 54% and 69% for the distillery and MWW, respectively, with a COD reduction of <20% and a negligible BOD reduction. On the other hand, AD as a single treatment technique was found to be effective in COD and BOD reduction with efficiencies of above 75% and 85%, respectively, for both wastewater samples. However, the AD achieved low colour removal efficiency, with an increase in colour intensity of 13% recorded when treating MWW while a colour removal of 51% was achieved for the distillery effluent. The application of UV photodegradation as a pre-treatment method to the AD process reduced the COD removal and biogas production efficiency. However, an integration in which UV photodegradation was employed as a post-treatment to the AD process achieved high COD removal of above 85% for both wastewater samples, and colour removal of 88% for the distillery effluent. Thus, photodegradation can be employed as a post-treatment technique to an AD system treating distillery effluent for complete removal of the biorecalcitrant and colour imparting compounds. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. The Energy, Greenhouse Gas Emissions, and Cost Implications of Municipal Water Supply & Wastewater Treatment

    NASA Astrophysics Data System (ADS)

    Rodriguez-Winter, Thelma

    All man-made structures and materials have a design life. Across the United States there is a common theme for our water and wastewater treatment facilities and infrastructure. The design life of many of our mid 20 th century water and wastewater infrastructures in the United States have reached or are reaching life expectancy limits (ASCE, 2010). To compound the financial crisis of keeping up with the degradation, meeting and exceeding quality standards has never been more important in order to protect local fresh water supplies. This thesis analyzes the energy consumption of a municipal water and wastewater treatment system from a Lake Erie intake through potable treatment and back through wastewater treatment then discharge. The system boundary for this thesis includes onsite energy consumed by the treatment system and distribution/reclamation system as well as the energy consumed by the manufacturing of treatment chemicals applied during the study periods. By analyzing energy consumption, subsequent implications from greenhouse gas emissions and financial expenditures were quantified. Through the segregation of treatment and distribution processes from non-process energy consumption, such as heating, lighting, and air handling, this study identified that the potable water treatment system consumed an annual average of 2.42E+08 kBtu, spent 5,812,144 for treatment and distribution, and emitted 28,793 metric tons of CO2 equivalent emissions. Likewise, the wastewater treatment system consumed an annual average of 2.45E+08 kBtu, spent 3,331,961 for reclamation and treatment, and emitted 43,780 metric tons of CO2 equivalent emissions. The area with the highest energy usage, financial expenditure, and greenhouse gas emissions for the potable treatment facility and distribution system was from the manufacturing of the treatment chemicals, 1.10E+08 kBtu, 3.7 million, and 17,844 metric tons of CO2 equivalent, respectively. Of the onsite energy (1.4E-03 kWh per gallon

  9. Research on the treatment of oily wastewater by coalescence technology.

    PubMed

    Li, Chunbiao; Li, Meng; Zhang, Xiaoyan

    2015-01-01

    Recently, oily wastewater treatment has become a hot research topic across the world. Among the common methods for oily wastewater treatment, coalescence is one of the most promising technologies because of its high efficiency, easy operation, smaller land coverage, and lower investment and operational costs. In this research, a new type of ceramic filter material was chosen to investigate the effects of some key factors including particle size of coarse-grained materials, temperature, inflow direction and inflow velocity of the reactor. The aim was to explore the optimum operating conditions for coarse-graining. Results of a series of tests showed that the optimum operating conditions were a combination of grain size 1-3 mm, water temperature 35 °C and up-flow velocity 8 m/h, which promised a maximum oil removal efficiency of 93%.

  10. Growing Lemna minor in agricultural wastewater and converting the duckweed biomass to ethanol.

    PubMed

    Ge, Xumeng; Zhang, Ningning; Phillips, Gregory C; Xu, Jianfeng

    2012-11-01

    Duckweed (Lemna minor) was grown in swine lagoon wastewater and Schenk & Hildebrandt medium with a growth rate of 3.5 and 14.1 g m(-2)day(-1) (dry basis), respectively detected. The rapid accumulation of starch in duckweed biomass (10-36%, w/w) was triggered by nutrient starvation or growing in dark with addition of glucose. The harvested duckweed biomass (from culture in wastewater) contained 20.3% (w/w) total glucan, 32.3% (w/w) proteins, trace hemicellulose and undetectable lignin. Without prior thermal-chemical pretreatment, up to 96.2% (w/w) of glucose could be enzymatically released from both the cellulose and starch fractions of duckweed biomass. The enzymatic hydrolysates could be efficiently fermented by two yeast strains (self-flocculating yeast SPSC01 and conventional yeast ATCC 24859) with a high ethanol yield of 0.485 g g(-1) (glucose). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Anaerobic treatment of winery wastewater in fixed bed reactors.

    PubMed

    Ganesh, Rangaraj; Rajinikanth, Rajagopal; Thanikal, Joseph V; Ramanujam, Ramamoorty Alwar; Torrijos, Michel

    2010-06-01

    The treatment of winery wastewater in three upflow anaerobic fixed-bed reactors (S9, S30 and S40) with low density floating supports of varying size and specific surface area was investigated. A maximum OLR of 42 g/l day with 80 +/- 0.5% removal efficiency was attained in S9, which had supports with the highest specific surface area. It was found that the efficiency of the reactors increased with decrease in size and increase in specific surface area of the support media. Total biomass accumulation in the reactors was also found to vary as a function of specific surface area and size of the support medium. The Stover-Kincannon kinetic model predicted satisfactorily the performance of the reactors. The maximum removal rate constant (U(max)) was 161.3, 99.0 and 77.5 g/l day and the saturation value constant (K(B)) was 162.0, 99.5 and 78.0 g/l day for S9, S30 and S40, respectively. Due to their higher biomass retention potential, the supports used in this study offer great promise as media in anaerobic fixed bed reactors. Anaerobic fixed-bed reactors with these supports can be applied as high-rate systems for the treatment of large volumes of wastewaters typically containing readily biodegradable organics, such as the winery wastewater.

  12. Dielectric barrier discharge-based investigation and analysis of wastewater treatment and pollutant removal.

    PubMed

    Ramdani, N; Lousdad, A; Tilmatine, A; Nemmich, S

    2016-01-01

    Current research reveals that the oxidation by ozone is considered as an effective solution and offers irrefutable advantages in wastewater treatment. It is also well known that ozone is used to treat different types of water due to its effectiveness in water purification and for its oxidation potential. This process of ozonation is becoming progressively an alternative technology and is inscribed in a sustainable development perspective in Algeria. In this regards, the present paper investigates the wastewater treatment process by ozone produced by dielectric barrier discharge (DBD) under high potential. Three (DBD) ozone generators of cylindrical form have been used, at a laboratory scale, for treating collected samples from the wastewater treatment plant (WWTP) of the city of Sidi-Bel-Abbes located in the west of Algeria. Our experimental results reveal the efficiency of this type of treatment on the basis of the physicochemical analysis (pH, turbidity, chemical oxygen demand, biological oxygen demand, heavy metals) and microbial analysis downstream of the WWTP, which showed a high rate of elimination of all the parameters.

  13. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Textile wastewater treatment: colour and COD removal of reactive black-5 by ozonation

    NASA Astrophysics Data System (ADS)

    Suryawan, I. W. K.; Helmy, Q.; Notodarmojo, S.

    2018-01-01

    Textile industries produced a large amount of highly coloured wastewater containing variety of dyes in different concentrations. Due to the high concentration of organics in the effluents and the higher stability of modern synthetic dyes, the conventional biological treatment methods are ineffective for the complete colour removal and degradation of organics and dyes. On the other hand, physical-chemical treatment are not destructive, mainly just concentrate and separate the pollutants phases. This research paper investigates the removal of colour and chemical oxygen demand/COD from textile wastewater using ozone treatment. Varied ozone dosages of 1.16; 3.81; 18.79; and 40.88 mg/minute were used in the experiment. Varied wastewater containing Reactive Black 5 (RB-5) concentrations of 40 mg/L, 100 mg/L were also applied. Research result showed the highest colour removal efficiency of 96.9 % was achieved after 5 hours incubation time, while the highest COD removal efficiency of 77.5% was achieved after 2 hours incubation time.

  15. Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production.

    PubMed

    Mehrabadi, Abbas; Craggs, Rupert; Farid, Mohammed M

    2015-05-01

    Growing energy demand and water consumption have increased concerns about energy security and efficient wastewater treatment and reuse. Wastewater treatment high rate algal ponds (WWT HRAPs) are a promising technology that could help solve these challenges concurrently where climate is favorable. WWT HRAPs have great potential for biofuel production as a by-product of WWT, since the costs of algal cultivation and harvest for biofuel production are covered by the wastewater treatment function. Generally, 800-1400 GJ/ha/year energy (average biomass energy content: 20 GJ/ton; HRAP biomass productivity: 40-70 tons/ha/year) can be produced in the form of harvestable biomass from WWT HRAP which can be used to provide community-level energy supply. In this paper the benefits of WWT HRAPs are compared with conventional mass algal culture systems. Moreover, parameters to effectively increase algal energy content and overall energy production from WWT HRAP are discussed including selection of appropriate algal biomass biofuel conversion pathways. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. [Spectral Analysis of Dissolved Organic Matter of Tannery Wastewater in the Treatment Process].

    PubMed

    Fan, Chun-hui; Zhang, Ying-chao; Du, Bo; Song, Juan; Huai, Cui-qian; Wang, Jia-hong

    2015-06-01

    Tannery industry is one of the major traditional industries and important wastewater sources in China. The existing research mainly focus on the quality of inlet and outlet water, rather than the purification and transformation behavior of dissolved organic matter (DOM) in the treatment process of tannery wastewater. The UV spectra and fluorescence spectroscopy were used to detect the spectral characteristics of water samples in the treatment process, and it is analyzed that the formation process and the linear relationships between total fluorescence intensity and parameters. The results showed: the UV absorbance of DOM in wastewater increased firstly and then decreased with longer wavelength, and the wave peaks were found around the wavelength of 230 nr. The values of A253 /A203 and SUVA254 increased firstly and then decreased, indicating the complex reaction process related to free substituent and aromatic rings. The fluorescence peaks appeared at the regions of λ(ex/em) = 320-350/440- 460 and λ(ex/em) = 270-300/390-420, referred as visible humic-like and visible fulvic-like fluorescence, respectively. With the treatment process of tannery wastewater, the following fluorescence phenomenon were monitored, such as the blue-shift of humic-like fluorescence peak in the hydrolytic acidification tank, the appearance of tryptophan fluorescence peak in the second biochemical pond (λ(ex/em) = 290/340), the weak fluorescence peak in the fourth biochemical pond (λ(ex/em) = 350/520) and the stabilized fluorescence characteristics in the secondary sedimentation tank and water outlet. The achievements are helpful to investigate the degradation and formation behavior of water components, and significant for the fluorescence variation analysis in the treatment system. The removal rate of total fluorescence intensity of tannery wastewater fit better the removal rate of TOC with coefficient of r 0.835 5. The UV spectra and 3D-EEMs are effective to reveal the purification

  17. Advanced treatment of sodium dithionite wastewater using the combination of coagulation, catalytic ozonation, and SBR.

    PubMed

    Zou, Xiao-Ling

    2017-10-01

    A combined process of coagulation-catalytic ozonation-anaerobic sequencing batch reactor (ASBR)-SBR was developed at lab scale for treating a real sodium dithionite wastewater with an initial chemical oxygen demand (COD) of 21,760-22,450 mg/L. Catalytic ozonation with the prepared cerium oxide (CeO 2 )/granular activated carbon catalyst significantly enhances wastewater biodegradability and reduces wastewater microtoxicity. The results show that, under the optimum conditions, the removal efficiencies of COD and suspended solids are averagely 99.3% and 95.6%, respectively, and the quality of final effluent can meet the national discharge standard of China. The coagulation and ASBR processes remove a considerable proportion of organic matter, while the SBR plays an important role in post-polish of final effluent. The ecotoxicity of the wastewater is greatly reduced after undergoing the hybrid treatment. This work demonstrates that the hybrid system has the potential to be applied for the advanced treatment of high-strength industrial wastewater.

  18. Treatment of purified terephthalic acid wastewater using a bio-waste-adsorbent bagasse fly ash (BFA).

    PubMed

    Verma, Shilpi; Prasad, Basheshwar; Mishra, Indra Mani

    2017-01-01

    Purified terephthalic acid (PTA) plant of a petrochemical unit generates wastewater having high pollution load. Acid treatment of this wastewater reduces the chemical oxygen demand (COD) load by more than 50%, still leaving substantial COD load (>1500 mg/L) which should be removed. The present study reports on the use of a bio-waste-adsorbent bagasse fly ash (BFA) for the reduction of COD and other recalcitrant acids from this wastewater. The BFA showed basic character and was mesoporous with a BET specific surface area of 82.4 m 2 /g. Optimum conditions for the adsorptive treatment of acid-pretreated PTA wastewater were found to be as follows: initial pH (pH i ) = 4, BFA dosage = 15 g/L, and contact time = 3 h. Adsorption treatment resulted in 58.2% removal of COD, 96.3% removal of terephthalic acid (TA), and 99.9% removal of benzoic acid (BA). TA and BA were removed from the pretreated PTA wastewater through precipitation and sedimentation of un-dissociated acid molecules inside the mesopores of the BFA. The results showed that the COD removed by the BFA followed pseudo-second-order kinetics. Equilibrium sorption data were best correlated by the Freundlich isotherm. The process of adsorptive removal of COD was found to be exothermic. The change in the Gibbs free energy was found to be negative, suggesting that the adsorption process is spontaneous and feasible for the treatment of PTA wastewater.

  19. Comparative reduction of Giardia cysts, F+ coliphages, sulphite reducing clostridia and fecal coliforms by wastewater treatment processes.

    PubMed

    Nasser, Abidelfatah M; Benisti, Neta-Lee; Ofer, Naomi; Hovers, Sivan; Nitzan, Yeshayahu

    2017-01-28

    Advanced wastewater treatment processes are applied to prevent the environmental dissemination of pathogenic microorganisms. Giardia lamblia causes a severe disease called giardiasis, and is highly prevalent in untreated wastewater worldwide. Monitoring the microbial quality of wastewater effluents is usually based on testing for the levels of indicator microorganisms in the effluents. This study was conducted to compare the suitability of fecal coliforms, F+ coliphages and sulfide reducing clostridia (SRC) as indicators for the reduction of Giardia cysts in two full-scale wastewater treatment plants. The treatment process consists of activated sludge, coagulation, high rate filtration and either chlorine or UV disinfection. The results of the study demonstrated that Giardia cysts are highly prevalent in raw wastewater at an average concentration of 3600 cysts/L. Fecal coliforms, F+ coliphages and SRC were also detected at high concentrations in raw wastewater. Giardia cysts were efficiently removed (3.6 log 10 ) by the treatment train. The greatest reduction was observed for fecal coliforms (9.6 log 10 ) whereas the least reduction was observed for F+ coliphages (2.1 log 10 ) following chlorine disinfection. Similar reduction was observed for SRC by filtration and disinfection by either UV (3.6 log 10 ) or chlorine (3.3 log 10 ). Since F+ coliphage and SRC were found to be more resistant than fecal coliforms for the tertiary treatment processes, they may prove to be more suitable as indicators for Giardia. The results of this study demonstrated that advanced wastewater treatment may prove efficient for the removal of Giardia cysts and may prevent its transmission when treated effluents are applied for crop irrigation or streams restoration.

  20. Technoeconomic Optimization of Waste Heat Driven Forward Osmosis for Flue Gas Desulfurization Wastewater Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S

    With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without

  1. Treatment of duck house wastewater by a pilot-scale sequencing batch reactor system for sustainable duck production.

    PubMed

    Su, Jung-Jeng; Huang, Jeng-Fang; Wang, Yi-Lei; Hong, Yu-Ya

    2018-06-15

    The objective of this study is trying to solve water pollution problems related to duck house wastewater by developing a novel duck house wastewater treatment technology. A pilot-scale sequencing batch reactor (SBR) system using different hydraulic retention times (HRTs) for treating duck house wastewater was developed and applied in this study. Experimental results showed that removal efficiency of chemical oxygen demand in untreated duck house wastewater was 98.4, 98.4, 87.8, and 72.5% for the different HRTs of 5, 3, 1, and 0.5 d, respectively. In addition, removal efficiency of biochemical oxygen demand in untreated duck house wastewater was 99.6, 99.3, 90.4, and 58.0%, respectively. The pilot-scale SBR system was effective and deemed capable to be applied to treat duck house wastewater. It is feasible to apply an automatic SBR system on site based on the previous case study of the farm-scale automatic SBR systems for piggery wastewater treatment.

  2. Poultry slaughterhouse wastewater treatment plant for high quality effluent.

    PubMed

    Del Nery, V; Damianovic, M H Z; Moura, R B; Pozzi, E; Pires, E C; Foresti, E

    2016-01-01

    This paper assesses a wastewater treatment plant (WWTP) regarding the technology used, as well as organic matter and nutrient removal efficiencies aiming to optimize the treatment processes involved and wastewater reclamation. The WWTP consists of a dissolved air flotation (DAF) system, an upflow anaerobic sludge blanket (UASB) reactor, an aerated-facultative pond (AFP) and a chemical-DAF system. The removal efficiencies of chemical oxygen demand (COD) (97.9 ± 1.0%), biochemical oxygen demand (BOD) (98.6 ± 1.0%) and oil and grease (O&G) (91.1 ± 5.2%) at the WWTP, the nitrogen concentration of 17 ± 11 mg N-NH3 and phosphorus concentration of 1.34 ± 0.93 mg PO4(-3)/L in the final effluent indicate that the processes used are suitable to comply with discharge standards in water bodies. Nitrification and denitrification tests conducted using biomass collected at three AFP points indicated that nitrification and denitrification could take place in the pond.

  3. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  4. Intuitionistic fuzzy analytical hierarchical processes for selecting the paradigms of mangroves in municipal wastewater treatment.

    PubMed

    Ouyang, Xiaoguang; Guo, Fen

    2018-04-01

    Municipal wastewater discharge is widespread and one of the sources of coastal eutrophication, and is especially uncontrolled in developing and undeveloped coastal regions. Mangrove forests are natural filters of pollutants in wastewater. There are three paradigms of mangroves for municipal wastewater treatment and the selection of the optimal one is a multi-criteria decision-making problem. Combining intuitionistic fuzzy theory, the Fuzzy Delphi Method and the fuzzy analytical hierarchical process (AHP), this study develops an intuitionistic fuzzy AHP (IFAHP) method. For the Fuzzy Delphi Method, the judgments of experts and representatives on criterion weights are made by linguistic variables and quantified by intuitionistic fuzzy theory, which is also used to weight the importance of experts and representatives. This process generates the entropy weights of criteria, which are combined with indices values and weights to rank the alternatives by the fuzzy AHP method. The IFAHP method was used to select the optimal paradigm of mangroves for treating municipal wastewater. The entropy weights were entrained by the valid evaluation of 64 experts and representatives via online survey. Natural mangroves were found to be the optimal paradigm for municipal wastewater treatment. By assigning different weights to the criteria, sensitivity analysis shows that natural mangroves remain to be the optimal paradigm under most scenarios. This study stresses the importance of mangroves for wastewater treatment. Decision-makers need to contemplate mangrove reforestation projects, especially where mangroves are highly deforested but wastewater discharge is uncontrolled. The IFAHP method is expected to be applied in other multi-criteria decision-making cases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. MBBR evaluation for oil refinery wastewater treatment, with post-ozonation and BAC, for wastewater reuse.

    PubMed

    Schneider, E E; Cerqueira, A C F P; Dezotti, M

    2011-01-01

    This work evaluated the performance of a Moving Bed Biofilm Reactor (MBBR) in the treatment of an oil refinery wastewater. Also, it investigated the possibility of reuse of the MBBR effluent, after ozonation in series with a biological activated carbon (BAC) column. The best performance of the MBBR was achieved with a hydraulic retention time (HRT) of 6 hours, employing a bed to bioreactor volume ratio (V(B)/V(R)) of 0.6. COD and N-NH₄(+) MBBR effluent concentrations ranged from 40 to 75 mg L⁻¹ (removal efficiency of 69-89%) and 2 to 6 mg L⁻¹ (removal efficiency of 45-86%), respectively. Ozonation carried out for 15 min with an ozone concentration of 5 mg L⁻¹ was able to improve the treated wastewater biodegradability. The treatment performance of the BAC columns was practically the same for ozonated and non ozonated MBBR effluents. The dissolved organic carbon (DOC) content of the columns of the activated carbon columns (CAG) was in the range of 2.1-3.8 mg L⁻¹, and the corresponding DOC removal efficiencies were comprised between 52 and 75%. The effluent obtained at the end of the proposed treatment presented a quality, which meet the requirements for water reuse in the oil refinery.

  7. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    EPA Science Inventory

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  8. Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge

    PubMed Central

    Nzila, Alexis; Razzak, Shaikh Abdur; Zhu, Jesse

    2016-01-01

    A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed. This review also initiates a discussion regarding new research areas, such as nanotechnology and quorum sensing, that should be investigated to improve the efficiency of wastewater bioaugmentation. PMID:27571089

  9. Bioaugmentation: An Emerging Strategy of Industrial Wastewater Treatment for Reuse and Discharge.

    PubMed

    Nzila, Alexis; Razzak, Shaikh Abdur; Zhu, Jesse

    2016-08-25

    A promising long-term and sustainable solution to the growing scarcity of water worldwide is to recycle and reuse wastewater. In wastewater treatment plants, the biodegradation of contaminants or pollutants by harnessing microorganisms present in activated sludge is one of the most important strategies to remove organic contaminants from wastewater. However, this approach has limitations because many pollutants are not efficiently eliminated. To counterbalance the limitations, bioaugmentation has been developed and consists of adding specific and efficient pollutant-biodegrading microorganisms into a microbial community in an effort to enhance the ability of this microbial community to biodegrade contaminants. This approach has been tested for wastewater cleaning with encouraging results, but failure has also been reported, especially during scale-up. In this review, work on the bioaugmentation in the context of removal of important pollutants from industrial wastewater is summarized, with an emphasis on recalcitrant compounds, and strategies that can be used to improve the efficiency of bioaugmentation are also discussed. This review also initiates a discussion regarding new research areas, such as nanotechnology and quorum sensing, that should be investigated to improve the efficiency of wastewater bioaugmentation.

  10. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    NASA Astrophysics Data System (ADS)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  11. Treatment of low strength industrial cluster wastewater by anaerobic hybrid reactor.

    PubMed

    Kumar, Amit; Yadav, Asheesh Kumar; Sreekrishnan, T R; Satya, Santosh; Kaushik, C P

    2008-05-01

    The study was aimed at treating the complex, combined wastewater generated in Mangolpuri industrial cluster. It was considered as a low strength wastewater with respect to its organic content. Anaerobic treatment of this wastewater was studied using an anaerobic hybrid reactor (AHR) which combined the best features of both the upflow anaerobic sludge blanket (UASB) reactor and anaerobic fluidized bed rector (AFBR). The performance of the reactor under different organic and hydraulic loading rates were studied. The COD removal reached 94% at an organic loading rate (OLR) of 2.08 kg COD m(-3)d(-1) at an hydraulic retention time (HRT) of 6.0 h. The granules developed were characterized in terms of their diameter and terminal settling velocity.

  12. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment.

    PubMed

    Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu

    2015-01-01

    In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Assessment of wastewater treatment plant effluent effects on fish reproduction

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  14. Selection of forward osmosis draw solutes for subsequent integration with anaerobic treatment to facilitate resource recovery from wastewater.

    PubMed

    Ansari, Ashley J; Hai, Faisal I; Guo, Wenshan; Ngo, Hao H; Price, William E; Nghiem, Long D

    2015-09-01

    Forward osmosis (FO) can be used to extract clean water and pre-concentrate municipal wastewater to make it amenable to anaerobic treatment. A protocol was developed to assess the suitability of FO draw solutes for pre-concentrating wastewater for potential integration with anaerobic treatment to facilitate resource recovery from wastewater. Draw solutes were evaluated in terms of their ability to induce osmotic pressure, water flux, and reverse solute flux. The compatibility of each draw solute with subsequent anaerobic treatment was assessed by biomethane potential analysis. The effect of each draw solute (at concentrations corresponding to the reverse solute flux at ten-fold pre-concentration of wastewater) on methane production was also evaluated. The results show that ionic organic draw solutes (e.g., sodium acetate) were most suitable for FO application and subsequent anaerobic treatment. On the other hand, the reverse solute flux of inorganic draw solutions could inhibit methane production from FO pre-concentrated wastewater. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Methane emission during municipal wastewater treatment.

    PubMed

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Vertical flow constructed wetlands for municipal wastewater and septage treatment in French rural area.

    PubMed

    Paing, J; Voisin, J

    2005-01-01

    This paper presents the purification performance of 20 wastewater treatment plants with vertical reed bed filters (Macrophyltres), built between 1998 and 2003 by SAS Voisin, for communities of between 150 and 1400 PE. The first stage vertical reed bed (directly fed with raw wastewater by intermittent feeding) achieved high removal of SS, BOD and COD (mean respectively 96%, 98%, 92%). The second stage permitted compliance easily with effluent standards (SS < 15 mg/l, BOD < 15 mg/l, COD < 90 mg/l and mean TKN < 10 mg/l). Performance was not significantly influenced by variations of organic and hydraulic load, nor by seasonal variations. Rigorous operation and maintenance were required to obtain optimal performances. Another application of vertical reed beds is the treatment of septage (sludge from individual septic tanks). The results obtained on two sites operating for 2 and 3 years are presented. The first site achieved complete treatment of septage (solid and liquid fraction), the second permitted a pre-treatment for co-treatment of percolate with wastewater.

  17. Control of Cryptosporidium with wastewater treatment to prevent its proliferation in the water cycle.

    PubMed

    Suwa, M; Suzuki, Y

    2003-01-01

    The outbreak of Cryptosporidiosis in 1996 in Japan is thought to have been enlarged by the proliferation of Cryptosporidium in the water cycle from wastewater to drinking water through the river system. From this experience, the wastewater system must have functions to remove Cryptosporidium oocysts effectively. Efficiencies of wastewater treatment processes to remove oocysts were investigated using pilot plants receiving municipal wastewater. An activated sludge process and a following sand filter showed removal efficiencies of 2 log and 0.5 log, respectively. Poly-aluminium chloride dosage improved the efficiencies by 3 log for the activated sludge process and by 2 log for the sand filter. Chemical precipitation of raw wastewater with poly-aluminium chloride could achieve 1 to 3 log removal according on the coagulant concentration.

  18. TRANSFORMATION AND FATE OF NANOMATERIALS DURING WASTEWATER TREATMENT AND INCINERATION

    EPA Science Inventory

    This research will produce new data about the characteristics and fate of nanomaterials during biological wastewater treatment and incineration. Such knowledge is necessary for estimating exposure to nanomaterials and developing life cycle risk assessments of nanomaterials. To...

  19. NPDES Permit for Fort Carson Wastewater Treatment Facility in Colorado

    EPA Pesticide Factsheets

    Under NPDES permit no. CO-0021181 the United States Department of the Army, Fort Carson, in authorized to discharge from its sanitary wastewater treatment facility in El Paso County, Colorado, to Clover Ditch, a tributary of Fountain Creek.

  20. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and thatmore » facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.« less

  1. Treatment of wastewater from the dairy industry using electroflocculation and solid whey recovery.

    PubMed

    Melchiors, Marina S; Piovesan, Mauricio; Becegato, Vitor R; Becegato, Valter A; Tambourgi, Elias B; Paulino, Alexandre T

    2016-11-01

    The aim of this study was to investigate the efficiency of electroflocculation for the treatment of wastewater from the dairy industry and the recovery of solid whey. An electrochemical apparatus containing two aluminum or iron electrodes, a power source, an electroflocculation cell and magnetic stirring was employed. The following experimental conditions were monitored: electroflocculation time, initial pH of wastewater and applied potential intensity. Chemical oxygen demand, turbidity and final pH were the response variables. The chemical oxygen demand and turbidity decreased by employing aluminum or iron electrodes, applied potential intensity of 5 V, distance between two electrodes of 2 cm, 60 min electroflocculation time and initial wastewater pH of 5.0. The removal rates of organic matter based on the measure of chemical oxygen demand and turbidity when employing aluminum electrodes were 97.0 ± 0.02% and 99.6 ± 3.00 × 10(-4)%, respectively, with a final pH of 6.72. The removal rates of organic matter when employing iron electrodes were 97.4 ± 0.01% and 99.1 ± 1.00 × 10(-4)%, respectively, with a final pH of 7.38. In conclusion, electroflocculation is an excellent alternative for the dairy wastewater treatment in comparison to conventional treatment methods. The water used in food production and equipment washing is recovered with this method, resulting in a liquid that can be properly disposed. It is also possible to recover solid whey after electroflotation, which can then be used in the production of food supplements for humans and animals. Therefore, the dairy wastewater treatment process employing electroflocculation leads to sustainable food production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    PubMed

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Treatment of laundry wastewater using polyethersulfone/polyvinylpyrollidone ultrafiltration membranes.

    PubMed

    Sumisha, A; Arthanareeswaran, G; Lukka Thuyavan, Y; Ismail, A F; Chakraborty, S

    2015-11-01

    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Wastewater treatment with submerged fixed bed biofilm reactor systems--design rules, operating experiences and ongoing developments.

    PubMed

    Schlegel, S; Koeser, H

    2007-01-01

    Wastewater treatment systems using bio-films that grow attached to a support media are an alternative to the widely used suspended growth activated sludge process. Different fixed growth biofilm reactors are commercially used for the treatment of municipal as well as industrial wastewater. In this paper a fairly new fixed growth biofilm system, the submerged fixed bed biofilm reactor (SFBBR), is discussed. SFBBRs are based on aerated submerged fixed open structured plastic media for the support of the biofilm. They are generally operated without sludge recirculation in order to avoid clogging of the support media and problems with the control of the biofilm. Reactor and process design considerations for these reactors are reviewed. Measures to ensure the development and maintenance of an active biofilm are examined. SFBBRs have been applied successfully to small wastewater treatment plants where complete nitrification but no high degree of denitrification is necessary. For the pre-treatment of industrial wastewater the use of SFBBRs is advantageous, especially in cases of wastewater with high organic loading or high content of compounds with low biodegradability. Performance data from exemplary commercial plants are given. Ongoing research and development efforts aim at achieving a high simultaneous total nitrogen (TN) removal of aerated SFBBRs and at improving the efficiency of TN removal in anoxic SFBBRs.

  5. NPDES Permit for Yellowtail Dam Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    Under NPDES permit MT-0022993, the U.S. Bureau of Reclamation is authorized to discharge from its wastewater treatment facility located at the Yellowtail Dam Field Office in Big Horn County, Montana, to the Yellowtail Afterbay Reservoir/Bighorn River.

  6. NPDES Permit for Yellowtail Visitor Center Wastewater Treatment Facility in Montana

    EPA Pesticide Factsheets

    NPDES permit MT-0029106 for United States Bureau of Reclamation discharge from its Yellowtail Visitor Center wastewater treatment facility into the Bighorn Lake/Bighorn River in Big Horn County, Montana.

  7. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  8. Strategies and techniques to enhance constructed wetland performance for sustainable wastewater treatment.

    PubMed

    Wu, Haiming; Fan, Jinlin; Zhang, Jian; Ngo, Huu Hao; Guo, Wenshan; Liang, Shuang; Hu, Zhen; Liu, Hai

    2015-10-01

    Constructed wetlands (CWs) have been used as an alternative to conventional technologies for wastewater treatment for more than five decades. Recently, the use of various modified CWs to improve treatment performance has also been reported in the literature. However, the available knowledge on various CW technologies considering the intensified and reliable removal of pollutants is still limited. Hence, this paper aims to provide an overview of the current development of CW strategies and techniques for enhanced wastewater treatment. Basic information on configurations and characteristics of different innovations was summarized. Then, overall treatment performance of those systems and their shortcomings were further discussed. Lastly, future perspectives were also identified for specialists to design more effective and sustainable CWs. This information is used to inspire some novel intensifying methodologies, and benefit the successful applications of potential CW technologies.

  9. Wastewater treatment using hybrid treatment schemes based on cavitation and Fenton chemistry: a review.

    PubMed

    Bagal, Manisha V; Gogate, Parag R

    2014-01-01

    Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton's reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Mini-review: high rate algal ponds, flexible systems for sustainable wastewater treatment.

    PubMed

    Young, P; Taylor, M; Fallowfield, H J

    2017-06-01

    Over the last 20 years, there has been a growing requirement by governments around the world for organisations to adopt more sustainable practices. Wastewater treatment is no exception, with many currently used systems requiring large capital investment, land area and power consumption. High rate algal ponds offer a sustainable, efficient and lower cost option to the systems currently in use. They are shallow, mixed lagoon based systems, which aim to maximise wastewater treatment by creating optimal conditions for algal growth and oxygen production-the key processes which remove nitrogen and organic waste in HRAP systems. This design means they can treat wastewater to an acceptable quality within a fifth of time of other lagoon systems while using 50% less surface area. This smaller land requirement decreases both the construction costs and evaporative water losses, making larger volumes of treated water available for beneficial reuse. They are ideal for rural, peri-urban and remote communities as they require minimum power and little on-site management. This review will address the history of and current trends in high rate algal pond development and application; a comparison of their performance with other systems when treating various wastewaters; and discuss their potential for production of added-value products. Finally, the review will consider areas requiring further research.

  11. Instructional Resources Monograph Series: Safety in Wastewater Treatment Systems. Selected Instructional Activities and References.

    ERIC Educational Resources Information Center

    Coon, Herbert L.

    Described are instructional and reference materials that may be useful to managers, supervisors, foremen and others who are interested in the safety education of workers in wastewater systems. Emphasis is upon items relevant to the development and presentation of wastewater treatment training programs. Part I contains descriptions and excerpts…

  12. EPA (ENVIRONMENTAL PROTECTION AGENCY) DESIGN INFORMATION REPORT: SIDESTREAMS IN WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Performance problems at publicly-owned treatment works are often attributed to the recycling of sidestreams generated in the wastewater treatment and sludge handling systems. Although the volumes of these sidestreams are generally small compared to plant influent flows, sidestrea...

  13. TREATMENT OF MUNICIPAL WASTEWATERS BY THE FLUIDIZED BED BIOREACTOR PROCESS

    EPA Science Inventory

    A 2-year, large-scale pilot investigation was conducted at the City of Newburgh Water Pollution Control Plant, Newburgh, NY, to demonstrate the application of the fluidized bed bioreactor process to the treatment of municipal wastewaters. The experimental effort investigated the ...

  14. SOLIDIFICATION/STABILIZATION OF SLUDGE AND ASH FROM WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Tests were performed to determine the physical properties and chemical leaching characteristics of the residuals and the stabilized/solidified products from two publicly-owned wastewater treatment works (POTW). The two POTW waste products included in this study were an anaerobic ...

  15. The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters

    PubMed Central

    Kyzas, George Z.; Fu, Jie; Matis, Kostas A.

    2013-01-01

    Adsorption is one of the most promising decolorization techniques in dyeing wastewater treatment. Adsorption techniques for wastewater treatment have become more popular in recent years owing to their efficiency in the removal of pollutants too stable for biological methods. Dye adsorption is a result of two mechanisms (adsorption and ion exchange) and is influenced by many factors as dye/adsorbent interaction, adsorbent’s surface area, particle size, temperature, pH, and contact time. The main advantage of adsorption recently became the use of low-cost materials, which reduces the procedure cost. The present review firstly introduced the technology process, research history and research hotspot of adsorption. Then, the application of adsorption in treatment of dyeing wastewaters in the past decades was summarized, revealing the impressive changes in modes, trends, and conditions. From this review article, the different philosophy of synthesis of adsorbent materials became evident. PMID:28788381

  16. Biosorptive recovery of platinum from platinum group metal refining wastewaters by immobilised Saccharomyces cerevisiae.

    PubMed

    Mack, C L; Wilhelmi, B; Duncan, J R; Burgess, J E

    2011-01-01

    The process of platinum group metal (PGM) refining can be up to 99.99% efficient at best, and although it may seem small, the amount of valuable metal lost to waste streams is appreciable enough to warrant recovery. The method currently used to remove entrained metal ions from refinery wastewaters, chemical precipitation, is not effective for selective recovery of PGMs. The yeast Saccharomyces cerevisiae has been found capable of sorbing numerous precious and base metals, and is a cheap and abundant source of biomass. In this investigation, S. cerevisiae was immobilised using polyethyleneimine and glutaraldehyde to produce a suitable sorbent, capable of high platinum uptake (150-170 mg/g) at low pH (<2). The sorption mechanism was found to be a chemical reaction, which made effective desorption impossible. When applied to PGM refinery wastewater, two key wastewater characteristics limited the success of the sorption process; high inorganic ion content and complex speciation of the platinum ions. The results proved the concept principle of platinum recovery by immobilised yeast biosorption and indicated that a more detailed understanding of the platinum speciation within the wastewater is required before biosorption can be applied. Overall, the sorption of platinum by the S. cerevisiae sorbent was demonstrated to be highly effective in principle, but the complexity of the wastewater requires that pretreatment steps be taken before the successful application of this process to industrial wastewater.

  17. Post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the performance of a two-stage fluidized bed reactor (FBR) system for the post-treatment of secondary wastewater treatment plant effluents (Shahrak Gharb, Tehran, Iran). The proposed treatment scheme was evaluated using pilot-scale reactors (106-L of capacity) filled with PVC as the fluidized bed (first stage) and gravel for the filtration purpose (second stage). Aluminum sulfate (30 mg/L) and chlorine (1 mg/L) were used for the coagulation and disinfection of the effluent, respectively. To monitor the performance of the FBR system, variation of several parameters (biochemical oxygen demand (BOD5), chemical oxygen demand (COD), turbidity, total phosphorous, total coliform and fecal coliform) were monitored in the effluent wastewater samples. The results showed that the proposed system could effectively reduce BOD5 and COD below 1.95 and 4.06 mg/L, respectively. Turbidity of the effluent could be achieved below 0.75 NTU, which was lower than those reported for the disinfection purpose. The total phosphorus was reduced to 0.52 mg/L, which was near the present phosphorous standard for the prevention of eutrophication process. Depending on both microorganism concentration and applied surface loading rates (5–10 m/h), about 35 to 75% and 67 to 97% of coliform were removed without and with the chlorine addition, respectively. Findings of this study clearly confirmed the efficiency of the FBR system for the post-treatment of the secondary wastewater treatment plant effluents without any solid problem during the chlorination. PMID:24499570

  18. Scaled-up dual anode/cathode microbial fuel cell stack for actual ethanolamine wastewater treatment.

    PubMed

    An, Byung-Min; Heo, Yoon; Maitlo, Hubdar-Ali; Park, Joo-Yang

    2016-06-01

    The aim of this work was to develop the scale-up microbial fuel cell technology for actual ethanolamine wastewater treatment, dual anode/cathode MFC stacks connected in series to achieve any desired current, treatment capacity, and volume capacity. However, after feeding actual wastewater into the MFC, maximum power density decreased while the corresponding internal resistance increased. With continuous electricity production, a stack of eight MFCs in series achieved 96.05% of COD removal and 97.30% of ammonia removal at a flow rate of 15.98L/d (HRT 12h). The scaled-up dual anode/cathode MFC stack system in this research was demonstrated to treat actual ETA wastewater with the added benefit of harvesting electricity energy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Labile, dissolved and particulate PAHs and trace metals in wastewater: passive sampling, occurrence, partitioning in treatment plants.

    PubMed

    Gourlay-Francé, C; Bressy, A; Uher, E; Lorgeoux, C

    2011-01-01

    The occurrence and the partitioning of polycyclic aromatic hydrocarbons (PAHs) and seven metals (Al, Cd, Cr, Cu, Ni, Pb and Zn) were investigated in activated sludge wastewater treatment plants by means of passive and active sampling. Concentrations total dissolved and particulate contaminants were determined in wastewater at several points across the treatment system by means of grab sampling. Truly dissolved PAHs were sampled by means of semipermeable membrane devices. Labile (inorganic and weakly complexed) dissolved metals were also sampled using the diffusive gradient in thin film technique. This study confirms the robustness and the validity of these two passive sampling techniques in wastewater. All contaminant concentrations decreased in wastewater along the treatment, although dissolved and labile concentrations sometimes increased for substances with less affinity with organic matter. Solid-liquid and dissolved organic matter/water partitioning constants were estimated. The high variability of both partitioning constants for a simple substance and the poor relation between K(D) and K(OW) shows that the binding capacities of particles and organic matter are not uniform within the treatment and that other process than equilibrium sorption affect contaminant repartition and fate in wastewater.

  20. Jaffrey, N.H. Facility to Upgrade its Wastewater Treatment Systems Under Clean Water Act Settlement

    EPA Pesticide Factsheets

    Under the terms of a Consent Decree lodged in federal court, EMD Millipore Corp. of Jaffrey, N.H., will upgrade its on-site wastewater treatment system to comply with the terms of the company’s industrial wastewater discharge permit & prevent...