Sample records for wastewater-treatment plant wwtp

  1. Membrane bio-reactor for textile wastewater treatment plant upgrading.

    PubMed

    Lubello, C; Gori, R

    2005-01-01

    Textile industries carry out several fiber treatments using variable quantities of water, from five to forty times the fiber weight, and consequently generate large volumes of wastewater to be disposed of. Membrane Bio-reactors (MBRs) combine membrane technology with biological reactors for the treatment of wastewater: micro or ultrafiltration membranes are used for solid-liquid separation replacing the secondary settling of the traditional activated sludge system. This paper deals with the possibility of realizing a new section of one existing WWTP (activated sludge + clariflocculation + ozonation) for the treatment of treating textile wastewater to be recycled, equipped with an MBR (76 l/s as design capacity) and running in parallel with the existing one. During a 4-month experimental period, a pilot-scale MBR proved to be very effective for wastewater reclamation. On average, removal efficiency of the pilot plant (93% for COD, and over 99% for total suspended solids) was higher than the WWTP ones. Color was removed as in the WWTP. Anionic surfactants removal of pilot plant was lower than that of the WWTP (90.5 and 93.2% respectively), while the BiAS removal was higher in the pilot plant (98.2 vs. 97.1). At the end cost analysis of the proposed upgrade is reported.

  2. Treatment of emerging contaminants in wastewater treatment plants (WWTP) effluents by solar photocatalysis using low TiO2 concentrations.

    PubMed

    Prieto-Rodriguez, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Li Puma, G; Malato, S

    2012-04-15

    The optimal photocatalyst concentration for industrial wastewater treatment in current photoreactor designs is several hundreds of milligrams per liter. However, the elimination of emerging contaminants (ECs), which are present at extremely low concentrations in waste water treatment plants (WWTP) effluents might be accomplished at much lower catalyst (TiO(2)) concentrations. One of the main drawbacks of reducing catalyst loading below the optimum is the loss of useful photons which instead are transmitted through the TiO(2) suspension without being absorbed by the catalyst. Accordingly, in this work, laboratory and solar pilot-scale experiments were performed with real WWTP effluents to evaluate the kinetics of photocatalytic degradation of 52 emerging contaminants under realistic (ppb) concentrations. The analysis of the samples was accomplished by solid phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC-MS). In view of the results, low concentrations of TiO(2) of the order of tens of milligrams per liter were found to be insufficient for the degradation of the ECs in photoreactors with a short light-path length (29 cm). However, it was established that solar reactors of diameters of several hundreds of millimetres could be used for the efficient removal of ECs from WWTP effluents. The results presented show a general methodology for selecting the most efficient reactor diameter on the basis of the desired catalyst concentration. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Occurrence of Legionella in wastewater treatment plants linked to wastewater characteristics.

    PubMed

    Caicedo, C; Beutel, S; Scheper, T; Rosenwinkel, K H; Nogueira, R

    2016-08-01

    In recent years, the occurrence of Legionella in wastewater treatment plants (WWTP) has often been reported. However, until now there is limited knowledge about the factors that promote Legionella's growth in such systems. The aim of this study was to investigate the chemical wastewater parameters that might be correlated to the concentration of Legionella spp. in WWTP receiving industrial effluents. For this purpose, samples were collected at different processes in three WWTP. In 100 % of the samples taken from the activated sludge tanks Legionella spp. were detected at varying concentrations (4.8 to 5.6 log GU/mL) by the quantitative real-time polymerase chain reaction method, but not by the culture method. Statistical analysis with various parameters yielded positive correlations of Legionella spp. concentration with particulate chemical oxygen demand, Kjeldahl nitrogen and protein concentration. Amino acids were quantified in wastewater and activated sludge samples at concentrations that may not support the growth of Legionella, suggesting that in activated sludge tanks this bacterium multiplied in protozoan hosts.

  4. An Evaluation of Reed Bed Technology to Dewater Army Wastewater Treatment Plant Sludge

    DTIC Science & Technology

    1993-09-01

    speculated that the plants produced "root exudations" that were active against pathogens, and that the plants specifically showed an affinity for cadmium , zinc...Schwenksville, PA Topton Sewage Treatment Topton. PA Wabash WWTP Wabash . IN Wallingford Fire District #lWastewater Treatment Plant Wallingford. VT...Navy Group 06/88 Tom Severance Security 207-963-5534 Winter Harbour. ME Wabash WWTP. IN 09/91 Vincent J. Bauco 219-563-2941 20 Table 4 (Cont’d

  5. Add Control: plant virtualization for control solutions in WWTP.

    PubMed

    Maiza, M; Bengoechea, A; Grau, P; De Keyser, W; Nopens, I; Brockmann, D; Steyer, J P; Claeys, F; Urchegui, G; Fernández, O; Ayesa, E

    2013-01-01

    This paper summarizes part of the research work carried out in the Add Control project, which proposes an extension of the wastewater treatment plant (WWTP) models and modelling architectures used in traditional WWTP simulation tools, addressing, in addition to the classical mass transformations (transport, physico-chemical phenomena, biological reactions), all the instrumentation, actuation and automation & control components (sensors, actuators, controllers), considering their real behaviour (signal delays, noise, failures and power consumption of actuators). Its ultimate objective is to allow a rapid transition from the simulation of the control strategy to its implementation at full-scale plants. Thus, this paper presents the application of the Add Control simulation platform for the design and implementation of new control strategies at the WWTP of Mekolalde.

  6. Poultry slaughterhouse wastewater treatment plant for high quality effluent.

    PubMed

    Del Nery, V; Damianovic, M H Z; Moura, R B; Pozzi, E; Pires, E C; Foresti, E

    2016-01-01

    This paper assesses a wastewater treatment plant (WWTP) regarding the technology used, as well as organic matter and nutrient removal efficiencies aiming to optimize the treatment processes involved and wastewater reclamation. The WWTP consists of a dissolved air flotation (DAF) system, an upflow anaerobic sludge blanket (UASB) reactor, an aerated-facultative pond (AFP) and a chemical-DAF system. The removal efficiencies of chemical oxygen demand (COD) (97.9 ± 1.0%), biochemical oxygen demand (BOD) (98.6 ± 1.0%) and oil and grease (O&G) (91.1 ± 5.2%) at the WWTP, the nitrogen concentration of 17 ± 11 mg N-NH3 and phosphorus concentration of 1.34 ± 0.93 mg PO4(-3)/L in the final effluent indicate that the processes used are suitable to comply with discharge standards in water bodies. Nitrification and denitrification tests conducted using biomass collected at three AFP points indicated that nitrification and denitrification could take place in the pond.

  7. Understanding the hydrologic impacts of wastewater treatment plant discharge to shallow groundwater: Before and after plant shutdown

    USGS Publications Warehouse

    Hubbard, Laura E.; Keefe, Steffanie H.; Kolpin, Dana W.; Barber, Larry B.; Duris, Joseph W.; Hutchinson, Kasey J.; Bradley, Paul M.

    2016-01-01

    Effluent-impacted surface water has the potential to transport not only water, but wastewater-derived contaminants to shallow groundwater systems. To better understand the effects of effluent discharge on in-stream and near-stream hydrologic conditions in wastewater-impacted systems, water-level changes were monitored in hyporheic-zone and shallow-groundwater piezometers in a reach of Fourmile Creek adjacent to and downstream of the Ankeny (Iowa, USA) wastewater treatment plant (WWTP). Water-level changes were monitored from approximately 1.5 months before to 0.5 months after WWTP closure. Diurnal patterns in WWTP discharge were closely mirrored in stream and shallow-groundwater levels immediately upstream and up to 3 km downstream of the outfall, indicating that such discharge was the primary control on water levels before shutdown. The hydrologic response to WWTP shutdown was immediately observed throughout the study reach, verifying the far-reaching hydraulic connectivity and associated contaminant transport risk. The movement of WWTP effluent into alluvial aquifers has implications for potential WWTP-derived contamination of shallow groundwater far removed from the WWTP outfall.

  8. Assessment of wastewater treatment plant effluent effects on fish reproduction

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined t...

  9. Antibiotic Resistance in Czech Urban Wastewater Treatment Plants: Microbial and Molecular Genetic Characterization.

    PubMed

    Svobodová, Kateřina; Semerád, Jaroslav; Petráčková, Denisa; Novotný, Čeněk

    2018-05-30

    Quantitative changes in antibiotic resistance genes (ARGs) were investigated in six urban wastewater treatment plants (WWTPs) treating municipal and industrial wastewaters. In a selected WWTP, the fate of ARGs was studied in a 1-year time interval and in two phases of wastewater treatment process. Nine ARGs (tetW, tetO, tetA, tetB, tetM, bla TEM , ermB, sul1, and intl1) were quantified in total and their relative abundance assessed by ARG copies/16SrRNA copies. From the tetracycline resistance genes, tetW was the only one detected in all sampled WWTPs. Its relative abundance in the nitrification tank of WWTP5 was found stable during the 1-year period, but was lowered by secondary sedimentation processes in the wastewater treatment down to 24% compared to the nitrification tank. Bacterial isolates showing high tetracycline resistance (minimal inhibition concentrations >100 μg/mL) were identified as members of Acinetobacter, Klebsiella, Citrobacter, Bacillus, and Enterobacter genera. Dynamic shifts in the relative abundance of ermB and sul1 were also demonstrated in wastewater samples from WWTP5.

  10. Prediction of wastewater quality indicators at the inflow to the wastewater treatment plant using data mining methods

    NASA Astrophysics Data System (ADS)

    Szeląg, Bartosz; Barbusiński, Krzysztof; Studziński, Jan; Bartkiewicz, Lidia

    2017-11-01

    In the study, models developed using data mining methods are proposed for predicting wastewater quality indicators: biochemical and chemical oxygen demand, total suspended solids, total nitrogen and total phosphorus at the inflow to wastewater treatment plant (WWTP). The models are based on values measured in previous time steps and daily wastewater inflows. Also, independent prediction systems that can be used in case of monitoring devices malfunction are provided. Models of wastewater quality indicators were developed using MARS (multivariate adaptive regression spline) method, artificial neural networks (ANN) of the multilayer perceptron type combined with the classification model (SOM) and cascade neural networks (CNN). The lowest values of absolute and relative errors were obtained using ANN+SOM, whereas the MARS method produced the highest error values. It was shown that for the analysed WWTP it is possible to obtain continuous prediction of selected wastewater quality indicators using the two developed independent prediction systems. Such models can ensure reliable WWTP work when wastewater quality monitoring systems become inoperable, or are under maintenance.

  11. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    PubMed

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  12. Composition and aggregation of extracellular polymeric substances (EPS) in hyperhaline and municipal wastewater treatment plants

    PubMed Central

    Zeng, Jie; Gao, Jun-Min; Chen, You-Peng; Yan, Peng; Dong, Yang; Shen, Yu; Guo, Jin-Song; Zeng, Ni; Zhang, Peng

    2016-01-01

    As important constituents of activated sludge flocs, extracellular polymeric substances (EPS) play significant roles in pollutants adsorption, the formation and maintenance of microbial aggregates, and the protection of microbes from external environmental stresses. In this work, EPS in activated sludge from a municipal wastewater treatment plant (M-WWTP) with anaerobic/anoxic/oxic (A2/O) process and a hyperhaline wastewater treatment plant (H-WWTP) with anaerobic/oxic (A/O) process were extracted by ultrasound method. The proteins and polysaccharides contents in EPS were determined by using a modified Lowry method and anthrone colorimetry respectively to analyze the detail differences in two types of WWTPs. Fourier transform-infrared spectroscopy and three-dimensional excitation-emission matrix fluorescence spectroscopy demonstrated proteins and polysaccharides were the dominant components of the two types of EPS, and the aromatic protein-like substances accounted for a larger proportion in EPS proteins. The results of the aggregation test indicated that EPS were good for the sludge aggregation, and the EPS in oxic sludge were more beneficial to sludge aggregation than that in anoxic sludge. Anoxic sludge EPS in H-WWTP showed a negligible effect on sludge aggregation. Comparative study on EPS of different tanks in the M-WWTP and H-WWTP was valuable for understanding the characteristics of EPS isolated from two typical wastewater treatment processes. PMID:27220287

  13. Limited dissemination of the wastewater treatment plant core resistome.

    PubMed

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa; Nielsen, Per Halkjær; Sommer, Morten O A

    2015-09-30

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with <10% of the resistance genes found outside the WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome.

  14. Limited dissemination of the wastewater treatment plant core resistome

    PubMed Central

    Munck, Christian; Albertsen, Mads; Telke, Amar; Ellabaan, Mostafa; Nielsen, Per Halkjær; Sommer, Morten O. A.

    2015-01-01

    Horizontal gene transfer is a major contributor to the evolution of bacterial genomes and can facilitate the dissemination of antibiotic resistance genes between environmental reservoirs and potential pathogens. Wastewater treatment plants (WWTPs) are believed to play a central role in the dissemination of antibiotic resistance genes. However, the contribution of the dominant members of the WWTP resistome to resistance in human pathogens remains poorly understood. Here we use a combination of metagenomic functional selections and comprehensive metagenomic sequencing to uncover the dominant genes of the WWTP resistome. We find that this core resistome is unique to the WWTP environment, with <10% of the resistance genes found outside the WWTP environment. Our data highlight that, despite an abundance of functional resistance genes within WWTPs, only few genes are found in other environments, suggesting that the overall dissemination of the WWTP resistome is comparable to that of the soil resistome. PMID:26419330

  15. Reliability analysis of a wastewater treatment plant using fault tree analysis and Monte Carlo simulation.

    PubMed

    Taheriyoun, Masoud; Moradinejad, Saber

    2015-01-01

    The reliability of a wastewater treatment plant is a critical issue when the effluent is reused or discharged to water resources. Main factors affecting the performance of the wastewater treatment plant are the variation of the influent, inherent variability in the treatment processes, deficiencies in design, mechanical equipment, and operational failures. Thus, meeting the established reuse/discharge criteria requires assessment of plant reliability. Among many techniques developed in system reliability analysis, fault tree analysis (FTA) is one of the popular and efficient methods. FTA is a top down, deductive failure analysis in which an undesired state of a system is analyzed. In this study, the problem of reliability was studied on Tehran West Town wastewater treatment plant. This plant is a conventional activated sludge process, and the effluent is reused in landscape irrigation. The fault tree diagram was established with the violation of allowable effluent BOD as the top event in the diagram, and the deficiencies of the system were identified based on the developed model. Some basic events are operator's mistake, physical damage, and design problems. The analytical method is minimal cut sets (based on numerical probability) and Monte Carlo simulation. Basic event probabilities were calculated according to available data and experts' opinions. The results showed that human factors, especially human error had a great effect on top event occurrence. The mechanical, climate, and sewer system factors were in subsequent tier. Literature shows applying FTA has been seldom used in the past wastewater treatment plant (WWTP) risk analysis studies. Thus, the developed FTA model in this study considerably improves the insight into causal failure analysis of a WWTP. It provides an efficient tool for WWTP operators and decision makers to achieve the standard limits in wastewater reuse and discharge to the environment.

  16. MBR pilot plant for textile wastewater treatment and reuse.

    PubMed

    Lubello, C; Caffaz, S; Mangini, L; Santianni, D; Caretti, C

    2007-01-01

    An experimental study was carried out in order to evaluate the possibility of upgrading the conventional activated sludge WWTP of Seano (Prato, Italy) which treats municipal and textile wastewaters, by using membrane bioreactor (MBR) technology. The MBR pilot plant, set up within Seano WWTP, was fed with mixed municipal-industrial wastewaters during the first experimental period and with pure industrial wastewaters during the second. Performances and operation of the MBR were evaluated in terms of permeate characteristics and variability (COD, colour, surfactants, total N and P) and other operational parameters (sludge growth and observed yield). According to the experimental results the MBR permeate quality was always superior to the Seano WWTP one and it was suitable for industrial reuse in the textile district of the Prato area. Respirometric tests provided a modified IWA ASM1 model which fits very well the experimental data and can be used for the design and the monitoring of a full-scale MBR pilot plant.

  17. Clay-starch combination for micropollutants removal from wastewater treatment plant effluent.

    PubMed

    Mohd Amin, M F; Heijman, S G J; Rietveld, L C

    2016-01-01

    In this study, a new, more effective and cost-effective treatment alternative is investigated for the removal of pharmaceuticals from wastewater treatment plant effluent (WWTP-eff). The potential of combining clay with biodegradable polymeric flocculants is further highlighted. Flocculation is viewed as the best method to get the optimum outcome from clay. In addition, flocculation with cationic starch increases the biodegradability and cost of the treatment. Clay is naturally abundantly available and relatively inexpensive compared to conventional adsorbents. Experimental studies were carried out with existing naturally occurring pharmaceutical concentrations found and measured in WWTP-eff with atrazine spiking for comparison between the demineralised water and WWTP-eff matrix. Around 70% of the total measured pharmaceutical compounds were removable by the clay-starch combination. The effect of clay with and without starch addition was also highlighted.

  18. Occurrence of illicit drugs in two wastewater treatment plants in the South of Italy.

    PubMed

    Cosenza, Alida; Maida, Carmelo Massimo; Piscionieri, Donatella; Fanara, Serena; Di Gaudio, Francesca; Viviani, Gaspare

    2018-05-01

    In this study the occurrence and the behavior of illicit drugs and their metabolites have been investigated for two wastewater treatment plants (WWTPs) (namely, WWTP-1 and WWTP-2) located in Sicily (island of Italy). Samples were analyzed for methamphetamine, cocaine (COC), 3,4-methylenedioxymethamphetamine (MDMA), methadone (METH), 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), 3,4-methylenedioxy amphetamine (MDA); 3,4-methylenedioxy ethylamphetamine (MDEA), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH) and Benzoylecgonine (BEG). The BEG, COC, MOR and THC-COOH were found at the highest concentration in both WWTPs. The Wastewater-based epidemiology calculation for BEG, COC, cannabinoids and THC-COOH was performed. On average, for both plants, population consumes 1.6 and 23.4 dose 1000 inh -1 day -1 of cocaine and cannabis, respectively. For WWTP-1 negative removals of illicit drugs were observed. For WWTP-2 the following average removal efficiencies were obtained: BEG (77.85%), COC (92.34%), CODEINE (64.75%), MOR (90.16%) and THC-COOH (68.64%). Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Impact of Wet-Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flo...

  20. Impact of Wet Weather Peak Flow Blending on Disinfection and Treatment: A Case Study at Three Wastewater Treatment Plants

    EPA Science Inventory

    A U.S. EPA study evaluated the impact on disinfection during peak flows (wet-weather flow events) when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flo...

  1. Demasculinization of male fish by wastewater treatment plant effluent

    USGS Publications Warehouse

    Vajda, A.M.; Barber, L.B.; Gray, J.L.; Lopez, E.M.; Bolden, A.M.; Schoenfuss, H.L.; Norris, D.O.

    2011-01-01

    Adult male fathead minnows (Pimephales promelas) were exposed to effluent from the City of Boulder, Colorado wastewater treatment plant (WWTP) under controlled conditions in the field to determine if the effluent induced reproductive disruption in fish. Gonadal intersex and other evidence of reproductive disruption were previously identified in white suckers (Catostomus commersoni) in Boulder Creek downstream from this WWTP effluent outfall. Fish were exposed within a mobile flow-through exposure laboratory in July 2005 and August 2006 to WWTP effluent (EFF), Boulder Creek water (REF), or mixtures of EFF and REF for up to 28 days. Primary (sperm abundance) and secondary (nuptial tubercles and dorsal fat pads) sex characteristics were demasculinized within 14 days of exposure to 50% and 100% EFF. Vitellogenin was maximally elevated in both 50% and 100% EFF treatments within 7 days and significantly elevated by 25% EFF within 14 days. The steroidal estrogens 17??-estradiol, estrone, estriol, and 17??-ethynylestradiol, as well as estrogenic alkylphenols and bisphenol A were identified within the EFF treatments and not in the REF treatment. These results support the hypothesis that the reproductive disruption observed in this watershed is due to endocrine-active chemicals in the WWTP effluent. ?? 2011 Elsevier B.V.

  2. Simulation analysis of capacity and performance improvement in wastewater treatment plants: Case study of Alexandria eastern plant

    NASA Astrophysics Data System (ADS)

    Moursy, Aly; Sorour, Mohamed T.; Moustafa, Medhat; Elbarqi, Walid; Fayd, Mai; Elreedy, Ahmed

    2018-05-01

    This study concerns the upgrading of a real domestic wastewater treatment plant (WWTP) supported by simulation. The main aims of this work are to: (1) decide between two technologies to improve WWTP capacity and its nitrogen removal efficiency; membrane bioreactor (MBR) and integrated fixed film activated sludge (IFAS), and (2) perform a cost estimation analysis for the two proposed solutions. The model used was calibrated based on data from the existing WWTP, namely, Eastern plant and located in Alexandria, Egypt. The activated sludge model No. 1 (ASM1) was considered in the model analysis by GPS-X 7 software. Steady-state analysis revealed that high performances corresponded to high compliance with Egyptian standards were achieved by the two techniques; however, MBR was better. Nonetheless, the two systems showed poor nitrogen removal efficiency according to the current situation, which reveals that the plant needs a modification to add an anaerobic treatment unit before the aerobic zone.

  3. Using bioprocess stoichiometry to build a plant-wide mass balance based steady-state WWTP model.

    PubMed

    Ekama, G A

    2009-05-01

    Steady-state models are useful for design of wastewater treatment plants (WWTPs) because they allow reactor sizes and interconnecting flows to be simply determined from explicit equations in terms of unit operation performance criteria. Once the overall WWTP scheme is established and the main system defining parameters of the individual unit operations estimated, dynamic models can be applied to the connected unit operations to refine their design and evaluate their performance under dynamic flow and load conditions. To model anaerobic digestion (AD) within plant-wide WWTP models, not only COD and nitrogen (N) but also carbon (C) fluxes entering the AD need to be defined. Current plant-wide models, like benchmark simulation model No 2 (BSM2), impose a C flux at the AD influent. In this paper, the COD and N mass balance steady-state models of activated sludge (AS) organics degradation, nitrification and denitrification (ND) and anaerobic (AD) and aerobic (AerD) digestion of wastewater sludge are extended and linked with bioprocess transformation stoichiometry to form C, H, O, N, chemical oxygen demand (COD) and charge mass balance based models so that also C (and H and O) can be tracked through the whole WWTP. By assigning a stoichiometric composition (x, y, z and a in C(x)H(y)O(z)N(a)) to each of the five main influent wastewater organic fractions and ammonia, these, and the products generated from them via the biological processes, are tracked through the WWTP. The model is applied to two theoretical case study WWTPs treating the same raw wastewater (WW) to the same final sludge residual biodegradable COD. It is demonstrated that much useful information can be generated with the relatively simple steady-state models to aid WWTP layout design and track the different products exiting the WWTP via the solid, liquid and gas streams, such as aerobic versus anaerobic digestion of waste activated sludge, N loads in recycle streams, methane production for energy recovery

  4. DSC: software tool for simulation-based design of control strategies applied to wastewater treatment plants.

    PubMed

    Ruano, M V; Ribes, J; Seco, A; Ferrer, J

    2011-01-01

    This paper presents a computer tool called DSC (Simulation based Controllers Design) that enables an easy design of control systems and strategies applied to wastewater treatment plants. Although the control systems are developed and evaluated by simulation, this tool aims to facilitate the direct implementation of the designed control system to the PC of the full-scale WWTP (wastewater treatment plants). The designed control system can be programmed in a dedicated control application and can be connected to either the simulation software or the SCADA of the plant. To this end, the developed DSC incorporates an OPC server (OLE for process control) which facilitates an open-standard communication protocol for different industrial process applications. The potential capabilities of the DSC tool are illustrated through the example of a full-scale application. An aeration control system applied to a nutrient removing WWTP was designed, tuned and evaluated with the DSC tool before its implementation in the full scale plant. The control parameters obtained by simulation were suitable for the full scale plant with only few modifications to improve the control performance. With the DSC tool, the control systems performance can be easily evaluated by simulation. Once developed and tuned by simulation, the control systems can be directly applied to the full-scale WWTP.

  5. A simple empirical model for the clarification-thickening process in wastewater treatment plants.

    PubMed

    Zhang, Y K; Wang, H C; Qi, L; Liu, G H; He, Z J; Fan, H T

    2015-01-01

    In wastewater treatment plants (WWTPs), activated sludge is thickened in secondary settling tanks and recycled into the biological reactor to maintain enough biomass for wastewater treatment. Accurately estimating the activated sludge concentration in the lower portion of the secondary clarifiers is of great importance for evaluating and controlling the sludge recycled ratio, ensuring smooth and efficient operation of the WWTP. By dividing the overall activated sludge-thickening curve into a hindered zone and a compression zone, an empirical model describing activated sludge thickening in the compression zone was obtained by empirical regression. This empirical model was developed through experiments conducted using sludge from five WWTPs, and validated by the measured data from a sixth WWTP, which fit the model well (R² = 0.98, p < 0.001). The model requires application of only one parameter, the sludge volume index (SVI), which is readily incorporated into routine analysis. By combining this model with the conservation of mass equation, an empirical model for compression settling was also developed. Finally, the effects of denitrification and addition of a polymer were also analysed because of their effect on sludge thickening, which can be useful for WWTP operation, e.g., improving wastewater treatment or the proper use of the polymer.

  6. Uptake of three antibiotics and an anti-epileptic drug by wheat plants spray irrigated with wastewater treatment plant effluent

    USDA-ARS?s Scientific Manuscript database

    With rising demands on water supplies necessitating water reuse, wastewater treatment plant (WWTP) effluent is often used to irrigate agricultural lands. Emerging contaminants, like pharmaceuticals and personal care products (PPCPs), are frequently found in effluent due to limited removal during WWT...

  7. Nitrous oxide and methane emissions from different treatment processes in full-scale municipal wastewater treatment plants.

    PubMed

    Rena, Y G; Wang, J H; Li, H F; Zhang, J; Qi, P Y; Hu, Z

    2013-01-01

    Nitrous oxide (N2O) and methane (CH4) are two important greenhouse gases (GHG) emitted from biological nutrient removal (BNR) processes in municipal wastewater treatment plants (WWTP). In this study, three typical biological wastewater treatment processes were studied in WWTP of Northern China: pre-anaerobic carrousel oxidation ditch (A+OD) process, pre-anoxic anaerobic-anoxic-oxic (A-A/ A/O) process and reverse anaerobic-anoxic-oxic (r-A/ A/O) process. The N2O and CH4 emissions from these three different processes were measured in every processing unit of each WWTP. Results showed that N2O and CH4 were mainly discharged during the nitrification/denitrification process and the anaerobic/anoxic treatment process, respectively and the amounts of their formation and release were significantly influenced by different BNR processes implemented in these WWTP. The N2O conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 10.9% and 18.6% lower than that of A-A/A/O process and A+OD process, respectively. Similarly, the CH4 conversion ratio of r-A/ A/O process was the lowest among the three WWTP, which were 89. I% and 80.8% lower than that of A-A/ A/O process and A+OD process, respectively. The factors influencing N2O and CH4 formation and emission in the three WWTP were investigated to explain the difference between these processes. The nitrite concentration and oxidation-reduction potential (ORP) value were found to be the dominant influencing factors affecting N2O and CH4 production, respectively. The flow-based emission factors of N2O and CH4 of the WWTP were figured out for better quantification of GHG emissions and further technical assessments of mitigation options.

  8. Assessment of airborne virus contamination in wastewater treatment plants.

    PubMed

    Masclaux, Frédéric G; Hotz, Philipp; Gashi, Drita; Savova-Bianchi, Dessislava; Oppliger, Anne

    2014-08-01

    Occupational exposure to bioaerosols in wastewater treatment plants (WWTP) and its consequence on workers' health are well documented. Most studies were devoted to enumerating and identifying cultivable bacteria and fungi, as well as measuring concentrations of airborne endotoxins, as these are the main health-related factors found in WWTP. Surprisingly, very few studies have investigated the presence and concentrations of airborne virus in WWTP. However, many enteric viruses are present in wastewater and, due to their small size, they should become aerosolized. Two in particular, the norovirus and the adenovirus, are extremely widespread and are the major causes of infectious gastrointestinal diseases reported around the world. The third one, hepatitis E virus, has an emerging status. This study׳s objectives were to detect and quantify the presence and concentrations of 3 different viruses (adenovirus, norovirus and the hepatitis E virus) in air samples from 31 WWTPs by using quantitative polymerase chain reaction (qPCR) during two different seasons and two consecutive years. Adenovirus was present in 100% of summer WWTP samples and 97% of winter samples. The highest airborne concentration measured was 2.27 × 10(6) genome equivalent/m(3) and, on average, these were higher in summer than in winter. Norovirus was detected in only 3 of the 123 air samples, and the hepatitis E virus was not detected. Concentrations of potentially pathogenic viral particles in WWTP air are non-negligible and could partly explain the work-related gastrointestinal symptoms often reported in employees in this sector. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Operator decision support system for integrated wastewater management including wastewater treatment plants and receiving water bodies.

    PubMed

    Kim, Minsoo; Kim, Yejin; Kim, Hyosoo; Piao, Wenhua; Kim, Changwon

    2016-06-01

    An operator decision support system (ODSS) is proposed to support operators of wastewater treatment plants (WWTPs) in making appropriate decisions. This system accounts for water quality (WQ) variations in WWTP influent and effluent and in the receiving water body (RWB). The proposed system is comprised of two diagnosis modules, three prediction modules, and a scenario-based supporting module (SSM). In the diagnosis modules, the WQs of the influent and effluent WWTP and of the RWB are assessed via multivariate analysis. Three prediction modules based on the k-nearest neighbors (k-NN) method, activated sludge model no. 2d (ASM2d) model, and QUAL2E model are used to forecast WQs for 3 days in advance. To compare various operating alternatives, SSM is applied to test various predetermined operating conditions in terms of overall oxygen transfer coefficient (Kla), waste sludge flow rate (Qw), return sludge flow rate (Qr), and internal recycle flow rate (Qir). In the case of unacceptable total phosphorus (TP), SSM provides appropriate information for the chemical treatment. The constructed ODSS was tested using data collected from Geumho River, which was the RWB, and S WWTP in Daegu City, South Korea. The results demonstrate the capability of the proposed ODSS to provide WWTP operators with more objective qualitative and quantitative assessments of WWTP and RWB WQs. Moreover, the current study shows that ODSS, using data collected from the study area, can be used to identify operational alternatives through SSM at an integrated urban wastewater management level.

  10. EVALUATION OF ESTROGENIC ACTIVITY FROM A MUNICIPAL WASTEWATER TREATMENT PLANT WITH PREDOMINANTLY DOMESTIC INPUT

    EPA Science Inventory

    The purpose of this study was to survey estrogenic releases from two primarily domestic wastewater treatment plants over three seasons (1996-1999). Mature male channel catfish were maintained at two sites within each WWTP and a reference site for 21 days. Estrogenic activity of e...

  11. Thermo-Oxidization of Municipal Wastewater Treatment Plant Sludge for Production of Class A Biosolids

    EPA Science Inventory

    Bench-scale reactors were used to test a novel thermo-oxidation process on municipal wastewater treatment plant (WWTP) waste activated sludge (WAS) using hydrogen peroxide (H2O2) to achieve a Class A sludge product appropriate for land application. Reactor ...

  12. Investigation of the environmental impacts of municipal wastewater treatment plants through a Life Cycle Assessment software tool.

    PubMed

    De Feo, G; Ferrara, C

    2017-08-01

    This paper investigates the total and per capita environmental impacts of municipal wastewater treatment in the function of the population equivalent (PE) with a Life Cycle Assessment (LCA) approach using the processes of the Ecoinvent 2.2 database available in the software tool SimaPro v.7.3. Besides the wastewater treatment plant (WWTP), the study also considers the sewerage system. The obtained results confirm that there is a 'scale factor' for the wastewater collection and treatment even in environmental terms, in addition to the well-known scale factor in terms of management costs. Thus, the more the treatment plant size is, the less the per capita environmental impacts are. However, the Ecoinvent 2.2 database does not contain information about treatment systems with a capacity lower than 30 PE. Nevertheless, worldwide there are many sparsely populated areas, where it is not convenient to realize a unique centralized WWTP. Therefore, it would be very important to conduct an LCA study in order to compare alternative on-site small-scale systems with treatment capacity of few PE.

  13. Life cycle assessment of nutrient removal technologies for the treatment of anaerobic digestion supernatant and its integration in a wastewater treatment plant.

    PubMed

    Rodriguez-Garcia, G; Frison, N; Vázquez-Padín, J R; Hospido, A; Garrido, J M; Fatone, F; Bolzonella, D; Moreira, M T; Feijoo, G

    2014-08-15

    The supernatant resulting from the anaerobic digestion of sludge generated by wastewater treatment plants (WWTP) is an attractive flow for technologies such as partial nitritation-anammox (CANON), nitrite shortcut (NSC) and struvite crystallization processes (SCP). The high concentration of N and P and its low flow rate facilitate the removal of nutrients under more favorable conditions than in the main water line. Despite their operational and economic benefits, the environmental burdens of these technologies also need to be assessed to prove their feasibility under a more holistic perspective. The potential environmental implications of these technologies were assessed using life cycle assessment, first at pilot plant scale, later integrating them in a modeled full WWTP. Pilot plant results reported a much lower environmental impact for N removal technologies than SCP. Full-scale modeling, however, highlighted that the differences between technologies were not relevant once they are integrated in a WWTP. The impacts associated with the WWTP are slightly reduced in all categories except for eutrophication, where a substantial reduction was achieved using NSC, SCP, and especially when CANON and SCP were combined. This study emphasizes the need for assessing wastewater treatment technologies as part of a WWTP rather than as individual processes and the utility of modeling tools for doing so. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Removal of antibiotic resistant E. coli in two Norwegian wastewater treatment plants and by nano- and ultra-filtration processes.

    PubMed

    Schwermer, Carsten Ulrich; Krzeminski, Pawel; Wennberg, Aina Charlotte; Vogelsang, Christian; Uhl, Wolfgang

    2018-02-01

    The effectivity of different treatment stages at two large wastewater treatment plants (WWTPs) located in Oslo, Norway, to remove antibiotic resistant Escherichia coli from municipal wastewater was investigated. The WWTPs were effective in reducing the total cultivable E. coli. The E. coli in WWTP samples were mainly resistant to ampicillin (6-27%) and trimethoprim-sulfamethoxazole (5-24%), and, to a lesser extent, tetracycline (3-14%) and ciprofloxacin (0-7%). In the first WWTP, a clear decrease in the percentage of E. coli resistant to these antibiotics was found, with the main removal occurring during physical/chemical treatment. In the second WWTP, the percentage of cultivable resistant E. coli did not display a considerable change. During laboratory-scale membrane filtration of WWTP effluents using ultrafiltration (UF) and nanofiltration (NF) membranes, all E. coli, including those resistant to antibiotics, were removed completely. The results imply that UF and NF processes are potent measures to remove antibiotic resistant bacteria (ARB) during post-treatment of WWTP effluents, thus reducing the potential spread of antibiotic resistance in the receiving aquatic environment.

  15. Co-digestion of sewage sludge from external small WWTP's in a large plant

    NASA Astrophysics Data System (ADS)

    Miodoński, Stanisław

    2017-11-01

    Improving energy efficiency of WWTPs (Waste Water Treatment Plants) is crucial action of modern wastewater treatment technology. Technological treatment process optimization is important but the main goal will not be achieved without increasing production of renewable energy from sewage sludge in anaerobic digestion process which is most often used as sludge stabilization method on large WWTP's. Usually, anaerobic digestion reactors used for sludge digestion were designed with reserve and most of them is oversized. In many cases that reserve is unused. On the other hand, smaller WWTPs have problem with management of sewage sludge due to lack of adequately developed infrastructure for sludge stabilization. Paper shows an analysis of using a technological reserve of anaerobic digestion reactors at large WWTP (1 million P.E.) for sludge stabilization collected from smaller WWTP in a co-digestion process. Over 30 small WWTPs from the same region as the large WWTP were considered in this study. Furthermore, performed analysis included also evaluation of potential sludge disintegration pre-treatment for co-digestion efficiency improvement.

  16. Environmental Life Cycle Assessment and Cost Analysis of Bath, NY Wastewater Treatment Plant: Potential Upgrade Implications

    EPA Science Inventory

    Many communities across the U.S. are required to upgrade wastewater treatment plants (WWTP) to meet increasingly stringent nutrient effluent standards. However, increased capital, energy and chemical requirements of upgrades create potential trade-offs between eutrophication pot...

  17. Improved wet weather wastewater influent modelling at Viikinmäki WWTP by on-line weather radar information.

    PubMed

    Heinonen, M; Jokelainen, M; Fred, T; Koistinen, J; Hohti, H

    2013-01-01

    Municipal wastewater treatment plant (WWTP) influent is typically dependent on diurnal variation of urban production of liquid waste, infiltration of stormwater runoff and groundwater infiltration. During wet weather conditions the infiltration phenomenon typically increases the risk of overflows in the sewer system as well as the risk of having to bypass the WWTP. Combined sewer infrastructure multiplies the role of rainwater runoff in the total influent. Due to climate change, rain intensity and magnitude is tending to rise as well, which can already be observed in the normal operation of WWTPs. Bypass control can be improved if the WWTP is prepared for the increase of influent, especially if there is some storage capacity prior to the treatment plant. One option for this bypass control is utilisation of on-line weather-radar-based forecast data of rainfall as an input for the on-line influent model. This paper reports the Viikinmäki WWTP wet weather influent modelling project results where gridded exceedance probabilities of hourly rainfall accumulations for the next 3 h from the Finnish Meteorological Institute are utilised as on-line input data for the influent model.

  18. Carbon footprints of Scandinavian wastewater treatment plants.

    PubMed

    Gustavsson, D J I; Tumlin, S

    2013-01-01

    This study estimates the carbon footprints of 16 municipal wastewater treatment plants (WWTPs), all situated in Scandinavian countries, by using a simple model. The carbon footprint calculations were based on operational data, literature emission factors (efs) and measurements of greenhouse gas emissions at some of the studied WWTPs. No carbon neutral WWTPs were found. The carbon footprints ranged between 7 and 108 kg CO2e P.E.(-1) year(-1). Generally, the major positive contributors to the carbon footprint were direct emissions of nitrous oxide from wastewater treatment. Whether heat pumps for effluents have high coefficient of performance or not is extremely important for the carbon footprint. The choice of efs largely influenced the carbon footprint. Increased biogas production, efficient biogas usage, and decreased addition of external fossil carbon source for denitrification are important activities to decrease the carbon footprint of a WWTP.

  19. Assessment of wastewater treatment plant effluent on fish reproduction utilizing the adverse outcome pathway conceptual framework

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are a known contributor of chemical mixture inputs into the environment. Whole effluent testing guidelines were developed to screen these complex mixtures for acute toxicity. However, efficient and cost-effective approaches for screenin...

  20. Unsupervised Analysis of the Effects of a Wastewater Treatment Plant Effluent on the Fathead Minnow Ovarian Transcriptome

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents contain complex mixtures of chemicals, potentially including endocrine active chemicals (EACs), pharmaceuticals, and other contaminants of emerging concern (CECs). Due to the complex and variable nature of effluents, biological monitori...

  1. Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant.

    PubMed

    Sánchez-Avila, Juan; Bonet, Jordi; Velasco, Gemma; Lacorte, Silvia

    2009-06-15

    Industrial and urban discharges release organic contaminants which might affect the quality of receiving waters if not properly eliminated in Wastewater Treatment Plants (WWTP). This study is aimed to evaluate the source, transport and fate of contaminants of industrial origin in a sewage grid discharging to a WWTP and finally to the sea. The sampling network covered an industrial and urban area and wastewaters, influents and effluents of a WWTP were analyzed using a newly developed multiresidual method to capture a wide range contaminants (phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs). Alkylphenols and phthalates followed by PAHs were the main compounds detected at levels between 0.01 to 698 microg l(-1) in the sewage pipelines. At the WWTP influent they were detected at concentrations up to 345 microg l(-1). The contaminant load was eliminated in a 64-92% during the primary and secondary treatment of the plant. However, alkylphenols, phthalates bisphenol A and traces of PAHs were discharged with the effluent, producing a total net input of 825 g d(-1) to the sea. The study of wastewaters herein proposed can be used to better predict the loads into WWTP to improve treatment conditions according to specific sewage inputs and to assess the risks associated with the continuous discharge of contaminants to receiving plants.

  2. Sludge reduction in a small wastewater treatment plant by electro-kinetic disintegration.

    PubMed

    Chiavola, Agostina; Ridolfi, Alessandra; D'Amato, Emilio; Bongirolami, Simona; Cima, Ennio; Sirini, Piero; Gavasci, Renato

    2015-01-01

    Sludge reduction in a wastewater treatment plant (WWTP) has recently become a key issue for the managing companies, due to the increasing constraints on the disposal alternatives. Therefore, all the solutions proposed with the aim of minimizing sludge production are receiving increasing attention and are tested either at laboratory or full-scale to evaluate their real effectiveness. In the present paper, electro-kinetic disintegration has been applied at full-scale in the recycle loop of the sludge drawn from the secondary settlement tank of a small WWTP for domestic sewage. After the disintegration stage, the treated sludge was returned to the biological reactor. Three different percentages (50, 75 and 100%) of the return sludge flow rate were subjected to disintegration and the effects on the sludge production and the WWTP operation efficiency evaluated. The long-term observations showed that the electro-kinetic disintegration was able to drastically reduce the amount of biological sludge produced by the plant, without affecting its treatment efficiency. The highest reduction was achieved when 100% return sludge flow rate was subjected to the disintegration process. The reduced sludge production gave rise to a considerable net cost saving for the company which manages the plant.

  3. Diversity of fecal coliforms and their antimicrobial resistance patterns in wastewater treatment model plant.

    PubMed

    Luczkiewicz, A; Fudala-Ksiazek, S; Jankowska, K; Quant, B; Olańczuk-Neyman, K

    2010-01-01

    The occurrence of resistance patterns among wastewater fecal coliforms was determined in the study. Susceptibility of the isolates was tested against 19 antimicrobial agents: aminoglycosides, aztreonam, carbapenems, cephalosporines, beta-lactam/beta-lactamase inhibitors, penicillines, tetracycline, trimethoprim/sulfamethoxazole, and fluoroquinolones. Additionally the removal of resistant isolates was evaluated in the laboratory-scale wastewater treatment model plant (M-WWTP), continuously supplied with the wastewater obtained from the full-scale WWTP. Number of fecal coliforms in raw (after mechanical treatment) and treated wastewater, as well as in aerobic chamber effluent was determined using selective medium. The selected strains were identified and examined for antibiotic resistance using Phoenix Automated Microbiology System (BD Biosciences, USA). The strains were identified as Escherichia coli (n=222), Klebsiella pneumoniae ssp. ozaenae (n=9), and Pantoea agglomerans (n=1). The isolate of P. agglomerans as well as 48% of E. coli isolates were sensitive to all antimicrobials tested. The most frequent resistance patterns were found for ampicillin: 100% of K. pneumoniae ssp. ozaenae and 41% of E. coli isolates. Among E. coli isolates 12% was regarded as multiple antimicrobial resistant (MAR). In the studied M-WWTP, the applied activated sludge processes reduced considerably the number of fecal coliforms, but increased the ratio of antimicrobial-resistant E. coli isolates to sensitive ones, especially among strains with MAR patterns.

  4. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    EPA Science Inventory

    Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and other countries, fecal coliform is the only microbial indicator, raising concerns about the potential for pathogen t...

  5. Cell-based metabolomics approach for assessing the impact of wastewater treatment plant effluent on downstream water quality

    EPA Science Inventory

    Wastewater treatment plants (WWTP) are a known source of various types of chemicals including pharmaceuticals and personal care products (PPCPs), naturally occurring hormones, and pesticides. There is great concern regarding their adverse effects on human and ecological health th...

  6. An assessment of the concentrations of pharmaceutical compounds in wastewater treatment plants on the island of Gran Canaria (Spain).

    PubMed

    Guedes-Alonso, Rayco; Afonso-Olivares, Cristina; Montesdeoca-Esponda, Sarah; Sosa-Ferrera, Zoraida; Santana-Rodríguez, José Juan

    2013-12-01

    An assessment of the concentrations of thirteen different therapeutic pharmaceutical compounds was conducted on water samples obtained from different wastewater treatment plants (WWTPs) using solid phase extraction and high- and ultra-high-performance liquid chromatography with mass spectrometry detection (HPLC-MS/MS and UHPLC-MS/MS), was carried out. The target compounds included ketoprofen and naproxen (anti-inflammatories), bezafibrate (lipid-regulating), carbamazepine (anticonvulsant), metamizole (analgesic), atenolol (β-blocker), paraxanthine (stimulant), fluoxetine (antidepressant), and levofloxacin, norfloxacin, ciprofloxacin, enrofloxacin and sarafloxacin (fluoroquinolone antibiotics). The relative standard deviations obtained in method were below 11%, while the detection and quantification limits were in the range of 0.3 - 97.4 ng·L(-1) and 1.1 - 324.7 ng·L(-1), respectively. The water samples were collected from two different WWTPs located on the island of Gran Canaria in Spain over a period of one year. The first WWTP (denoted as WWTP1) used conventional activated sludge for the treatment of wastewater, while the other plant (WWTP2) employed a membrane bioreactor system for wastewater treatment. Most of the pharmaceutical compounds detected in this study during the sampling periods were found to have concentrations ranging between 0.02 and 34.81 μg·L(-1).

  7. Shadow prices of emerging pollutants in wastewater treatment plants: Quantification of environmental externalities.

    PubMed

    Bellver-Domingo, A; Fuentes, R; Hernández-Sancho, F

    2017-12-01

    Conventional wastewater treatment plants (WWTPs) are designed to remove mainly the organic matter, nitrogen and phosphorus compounds and suspended solids from wastewater but are not capable of removing chemicals of human origin, such as pharmaceutical and personal care products (PPCPs). The presence of PPCPs in wastewater has environmental effects on the water bodies receiving the WWTP effluents and renders the effluent as unsuitable as a nonconventional water source. Considering PPCPs as non-desirable outputs, the shadow prices methodology has been implemented using the output distance function to measure the environmental benefits of removing five PPCPs (acetaminophen, ibuprofen, naproxen, carbamazepine and trimethoprim) from WWTP effluents discharged to three different ecosystems (wetland, river and sea). Acetaminophen and ibuprofen show the highest shadow prices of the sample for wetland areas. Their values are 128.2 and 11.0 €/mg respectively. These results represent a proxy in monetary terms of the environmental benefit achieved from avoiding the discharge of these PPCPs in wetlands. These results suggest which PPCPs are urgent to remove from wastewater and which ecosystems are most vulnerable to their presence. The findings of this study will be useful for the plant managers in order to make decisions about prioritization in the removal of different pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of primary sedimentation on full-scale WWTP nutrient removal performance.

    PubMed

    Puig, S; van Loosdrecht, M C M; Flameling, A G; Colprim, J; Meijer, S C F

    2010-06-01

    Traditionally, the performance of full-scale wastewater treatment plants (WWTPs) is measured based on influent and/or effluent and waste sludge flows and concentrations. Full-scale WWTP data typically have a high variance which often contains (large) measurement errors. A good process engineering evaluation of the WWTP performance is therefore difficult. This also makes it usually difficult to evaluate effect of process changes in a plant or compare plants to each other. In this paper we used a case study of a full-scale nutrient removing WWTP. The plant normally uses presettled wastewater, as a means to increase the nutrient removal the plant was operated for a period by-passing raw wastewater (27% of the influent flow). The effect of raw wastewater addition has been evaluated by different approaches: (i) influent characteristics, (ii) design retrofit, (iii) effluent quality, (iv) removal efficiencies, (v) activated sludge characteristics, (vi) microbial activity tests and FISH analysis and, (vii) performance assessment based on mass balance evaluation. This paper demonstrates that mass balance evaluation approach helps the WWTP engineers to distinguish and quantify between different strategies, where others could not. In the studied case, by-passing raw wastewater (27% of the influent flow) directly to the biological reactor did not improve the effluent quality and the nutrient removal efficiency of the WWTP. The increase of the influent C/N and C/P ratios was associated to particulate compounds with low COD/VSS ratio and a high non-biodegradable COD fraction. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Contamination Profiles and Mass Loadings of Macrolide Antibiotics and Illicit Drugs from a Small Urban Wastewater Treatment Plant

    EPA Science Inventory

    Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The ...

  10. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams and fish in the Great Lakes Region and Upper Mississippi River

    USDA-ARS?s Scientific Manuscript database

    Urban streams are an integral part of the municipal wastewater treatment process by providing a point of discharge for wastewater treatment plant (WWTP) effluents and additional attenuation through dilution and transformation processes. The receiving surface waters also are a conduit for contaminan...

  11. Environmental risk assessment of Polish wastewater treatment plant activity.

    PubMed

    Kudłak, Błażej; Wieczerzak, Monika; Yotova, Galina; Tsakovski, Stefan; Simeonov, Vasil; Namieśnik, Jacek

    2016-10-01

    Wastewater treatment plants (WWTPs) play an extremely important role in shaping modern society's environmental well-being and awareness, however only well operated and supervised systems can be considered as environmentally sustainable. For this reason, an attempt was undertaken to assess the environmental burden posed by WWTPs in major Polish cities by collecting water samples prior to and just after wastewater release points. Both classical and biological methods (Microtox(®), Ostracodtoxkit F™ and comet assay) were utilized to assess environmental impact of given WWTP. Interestingly, in some cases, water quality improvement indicated as a toxicity decrement toward one of the bio-indicating organisms makes water worse for others in the systems. This fact is particularly noticeable in case of Silesian cities where heavy industry and high population density is present. It proves that WWTP should undergo individual evaluation of pollutant removal efficiency and tuned to selectively remove pollutants of highest risk to surrounding regional ecosystems. Biotests again proved to be an extremely important tool to fully assess the impact of environmental stressors on water bodies receiving effluents from WWTPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Antibiotic resistant bacteria in urban sewage: Role of full-scale wastewater treatment plants on environmental spreading.

    PubMed

    Turolla, A; Cattaneo, M; Marazzi, F; Mezzanotte, V; Antonelli, M

    2018-01-01

    The presence of antibiotic resistant bacteria (ARB) in wastewater was investigated and the role of wastewater treatment plants (WWTPs) in promoting or limiting antibiotic resistance was assessed. Escherichia coli (E. coli) and total heterotrophic bacteria (THB) resistance to ampicillin, chloramphenicol and tetracycline was monitored in three WWTPs located in Milan urban area (Italy), differing among them for the operating parameters of biological process, for the disinfection processes (based on sodium hypochlorite, UV radiation, peracetic acid) and for the discharge limits to be met. Wastewater was collected from three sampling points along the treatment sequence (WWTP influent, effluent from sand filtration, WWTP effluent). Antibiotic resistance to ampicillin was observed both for E. coli and for THB. Ampicillin resistant bacteria in the WWTP influents were 20-47% of E. coli and 16-25% of THB counts. A limited resistance to chloramphenicol was observed only for E. coli, while neither for E. coli nor for THB tetracycline resistance was observed. The biological treatment and sand filtration led to a decrease in the maximum percentage of ampicillin-resistant bacteria (20-29% for E. coli, 11-21% for THB). However, the conventionally adopted parameters did not seem adequate to support an interpretation of WWTP role in ARB spread. Peracetic acid was effective in selectively acting on antibiotic resistant THB, unlike UV radiation and sodium hypochlorite. The low counts of E. coli in WWTP final effluents in case of agricultural reuse did not allow to compare the effect of the different disinfection processes on antibiotic resistance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Removal of triclocarban and triclosan in a wastewater treatment plant and their accumulations onto the solids

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to investigate the fate of Triclosan (5-chloro-2-[2,4-dichloro-phenoxy]-phenol (TCS) and triclocarban (N-(4-chlorophenyl)-N’-(3,4-dichlorophenyl)urea) (TCC) within a wastewater treatment plant (WWTP). TCS and TCC are bactericidal compounds that have been detected in ...

  14. Development of an analytical microbial consortia method for enhancing performance monitoring at aerobic wastewater treatment plants.

    PubMed

    Razban, Behrooz; Nelson, Kristina Y; McMartin, Dena W; Cullimore, D Roy; Wall, Michelle; Wang, Dunling

    2012-01-01

    An analytical method to produce profiles of bacterial biomass fatty acid methyl esters (FAME) was developed employing rapid agitation followed by static incubation (RASI) using selective media of wastewater microbial communities. The results were compiled to produce a unique library for comparison and performance analysis at a Wastewater Treatment Plant (WWTP). A total of 146 samples from the aerated WWTP, comprising 73 samples of each secondary and tertiary effluent, were included analyzed. For comparison purposes, all samples were evaluated via a similarity index (SI) with secondary effluents producing an SI of 0.88 with 2.7% variation and tertiary samples producing an SI 0.86 with 5.0% variation. The results also highlighted significant differences between the fatty acid profiles of the tertiary and secondary effluents indicating considerable shifts in the bacterial community profile between these treatment phases. The WWTP performance results using this method were highly replicable and reproducible indicating that the protocol has potential as a performance-monitoring tool for aerated WWTPs. The results quickly and accurately reflect shifts in dominant bacterial communities that result when processes operations and performance change.

  15. Artificial intelligence models for predicting the performance of biological wastewater treatment plant in the removal of Kjeldahl Nitrogen from wastewater

    NASA Astrophysics Data System (ADS)

    Manu, D. S.; Thalla, Arun Kumar

    2017-11-01

    The current work demonstrates the support vector machine (SVM) and adaptive neuro-fuzzy inference system (ANFIS) modeling to assess the removal efficiency of Kjeldahl Nitrogen of a full-scale aerobic biological wastewater treatment plant. The influent variables such as pH, chemical oxygen demand, total solids (TS), free ammonia, ammonia nitrogen and Kjeldahl Nitrogen are used as input variables during modeling. Model development focused on postulating an adaptive, functional, real-time and alternative approach for modeling the removal efficiency of Kjeldahl Nitrogen. The input variables used for modeling were daily time series data recorded at wastewater treatment plant (WWTP) located in Mangalore during the period June 2014-September 2014. The performance of ANFIS model developed using Gbell and trapezoidal membership functions (MFs) and SVM are assessed using different statistical indices like root mean square error, correlation coefficients (CC) and Nash Sutcliff error (NSE). The errors related to the prediction of effluent Kjeldahl Nitrogen concentration by the SVM modeling appeared to be reasonable when compared to that of ANFIS models with Gbell and trapezoidal MF. From the performance evaluation of the developed SVM model, it is observed that the approach is capable to define the inter-relationship between various wastewater quality variables and thus SVM can be potentially applied for evaluating the efficiency of aerobic biological processes in WWTP.

  16. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    EPA Science Inventory

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, that can affect hypothalamic-pituitary-gonadal axis function in exposed organisms. The presen...

  17. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key?

    PubMed

    Jenicek, P; Kutil, J; Benes, O; Todt, V; Zabranska, J; Dohanyos, M

    2013-01-01

    The anaerobic digestion of primary and waste activated sludge generates biogas that can be converted into energy to power the operation of a sewage wastewater treatment plant (WWTP). But can the biogas generated by anaerobic sludge digestion ever completely satisfy the electricity requirements of a WWTP with 'standard' energy consumption (i.e. industrial pollution not treated, no external organic substrate added)? With this question in mind, we optimized biogas production at Prague's Central Wastewater Treatment Plant in the following ways: enhanced primary sludge separation; thickened waste activated sludge; implemented a lysate centrifuge; increased operational temperature; improved digester mixing. With these optimizations, biogas production increased significantly to 12.5 m(3) per population equivalent per year. In turn, this led to an equally significant increase in specific energy production from approximately 15 to 23.5 kWh per population equivalent per year. We compared these full-scale results with those obtained from WWTPs that are already energy self-sufficient, but have exceptionally low energy consumption. Both our results and our analysis suggest that, with the correct optimization of anaerobic digestion technology, even WWTPs with 'standard' energy consumption can either attain or come close to attaining energy self-sufficiency.

  18. Treatment of landfill leachate in municipal wastewater treatment plants and impacts on effluent ammonium concentrations.

    PubMed

    Brennan, R B; Clifford, E; Devroedt, C; Morrison, L; Healy, M G

    2017-03-01

    Landfill leachate is the result of water percolating through waste deposits that have undergone aerobic and anaerobic microbial decomposition. In recent years, increasingly stringent wastewater discharge requirements have raised questions regarding the efficacy of co-treatment of leachate in municipal wastewater treatment plants (WWTPs). This study aimed to (1) examine the co-treatment of leachate with a 5-day biochemical oxygen demand (BOD 5 ): chemical oxygen demand (COD) ratio less than or slightly greater than 0.26 (intermediate age leachate) in municipal WWTPs (2) quantify the maximum hydraulic and mass (expressed as mass nitrogen or COD) loading of landfill leachate (as a percentage of the total influent loading rate) above which the performance of a WWTP may be inhibited, and (3) quantify the impact of a range of hydraulic loading rates (HLRs) of young and intermediate age leachate, loaded on a volumetric basis at 0 (study control), 2, 4 and 10% (volume landfill leachate influent as a percentage of influent municipal wastewater), on the effluent ammonium concentrations. The leachate loading regimes examined were found to be appropriate for effective treatment of intermediate age landfill leachate in the WWTPs examined, but co-treatment may not be suitable in WWTPs with low ammonium-nitrogen (NH 4 -N) and total nitrogen (TN) emission limit values (ELVs). In addition, intermediate leachate, loaded at volumetric rates of up to 4% or 50% of total WWTP NH 4 -N loading, did not significantly inhibit the nitrification processes, while young leachate, loaded at volumetric rates greater of than 2% (equivalent to 90% of total WWTP NH 4 -N loading), resulted in a significant decrease in nitrification. The results show that current hydraulic loading-based acceptance criteria recommendations should be considered in the context of leachate NH 4 -N composition. The results also indicate that co-treatment of old leachate in municipal WWTPs may represent the most sustainable

  19. Anaerobic bacteria in wastewater treatment plant.

    PubMed

    Cyprowski, Marcin; Stobnicka-Kupiec, Agata; Ławniczek-Wałczyk, Anna; Bakal-Kijek, Aleksandra; Gołofit-Szymczak, Małgorzata; Górny, Rafał L

    2018-03-28

    The objective of this study was to assess exposure to anaerobic bacteria released into air from sewage and sludge at workplaces from a wastewater treatment plant (WWTP). Samples of both sewage and sludge were collected at six sampling points and bioaerosol samples were additionally collected (with the use of a 6-stage Andersen impactor) at ten workplaces covering different stages of the technological process. Qualitative identification of all isolated strains was performed using the biochemical API 20A test. Additionally, the determination of Clostridium pathogens was carried out using 16S rRNA gene sequence analysis. The average concentration of anaerobic bacteria in the sewage samples was 5.49 × 10 4 CFU/mL (GSD = 85.4) and in sludge-1.42 × 10 6 CFU/g (GSD = 5.1). In turn, the average airborne bacterial concentration was at the level of 50 CFU/m 3 (GSD = 5.83) and the highest bacterial contamination (4.06 × 10 3  CFU/m 3 ) was found in winter at the bar screens. In total, 16 bacterial species were determined, from which the predominant strains belonged to Actinomyces, Bifidobacterium, Clostridium, Propionibacterium and Peptostreptococcus genera. The analysis revealed that mechanical treatment processes were responsible for a substantial emission of anaerobic bacteria into the air. In both the sewage and air samples, Clostridium perfringens pathogen was identified. Anaerobic bacteria were widely present both in the sewage and in the air at workplaces from the WWTP, especially when the technological process was performed in closed spaces. Anaerobic bacteria formed small aggregates with both wastewater droplets and dust particles of sewage sludge origin and as such may be responsible for adverse health outcomes in exposed workers.

  20. Development and implementation of an expert system to improve the control of nitrification and denitrification in the Vic wastewater treatment plant.

    PubMed

    Ribas, F; Rodríguez-Roda, I; Serrat, J; Clara, P; Comas, J

    2008-05-01

    Wastewater treatment plants employ various physical, chemical and biological processes to reduce pollutants from raw wastewater. One of the most important is the biological nitrogen removal process through nitrification and denitrification steps taking place in various sections of the biological reactor. One of the most extensively used configurations to achieve the biological nitrogen removal is an activated sludge system using oxidation ditch or extended aeration. To improve nitrogen removal in the wastewater treatment plant (WWTP) of Vic (Catalonia, NE Spain), the automatic aeration control system was complemented with an Expert System to always provide the most appropriate aeration or anoxia sequence based on the values of ammonium and nitrates given by an automatic analyzer. This article illustrates the development and implementation of this knowledge-based system within the framework of a Decision Support System, which performs SCADA functions. The paper also shows that the application of the decision support system in the Vic WWTP resulted in significant improvements to the biological nitrogen removal.

  1. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain).

    PubMed

    Santos, J L; Aparicio, I; Callejón, M; Alonso, E

    2009-05-30

    Several pharmaceutically active compounds have been monitored during 1-year period in influent and effluent wastewater from wastewater treatment plants (WWTPs) to evaluate their temporal evolution and removal from wastewater and to know which variables have influence in their removal rates. Pharmaceutical compounds monitored were four antiinflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine). All of the pharmaceutically active compounds monitored, except diclofenac, were detected in influent and effluent wastewater. Mean concentrations measured in influent wastewater were 6.17, 0.48, 93.6, 1.83 and 5.41 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean concentrations measured in effluent wastewater were 2.02, 0.56, 8.20, 0.84 and 2.10 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean removal rates of the pharmaceuticals varied from 8.1% (carbamazepine) to 87.5% (ibuprofen). The existence of relationships between the concentrations of the pharmaceutical compounds, their removal rates, the characterization parameters of influent wastewaters and the WWTP control design parameters has been studied by means of statistical analysis (correlation and principal component analysis). With both statistical analyses, high correlations were obtained between the concentration of the pharmaceutical compounds and the characterization parameters of influent wastewaters; and between the removal rates of the pharmaceutical compounds, the removal rates of the characterization parameters of influent wastewaters and the WWTP hydraulic retention times. Principal component analysis showed the existence of two main components accounting for 76% of the total variability.

  3. Effect of heat recovery from raw wastewater on nitrification and nitrogen removal in activated sludge plants.

    PubMed

    Wanner, Oskar; Panagiotidis, Vassileios; Clavadetscher, Peter; Siegrist, Hansruedi

    2005-11-01

    By recovery of heat from the raw wastewater in the sewer system, the influent temperature of a wastewater treatment plant (WWTP) is reduced. This can have a negative effect on nitrification in the WWTP, since this process strongly depends on temperature. The analysis of the temperature regime in the WWTP of Zurich, Switzerland, revealed that in the cold season, the effluent temperature is about 0.7 degrees C higher than the influent temperature and that nitrification is not affected by a decrease of the influent wastewater temperature lasting for a couple of hours only, but is significantly affected by a longer lasting temperature decrease. Three diagrams were developed with a steady-state model, from which the consequences of a permanent temperature decrease on the nitrification safety factor, aerobic sludge retention time and total nitrogen removal can be evaluated. Using simulations with a dynamic model, calibrated for the Zurich WWTP, a quantitative relationship between the wastewater temperature and the ammonium effluent concentration was established. This relationship can, in combination with measured effluent concentrations of an existing WWTP, be used to predict the increase of the ammonium effluent concentration in this plant resulting from a permanent decrease of the wastewater influent temperature.

  4. NATIONAL SCREENING SURVEY OF EDCS IN MUNICIPAL WASTEWATER TREATMENT FACILITIES

    EPA Science Inventory

    In 2002 and 2003 the USEPA's Office of Research and Development asked Regional EPA inspectors, state EPA inspectors and municipal plant operators to collect four gallons effluent, either as a grab or composite sample, from up to 50 wastewater treatment plants (WWTP), and ship the...

  5. Extracellular protein analysis of activated sludge and their functions in wastewater treatment plant by shotgun proteomics.

    PubMed

    Zhang, Peng; Shen, Yu; Guo, Jin-Song; Li, Chun; Wang, Han; Chen, You-Peng; Yan, Peng; Yang, Ji-Xiang; Fang, Fang

    2015-07-10

    In this work, proteins in extracellular polymeric substances extracted from anaerobic, anoxic and aerobic sludges of wastewater treatment plant (WWTP) were analyzed to probe their origins and functions. Extracellular proteins in WWTP sludges were identified using shotgun proteomics, and 130, 108 and 114 proteins in anaerobic, anoxic and aerobic samples were classified, respectively. Most proteins originated from cell and cell part, and their most major molecular functions were catalytic activity and binding activity. The results exhibited that the main roles of extracellular proteins in activated sludges were multivalence cations and organic molecules binding, as well as in catalysis and degradation. The catalytic activity proteins were more widespread in anaerobic sludge compared with those in anoxic and aerobic sludges. The structure difference between anaerobic and aerobic sludges could be associated with their catalytic activities proteins. The results also put forward a relation between the macro characteristics of activated sludges and micro functions of extracellular proteins in biological wastewater treatment process.

  6. Bacterial communities in full-scale wastewater treatment systems.

    PubMed

    Cydzik-Kwiatkowska, Agnieszka; Zielińska, Magdalena

    2016-04-01

    Bacterial metabolism determines the effectiveness of biological treatment of wastewater. Therefore, it is important to define the relations between the species structure and the performance of full-scale installations. Although there is much laboratory data on microbial consortia, our understanding of dependencies between the microbial structure and operational parameters of full-scale wastewater treatment plants (WWTP) is limited. This mini-review presents the types of microbial consortia in WWTP. Information is given on extracellular polymeric substances production as factor that is key for formation of spatial structures of microorganisms. Additionally, we discuss data on microbial groups including nitrifiers, denitrifiers, Anammox bacteria, and phosphate- and glycogen-accumulating bacteria in full-scale aerobic systems that was obtained with the use of molecular techniques, including high-throughput sequencing, to shed light on dependencies between the microbial ecology of biomass and the overall efficiency and functional stability of wastewater treatment systems. Sludge bulking in WWTPs is addressed, as well as the microbial composition of consortia involved in antibiotic and micropollutant removal.

  7. Underground structure pattern and multi AO reaction with step feed concept for upgrading an large wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Peng, Yi; Zhang, Jie; Li, Dong

    2018-03-01

    A large wastewater treatment plant (WWTP) could not meet the new demand of urban environment and the need of reclaimed water in China, using a US treatment technology. Thus a multi AO reaction process (Anaerobic/oxic/anoxic/oxic/anoxic/oxic) WWTP with underground structure was proposed to carry out the upgrade project. Four main new technologies were applied: (1) multi AO reaction with step feed technology; (2) deodorization; (3) new energy-saving technology such as water resource heat pump and optical fiber lighting system; (4) dependable old WWTP’s water quality support measurement during new WWTP’s construction. After construction, upgrading WWTP had saved two thirds land occupation, increased 80% treatment capacity and improved effluent standard by more than two times. Moreover, it had become a benchmark of an ecological negative capital changing to a positive capital.

  8. Metagenomic analysis of an ecological wastewater treatment plant's microbial communities and their potential to metabolize pharmaceuticals.

    PubMed

    Balcom, Ian N; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm.

  9. [The characterization of biosolids produced by the San Fernando wastewater treatment plant in Itagui, Antioquia, Colombia].

    PubMed

    Bedoya-Urrego, Katherine; Acevedo-Ruíz, José M; Peláez-Jaramillo, Carlos A; Agudelo-López, Sonia Del Pilar

    2013-01-01

    ABSTRACT Objective This study was aimed at evaluating pertinent physicochemical and microbiological (bacteria and parasites) parameters regarding the biosolids produced by the San Fernando wastewater treatment plant (WWTP) in Itagui, Antioquia, Colombia. Methods Twelve samples were collected and evaluated every month from January to December during 2010. The chemical, physical and microbiological tests followed the protocol described in Colombian technical guideline 5167. The protocol described in Mexican official Norm 004 (with some modifications) was used for identifying helminth ova and assessing their viability. Results All samples proved positive for Ascarislumbricoides, viable ova count ranging from 4 to 22 eggs/2gTS. Both Salmonella and Enterobacteriawere detected in all samples evaluated, the latter having 3,000 colony forming unit (CFU)/g minimum concentration. Biosolid sample values met the heavy metal concentration requirement established by national guidelines. There was no statistical association between rainfall and the pathogen's presence in the biosolids. Conclusion Our results suggested that the biosolids being produced by the San Fernando wastewater treatment plant (WWTP) could be used as organic fertilizer; however they should be treated/sanitized to meet the stipulations in Colombian technical guideline 5167.

  10. Quantitative assessment of energy and resource recovery in wastewater treatment plants based on plant-wide simulations.

    PubMed

    Fernández-Arévalo, T; Lizarralde, I; Fdz-Polanco, F; Pérez-Elvira, S I; Garrido, J M; Puig, S; Poch, M; Grau, P; Ayesa, E

    2017-07-01

    The growing development of technologies and processes for resource treatment and recovery is offering endless possibilities for creating new plant-wide configurations or modifying existing ones. However, the configurations' complexity, the interrelation between technologies and the influent characteristics turn decision-making into a complex or unobvious process. In this frame, the Plant-Wide Modelling (PWM) library presented in this paper allows a thorough, comprehensive and refined analysis of different plant configurations that are basic aspects in decision-making from an energy and resource recovery perspective. In order to demonstrate the potential of the library and the need to run simulation analyses, this paper carries out a comparative analysis of WWTPs, from a techno-economic point of view. The selected layouts were (1) a conventional WWTP based on a modified version of the Benchmark Simulation Model No. 2, (2) an upgraded or retrofitted WWTP, and (3) a new Wastewater Resource Recovery Facilities (WRRF) concept denominated as C/N/P decoupling WWTP. The study was based on a preliminary analysis of the organic matter and nutrient energy use and recovery options, a comprehensive mass and energy flux distribution analysis in each configuration in order to compare and identify areas for improvement, and a cost analysis of each plant for different influent COD/TN/TP ratios. Analysing the plants from a standpoint of resources and energy utilization, a low utilization of the energy content of the components could be observed in all configurations. In the conventional plant, the COD used to produce biogas was around 29%, the upgraded plant was around 36%, and 34% in the C/N/P decoupling WWTP. With regard to the self-sufficiency of plants, achieving self-sufficiency was not possible in the conventional plant, in the upgraded plant it depended on the influent C/N ratio, and in the C/N/P decoupling WWTP layout self-sufficiency was feasible for almost all influents

  11. On-site sanitation: a viable alternative to modern wastewater treatment plants.

    PubMed

    Lamichhane, K M

    2007-01-01

    Rapid population growth and urbanization are exerting excessive pressure on soil and water resources. To address these problems this paper proposes a cheap and sustainable alternative sanitation system, which accelerates nutrient recycling ("closing the loop"): ecological sanitation (ecosan) is a potential alternative to conventional sanitation systems that replenishes the organic matter and nutrients of the soil that are taken off as the crop harvest. A comparison is made of the environmental and the operation and maintenance costs between a modern wastewater treatment plant and on-site sanitation. An elevated double box urine diverting toilet ("ecotoilet") is proposed and its advantages and disadvantages over a system with a centrally controlled modern WWTP are discussed. Bagmati Area Sewerage Project in Kathmandu is taken as an example of modern WWTP and ecosan being practiced in a village in Nepal is taken as an example of ecotoilet for the comparison.

  12. Occurrence and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts from a municipal wastewater treatment plant in Brazil.

    PubMed

    Santos, Priscila Ribeiro Dos; Daniel, Luiz Antonio

    2017-05-01

    Sewage and sewage sludge have been recognized as potential sources of two important waterborne pathogenic protozoa: Giardia spp. and Cryptosporidium spp. Due to the lack of studies about the occurrence of these pathogens in sewage and sludge in Brazil, an investigation was conducted at various stages of a municipal wastewater treatment plant (WWTP) aiming to assess the occurrence of Giardia spp. cysts and Cryptosporidium spp. oocysts, their removal by the treatment processes, which are upflow anaerobic sludge blanket (UASB) reactor and dissolved air flotation process, and also the correlations between protozoa and indicator microorganisms. Significant quantities of cysts were detected in 100% of the analyzed wastewater samples, while oocysts were detected only in 39.0% of all wastewater samples. The overall removal of Giardia spp. cysts from the WWTP was on average 2.03 log, and the UASB reactor was more efficient than flotation. The sludge samples presented high quantities of (oo)cysts, implying the risks of contamination in the case of sludge reuse or inadequate disposal. Giardiasis prevalence was estimated between 2.21% and 6.7% for the population served by the WWTP, while cryptosporidiosis prevalence was much lower. Significant positive correlation was obtained only between cysts and Clostridium spores in anaerobic effluent.

  13. Occurrence and fate of benzotriazoles UV filters in a typical residential wastewater treatment plant in Harbin, China.

    PubMed

    Zhao, Xue; Zhang, Zi-Feng; Xu, Lei; Liu, Li-Yan; Song, Wei-Wei; Zhu, Fu-Jie; Li, Yi-Fan; Ma, Wan-Li

    2017-08-01

    Benzotriazoles (BTs) UV filters are widely used as ultraviolet absorbents for our daily products, which received increasing attention in the past decades. Residential wastewater treatment plant (WWTP) is both an important sink for wastewater and a key pollution source for receiving water for these chemicals. In this study, pretreatment and gas chromatography-tandem mass spectrometry analysis method were developed to determine the occurrence and fate of 9 BTs UV filters in wastewater and sludge from the WWTP with anaerobic-oxic treatment process (A/O) and biological aerated filter treatment process (BAF). Totally, 81 wastewater samples and 11 sludge samples were collected in four seasons. In wastewater, UV-326 and UV-329 were frequently detected, while the highest mean concentrations were detected for UV-234 and UV-329. The concentrations were in the range of 85% in A/O process and 60-77% in BAF process except for UV-350, which was more difficult to remove with lower removal efficiencies of 33.3% for both A/O and BAF. All the target chemicals except for UV-320 were detected in sludge samples with the mean concentration ranging from 0.90 ng/g to 303.39 ng/g. There was no significant difference with concentrations and removal efficiency among different seasons. Higher detection frequency and concentration of BTs UV filters in downstream of the receiving water system indicated the contribution of effluent of the WWTP. Compared with other rivers, the lower concentrations in surface water in the Songhua River indicated light pollution status with of BTs UV filters. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Assessment of endocrine-disrupting chemicals attenuation in a coastal plain stream prior to wastewater treatment plant closure

    USGS Publications Warehouse

    Bradley, Paul M.; Journey, Celeste A.

    2014-01-01

    The U.S. Geological Survey is conducting a combined pre/post-closure assessment at a long-term wastewater treatment plant (WWTP) site at Fort Gordon near Augusta, Georgia. Here, we assess select endocrine-active chemicals and benthic macroinvertebrate community structure prior to closure of the WWTP. Substantial downstream transport and limited instream attenuation of endocrine-disrupting chemicals (EDCs) was observed in Spirit Creek over a 2.2-km stream segment downstream of the WWTP outfall. A modest decline (less than 20% in all cases) in surface water detections was observed with increasing distance downstream of the WWTP and attributed to partitioning to the sediment. Estrogens detected in surface water in this study included estrone (E1), 17β-estradiol (E2), and estriol (E3). The 5 ng/l and higher mean estrogen concentrations observed in downstream locations indicated that the potential for endocrine disruption was substantial. Concentrations of alkylphenol ethoxylate (APE) metabolite EDCs also remained statistically elevated above levels observed at the upstream control site. Wastewater-derived pharmaceutical and APE metabolites were detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon. The results indicate substantial EDC occurrence, downstream transport, and persistence under continuous supply conditions and provide a baseline for a rare evaluation of ecosystem response to WWTP closure.

  15. The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)

    NASA Astrophysics Data System (ADS)

    Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.

    2009-08-01

    Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).

  16. Assessment of airborne bacteria and noroviruses in air emission from a new highly-advanced hospital wastewater treatment plant.

    PubMed

    Uhrbrand, K; Schultz, A C; Koivisto, A J; Nielsen, U; Madsen, A M

    2017-04-01

    Exposure to bioaerosols can pose a health risk to workers at wastewater treatment plants (WWTPs) and to habitants of their surroundings. The main objective of this study was to examine the presence of harmful microorganisms in the air emission from a new type of hospital WWTP employing advanced wastewater treatment technologies. Air particle measurements and sampling of inhalable bacteria, endotoxin and noroviruses (NoVs) were performed indoor at the WWTP and outside at the WWTP ventilation air exhaust, downwind of the air exhaust, and upwind of the WWTP. No significant differences were seen in particle and endotoxin concentrations between locations. Bacterial concentrations were comparable or significantly lower in the exhaust air than inside the WWTP and in the upwind reference. Bacterial isolates were identified using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. In total, 35 different bacterial genera and 64 bacterial species were identified in the air samples. Significantly higher genus and species richness was found with an Andersen Cascade Impactor compared with filter-based sampling. No pathogenic bacteria were found in the exhaust air. Streptomyces was the only bacterium found in the air both inside the WWTP and at the air emission, but not in the upwind reference. NoV genomes were detected in the air inside the WWTP and at the air exhaust, albeit in low concentrations. As only traces of NoV genomes could be detected in the exhaust air they are unlikely to pose a health risk to surroundings. Hence, we assess the risk of airborne exposure to pathogenic bacteria and NoVs from the WWTP air emission to surroundings to be negligible. However, as a slightly higher NoV concentration was detected inside the WWTP, we cannot exclude the possibility that exposure to airborne NoVs can pose a health risk to susceptible to workers inside the WWTP, although the risk may be low. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Fate of phthalate esters in municipal wastewater treatment plant and their environmental impact.

    PubMed

    Kong, Minghao; Song, Yonghui; Zhang, Yizhang; Liu, Ruixia; Wei, Jian; Zheng, Lei

    2016-01-01

    The fate and distribution of six phthalate esters (PAEs) in a municipal wastewater treatment plant (WWTP) employing an anaerobic/anoxic/oxic (A(2)/O) process were investigated. The process achieved relatively high removal efficiencies of PAEs in the range 55-97%. It illustrated that biotransformation and sludge-adsorption were major elimination pathways by analyzing the mass balance and flux of PAEs. About 83% of ∑PAEs was entirely removed by A(2)/O bioreactors indicating biotransformation is the dominant removal mechanism. PAEs with shorter alkyl chain length and higher water solubility were more biodegradable. Less than 6% of ∑PAEs were removed by excess sludge adsorption. The sludge-adsorption capacity of PAE depends on its hydrophobicity. The levels and fluxes of PAEs were analyzed by monitoring different sites of the receiving river of the WWTP effluent to clarify the potential impact of discharge. Daily flux of PAEs upstream and downstream of the discharging point were 113 kg·d(-1) and 205 kg·d(-1), respectively, which were higher than the effluent devotion value of 6.67 kg·d(-1). It suggested that the emissions from the WWTP appeared to be less than those from the other possible sources, such as potential untreated discharge and surface runoff. Improvement of wastewater collection efficiencies is necessary to eliminate the PAE load in the urban river.

  18. Energy intensity modeling for wastewater treatment technologies.

    PubMed

    Molinos-Senante, María; Sala-Garrido, Ramón; Iftimi, Adina

    2018-07-15

    Wastewater treatment plants (WWTPs) are energy intensive facilities; therefore increased pressure has been placed on managers and policy makers to reduce the facilities' energy use. Several studies were conducted to compare the energy intensity (EI) of WWTPs, which showed large dispersion in EI among the facilities. In the present study, the degree EI influenced WWTPs was tested using a set of technical variables by modeling the EI of a 305 WWTP sample grouped into five secondary treatment technologies. Results indicated the following two major findings: i) WWTPs using conventional activated sludge, extended aeration, trickling biofilters, and biodisks exhibited significant economies of scale in energy use; and ii) pollutant removal efficiency demonstrated low impacts on WWTP EI. The methodology and results of this study are of value to policy makers in planning new WWTPs and developing management plans to improve energy efficiency of wastewater treatment. Copyright © 2018. Published by Elsevier B.V.

  19. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment.

    PubMed

    van den Brand, T P H; Roest, K; Chen, G H; Brdjanovic, D; van Loosdrecht, M C M

    2015-11-01

    The activity of sulfate reducing bacteria (SRB) in domestic wastewater treatment plants (WWTP) is often considered as a problem due to H2S formation and potential related odour and corrosion of materials. However, when controlled well, these bacteria can be effectively used in a positive manner for the treatment of wastewater. The main advantages of using SRB in wastewater treatment are: (1) minimal sludge production, (2) reduction of potential pathogens presence, (3) removal of heavy metals and (4) as pre-treatment of anaerobic digestion. These advantages are accessory to efficient and stable COD removal by SRB. Though only a few studies have been conducted on SRB treatment of domestic wastewater, the many studies performed on industrial wastewater provide information on the potential of SRB in domestic wastewater treatment. A key-parameter analyses literature study comprising pH, organic substrates, sulfate, salt, temperature and oxygen revealed that the conditions are well suited for the application of SRB in domestic wastewater treatment. Since the application of SRB in WWTP has environmental benefits its application is worth considering for wastewater treatment, when sulfate is present in the influent.

  20. Rapid aerobic granulation in an SBR treating piggery wastewater by seeding sludge from a municipal WWTP.

    PubMed

    Liu, Jun; Li, Jun; Wang, Xiaodong; Zhang, Qi; Littleton, Helen

    2017-01-01

    Aerobic sludge granulation was rapidly obtained in the erlenmeyer bottle and sequencing batch reactor (SBR) using piggery wastewater. Aerobic granulation occurred on day 3 and granules with mean diameter of 0.2mm and SVI 30 of 20.3mL/g formed in SBR on day 18. High concentrations of Ca and Fe in the raw piggery wastewater and operating mode accelerated aerobic granulation, even though the seed sludge was from a municipal wastewater treatment plant (WWTP). Alpha diversity analysis revealed Operational Taxonomic Units, Shannon, ACE and Chao 1 indexes in aerobic granules were 2013, 5.51, 4665.5 and 3734.5, which were obviously lower compared to seed sludge. The percentages of major microbial communities, such as Proteobacteria, Bacteroidetes and Firmicutes were obviously higher in aerobic granules than seed sludge. Chloroflexi, Planctomycetes, Actinobacteria, TM7 and Acidobacteria showed much higher abundances in the inoculum. The main reasons might be the characteristics of raw piggery wastewater and granule structure. Copyright © 2016. Published by Elsevier B.V.

  1. Plant-wide (BSM2) evaluation of reject water treatment with a SHARON-Anammox process.

    PubMed

    Volcke, E I P; Gernaey, K V; Vrecko, D; Jeppsson, U; van Loosdrecht, M C M; Vanrolleghem, P A

    2006-01-01

    In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).

  2. Contaminant removal by wastewater treatment plants in the Stillaguamish River Basin, Washington

    USGS Publications Warehouse

    Barbash, Jack E.; Moran, Patrick W.; Wagner, Richard J.; Wolanek, Michael

    2015-01-01

    Human activities in most areas of the developed world typically release nutrients, pharmaceuticals, personal care products, pesticides, and other contaminants into the environment, many of which reach freshwater ecosystems. In urbanized areas, wastewater treatment plants (WWTPs) are critical facilities for collecting and reducing the amounts of wastewater contaminants (WWCs) that ultimately discharge to rivers, coastal areas, and groundwater. Most WWTPs use multiple methods to remove contaminants from wastewater. These include physical methods to remove solid materials (primary treatment), biological and chemical methods to remove most organic matter (secondary treatment), advanced methods to reduce the concentrations of various contaminants such as nitrogen, phosphorus and (or) synthetic organic compounds (tertiary treatment), and disinfection prior to discharge (Metcalf and Eddy, Inc., 1979). This study examined the extent to which 114 organic WWCs were removed by each of three WWTPs, prior to discharge to freshwater and marine ecosystems, in a rapidly developing area in northwestern Washington State. Removal percentages for each WWC were estimated by comparing the concentrations measured in the WWTP influents with those measured in the effluents. The investigation was carried out in the 700-mi2Stillaguamish River Basin, the fifth largest watershed that discharges to Puget Sound (fig. 1).

  3. Detection of Legionella spp. by a nested-PCR assay in air samples of a wastewater treatment plant and downwind distances in Isfahan

    PubMed Central

    Mirzaee, Seyyed Abbas; Nikaeen, Mahnaz; Hajizadeh, Yaghob; Nabavi, BiBi Fatemeh; Hassanzadeh, Akbar

    2015-01-01

    Background: Wastewater contains a variety of pathogens and bio -aerosols generated during the wastewater treatment process, which could be a potential health risk for exposed individuals. This study was carried out to detect Legionella spp. in the bio -aerosols generated from different processes of a wastewater treatment plant (WWTP) in Isfahan, Iran, and the downwind distances. Materials and Methods: A total of 54 air samples were collected and analyzed for the presence of Legionella spp. by a nested- polymerase chain reaction (PCR) assay. A liquid impingement biosampler was used to capture bio -aerosols. The weather conditions were also recorded. Results: Legionella were detected in 6% of the samples, including air samples above the aeration tank (1/9), belt filter press (1/9), and 250 m downwind (1/9). Conclusion: The result of this study revealed the presence of Legionella spp. in air samples of a WWTP and downwind distance, which consequently represent a potential health risk to the exposed individuals. PMID:25802817

  4. Uncertainty assessment of a model for biological nitrogen and phosphorus removal: Application to a large wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Mannina, Giorgio; Cosenza, Alida; Viviani, Gaspare

    In the last few years, the use of mathematical models in WasteWater Treatment Plant (WWTP) processes has become a common way to predict WWTP behaviour. However, mathematical models generally demand advanced input for their implementation that must be evaluated by an extensive data-gathering campaign, which cannot always be carried out. This fact, together with the intrinsic complexity of the model structure, leads to model results that may be very uncertain. Quantification of the uncertainty is imperative. However, despite the importance of uncertainty quantification, only few studies have been carried out in the wastewater treatment field, and those studies only included a few of the sources of model uncertainty. Seeking the development of the area, the paper presents the uncertainty assessment of a mathematical model simulating biological nitrogen and phosphorus removal. The uncertainty assessment was conducted according to the Generalised Likelihood Uncertainty Estimation (GLUE) methodology that has been scarcely applied in wastewater field. The model was based on activated-sludge models 1 (ASM) and 2 (ASM2). Different approaches can be used for uncertainty analysis. The GLUE methodology requires a large number of Monte Carlo simulations in which a random sampling of individual parameters drawn from probability distributions is used to determine a set of parameter values. Using this approach, model reliability was evaluated based on its capacity to globally limit the uncertainty. The method was applied to a large full-scale WWTP for which quantity and quality data was gathered. The analysis enabled to gain useful insights for WWTP modelling identifying the crucial aspects where higher uncertainty rely and where therefore, more efforts should be provided in terms of both data gathering and modelling practises.

  5. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms.

    PubMed

    Silva-Bedoya, Lina Marcela; Sánchez-Pinzón, María Solange; Cadavid-Restrepo, Gloria Ester; Moreno-Herrera, Claudia Ximena

    2016-11-01

    The operation of wastewater treatment technologies depends on a combination of physical, chemical and biological factors. Microorganisms present in wastewater treatment plants play essential roles in the degradation and removal of organic waste and xenobiotic pollutants. Several microorganisms have been used in complementary treatments to process effluents rich in fats and oils. Microbial lipases have received significant industrial attention because of their stability, broad substrate specificity, high yields, and regular supply, as well as the fact that the microorganisms producing them grow rapidly on inexpensive media. In Colombia, bacterial community studies have focused on populations of cultivable nitrifying, heterotrophic and nitrogen-fixing bacteria present in constructed wetlands. In this study, culture-dependent methods, culture-independent methods (TTGE, RISA) and enzymatic methods were used to estimate bacterial diversity, to monitor temporal and spatial changes in bacterial communities, and to screen microorganisms that presented lipolytic activity. The dominant microorganisms in the Wastewater Treatment Plant (WWTP) examined in this study belonged to the phyla Firmicutes, Proteobacteria and Bacteroidetes. The enzymatic studies performed indicated that five bacterial isolates and three fungal isolates possessed the ability to degrade lipids; additionally, the Serratia, Kosakonia and Mucor genera presented lipase-mediated transesterification activity. The implications of these findings in regard to possible applications are discussed later in this paper. Our results indicate that there is a wide diversity of aerobic Gram-negative bacteria inhabiting the different sections of the WWTP, which could indicate its ecological condition, functioning and general efficiency. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. A plant-wide aqueous phase chemistry module describing pH variations and ion speciation/pairing in wastewater treatment process models.

    PubMed

    Flores-Alsina, Xavier; Kazadi Mbamba, Christian; Solon, Kimberly; Vrecko, Darko; Tait, Stephan; Batstone, Damien J; Jeppsson, Ulf; Gernaey, Krist V

    2015-11-15

    There is a growing interest within the Wastewater Treatment Plant (WWTP) modelling community to correctly describe physico-chemical processes after many years of mainly focusing on biokinetics. Indeed, future modelling needs, such as a plant-wide phosphorus (P) description, require a major, but unavoidable, additional degree of complexity when representing cationic/anionic behaviour in Activated Sludge (AS)/Anaerobic Digestion (AD) systems. In this paper, a plant-wide aqueous phase chemistry module describing pH variations plus ion speciation/pairing is presented and interfaced with industry standard models. The module accounts for extensive consideration of non-ideality, including ion activities instead of molar concentrations and complex ion pairing. The general equilibria are formulated as a set of Differential Algebraic Equations (DAEs) instead of Ordinary Differential Equations (ODEs) in order to reduce the overall stiffness of the system, thereby enhancing simulation speed. Additionally, a multi-dimensional version of the Newton-Raphson algorithm is applied to handle the existing multiple algebraic inter-dependencies. The latter is reinforced with the Simulated Annealing method to increase the robustness of the solver making the system not so dependent of the initial conditions. Simulation results show pH predictions when describing Biological Nutrient Removal (BNR) by the activated sludge models (ASM) 1, 2d and 3 comparing the performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) treatment plant configuration under different anaerobic/anoxic/aerobic conditions. The same framework is implemented in the Benchmark Simulation Model No. 2 (BSM2) version of the Anaerobic Digestion Model No. 1 (ADM1) (WWTP3) as well, predicting pH values at different cationic/anionic loads. In this way, the general applicability/flexibility of the proposed approach is demonstrated, by implementing the aqueous phase chemistry module in some

  7. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    PubMed Central

    Ma, Jiawen; Hu, Yue; Villegas, Eric N.; Xiao, Lihua

    2018-01-01

    Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In the standard for wastewater treatment plant (WWTP) effluents in China and other countries, the fecal coliform count is the only microbial indicator, raising concerns about the potential for pathogen transmission through WWTP effluent reuse. In this study, we collected 50 effluent samples (30 L/sample) from three municipal WWTPs in Shanghai, China, and analyzed for Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi by microscopy and/or polymerase chain reaction (PCR). Moreover, propidium monoazide (PMA)-PCR was used to assess the viability of oocysts/cysts. The microscopy and PCR-positive rates for Cryptosporidium spp. were 62% and 40%, respectively. The occurrence rates of G. duodenalis were 96% by microscopy and 92–100% by PCR analysis of three genetic loci. Furthermore, E. bieneusi was detected in 70% (35/50) of samples by PCR. Altogether, 10 Cryptosporidium species or genotypes, two G. duodenalis genotypes, and 11 E. bieneusi genotypes were found, most of which were human-pathogenic. The chlorine dioxide disinfection employed in WWTP1 and WWTP3 failed to inactivate the residual pathogens; 93% of the samples from WWTP1 and 83% from WWTP3 did not meet the national standard on fecal coliform levels. Thus, urban WWTP effluents often contain residual waterborne human pathogens. PMID:27280607

  8. Nitrogen speciation in wastewater treatment plant influents and effluents-the US and Polish case studies.

    PubMed

    Pagilla, K R; Urgun-Demirtas, M; Czerwionka, K; Makinia, J

    2008-01-01

    The fate of N species, particularly dissolved organic nitrogen (DON), through process trains of a wastewater treatment plant (WWTP) was investigated. In this study, three fully nitrifying plants in Illinois, USA and biological nutrient removal (BNR) plants in northern Poland were sampled for N characterization in the primary and secondary effluents as a function of the particle size distribution. The correlations between dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations were examined. The key findings are that DON becomes significant portion (about 20%) of the effluent N, reaching up to 50% of effluent total N in one of the Polish plants. The DON constituted 56-95% of total ON (TON) in the secondary effluents, whereas in the Polish plants the DON contribution was substantially lower (19-62%) and in one case (Gdansk WWTP) colloidal ON was the dominating fraction (62% of TON). The DOC to DON ratio in the US plants is significantly lower than that in the receiving waters indicating potential for deterioration of receiving water quality. In Polish plants, the influent and effluent C:N ratios are similar, but not in the US plants. IWA Publishing 2008.

  9. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater-Associated Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Wan, Min Tao; Chou, Chin Cheng

    2015-06-02

    Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater.

  10. Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant.

    PubMed

    Loganathan, Bommanna; Phillips, Malia; Mowery, Holly; Jones-Lepp, Tammy L

    2009-03-01

    Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The objective of this study was to determine the contamination profiles and mass loadings of urobilin (a chemical marker of human waste), macrolide antibiotics (azithromycin, clarithromycin, roxithromycin), and two drugs of abuse (methamphetamine and ecstasy), from a small (<19 mega liters day(-1), equivalent to <5 million gallons per day) wastewater treatment plant in southwestern Kentucky. The concentrations of azithromycin, clarithromycin, methamphetamine and ecstasy in wastewater samples varied widely, ranging from non-detects to 300 ng L(-1). Among the macrolide antibiotics analyzed, azithromycin was consistently detected in influent and effluent samples. In general, influent samples contained relatively higher concentrations of the analytes than the effluents. Based on the daily flow rates and an average concentration of 17.5 ng L(-1) in the effluent, the estimated discharge of azithromycin was 200 mg day(-1) (range 63-400 mg day(-1)). Removal efficiency of the detected analytes from this WWTP were in the following order: urobilin>methamphetamine>azithromycin with percentages of removal of 99.9%, 54.5% and 47%, respectively, indicating that the azithromycin and methamphetamine are relatively more recalcitrant than others and have potential for entering receiving waters.

  11. Variations in toxicity of semi-coking wastewater treatment processes and their toxicity prediction.

    PubMed

    Ma, Xiaoyan; Wang, Xiaochang; Liu, Yongjun; Gao, Jian; Wang, Yongkun

    2017-04-01

    Chemical analyses and bioassays using Vibrio fischeri and Daphnia magna were conducted to evaluate comprehensively the variation of biotoxicity caused by contaminants in wastewater from a semi-coking wastewater treatment plant (WWTP). Pretreatment units (including an oil-water separator, a phenols extraction tower, an ammonia stripping tower, and a regulation tank) followed by treatment units (including anaerobic-oxic treatment units, coagulation-sedimentation treatment units, and an active carbon adsorption column) were employed in the semi-coking WWTP. Five benzenes, 11 phenols, and five polycyclic aromatic hydrocarbons (PAHs) were investigated as the dominant contaminants in semi-coking wastewater. Because of residual extractant, the phenols extraction process increased acute toxicity to V. fischeri and immobilization and lethal toxicity to D. magna. The acute toxicity of pretreated wastewater to V. fischeri was still higher than that of raw semi-coking wastewater, even though 90.0% of benzenes, 94.8% of phenols, and 81.0% of PAHs were removed. After wastewater pretreatment, phenols and PAHs were mainly removed by anaerobic-oxic and coagulation-sedimentation treatment processes respectively, and a subsequent active carbon adsorption process further reduced the concentrations of all target chemicals to below detection limits. An effective biotoxicity reduction was found during the coagulation-sedimentation and active carbon adsorption treatment processes. The concentration addition model can be applied for toxicity prediction of wastewater from the semi-coking WWTP. The deviation between the measured and predicted toxicity results may result from the effects of compounds not detectable by instrumental analyses, the synergistic effect of detected contaminants, or possible transformation products. Copyright © 2016. Published by Elsevier Inc.

  12. Comparison of emerging contaminants in receiving waters downstream of a conventional wastewater treatment plant and a forest-water reuse system.

    PubMed

    McEachran, Andrew D; Hedgespeth, Melanie L; Newton, Seth R; McMahen, Rebecca; Strynar, Mark; Shea, Damian; Nichols, Elizabeth Guthrie

    2018-05-01

    Forest-water reuse (FWR) systems treat municipal, industrial, and agricultural wastewaters via land application to forest soils. Previous studies have shown that both large-scale conventional wastewater treatment plants (WWTPs) and FWR systems do not completely remove many contaminants of emerging concern (CECs) before release of treated wastewater. To better characterize CECs and potential for increased implementation of FWR systems, FWR systems need to be directly compared to conventional WWTPs. In this study, both a quantitative, targeted analysis and a nontargeted analysis were utilized to better understand how CECs release to waterways from an FWR system compared to a conventional treatment system. Quantitatively, greater concentrations and total mass load of CECs was exhibited downstream of the conventional WWTP compared to the FWR. Average summed concentrations of 33 targeted CECs downstream of the conventional system were ~ 1000 ng/L and downstream of the FWR were ~ 30 ng/L. From a nontargeted chemical standpoint, more tentatively identified chemicals were present, and at a greater relative abundance, downstream of the conventional system as well. Frequently occurring contaminants included phthalates, pharmaceuticals, and industrial chemicals. These data indicate that FWR systems represent a sustainable wastewater treatment alternative and that emerging contaminant release to waterways was lower at a FWR system than a conventional WWTP.

  13. A comprehensive approach for diagnosing opportunities for improving the performance of a WWTP.

    PubMed

    Silva, C; Matos, J Saldanha; Rosa, M J

    2016-12-01

    High quality services of wastewater treatment require a continuous assessment and improvement of the technical, environmental and economic performance. This paper demonstrates a comprehensive approach for benchmarking wastewater treatment plants (WWTPs), using performance indicators (PIs) and indices (PXs), in a 'plan-do-check-act' cycle routine driven by objectives. The performance objectives herein illustrated were to diagnose the effectiveness and energy performance of an oxidation ditch WWTP. The PI and PX results demonstrated an effective and reliable oxidation ditch (good-excellent performance), and a non-reliable UV disinfection (unsatisfactory-excellent performance) related with influent transmittance and total suspended solids. The energy performance increased with the treated wastewater volume and was unsatisfactory below 50% of plant capacity utilization. The oxidation ditch aeration performed unsatisfactorily and represented 38% of the plant energy consumption. The results allowed diagnosing opportunities for improving the energy and economic performance considering the influent flows, temperature and concentrations, and for levering the WWTP performance to acceptable-good effectiveness, reliability and energy efficiency. Regarding the plant reliability for fecal coliforms, improvement of UV lamp maintenance and optimization of the UV dose applied and microscreen recommissioning were suggested.

  14. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters.

    PubMed

    Kasprzyk-Hordern, Barbara; Dinsdale, Richard M; Guwy, Alan J

    2009-02-01

    A 5-month monitoring program was undertaken in South Wales in the UK to determine the fate of 55 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs (PPCPs) in two contrasting wastewater plants utilising two different wastewater treatment technologies: activated sludge and trickling filter beds. The impact of treated wastewater effluent on the quality of receiving waters was also assessed. PPCPs were found to be present at high loads reaching 10kgday(-1) in the raw sewage. Concentrations of PPCPs in raw sewage were found to correlate with their usage/consumption patterns in Wales and their metabolism. The efficiency of the removal of PPCPs was found to be strongly dependent on the technology implemented in the wastewater treatment plant (WWTP). In general, the WWTP utilising trickling filter beds resulted in, on average, less than 70% removal of all 55 PPCPs studied, while the WWTP utilising activated sludge treatment gave a much higher removal efficiency of over 85%. The monitoring programme revealed that treated wastewater effluents were the main contributors to PPCPs concentrations (up to 3kg of PPCPsday(-1)) in the rivers studied. Bearing in mind that in the cases examined here the WWTP effluents were also major contributors to rivers' flows (dilution factor for the studied rivers did not exceed 23 times) the effect of WWTP effluent on the quality of river water is significant and cannot be underestimated.

  15. Performance evaluation of a smart buffer control at a wastewater treatment plant.

    PubMed

    van Daal-Rombouts, P; Benedetti, L; de Jonge, J; Weijers, S; Langeveld, J

    2017-11-15

    Real time control (RTC) is increasingly seen as a viable method to optimise the functioning of wastewater systems. Model exercises and case studies reported in literature claim a positive impact of RTC based on results without uncertainty analysis and flawed evaluation periods. This paper describes two integrated RTC strategies at the wastewater treatment plant (WWTP) Eindhoven, the Netherlands, that aim to improve the use of the available tanks at the WWTP and storage in the contributing catchments to reduce the impact on the receiving water. For the first time it is demonstrated that a significant improvement can be achieved through the application of RTC in practice. The Storm Tank Control is evaluated based on measurements and reduces the number of storm water settling tank discharges by 44% and the discharged volume by an estimated 33%, decreasing dissolved oxygen depletion in the river. The Primary Clarifier Control is evaluated based on model simulations. The maximum event NH4 concentration in the effluent reduced on average 19% for large events, while the load reduced 20%. For all 31 events the reductions are 11 and 4% respectively. Reductions are significant taking uncertainties into account, while using representative evaluation periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Spatial distribution and removal performance of pharmaceuticals in municipal wastewater treatment plants in China.

    PubMed

    Liu, Hou-Qi; Lam, James C W; Li, Wen-Wei; Yu, Han-Qing; Lam, Paul K S

    2017-05-15

    Municipal wastewater treatment plants (WWTPs) are an important source of pharmaceuticals released into the environment. Understanding how various pharmaceuticals are distributed and handled in WWTPs is a prerequisite to optimize their abatement. Here we investigated the spatial distribution and removal efficiencies pharmaceuticals in China's WWTPs. A total of 35 pharmaceuticals in wastewater samples from 12 WWTPs at different cities of China were analyzed. Among these detected pharmaceuticals, caffeine showed the highest concentration (up to 1775.98ngL -1 ) in the WWTP influent. In addition, there were significant regional differences in pharmaceutical distribution with higher influent concentrations of total pharmaceuticals detected in WWTPs in the northern cities than the southern ones. The state-of-the-art treatment processes were generally inefficient in removing pharmaceuticals. Only 14.3% of pharmaceuticals were removed effectively (mean removal efficiency>70%), while 51.4% had a removal rate of below 30%. The anaerobic/anoxic/oxic (AAO)-membrane bioreactor (MBR) integrated process and sequencing batch reactor (SBR) showed better performance than the AAO and oxidation ditch (OD) processes. Ofloxacin, erythromycin-H 2 O, clarithromycin, roxithromycin and sulfamethoxazole in WWTP effluents exhibited a high or medium ecological risk and deserved special attention. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Removal Efficiency of Faecal Indicator Organisms, Nutrients and Heavy Metals from a Peri-Urban Wastewater Treatment Plant in Thohoyandou, Limpopo Province, South Africa.

    PubMed

    Edokpayi, Joshua N; Odiyo, John O; Msagati, Titus A M; Popoola, Elizabeth O

    2015-06-29

    Wastewater treatment facilities are known sources of fresh water pollution. This study was carried out from January to June 2014 to assess the reduction efficiency of some selected contaminants in the Thohoyandou wastewater treatment plant (WWTP). The pH and electrical conductivity of the effluent fell within the South African wastewater discharge guidelines. The WWTP showed the chemical oxygen demand reduction efficiency required by the Department of Water Affairs (DWA) guidelines of 75 mg/L for the months of April and June, although it was below this standard in March and May. Free chlorine concentration varied between 0.26-0.96 mg/L and exceeded the DWA guideline value of 0.25 mg/L. The concentration of nitrate-nitrogen (NO3(-) N) in the influent and effluent varied between 0.499-2.31 mg/L and 7.545-19.413 mg/L, respectively. The concentration of NO3- N in the effluent complied with DWA effluent discharge standard of 15 mg/L, except in April and May. Phosphate concentrations in the influent and effluent were in the ranges of 0.552-42.646 mg/L and 1.572-32.554 mg/L, respectively. The WWTP showed reduction efficiencies of E. coli and Enterococci during some sampling periods but the level found in the effluent exceeded the recommended guideline value of 1000 cfu/100 mL for faecal indicator organisms in wastewater effluents. Consistent removal efficiencies were observed for Al (32-74%), Fe (7-32%) and Zn (24-94%) in most of the sampling months. In conclusion, the Thohoyandou WWTP is inefficient in treating wastewater to the acceptable quality before discharge.

  18. Techno-economical efficiency and productivity change of wastewater treatment plants: the role of internal and external factors.

    PubMed

    Hernández-Sancho, F; Molinos-Senante, M; Sala-Garrido, R

    2011-12-01

    Efficiency and productivity are important measures for identifying best practice in businesses and optimising resource-use. This study analyses how these two measures change across the period 2003-2008 for 196 wastewater treatment plants (WWTPs) in Spain, by using the benchmarking methods of Data Envelopment Analysis and the Malmquist Productivity Index. To identify which variables contribute to the sustainability of the WWTPs, differences in efficiency scores and productivity indices for external factors are also investigated. Our results indicate that both efficiency and productivity decreased over the five years. We verify that the productivity drop is primarily explained by technical change. Furthermore, certain external variables affected WWTP efficiency, including plant size, treatment technology and energy consumption. However, plants with low energy consumption are the only ones which improve their productivity. Finally, the benchmarking analyses proved to be useful as management tools in the wastewater sector, by providing vital information for improving the sustainability of plants.

  19. Metagenomics Reveals the Impact of Wastewater Treatment Plants on the Dispersal of Microorganisms and Genes in Aquatic Sediments.

    PubMed

    Chu, Binh T T; Petrovich, Morgan L; Chaudhary, Adit; Wright, Dorothy; Murphy, Brian; Wells, George; Poretsky, Rachel

    2018-03-01

    Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae , Legionellaceae , Moraxellaceae , and Neisseriaceae , in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies. IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic footprint

  20. Metagenomics Reveals the Impact of Wastewater Treatment Plants on the Dispersal of Microorganisms and Genes in Aquatic Sediments

    PubMed Central

    Chu, Binh T. T.; Petrovich, Morgan L.; Chaudhary, Adit; Wright, Dorothy; Murphy, Brian; Wells, George

    2017-01-01

    ABSTRACT Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae, Legionellaceae, Moraxellaceae, and Neisseriaceae, in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies. IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic

  1. Life cycle assessment of introducing an anaerobic digester in a municipal wastewater treatment plant in Spain.

    PubMed

    Blanco, David; Collado, Sergio; Laca, Adriana; Díaz, Mario

    2016-01-01

    Anaerobic digestion (AD) is being established as a standard technology to recover some of the energy contained in the sludge in wastewater treatment plants (WWTPs) as biogas, allowing an economy in electricity and heating and a decrease in climate gas emission. The purpose of this study was to quantify the contributions to the total environmental impact of the plant using life cycle assessment methodology. In this work, data from real operation during 2012 of a municipal WWTP were utilized as the basis to determine the impact of including AD in the process. The climate change human health was the most important impact category when AD was included in the treatment (Scenario 1), especially due to fossil carbon dioxide emissions. Without AD (Scenario 2), increased emissions of greenhouse gases, mostly derived from the use of electricity, provoked a rise in the climate change categories. Biogas utilization was able to provide 47% of the energy required in the WWTP in Scenario 1. Results obtained make Scenario 1 the better environmental choice by far, mainly due to the use of the digested sludge as fertilizer.

  2. Influence of wastewater treatment plant discharges on microplastic concentrations in surface water.

    PubMed

    Estahbanati, Shirin; Fahrenfeld, N L

    2016-11-01

    The abundance of microplastic particles in the marine environment is well documented, but less is known about microplastics in the freshwater environment. Wastewater treatment plants (WWTPs) may not effectively remove microplastics allowing for their release to the freshwater environment. To investigate concentration of microplastic in fresh water and the impact of WWTP effluent, samples were collected upstream and downstream of four major municipal WWTPs on the Raritan River, NJ. Microplastics were categorized into three quantitative categories (500-2000 μm, 250-500 μm, 125-250 μm), and one semi-quantitative category (63-125 μm). Then, microplastics were classified as primary (manufactured in small size) or secondary (derived from larger plastics) based on morphology. The concentration of microplastics in the 125-250 and 250-500 μm size categories significantly increased downstream of WWTP. The smaller size classes, often not quantified in microplastic studies, were in high relative abundance across sampling sites. While primary microplastics significantly increased downstream of WWTP, secondary microplastic was the dominant type in the quantitative size categories (66-88%). A moderate correlation between microplastic and distance downstream was observed. These results have implications for understanding the fate and transport of microplastics in the freshwater environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Technical problems of wastewater treatment plant in crude palm oil industry A case study in PT Socfin Indonesia-Kebun Sungai Liput, Nang groe Aceh Darussalam Province

    NASA Astrophysics Data System (ADS)

    Paramitadevi, Y. V.; Rahmatullah

    2017-05-01

    Crude palm oil produced in Indonesia has already been known as the largest in the world. Unfortunately many of palm oil factories (CPOF) spread out in Indonesia have not good wastewater treatments (WWTP) yet. PT Socfin Indonesia, as an example, which is located in Aceh Tamiang Regency, still has BOD contained in its final effluent of the waswater treatment plant more than 150 ppm. In fact, the capability and capacity of WWTP in PT Socfin are 192 m3per day. Because of improper operational and maintenance of the WWTP, the technical prob lem are accumulated, such as, increasing the deposition of sludge and decreasing the retention time. The following affect is the treatment process is not going well and the quality of effluent is getting worse. The objective of this paper is to solve the technical problems by means remov ing the deposition of sludge periodically and fixing floating aeration in the aerobic pond. Method using for this paper is survey and wastewater sampling. A recommendation of the was tewater treatment system has been proposed after average BOD from WWTP outlet is defined 158 mg/L. The recommendation has seven procesess including oil separation, neutralization, closed tank anaerobic digester equipped with gas holder, extended aeration, settling tank, sand drying bed and land application.

  4. Removal Efficiency of Faecal Indicator Organisms, Nutrients and Heavy Metals from a Peri-Urban Wastewater Treatment Plant in Thohoyandou, Limpopo Province, South Africa

    PubMed Central

    Edokpayi, Joshua N.; Odiyo, John O.; Msagati, Titus A. M.; Popoola, Elizabeth O.

    2015-01-01

    Wastewater treatment facilities are known sources of fresh water pollution. This study was carried out from January to June 2014 to assess the reduction efficiency of some selected contaminants in the Thohoyandou wastewater treatment plant (WWTP). The pH and electrical conductivity of the effluent fell within the South African wastewater discharge guidelines. The WWTP showed the chemical oxygen demand reduction efficiency required by the Department of Water Affairs (DWA) guidelines of 75 mg/L for the months of April and June, although it was below this standard in March and May. Free chlorine concentration varied between 0.26–0.96 mg/L and exceeded the DWA guideline value of 0.25 mg/L. The concentration of nitrate-nitrogen (NO3− N) in the influent and effluent varied between 0.499–2.31 mg/L and 7.545–19.413 mg/L, respectively. The concentration of NO3− N in the effluent complied with DWA effluent discharge standard of 15 mg/L, except in April and May. Phosphate concentrations in the influent and effluent were in the ranges of 0.552–42.646 mg/L and 1.572–32.554 mg/L, respectively. The WWTP showed reduction efficiencies of E. coli and Enterococci during some sampling periods but the level found in the effluent exceeded the recommended guideline value of 1000 cfu/100 mL for faecal indicator organisms in wastewater effluents. Consistent removal efficiencies were observed for Al (32–74%), Fe (7–32%) and Zn (24–94%) in most of the sampling months. In conclusion, the Thohoyandou WWTP is inefficient in treating wastewater to the acceptable quality before discharge. PMID:26132481

  5. Efficiency of WWTP to remove emerging pollutants in wastewater

    NASA Astrophysics Data System (ADS)

    Carmona, Eric; Llopis, Agustín; Andreu, Vicente; Picó, Yolanda

    2016-04-01

    Recently some compounds that are extensively used are considered emerging pollutants since are at low concentrations and have been little studied. Pharmaceuticals and personal care products are classified as this kind of pollutants and most of these are excreted through urine or feces and come to end up to treatment plants. Recent studies indicates that pharmaceuticals, personal care products or illicit drugs from Waste Water Treatment Plants (WWTP) are a considerable chemical pollution in surface [1, 2]. The purpose of this study is to determine the removal efficiency for two WWT of Pinedo I and II, Valencia (Spain). After obtaining the results of analysis by an Agilent 1260 HPLC in tandem with a 6410 MS/MS triple quad, a simple mathematical operation with the influents and effluents is performed. This operation consists in subtracted from the influent, the effluent, divided by the result of the influent and this multiply by 100. Results are expressed as a percentage with its 95 % confidence interval (CI). The influent and effluent of the samples were filtered with a 0.50 μm glass fiber filter of 90 mm by Advantec (Minato-ku, Tokyo, Japan). After filtration, 250ml of this water is extracted through a SPE. SPE was performed with Strata-X 33U Polymeric Reversed Phase (200 mg/6 mL) from Phenomenex. These cartridges were conditioned with 6 mL of methanol and 6 mL of distilled water. Extracts were eluted with 6mL of Methanol and evaporated with compressed air. The residue was reconstituted with 1 mL of methanol-water (30:70, v/v). The removal efficiencies depend on the type of the compound, these rates remain between 23% and 100%. In some cases, removal efficiency is negative since some compounds are accumulated in the sludge and these have more concentration. Tertiary treatment including UV disinfection could efficiently reduce most of the residual pharmaceuticals below their quantification limits. Acknowledgments This work has been supported by the Spanish Ministry

  6. Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.

    PubMed

    Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.

  7. Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China.

    PubMed

    Chen, Hong; Zhang, Mingmei

    2013-08-06

    This study aimed at quantifying the concentration and removal of antibiotic resistance genes (ARGs) in three municipal wastewater treatment plants (WWTPs) employing different advanced treatment systems [biological aerated filter, constructed wetland, and ultraviolet (UV) disinfection]. The concentrations of tetM, tetO, tetQ, tetW, sulI, sulII, intI1, and 16S rDNA genes were examined in wastewater and biosolid samples. In municipal WWTPs, ARG reductions of 1-3 orders of magnitude were observed, and no difference was found among the three municipal WWTPs with different treatment processes (p > 0.05). In advanced treatment systems, 1-3 orders of magnitude of reductions in ARGs were observed in constructed wetlands, 0.6-1.2 orders of magnitude of reductions in ARGs were observed in the biological aerated filter, but no apparent decrease by UV disinfection was observed. A significant difference was found between constructed wetlands and biological filter (p < 0.05) and between constructed wetlands and UV disinfection (p < 0.05). In the constructed wetlands, significant correlations were observed in the removal of ARGs and 16S rDNA genes (R(2) = 0.391-0.866; p < 0.05). Constructed wetlands not only have the comparable ARG removal values with WWTP (p > 0.05) but also have the advantage in ARG relative abundance removal, and it should be given priority to be an advanced treatment system for further ARG attenuation from WWTP.

  8. Metagenomic analysis of bacterial community composition and antibiotic resistance genes in a wastewater treatment plant and its receiving surface water.

    PubMed

    Tang, Junying; Bu, Yuanqing; Zhang, Xu-Xiang; Huang, Kailong; He, Xiwei; Ye, Lin; Shan, Zhengjun; Ren, Hongqiang

    2016-10-01

    The presence of pathogenic bacteria and the dissemination of antibiotic resistance genes (ARGs) may pose big risks to the rivers that receive the effluent from municipal wastewater treatment plants (WWTPs). In this study, we investigated the changes of bacterial community and ARGs along treatment processes of one WWTP, and examined the effects of the effluent discharge on the bacterial community and ARGs in the receiving river. Pyrosequencing was applied to reveal bacterial community composition including potential bacterial pathogen, and Illumina high-throughput sequencing was used for profiling ARGs. The results showed that the WWTP had good removal efficiency on potential pathogenic bacteria (especially Arcobacter butzleri) and ARGs. Moreover, the bacterial communities of downstream and upstream of the river showed no significant difference. However, the increase in the abundance of potential pathogens and ARGs at effluent outfall was observed, indicating that WWTP effluent might contribute to the dissemination of potential pathogenic bacteria and ARGs in the receiving river. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents, urban streams, and fish in the Great Lakes and Upper Mississippi River Regions

    USGS Publications Warehouse

    Barber, Larry B.; Loyo-Rosales, Jorge E.; Rice, Clifford P.; Minarik, Thomas A.; Oskouie, Ali K.

    2015-01-01

    Urban streams are an integral part of the municipal water cycle and provide a point of discharge for wastewater treatment plant (WWTP) effluents, allowing additional attenuation through dilution and transformation processes, as well as a conduit for transporting contaminants to downstream water supplies. Domestic and commercial activities dispose of wastes down-the-drain, resulting in wastewater containing complex chemical mixtures that are only partially removed during treatment. A key issue associated with WWTP effluent discharge into streams is the potential to cause endocrine disruption in fish. This study provides a long-term (1999-2009) evaluation of the occurrence of alkylphenolic endocrine disrupting chemicals (EDCs) and other contaminants discharged from WWTPs into streams in the Great Lakes and Upper Mississippi River Regions (Indiana, Illinois, Michigan, Minnesota, and Ohio). The Greater Metropolitan Chicago Area Waterways, Illinois, were evaluated to determine contaminant concentrations in the major WWTP effluents and receiving streams, and assess the behavior of EDCs from their sources within the sewer collection system, through the major treatment unit processes at a WWTP, to their persistence and transport in the receiving stream. Water samples were analyzed for alkylphenolic EDCs and other contaminants, including 4-nonylphenol (NP), 4-nonylphenolpolyethoxylates (NPEO), 4-nonylphenolethoxycarboxylic acids (NPEC), 4-tert-octylphenol (OP), 4-tert-octylphenolpolyethoxylates (OPEO), bisphenol A, triclosan, ethylenediaminetetraacetic acid (EDTA), and trace elements. All of the compounds were detected in all of the WWTP effluents, with EDTA and NPEC having the greatest concentrations. The compounds also were detected in the WWTP effluent dominated rivers. Multiple fish species were collected from river and lake sites and analyzed for NP, NPEO, NPEC, OP, and OPEO. Whole-body fish tissue analysis indicated widespread occurrence of alkylphenolic compounds

  10. A methodology to estimate greenhouse gases emissions in Life Cycle Inventories of wastewater treatment plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Garcia, G., E-mail: gonzalo.rodriguez.garcia@usc.es; Hospido, A., E-mail: almudena.hospido@usc.es; Bagley, D.M., E-mail: bagley@uwyo.edu

    2012-11-15

    The main objective of this paper is to present the Direct Emissions Estimation Model (DEEM), a model for the estimation of CO{sub 2} and N{sub 2}O emissions from a wastewater treatment plant (WWTP). This model is consistent with non-specific but widely used models such as AS/AD and ASM no. 1 and presents the benefits of simplicity and application over a common WWTP simulation platform, BioWin Registered-Sign , making it suitable for Life Cycle Assessment and Carbon Footprint studies. Its application in a Spanish WWTP indicates direct N{sub 2}O emissions to be 8 times larger than those associated with electricity usemore » and thus relevant for LCA. CO{sub 2} emissions can be of similar importance to electricity-associated ones provided that 20% of them are of non-biogenic origin. - Highlights: Black-Right-Pointing-Pointer A model has been developed for the estimation of GHG emissions in WWTP. Black-Right-Pointing-Pointer Model was consistent with both ASM no. 1 and AS/AD. Black-Right-Pointing-Pointer N{sub 2}O emissions are 8 times more relevant than the one associated with electricity. Black-Right-Pointing-Pointer CO{sub 2} emissions are as important as electricity if 20% of it is non-biogenic.« less

  11. Occurrences and behavior of perfluorinated compounds (PFCs) in several wastewater treatment plants (WWTPs) in Japan and Thailand.

    PubMed

    Shivakoti, Binaya Raj; Tanaka, Shuhei; Fujii, Shigeo; Kunacheva, Chinagarn; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Seneviratne, S T M L D; Tanaka, Hiroaki

    2010-06-01

    This study examines occurrences of 11 perfluorinated compounds (PFCs) in several wastewater treatment plants in Japan and Thailand. Surveys are conducted in eight wastewater treatment plants (WWTPs) in Japan and central WWTPs of five industrial estates (IEs) in Thailand. Samples are collected from all major treatment processes in order to understand the behavior of PFCs in WWTPs. PFCs are detected in all WWTPs in Japan and Thailand. Concentrations of PFCs even exceed several thousands ng/L in some WWTPs. PFOS, PFOA, and PFNA are mainly detected in WWTPs in Japan, while PFBuS, PFOA, and PFHxA are mainly detected in WWTP of IEs in Thailand. Even though some of the investigated WWTPs utilize biological treatment processes coupled with chlorination, ozonation, or activated carbon adsorption, they are found ineffective to remove PFCs. During the treatment process, PFCs are found to accumulate at exceptionally high concentration levels in the activated sludge of an aeration tank and returned activated sludge. Overall, the estimated total daily mass of discharged PFCs is 124.95 g/d (PFASs: 49.81 g/d; PFCAs: 75.14 g/d) from eight WWTPs in Japan and 55.04 g/d (PFASs: 12 g/d; PFCAs: 43.04 g/d) from five WWTPs in Thailand. Although the presented data are from a single observation in each WWTP, the results indicate that certain industries using PFCs in manufacturing processes could be the principle point source, while domestic activities could be releasing PFCs at detectable levels causing environmental concern.

  12. Prevalence and Fate of Carbapenemase Genes in a Wastewater Treatment Plant in Northern China

    PubMed Central

    Yang, Fengxia; Mao, Daqing; Zhou, Hao; Luo, Yi

    2016-01-01

    Carbapenemase-producing strains of bacteria, which were primarily found in the medical field, have increasingly been found in the environment, thus posing potential risks to public health. One possible way for carbapenemase genes to enter the environment is via wastewater. Therefore, the goal of this study was to determine the occurrence and fate of five high-risk carbapenemase genes in a wastewater treatment plant (WWTP) in northern China using real-time qPCR. Results showed that the blaKPC-2, blaGES-1, and blaIMP-1 genes prevailed throughout all processing stages (even in the chlorination disinfection unit) in the WWTP, whereas the blaVIM-2 and blaOXA-48 genes were not detected in all samples. Worryingly, considerable amounts of carbapenemase genes ((1.54 ± 0.61) × 103 copies/mL to (2.14± 0.41) × 105 copies/mL) were detected in WWTP effluent samples, while the majority of the carbapenemase genes were transported to the dewatered sludge with concentrations from (6.51 ± 0.14) × 109 copies/g to (6.18 ± 0.63) × 1010 copies/g dry weight. Furthermore, a total of 97 KPC-2-producing strains, belonging to 8 bacterial genera, were isolated from the WWTP. Sequencing of 16S rRNA revealed that most of KPC-2 producing isolates were opportunistic pathogens, including Klebsiella spp. (10.3%), Enterococcus spp. (11.3%), Acinetobacter spp. (19.6%), Escherichia spp. (12.4%), Shigella spp. (17.5%), Stenotrophomonas spp. (10.3%) and Wautersiella spp. (9.3%). Moreover, blaKPC-2 genes were identified for the first time in Paenibacillus spp. isolates (an indigenous bacteria), indicating an increased risk of horizontal transfer between clinical pathogens and environmental bacteria. Indeed, a conjugation experiment demonstrated transfer of the blaKPC-2 gene to an E.coli J53 strain from a Klebsiella strain isolated from the WWTP. To our knowledge, this is the first study to obtain Paenibacillus spp. isolates carrying the carbapenemase gene and to quantify the abundance of

  13. Characteristic numbers of granular activated carbon for the elimination of micropollutants from effluents of municipal wastewater treatment plants.

    PubMed

    Benstoem, F; Pinnekamp, J

    2017-07-01

    Adsorption on granular activated carbon (GAC) is a promising step to extend existing treatment trains in municipal wastewater treatment plants (WWTPs) and, thus, to reduce the concentration of micropollutants (MPs) (e.g. pharmaceuticals) in wastewater. It is common practice to use characteristic numbers when choosing GAC for a specific application. In this study, characteristic numbers were correlated for five different GACs, with measured adsorption capacities of these carbons for three pharmaceutical MPs (carbamazepine, diclofenac and sulfamethoxazole) and dissolved organic carbon of a WWTP effluent. The adsorption capacities were measured using rapid small scale column tests. Density of GAC showed the highest correlation to adsorption of MP. All other characteristic numbers (iodine number, Brunauer-Emmett-Teller (BET) surface and methylene blue titre) are not suitable markers for choosing an appropriate activated carbon product for the elimination of MPs from municipal wastewater.

  14. Distribution, partition and removal of polycyclic aromatic hydrocarbons (PAHs) during coking wastewater treatment processes.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; An, Guanfeng

    2015-05-01

    In this study, we report the performance of a full-scale conventional activated sludge (A-O1-O2) treatment in eliminating polycyclic aromatic hydrocarbons (PAHs). Both aqueous and solid phases along with the coking wastewater treatment processes were analyzed for the presence of 18 PAHs. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent and sludge samples. In the coking wastewater treatment system, 4-5 ring PAHs were the dominant compounds, while 4 rings PAHs predominated in the sludge samples. Over 98% of the PAH removal was achieved in the coking wastewater treatment plant (WWTP), with the total concentration of PAHs being 21.3 ± 1.9 μg L(-1) in the final effluent. During the coking wastewater treatment processes, the association of the lower molecular weight PAH with suspended solids was generally less than 60%, while the association of higher molecular weight PAHs was greater than 90%. High distribution efficiencies (Kdp and Kds) were found, suggesting that adsorption was the potential removal pathway of PAHs. Finally, the mass balances of PAHs in various stages of the coking WWTP were obtained, and the results indicated that adsorption to sludge was the main removal pathway for PAHs in the coking wastewater treatment processes.

  15. Emission factor for atmospheric ammonia from a typical municipal wastewater treatment plant in South China.

    PubMed

    Zhang, Chunlin; Geng, Xuesong; Wang, Hao; Zhou, Lei; Wang, Boguang

    2017-01-01

    Atmospheric ammonia (NH 3 ), a common alkaline gas found in air, plays a significant role in atmospheric chemistry, such as in the formation of secondary particles. However, large uncertainties remain in the estimation of ammonia emissions from nonagricultural sources, such as wastewater treatment plants (WWTPs). In this study, the ammonia emission factors from a large WWTP utilizing three typical biological treatment techniques to process wastewater in South China were calculated using the US EPA's WATER9 model with three years of raw sewage measurements and information about the facility. The individual emission factors calculated were 0.15 ± 0.03, 0.24 ± 0.05, 0.29 ± 0.06, and 0.25 ± 0.05 g NH 3  m -3 sewage for the adsorption-biodegradation activated sludge treatment process, the UNITANK process (an upgrade of the sequencing batch reactor activated sludge treatment process), and two slightly different anaerobic-anoxic-oxic treatment processes, respectively. The overall emission factor of the WWTP was 0.24 ± 0.06 g NH 3 m -3 sewage. The pH of the wastewater influent is likely an important factor affecting ammonia emissions, because higher emission factors existed at higher pH values. Based on the ammonia emission factor generated in this study, sewage treatment accounted for approximately 4% of the ammonia emissions for the urban area of South China's Pearl River Delta (PRD) in 2006, which is much less than the value of 34% estimated in previous studies. To reduce the large uncertainty in the estimation of ammonia emissions in China, more field measurements are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    PubMed

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  17. Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant.

    PubMed

    Gupta, Sachin Kumar; Shin, Hanseob; Han, Dukki; Hur, Hor-Gil; Unno, Tatsuya

    2018-06-01

    The increased antibiotic resistance among microorganisms has resulted into growing interest for investigating the wastewater treatment plants (WWTPs) as they are reported to be the major source in the dissemination of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment. In this study, we investigated the prevalence and persistence of ARGs and HMRGs as well as bacterial diversity and mobile genetic elements (MGEs) in influent and effluent at the WWTP in Gwangju, South Korea, using high-throughput sequencing based metagenomic approach. A good number of broad-spectrum of resistance genes (both ARG and HMRG) were prevalent and likely persistent, although large portion of them were successfully removed at the wastewater treatment process. The relative abundance of ARGs and MGEs was higher in effluent as compared to that of influent. Our results suggest that the resistance genes with high abundance and bacteria harbouring ARGs and MGEs are likely to persist more through the treatment process. On analyzing the microbial community, the phylum Proteobacteria, especially potentially pathogenic species belonging to the genus Acinetobacter, dominated in WWTP. Overall, our study demonstrates that many ARGs and HMRGs may persist the treatment processes in WWTPs and their association to MGEs may contribute to the dissemination of resistance genes among microorganisms in the environment.

  18. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants

    USGS Publications Warehouse

    Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.

  19. Combined Sewer Overflows: An Environmental Source of Hormones and Wastewater Micropollutants

    PubMed Central

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (<90%) have less than 10% of annual load contributed by CSO discharges. Concentrations of estrogens, androgens, and WMPs generally are 10 times higher in CSO discharges compared to treated wastewater discharges. Compound concentrations in samples of CSO discharges generally decrease with increasing flow because of wastewater dilution by rainfall runoff. By contrast, concentrations of hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency. PMID:22540536

  20. Feasibility studies and pre-design simulation of Warsaw's new wastewater treatment plant.

    PubMed

    Oleszkiewicz, J A; Kalinowska, E; Dold, P; Barnard, J L; Bieniowski, M; Ferenc, Z; Jones, R; Rypina, A; Sudol, J

    2004-12-01

    The proposed transfer of wastewater from the western part of Warsaw, across the Wisla (Vistula) River for joint treatment at the existing eastern side "Czajka" wastewater treatment plant (WWTP) will result in combined winter flows of approx. 580,000 m3 d(-1). One-year of pilot-scale studies defined the COD characteristics and kinetics of nitrogen removal and VFA production from primary sludge. BioWin simulation was used to size and price the optional processes and pointed to the Westbank process as the most cost-effective. The process consists of a sequence of a RAS pre-denitrification zone followed by an anaerobic, anoxic and aerobic zone. Some 100-150 t d(-1) of 10% methanol would be needed to remove 2-4 mg l(-1) of NO3-N above the recommended effluent level TN = 10 mg l(-1). Applying the principle of annual average 80% TN removal, and allowing for use of daily composite samples (rather than grab) could annually save the municipality over 1.5 million Euro on external carbon source.

  1. Impact of a wastewater treatment plant on microbial community composition and function in a hyporheic zone of a eutrophic river

    NASA Astrophysics Data System (ADS)

    Atashgahi, Siavash; Aydin, Rozelin; Dimitrov, Mauricio R.; Sipkema, Detmer; Hamonts, Kelly; Lahti, Leo; Maphosa, Farai; Kruse, Thomas; Saccenti, Edoardo; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke

    2015-11-01

    The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1-3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.

  2. Beyond the conventional life cycle inventory in wastewater treatment plants.

    PubMed

    Lorenzo-Toja, Yago; Alfonsín, Carolina; Amores, María José; Aldea, Xavier; Marin, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-05-15

    The conventional approach for the environmental assessment of wastewater treatment plants (WWTPs) is typically based on the removal efficiency of organic load and nutrients as well as the quantification of energy and chemicals consumption. Current wastewater treatment research entails the monitoring of direct emissions of greenhouse gases (GHG) and emerging pollutants such as pharmaceutical and personal care products (PPCPs), which have been rarely considered in the environmental assessment of a wastewater treatment facility by life cycle assessment (LCA) methodology. As a result of that, the real environmental impacts of a WWTP may be underestimated. In this study, two WWTPs located in different climatic regions (Atlantic and Mediterranean) of Spain were evaluated in extensive sampling campaigns that included not only conventional water quality parameters but also direct GHG emissions and PPCPs in water and sludge lines. Regarding the GHG monitoring campaign, on-site measurements of methane (CH4) and nitrous oxide (N2O) were performed and emission factors were calculated for both WWTPs. GHG direct emissions accounted for 62% of the total global warming potential (GWP), much more relevant than indirect CO2 emissions associated with electricity use. Regarding PPCPs, 19 compounds were measured in the main streams: influent, effluent and sludge, to perform the evaluation of the toxicity impact categories. Although the presence of heavy metals in the effluent and the sludge as well as the toxicity linked to the electricity production may shade the toxicity impacts linked to PPCPs in some impact categories, the latter showed a notable influence on freshwater ecotoxicity potential (FETP). For this impact category, the removal of PPCPs within the wastewater treatment was remarkably important and arose as an environmental benefit in comparison with the non-treatment scenario. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Odour removal with a trickling filter at a small WWTP strongly influenced by the tourism season.

    PubMed

    Patria, L; Cathelain, M; Laurens, P; Barbere, J P

    2001-01-01

    Etaples-Le Touquet's wastewater treatment plant (WWTP) is based on a coastal area of the Artois-Picardie region. The pollution load can vary from 20,000 p.e. to 60,000 p.e. over a weekend or in summer. The Collectivity and the Water Agency decided to cover and ventilate the main odour source points of the plant. The foul air was directed to a 2,500 m3/h inorganic bed biofilter (Alizair) for odour control. An odour monitoring took place during the first year of operation taking into account cold and warm seasons, high and low tourism seasons. The Alizair biofilter appeared an appropriate odour control process for small sized wastewater treatment plants, easy to operate and efficient even in areas where tourism seasons have a great impact on the pollution load arriving at the plant. The neighbourhood did not complain about odours any more and the operator was very confident with such a simple and effective system. The local Authorities and the Water Agency agreed to recommend Alizair biofilters with an autotrophic biomass adapted in the case of an old WWTP that cannot be up graded any more or for large pumping stations and wastewater storage prior treatment.

  4. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.

    PubMed

    Gani, Khalid Muzamil; Rajpal, Ankur; Kazmi, Absar Ahmad

    2016-03-01

    The contamination level of four phthalates in untreated and treated wastewater of fifteen wastewater treatment plants (WWTPs) and their fate in a full scale sequencing batch reactor (SBR) based WWTP was evaluated in this study. The four phthalates were diethyl phthalate (DEP), dibutyl phthalate (DBP), benzylbutyl phthalate (BBP) and diethylhexyl phthalate (DEHP). All compounds were present in untreated wastewater with DEHP being present in the highest mean concentration of 28.4 ± 5.3 μg L(-1). The concentration was in the range of 7.3 μg L(-1) (BBP) to 28.4 μg L(-1) (DEHP) in untreated wastewater and 1.3 μg L(-1) (DBP) to 2.6 μg L(-1) (DEHP) in treated wastewater. The nutrient removal process and advance tertiary treatment based WWTPs showed the highest phthalate removal efficiencies of 87% and 93%, respectively. The correlation between phthalate removal and conventional performance of WWTPs was positive. Fate analysis of these phthalates in a SBR based WWTP showed that total removal of the sum of phthalates in a primary settling tank and SBR was 84% out of which 55% is removed by biodegradation and 29% was removed by sorption to primary and secondary sludge. The percentage removal of four phthalates in primary settling tanks was 18%. Comparison of the diluted effluent DEHP concentration with its environmental quality standards showed that the dilution in an effluent receiving water body can reduce the DEHP emissions to acceptable values.

  5. Dielectric barrier discharge-based investigation and analysis of wastewater treatment and pollutant removal.

    PubMed

    Ramdani, N; Lousdad, A; Tilmatine, A; Nemmich, S

    2016-01-01

    Current research reveals that the oxidation by ozone is considered as an effective solution and offers irrefutable advantages in wastewater treatment. It is also well known that ozone is used to treat different types of water due to its effectiveness in water purification and for its oxidation potential. This process of ozonation is becoming progressively an alternative technology and is inscribed in a sustainable development perspective in Algeria. In this regards, the present paper investigates the wastewater treatment process by ozone produced by dielectric barrier discharge (DBD) under high potential. Three (DBD) ozone generators of cylindrical form have been used, at a laboratory scale, for treating collected samples from the wastewater treatment plant (WWTP) of the city of Sidi-Bel-Abbes located in the west of Algeria. Our experimental results reveal the efficiency of this type of treatment on the basis of the physicochemical analysis (pH, turbidity, chemical oxygen demand, biological oxygen demand, heavy metals) and microbial analysis downstream of the WWTP, which showed a high rate of elimination of all the parameters.

  6. Inputs of fossil carbon from wastewater treatment plants to U.S. Rivers and oceans

    USGS Publications Warehouse

    Griffith, D.R.; Barnes, R.T.; Raymond, P.A.

    2009-01-01

    Every day more than 500 million cubic meters of treated wastewater are discharged into rivers, estuaries, and oceans, an amount slightly less than the average flow of the Danube River. Typically, wastewaters have high organic carbon (OC) concentrations and represent a large fraction of total river flow and a higher fraction of river OC in densely populated watersheds. Here, we report the first direct measurements of radiocarbon (14C) in municipal wastewater treatment plant (WWTP) effluent. The radiocarbon ages of particulate and dissolved organic carbon (POC and DOC) in effluent are old and relatively uniform across a range of WWTPs in New York and Connecticut. Wastewater DOC has a mean radiocarbon age of 1630 ?? 500 years B.P. and a mean ??13C of -26.0 ?? 1???. Mass balance calculations indicate that 25% of wastewater DOC is fossil carbon, which is likely derived from petroleumbased household products such as detergents and pharmaceuticals. Thesefindings warrant reevaluation of the "apparent age" of riverine DOC, the total flux of petroleum carbon to U.S. oceans, and OC source assignments in waters impacted by sewage. ?? 2009 American Chemical Society.

  7. Occurrence and fate of anti-inflammatory drugs in wastewater treatment plants in Japan.

    PubMed

    Nakada, Norihide; Komori, Koya; Suzuki, Yutaka

    2005-01-01

    The fates of anti-inflammatory drugs (e.g., ibuprofen, naproxen, mefenamic acid and ketoprofen), which are frequently detected in the discharges of wastewater treatment plants (WWTPs) and river water in Japan, were clarified in two WWTPs. The concentrations of ibuprofen, naproxen, mefenamic acid and ketoprofen were 69-1080, 179-305, 143-1580 and 160-1060 ng/L in the influent, and N.D. (< 40 ng/L), 74-166, 72-265, 64-107 ng/L in the effluent, respectively. The concentrations of the anti-inflammatory drugs analyzed were almost equal to or lower than those reported in foreign countries. High removal efficiencies of the drugs, except ibuprofen, were observed in the WWTP that has longer hydraulic retention time than that of the other WWTP. For ibuprofen, high removal efficiencies were observed in both WWTPs (84 to 98%). Disinfection by chlorination was not effective to remove the drugs surveyed. On the other hand, the effective removal of ketoprofen by ultraviolet (UV) radiation for disinfection was demonstrated, although the disinfection by-products were not identified.

  8. Condition Assessment of Wastewater Collection Systems

    EPA Science Inventory

    Municipal sanitary sewer collection systems play a critical role in protecting public health in our municipalities. They are designed to convey wastewater from their sources to a wastewater treatment plant (WWTP). Collection systems consist of house service laterals, sewers, pu...

  9. Estimation of amount of selected pharmaceuticals sorbed onto digested sludge from wastewater treatment plant Bratislava-Petržalka.

    PubMed

    Ivanová, Lucia; Fáberová, Milota; Mackuľak, Tomáš; Grabic, Roman; Bodík, Igor

    2017-05-01

    Antibiotics and antidepressants are among the most successful drugs used for human therapy. Their concentration in influent on WWTP is relative high and there can be removed by biodegradation or sorption. The aim of this study was to define the amounts of sorbed pharmaceuticals on digested sludge from WWTP Bratislava - Petržalka. The amounts of sorbed pharmaceuticals were calculated from knowing partition coefficients for selected pharmaceuticals and from analytically measured pharmaceutical´s concentrations in sludge liquor. From this calculation were estimated the one-year sorbed amount of pharmaceutical onto sludge from wastewater treatment plant Petržalka (26,066g/y for ciprofloxacin, 756g/y for azithromycin, 647g/y for clarithromycin, 445g/y for venlafaxine and 148g/y for citalopram). Copyright © 2017 Elsevier Inc. All rights reserved.

  10. In-Stream Microbial Denitrification Potential at Wastewater Treatment Plant Discharge Sites

    NASA Astrophysics Data System (ADS)

    Hill, N. B.; Rahm, B. G.; Shaw, S. B.; Riha, S. J.

    2014-12-01

    Reactive nitrogen loading from municipal sewage discharge provides point sources of nitrate (NO3-) to rivers and streams. Through microbially-mediated denitrification, NO3- can be converted to dinitrogen (N2) and nitrous oxide (N2O) gases, which are released to the atmosphere. Preliminary observations made throughout summer 2011 near a wastewater treatment plant (WWTP) outfall in the Finger Lakes region of New York indicated that NO3- concentrations downstream of the discharge pipe were lower relative to upstream concentrations. This suggested that nitrate processing was occurring more rapidly and completely than predicted by current models and that point "sources" can in some cases be point "sinks". Molecular assays and stable isotope analyses were combined with laboratory microcosm experiments and water chemistry analyses to better understand the mechanism of nitrate transformation. Nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes were detected in water and sediment samples using qPCR. Denitrifcation genes were present attached to stream sediment, in pipe biofilm, and in WWTP discharge water. A comparison of δ18-O and δ15-N signatures also supported the hypothesis that stream NO3- had been processed biotically. Results from microcosm experiments indicated that the NO3- transformations occur at the sediment-water interface rather than in the water column. In some instances, quantities of denitrification genes were at higher concentrations attached to sediment downstream of the discharge pipe than upstream of the pipe suggesting that the wastewater discharge may be enriching the downstream sediment and could promote in-stream denitrification.

  11. Human infective potential of Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi in urban wastewater treatment plant effluents

    EPA Pesticide Factsheets

    Cryptosporidiosis, giardiasis, and microsporidiosis are important waterborne diseases. In thestandard for wastewater treatment plant (WWTP) effluents in China and other countries, fecalcoliform is the only microbial indicator, raising concerns about the potential for pathogentransmission through WWPT effluent reuse. In this study, we collected 50 effluent samples(30 L/sample) from three municipal WWTPs in Shanghai, China and analyzed for Cryptosporidiumspp., Giardia duodenalis and Enterocytozoon bieneusi by microscopy and/or PCR. Moreover,propidium monoazide (PMA)-PCR was used to assess the viability of oocysts/cysts. The microscopyand PCR-positive rates for Cryptosporidium spp. were 62% and 40%, respectively. The occurrencerates of G. duodenalis were 96% by microscopy and 92??100% by PCR analysis of three genetic loci.Furthermore, E. bieneusi was detected in 70% (35/50) of samples by PCR. Altogether, tenCryptosporidium species or genotypes, two G. duodenalis genotypes, and 11 E. bieneusi genotypeswere found, most of which were human-pathogenic. The chlorine dioxide disinfection employed inWWTP1 and WWTP3 failed to inactivate the residual pathogens; 93% of the samples from WWTP1 and83% from WWTP3 did not meet the national standard on fecal coliform levels. Thus, urban WWTPeffluents often contain residual waterborne human pathogens.This dataset is associated with the following publication:Ma, J., Y. Feng, Y. Hu, E. Villegas , and L. Xiao. Human infective potentia

  12. The physicochemical distribution of 131I in a municipal wastewater treatment plant.

    PubMed

    Hormann, Volker; Fischer, Helmut W

    2017-11-01

    As a consequence of therapeutic and diagnostic treatment of patients with thyroid diseases, 131 I is introduced into the sewage system on a regular basis. This presents an opportunity to use the 131 I as a tracer to study its partitioning and transport within a wastewater treatment plant (WWTP). In the case of nuclear accidents where 131 I is one of the most prominent nuclides, an understanding of iodine partitioning and transport will be valuable for developing models that may prognosticate the activity concentrations in sludge and outflow, especially after an accidental input. In this study, samples from various locations inside a municipal WWTP were taken and for each sample, three different fractions were separated by a chemical extraction process. These fractions were analysed for their 131 I activity concentrations by gamma-ray spectroscopy. While about 30% of the radioiodine activity in the inflow is associated with organic molecules, this amounts to about 90% after biological treatment. This is caused by the accumulation of 131 I bound to organic matter in the return sludge and by a transfer of 131 I from the inorganic to the organic fractions, most likely mediated by microbial action. In the outflow, inorganic and low-molecular 131 I is dominant, but the overall activity concentration is reduced to about 50-75%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Greenhouse gas emissions from municipal wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    Operating wastewater treatment plants (WWTP) represent a source of greenhouse gases (GHG). Direct GHG emissions include emissions of methane (CH4) and nitrous oxide (N2O) that can be biologically produced during wastewater and sewage sludge treatment. This is also highlighted in the Intergovernmental Panel on Climate Change (IPCC 2006) guidelines used for national GHG inventories. Indirect GHG emissions occur at WWTPs mainly by the consumption of electricity, fossil fuel for transportation and by the use of chemicals (e.g. coagulants). In this study, the impact of direct and indirect GHG emissions was quantified for two model WWTPs of 50.000 person equivalents (p.e.) using carbon footprint analyses. It was assumed that at one WWTP sewage sludge is digested anaerobically, at the other one it is aerobically stabilised in the activated sludge tank. The carbon footprint analyses were performed using literature emission factors. A new estimation model based on measurements at eight Austrian WWTPs was used for the assessment of N2O direct emissions (Parravicini et al., 2015). The results of the calculations show that, under the selected assumptions, the direct N2O emission from the activated sludge tank can dominate the carbon footprint of WWTP with a poor nitrogen removal efficiency. Through an improved operation of nitrogen removal several advantages can be gained: direct N2O emissions can be reduced, the energy demand for aeration can be decreased and a higher effluent quality can be achieved. Anaerobic digesters and anaerobic sludge storage tanks can become a relevant source of direct CH4 emissions. Minimising of CH4 losses from these sources improves the carbon footprint of the WWTP also increasing the energy yield achievable by combusting this renewable energy carrier in a combined heat and power unit. The estimated carbon footprint of the model WWTPs lies between 20 and 40 kg CO2e/p.e./a. This corresponds to 0.2 to 0.4% of the CO2e average emission caused yearly

  14. Application of subsurface vertical flow constructed wetlands to reject water treatment in dairy wastewater treatment plant.

    PubMed

    Dąbrowski, Wojciech; Karolinczak, Beata; Gajewska, Magdalena; Wojciechowska, Ewa

    2017-01-01

    The paper presents the effects of applying subsurface vertical flow constructed wetlands (SS VF) for the treatment of reject water generated in the process of aerobic sewage sludge stabilization in the biggest dairy wastewater treatment plant (WWTP) in Poland. Two SS VF beds were built: bed (A) with 0.65 m depth and bed (B) with 1.0 m depth, planted with reeds. Beds were fed with reject water with hydraulic load of 0.1 m d -1 in order to establish the differences in treatment efficiency. During an eight-months research period, a high removal efficiency of predominant pollutants was shown: BOD 5 88.1% (A) and 90.5% (B); COD 84.5% (A) and 87.5% (B); TSS 87.6% (A) and 91.9% (B); TKN 82.4% (A) and 76.5% (B); N-NH 4 + 89.2% (A) and 85.7% (B); TP 30.2% (A) and 40.6% (B). There were not statistically significant differences in the removal efficiencies between bed (B) with 1.0 m depth and bed (A) with 0.65 m depth. The research indicated that SS VF beds could be successfully applied to reject water treatment in dairy WWTPs. The study proved that the use of SS VF beds in full scale in dairy WWTPs would result in a significant decrease in pollutants' load in reject water. In the analyzed case, decreasing the load of ammonia nitrogen was of greatest importance, as it constituted 58% of the total load treated in dairy WWTP and posed a hazard to the stability of the treatment process.

  15. Assessing the estrogenic potency in a Portuguese wastewater treatment plant using an integrated approach.

    PubMed

    Diniz, Mário S; Maurício, Rita; Petrovic, Mira; López de Alda, Maria J; Amaral, Leonor; Peres, Isabel; Barceló, Damiá; Santana, Fernando

    2010-01-01

    The estrogenic potency of a wastewater treatment plant (WWTP) was evaluated using chemical and biological analyses, which showed that after the station treatment processes some of the selected endocrine disruptor compounds (EDCs) were still present in the treated effluent (e.g., bisphenol A, alkylphenols, estrone). Thus, the most common endocrine EDCs were identified and quantified and the overall estrogenicity of the treated effluent assessed by integrating the results. Male goldfish (Carassius auratus) were used as biological indicators in a 28-day experiment. Vitellogenin (Vtg), gonadosomatic and hepatosomatic indices, steroids (17beta-estradiol and 11-ketotestosterone) and histopathology were biomarkers used in fish to evaluate WWTP treated effluent estrogenicity, in combination with instrumental analyses. The results showed a significant increase (P < 0.01) in plasma and liver Vtg, which were significantly correlated (r = 0.66; P < 0.01). The gonadosmatic index was significantly (P < 0.01) reduced in exposed fish. The steroid analyses revealed significant elevations in 17beta-estradiol and depressed 11-ketotestosterone concentrations. The histological examinations show changes in exposed fish gonads, such as regressed testes and in some cases (43% to 75%) the development of ovo-testis in fish exposed to 50% and 100% treated effluent.

  16. Occurrence and potential transport of selected pharmaceuticals and other organic wastewater compounds from wastewater-treatment plant influent and effluent to groundwater and canal systems in Miami-Dade County, Florida

    USGS Publications Warehouse

    Foster, Adam L.; Katz, Brian G.; Meyer, Michael T.

    2012-01-01

    An increased demand for fresh groundwater resources in South Florida has prompted Miami-Dade County to expand its water reclamation program and actively pursue reuse plans for aquifer recharge, irrigation, and wetland rehydration. The U.S. Geological Survey, in cooperation with the Miami-Dade Water and Sewer Department (WASD) and the Miami-Dade Department of Environmental Resources Management (DERM), initiated a study in 2008 to assess the presence of selected pharmaceuticals and other organic wastewater compounds in the influent and effluent at three regional wastewater-treatment plants (WWTPs) operated by the WASD and at one WWTP operated by the City of Homestead, Florida (HSWWTP).

  17. Nutrient Removal and Resource Recovery: Effect on Life Cycle Cost and Environmental Impacts of Small Scale Wastewater Treatment

    EPA Science Inventory

    Many communities across the U.S. are required to upgrade wastewater treatment plants (WWTP) to meet increasingly stringent nutrient effluent standards. However, increased capital, energy and chemical requirements of upgrades create potential trade-offs between eutrophication pote...

  18. Removal of organic wastewater contaminants in septic systems using advanced treatment technologies

    USGS Publications Warehouse

    Wilcox, J.D.; Bahr, J.M.; Hedman, C.J.; Hemming, J.D.C.; Barman, M.A.E.; Bradbury, K.R.

    2009-01-01

    The detection of pharmaceuticals and other organic wastewater contaminants (OWCs) in ground water and surface-water bodies has raised concerns about the possible ecological impacts of these compounds on nontarget organisms. On-site wastewater treatment systems represent a potentially significant route of entry for organic contaminants to the environment. In this study, effluent samples were collected and analyzed from conventional septic systems and from systems using advanced treatment technologies. Six of 13 target compounds were detected in effluent from at least one septic system. Caffeine, paraxanthine, and acetaminophen were the most frequently detected compounds, and estrogenic activity was detected in 14 of 15 systems. The OWC concentrations were significantly lower in effluent after sand filtration (p < 0.01) or aerobic treatment (p < 0.05) as compared with effluent that had not undergone advanced treatment. In general, concentrations in conventional systems were comparable to those measured in previous studies of municipal wastewater treatment plant (WWTP) influent, and concentrations in systems after advanced treatment were comparable to previously measured concentrations in WWTP effluent. These data indicate that septic systems using advanced treatment can reduce OWCs in treated effluent to similar concentrations as municipal WWTPs. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  19. Occurrence of Cryptosporidium, Giardia, and Cyclospora in influent and effluent water at wastewater treatment plants in Arizona.

    PubMed

    Kitajima, Masaaki; Haramoto, Eiji; Iker, Brandon C; Gerba, Charles P

    2014-06-15

    We investigated the occurrence of Cryptosporidium, Giardia, and Cyclospora at two wastewater treatment plants (WWTPs) in Arizona over a 12-month period, from August 2011 to July 2012. Influent and effluent wastewater samples were collected monthly, and protozoan (oo)cysts were concentrated using an electronegative filter, followed by the detection of protozoa using fluorescent microscopy (Cryptosporidium oocysts and Giardia cysts) and PCR-based methods (Cryptosporidium spp., Giardia intestinalis, and Cyclospora cayetanensis). The concentration of Giardia cysts in the influent was always higher than that of Cryptosporidium oocysts (mean concentration of 4.8-6.4×10(3) versus 7.4×10(1)-1.0×10(2)(oo)cysts/l) with no clear seasonality, and log10 reduction of Giardia cysts was significantly higher than that of Cryptosporidium oocysts for both WWTPs (P<0.05). Log10 reduction of Giardia cysts at the WWTP utilizing activated sludge was significantly higher than the other WWTP using trickling filter (P=0.014), while no statistically significant difference between the two WWTPs was observed for the log10 reduction of Cryptosporidium oocysts (P=0.207). Phylogenetic analysis revealed that G. intestinalis strains identified in wastewater belonged to two assemblages, AII and B, which are potentially infectious to humans. C. cayetanensis was also detected from both influent and effluent using a newly developed quantitative PCR, with the highest influent concentration of 1.2×10(4)copies/l. Our results demonstrated that these protozoan pathogens are prevalent in the study area and that efficacy of the conventional wastewater treatment processes at physically removing (oo)cysts is limited. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A modeling understanding on the phosphorous removal performances of A2O and reversed A2O processes in a full-scale wastewater treatment plant.

    PubMed

    Xie, Wen-Ming; Zeng, Raymond J; Li, Wen-Wei; Wang, Guo-Xiang; Zhang, Li-Min

    2018-05-31

    Reversed A 2 O process (anoxic-anaerobic-aerobic) and conventional A 2 O process (anaerobic-anoxic-aerobic) are widely used in many wastewater treatment plants (WWTPs) in Asia. However, at present, there are still no consistent results to figure out which process has better total phosphorous (TP) removal performance and the mechanism for this difference was not clear yet. In this study, the treatment performances of both processes were compared in the same full-scale WWTP and the TP removal dynamics was analyzed by a modeling method. The treatment performance of full-scale WWTP showed the TP removal efficiency of the reversed A 2 O process was more efficient than in the conventional A 2 O process. The modeling results further reveal that the TP removal depends highly on the concentration and composition of influent COD. It had more efficient TP removal than the conventional A 2 O process only under conditions of sufficient influent COD and high fermentation products content. This study may lay a foundation for appropriate selection and optimization of treatment processes to suit practical wastewater properties.

  1. Determination of pharmaceutical residues and assessment of their removal efficiency at the Daugavgriva municipal wastewater treatment plant in Riga, Latvia.

    PubMed

    Reinholds, I; Muter, O; Pugajeva, I; Rusko, J; Perkons, I; Bartkevics, V

    2017-01-01

    Pharmaceutical products (PPs) belong to emerging contaminants that may accumulate along with other chemical pollutants in wastewaters (WWs) entering industrial and/or urban wastewater treatment plants (WWTPs). In the present study, the technique of ultra-high-performance liquid chromatography coupled to Orbitrap high-resolution mass spectrometry (Orbitrap-HRMS) was applied for the analysis of 24 multi-class PPs in WW samples collected at different technological stages of Daugavgriva WWTP located in Riga, Latvia. Caffeine and acetaminophen levels in the range of 7,570-11,403 ng/L and 810-1,883 ng/L, respectively, were the predominant compounds among 19 PPs determined in the WW. The results indicate that aerobic digestion in biological ponds was insufficiently effective to degrade most of the PPs (reduction efficiency <0-50.0%) with the exception of four PPs that showed degradation efficiency varying from 55.0 to 99.9%. Tests of short-term chemical and enzymatic hydrolysis for PP degradation in WW samples were performed, and the results reflected the complexity of different degradation mechanisms and physicochemical transformations of PPs. The toxicological studies of WW impact on Daphnia magna indicated gradual reduction of the total toxicity through the treatment stages at the WWTP.

  2. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics.

    PubMed

    Ziajahromi, Shima; Neale, Peta A; Rintoul, Llew; Leusch, Frederic D L

    2017-04-01

    Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with

  3. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant.

    PubMed

    Golovko, Oksana; Kumar, Vimal; Fedorova, Ganna; Randak, Tomas; Grabic, Roman

    2014-09-01

    Seasonal changes in the concentration of 21 pharmaceuticals in a wastewater treatment plant (WWTP) in České Budějovice were investigated over 12months. The target compounds were 10 antibiotics, 4 antidepressants, 3 psychiatric drugs, 2 antihistamines and 2 lipid regulators. 272 Wastewater samples (136 influents and 136 effluents) were collected from March 2011 to February 2012 and analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. All studied pharmaceuticals were frequently detected in both the influent and the effluent wastewater samples, except for meclozine, which was only found in the influent. The mean concentration of pharmaceuticals varied from 0.006μgL(-1) to 1.48μgL(-1) in the influent and from 0.003μgL(-1) to 0.93μgL(-1) in the effluent. The concentration of most pharmaceuticals was higher during winter. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Modelling real-time control of WWTP influent flow under data scarcity.

    PubMed

    Kroll, Stefan; Dirckx, Geert; Donckels, Brecht M R; Van Dorpe, Mieke; Weemaes, Marjoleine; Willems, Patrick

    2016-01-01

    In order to comply with effluent standards, wastewater operators need to avoid hydraulic overloading of the wastewater treatment plant (WWTP), as this can result in the washout of activated sludge from secondary settling tanks. Hydraulic overloading can occur in a systematic way, for instance when sewer network connections are extended without increasing the WWTP's capacity accordingly. This study demonstrates the use of rule-based real-time control (RTC) to reduce the load to the WWTP while restricting the overall overflow volume of the sewer system to a minimum. Further, it shows the added value of RTC despite the limited availability of monitoring data and information on the catchment through a parsimonious simulation approach, using relocation of spatial system boundaries and creating required input data through reverse modelling. Focus was hereby on the accurate modelling of pump hydraulics and control. Finally, two different methods of global sensitivity analysis were employed to verify the influence of parameters of both the model and the implemented control algorithm. Both methods show the importance of good knowledge of the system properties, but that monitoring errors play a minor role.

  5. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant

    PubMed Central

    Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis

    2013-01-01

    Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347

  6. Impact assessment of a wastewater treatment plant effluent using the fish biomarker ethoxyresorufin-O-deethylase: field and on-site experiments.

    PubMed

    Kosmala, A; Migeon, B; Flammarion, P; Garric, J

    1998-09-01

    The impact of a wastewater treatment plant (WWTP) effluent was assessed with the fish biomarker ethoxyresorufin-O-deethylase (EROD) using field and on-site laboratory experiments. EROD activity was measured in chub (Leuciscus cephalus) and stone loach (Noemacheilus barbatulus) caught at three sites of the Chalaronne River (southeast France). Liver somatic index (LSI) and organochloride bioaccumulation in muscle were estimated for chub only. In September, EROD activity and LSI of chub increased significantly between the sites above and below the WWTP effluent discharge. EROD induction detected in chub was confirmed by on-site tank experiments. EROD levels were determined in juvenile rainbow trout (Oncorhynchus mykiss) and mirror carp (Cyprinus carpio) exposed to different concentrations of the WWTP effluent and river water for 16 days. After a 4-day exposure, EROD activities of the carp exposed to the effluent increased significantly compared with the control. The response was linked to the effluent concentration and was stable with exposure time. WWTP effluent induced EROD activity, whereas organic and metal analyses, performed on fish muscle and sediment, did not indicate any difference between upstream and downstream of the discharge. Copyright 1998 Academic Press.

  7. Mass flows of perfluorinated compounds (PFCs) in central wastewater treatment plants of industrial zones in Thailand.

    PubMed

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana; Shivakoti, Binaya Raj

    2011-04-01

    Perfluorinated compounds (PFCs) are fully fluorinated organic compounds, which have been used in many industrial processes and have been detected in wastewater and sludge from municipal wastewater treatment plants (WWTPs) around the world. This study focused on the occurrences of PFCs and PFCs mass flows in the industrial wastewater treatment plants, which reported to be the important sources of PFCs. Surveys were conducted in central wastewater treatment plant in two industrial zones in Thailand. Samples were collected from influent, aeration tank, secondary clarifier effluent, effluent and sludge. The major purpose of this field study was to identify PFCs occurrences and mass flow during industrial WWTP. Solid-phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis. Total 10 PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluoropropanoic acid (PFPA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorohexane sulfonate (PFHxS), perfluoronanoic acid (PFNA), perfluordecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA) were measured to identify their occurrences. PFCs were detected in both liquid and solid phase in most samples. The exceptionally high level of PFCs was detected in the treatment plant of IZ1 and IZ2 ranging between 662-847ngL(-1) and 674-1383ngL(-1), respectively, which greater than PFCs found in most domestic wastewater. Due to PFCs non-biodegradable property, both WWTPs were found ineffective in removing PFCs using activated sludge processes. Bio-accumulation in sludge could be the major removal mechanism of PFCs in the process. The increasing amount of PFCs after activated sludge processes were identified which could be due to the degradation of PFCs precursors. PFCs concentration found in the effluent were very high comparing to those in river water of the area. Industrial activity could be the one of major sources of PFCs

  8. Association of Biodiversity with the Rates of Micropollutant Biotransformations among Full-Scale Wastewater Treatment Plant Communities

    PubMed Central

    Helbling, Damian E.; Lee, Tae Kwon; Park, Joonhong; Fenner, Kathrin; Kohler, Hans-Peter E.; Ackermann, Martin

    2014-01-01

    Biodiversities can differ substantially among different wastewater treatment plant (WWTP) communities. Whether differences in biodiversity translate into differences in the provision of particular ecosystem services, however, is under active debate. Theoretical considerations predict that WWTP communities with more biodiversity are more likely to contain strains that have positive effects on the rates of particular ecosystem functions, thus resulting in positive associations between those two variables. However, if WWTP communities were sufficiently biodiverse to nearly saturate the set of possible positive effects, then positive associations would not occur between biodiversity and the rates of particular ecosystem functions. To test these expectations, we measured the taxonomic biodiversity, functional biodiversity, and rates of 10 different micropollutant biotransformations for 10 full-scale WWTP communities. We have demonstrated that biodiversity is positively associated with the rates of specific, but not all, micropollutant biotransformations. Thus, one cannot assume whether or how biodiversity will associate with the rate of any particular micropollutant biotransformation. We have further demonstrated that the strongest positive association is between biodiversity and the collective rate of multiple micropollutant biotransformations. Thus, more biodiversity is likely required to maximize the collective rates of multiple micropollutant biotransformations than is required to maximize the rate of any individual micropollutant biotransformation. We finally provide evidence that the positive associations are stronger for rare micropollutant biotransformations than for common micropollutant biotransformations. Together, our results are consistent with the hypothesis that differences in biodiversity can indeed translate into differences in the provision of particular ecosystem services by full-scale WWTP communities. PMID:25398862

  9. Occurrence and fate of steroid estrogens in the largest wastewater treatment plant in Beijing, China.

    PubMed

    Zhou, Yiqi; Zha, Jinmiao; Wang, Zijian

    2012-11-01

    Concern over steroid estrogens has increased rapidly in recent years due to their adverse health effects. Effluent discharge from wastewater treatment plants (WWTPs) is the main pollutant source for environmental water. To understand the pollutant level and fate of steroid estrogens in WWTPs, the occurrence of estrone (E1), 17-β-estradiol (E2), estriol (E3), and 17-β-ethinylestradiol (EE2) was investigated in the Gaobeidian WWTP in Beijing, China. Water samples from influent as well as effluent from second sedimentation tanks and advanced treatment processes were taken monthly during 2006 to 2007. In influent, steroid estrogen concentrations varied from 11.6 to 1.1 × 10(2) ng/l, 3.7 to 1.4 × 10(2) ng/l, no detection (nd) to 7.6×10(2) ng/l and nd to 3.3 × 10(2) ng/l for E1, E2, E3, and EE2, respectively. Compared with documented values, the higher steroid estrogen concentrations in the WWTP influent may be due to higher population density, higher birthrate, less dilution, and different sampling time. Results revealed that a municipal WWTP with an activated sludge system incorporating anaerobic, anoxic, and aerobic processes could eliminate natural and synthetic estrogens effectively. The mean elimination efficiencies were 83.2%, 96.4%, 98.8%, and 93.0% for E1, E2, E3, and EE2, respectively. The major removal mechanism for natural estrogens and synthetic estrogen EE2 were biodegradation and sorption on the basis of mass balance in water, suspension particles, and sludge. In the WWTP effluent, however, the highest concentrations of E1, E2, E3, and EE2 attained were 74.2, 3.9, 5.1, and 4.6 ng/l, respectively. This is concerning as residual steroid estrogens in WWTP effluent could lead to pollution of the receiving water. Advanced flocculation treatment was applied in the WWTP and transformed the residual estrogen conjugates to free species, which were reduced further by filtration with removal shifting from 32% to 57% for natural estrogen, although no EE2 was

  10. Behaviour of five pharmaceuticals with high baseline toxicity in wastewater treatment

    NASA Astrophysics Data System (ADS)

    van Driezum, Inge; McArdell, Christa; Fenner, Kathrin; Helbling, Damian; van Breukelen, Boris

    2013-04-01

    Many pharmaceuticals enter the aquatic environment through sewer systems and are partially removed in wastewater treatment plants (WWTP) by sorption to sludge biomass or biodegradation. Biodegradation often does not lead to complete mineralization but to the formation of stable transformation products (TPs), which might still be harmful to the environment. Recently, a study was undertaken to assess the risk of the top 100 pharmaceuticals from wastewater of a hospital in Switzerland. The predicted toxicity was linked to the predicted environmental concentration in order to assess overall risk potential. In this study, biodegradation and sorption studies were carried out on the top five selected pharmaceuticals (amiodarone, atorvastatin, clotrimazole, meclozine and ritonavir). Potential TPs that are formed during activated sludge treatment were identified and concentrations of both the parent compounds and TPs were measured in the WWTP. With this data, the fate of these compounds was modeled in a WWTP system using a multi-reactor steady-state WWTP model. This study showed that sorption was the most important loss process for amiodarone and meclozine. They had an elimination of more than 99%. Sorption was also the main loss process for clotrimazole, but it was combined with some biodegradation. For ritonavir, both biodegradation and sorption played a role in the loss of this compound. The most important removal process for atorvastatin was biodegradation. Four TPs, formed through β-oxidation and monohydroxilation, were identified in both the activated sludge batch reactors and the WWTP effluent. In the WWTP effluent, only atorvastatin, clotrimazole and ritonavir were found. All identified TPs of atorvastatin were detected in the effluent. Risk quotients (RQ) of all five pharmaceuticals were estimated based on effluent concentration and baseline toxicity and ranged from zero to 2.14. Only ritonavir potentially poses an ecotoxicological risk for the aquatic environment.

  11. Human exposure to hydrogen sulphide concentrations near wastewater treatment plants.

    PubMed

    Godoi, Ana Flavia Locateli; Grasel, Anderson Marlon; Polezer, Gabriela; Brown, Andrew; Potgieter-Vermaak, Sanja; Scremim, Débora Camargo; Yamamoto, Carlos I; Godoi, Ricardo Henrique Moreton

    2018-01-01

    The hydrogen sulphide (H 2 S) levels from wastewater treatment plants (WWTPs) in Curitiba, Brazil have been quantified for the first time. H 2 S generated by anaerobic decomposition of organic matter in WWTPs is a cause for concern because it is an air pollutant, which can cause eye and respiratory irritation, headaches, and nausea. Considering the requirement for WWTPs in all communities, it is necessary to assess the concentrations and effects of gases such as H 2 S on populations living and/or working near WWTPs. The primary objective of this study was to evaluate the indoor and outdoor concentration of H 2 S in the neighbourhood of two WWTPs located in Curitiba, as well as its human health impacts. Between August 2013 and March 2014 eight sampling campaigns were performed using passive samplers and the analyses were carried out by spectrophotometry, presenting mean concentrations ranging from 0.14 to 32μgm -3 . Eleven points at WWTP-A reported H 2 S average concentrations above the WHO recommendation of 10μgm -3 , and 15 points above the US EPA guideline of 2μgm -3 . At WWTP-B the H 2 S concentration was above US EPA guideline at all the sampling points. The I/O ratio on the different sampling sites showed accumulation of indoor H 2 S in some instances and result in exacerbating the exposure of the residents. The highest H 2 S concentrations were recorded during the summer in houses located closest to the sewage treatment stations, and towards the main wind direction, showing the importance of these factors when planning a WWTP. Lifetime risk assessments of hydrogen sulphide exposure showed a significant non-carcinogenic adverse health risk for local residents and workers, especially those close to anaerobic WWTPs. The data indicated that WWTPs operated under these conditions should be recognized as a significant air pollution source, putting local populations at risk. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Planning of wastewater treatment and disposal systems of Istanbul metropolitan area.

    PubMed

    Eroglu, V; Sarikaya, H Z; Aydin, A F

    2001-01-01

    Current and future wastewater treatment and disposal strategies of Istanbul city are presented. Istanbul is the largest city of Turkey and has a population of 10 million that may reach about 20 million in 2032. The city is divided into Asian and European sides by the Bosphorus Strait. The Sea of Marmara is an enclosed sea, connected to the Black Sea and Aegean Sea by the straits of Bosphorus and Dardanelles. Therefore, there is very strong and permanent stratification in the Sea of Marmara throughout the year, lower layers carrying Mediterranean and the upper layers carrying Black Sea water. This unique coastal structure of Istanbul necessitated a detailed study to determine the level of wastewater treatment and the location and depth of marine outfalls. A comprehensive three-dimensional water quality modelling study concluded that tertiary treatment including nitrogen and phosphorus removal is required for the effluent discharges into the Marmara Sea. However, enhanced primary or even primary treatment has been found satisfactory for discharges into the lower layers of the Bosphorus and into the Black Sea. Provisions for upgrading to secondary treatment were recommended. The status of existing and planned wastewater treatment plants and sea outfalls of Istanbul city are also presented. Although the amount of treated wastewater was only 63 percent in 1998, a target of 95 percent treatment level by the end of 2000 has been adopted in implementation plans. All treatment plants are located at or close to the coast except Pasakoy WWTP which is in the catchment area of Omerli Reservoir, the major source of drinking water for Istanbul city. The Pasakoy WWTP has been designed to treat wastewaters collected from the catchment area of Omerli Reservoir to tertiary level before ultimate disposal. The implementation programme together with the cost estimates are given. Total investment on water, wastewater and stormwater projects up to year 2032 is estimated at about 10

  13. Quantitative detection of powdered activated carbon in wastewater treatment plant effluent by thermogravimetric analysis (TGA).

    PubMed

    Krahnstöver, Therese; Plattner, Julia; Wintgens, Thomas

    2016-09-15

    For the elimination of potentially harmful micropollutants, powdered activated carbon (PAC) adsorption is applied in many wastewater treatment plants (WWTP). This holds the risk of PAC leakage into the WWTP effluent and desorption of contaminants into natural water bodies. In order to assess a potential PAC leakage, PAC concentrations below several mg/L have to be detected in the WWTP effluent. None of the methods that are used for water analysis today are able to differentiate between activated carbon and solid background matrix. Thus, a selective, quantitative and easily applicable method is still needed for the detection of PAC residues in wastewater. In the present study, a method was developed to quantitatively measure the PAC content in wastewater by using filtration and thermogravimetric analysis (TGA), which is a well-established technique for the distinction between different solid materials. For the sample filtration, quartz filters with a temperature stability up to 950 °C were used. This allowed for sensitive and well reproducible measurements, as the TGA was not affected by the presence of the filter. The sample's mass fractions were calculated by integrating the mass decrease rate obtained by TGA in specific, clearly identifiable peak areas. A two-step TGA heating method consisting of N2 and O2 atmospheres led to a good differentiation between PAC and biological background matrix, thanks to the reduction of peak overlapping. A linear correlation was found between a sample's PAC content and the corresponding peak areas under N2 and O2, the sample volume and the solid mass separated by filtration. Based on these findings, various wastewater samples from different WWTPs were then analyzed by TGA with regard to their PAC content. It was found that, compared to alternative techniques such as measurement of turbidity or total suspended solids, the newly developed TGA method allows for a quantitative and selective detection of PAC concentrations down to 0

  14. Determination of alcohol sulfates in wastewater treatment plant influents and effluents by gas chromatography-mass spectrometry.

    PubMed

    Fernández-Ramos, C; Ballesteros, O; Blanc, R; Zafra-Gómez, A; Jiménez-Díaz, I; Navalón, A; Vílchez, J L

    2012-08-30

    In the present paper, we developed an accurate method for the analysis of alcohol sulfates (AS) in wastewater samples from wastewater treatment plant (WWTP) influents and effluents. Although many methodologies have been published in the literature concerning the study of anionic surfactants in environmental samples, at present, the number of analytical methodologies that focus in the determination of AS by gas chromatography in the different environmental compartments is limited. The reason for this is that gas chromatography-mass spectrometry (GC-MS) technique requires a previous hydrolysis reaction followed by derivatization reactions. In the present work, we proposed a new procedure in which the hydrolysis and derivatization reactions take place in one single step and AS are directly converted to trimethylsilyl derivatives. The main factors affecting solid-phase extraction (SPE), hydrolysis/derivatization and GC-MS procedures were accurately optimised. Quantification of the target compounds was performed by using GC-MS in selected ion monitoring (SIM) mode. The limits of detection (LOD) obtained ranged from 0.2 to 0.3 μg L(-1), and limits of quantification (LOQ) from 0.5 to 1.0 μg L(-1), while inter- and intra-day variability was under 5%. A recovery assay was also carried out. Recovery rates for homologues in spiked samples ranged from 96 to 103%. The proposed method was successfully applied for the determination of anionic surfactants in wastewater samples from one WWTP located in Granada (Spain). Concentration levels for the homologues up to 39.4 μg L(-1) in influent and up to 8.1 μg L(-1) in effluent wastewater samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Nanoparticles in Constanta-North Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, I. M.; Panaitescu, Fanel-Viorel L.; Panaitescu, Ileana-Irina F. V.

    2015-02-01

    In this paper we describe the route of the nanoparticles in the WWTP and demonstrate how to use the simulation flow sensitivity analysis within STOATTM program to evaluate the effect of variation of the constant, "k" in the equation v= kCh settling on fixed concentration of nanoparticles in sewage water from a primary tank of physical-biological stage. Wastewater treatment facilities are designed to remove conventional pollutants from sanitary waste. Major processes of treatment includes: a) physical treatment-remove suspended large solids by settling or sedimentation and eliminate floating greases; b) biological treatment-degradation or consumption of the dissolved organic matter using the means of cultivated in activated sludge or the trickling filters; c) chemical treatment-remove other matters by the means of chemical addition or destroying pathogenic organisms through disinfection; d) advanced treatment- removing specific constituents using processes such as activated carbon, membrane separation, or ion exchange. Particular treatment processes are: a) sedimentation; b) coagulation and flocculation; c) activated sludge; d) sand filters; e) membrane separation; f) disinfection. Methods are: 1) using the STOATTM program with input and output data for primary tank and parameters of wastewater. 2) generating a data file for influent using a sinusoidal model and we accepted defaults STOATTM data. 3) After this, getting spreadsheet data for various characteristics of wastewater for 48 hours:flow, temperature, pH, volatile fatty acids, soluble BOD, COD inert soluble particulate BOD, COD inert particles, volatile solids, volatile solids, ammonia, nitrate and soluble organic nitrogen. Findings and Results:1.Graphics after 48 hour;. 2.Graphics for parameters - flow,temperature, pH/units hours; 3.Graphics of nanoparticles; 4. Graphics of others volatile and non-volatile solids; 5. Timeseries data and summary statistics. Biodegradation of nanoparticles is the breakdown of

  16. ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...

  17. Examination of food waste co-digestion to manage the peak in energy demand at wastewater treatment plants.

    PubMed

    Lensch, D; Schaum, C; Cornel, P

    2016-01-01

    Many digesters in Germany are not operated at full capacity; this offers the opportunity for co-digestion. Within this research the potentials and limits of a flexible and adapted sludge treatment are examined with a focus on the digestion process with added food waste as co-substrate. In parallel, energy data from a municipal wastewater treatment plant (WWTP) are analysed and lab-scale semi-continuous and batch digestion tests are conducted. Within the digestion tests, the ratio of sewage sludge to co-substrate was varied. The final methane yields show the high potential of food waste: the higher the amount of food waste the higher the final yield. However, the conversion rates directly after charging demonstrate better results by charging 10% food waste instead of 20%. Finally, these results are merged with the energy data from the WWTP. As an illustration, the load required to cover base loads as well as peak loads for typical daily variations of the plant's energy demand are calculated. It was found that 735 m³ raw sludge and 73 m³ of a mixture of raw sludge and food waste is required to cover 100% of the base load and 95% of the peak load.

  18. Aquatic Plants and Wastewater Treatment (an Overview)

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology for using water hyacinth to upgrade domestic sewage effluent from lagoons and other wastewater treatment facilities to secondary and advanced secondary standards has been sufficiently developed to be used where the climate is warm year round. The technology of using emergent plants such as bulrush combined with duckweed is also sufficiently developed to make this a viable wastewater treatment alternative. This system is suited for both temperate and semi-tropical areas found throughout most of the U.S. The newest technology in artificial marsh wastewater treatment involves the use of emergent plant roots in conjunction with high surface area rock filters. Smaller land areas are required for these systems because of the increased concentration of microorganisms associated with the rock and plant root surfaces. Approximately 75 percent less land area is required for the plant-rock system than is required for a strict artificial wetland to achieve the same level of treatment.

  19. Phenol wastewater remediation: advanced oxidation processes coupled to a biological treatment.

    PubMed

    Rubalcaba, A; Suárez-Ojeda, M E; Stüber, F; Fortuny, A; Bengoa, C; Metcalfe, I; Font, J; Carrera, J; Fabregat, A

    2007-01-01

    Nowadays, there are increasingly stringent regulations requiring more and more treatment of industrial effluents to generate product waters which could be easily reused or disposed of to the environment without any harmful effects. Therefore, different advanced oxidation processes were investigated as suitable precursors for the biological treatment of industrial effluents containing phenol. Wet air oxidation and Fenton process were tested batch wise, while catalytic wet air oxidation and H2O2-promoted catalytic wet air oxidation processes were studied in a trickle bed reactor, the last two using over activated carbon as catalyst. Effluent characterisation was made by means of substrate conversion (using high liquid performance chromatography), chemical oxygen demand and total organic carbon. Biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) were obtained from respirometric tests using activated sludge from an urban biological wastewater treatment plant (WWTP). The main goal was to find the proper conditions in terms of biodegradability enhancement, so that these phenolic effluents could be successfully treated in an urban biological WWTP. Results show promising research ways for the development of efficient coupled processes for the treatment of wastewater containing toxic or biologically non-degradable compounds.

  20. Coke dust enhances coke plant wastewater treatment.

    PubMed

    Burmistrz, Piotr; Rozwadowski, Andrzej; Burmistrz, Michał; Karcz, Aleksander

    2014-12-01

    Coke plant wastewater contain many toxic pollutants. Despite physico-chemical and biological treatment this specific type of wastewater has a significant impact on environment and human health. This article presents results of research on industrial adsorptive coke plant wastewater treatment. As a sorbent the coke dust, dozen times less expensive than pulverized activated carbon, was used. Treatment was conducted in three scenarios: adsorptive after full treatment with coke dust at 15 g L(-1), biological treatment enhanced with coke dust at 0.3-0.5 g L(-1) and addition of coke dust at 0.3 g L(-1) prior to the biological treatment. The enhanced biological treatment proved the most effective. It allowed additional removal of 147-178 mg COD kg(-1) of coke dust. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Integrated assessment of wastewater treatment plant effluent estrogenicity in the Upper Murray River, Australia, using the native Murray rainbowfish (Melanotaenia fluviatilis)

    USGS Publications Warehouse

    Vajda, Alan M.; Kumar, Anupama; Woods, Marianne; Williams, Mike; Doan, Hai; Tolsher, Peter; Kookana, Rai S.; Barber, Larry B.

    2016-01-01

    The contamination of major continental river systems by endocrine-active chemicals (EACs) derived from the discharge of wastewater treatment plant (WWTP) effluents can affect human and ecosystem health. As part of a long-term effort to develop a native fish model organism for assessment of endocrine disruption in Australia's largest watershed, the Murray-Darling River Basin, the present study evaluated endocrine disruption in adult males of the native Australian Murray rainbowfish (Melanotaenia fluviatilis) exposed to effluent from an activated sludge WWTP and water from the Murray River during a 28-d, continuous-flow, on-site experiment. Analysis of the WWTP effluent and river water detected estrone and 17β-estradiol at concentrations up to approximately 25 ng L−1. Anti-estrogenicity of effluent samples was detected in vitro using yeast-based bioassays (yeast estrogen screen) throughout the experiment, but estrogenicity was limited to the first week of the experiment. Histological evaluation of the testes indicated significant suppression of spermatogenesis by WWTP effluent after 28 d of exposure. Plasma vitellogenin concentrations and expression of vitellogenin messenger RNA in liver were not significantly affected by exposure to WWTP effluent. The combination of low contaminant concentrations in the WWTP effluent, limited endocrine disrupting effects in the Murray rainbowfish, and high in-stream dilution factors (>99%) suggest minimal endocrine disruption impacts on native Australian fish in the Murray River downstream from the WWTP outfall. 

  2. Class 1 Integrons and the Antiseptic Resistance Gene (qacEΔ1) in Municipal and Swine Slaughterhouse Wastewater Treatment Plants and Wastewater—Associated Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Wan, Min Tao; Chou, Chin Cheng

    2015-01-01

    Class 1 integrons are mobile gene elements (MGEs) containing qacEΔ1 that are resistant to quaternary ammonium compound (QAC) disinfectants. This study compared the abundances of class 1 integrons and antiseptic resistance genes in municipal (M) and swine slaughterhouse (S) wastewater treatment plants (WWTPs) and investigated the presence of class 1 integrons and antiseptic resistance genes in methicillin-resistant Staphylococcus aureus (MRSA) isolated from wastewater samples. The abundances of intI1 and qacEΔ1 genes in 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR), and 113 MRSA isolates recovered from the wastewater samples were detected class 1 integrons and linked antiseptic resistance genes (qacEΔ1), and minimum inhibitory concentrations (MICs) for QAC antiseptics. The intI1 and qacEΔ1 genes were detected in all the wastewater samples, and they were more abundant in S-WWTP samples than in M-WWTP samples. A higher percentage of MRSA isolates carried qacEΔ1 in MRSA from swine wastewater samples (62.8%) than in municipal MRSA (3.7%). All the MRSA isolates showed high MICs for antiseptic agents. This study provides important evidence regarding the abundances of intI1 and qacEΔ1 genes in municipal and swine slaughterhouse wastewater, and antiseptic-resistant MRSA strains were detected in swine slaughterhouse wastewater. PMID:26042365

  3. LC-MS/MS determination of antiretroviral drugs in influents and effluents from wastewater treatment plants in KwaZulu-Natal, South Africa.

    PubMed

    Abafe, Ovokeroye A; Späth, Jana; Fick, Jerker; Jansson, Stina; Buckley, Chris; Stark, Annegret; Pietruschka, Bjoern; Martincigh, Bice S

    2018-06-01

    South Africa has the largest occurrence of the human immune deficiency virus (HIV) in the world but has also implemented the largest antiretroviral (ARV) treatment programme. It was therefore of interest to determine the presence and concentrations of commonly used antiretroviral drugs (ARVDs) and, also, to determine the capabilities of wastewater treatment plants (WWTPs) for removing ARVDs. To this end, a surrogate standard based LC-MS/MS method was optimized and applied for the detection of thirteen ARVDs used in the treatment and management of HIV/acquired immune deficiency syndrome (HIV/AIDS) in two major and one modular WWTP in the eThekwini Municipality in KwaZulu-Natal, South Africa. The method was validated and the detection limits fell within the range of 2-20 ng L -1 . The analytical recoveries for the ARVDs were mainly greater than 50% with acceptable relative standard deviations. The concentration values ranged from wastewater treatment facility (DEWATS); WWTP and 61-34000 ng L -1 (influent), WWTP. Whilst abacavir, lamivudine and zidovudine were almost completely removed from the effluents, atazanavir, efavirenz, lopinavir and nevirapine persisted in the effluents from all three WWTPs. To estimate the ecotoxicological risks associated with the discharge of ARVDs, a countrywide survey focussing on the occurrence of ARVDs in WWTPs, surface and fresh water bodies, and aquatic organisms, is necessary. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Ammonia-oxidizing bacteria dominate ammonia oxidation in a full-scale wastewater treatment plant revealed by DNA-based stable isotope probing.

    PubMed

    Pan, Kai-Ling; Gao, Jing-Feng; Li, Hong-Yu; Fan, Xiao-Yan; Li, Ding-Chang; Jiang, Hao

    2018-05-01

    A full-scale wastewater treatment plant (WWTP) with three separate treatment processes was selected to investigate the effects of seasonality and treatment process on the community structures of ammonia-oxidizing archaea (AOA) and bacteria (AOB). And then DNA-based stable isotope probing (DNA-SIP) was applied to explore the active ammonia oxidizers. The results of high-throughput sequencing indicated that treatment processes varied AOB communities rather than AOA communities. AOA slightly outnumbered AOB in most of the samples, whose abundance was significantly correlated with temperature. DNA-SIP results showed that the majority of AOB amoA gene was labeled by 13 C-substrate, while just a small amount of AOA amoA gene was labeled. As revealed by high-throughput sequencing of heavy DNA, Nitrosomonadaceae-like AOB, Nitrosomonas sp. NP1, Nitrosomonas oligotropha and Nitrosomonas marina were the active AOB, and Nitrososphaera viennensis dominated the active AOA. The results indicated that AOB, not AOA, dominated active ammonia oxidation in the test WWTP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Applications of Fluorescence Spectroscopy for dissolved organic matter characterization in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Goffin, Angélique; Guérin, Sabrina; Rocher, Vincent; Varrault, Gilles

    2016-04-01

    Dissolved organic matter (DOM) influences wastewater treatment plants efficiency (WTTP): variations in its quality and quantity can induce a foaming phenomenon and a fouling event inside biofiltration processes. Moreover, in order to manage denitrification step (control and optimization of the nitrate recirculation), it is important to be able to estimate biodegradable organic matter quantity before biological treatment. But the current methods used to characterize organic matter quality, like biological oxygen demand are laborious, time consuming and sometimes not applicable to directly monitor organic matter in situ. In the context of MOCOPEE research program (www.mocopee.com), this study aims to assess the use of optical techniques, such as UV-Visible absorbance and more specifically fluorescence spectroscopy in order to monitor and to optimize process efficiency in WWTP. Fluorescence excitation-emission matrix (EEM) spectroscopy was employed to prospect the possibility of using this technology online and in real time to characterize dissolved organic matter in different effluents of the WWTP Seine Centre (240,000 m3/day) in Paris, France. 35 sewage water influent samples were collected on 10 days at different hours. Data treatment were performed by two methods: peak picking and parallel factor analysis (PARAFAC). An evolution of DOM quality (position of excitation - emission peaks) and quantity (intensity of fluorescence) was observed between the different treatment steps (influent, primary treatment, biological treatment, effluent). Correlations were found between fluorescence indicators and different water quality key parameters in the sewage influents. We developed different multivariate linear regression models in order to predict a variety of water quality parameters by fluorescence intensity at specific excitation-emission wavelengths. For example dissolved biological oxygen demand (r2=0,900; p<0,0001) and ammonium concentration (r2=0,898; p<0

  6. Sustainability study of domestic communal wastewater treatment plant in Surabaya City

    NASA Astrophysics Data System (ADS)

    Bahar, E.; Sudarno; Zaman, B.

    2017-06-01

    Sanitation is one of the critical infrastructure sectors in order to improve community health status. The Ministry of Public Works of the Republic of Indonesia to define that word sanitation include: domestic waste water management, solid waste management, rain water management (drainage management) as well as the provision of clean water. Surabaya city as the capital of East Java province and Indonesia’s second largest city with a population of 2,853,661 inhabitants in 2014 (the second largest after Jakarta), but the people who have been served by the sanitation infrastructure systems were expected at 176,105 families or about 26.95 % of the population of the city is already using sanitation facilities. In the White Book Sanitation of Surabaya City in 2010, Surabaya City sanitation development mission is to realize the wastewater management of settlements in a sustainable and affordable by the community. This study aims to assess the sustainability of the wastewater treatment plant (WWTP) domestic communal in the city of Surabaya. The method in this research is quantitative method through observation, structured interviews and laboratory testing of the variables analyzed. Analyses were performed using a technique Multidisciplinary rapid appraisal (Rap-fish) to determine the level of sustainability of the management of communal WWTP based on a number of attributes that easy scored. Attributes of each dimension includes the technical, environmental quality, institutional, economic, and social. The results of this study are sustainability index of environmental quality dimension at 84.32 with highly sustainable status, technical dimension at 62.61 with fairly sustainable status, social dimension at 57.98 with fairly sustainable status, economic dimension at 43.24 with less sustainable status, and institutional dimension at 39.67 with less sustainable status.

  7. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea.

    PubMed

    Lee, Sunggyu; Liao, Chunyang; Song, Geum-Ju; Ra, Kongtae; Kannan, Kurunthachalam; Moon, Hyo-Bang

    2015-01-01

    Due to the regulation on bisphenol A (BPA) in several industrialized countries, the demand for other bisphenol analogues (BPs) as substitutes for BPA is growing. Eight BPs were determined in sludge from 40 representative wastewater treatment plants (WWTPs) in Korea. Total concentrations of BPs (ΣBP) in sludge ranged from wastewater treated at each of the WWTPs. The sludge from industrial WWTPs contained elevated proportions of BPA, whereas sludge from domestic WWTPs was dominated by bisphenol F (BPF), suggesting use of BPF in certain industrial products in Korea. No significant correlations were found between BPs and the WWTP characteristics. The average per-capita emissions of BPs ranged from 0.04 (BPP) to 886 g capita(-1) d (BPA) through WWTP discharges. The emission fluxes of ΣBP through industrial WWTPs were 2-3 orders of magnitudes higher than those calculated for domestic WWTPs, indicating that industrial discharges are the major source of BPs into the Korean environment. This is the first nationwide survey of BPs in sludge from Korean WWTPs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Co-digestion of food waste in a municipal wastewater treatment plant: Comparison of batch tests and full-scale experiences.

    PubMed

    Koch, Konrad; Plabst, Markus; Schmidt, Andreas; Helmreich, Brigitte; Drewes, Jörg E

    2016-01-01

    The effects of co-digestion of food waste in a municipal wastewater treatment plant (WWTP) were studied in batch tests. The results obtained were compared with the mass balance of a digester at a full-scale WWTP for a one-year period without and with the addition of co-substrate. The specific methane yield calculated from the balance was 18% higher than the one in the batch tests, suggesting a stimulation of methane generation by co-digestion. It was hypothesized that this increase was caused by shifting the C/N ratio of raw sludge (8.8) to a more favourable ratio of the added food waste (17.7). In addition, potential benefits by adding food waste for energy autarky was investigated. While just 25% of the total energy demand of the plant could be recovered by biogas generation when no co-substrate was fed, this percentage has more than doubled when food waste was added at a ratio of 10% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Introduction of human pharmaceuticals from wastewater treatment plants into the aquatic environment: a rural perspective.

    PubMed

    Nebot, Carolina; Falcon, Raquel; Boyd, Kenneth G; Gibb, Stuart W

    2015-07-01

    Incomplete removal of pharmaceuticals during wastewater treatment can result in their discharge into the aquatic environment. The discharge of pharmaceuticals in wastewater treatment plant (WWTP) effluents into rivers, lakes and the oceans has led to detectable concentrations of pharmaceuticals in the aquatic environment in many countries. However, to date studies of WWTP discharges into the aquatic environment have largely been confined to areas of relatively high population density, industrial activity or systems impacted on by such areas. In this work, two sites in the far north of Scotland were used to assess whether, and which, pharmaceuticals were being introduced into natural waters in a rural environment with low population density. Samples from two WWTPs (with differing modes of operation), and one receiving water, the River Thurso, were analysed for the presence of 12 pharmaceuticals (diclofenac, clofibric acid, erythromycin, ibuprofen, mefenamic acid, paracetamol, propranolol, sulfamethoxazole, tamoxifen, trimethoprim and dextropropoxyphene). Ten of the 12 pharmaceuticals investigated were detected in at least one of the 40 WWTP effluent samples. Maximum concentrations ranged from 7 ng L(-1) (sulfamethoxazole) to 22.8 μg L(-1) (paracetamol) with diclofenac and mefenamic acid being present in all of samples analysed at concentrations between 24.2 and 927 ng L(-1) and 11.5 and 22.8 μg L(-1), respectively. Additionally, the presence of four pharmaceuticals at ng L(-1) levels in the River Thurso, into which one of the WWTPs discharges, shows that such discharges result in measurable levels of pharmaceuticals in the environment. This provides direct evidence that, even in rural areas with low population densities, effluents from WWTPs can produce quantifiable levels of human pharmaceutical in the natural aquatic environment. These observations indicate that human pharmaceuticals may be considered as contaminants, with potential to influence water quality

  10. Hydrothermal Liquefaction of Wastewater Treatment Plant Solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, Justin M.

    2016-10-16

    Feedstock cost is the greatest barrier to the commercial production of biofuels. The merits of any thermochemical or biological conversion process are constrained by their applicability to the lowest cost feedstocks. At PNNL, a recent resource assessment of wet waste feedstocks led to the identification of waste water treatment plant (WWTP) solids as a cost-negative source of biomass. WWTP solids disposal is a growing environmental concern [1, 2] and can account for up to half of WWTP operating costs. The high moisture content is well-suited for hydrothermal liquefaction (HTL), avoiding the costs and parasitic energy losses associated with drying themore » feedstock for incineration. The yield and quality of biocrude and upgraded biocrude from WWTP solids is comparable to that obtained from algae feedstocks but the feedstock cost is $500-1200 less per dry ton. A collaborative project was initiated and directed by the Water Environment & Reuse Foundation (WERF) and included feedstock identification, dewatering, shipping to PNNL, conversion to biocrude by HTL, and catalytic hydrothermal gasification of the aqueous byproduct. Additional testing at PNNL included biocrude upgrading by catalytic hydrotreatment, characterization of the hydrotreated product, and a preliminary techno-economic analysis (TEA) based on empirical results. This short article will cover HTL conversion and biocrude upgrading. The WERF project report with complete HTL results is now available through the WERF website [3]. The preliminary TEA is available as a PNNL report [4].« less

  11. Deep dewatering process of sludge by chemical conditioning and its potential influence on wastewater treatment plants.

    PubMed

    Wang, Shuo; Ma, Cong; Zhu, Yin; Yang, Yangkun; Du, Guocheng; Li, Ji

    2018-06-15

    FeCl 3 , quick lime, and cationic polyacrylamide (CPAM) were used for excess sludge conditioning from wastewater treatment plant (WWTP) and the dewatering performance by different chemical conditioners was investigated. Experimental results showed that FeCl 3 could make small and concentrated sludge particles. Furthermore, new mineral phase structures for building a dewatering framework were obtained by the addition of quick lime, and the coagulation capacity was enhanced by the formation of colloid hydroxyl polymer, which was induced due to the alkaline environment. In addition, the floc particle size significantly increased after the CPAM dosage. The bound water could be released with the stripping of tightly bound extracellular polymeric substance (EPS). Therefore, the dewatering performance and efficiencies were improved and subsequently the hypothetical sludge deep dewatering process was depicted in accordance with the variation of EPS. However, high-strength refractory organics in sludge filtrates caused by quick lime pyrolysis could lead to the unstable operation of the WWTP, because the relatively high concentrations of organic compounds with benzene were dominant in sludge dewatering filtrates.

  12. Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds

    USGS Publications Warehouse

    Barber, L.B.; Lee, K.E.; Swackhamer, D.L.; Schoenfuss, H.L.

    2007-01-01

    On-site, continuous-flow experiments were conducted during August and October 2002 at a major metropolitan wastewater treatment plant (WWTP) to determine if effluent exposure induced endocrine disruption as manifested in the reproductive competence of sexually mature male fathead minnows (Pimephales promelas). The fathead minnows were exposed in parallel experiments to WWTP effluent and WWTP effluent treated with XAD8 macroreticular resin to remove the hydrophobic-neutral fraction which contained steroidal hormones, alkylphenolethoxylates (APEs), and other potential endocrine disrupting compounds (EDCs). The effluent composition varied on a temporal scale and the continuous-flow experiments captured the range of chemical variability that occurred during normal WWTP operations. Exposure to WWTP effluent resulted in vitellogenin induction in male fathead minnows, with greater response in October than in August. Concentrations of ammonia, APEs, 17??-estradiol, and other EDCs also were greater in October than in August, reflecting a change in effluent composition. In the October experiment, XAD8 treatment significantly reduced vitellogenin induction in the male fathead minnows relative to the untreated effluent, whereas in August, XAD8 treatment had little effect. During both experiments, XAD8 treatment removed greater than 90% of the APEs. Exposure of fish to a mixture of APEs similar in composition and concentration to the WWTP effluent, but prepared in groundwater and conducted at a separate facility, elicited vitellogenin induction during both experiments. There was a positive relation between vitellogenin induction and hepatosomatic index (HSI), but not gonadosomatic index (GSI), secondary sexual characteristics index (SSCI), or reproductive competency. In contrast to expectations, the GSI and SSCI increased in males exposed to WWTP effluent compared to groundwater controls. The GSI, SSCI, and reproductive competency were positively affected by XAD8 treatment of

  13. Reproductive responses of male fathead minnows exposed to wastewater treatment plant effluent, effluent treated with XAD8 resin, and an environmentally relevant mixture of alkylphenol compounds.

    PubMed

    Barber, Larry B; Lee, Kathy E; Swackhamer, Deborah L; Schoenfuss, Heiko L

    2007-04-20

    On-site, continuous-flow experiments were conducted during August and October 2002 at a major metropolitan wastewater treatment plant (WWTP) to determine if effluent exposure induced endocrine disruption as manifested in the reproductive competence of sexually mature male fathead minnows (Pimephales promelas). The fathead minnows were exposed in parallel experiments to WWTP effluent and WWTP effluent treated with XAD8 macroreticular resin to remove the hydrophobic-neutral fraction which contained steroidal hormones, alkylphenolethoxylates (APEs), and other potential endocrine disrupting compounds (EDCs). The effluent composition varied on a temporal scale and the continuous-flow experiments captured the range of chemical variability that occurred during normal WWTP operations. Exposure to WWTP effluent resulted in vitellogenin induction in male fathead minnows, with greater response in October than in August. Concentrations of ammonia, APEs, 17beta-estradiol, and other EDCs also were greater in October than in August, reflecting a change in effluent composition. In the October experiment, XAD8 treatment significantly reduced vitellogenin induction in the male fathead minnows relative to the untreated effluent, whereas in August, XAD8 treatment had little effect. During both experiments, XAD8 treatment removed greater than 90% of the APEs. Exposure of fish to a mixture of APEs similar in composition and concentration to the WWTP effluent, but prepared in groundwater and conducted at a separate facility, elicited vitellogenin induction during both experiments. There was a positive relation between vitellogenin induction and hepatosomatic index (HSI), but not gonadosomatic index (GSI), secondary sexual characteristics index (SSCI), or reproductive competency. In contrast to expectations, the GSI and SSCI increased in males exposed to WWTP effluent compared to groundwater controls. The GSI, SSCI, and reproductive competency were positively affected by XAD8 treatment of

  14. Evaluation of different wastewater treatment techniques in three WWTPs in Istanbul for the removal of selected EDCs in liquid phase.

    PubMed

    Can, Zehra Semra; Fırlak, Melike; Kerç, Aslıhan; Evcimen, Serkan

    2014-01-01

    Endocrine-disrupting compounds (EDCs) are exogenous substances that cause adverse health effects in an intact organism, or its progeny, subsequent to the changes in endocrine function. Recent studies have shown that wastewater treatment plant effluents play an important role in the release of EDCs into aquatic environments. Therefore, in this study, influent and effluent samples from three different wastewater treatment plants (WWTPs) in Istanbul were analysed for the presence of the principal EDCs. These chemicals include steroids and synthetic organic chemicals. Thus, the occurrence and fate of EDCs of great health concern were monitored at three WWTPs in Istanbul. Furthermore, these WWTPs are employing different treatment processes. Therefore, the EDC removal performances of different treatment regimes were also evaluated. Phytosterol was the most abundant EDC in the influent samples. Second group of compounds at high influent levels were alkyl phenols. Pesticide levels of all three WWTP influent samples were low. Pasakoy Advanced WWTP is more effective at eliminating EDCs. Kadikoy Primary WWTP exhibits the lowest EDC elimination efficiencies. To the best of our knowledge, this work comprises the first detailed report on the occurrence and behaviour of both natural and synthetic EDCs in WWTPs of Istanbul and Turkey. The steroid estrogen levels of this study are higher than the previously documented values, except the levels given for Gaobeidian WWTP in Beijing, China. This is attributed to higher population densities of Beijing and Istanbul and as well as to lower individual water consumption rates in the two cities.

  15. Estimation of hydrogen sulfide emission rates at several wastewater treatment plants through experimental concentration measurements and dispersion modeling.

    PubMed

    Llavador Colomer, Fernando; Espinós Morató, Héctor; Mantilla Iglesias, Enrique

    2012-07-01

    The management and operation of wastewater treatment plants (WWTP) usually involve the release into the atmosphere of malodorous substances with the potential to reduce the quality of life of people living nearby. In this type of facility, anaerobic degradation processes contribute to the generation of hydrogen sulfide (H2S), often at quite high concentrations; thus, the presence of this chemical compound in the atmosphere can be a good indicator of the occurrence and intensity of the olfactory impact in a specific area. The present paper describes the experimental and modelling work being carried out by CEAM-UMH in the surroundings of several wastewater treatment plants located in the Valencia Autonomous Community (Spain). This work has permitted the estimation of H2S emission rates at different WWTPs under different environmental and operating conditions. Our methodological approach for analyzing and describing the most relevant aspects of the olfactory impact consisted of several experimental campaigns involving intensive field measurements using passive samplers in the vicinity of several WWTPs, in combination with numerical simulation results from a diagnostic dispersion model. A meteorological tower at each WWTP provided the input values for the dispersion code, ensuring a good fit of the advective component and therefore more confidence in the modelled concentration field in response to environmental conditions. Then, comparisons between simulated and experimental H2S concentrations yielded estimates of the global emission rate for this substance at several WWTPs at different time periods. The results obtained show a certain degree of temporal and spatial (between-plant) variability (possibly due to both operational and environmental conditions). Nevertheless, and more importantly, the results show a high degree of uniformity in the estimates, which consistently stay within the same order of magnitude.

  16. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed.

    PubMed

    Mehdi, Hossein; Dickson, Fiona H; Bragg, Leslie M; Servos, Mark R; Craig, Paul M

    2017-11-22

    The objective of this study was to assess the effects of municipal wastewater treatment plant effluent on the energetics and stress response of rainbow darter (Etheostoma caeruleum). Male and female rainbow darter were collected upstream and downstream of the Waterloo WWTP in the Grand River watershed, ON, Canada. To assess the effects of wastewater treatment plant effluent on whole-body and tissue specific metabolic capacity, closed-chamber respirometry and muscle-enzyme activity analyses were performed. Plasma cortisol was also collected from fish before and after an acute air-exposure stressor to evaluate the cortisol stress response in fish exposed to additional stressors. Male and female rainbow darter collected downstream of the effluent had higher oxygen consumption rates, while differences in enzyme activities were primarily associated with sex rather than collection site. No impairment in the cortisol stress response between downstream and upstream fish was observed, however baseline cortisol levels in female fish from the downstream site were significantly higher compared to other baseline groups. Stress-induced cortisol levels were also higher in female fish from both sites when compared to their male counterparts. Overall, this study demonstrates that chronic exposure to WWTP effluent impacts whole-body metabolic performance. This study was also able to demonstrate that sex-differences are a key determinant of various metabolic changes in response to physiological stress, thereby, providing a novel avenue to be considered and further explored. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Advanced data management for optimising the operation of a full-scale WWTP.

    PubMed

    Beltrán, Sergio; Maiza, Mikel; de la Sota, Alejandro; Villanueva, José María; Ayesa, Eduardo

    2012-01-01

    The lack of appropriate data management tools is presently a limiting factor for a broader implementation and a more efficient use of sensors and analysers, monitoring systems and process controllers in wastewater treatment plants (WWTPs). This paper presents a technical solution for advanced data management of a full-scale WWTP. The solution is based on an efficient and intelligent use of the plant data by a standard centralisation of the heterogeneous data acquired from different sources, effective data processing to extract adequate information, and a straightforward connection to other emerging tools focused on the operational optimisation of the plant such as advanced monitoring and control or dynamic simulators. A pilot study of the advanced data manager tool was designed and implemented in the Galindo-Bilbao WWTP. The results of the pilot study showed its potential for agile and intelligent plant data management by generating new enriched information combining data from different plant sources, facilitating the connection of operational support systems, and developing automatic plots and trends of simulated results and actual data for plant performance and diagnosis.

  18. Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain

    USGS Publications Warehouse

    Phillips, P.; Chalmers, A.

    2009-01-01

    Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate

  19. Evaluation of five antibiotic resistance genes in wastewater treatment systems of swine farms by real-time PCR.

    PubMed

    Tao, Chi-Wei; Hsu, Bing-Mu; Ji, Wen-Tsai; Hsu, Tsui-Kang; Kao, Po-Min; Hsu, Chun-Po; Shen, Shu-Min; Shen, Tzung-Yu; Wan, Terng-Jou; Huang, Yu-Li

    2014-10-15

    Antibiotics are widely used in livestock for infection treatment and growth promotion. Wastes from animal husbandry are a potential environmental source of antibiotic-insensitive pathogens, and the removal efficiency of the resistance genotypes in current wastewater treatment plants (WWTPs) is unknown. In this study, quantitative PCR was used for evaluating antibiotic resistance genes in wastewater treatment processes. Six wastewater treatment plants in different swine farms were included in this study, and five antibiotic resistance genes (ARGs) were tested for each treatment procedure. All of the tested ARGs including tetA, tetW, sulI, sulII, and blaTEM genes were detected in six swine farms with considerable amounts. The results showed that antibiotic resistance is prevalent in livestock farming. The ARG levels were varied by wastewater treatment procedure, frequently with the highest level at anaerobic treatment tank and lowest in the activated sludge unit and the effluents. After normalizing the ARG levels to 16S rRNA gene copies, the results showed that ARGs in WWTP units fluctuated partly with the quantity of bacteria. Regardless of its importance in biodegradation, the anaerobic procedure may facilitate bacterial growth thus increasing the sustainability of the antibiotic resistance genotypes. After comparing the copy numbers in influx and efflux samples, the mean removal efficiency of ARGs ranged between 33.30 and 97.56%. The results suggested that treatments in the WWTP could partially reduce the spread of antibiotic-resistant bacteria, and additional procedures such as sedimentation may not critically affect the removal efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mass flows and removal of antibiotics in two municipal wastewater treatment plants.

    PubMed

    Li, Bing; Zhang, Tong

    2011-05-01

    The mass flows and removal of 20 antibiotics of seven classes in two wastewater treatment plants (WWTPs) of Hong Kong were investigated in different seasons of a whole year, using bihourly 24h flow proportional composite samples. Antibiotics were detected at concentrations of 3.2-1718, 1.3-1176 and 1.1-233ngL(-1) in influents, secondary and disinfection effluents. Total daily discharges of all the detected antibiotics from effluents of Shatin and Stanley WWTPs were 470-710 and 3.0-5.2gd(-1), respectively. Ampicillin, cefalexin, sulfamethoxazole, sulfadiazine, sulfamethazine, chlortetracycline and vancomycin were effectively (52-100%) eliminated by activated sludge process while ampicillin and cefalexin were effectively (91-99%) eliminated by disinfection. Bihourly variation analysis showed that concentrations of the major antibiotics in influents varied more significantly in Stanley WWTP which served small communities. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Sources, mechanisms, and fate of steroid estrogens in wastewater treatment plants: a mini review.

    PubMed

    Ting, Yien Fang; Praveena, Sarva Mangala

    2017-04-01

    Steroid estrogens, such as estrone (E 1 ), 17β-estradiol (E 2 ), estriol (E 3 ), and 17α-ethinylestradiol (EE 2 ), are natural and synthetic hormones released into the environment through incomplete sewage discharge. This review focuses on the sources of steroid estrogens in wastewater treatment plants (WWTPs). The mechanisms and fate of steroid estrogens throughout the entire wastewater treatment system are also discussed, and relevant information on regulatory aspects is given. Municipal, pharmaceutical industry, and hospitals are the main sources of steroid estrogens that enter WWTPs. A typical WWTP comprises primary, secondary, and tertiary treatment units. Sorption and biodegradation are the main mechanisms for removal of steroid estrogens from WWTPs. The fate of steroid estrogens in WWTPs depends on the types of wastewater treatment systems. Steroid estrogens in the primary treatment unit are removed by sorption onto primary sludge, followed by sorption onto micro-flocs and biodegradation by microbes in the secondary treatment unit. Tertiary treatment employs nitrification, chlorination, or UV disinfection to improve the quality of the secondary effluent. Activated sludge treatment systems for steroid estrogens exhibit a removal efficiency of up to 100%, which is higher than that of the trickling filter treatment system (up to 75%). Moreover, the removal efficiency of advance treatment systems exceeds 90%. Regulatory aspects related to steroid estrogens are established, especially in the European Union. Japan is the only Asian country that implements a screening program and is actively involved in endocrine disruptor testing and assessment. This review improves our understanding of steroid estrogens in WWTPs, proposes main areas to be improved, and provides current knowledge on steroid estrogens in WWTPs for sustainable development.

  2. Removal rate and releases of polybrominated diphenyl ethers in two wastewater treatment plants, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Hyo Jin; Kim, Gi Beum

    2017-06-01

    Wastewater treatment plants (WWTPs) play an important role in minimizing the release of many pollutants into the environment. Nineteen congeners in two WWTPs in Korea were determined to investigate the occurrence and fate of polybrominated diphenyl ethers (PBDEs) during wastewater treatment processes. The concentration of total PBDEs was 69.6 and 183 ng/L in influent, which declined to 1.59 and 2.34 ng/L in the final effluent, respectively (Tongyeong and Jinhae WWTPs). PBDEs were found to exist mostly in the particulate phase of wastewater, which rendered sedimentation efficient for the removal of PBDEs. BDE-209 was the predominant congener in the influent and sludge. Most of the PBDEs entering the WWTPs presumably ended up in the sludge, with < 2% being discharged with the final effluent. According to the mass loading estimation, every day 2.55-9.29 g PBDEs entered the two WWTPs, 2.8-10.4 g were disposed to landfill sites in sludge form and 0.06-0.12 g were discharged to the surrounding water through final effluent, respectively. Preliminary results indicated that the ecological risk to organisms in soil exposed to PBDEs through the usage of sludge application to agricultural land was relatively low. To our knowledge, this study is the first to report on the removal efficiency of PBDEs in a WWTP in Korea.

  3. Mass flow of antibiotics in a wastewater treatment plant focusing on removal variations due to operational parameters.

    PubMed

    Marx, Conrad; Günther, Norbert; Schubert, Sara; Oertel, Reinhard; Ahnert, Markus; Krebs, Peter; Kuehn, Volker

    2015-12-15

    Wastewater treatment plants (WWTPs) are not designed to purposefully eliminate antibiotics and therefore many previous investigations have been carried out to assess their fate in biological wastewater treatment processes. In order to consolidate previous findings regarding influencing factors like the solid and hydraulic retention time an intensive monitoring was carried out in a municipal WWTP in Germany. Over a period of 12months daily samples were taken from the in- and effluent as well as diverse sludge streams. The 14 selected antibiotics and one metabolite cover the following classes: cephalosporins, diaminopyrimidines, fluoroquinolones, lincosamide, macrolides, penicillins, sulfonamides and tetracyclines. Out of the 15 investigated substances, the removal of only clindamycin and ciprofloxacin show significant correlations to SRT, temperature, HRT and nitrogen removal. The dependency of clindamycin's removal could be related to the significant negative removal (i.e. production) of clindamycin in the treatment process and was corrected using the human metabolite clindamycin-sulfoxide. The average elimination was adjusted from -225% to 3% which suggests that clindamycin can be considered as an inert substance during the wastewater treatment process. Based on the presented data, the mass flow analysis revealed that macrolides, clindamycin/clindamycin-sulfoxide and trimethoprim were mainly released with the effluent, while penicillins, cephalosporins as well as sulfamethoxazole were partly degraded in the studied WWTP. Furthermore, levofloxacin and ciprofloxacin are the only antibiotics under investigation with a significant mass fraction bound to primary, excess and digested sludge. Nevertheless, the sludge concentrations are highly inconsistent which leads to questionable results. It remains unclear whether the inconsistencies are due to insufficiencies in sampling and/or analytical determination or if the fluctuations can be considered reasonable for

  4. Greenhouse Gas Emissions From Urban Wastewater Treatment Plants

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Bellucci, F.; Gonzalez-Meler, M. A.; Heraty, L.; Kozak, J. A.

    2010-12-01

    Wastewater treatment plants are considered the seventh highest contributor of greenhouse gases (GHG) to the atmosphere. For instance, USEPA recently reported (http://epa.gov/climatechange/emissions/downloads10/US-GHG-Inventory-2010_Chapter8-Waste.pdf) that U.S. wastewater treatment released 24.3 Tg CO2e (i.e. CO2 GHG equivalents) via CH4 and 4.9 Tg CO2e via N20 during 2008. Emissions of GHG from wastewater treatment sources are often modeled using algorithms that rely on surrogates such as five-day Biological or Chemical Oxygen Demand [B(C)OD5] for CH4 and protein content of diets for N2O. Unfortunately, empirical validation of these models using field data is lacking. To fill this gap, we measured annual CH4 and N20 emissions from three wastewater treatment plants in the Chicago region that differ in size and design. Plants ranged from serving 0.17 to 2.3 million people, treating from 27 to 751 millions of gallons of wastewater per day, and having BOD5 from 101 to 220 mg/L. Primary settling tanks, exhausts, and aeration basins were the main sources of CH4 emissions, whereas N2O was mainly emitted by aeration basins at the three plants investigated. During 2009, per capita emissions for CH4 and N2O (for every thousand people) ranged from 61 to 1130 kg/yr and from 12 to 226 Kg/yr, respectively. These wide variations were in part due to chemistry of influent waters and plant design. We found that IPCC and USEPA algorithms were good predictors of CH4 emissions but they largely underestimated N20 emissions. Despite the differences in plant design and per capita emissions, we found that all three plants have a similar CH4:N2O flux ratio. If this flux ratio proves to be a general characteristic of wastewater treatment plants, it could provide a more accurate alternative to current models for estimation of N2O emissions.

  5. The energy trilogy: An integrated sustainability model to bridge wastewater treatment plant energy and emissions gaps

    NASA Astrophysics Data System (ADS)

    Al-Talibi, A. Adhim

    An estimated 4% of national energy consumption is used for drinking water and wastewater services. Despite the awareness and optimization initiatives for energy conservation, energy consumption is on the rise owing to population and urbanization expansion and to commercial and industrial business advancement. The principal concern is since energy consumption grows, the higher will be the energy production demand, leading to an increase in CO2 footprints and the contribution to global warming potential. This research is in the area of energy-water nexus, focusing on wastewater treatment plant (WWTP) energy trilogy -- the group of three related entities, which includes processes: (1) consuming energy, (2) producing energy, and (3) the resulting -- CO2 equivalents. Detailed and measurable energy information is not readily obtained for wastewater facilities, specifically during facility preliminary design phases. These limitations call for data-intensive research approach on GHG emissions quantification, plant efficiencies and source reduction techniques. To achieve these goals, this research introduced a model integrating all plant processes and their pertinent energy sources. In a comprehensive and "Energy Source-to-Effluent Discharge" pattern, this model is capable of bridging the gaps of WWTP energy, facilitating plant designers' decision-making for meeting energy assessment, sustainability and the environmental regulatory compliance. Protocols for estimating common emissions sources are available such as for fuels, whereas, site-specific emissions for other sources have to be developed and are captured in this research. The dissertation objectives were met through an extensive study of the relevant literature, models and tools, originating comprehensive lists of processes and energy sources for WWTPs, locating estimation formulas for each source, identifying site specific emissions factors, and linking the sources in a mathematical model for site specific CO2 e

  6. Mass loading and removal of select illicit drugs in two wastewater treatment plants in New York State and estimation of illicit drug usage in communities through wastewater analysis.

    PubMed

    Subedi, Bikram; Kannan, Kurunthachalam

    2014-06-17

    Sewage epidemiology is a rapidly expanding field that can provide information on illicit drug usage in communities, based on the measured concentrations in samples from wastewater treatment plants (WWTPs). In this study, select illicit drugs (six drugs and eight metabolites) were determined on a daily basis for a week in wastewater, suspended particulate matter (SPM), and sludge from two WWTPs in the Albany area in New York State. The WWTP that served a larger population (∼100 000, with a flow rate of 83 300 m(3)/d) showed 3.2 (methadone) to 51 (3,4-methylenedioxyamphetamine; MDA) times higher mass flows of illicit drugs than did the WWTP that served a smaller population (∼15 000, with a flow rate of 6850 m(3)/d). The consumption rate of target illicit drugs in the communities served by the two WWTPs was estimated to range from 1.67 to 3510 mg/d/1000 people. Between the dissolved and particulate phases, the fraction of methadone, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), amphetamine, and MDA sorbed to SPM ranged from 34.3% to 41.1% of the total mass in the waste stream. The removal efficiencies of illicit drugs from the two WWTPs ranged from 4% (norcocaine) to 99% (cocaine); however, methamphetamine, methadone, and EDDP showed a negative removal in WWTPs. The environmental emission of illicit drugs from WWTP discharges was calculated to range from 0.38 (MDEA) to 67.5 (EDDP) mg/d/1000 people. Other markers such as caffeine, paraxanthine, nicotine, and cotinine were found to predict the concentrations of select illicit drugs in raw wastewater (r(2) = 0.20-0.79; p ≤ 0.029).

  7. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources.

    PubMed

    Cho, Sunja; Lee, Nakyeong; Park, Seonghwan; Yu, Jaecheul; Luong, Thanh Thao; Oh, You-Kwan; Lee, Taeho

    2013-03-01

    In order to reduce input cost for microalgal cultivation, we investigated the feasibility of wastewater taken from a municipal WWTP in Busan, Korea as wastewater nutrients. The wastewaters used in this study were the effluent from a primary settling tank (PS), the effluent from an anaerobic digestion tank (AD), the conflux of wastewaters rejected from sludge-concentrate tanks and dewatering facilities (CR), and two combined wastewaters of AD:PS (10:90, v/v) and AD:CR (10:90, v/v). Chlorella sp. ADE5, which was isolated from the AD, was selected for the feasibility test. The highest biomass production (3.01 g-dry cell weight per liter) of the isolate was obtained with the combined wastewater ADCR, and it was 1.72 times higher than that with BG 11 medium. Interestingly, the cells cultivated with wastewater containing PS wastewater were easily separated from the culture and improved lipid content, especially oleic acid content, in their cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Performance indicators and indices of sludge management in urban wastewater treatment plants.

    PubMed

    Silva, C; Saldanha Matos, J; Rosa, M J

    2016-12-15

    Sludge (or biosolids) management is highly complex and has a significant cost associated with the biosolids disposal, as well as with the energy and flocculant consumption in the sludge processing units. The sludge management performance indicators (PIs) and indices (PXs) are thus core measures of the performance assessment system developed for urban wastewater treatment plants (WWTPs). The key PIs proposed cover the sludge unit production and dry solids concentration (DS), disposal/beneficial use, quality compliance for agricultural use and costs, whereas the complementary PIs assess the plant reliability and the chemical reagents' use. A key PI was also developed for assessing the phosphorus reclamation, namely through the beneficial use of the biosolids and the reclaimed water in agriculture. The results of a field study with 17 Portuguese urban WWTPs in a 5-year period were used to derive the PI reference values which are neither inherent to the PI formulation nor literature-based. Clusters by sludge type (primary, activated, trickling filter and mixed sludge) and by digestion and dewatering processes were analysed and the reference values for sludge production and dry solids were proposed for two clusters: activated sludge or biofilter WWTPs with primary sedimentation, sludge anaerobic digestion and centrifuge dewatering; activated sludge WWTPs without primary sedimentation and anaerobic digestion and with centrifuge dewatering. The key PXs are computed for the DS after each processing unit and the complementary PXs for the energy consumption and the operating conditions DS-determining. The PX reference values are treatment specific and literature based. The PI and PX system was applied to a WWTP and the results demonstrate that it diagnosis the situation and indicates opportunities and measures for improving the WWTP performance in sludge management. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain).

    PubMed

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia

    2013-03-01

    The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Intra- and Inter-Pandemic Variations of Antiviral, Antibiotics and Decongestants in Wastewater Treatment Plants and Receiving Rivers

    PubMed Central

    Singer, Andrew C.; Järhult, Josef D.; Grabic, Roman; Khan, Ghazanfar A.; Lindberg, Richard H.; Fedorova, Ganna; Fick, Jerker; Bowes, Michael J.; Olsen, Björn; Söderström, Hanna

    2014-01-01

    The concentration of eleven antibiotics (trimethoprim, oxytetracycline, ciprofloxacin, azithromycin, cefotaxime, doxycycline, sulfamethoxazole, erythromycin, clarithromycin, ofloxacin, norfloxacin), three decongestants (naphazoline, oxymetazoline, xylometazoline) and the antiviral drug oseltamivir’s active metabolite, oseltamivir carboxylate (OC), were measured weekly at 21 locations within the River Thames catchment in England during the month of November 2009, the autumnal peak of the influenza A[H1N1]pdm09 pandemic. The aim was to quantify the pharmaceutical response to the pandemic and compare this to drug use during the late pandemic (March 2010) and the inter-pandemic periods (May 2011). A large and small wastewater treatment plant (WWTP) were sampled in November 2009 to understand the differential fate of the analytes in the two WWTPs prior to their entry in the receiving river and to estimate drug users using a wastewater epidemiology approach. Mean hourly OC concentrations in the small and large WWTP’s influent were 208 and 350 ng/L (max, 2070 and 550 ng/L, respectively). Erythromycin was the most concentrated antibiotic measured in Benson and Oxford WWTPs influent (max = 6,870 and 2,930 ng/L, respectively). Napthazoline and oxymetazoline were the most frequently detected and concentrated decongestant in the Benson WWTP influent (1650 and 67 ng/L) and effluent (696 and 307 ng/L), respectively, but were below detection in the Oxford WWTP. OC was found in 73% of November 2009’s weekly river samples (max = 193 ng/L), but only in 5% and 0% of the late- and inter-pandemic river samples, respectively. The mean river concentration of each antibiotic during the pandemic largely fell between 17–74 ng/L, with clarithromycin (max = 292 ng/L) and erythromycin (max = 448 ng/L) yielding the highest single measure. In general, the concentration and frequency of detecting antibiotics in the river increased during the pandemic. OC was uniquely well

  11. Attenuation of pharmaceuticals and their transformation products in a wastewater treatment plant and its receiving river ecosystem.

    PubMed

    Aymerich, I; Acuña, V; Barceló, D; García, M J; Petrovic, M; Poch, M; Rodriguez-Mozaz, S; Rodríguez-Roda, I; Sabater, S; von Schiller, D; Corominas, Ll

    2016-09-01

    Pharmaceuticals are designed to improve human and animal health, but may also be a threat to freshwater ecosystems, particularly after receiving urban or wastewater treatment plant (WWTP) effluents. Knowledge on the fate and attenuation of pharmaceuticals in engineered and natural ecosystems is rather fragmented, and comparable methods are needed to facilitate the comprehension of those processes amongst systems. In this study the dynamics of 8 pharmaceuticals (acetaminophen, sulfapyridine, sulfamethoxazole, carbamazepine, venlafaxine, ibuprofen, diclofenac, diazepam) and 11 of their transformation products were investigated in a WWTP and the associated receiving river ecosystem. During 3 days, concentrations of these compounds were quantified at the influents, effluents, and wastage of the WWTP, and at different distances downstream the effluent at the river. Attenuation (net balance between removal and release from and to the water column) was estimated in both engineered and natural systems using a comparable model-based approach by considering different uncertainty sources (e.g. chemical analysis, sampling, and flow measurements). Results showed that pharmaceuticals load reduction was higher in the WWTP, but attenuation efficiencies (as half-life times) were higher in the river. In particular, the load of only 5 out of the 19 pharmaceuticals was reduced by more than 90% at the WWTP, while the rest were only partially or non-attenuated (or released) and discharged into the receiving river. At the river, only the load of ibuprofen was reduced by more than 50% (out of the 6 parent compounds present in the river), while partial and non-attenuation (or release) was observed for some of their transformation products. Linkages in the routing of some pharmaceuticals (venlafaxine, carbamazepine, ibuprofen and diclofenac) and their corresponding transformation products were also identified at both WWTP and river. Finally, the followed procedure showed that dynamic

  12. Application of ceramic membranes with pre-ozonation for treatment of secondary wastewater effluent.

    PubMed

    Lehman, S Geno; Liu, Li

    2009-04-01

    Membrane fouling is an inevitable problem when microfiltration (MF) and ultrafiltraion (UF) are used to treat wastewater treatment plant (WWTP) effluent. While historically the use of MF/UF for water and wastewater treatment has been almost exclusively focused on polymeric membranes, new generation ceramic membranes were recently introduced in the market and they possess unique advantages over currently available polymeric membranes. Ceramic membranes are mechanically superior and are more resistant to severe chemical and thermal environments. Due to the robustness of ceramic membranes, strong oxidants such as ozone can be used as pretreatment to reduce the membrane fouling. This paper presents results of a pilot study designed to investigate the application of new generation ceramic membranes for WWTP effluent treatment. Ozonation and coagulation pretreatment were evaluated to optimize the membrane operation. The ceramic membrane demonstrated stable performance at a filtration flux of 100 gfd (170LMH) at 20 degrees C with pretreatment using PACl (1mg/L as Al) and ozone (4 mg/L). To understand the effects of ozone and coagulation pretreatment on organic foulants, natural organic matter (NOM) in four waters - raw, ozone treated, coagulation treated, and ozone followed by coagulation treated wastewaters - were characterized using high performance size exclusion chromatography (HPSEC). The HPSEC analysis demonstrated that ozone treatment is effective at degrading colloidal NOMs which are likely responsible for the majority of membrane fouling.

  13. Monitoring and evaluation of antibiotic resistance genes in four municipal wastewater treatment plants in Harbin, Northeast China.

    PubMed

    Wen, Qinxue; Yang, Lian; Duan, Ruan; Chen, Zhiqiang

    2016-05-01

    The development and proliferation of antibiotic resistance in pathogenic and environmental microorganisms is of great concern for public health. In this study, the distribution and removal efficiency of intI1 and eight subtypes of antibiotic resistance genes (ARGs) for tetracycline, sulfonamides, beta-lactams resistance in four municipal wastewater treatment plants (WWTPs) in Harbin, which locates in Songhua River basin in cold areas of China, were monitored by real-time fluorescent quantitative PCR. The results showed that intI1 and 6 ARGs except for blaTEM and blaSHV were detected in wastewater and sludge samples and 0.3-2.7 orders of magnitude of ARGs removal efficiency in the four WWTPs were observed. The investigation on the removal of ARGs of different treatment units in one WWTP showed that the biological treatment unit played the most important role in ARGs removal (1.2-1.8 orders of magnitude), followed by UV disinfection, while primary physical treatment units can hardly remove any ARGs. Although all the WWTPs can remove ARGs effectively, ARGs concentrations are still relatively high in the effluent, their further attenuation should be investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the ebro river basin (northeast Spain).

    PubMed

    Gros, Meritxell; Petrović, Mira; Barceló, Damià

    2007-08-01

    The occurrence of 28 pharmaceuticals of major human consumption in Spain, including analgesics and anti-inflammatories, lipid regulators, psychiatric drugs, antibiotics, antihistamines, and beta-blockers, was assessed along the Ebro river basin, one of the biggest irrigated lands in that country. Target compounds were simultaneously analyzed by off-line solid-phase extraction, followed by liquid chromatography-tandem mass spectrometry. The loads of detected pharmaceuticals and their removal rates were studied in seven wastewater treatment plants (WWTPs) located in the main cities along the basin. Total loads ranged from 2 to 5 and from 0.5 to 1.5 g/d/1,000 inhabitants in influent and effluent wastewaters, respectively. High removal rates (60-90%) were achieved mainly for analgesics and anti-inflammatories. The other groups showed lower rates, ranging from 20 to 60%, and in most cases, the antiepileptic carbamazepine, macrolide antibiotics, and trimethoprim were not eliminated at all. Finally, the contribution of WWTP effluents to the presence of pharmaceuticals in receiving river waters was surveyed. In receiving surface water, the most ubiquitous compounds were the analgesics and anti-inflammatories ibuprofen, diclofenac, and naproxen; the lipid regulators bezafibrate and gemfibrozil; the antibiotics erythromycin, azithromycin, sulfamethoxazole, trimethoprim, and less frequently, ofloxacin; the antiepileptic carbamazepine; the antihistamine ranitidine; and the beta-blockers atenolol and sotalol. Although levels found in WWTP effluents ranged from low microg/L to high ng/L, pharmaceuticals in river waters occurred at levels at least one order of magnitude lower (low ng/L range) because of dilution effect. From the results obtained, it was proved that WWTP are hot spots of aquatic contamination concerning pharmaceuticals of human consumption.

  15. Multi-criteria evaluation of wastewater treatment plant control strategies under uncertainty.

    PubMed

    Flores-Alsina, Xavier; Rodríguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V

    2008-11-01

    The evaluation of activated sludge control strategies in wastewater treatment plants (WWTP) via mathematical modelling is a complex activity because several objectives; e.g. economic, environmental, technical and legal; must be taken into account at the same time, i.e. the evaluation of the alternatives is a multi-criteria problem. Activated sludge models are not well characterized and some of the parameters can present uncertainty, e.g. the influent fractions arriving to the facility and the effect of either temperature or toxic compounds on the kinetic parameters, having a strong influence in the model predictions used during the evaluation of the alternatives and affecting the resulting rank of preferences. Using a simplified version of the IWA Benchmark Simulation Model No. 2 as a case study, this article shows the variations in the decision making when the uncertainty in activated sludge model (ASM) parameters is either included or not during the evaluation of WWTP control strategies. This paper comprises two main sections. Firstly, there is the evaluation of six WWTP control strategies using multi-criteria decision analysis setting the ASM parameters at their default value. In the following section, the uncertainty is introduced, i.e. input uncertainty, which is characterized by probability distribution functions based on the available process knowledge. Next, Monte Carlo simulations are run to propagate input through the model and affect the different outcomes. Thus (i) the variation in the overall degree of satisfaction of the control objectives for the generated WWTP control strategies is quantified, (ii) the contributions of environmental, legal, technical and economic objectives to the existing variance are identified and finally (iii) the influence of the relative importance of the control objectives during the selection of alternatives is analyzed. The results show that the control strategies with an external carbon source reduce the output uncertainty

  16. CHLORINE DISINFECTION OF BLENDED WASTEWATER EFFLUENTS

    EPA Science Inventory

    During wet weather events collected water can exceed the capacity of a wastewater treatment plant (WWTP) and alternate flow management techniques must be employed. One technique is to treat influent flows through primary clarification and limit the flow to the secondary treatmen...

  17. Selective elimination of chromophoric and fluorescent dissolved organic matter in a full-scale municipal wastewater treatment plant.

    PubMed

    Yang, Xiaofang; Zhou, Zhongbo; Raju, Maddela Naga; Cai, Xiaoxuan; Meng, Fangang

    2017-07-01

    Effluent organic matter (EfOM) from municipal wastewater treatment plants potentially has a detrimental effect on both aquatic organisms and humans. This study evaluated the removal and transformation of chromophoric dissolved organic matter (CDOM) and fluorescent dissolved organic matter (FDOM) in a full-scale wastewater treatment plant under different seasons. The results showed that bio-treatment was found to be more efficient in removing bulk DOM (in term of dissolved organic carbon, DOC) than CDOM and FDOM, which was contrary to the disinfection process. CDOM and FDOM were selectively removed at various stages during the treatment. Typically, the low molecular weight fractions of CDOM and protein-like FDOM were more efficiently removed during bio-treatment process, whereas the humic-like FDOM exhibited comparable decreases in both bio-treatment and disinfection processes. Overall, the performance of the WWTP was weak in terms of CDOM and FDOM removal, resulting in enrichment of CDOM and FDOM in effluent. Moreover, the total removal of the bulk DOM (P<0.05) and the protein-like FDOM (P<0.05) displayed a significant seasonal variation, with higher removal efficiencies in summer, whereas removal of CDOM and the humic-like FDOM showed little differences between summer and winter. In all, the results provide useful information for understanding the fate and transformation of DOM, illustrating that sub-fractions of DOM could be selectively removed depending on treatment processes and seasonality. Copyright © 2016. Published by Elsevier B.V.

  18. Water quality assessment in streams and wastewater treatment plants of Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Sajidu, S. M. I.; Masamba, W. R. L.; Henry, E. M. T.; Kuyeli, S. M.

    The population of the city of Blantyre has grown rapidly over the past few years without keeping pace with the national economy. The most visibly affected areas of this increase in population are access to adequate clean water, solid waste collection and disposal, sanitary and sewerage facilities. The objective of this study was to evaluate water quality in streams and wastewater treatment plants (WWTP) in the City of Blantyre, Malawi. Study locations included Limbe WWTP, Soche WWTP, Limbe, Mudi and Nasolo streams. Water samples were collected by grab sampling technique in February 2005. Phosphates, nitrates and sulphates were determined by vanadomolybdophosphoric acid colorimetric, salicylate colorimetric and turbidimetric methods, respectively. Metals were analysed using atomic absorption spectroscopy. Concentrations of lead, cadmium, iron, manganese, zinc, chromium and nickel were much higher than the World Health safe limits for drinking water in all the sampled streams after they had passed through industrial areas. Nitrates and sulphates concentrations at all sampling points were found to be lower than the safe limits for drinking water of 50 mg/l and 250 mg/l, respectively. However, phosphate concentrations were above the safe limit of 0.5 mg/l. It was also observed that biochemical oxygen demand (BOD 5) levels were above the World Health Organisation limit of 20 mg/l at all sites except Mudi and Limbe streams before passing through industrial areas. This was an indication of pollution in the streams. Values of pH and total dissolved solids (TDS) were within the recommended standards. The results suggest that streams in Blantyre City get polluted by heavy metals and nutrients which could be due to uncontrolled industrial waste disposal, vehicular emissions and agricultural activities. Regular monitoring of the water quality and enforcement of environmental protection laws are needed in order to control pollution in the city.

  19. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, The Philippines, and Myanmar.

    PubMed

    Watanabe, Yuta; Bach, Leu Tho; Van Dinh, Pham; Prudente, Maricar; Aguja, Socorro; Phay, Nyunt; Nakata, Haruhiko

    2016-05-01

    Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries.

  20. Pesticides from wastewater treatment plant effluents affect invertebrate communities.

    PubMed

    Münze, Ronald; Hannemann, Christin; Orlinskiy, Polina; Gunold, Roman; Paschke, Albrecht; Foit, Kaarina; Becker, Jeremias; Kaske, Oliver; Paulsson, Elin; Peterson, Märit; Jernstedt, Henrik; Kreuger, Jenny; Schüürmann, Gerrit; Liess, Matthias

    2017-12-01

    We quantified pesticide contamination and its ecological impact up- and downstream of seven wastewater treatment plants (WWTPs) in rural and suburban areas of central Germany. During two sampling campaigns, time-weighted average pesticide concentrations (c TWA ) were obtained using Chemcatcher® passive samplers; pesticide peak concentrations were quantified with event-driven samplers. At downstream sites, receiving waters were additionally grab sampled for five selected pharmaceuticals. Ecological effects on macroinvertebrate structure and ecosystem function were assessed using the biological indicator system SPEAR pesticides (SPEcies At Risk) and leaf litter breakdown rates, respectively. WWTP effluents substantially increased insecticide and fungicide concentrations in receiving waters; in many cases, treated wastewater was the exclusive source for the neonicotinoid insecticides acetamiprid and imidacloprid in the investigated streams. During the ten weeks of the investigation, five out of the seven WWTPs increased in-stream pesticide toxicity by a factor of three. As a consequence, at downstream sites, SPEAR values and leaf litter degradation rates were reduced by 40% and 53%, respectively. The reduced leaf litter breakdown was related to changes in the macroinvertebrate communities described by SPEAR pesticides and not to altered microbial activity. Neonicotinoids showed the highest ecological relevance for the composition of invertebrate communities, occasionally exceeding the Regulatory Acceptable Concentrations (RACs). In general, considerable ecological effects of insecticides were observed above and below regulatory thresholds. Fungicides, herbicides and pharmaceuticals contributed only marginally to acute toxicity. We conclude that pesticide retention of WWTPs needs to be improved. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Reuse of treated wastewater in agriculture: Physicochemical quality and environmental risks. Case of wastewater treatment plant of Baraki and Beni Messous. Algeria

    NASA Astrophysics Data System (ADS)

    Djemil, Wafa; Hannouche, Mani; Belksier, Mohamed Salah

    2018-05-01

    The region of ourstudy has two treatment plants; respectively West and South the Beni Messous and Baraki polluted water treatment plant `PWTP'. Which provide a comprehensive treatment of waste water in the region. The aim of ourworkis to highlight the possibility of reusing the treated waste water from the two Waste water Treatment Plant 'WWTPs' in agriculture. This has been achieved by a comparative study of physicochemical parameters with the WHO and FAO standards recommended for irrigation. Apart from the WWTP Baraki's values of N-NH4, BOD5, COD and Total Chromium for long-term irrigation. Which exceed the standards all other parameters fall in the recommended standards. So It was concluded that the treated waste water from the Beni Messous WWTP isbetter for irrigation than Baraki's. Thus we concluded that the treated waste water from the Beni Messous WWTP is more beneficial for irrigation than Baraki's. The contents of the heavy metals Cr, Pb and Cd recorded in the twotreatment plants do not constitute a danger for the environment. The waste water undergoes different stages of treatment to becomepurified water receivable by the natural environment without environmental impact and to satisfy the strictest ecological constraint. Given the needs and the deficit of the water resources in Algeria. The climatic context, the increasing urbanization and the water stress, some recommendations have been formulated to improve the environmental impact.

  2. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea.

    PubMed

    Talvitie, Julia; Heinonen, Mari; Pääkkönen, Jari-Pekka; Vahtera, Emil; Mikola, Anna; Setälä, Outi; Vahala, Riku

    2015-01-01

    This study on the removal of microplastics during different wastewater treatment unit processes was carried out at Viikinmäki wastewater treatment plant (WWTP). The amount of microplastics in the influent was high, but it decreased significantly during the treatment process. The major part of the fibres were removed already in primary sedimentation whereas synthetic particles settled mostly in secondary sedimentation. Biological filtration further improved the removal. A proportion of the microplastic load also passed the treatment and was found in the effluent, entering the receiving water body. After the treatment process, an average of 4.9 (±1.4) fibres and 8.6 (±2.5) particles were found per litre of wastewater. The total textile fibre concentration in the samples collected from the surface waters in the Helsinki archipelago varied between 0.01 and 0.65 fibres per litre, while the synthetic particle concentration varied between 0.5 and 9.4 particles per litre. The average fibre concentration was 25 times higher and the particle concentration was three times higher in the effluent compared to the receiving body of water. This indicates that WWTPs may operate as a route for microplastics entering the sea.

  3. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from MetroVancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data from thismore » effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the smaller scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by the resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received valuable feedback from the wastewater treatment industry as part of the WERF collaboration that helped form the basis for the selected HTL and

  4. Effect of Ozone Treatment on Nano-Sized Silver Sulfide in Wastewater Effluent.

    PubMed

    Thalmann, Basilius; Voegelin, Andreas; von Gunten, Urs; Behra, Renata; Morgenroth, Eberhard; Kaegi, Ralf

    2015-09-15

    Silver nanoparticles used in consumer products are likely to be released into municipal wastewater. Transformation reactions, most importantly sulfidation, lead to the formation of nanoscale silver sulfide (nano-Ag2S) particles. In wastewater treatment plants (WWTP), ozonation can enhance the effluent quality by eliminating organic micropollutants. The effect of ozonation on the fate of nano-Ag2S, however, is currently unknown. In this study, we investigate the interaction of ozone with nano-Ag2S and evaluate the effect of ozonation on the short-term toxicity of WWTP effluent spiked with nano-Ag2S. The oxidation of nano-Ag2S by ozone resulted in a stoichiometric factor (number of moles of ozone required to oxidize one mole of sulfide to sulfate) of 2.91, which is comparable to the results obtained for the reaction of bisulfide (HS(-)) with ozone. The second-order rate constant for the reaction of nano-Ag2S with ozone (k = 3.1 × 10(4) M(-1) s(-1)) is comparable to the rate constant of fast-reacting micropollutants. Analysis of the ozonation products of nano-Ag2S by transmission electron microscopy (TEM) and X-ray absorption spectroscopy (XAS) revealed that ozonation dominantly led to the formation of silver chloride in WWTP effluent. After ozonation of the Ag2S-spiked effluent, the short-term toxicity for the green algae Chlamydomonas reinhardtii increased and reached EC50 values comparable to Ag(+). This study thus reveals that ozone treatment of WWTP effluent results in the oxidation of Ag2S and, hence, an increase of the Ag toxicity in the effluent, which may become relevant at elevated Ag concentrations.

  5. Stepwise impact of urban wastewater treatment on the bacterial community structure, antibiotic contents, and prevalence of antimicrobial resistance.

    PubMed

    Wang, Mingyu; Shen, Weitao; Yan, Lei; Wang, Xin-Hua; Xu, Hai

    2017-12-01

    Bacteria, antibiotics, and antibiotic resistance determinants are key biological pollutants in aquatic systems, which may lead to bacterial infections or prevent the cure of bacterial infections. In this study, we investigated how the wastewater treatment processes in wastewater treatment plants (WWTPs) affect these pollutants. We found that the addition of oxygen, polyaluminum chloride (PAC), and polyacrylamide (PAM), as well as ultraviolet (UV) disinfection could significantly alter the bacterial communities in the water samples. An overall shift from Gram-negative bacteria to Gram-positive bacteria was observed throughout the wastewater treatment steps, but the overall bacterial biomass was not reduced in the WWTP samples. The antibiotic contents were reduced by the WWTP, but the size of the reduction and the step when antibiotic degradation occurred differed among antibiotics. Ciprofloxacin, sulfamethoxazole and erythromycin could be removed completely by the WWTP, whereas cephalexin could not. The removal of ciprofloxacin, cephalexin, and erythromycin occurred in the anaerobic digester, whereas the removal of sulfamethoxazole occurred after the addition of PAC and PAM, and UV disinfection. Antimicrobial resistance determinants were highly prevalent in all of the samples analyzed, except for those targeting vancomycin and colistin. However, wastewater treatment was ineffective at removing antimicrobial resistance determinants from wastewater. There were strong correlations between intI1, floR, sul1, and ermB, thereby suggesting the importance of integrons for the spread of these antimicrobial resistance genes. In general, this study comprised a stepwise analysis of the impact of WWTPs on three biological pollutants: bacteria, antibiotics, and antimicrobial resistance determinants, where our results suggest that the design of WWTPs needs to be improved to address the threats due to these pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Emission of poly and perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants.

    PubMed

    Shoeib, Mahiba; Schuster, Jasmin; Rauert, Cassandra; Su, Ky; Smyth, Shirley-Anne; Harner, Tom

    2016-11-01

    The potential of wastewater treatment plants (WWTPs) to act as sources of poly and perfluoroalkyl substances (PFASs), volatile methyl siloxanes (VMSs) and organic UV-filters to the atmosphere was investigated. Target compounds included: PFASs (fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides/sulfonamidoethanols (FOSAs/FOSEs), perfluroalkyl sulfonic acids (PFSAs) and perfluroalkyl carboxylic acids (PFCAs)), cyclic VMSs (D3 to D6), linear VMSs (L3 to L5) and eight UV-filters. Emissions to air were assessed at eight WWTPs using paired sorbent-impregnated polyurethane foam passive air samplers, deployed during summer 2013 and winter 2014. Samplers were deployed on-site above the active tank and off-site as a reference. Several types of WWTPs were investigated: secondary activated sludge in urban areas (UR-AS), secondary extended aeration in towns (TW-EA) and facultative lagoons in rural areas (RU-LG). The concentrations of target compounds in air were ∼1.7-35 times higher on-site compared to the corresponding off-site location. Highest concentrations in air were observed at UR-AS sites while the lowest were at RU-LG. Higher air concentrations (∼2-9 times) were observed on-site during summer compared to winter, possibly reflecting enhanced volatilization due to higher wastewater temperatures or differences in influent wastewater concentrations. A significant positive correlation was obtained between concentrations in air and WWTP characteristics (influent flow rate and population in the catchment of the WWTP); whereas a weak negative correlation was obtained with hydraulic retention time. Emissions to air were estimated using a simplified dispersion model. Highest emissions to air were seen at the UR-AS locations. Emissions to air (g/year/tank) were highest for VMSs (5000-112,000) followed by UV-filters (16-2000) then ΣPFASs (10-110). Copyright © 2016. Published by Elsevier Ltd.

  7. CHLORINE DISINFECTION OF BLENDED WASTEWATER EFFLUENTS I

    EPA Science Inventory

    During wet weather events collected water can exceed the capacity of a wastewater treatment plant (WWTP) and alternate flow management techniques must be employed. One technique is to treat influent flows through primary clarification and limit the flow to the secondary treatmen...

  8. Contamination of nonylphenolic compounds in creek water, wastewater treatment plant effluents, and sediments from Lake Shihwa and vicinity, Korea: Comparison with fecal pollution

    USGS Publications Warehouse

    Choi, Minkyu; Furlong, Edward T.; Moon, Hyo-Bang; Yu, Jun; Choi, Hee-Gu

    2011-01-01

    Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32–875 μg L-1 in creeks, 0.61–87.0 μg L-1 in WWTP effluents, and 29.3–230 μg g-1 TOC in sediments. Concentrations of COP were 0.09–19.0 μg L-1 in creeks, 0.11–44.0 μg L-1 in WWTP effluents, and 2.51–438 μg g-1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d-1 for NPs and 1.00 kg d-1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.

  9. Metagenomic analysis of an ecological wastewater treatment plant’s microbial communities and their potential to metabolize pharmaceuticals

    PubMed Central

    Balcom, Ian N.; Driscoll, Heather; Vincent, James; Leduc, Meagan

    2016-01-01

    Pharmaceuticals and other micropollutants have been detected in drinking water, groundwater, surface water, and soil around the world. Even in locations where wastewater treatment is required, they can be found in drinking water wells, municipal water supplies, and agricultural soils. It is clear conventional wastewater treatment technologies are not meeting the challenge of the mounting pressures on global freshwater supplies. Cost-effective ecological wastewater treatment technologies have been developed in response. To determine whether the removal of micropollutants in ecological wastewater treatment plants (WWTPs) is promoted by the plant-microbe interactions, as has been reported for other recalcitrant xenobiotics, biofilm microbial communities growing on the surfaces of plant roots were profiled by whole metagenome sequencing and compared to the microbial communities residing in the wastewater. In this study, the concentrations of pharmaceuticals and personal care products (PPCPs) were quantified in each treatment tank of the ecological WWTP treating human wastewater at a highway rest stop and visitor center in Vermont. The concentrations of detected PPCPs were substantially greater than values reported for conventional WWTPs likely due to onsite recirculation of wastewater. The greatest reductions in PPCPs concentrations were observed in the anoxic treatment tank where Bacilli dominated the biofilm community. Benzoate degradation was the most abundant xenobiotic metabolic category identified throughout the system. Collectively, the microbial communities residing in the wastewater were taxonomically and metabolically more diverse than the immersed plant root biofilm. However, greater heterogeneity and higher relative abundances of xenobiotic metabolism genes was observed for the root biofilm. PMID:27610223

  10. Occurrence and fate of PBDEs and novel brominated flame retardants in a wastewater treatment plant in Harbin, China.

    PubMed

    Li, Bo; Sun, Shao-Jing; Huo, Chun-Yan; Li, Wen-Long; Zhu, Ning-Zheng; Qi, Hong; Kong, Ling-Jun; Li, Yi-Fan; Ma, Wan-Li

    2016-10-01

    Wastewater treatment plant (WWTP) is considered to be an important medium for the transport and transformation of organic pollutants. This study attempted to comprehensively investigate polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs) in a WWTP in Harbin, one of the main "Old Industrial Base" in China. The mean concentrations of the total PBDEs in the influent, effluent, and sludge were 152 ng/L, 16.2 ng/L, and 503 g/g dw, respectively, which were at the low end of the global range. BDE-209 was the most abundant congener, with contributions to the total PBDE ranging from 90.5 to 98.5 %. The level of the total NBFRs ranged from 24.5 to 107 ng/L, 0.95 to 20.3 ng/L, and 305 to 1202 ng/g dw in the influent, effluent, and sludge, respectively. For NBFRs, DBDPE was the most abundant congener (38.8-50.5 %), followed by BEHTBP (11.0-35.0 %). The ratio for DBDPE/BDE-209 (0.62 ± 0.42) was found less than 1 in sludge, which indicated that Deca-BDE is still the major BFR product in this city. Source identification suggested that indoor dust should be an important source of BFRs in the WWTP. Approximately 20.8 and 7.79 kg of PBDEs and NBFRs on annual basis were removed with the sludge. Biodegradation could play an important role on the fate of BFRs in the WWTP, which is required for future research.

  11. Basis for the development of sustainable optimisation indicators for activated sludge wastewater treatment plants in the Republic of Ireland.

    PubMed

    Gordon, G T; McCann, B P

    2015-01-01

    This paper describes the basis of a stakeholder-based sustainable optimisation indicator (SOI) system to be developed for small-to-medium sized activated sludge (AS) wastewater treatment plants (WwTPs) in the Republic of Ireland (ROI). Key technical publications relating to best practice plant operation, performance audits and optimisation, and indicator and benchmarking systems for wastewater services are identified. Optimisation studies were developed at a number of Irish AS WwTPs and key findings are presented. A national AS WwTP manager/operator survey was carried out to verify the applied operational findings and identify the key operator stakeholder requirements for this proposed SOI system. It was found that most plants require more consistent operational data-based decision-making, monitoring and communication structures to facilitate optimised, sustainable and continuous performance improvement. The applied optimisation and stakeholder consultation phases form the basis of the proposed stakeholder-based SOI system. This system will allow for continuous monitoring and rating of plant performance, facilitate optimised operation and encourage the prioritisation of performance improvement through tracking key operational metrics. Plant optimisation has become a major focus due to the transfer of all ROI water services to a national water utility from individual local authorities and the implementation of the EU Water Framework Directive.

  12. Mathematical modeling of nitrous oxide (N2O) emissions from full-scale wastewater treatment plants.

    PubMed

    Ni, Bing-Jie; Ye, Liu; Law, Yingyu; Byers, Craig; Yuan, Zhiguo

    2013-07-16

    Mathematical modeling of N2O emissions is of great importance toward understanding the whole environmental impact of wastewater treatment systems. However, information on modeling of N2O emissions from full-scale wastewater treatment plants (WWTP) is still sparse. In this work, a mathematical model based on currently known or hypothesized metabolic pathways for N2O productions by heterotrophic denitrifiers and ammonia-oxidizing bacteria (AOB) is developed and calibrated to describe the N2O emissions from full-scale WWTPs. The model described well the dynamic ammonium, nitrite, nitrate, dissolved oxygen (DO) and N2O data collected from both an open oxidation ditch (OD) system with surface aerators and a sequencing batch reactor (SBR) system with bubbling aeration. The obtained kinetic parameters for N2O production are found to be reasonable as the 95% confidence regions of the estimates are all small with mean values approximately at the center. The model is further validated with independent data sets collected from the same two WWTPs. This is the first time that mathematical modeling of N2O emissions is conducted successfully for full-scale WWTPs. While clearly showing that the NH2OH related pathways could well explain N2O production and emission in the two full-scale plants studied, the modeling results do not prove the dominance of the NH2OH pathways in these plants, nor rule out the possibility of AOB denitrification being a potentially dominating pathway in other WWTPs that are designed or operated differently.

  13. Enzymes as Enhancers for the Biodegradation of Synthetic Polymers in Wastewater.

    PubMed

    Haernvall, Karolina; Zitzenbacher, Sabine; Biundo, Antonino; Yamamoto, Motonori; Schick, Michael Bernhard; Ribitsch, Doris; Guebitz, Georg M

    2018-02-16

    Synthetic polyesters are today the second-largest class of ingredients in household products and are entering wastewater treatment plants (WWTPs) after product utilization. One approach to improve polymer biodegradation in wastewater would be to complement current processes with polyester-hydrolyzing enzymes and their microbial producers. In this study, the hydrolysis of poly(oxyethylene terephthalate) polymer by hydrolases from wastewater microorganisms was investigated in vitro and under realistic WWTP conditions. An esterase and a cutinase from Pseudomonas pseudoalcaligenes and a lipase from Pseudomonas pelagia were heterologously expressed in Escherichia coli BL21-Gold(DE3) and were purified by a C-terminal His 6 tag. The hydrolases were proven to hydrolyze the polymer effectively, which is a prerequisite for further biodegradation. The hydrolases maintained high activity up to 50 % upon lowering the temperature from 28 to 15 °C to mimic WWTP conditions. The hydrolases were also not inhibited by the wastewater matrix. Polyester-hydrolyzing enzymes active under WWTP conditions and their microbial producers thus have the potential to improve biological treatment of wastewater rich in synthetic polymers. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Control of odor and VOC emissions at wastewater treatment plants: Boston Harbor case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getter, R.; Breen, C.; Laquidara, M.

    1994-12-31

    Siting of the new wastewater treatment plant (WWTP) for the Massachusetts Water Resources Authority (MWRA) in Boston was based on an assumption of mitigation of total reduced sulfur (TRS) and volatile organic compound (VOC) emissions. Collection and treatment of exhaust streams from potential emission sources was recommended. Best Available Control Technology (BACT) for VOC control was conservatively suggested to consist of wet by carbon adsorption based on initial sampling performed in 1988 during facilities planning, which estimated uncontrolled VOC emissions in excess of 1,000 tons per year. This concept was carried forward to the design phase in 1990, concurrent withmore » an extensive air emissions testing and pilot treatment program at the NMRA`s existing primary treatment plant. Results of the pilot program, however, indicated source VOC concentrations well below what was expected as a result of the initial sampling study. Use of the 1990 pilot data in a top-down BACT analysis led to a recommendation to reconsider VOC control with carbon adsorption on the basis of prohibitive cost. This paper summarizes the background and permitting approach for five new odor control facilities on Deer Island for the Boston Harbor Project, with emphasis on the new primary treatment facilities. The paper also presents results from the 1990 emissions characterization and pilot program, providing generally applicable ideas for solving the difficulties of characterizing and estimating emissions for WWTPS. Results from operation of the pilot facilities illustrate the effectiveness of met scrubbing and carbon adsorption in removing TRS and VOCs from wastewater treatment exhaust air streams. In addition, pilot program results indicate the importance of flexibility in design of odor control systems to accommodate variations in concentrations of TRS and VOCS.« less

  15. Investigation of relationships between removals of tetracycline and degradation products and physicochemical parameters in municipal wastewater treatment plant.

    PubMed

    Topal, Murat; Uslu Şenel, Gülşad; Öbek, Erdal; Arslan Topal, E Işıl

    2016-05-15

    Determination of the effect of physicochemical parameters on the removal of tetracycline (TC) and degradation products is important because of the importance of the removal of antibiotics in Wastewater Treatment Plant (WWTP). Therefore, the purpose of this study was to investigate the relationships between removals of TC and degradation products and physicochemical parameters in Municipal Wastewater Treatment Plant (MWWTP). For this aim, (i) the removals of physicochemical parameters in a MWWTP located in Elazığ city (Turkey) were determined (ii) the removals of TC and degradation products in MWWTP were determined (iii) the relationships between removals of TC and degradation products and physicochemical parameters were investigated. TC, 4-epitetracycline (ETC), 4-epianhydrotetracycline (EATC), anhydrotetracycline (ATC), and physicochemical parameters (pH, temperature, electrical conductivity (EC), suspended solids (SS), BOD5, COD, total organic carbon (TOC), NH4(+)-N, NO2(-)-N, NO3(-)-N and O-PO4(-3)) were determined. The calculation of the correlation coefficients of relationships between the physicochemical parameters and TC, EATC, ATC showed that, among the investigated parameters, EATC and SS most correlated. The removals of other physicochemical parameters were not correlated with TC, EATC and ATC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. PowerStep - Wastewater as source of biomass for renewable energy

    NASA Astrophysics Data System (ADS)

    Loderer, Christian; Lesjean, Boris; Krampe, Jörg

    2017-04-01

    The EC funded project POWERSTEP is built to achieve a real paradigm shift in wastewater treatment processes: the overarching goal is to convert sewage treatment plants (STEPs) in power production facilities (POWER) while still achieving a high effluent quality for the treated wastewater. Municipal wastewater treatment in Europe currently requires a significant amount of energy to eliminate organic matter and nutrients such as nitrogen and phosphorus from the sewage prior to its discharge to receiving waters. Under the assumption of an average electricity demand of 32 kWh per capita and year for large wastewater treatment plants (WWTP) as current benchmark the municipal wastewater sector within the European Union (EU) consumes at least 16,000 Gigawatthours (GWh) per year for its service, which is equivalent to the annual power generation of two large (1,000 Megawatt) power plants. On the other hand, the organic matter contained in municipal wastewater has an internal chemical energy content of 14.4 MJ or 4 kWh per kg of chemical oxygen demand (COD). Based on an organic matter load of 120 g COD per capita (PE) and year, the theoretical energy potential in municipal wastewater amounts to 175 kWh/(PE*a) or 87,500 GWh per year for the entire EU25+3, which is equivalent to the electricity produced by 12 large power plants. If this chemical energy potential is compared to the current benchmark of energy demand for wastewater treatment stated above, it is obvious that municipal wastewater contains significantly more energy in its organic matter than is required for its treatment. Thus, an energy-neutral or even substantially energy-positive wastewater treatment process is theoretically possible by converting this chemical energy into usable types of "renewable" energy. The six full-scale references in POWERSTEP represent the core element of the planned work within the consortium. Acting as show-cases for process viability and market potential, the case studies are located

  17. Relative importance of wastewater treatment plants and non-point sources of perfluorinated compounds to Washington State rivers.

    PubMed

    Furl, Chad V; Meredith, Callie A; Strynar, Mark J; Nakayama, Shoji F

    2011-07-01

    Perfluorinated compounds (PFCs) were measured in 10 Washington State rivers and 4 wastewater treatment plants (WWTPs) under periods of low and high flows to investigate the relative importance of point and non-point sources to rivers. PFCs were detected in all samples with summed values ranging from 1.11 to 74.9 ng/L in surface waters and 62.3-418 ng/L in WWTP effluent. Concentrations in 6 of the 10 rivers exhibited a positive relationship with flow, indicating runoff as a contributing source, with PFC loads greatest at all 10 waterbodies during high flows. Perfluoroheptanoic acid:perfluorooctanoic acid homologue ratios suggest atmospheric contributions to the waterbodies are important throughout the year. Principal component analysis (PCA) indicated distinct homologue profiles for high flow, low flow, and effluent samples. The PCA demonstrates that during the spring when flows and loads are at their greatest; WWTP discharges are not the primary sources of PFCs to the river systems. Taken together, the evidence provided signifies non-point inputs are a major pathway for PFCs to surface waters in Washington State. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Linking drugs of abuse in wastewater to contamination of surface and drinking water.

    PubMed

    Rodayan, Angela; Afana, Shadi; Segura, Pedro A; Sultana, Tamanna; Metcalfe, Chris D; Yargeau, Viviane

    2016-04-01

    The concentrations of 17 drugs of abuse, including cocaine, several amphetamines, opioid drugs, and 2 metabolites--benzoylecgonine, a metabolite of cocaine, and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrolidine, a metabolite of methadone--were investigated in an urban watershed that is heavily impacted by discharges of municipal wastewater. The artificial sweetener sucralose was also monitored as a persistent tracer of contamination from municipal wastewater. Monitoring was conducted in a municipal wastewater treatment plant (WWTP) and at sites upstream and downstream of the WWTP discharge, as well as in a drinking water treatment plant (DWTP) located 19 km downstream of the WWTP discharge that withdraws raw water from the river. Drug concentrations were monitored with polar organic chemical integrative samplers deployed for 2 wk in the river and in the WWTP and DWTP. Several of the investigated compounds exhibited a decrease in concentration with distance downstream from the wastewater discharge into the river, but there was little attenuation of sucralose, cocaine, benzoylecgonine, morphine, acetylmorphine, acetylcodeine, and oxycodone. Heroin and methadone were not detected at any sample locations. Amphetamine, methamphetamine, 3,4-methylenedioxy-methamphetamine, and 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrolidine were not detected in the samples collected at the drinking water intake. Many of the drugs of abuse were not removed effectively in the DWTP, including cocaine, benzoylecgonine, methylenedioxyamphetamine, ephedrine, and several prescription opioids, most probably because the DWTP was operating at or above its rated treatment capacity. These data indicate that there can be transport of drugs of abuse from wastewater sources into drinking water in urban watersheds. © 2015 SETAC.

  19. Microthrix parvicella foaming at the Fusina WWTP.

    PubMed

    Miana, P; Grando, L; Caravello, G; Fabris, M

    2002-01-01

    The Fusina WWTP receives civil and industrial wastewater from Venice and its hinterland. Its treatment capacity is in the range of 4,000-5,000 m3/h. In winter the Fusina WWTP is subjected to brown and viscous foams developed on the surface of the aeration basins and of the clarifiers. The microscopic observation of biological foams and activated sludge samples showed high concentration of the filamentous organism Microthrix parvicella. This paper investigates the growth of M. parvicella from January 1998 to January 1999 and relates it to foams developed on the aeration basins and clarifiers, to temperature, surfactants, BOD5, NH4, NO3, NO2, DO, PO4 and pH of the wastewater influent, to SVI and the other species of filamentous organisms of mixed liquor. The results demonstrate the strong connection of the foams developed with M. parvicella abundance, the synergic action with surfactants, the dependence of M. parvicella on temperature and no relation to the other chemical and physical parameters investigated.

  20. Quantification of greenhouse gas (GHG) emissions from wastewater treatment plants using a ground-based remote sensing approach

    NASA Astrophysics Data System (ADS)

    Delre, Antonio; Mønster, Jacob; Scheutz, Charlotte

    2016-04-01

    The direct release of nitrous oxide (N2O) and methane (CH4) from wastewater treatment plants (WWTP) is important because it contributes to the global greenhouse gases (GHGs) release and strongly effects the WWTP carbon footprint. Biological nitrogen removal technologies could increase the direct emission of N2O (IPCC, 2006), while CH4 losses are of environmental, economic and safety concern. Currently, reporting of N2O and CH4 emissions from WWTPs are performed mainly using methods suggested by IPCC which are not site specific (IPCC, 2006). The dynamic tracer dispersion method (TDM), a ground based remote sensing approach implemented at DTU Environment, was demonstrated to be a novel and successful tool for full-scale CH4 and N2O quantification from WWTPs. The method combines a controlled release of tracer gas from the facility with concentration measurements downwind of the plant (Mønster et al., 2014; Yoshida et al., 2014). TDM in general is based on the assumption that a tracer gas released at an emission source, in this case a WWTP, disperses into the atmosphere in the same way as the GHG emitted from process units. Since the ratio of their concentrations remains constant along their atmospheric dispersion, the GHG emission rate can be calculated using the following expression when the tracer gas release rate is known: EGHG=Qtr*(CGHG/Ctr)*(MWGHG/MWtr) EGHG is the GHG emission in mass per time, Qtr is the tracer release in mass per time, CGHG and Ctr are the concentrations measured downwind in parts per billion subtracted of their background values and integrated over the whole plume, and MWGHG and MWtr are the molar weights of GHG and tracer gas respectively (Mønster et al. 2014). In this study, acetylene (C2H2) was used as tracer. Downwind plume concentrations were measured driving along transects with two cavity ring down spectrometers (Yoshida et al., 2014). TDM was successfully applied in different seasons at several Scandinavian WWTPs characterized by

  1. Real-Time Ultrafine Aerosol Measurements from Wastewater Treatment Facilities.

    PubMed

    Piqueras, P; Li, F; Castelluccio, V; Matsumoto, M; Asa-Awuku, A

    2016-10-18

    Airborne particle emissions from wastewater treatment plants (WWTP) have been associated with health repercussions but particulate quantification studies are scarce. In this study, particulate matter (PM) number concentrations and size distributions in the ultrafine range (7-300 nm) were measured from two different sources: a laboratory-scale aerobic bioreactor and the activated sludge aeration basins at Orange County Sanitation District (OCSD). The relationships between wastewater parameters (total organic carbon (TOC), chemical oxygen demand (COD), and total suspended solids (TSS)), aeration flow rate and particle concentrations were also explored. A significant positive relationship was found between particle concentration and WWTP variables (COD: r(10) = 0.876, p <.001, TOC: r(10) = 0.664, p <.05, TSS: r(10) = 0.707, p <.05, aeration flow rate: r(8) = 0.988, p <.0001). A theoretical model was also developed from empirical data to compare real world WWTP aerosol number emission fluxes with laboratory data. Aerosol number fluxes at OCSD aerated basins (9.8 × 10 4 lbs/min·cm 2 ) and the bioreactor (7.95 × 10 4 lbs/min·cm 2 ) were calculated and showed a relatively small difference (19%). The ultrafine size distributions from both systems were consistent, with a mode of ∼48 nm. The average mass concentration (7.03 μg/cm 3 ) from OCSD was relatively small compared to other urban sources. However, the in-tank average number concentration of airborne particles (14 480 lbs/cm 3 ) was higher than background ambient concentrations.

  2. Water/Wastewater Treatment Plant Operator Qualifications.

    ERIC Educational Resources Information Center

    Water and Sewage Works, 1979

    1979-01-01

    This article summarizes in tabular form the U.S. and Canadian programs for classification of water and wastewater treatment plant personnel. Included are main characteristics of the programs, educational and experience requirements, and indications of requirement substitutions. (CS)

  3. Improved wastewater treatment at Wheeling-Pittsburgh Steel Corporations`s Steubenville East Coke Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goshe, A.J.; Nodianos, M.J.

    1995-12-01

    Wheeling-Pittsburgh Steel Corporation recently improved its wastewater treatment at it`s by-products coke plant. This has led to greatly improved effluent quality. Excess ammonia liquor, along with wastewater from the light oil recovery plant, desulfurization facility, and coal pile runoff, must be treated prior to being discharged into the Ohio River. This is accomplished using a biological wastewater treatment plant to remove 99.99% of the organic contaminants and ammonia. Biologically treated, clarified wastewater is now polished in the newly constructed tertiary treatment plant.

  4. Applying fenton process in acrylic fiber wastewater treatment and practice teaching

    NASA Astrophysics Data System (ADS)

    Zhang, Chunhui; Jiang, Shan

    2018-02-01

    Acrylic fiber manufacturing wastewater, containing a wider range of pollutants, high concentration of refractory organics, poisonous and harmful matters, was significant to treat from the effluents of wastewater treatment plants (WWTPs). In this work, a Fenton reactor was employed for advanced treatment of the WWTP effluents. An orthogonal test and a parametric study were carried out to determine the effect of the main operating conditions and the Fenton process attain excellent performance on the degradation of pollutants under an optimal condition of ferrous dosage was 6.25 mM, hydrogen peroxide was 75 mM and initial pH value was 3.0 in 90 min reaction time. The removal efficiency of COD, TOC, NH4 +-N and TN reached from 45% to 69%. Lastly, as a teaching advice, the Fenton reactor was used in practicing teaching nicely.

  5. Multidrug-resistant Enterobacteriaceae from indoor air of an urban wastewater treatment plant.

    PubMed

    Teixeira, Juliana V; Cecílio, Pedro; Gonçalves, Daniela; Vilar, Vítor J P; Pinto, Eugénia; Ferreira, Helena N

    2016-07-01

    Wastewater treatment plants (WWTPs) have been recognized as sources of bioaerosols that may act as vehicles for dissemination of pathogens and multidrug-resistant (MDR) bacteria. The occurrence of MDR Enterobacteriaceae in indoor air of an urban WWTP was investigated. A possible airborne contamination with extended-spectrum beta-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae was also explored. Fourteen of 39 Enterobacteriaceae isolates were MDR. These isolates were found at all sampling sites, mainly at the secondary sedimentation settings. The highest levels of resistance were detected in three different species: Enterobacter cloacae, Escherichia coli, and Citrobacter freundii. Furthermore, one of the airborne E. coli isolates was phenotypically characterized as an ESBL producer. Additionally, five isolates showed non-susceptibility to at least one carbapenem tested. The presence of genes encoding relevant beta-lactamase types in these ESBL-producing and carbapenem-resistant Enterobacteriaceae isolates was investigated by PCR. Results showed amplification for bla CTX-M and bla OXA. These findings are relevant both in terms of occupational/public health and of environmental dissemination of MDR bacteria.

  6. Stainless-steel wires exclude gulls from a wastewater treatment plant

    USGS Publications Warehouse

    Clark, Daniel E.; Koenen, Kiana K. G.; MacKenzie, Kenneth G.; Pereira, Jillian W.; DeStefano, Stephen

    2013-01-01

    There is growing concern about the prevalence of pathogens and antibiotic-resistant bacteria in the environment and the role wildlife plays in their transmission and dissemination. Gulls feeding at wastewater treatment plants may provide a route for transmission of pathogens and bacteria to public water supplies or other critical areas. The authors identified gulls routinely feeding at a wastewater treatment plant in Millbury, Mass., and tested the effectiveness of overhead stainless-steel wires in excluding gulls from the plant. The number of gulls in certainstructures was compared before and after wiring and during an experimental approach using simultaneous treatments and controls. Stainless-steel wires spaced at 0.9-3.3 m (3-10 ft) effectively prevented gulls from using treatment structures (p < 0.0001) and were effective for > 24 months. Materials costs to wire all structures was about $5,700, and labor costs were $4,020. Overhead stainless-steel wires can provide a long-term, cost-efficient method of excluding ring-billed gulls from wastewater treatment plants.

  7. Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants.

    PubMed

    Kot-Wasik, A; Jakimska, A; Śliwka-Kaszyńska, M

    2016-12-01

    Thousands of tons of pharmaceuticals are introduced into the aqueous environment due to their incomplete elimination during treatment process in wastewater treatment plants (WWTPs) and water treatment plants (WTPs). The presence of pharmacologically active compounds in the environment is of a great interest because of their potential to cause negative effects. Furthermore, drugs can undergo different processes leading to the formation of new transformation products, which may be more toxic than the parent compound. In light of these concerns, within the research a new, rapid and sensitive analytical procedure for the determination of a wide range of pharmaceuticals from different classes using solid phase extraction (SPE) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) technique in different water samples was developed. This methodology was applied to investigate the occurrence, removal efficiency of 25 pharmaceuticals during wastewater and drinking water treatment, and seasonal variability in the amount of selected pharmaceuticals in WWTP and WTP over a year. The most often detected analytes in water samples were carbamazepine (100 % of samples) and ibuprofen (98 % of samples), concluding that they may be considered as pollution indicators of the aqueous environment in tested area. Highly polar compound, metformin, was determined at very high concentration level of up to 8100 ng/L in analyzed water samples. Drugs concentrations were much higher in winter season, especially for non-steroidal inflammatory drugs (NSAIDs) and caffeine, probably due to the inhibited degradation related to lower temperatures and limited sunlight. Carbamazepine was found to be the most resistant drug to environmental degradation and its concentrations were at similar levels during four seasons.

  8. Wastewater treatment plant effluents as source of cosmetic polyethylene microbeads to freshwater.

    PubMed

    Kalčíková, G; Alič, B; Skalar, T; Bundschuh, M; Gotvajn, A Žgajnar

    2017-12-01

    Microplastics in the environment are either a product of the fractionation of larger plastic items or a consequence of the release of microbeads, which are ingredients of cosmetics, through wastewater treatment plant (WWTP) effluents. The aim of this study was to estimate the amount of microbeads that may be released by the latter pathways to surface waters using Ljubljana, Slovenia as a case study. For this purpose, microbeads contained in cosmetics were in a first step characterized for their physical properties and particle size distribution. Subsequently, daily emission of microbeads from consumers to the sewerage system, their fate in biological WWTPs and finally their release into surface waters were estimated for Ljubljana. Most of the particles found in cosmetic products were <100 μm. After application, microbeads are released into sewerage system at an average rate of 15.2 mg per person per day. Experiments using a lab-scale sequencing batch biological WWTP confirmed that on average 52% of microbeads are captured in activated sludge. Particle size analyses of the influent and effluent confirmed that smaller particles (up to 60-70 μm) are captured within activated sludge while bigger particles were detected in the effluent. Applying these data to the situation in Ljubljana indicates that about 112,500,000 particles may daily be released into the receiving river, resulting in a microbeads concentration of 21 particles/m 3 . Since polyethylene particles cannot be degraded and thus likely accumulate, the data raise concerns about potential effects in aquatic ecosystems in future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Efficacy of two wastewater treatment plants in removing genotoxins.

    PubMed

    Jolibois, B; Guerbet, M

    2005-04-01

    The genotoxic potential of influents and effluents of two different wastewater treatment plants (WTP-A and WTP-B) located in the Rouen, France, area was evaluated by the SOS chromotest without metabolic activation (on Escherichia coli PQ37) and the Ames fluctuation test (on Salmonella typhimurium strains TA 98, 100, TA 102) with and without metabolic activation. The wastewater samples were taken during two 1-week periods in January and April 2003. The simultaneous use of the SOS chromotest and Ames fluctuation test allowed us to evaluate the efficacy of the wastewater treatment plants at removing genotoxins. Genotoxins were detected with the Ames test but not with the SOS chromotest. Out of a total of 24 influents tested (14 for WTP-A and 10 for WTP-B), almost all were genotoxic in at least one Ames test strain (71% for WTP-A and 100% for WTP-B). In contrast, all of the tested effluents were nongenotoxic. This work showed that the treatment process used in the 2 wastewater treatment plants studied (activated sludge) was able to remove the genotoxins detected in their influents. Nevertheless, studies could be undertaken to determine which step of the treatment process removes genotoxins and whether WTP sludge use could be a source of genotoxic contamination for humans and the environment.

  10. Fate of artificial sweeteners in wastewater treatment plants in New York State, U.S.A.

    PubMed

    Subedi, Bikram; Kannan, Kurunthachalam

    2014-12-02

    Very few studies describe the fate of artificial sweeteners (ASWs) in wastewater treatment plants (WWTPs). In this study, mass loadings, removal efficiencies, and environmental emission of sucralose, saccharin, aspartame, and acesulfame were determined based on the concentrations measured in wastewater influent, primary effluent, effluent, suspended particulate matter (SPM), and sludge collected from two WWTPs in the Albany area of New York State, U.S.A. All ASWs were detected at a mean concentration that ranged from 0.13 (aspartame) to 29.4 μg/L (sucralose) in wastewater influent, 0.49 (aspartame) to 27.7 μg/L (sucralose) in primary influent, 0.11 (aspartame) to 29.6 μg/L (sucralose) in effluent, and from 0.08 (aspartame) to 0.65 μg/g dw (sucralose) in sludge. Aspartame was found in 92% of influent SPM samples at a mean concentration of 444 ng/g dw, followed by acesulfame (92 ng/g) and saccharin (49 ng/g). The fraction of the total mass of ASWs sorbed to SPM was in the rank order: aspartame (50.4%) > acesulfame (10.9%) > saccharin and sucralose (0.8%). The sorption coefficients of ASWs ranged from 4.10 (saccharin) to 4540 L/kg (aspartame). Significant removal of aspartame (68.2%) and saccharin (90.3%) was found in WWTPs; however, sucralose and acesulfame were less efficiently removed (<2.0%). The total mass loading of sucralose, saccharin, and acesulfame in the WWTP that served a smaller population (∼15,000) was 1.3-1.5 times lower than that in another WWTP that served a larger population (∼100,000). The average daily loading of sucralose in both WWTPs (18.5 g/d/1000 people) was ∼2 times higher than the average loading of saccharin. The daily discharge of sucralose from the WWTPs was the highest (17.6 g/d/1000 people), followed by acesulfame (1.22 g/d/1000 people), and saccharin (1.07 g/d/1000 people). Approximately, 1180 g of saccharin and 291 g of acesulfame were transformed in or removed daily from the two WWTPs. This is the first study to describe

  11. ETV REPORT - EVALUATION OF DAVIS TECHNOLOGIES INTERNATIONAL CORP. - INDUSTRIAL WASTEWATER TREATMENT PLANT

    EPA Science Inventory

    Abstract: Evaluation of Davis Technologies International Corp. Industrial Wastewater Treatment Plant

    The Davis Technologies International Corp. (DTIC) Industrial Wastewater Treatment Plant (IWTP) was tested, under actual production conditions, processing metalworking and ...

  12. Waste-water treatment plants are implicated as an important source of flame retardants in insectivorous tree swallows (Tachicyneta bicolor).

    PubMed

    Fernie, Kimberly J; Letcher, Robert J

    2018-03-01

    Wastewater treatment plants (WWTPs) are an important source of anthropogenic chemicals, including organic flame retardants (FRs). Limited studies indicate birds can be exposed to FRs by feeding from waters receiving WWTP effluent or in fields receiving biosolids. Expanding on our earlier study, 47 legacy and 18 new FR contaminants were characterized in the eggs of insectivorous tree swallows (Tachycineta bicolor) feeding in water bodies receiving effluent from two WWTPs and compared to those from a reference site 19 km downstream of the nearest WWTP. Of the FRs measured, polybrominated diphenyl ethers (PBDEs) dominated the FR profile, specifically BDE-47, -99, -100, -153, -154, with considerably lower concentrations of hexabromocyclododecane (HBCDD), BDE-183 and BDE-209; each detected in 96-100% of the eggs overall except HBCDD (83%). FR concentrations were usually significantly greater in eggs from the secondary WWTP versus the tertiary WWTP and/or reference site. Despite low detection rates, concentrations of new FRs, specifically pentabromobenzyl acrylate (PBBA), 1,2,-bis-(2,4,6-tribromophenoxy)ethane (BTBPE), bis(2-ethylhexyl)-tetrabromophthalate (BEHTBP), tetrabromo-o-chlorotoluene (TBCT), hexabromobenzene (HBB), α- and β-1,2-dibromo-4-(1,2-dibromoethyl)-cyclohexane (DBE-DBCH), were greater than HBCDD or BDE-209. Additional evidence that WWTPs are an important source of exposure to new FR contaminants for birds utilizing associated water bodies is that only the WTTP eggs, not the reference eggs, had measureable concentrations of PBBA, TBCT, BEHTBP, HBB, α-DBE-DBCH, 2,2',4,5,5'-pentabromobiphenyl (BB-101), pentabromoethyl benzene (PBEB), 2,4,6-tribromophenyl allyl ether (TBPAE), and tetrabromo-p-xylene (pTBX). Our study suggests that WWTPs are an important source of legacy and new FR contaminants for birds consuming prey that are associated with WWTP out-flows. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Degradation of anti-inflammatory drugs in municipal wastewater by heterogeneous photocatalysis and electro-Fenton process.

    PubMed

    Villanueva-Rodríguez, Minerva; Bello-Mendoza, Ricardo; Hernández-Ramírez, Aracely; Ruiz-Ruiz, Edgar J

    2018-03-01

    Non-steroidal anti-inflammatory drugs (NSAID) are compounds frequently found in municipal wastewater and their degradation by conventional wastewater treatment plants (WWTP) is generally incomplete. This study compared the efficiency of two advanced oxidation processes (AOP), namely heterogeneous photocatalysis (HP) and electro-Fenton (EF), in the degradation of a mixture of common NSAID (diclofenac, ibuprofen and naproxen) dissolved in either deionized water or effluent from a WWTP. Both processes were effective in degrading the NSAID mixture and the trend of degradation was as follows, diclofenac > naproxen > ibuprofen. EF with a current density of 40 mA cm -2 and 0.3 mmol Fe 2+  L -1 was the most efficient process to mineralize the organic compounds, achieving up to 92% TOC removal in deionized water and 90% in the WWTP effluent after 3 h of reaction. HP with 1.4 g TiO 2  L -1 at pH 7 under sunlight, produced 85% TOC removal in deionized water and 39% in WWTP effluent also after 3 h treatment. The lower TOC removal efficiency shown by HP with the WWTP effluent was attributed mainly to the scavenging of reactive species by background organic matter in the wastewater. On the contrary, inorganic ions in the wastewater may produce oxidazing species during the EF process, which contributes to a higher degradation efficiency. EF is a promising option for the treatment of anti-inflammatory pharmaceuticals in municipal WWTP at competitive electrical energy efficiencies.

  14. Electron beam treatment of textile dyeing wastewater: operation of pilot plant and industrial plant construction.

    PubMed

    Han, B; Kim, J; Kim, Y; Choi, J S; Makarov, I E; Ponomarev, A V

    2005-01-01

    A pilot plant for treating 1000 m3/day of dyeing wastewater with e-beam has been constructed and operated since 1998 in Daegu, Korea together with the biological treatment facility. The wastewater from various stages of the existing purification process has been treated with an electron beam in this plant, and it gave rise to elaborating the optimal technology of the electron beam treatment of wastewater with increased reliability for instant changes in the composition of wastewater. Installation of the e-beam pilot plant resulted in decolorizing and destructive oxidation of organic impurities in wastewater, appreciable reduction of chemical reagent consumption, in reduction of the treatment time, and in increase in the flow rate limit of existing facilities by 30-40%. Industrial plant for treating 10,000 m3/day each, based upon the pilot experimental result, is under construction and will be finished by 2005. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government.

  15. Using a detailed inventory of a large wastewater treatment plant to estimate the relative importance of construction to the overall environmental impacts.

    PubMed

    Morera, Serni; Corominas, Lluís; Rigola, Miquel; Poch, Manel; Comas, Joaquim

    2017-10-01

    The aim of this work is to quantify the relative contribution to the overall environmental impact of the construction phase compared to the operational phase for a large conventional activated sludge wastewater treatment plant (WWTP). To estimate these environmental impacts, a systematic procedure was designed to obtain the detailed Life Cycle Inventories (LCI) for civil works and equipment, taking as starting point the construction project budget and the list of equipment installed at the Girona WWTP, which are the most reliable information sources of materials and resources used during the construction phase. A detailed inventory is conducted by including 45 materials for civil works and 1,240 devices for the equipment. For most of the impact categories and different life spans of the WWTP, the contribution of the construction phase to the overall burden is higher than 5% and, especially for metal depletion, the impact of construction reaches 63%. When comparing to the WWTP inventories available in Ecoinvent the share of construction obtained in this work is about 3 times smaller for climate change and twice higher for metal depletion. Concrete and reinforcing steel are the materials with the highest contribution to the civil works phase and motors, pumps and mobile and transport equipment are also key equipment to consider during life cycle inventories of WWTPs. Additional robust inventories for similar WWTP can leverage this work by applying the factors (kg of materials and energy per m 3 of treated water) and guidance provided. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Occurrence and fate of antibiotic, analgesic/anti-inflammatory, and antifungal compounds in five wastewater treatment processes.

    PubMed

    Guerra, P; Kim, M; Shah, A; Alaee, M; Smyth, S A

    2014-03-01

    The presence of pharmaceuticals and personal care products (PPCPs) in the aquatic environment as a result of wastewater effluent discharge is a concern in many countries. In order to expand our understanding on the occurrence and fate of PPCPs during wastewater treatment processes, 62 antibiotic, analgesic/anti-inflammatory, and antifungal compounds were analyzed in 72 liquid and 24 biosolid samples from six wastewater treatment plants (WWTPs) during the summer and winter seasons of 2010-2012. This is the first scientific study to compare five different wastewater treatment processes: facultative and aerated lagoons, chemically-enhanced primary treatment, secondary activated sludge, and advanced biological nutrient removal. PPCPs were detected in all WWTP influents at median concentrations of 1.5 to 92,000 ng/L, with no seasonal differences. PPCPs were also found in all final effluents at median levels ranging from 3.6 to 4,200 ng/L with higher values during winter (p<0.05). Removal efficiencies ranged between -450% and 120%, depending on the compound, WWTP type, and season. Mass balance showed that the fate of analgesic/anti-inflammatory compounds was predominantly biodegradation during biological treatment, while antibiotics and antifungal compounds were more likely to sorb to sludge. However, some PPCPs remained soluble and were detected in effluent samples. Overall, this study highlighted the occurrence and behavior of a large set of PPCPs and determined how their removal is affected by environmental/operational factors in different WWTPs. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. The response of nitrous oxide emissions to different operating conditions in activated sludge wastewater treatment plants in Southeastern Brazil.

    PubMed

    Ribeiro, Renato P; Bueno, Rodrigo F; Piveli, Roque P; Kligerman, Débora C; de Mello, William Z; Oliveira, Jaime L M

    2017-11-01

    The continuous measurements of N 2 O emissions from the aeration tanks of three activated sludge wastewater treatment plants (WWTPs) operated with biological nitrogen removal (BNR) and non-BNR were performed during the different operating conditions of several parameters, such as aeration, dissolved oxygen (DO) profiling and organic shock loading (with landfill leachate). The nitrification process is the main driving force behind N 2 O emission peaks. There are indications that the variation of the air flow rate influenced N 2 O emissions; high N 2 O emissions denote over-aeration conditions or incomplete nitrification, with accumulation of NO 2 - concentrations. Thus, continuous measurements of N 2 O emissions can provide information on aeration adequacy and the efficiency of complete nitrification, with major focus on DO control, in order to reduce N 2 O emissions. An additional concern is the observed propensity of WWTPs in developing countries to receive landfill leachates in their wastewater systems. This practice could have adverse effects on climate change, since wastewater treatment during periods of organic shock loading emitted significantly higher amounts of N 2 O than without organic shock loading. In short, non-BNR WWTPs are subject to high N 2 O emissions, in contrast to BNR WWTP with controlled nitrification and denitrification processes.

  18. Wastewater treatment plant effluent alters pituitary gland gonadotropin mRNA levels in juvenile coho salmon (Oncorhynchus kisutch).

    PubMed

    Harding, Louisa B; Schultz, Irvin R; da Silva, Denis A M; Ylitalo, Gina M; Ragsdale, Dave; Harris, Stephanie I; Bailey, Stephanie; Pepich, Barry V; Swanson, Penny

    2016-09-01

    It is well known that endocrine disrupting compounds (EDCs) present in wastewater treatment plant (WWTP) effluents interfere with reproduction in fish, including altered gonad development and induction of vitellogenin (Vtg), a female-specific egg yolk protein precursor produced in the liver. As a result, studies have focused on the effects of EDC exposure on the gonad and liver. However, impacts of environmental EDC exposure at higher levels of the hypothalamic-pituitary-gonad axis are less well understood. The pituitary gonadotropins, follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) are involved in all aspects of gonad development and are subject to feedback from gonadal steroids making them a likely target of endocrine disruption. In this study, the effects of WWTP effluent exposure on pituitary gonadotropin mRNA expression were investigated to assess the utility of Lh beta-subunit (lhb) as a biomarker of estrogen exposure in juvenile coho salmon (Oncorhynchus kisutch). First, a controlled 72-h exposure to 17α-ethynylestradiol (EE2) and 17β-trenbolone (TREN) was performed to evaluate the response of juvenile coho salmon to EDC exposure. Second, juvenile coho salmon were exposed to 0, 20 or 100% effluent from eight WWTPs from the Puget Sound, WA region for 72h. Juvenile coho salmon exposed to 2 and 10ng EE2L(-1) had 17-fold and 215-fold higher lhb mRNA levels relative to control fish. Hepatic vtg mRNA levels were dramatically increased 6670-fold, but only in response to 10ng EE2L(-1) and Fsh beta-subunit (fshb) mRNA levels were not altered by any of the treatments. In the WWTP effluent exposures, lhb mRNA levels were significantly elevated in fish exposed to five of the WWTP effluents. In contrast, transcript levels of vtg were not affected by any of the WWTP effluent exposures. Mean levels of natural and synthetic estrogens in fish bile were consistent with pituitary lhb expression, suggesting that the observed lhb induction may be due to

  19. Performance intensification of Prague wastewater treatment plant.

    PubMed

    Novák, L; Havrlíková, D

    2004-01-01

    Prague wastewater treatment plant was intensified during 1994--1997 by construction of new regeneration tank and four new secondary settling tanks. Nevertheless, more stringent effluent limits and operational problems gave rise to necessity for further intensification and optimisation of plant performance. This paper describes principal operational problems of the plant and shows solutions and achieved results that have lead to plant performance stabilisation. The following items are discussed: low nitrification capacity, nitrification bioaugmentation, activated sludge bulking, insufficient sludge disposal capacity, chemical precipitation of raw wastewater, simultaneous precipitation, sludge chlorination, installation of denitrification zones, sludge rising in secondary settling tanks due to denitrification, dosage of cationic polymeric organic flocculant to secondary settling tanks, thermophilic operation of digestors, surplus activated sludge pre-thickening, mathematical modelling.

  20. [Analysis of microbial community structure at full-scale wastewater treatment plants by oxidation ditch].

    PubMed

    Guo, Yun; Yang, Dian-hai; Lu, Wen-jian

    2012-08-01

    The microbial populations of the oxidation ditch process at the full-scale municipal wastewater treatment plants (WWTP) in a city in north China were analyzed by fluorescent in situ hybridization (FISH). Fractions structure varieties and distribution characteristics of Accumulibacter as potential phosphorus accumulating organisms (PAOs), and Competibacter as potential glycogen accumulating organisms (GAOs) were quantified. The results indicated that Accumulibacter comprised around 2.0% +/- 0.6%, 3.4% +/- 0.6% and 3.5% +/- 1.2% of the total biomass in the anaerobic tank, anoxic zone and zone, respectively, while the corresponding values for Competibacter were 25.3% +/- 8.7%, 30.3% +/- 7.1% and 24.4% +/- 6.1%. Lower Accumulibacter fractions were found compared with previous full-scale reports (7%-22%), indicating low phosphorus removal efficiency in the oxidation ditch system. Statistical analysis indicated that the amount of PAOs was significantly higher in the anoxic zone and the aerobic zone compared with that in the anaerobic tank, while GAOs remained at the same level.

  1. Seabrook, N.H. Wastewater Treatment Plant Chief Operator Recognized for Outstanding Service

    EPA Pesticide Factsheets

    Dustin Price, a resident of Berwick Maine and the Chief Operator of the Seabrook, N.H. Wastewater Treatment Plant, was honored by EPA with a 2016 Regional Wastewater Treatment Plant Operator of the Year Excellence Award.

  2. Hydrothermal Liquefaction and Upgrading of Municipal Wastewater Treatment Plant Sludge: A Preliminary Techno-Economic Analysis, Rev.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snowden-Swan, Lesley J.; Zhu, Yunhua; Jones, Susanne B.

    A preliminary process model and techno-economic analysis (TEA) was completed for fuel produced from hydrothermal liquefaction (HTL) of sludge waste from a municipal wastewater treatment plant (WWTP) and subsequent biocrude upgrading. The model is adapted from previous work by Jones et al. (2014) for algae HTL, using experimental data generated in fiscal year 2015 (FY15) bench-scale HTL testing of sludge waste streams. Testing was performed on sludge samples received from Metro Vancouver’s Annacis Island WWTP (Vancouver, B.C.) as part of a collaborative project with the Water Environment and Reuse Foundation (WERF). The full set of sludge HTL testing data frommore » this effort will be documented in a separate report to be issued by WERF. This analysis is based on limited testing data and therefore should be considered preliminary. In addition, the testing was conducted with the goal of successful operation, and therefore does not represent an optimized process. Future refinements are necessary to improve the robustness of the model, including a cross-check of modeled biocrude components with the experimental GCMS data and investigation of equipment costs most appropriate at the relatively small scales used here. Environmental sustainability metrics analysis is also needed to understand the broader impact of this technology pathway. The base case scenario for the analysis consists of 10 HTL plants, each processing 100 dry U.S. ton/day (92.4 ton/day on a dry, ash-free basis) of sludge waste and producing 234 barrel per stream day (BPSD) biocrude, feeding into a centralized biocrude upgrading facility that produces 2,020 barrel per standard day of final fuel. This scale was chosen based upon initial wastewater treatment plant data collected by PNNL’s resource assessment team from the EPA’s Clean Watersheds Needs Survey database (EPA 2015a) and a rough estimate of what the potential sludge availability might be within a 100-mile radius. In addition, we received

  3. Changes in hormone and stress-inducing activities of municipal wastewater in a conventional activated sludge wastewater treatment plant.

    PubMed

    Wojnarowicz, Pola; Yang, Wenbo; Zhou, Hongde; Parker, Wayne J; Helbing, Caren C

    2014-12-01

    Conventional municipal wastewater treatment plants do not efficiently remove contaminants of emerging concern, and so are primary sources for contaminant release into the aquatic environment. Although these contaminants are present in effluents at ng-μg/L concentrations (i.e. microcontaminants), many compounds can act as endocrine disrupting compounds or stress-inducing agents at these levels. Chemical fate analyses indicate that additional levels of wastewater treatment reduce but do not always completely remove all microcontaminants. The removal of microcontaminants from wastewater does not necessarily correspond to a reduction in biological activity, as contaminant metabolites or byproducts may still be biologically active. To evaluate the efficacy of conventional municipal wastewater treatment plants to remove biological activity, we examined the performance of a full scale conventional activated sludge municipal wastewater treatment plant located in Guelph, Ontario, Canada. We assessed reductions in levels of conventional wastewater parameters and thyroid hormone disrupting and stress-inducing activities in wastewater at three phases along the treatment train using a C-fin assay. Wastewater treatment was effective at reducing total suspended solids, chemical and biochemical oxygen demand, and stress-inducing bioactivity. However, only minimal reduction was observed in thyroid hormone disrupting activities. The present study underscores the importance of examining multiple chemical and biological endpoints in evaluating and monitoring the effectiveness of wastewater treatment for removal of microcontaminants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Efficiency assessment of wastewater treatment plants: A data envelopment analysis approach integrating technical, economic, and environmental issues.

    PubMed

    Castellet, Lledó; Molinos-Senante, María

    2016-02-01

    The assessment of the efficiency of wastewater treatment plants (WWTPs) is essential to compare their performance and consequently to identify the best operational practices that can contribute to the reduction of operational costs. Previous studies have evaluated the efficiency of WWTPs using conventional data envelopment analysis (DEA) models. Most of these studies have considered the operational costs of the WWTPs as inputs, while the pollutants removed from wastewater are treated as outputs. However, they have ignored the fact that each pollutant removed by a WWTP involves a different environmental impact. To overcome this limitation, this paper evaluates for the first time the efficiency of a sample of WWTPs by applying the weighted slacks-based measure model. It is a non-radial DEA model which allows assigning weights to the inputs and outputs according their importance. Thus, the assessment carried out integrates environmental issues with the traditional "techno-economic" efficiency assessment of WWTPs. Moreover, the potential economic savings for each cost item have been quantified at a plant level. It is illustrated that the WWTPs analyzed have significant room to save staff and energy costs. Several managerial implications to help WWTPs' operators make informed decisions were drawn from the methodology and empirical application carried out. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Treatment of mountain refuge wastewater by fixed and moving bed biofilm systems.

    PubMed

    Andreottola, G; Damiani, E; Foladori, P; Nardelli, P; Ragazzi, M

    2003-01-01

    Tourists visiting mountain refuges in the Alps have increased significantly in the last decade and the number of refuges and huts at high altitude too. In this research the results of an intensive monitoring of a wastewater treatment plant (WWTP) for a tourist mountain refuge located at 2,981 m a.s.l. are described. Two biofilm reactors were adopted: (a) a Moving Bed Biofilm Reactor (MBBR); (b) a submerged Fixed Bed Biofilm Reactor (FBBR). The aims of this research were: (i) the evaluation of the main parameters characterising the processes and involved in the design of the wastewater plants, in order to compare advantages and disadvantages of the two tested alternatives; (ii) the acquisition of an adequate knowledge of the problems connected with the wastewater treatment in alpine refuges. The main results have been: (i) a quick start-up of the biological reactors obtainable thanks to a pre-colonization before the transportation of the plastic carriers to the refuge at the beginning of the tourist season; (ii) low volume and area requirement; (iii) significantly higher removal efficiency compared to other fixed biomass systems, such as trickling filters, but the energy consumption is higher.

  6. Coking wastewater treatment plant as a source of polycyclic aromatic hydrocarbons (PAHs) to the atmosphere and health-risk assessment for workers.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Feng, Chunhua; Yan, Bo; Li, Ning; Peng, Pingan; Fu, Jiamo

    2012-08-15

    PAHs were identified and some of them were determined in the air around a coking wastewater treatment plant (WWTP) using passive air samplers. Seventy seven PAHs were found in the emissions from the degreasing tanks, the aeration tanks and the secondary clarifiers. ∑PAH concentrations within the plant (373.3±27.3-12959.5±685.9 ng/m(3)) were 3-41 times higher compared to the reference sites (315.7±50.2-363.4±77.5 ng/m(3)). The identification of numerous PAHs and high concentrations of these selected ones in the air of the studied sites indicated that the coking WWTP was a new source of atmospheric PAHs. Variations in the PAH pattern were observed in air within the coking WWTP. For example, Flu and Pyr accounted for 35-46% of the total contents at the degreasing tanks, but less than 10% at the hydrolytic tanks. The calculation of the diagnostic ratios suggested that PAHs in the emissions had the source characters of coal combustion. Furthermore, highly elevated PAH concentrations were determined at the degreasing tanks compared to the other tanks (i.e., aeration tanks and secondary clarifiers) and likely associated with their high concentrations in the coking wastewater and increased volatilization at high water temperature. Health risk assessments were carried out by evaluating the inhalation PAH exposure data. The resultant inhalation exposure levels due to TEQ(BaP) for workers ranged from 1.6±0.6 to 71.2±8.2 ng/m(3), and the estimated lung cancer risks were between 0.1×10(-3)±0.1×10(-4) and 5.2×10(-3)±0.5×10(-3), indicating PAHs in the air around the degreasing tanks and the aerobic tanks would have potential lung cancer risk for the operating workers. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. How to renovate a 50-year-old wastewater treating plant: Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, M.L.

    1996-01-01

    How does an existing refinery cost-effectively renovate wastewater/stormwater treating systems to meet today`s environmental regulations and standards? Faced with solving this problem, Amoco`s Whiting Refinery developed a project team consisting of plant and operations engineers, corporate project and design engineers, contractors and vendors to map out a strategy to re-engineer the existing wastewater treating plant (WWTP) and auxiliary functions. This case history shows how an old refinery limited by existing equipment, building space, operation`s availability requirements and costs divided the project into several design phases. The design team used a proactive approach with empowerment responsibilities to solve construction, equipment usagemore » and regulatory problems throughout the project`s lifetime. Focusing on front-end planning and customer service (the refinery), team members applied value-based engineering designs to keep costs down, implemented safe work practices during construction, used HAZOP reviews to scrutinize proposed designs for operating and maintenance procedures, etc. The result has been the renovation of a 50-year-old WWTP completed under budget, ontime and in compliance with federal mandates.« less

  8. Triclosan persistence through wastewater treatment plants and its potential toxic effects on river biofilms.

    PubMed

    Ricart, Marta; Guasch, Helena; Alberch, Mireia; Barceló, Damià; Bonnineau, Chloé; Geiszinger, Anita; Farré, Marinel la; Ferrer, Josep; Ricciardi, Francesco; Romaní, Anna M; Morin, Soizic; Proia, Lorenzo; Sala, Lluís; Sureda, David; Sabater, Sergi

    2010-11-15

    Triclosan is a commonly used bactericide that survives several degradation steps in WWTP (wastewater treatment plants) and potentially reaches fluvial ecosystems. In Mediterranean areas, where water scarcity results in low dilution capacity, the potential environmental risk of triclosan is high. A set of experimental channels was used to examine the short-term effects of triclosan (from 0.05 to 500μgL⁻¹) on biofilm algae and bacteria. Environmentally relevant concentrations of triclosan caused an increase of bacterial mortality with a no effect concentration (NEC) of 0.21μgL⁻¹. Dead bacteria accounted for up to 85% of the total bacterial population at the highest concentration tested. The toxicity of triclosan was higher for bacteria than algae. Photosynthetic efficiency was inhibited with increasing triclosan concentrations (NEC=0.42μgL⁻¹), and non-photochemical quenching mechanisms decreased. Diatom cell viability was also affected with increasing concentrations of triclosan. Algal toxicity may be a result of indirect effects on the biofilm toxicity, but the clear and progressive reduction observed in all the algal-related endpoints suggest the existence of direct effects of the bactericide. The toxicity detected on the co-occurring non-target components of the biofilm community, the capacity of triclosan to survive through WWTP processes and the low dilution capacity that characterizes Mediterranean systems extend the relevance of triclosan toxicity beyond bacteria in aquatic habitats. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Multiple-objective evaluation of wastewater treatment plant control alternatives.

    PubMed

    Flores-Alsina, Xavier; Gallego, Alejandro; Feijoo, Gumersindo; Rodriguez-Roda, Ignasi

    2010-05-01

    Besides the evaluation of the environmental issues, the correct assessment of wastewater treatment plants (WWTP) should take into account several objectives such as: economic e.g. operation costs; technical e.g. risk of suffering microbiology-related TSS separation problems; or legal e.g. accomplishment with the effluent standards in terms of the different pollution loads. For this reason, the main objective of this paper is to show the benefits of complementing the environmental assessment carried out by life cycle assessment with economical, technical and legal criteria. Using a preliminary version of the BSM2 as a case study, different combinations of controllers are implemented, simulated and evaluated. In the following step, the resulting multi-criteria matrix is mined using multivariate statistical techniques. The results showed that the presence of an external carbon source addition, the type of aeration system and the TSS controller are the key elements creating the differences amongst the alternatives. Also, it was possible to characterize the different control strategies according to a set of aggregated criteria. Additionally, the existing synergies amongst different objectives and their consequent trade-offs were identified. Finally, it was discovered that from the initial extensive list of evaluation criteria, only a small set of five are really discriminant, being useful to differentiate within the generated alternatives. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge.

    PubMed

    Chen, Wei-Hsiang; Yang, Jun-Hong; Yuan, Chung-Shin; Yang, Ying-Hsien

    2016-10-01

    Wastewater treatment plants (WWTPs) have been recognized as important sources for anthropogenic greenhouse gas (GHG) emission. The objective of the study was to thoroughly investigate a typical industrial WWTP in southern Taiwan in winter and summer which possesses the emission factors close to those reported values, with the analyses of emission factors, mass fluxes, fugacity, lab-scale in situ experiments, and impact assessment. The activated sludge was the important source in winter and summer, and nitrous oxide (N 2 O) was the main contributor (e.g., 57 to 91 % of total GHG emission in a unit of kg carbon dioxide-equivalent/kg chemical oxygen demand). Albeit important for the GHGs in the atmosphere, the fractional contribution of the GHG emission to the carbon or nitrogen removal in wastewater treatment was negligible (e.g., less than 1.5 %). In comparison with the sludge concentration or retention time, adjusting the aeration rate was more effective to diminish the GHG emission in the activated sludge without significantly affecting the treated water quality. When the aeration rate in the activated sludge simulation was reduced by 75 %, the mass flux of N 2 O could be diminished by up to 53 % (from 9.6 to 4.5 mg/m 2 -day). The total emission in the WWTP (including carbon dioxide, methane, and N 2 O) would decrease by 46 % (from 0.67 to 0.36 kg CO 2 -equiv/kg COD). However, the more important benefit of changing the aeration rate was lowering the energy consumption in operation of the WWTP, as the fractional contribution of pumping to the total emission from the WWTP ranged from 46 to 93 % within the range of the aeration rate tested. Under the circumstance in which reducing the burden of climate change is a global campaign, the findings provide insight regarding the GHG emission from treatment of industrial wastewater and the associated impact on the treatment performance and possible mitigation strategies by operational modifications.

  11. Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling.

    PubMed

    Watkinson, A J; Murby, E J; Costanzo, S D

    2007-10-01

    Removal of 28 human and veterinary antibiotics was assessed in a conventional (activated sludge) and advanced (microfiltration/reverse osmosis) wastewater treatment plant (WWTP) in Brisbane, Australia. The dominant antibiotics detected in wastewater influents were cephalexin (med. 4.6 microg L(-1), freq. 100%), ciprofloxacin (med. 3.8 microg L(-1), freq. 100%), cefaclor (med. 0.5 microg L(-1), freq. 100%), sulphamethoxazole (med. 0.36 microg L(-1), freq. 100%) and trimethoprim (med. 0.34 microg L(-1), freq. 100%). Results indicated that both treatment plants significantly reduced antibiotic concentrations with an average removal rate from the liquid phase of 92%. However, antibiotics were still detected in both effluents from the low-to-mid ng L(-1) range. Antibiotics detected in effluent from the activated sludge WWTP included ciprofloxacin (med. 0.6 microg L(-1), freq. 100%), sulphamethoxazole (med. 0.27 microg L(-1), freq. 100%) lincomycin (med. 0.05 microg L(-1), freq. 100%) and trimethoprim (med. 0.05 microg L(-1), freq. 100%). Antibiotics identified in microfiltration/reverse osmosis product water included naladixic acid (med. 0.045 microg L(-1), freq. 100%), enrofloxacin (med. 0.01 microg L(-1), freq. 100%), roxithromycin (med. 0.01 microg L(-1), freq. 100%), norfloxacin (med. 0.005 microg L(-1), freq. 100%), oleandomycin (med. 0.005 microg L(-1), freq. 100%), trimethoprim (med. 0.005 microg L(-1), freq. 100%), tylosin (med. 0.001 microg L(-1), freq. 100%), and lincomycin (med. 0.001 microg L(-1), freq. 66%). Certain traditional parameters, including nitrate concentration, conductivity and turbidity of the effluent were assessed as predictors of total antibiotic concentration, however only conductivity demonstrated any correlation with total antibiotic concentration (p=0.018, r=0.7). There is currently a lack of information concerning the effects of these chemicals to critically assess potential risks for environmental discharge and water recycling.

  12. Net positive energy wastewater treatment plant via thermal pre-treatment of sludge: A theoretical case study.

    PubMed

    Farno, Ehsan; Baudez, Jean Christophe; Parthasarathy, Rajarathinam; Eshtiaghi, Nicky

    2017-04-16

    In a wastewater treatment process, energy is mainly used in sludge handling and heating, while energy is recovered by biogas production in anaerobic digestion process. Thermal pre-treatment of sludge can change the energy balance in a wastewater treatment process since it reduces the viscosity and yield stress of sludge and increases the biogas production. In this study, a calculation based on a hypothetical wastewater treatment plant is provided to show the possibility of creating a net positive energy wastewater treatment plant as a result of implementing thermal pre-treatment process before the anaerobic digester. The calculations showed a great energy saving in pumping and mixing of the sludge by thermal pre-treatment of sludge before anaerobic digestion process.

  13. Life cycle assessment of an intensive sewage treatment plant in Barcelona (Spain) with focus on energy aspects.

    PubMed

    Bravo, L; Ferrer, I

    2011-01-01

    Life Cycle Assessment was used to evaluate environmental impacts associated to a full-scale wastewater treatment plant (WWTP) in Barcelona Metropolitan Area, with a treatment capacity of 2 million population equivalent, focussing on energy aspects and resources consumption. The wastewater line includes conventional pre-treatment, primary settler, activated sludge with nitrogen removal, and tertiary treatment; and the sludge line consists of thickening, anaerobic digestion, cogeneration, dewatering and thermal drying. Real site data were preferably included in the inventory. Environmental impacts of the resulting impact categories were determined by the CLM 2 baseline method. According to the results, the combustion of natural gas in the cogeneration engine is responsible for the main impact on Climate Change and Depletion of Abiotic Resources, while the combustion of biogas in the cogeneration unit accounts for a minor part. The results suggest that the environmental performance of the WWTP would be enhanced by increasing biogas production through improved anaerobic digestion of sewage sludge.

  14. Model structure identification for wastewater treatment simulation based on computational fluid dynamics.

    PubMed

    Alex, J; Kolisch, G; Krause, K

    2002-01-01

    The objective of this presented project is to use the results of an CFD simulation to automatically, systematically and reliably generate an appropriate model structure for simulation of the biological processes using CSTR activated sludge compartments. Models and dynamic simulation have become important tools for research but also increasingly for the design and optimisation of wastewater treatment plants. Besides the biological models several cases are reported about the application of computational fluid dynamics ICFD) to wastewater treatment plants. One aim of the presented method to derive model structures from CFD results is to exclude the influence of empirical structure selection to the result of dynamic simulations studies of WWTPs. The second application of the approach developed is the analysis of badly performing treatment plants where the suspicion arises that bad flow behaviour such as short cut flows is part of the problem. The method suggested requires as the first step the calculation of fluid dynamics of the biological treatment step at different loading situations by use of 3-dimensional CFD simulation. The result of this information is used to generate a suitable model structure for conventional dynamic simulation of the treatment plant by use of a number of CSTR modules with a pattern of exchange flows between the tanks automatically. The method is explained in detail and the application to the WWTP Wuppertal Buchenhofen is presented.

  15. The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater.

    PubMed

    Lucas, D; Castellet-Rovira, F; Villagrasa, M; Badia-Fabregat, M; Barceló, D; Vicent, T; Caminal, G; Sarrà, M; Rodríguez-Mozaz, S

    2018-01-01

    The contribution of the sorption processes in the elimination of pharmaceuticals (PhACs) during the fungal treatment of wastewater has been evaluated in this work. The sorption of four PhACs (carbamazepine, diclofenac, iopromide and venlafaxine) by 6 different fungi was first evaluated in batch experiments. Concentrations of PhACs in both liquid and solid (biomass) matrices from the fungal treatment were measured. Contribution of the sorption to the total removal of pollutants ranged between 3% and 13% in relation to the initial amount. The sorption of 47 PhACs in fungi was also evaluated in a fungal treatment performed in 26days in a continuous bioreactor treating wastewater from a veterinary hospital. PhACs levels measured in the fungal biomass were similar to those detected in conventional wastewater treatment (WWTP) sludge. This may suggest the necessity of manage fungal biomass as waste in the same manner that the WWTP sludge is managed. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Treatment of wastewater from flue gas desulphurization plants in the Netherlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vredenbregt, L.H.J.; Brugghen, F.W. van der; Enoch, G.D.

    1995-06-01

    In the Netherlands, all coal fired boilers of power stations are equipped with a wet lime(stone)-gypsum flue gas desulphurization (FGD) installation in order to fulfill the emission demands for SO{sub 2}. These wet FGD installations produce a wastewater stream containing impurities like suspended solids and traces of heavy metals like As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se and Za. As the target values stated by the licensing authorities are very stringent, most of these heavy metals and suspended solids have to be removed to very low concentration levels. Therefore, a very efficient treatment method, based on coprecipitation ofmore » heavy metal hydroxides and sulphides, which was developed by KEMA, has been installed at all, the coal fired power plants. This paper describes the operational experiences until now with these wastewater treatment installations at two coal fired power plants using sea-water for make-up and one using fresh water. The following aspects will be discussed in more detail: reliability of the wastewater treatment processes both with respect to removal efficiency of heavy metals and suspended solids and plant operation itself influence of a changing composition of the wastewater on the performance of these wastewater treatment installations. Finally, also the impact of co-firing of the sludge produced in these wastewater treatment installations will be discussed.« less

  17. Mass Balance Model for Sustainable Phosphorus Recovery in a US Wastewater Treatment Plant.

    PubMed

    Venkatesan, Arjun K; Hamdan, Abdul-Hakeem M; Chavez, Vanessa M; Brown, Jasmine D; Halden, Rolf U

    2016-01-01

    In response to limited phosphorus (P) reserves worldwide, several countries have demonstrated the prospect of recovering significant amounts of P from wastewater treatment plants (WWTPs). This technique uses enhanced biological P removal (EBPR) to concentrate P in sludge followed by chemical precipitation of P as struvite, a usable phosphate mineral. The present study models the feasibility of this enhanced removal and recovery technique in a WWTP in Arizona with design parameters typical of infrastructure in the United States. A mass balance was performed for existing treatment processes and modifications proposed to estimate the quantity of P that could be recovered under current and future flow conditions. Modeling results show that about 71 to 96% of the P being lost potentially could be recovered as struvite. About 491 ± 64 t yr of struvite may be recovered after process modification, which corresponds to $150,000 ± $20,000 yr in P sales to fertilizer industries. The process was projected to be economically feasible, with a payback period of 45 ± 30 yr in the studied WWTP and a much shorter duration of 3 ± 1 yr for WWTPs already using an EBPR process. Furthermore, modeling results suggest that P recovery can improve the quality of biosolids by favorably reducing the P:N ratio. Implementation of this strategy at US WWTPs may increase national security by reducing dependence of limited P resources. Considering all aspects of the recovery process with respect to environmental, economic, and social implications, the examined technique is concluded to represent a cost-attractive and sustainable method for P management in US WWTPs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  18. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  19. Effects of wastewater treatment plant effluent inputs on planktonic metabolic rates and microbial community composition in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Vaquer-Sunyer, Raquel; Reader, Heather E.; Muthusamy, Saraladevi; Lindh, Markus V.; Pinhassi, Jarone; Conley, Daniel J.; Kritzberg, Emma S.

    2016-08-01

    The Baltic Sea is the world's largest area suffering from eutrophication-driven hypoxia. Low oxygen levels are threatening its biodiversity and ecosystem functioning. The main causes for eutrophication-driven hypoxia are high nutrient loadings and global warming. Wastewater treatment plants (WWTP) contribute to eutrophication as they are important sources of nitrogen to coastal areas. Here, we evaluated the effects of wastewater treatment plant effluent inputs on Baltic Sea planktonic communities in four experiments. We tested for effects of effluent inputs on chlorophyll a content, bacterial community composition, and metabolic rates: gross primary production (GPP), net community production (NCP), community respiration (CR) and bacterial production (BP). Nitrogen-rich dissolved organic matter (DOM) inputs from effluents increased bacterial production and decreased primary production and community respiration. Nutrient amendments and seasonally variable environmental conditions lead to lower alpha-diversity and shifts in bacterial community composition (e.g. increased abundance of a few cyanobacterial populations in the summer experiment), concomitant with changes in metabolic rates. An increase in BP and decrease in CR could be caused by high lability of the DOM that can support secondary bacterial production, without an increase in respiration. Increases in bacterial production and simultaneous decreases of primary production lead to more carbon being consumed in the microbial loop, and may shift the ecosystem towards heterotrophy.

  20. Brewer, Maine Wastewater Treatment Plant Recognized for Excellence

    EPA Pesticide Factsheets

    The Brewer Water Pollution Control Facility was recently honored with a 2015 Regional Wastewater Treatment Plant Excellence Award by the US Environmental Protection Agency's New England regional office.

  1. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China.

    PubMed

    Zhang, Xin; Zhao, Hongxia; Du, Juan; Qu, Yixuan; Shen, Chen; Tan, Feng; Chen, Jingwen; Quan, Xie

    2017-07-01

    In this study, the occurrence and removal efficiencies of 31 antibiotics, including 11 sulfonamides (SAs), five fluoroquinolones (FQs), four macrolides (MLs), four tetracyclines (TCs), three chloramphenicols (CAPs), and four other antibiotics (Others), were investigated in 12 municipal wastewater treatment plants (WWTPs) in Dalian, China. A total of 29 antibiotics were detected in wastewater samples with the concentration ranging from 63.6 to 5404.6 ng/L. FQs and SAs were the most abundant antibiotic classes in most wastewater samples, accounting for 42.2 and 23.9% of total antibiotic concentrations, respectively, followed by TCs (16.0%) and MLs (14.8%). Sulfamethoxazole, erythromycin, clarithromycin, azithromycin, ofloxacin, and norfloxacin were the most frequently detected antibiotics; of these, the concentration of ofloxacin was the highest in most of influent (average concentration = 609.8 ng/L) and effluent (average concentration = 253.4 ng/L) samples. The removal efficiencies varied among WWTPs in the range of -189.9% (clarithromycin) to 100% (enoxacin, doxycycline, etc), and more than 50% of antibiotics could not be efficiently removed with the removal efficiency less than 65%. An environmental risk assessment was also performed in the WWTP effluents by calculating the risk quotient (RQ), and high RQ values (>1) indicated erythromycin and clarithromycin might cause the ecological risk on organisms in surrounding water near discharge point of WWTPs in this area, which warrants further attention.

  2. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale.

    PubMed

    Mailler, R; Gasperi, J; Coquet, Y; Buleté, A; Vulliet, E; Deshayes, S; Zedek, S; Mirande-Bret, C; Eudes, V; Bressy, A; Caupos, E; Moilleron, R; Chebbo, G; Rocher, V

    2016-01-15

    Among the solutions to reduce micropollutant discharges into the aquatic environment, activated carbon adsorption is a promising technique and a large scale pilot has been tested at the Seine Centre (240,000 m(3)/d - Paris, France) wastewater treatment plant (WWTP). While most of available works studied fixed bed or contact reactors with a separated separation step, this study assesses a new type of tertiary treatment based on a fluidized bed containing a high mass of activated carbon, continuously renewed. For the first time in the literature, micro-grain activated carbon (μGAC) was studied. The aims were (1) to determine the performances of fluidized bed operating with μCAG on both emerging micropollutants and conventional wastewater quality parameters, and (2) to compare its efficiency and applicability to wastewater to former results obtained with PAC. Thus, conventional wastewater quality parameters (n=11), pharmaceuticals and hormones (PPHs; n=62) and other emerging pollutants (n=57) have been monitored in μGAC configuration during 13 campaigns. A significant correlation has been established between dissolved organic carbon (DOC), PPHs and UV absorbance at 254 nm (UV-254) removals. This confirms that UV-254 could be used as a tertiary treatment performance indicator to monitor the process. This parameter allowed identifying that the removals of UV-254 and DOC reach a plateau from a μGAC retention time (SRT) of 90-100 days. The μGAC configuration substantially improves the overall quality of the WWTP discharges by reducing biological (38-45%) and chemical oxygen demands (21-48%), DOC (13-44%) and UV-254 (22-48%). In addition, total suspended solids (TSS) are retained by the μGAC bed and a biological activity (nitratation) leads to a total elimination of NO2(-). For micropollutants, PPHs have a good affinity for μGAC and high (>60%) or very high (>80%) removals are observed for most of the quantified compounds (n=22/32), i.e. atenolol (92

  3. Assessing the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units.

    PubMed

    Lou, Jie-Chung; Lin, Yung-Chang

    2008-02-01

    Wastewater reuse can significantly reduce environmental pollution and save the water sources. The study selected Cheng-Ching Lake water treatment plant in southern Taiwan to discuss the feasibility of wastewater recycling and treatment efficiency of wastewater treatment units. The treatment units of this plant include wastewater basin, sedimentation basin, sludge thickener and sludge dewatering facility. In this study, the treatment efficiency of SS and turbidity were 48.35-99.68% and 24.15-99.36%, respectively, showing the significant removal efficiency of the wastewater process. However, the removal efficiencies of NH(3)-N, total organic carbon (TOC) and chemical oxygen demand (COD) are limited by wastewater treatment processes. Because NH(3)-N, TOC and COD of the mixing supernatant and raw water are regulated raw water quality standards, supernatant reuse is feasible and workable during wastewater processes at this plant. Overall, analytical results indicated that supernatant reuse is feasible.

  4. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments.

    PubMed

    Baker, David R; Kasprzyk-Hordern, Barbara

    2013-06-01

    This paper presents, for the first time, spatial and temporal occurrence of a comprehensive set of >60 pharmaceuticals, illicit drugs and their metabolites in wastewater (7 wastewater treatment plants utilising different treatment technologies) and a major river in the UK over a 12 month period. This paper also undertakes a comparison of the efficiency of processes utilised during wastewater treatment and it discusses under-researched aspects of pharmaceuticals and illicit drugs in the environment including sorption to solids and stereoselectivity in the fate of chiral drugs during wastewater treatment and in receiving waters. The removal efficiency of analytes strongly depended on the type of wastewater treatment technology employed and denoted <50% or >60% in the case of tricking filter and activated sludge respectively. It should be stressed, however, that the removal rate was highly variable for different groups of compounds. A clear increase in the cumulative concentration of all monitored compounds was observed in receiving waters; thus highlighting the impact of WWTP discharge on water quality and the importance of the removal efficiency of WWTPs. No seasonal variation was observed with regard to the total load of targeted compounds in the river each month. The concentration of each analyte was largely dependent on rainfall and the dilution factor of WWTP discharge. These results indicate that although the drugs of abuse are not present at very high concentrations in river water (typically low ng L(-1) levels), their occurrence and possible synergic action is of concern, and the study of multiple groups of drugs of abuse is of significant importance. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. CO₂-neutral wastewater treatment plants or robust, climate-friendly wastewater management? A systems perspective.

    PubMed

    Larsen, Tove A

    2015-12-15

    CO2-neutral wastewater treatment plants can be obtained by improving the recovery of internal wastewater energy resources (COD, nutrients, energy) and reducing energy demand as well as direct emissions of the greenhouse gases N2O and CH4. Climate-friendly wastewater management also includes the management of the heat resource, which is most efficiently recovered at the household level, and robust wastewater management must be able to cope with a possible resulting temperature decrease. At the treatment plant there is a substantial energy optimization potential, both from improving electromechanical devices and sludge treatment as well as through the implementation of more energy-efficient processes like the mainstream anammox process or nutrient recovery from urine. Whether CO2 neutrality can be achieved depends not only on the actual net electricity production, but also on the type of electricity replaced: the cleaner the marginal electricity the more difficult to compensate for the direct emissions, which can be substantial, depending on the stability of the biological processes. It is possible to combine heat recovery at the household scale and nutrient recovery from urine, which both have a large potential to improve the climate friendliness of wastewater management. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The elimination of siloxanes from the biogas of a wastewater treatment plant by means of an adsorption process.

    PubMed

    Trapote, Arturo; García, Mariano; Prats, Daniel

    2016-12-01

    Siloxanes present in the biogas produced during anaerobic digestion in wastewater treatment plants (WWTPs) can damage the mechanism of cogeneration heat engines and obstruct the process of energy valorization. The objective of this research is to detect the presence of siloxanes in the biogas and evaluate a procedure for their elimination. A breakthrough curve of a synthetic decamethylcyclopentasiloxane on an experimental bed of activated carbon was modeled and the theoretical mathematical model of the adsorption process was adjusted. As a result, the constants of the model were obtained: the mass transfer constant, Henry's equilibrium constant, and the Eddy diffusion. The procedure developed allows the adsorption equilibrium of siloxanes on activated carbon to be predicted, and makes it possible to lay the basis for the design of an appropriate activated carbon module for the elimination of siloxanes in a WWTP.

  7. Full-scale effects of addition of sludge from water treatment stations into processes of sewage treatment by conventional activated sludge.

    PubMed

    Luiz, Marguti André; Sidney Seckler, Ferreira Filho; Passos, Piveli Roque

    2018-06-01

    An emerging practice for water treatment plant (WTP) sludge is its disposal in wastewater treatment plants (WWTP), an alternative that does not require the installation of sludge treatment facilities in the WTP. This practice can cause both positive and negative impacts in the WWTP processes since the WTP sludge does not have the same characteristics as domestic wastewater. This issue gives plenty of information in laboratory and pilot scales, but lacks data from full-scale studies. The main purpose of this paper is to study the impact of disposing sludge from the Rio Grande conventional WTP into the ABC WWTP, an activated sludge process facility. Both plants are located in São Paulo, Brazil, and are full-scale facilities. The WTP volumetric flow rate (4.5 m³/s) is almost three times that of WWTP (1.6 m³/s). The data used in this study came from monitoring the processes at both plants. The WWTP liquid phase treatment analysis included the variables BOD, COD, TSS, VSS, ammonia, total nitrogen, phosphorus and iron, measured at the inlet, primary effluent, mixed liquor, and effluent. For the WWTP solids treatment, the parameters tested were total and volatile solids. The performance of the WWTP process was analyzed with and without sludge addition: 'without sludge' in years 2005 and 2006 and 'with sludge' from January 2007 to March 2008. During the second period, the WTP sludge addition increased the WWTP removal efficiencies for solids (93%-96%), organic matter (92%-94% for BOD) and phosphorus (52%-88%), when compared to the period 'without sludge'. These improvements can be explained by higher feed concentrations combined to same or lower effluent concentrations in the 'with sludge' period. No critical negative impacts occurred in the sludge treatment facilities, since the treatment units absorbed the extra solids load from the WTP sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Cost of phosphate removal in municipal wastewater treatment plants

    NASA Technical Reports Server (NTRS)

    Schuessler, H.

    1983-01-01

    Construction and operating costs of advanced wastewater treatment for phosphate removal at municipal wastewater treatment plants have been investigated on orders from the Federal Environmental Bureau in Berlin. Particular attention has been paid to applicable kinds of precipitants for pre-, simultaneous and post-precipitation as well as to different phosphate influent and effluent concentrations. The article offers detailed comments on determination of technical data, investments, capital costs, operating costs and annual costs as well as potential cost reductions resulting from precipitation. Selected results of the cost investigation are shown in graphical form as specific investments, operating and annual costs depending on wastewater flow.

  9. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants.

    PubMed

    Berglund, Björn; Dienus, Olaf; Sokolova, Ekaterina; Berglind, Emma; Matussek, Andreas; Pettersson, Thomas; Lindgren, Per-Eric

    2017-11-15

    Giardia intestinalis, Cryptosporidium spp., Entamoeba histolytica and Dientamoeba fragilis are parasitic protozoa and causative agents of gastroenteritis in humans. G. intestinalis and Cryptosporidium spp. in particular are the most common protozoa associated with waterborne outbreaks in high-income countries. Surveillance of protozoan prevalence in wastewater and evaluation of wastewater treatment removal efficiencies of protozoan pathogens is therefore imperative for assessment of human health risk. In this study, influent and effluent wastewater samples from three wastewater treatment plants in Sweden were collected over nearly one year and assessed for prevalence of parasitic protozoa. Quantitative real-time PCR using primers specific for the selected protozoa Cryptosporidium spp., G. intestinalis, E. histolytica, Entamoeba dispar and D. fragilis was used for protozoan DNA detection and assessment of wastewater treatment removal efficiencies. Occurrence of G. intestinalis, E. dispar and D. fragilis DNA was assessed in both influent (44, 30 and 39 out of 51 samples respectively) and effluent wastewater (14, 9 and 33 out of 51 samples respectively) in all three wastewater treatment plants. Mean removal efficiencies of G. intestinalis, E. dispar and D. fragilis DNA quantities, based on all three wastewater treatment plants studied varied between 67 and 87%, 37-75% and 20-34% respectively. Neither E. histolytica nor Cryptosporidium spp. were detected in any samples. Overall, higher quantities of protozoan DNA were observed from February to June 2012. The high prevalence of protozoa in influent wastewater indicates the need for continued monitoring of these pathogens in wastewater-associated aquatic environments to minimise the potential risk for human infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Mercury cycling in a wastewater treatment plant treating waters with high mercury contents.

    NASA Astrophysics Data System (ADS)

    García-Noguero, Eva M.; García-Noguero, Carolina; Higueras, Pablo; Reyes-Bozo, Lorenzo; Esbrí, José M.

    2015-04-01

    The Almadén mercury mining district has been historically the most important producer of this element since Romans times to 2004, when both mining and metallurgic activities ceased as a consequence both of reserves exhaustion and persistent low prices for this metal. The reclamation of the main dump of the mine in 2007-2008 reduced drastically the atmospheric presence of the gaseous mercury pollutant in the local atmosphere. But still many areas, and in particular in the Almadén town area, can be considered as contaminated, and produce mercury releases that affect the urban residual waters. Two wastewater treatment plants (WWTP) where built in the area in year 2002, but in their design the projects did not considered the question of high mercury concentrations received as input from the town area. This communication presents data of mercury cycling in one of the WWTP, the Almadén-Chillón one, being the larger and receiving the higher Hg concentrations, due to the fact that it treats the waters coming from the West part of the town, in the immediate proximity to the mine area. Data were collected during a number of moments of activity of the plant, since April 2004 to nowadays. Analyses were carried out by means of cold vapor-atomic fluorescence spectroscopy (CV-AFS), using a PSA Millennium Merlin analytical device with gold trap. The detection limit is 0.1 ng/l. The calibration standards are prepared using the Panreac ICP Standard Mercury Solution (1,000±0,002 g/l Hg in HNO3 2-5%). Results of the surveys indicate that mercury concentrations in input and output waters in this plant has suffered an important descent since the cessation of mining and metallurgical activities, and minor reduction also after the reclamation of the main mine's dump. Since 2009, some minor seasonal variations are detected, in particular apparently related to accumulation during summer of mercury salts and particles, which are washed to the plant with the autumn's rains. Further

  11. R-plasmid transfer in a wastewater treatment plant.

    PubMed Central

    Mach, P A; Grimes, D J

    1982-01-01

    Enteric bacteria have been examined for their ability to transfer antibiotic resistance in a wastewater treatment plant. Resistant Salmonella enteritidis, Proteus mirabilis, and Escherichia coli were isolated from clinical specimens and primary sewage effluent. Resistance to ampicillin, chloramphenicol, streptomycin, sulfadiazine, and tetracycline was demonstrated by spread plate and tube dilution techniques. Plasmid mediation of resistance was shown by ethidium bromide curing, agarose gel electrophoresis, and direct cell transfer. Each donor was mated with susceptible E. coli and Shigella sonnei. Mating pairs (and recipient controls) were suspended in unchlorinated primary effluent that had been filtered and autoclaved. Suspensions were added to membrane diffusion chambers which were then placed in the primary and secondary setting tanks of the wastewater treatment plant. Resistant recombinants were detected by replica plating nutrient agar master plates onto xylose lysine desoxycholate agar plates that contained per milliliter of medium 10 micrograms of ampicillin, 30 micrograms of chloramphenicol, 10 micrograms of streptomycin, 100 micrograms of sulfadiazine, or 30 micrograms of tetracycline. Mean transfer frequencies for laboratory matings were 2.1 X 10(-3). In situ matings for primary and secondary settling resulted in frequencies of 4.9 X 10(-5) and 7.5 X 10(-5), respectively. These values suggest that a significant level of resistance transfer occurs in wastewater treatment plants in the absence of antibiotics as selective agents. Images PMID:6760813

  12. A Course on Operational Considerations in Wastewater Treatment Plant Design. Instructor's Manual.

    ERIC Educational Resources Information Center

    Cooper, John W.; And Others

    This manual contains 17 instructional units (sequenced to correspond to parallel chapters in a student's manual) focusing on upgrading the design of wastewater plant facilities and serving as a reference source for establishing criteria for upgrading wastewater treatment plants. The manual also furnishes information for modifying plant design to…

  13. Evaluation and improvement of wastewater treatment plant performance using BioWin

    NASA Astrophysics Data System (ADS)

    Oleyiblo, Oloche James; Cao, Jiashun; Feng, Qian; Wang, Gan; Xue, Zhaoxia; Fang, Fang

    2015-03-01

    In this study, the activated sludge model implemented in the BioWin® software was validated against full-scale wastewater treatment plant data. Only two stoichiometric parameters ( Y p/acetic and the heterotrophic yield ( Y H)) required calibration. The value 0.42 was used for Y p/acetic in this study, while the default value of the BioWin® software is 0.49, making it comparable with the default values of the corresponding parameter (yield of phosphorus release to substrate uptake ) used in ASM2, ASM2d, and ASM3P, respectively. Three scenarios were evaluated to improve the performance of the wastewater treatment plant, the possibility of wasting sludge from either the aeration tank or the secondary clarifier, the construction of a new oxidation ditch, and the construction of an equalization tank. The results suggest that construction of a new oxidation ditch or an equalization tank for the wastewater treatment plant is not necessary. However, sludge should be wasted from the aeration tank during wet weather to reduce the solids loading of the clarifiers and avoid effluent violations. Therefore, it is recommended that the design of wastewater treatment plants (WWTPs) should include flexibility to operate the plants in various modes. This is helpful in selection of the appropriate operating mode when necessary, resulting in substantial reductions in operating costs.

  14. Cost minimization in a full-scale conventional wastewater treatment plant: associated costs of biological energy consumption versus sludge production.

    PubMed

    Sid, S; Volant, A; Lesage, G; Heran, M

    2017-11-01

    Energy consumption and sludge production minimization represent rising challenges for wastewater treatment plants (WWTPs). The goal of this study is to investigate how energy is consumed throughout the whole plant and how operating conditions affect this energy demand. A WWTP based on the activated sludge process was selected as a case study. Simulations were performed using a pre-compiled model implemented in GPS-X simulation software. Model validation was carried out by comparing experimental and modeling data of the dynamic behavior of the mixed liquor suspended solids (MLSS) concentration and nitrogen compounds concentration, energy consumption for aeration, mixing and sludge treatment and annual sludge production over a three year exercise. In this plant, the energy required for bioreactor aeration was calculated at approximately 44% of the total energy demand. A cost optimization strategy was applied by varying the MLSS concentrations (from 1 to 8 gTSS/L) while recording energy consumption, sludge production and effluent quality. An increase of MLSS led to an increase of the oxygen requirement for biomass aeration, but it also reduced total sludge production. Results permit identification of a key MLSS concentration allowing identification of the best compromise between levels of treatment required, biological energy demand and sludge production while minimizing the overall costs.

  15. Towards energy positive wastewater treatment plants.

    PubMed

    Gikas, Petros

    2017-12-01

    Energy requirement for wastewater treatment is of major concern, lately. This is not only due to the increasing cost of electrical energy, but also due to the effects to the carbon footprint of the treatment process. Conventional activated sludge process for municipal wastewater treatment may consume up to 60% of the total plant power requirements for the aeration of the biological tank. One way to deal with high energy demand is by eliminating aeration needs, as possible. The proposed process is based on enhanced primary solids removal, based on advanced microsieving and filtration processes, by using a proprietary rotating fabric belt MicroScreen (pore size: 100-300 μm) followed by a proprietary Continuous Backwash Upflow Media Filter or cloth media filter. About 80-90% reduction in TSS and 60-70% reduction in BOD5 has been achieved by treating raw municipal wastewater with the above process. Then the partially treated wastewater is fed to a combination low height trickling filters, combined with encapsulated denitrification, for the removal of the remaining BOD and nitrogen. The biosolids produced by the microsieve and the filtration backwash concentrate are fed to an auger press and are dewatered to about 55% solids. The biosolids are then partially thermally dried (to about 80% solids) and conveyed to a gasifier, for the co-production of thermal (which is partly used for biosolids drying) and electrical energy, through syngas combustion in a co-generation engine. Alternatively, biosolids may undergo anaerobic digestion for the production of biogas and then electric energy. The energy requirements for complete wastewater treatment, per volume of inlet raw wastewater, have been calculated to 0.057 kWh/m 3 , (or 0.087 kWh/m 3 , if UV disinfection has been selected), which is about 85% below the electric energy needs of conventional activated sludge process. The potential for net electric energy production through gasification/co-generation, per volume of

  16. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. High occurrence of hepatitis E virus in samples from wastewater treatment plants in Switzerland and comparison with other enteric viruses.

    PubMed

    Masclaux, Frédéric G; Hotz, Philipp; Friedli, Drita; Savova-Bianchi, Dessislava; Oppliger, Anne

    2013-09-15

    Hepatitis E virus (HEV) is responsible for many enterically transmitted viral hepatitides around the world. It is currently one of the waterborne diseases of global concern. In industrialized countries, HEV appears to be more common than previously thought, even if it is rarely virulent. In Switzerland, seroprevalence studies revealed that HEV is endemic, but no information was available on its environmental spread. The aim of this study was to investigate -using qPCR- the occurrence and concentration of HEV and three other viruses (norovirus genogroup II, human adenovirus-40 and porcine adenovirus) in influents and effluents of 31 wastewater treatment plants (WWTPs) in Switzerland. Low concentrations of HEV were detected in 40 out of 124 WWTP influent samples, showing that HEV is commonly present in this region. The frequency of HEV occurrence was higher in summer than in winter. No HEV was detected in WWTP effluent samples, which indicates a low risk of environmental contamination. HEV occurrence and concentrations were lower than those of norovirus and adenovirus. The autochthonous HEV genotype 3 was found in all positive samples, but a strain of the non-endemic and highly pathogenic HEV genotype I was isolated in one sample, highlighting the possibility of environmental circulation of this genotype. A porcine fecal marker (porcine adenovirus) was not detected in HEV positive samples, indicating that swine are not the direct source of HEV present in wastewater. Further investigations will be necessary to determine the reservoirs and the routes of dissemination of HEV. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Transcriptomic-based effects monitoring for endocrine active chemicals: Assessing relative contribution of treated wastewater to downstream pollution

    EPA Science Inventory

    The present study investigated whether combining of targeted analytical chemistry methods with unsupervised, data-rich methodologies (i.e. transcriptomics) can be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The...

  19. The removal of illicit drugs and morphine in two waste water treatment plants (WWTPs) under tropical conditions.

    PubMed

    Devault, Damien A; Néfau, Thomas; Levi, Yves; Karolak, Sara

    2017-11-01

    The consumption of drugs of abuse has been recently investigated in Martinique using the back-calculation approach, also called the "sewage epidemiology" method. Results demonstrated a very high consumption considering the international data. Wastewater treatment plants (WWTPs) are located just behind the Martinique island shoreline, and effluents could impact the vulnerable corals and marine seagrass ecosystem. The present article aims to determine a WWTP's efficiency by comparing the influent and effluent of two WWTPs, with different residence times and biological treatments, located either outdoors or indoors. In parallel, a degradation study is conducted using spiked wastewater exposed to tropical and ambient temperatures. Results demonstrate the consistent efficiency of the two processes, especially for the outdoor WWTP which uses the activated sludge process. The positive effect of the tropical temperature is showed by the increase of cocaine degradation at 31 °C. Thus, low illicit drug residue concentrations in effluent would indicate that wastewater treatment is efficient and even enhanced under tropical context. This fact should be confirmed with others molecules. Furthermore, our results highlight the need for subsequent studies of sludge contamination because of their local recycling as compost.

  20. Estimation of chemical emissions from down-the-drain consumer products using consumer survey data at a country and wastewater treatment plant level.

    PubMed

    Douziech, Mélanie; van Zelm, Rosalie; Oldenkamp, Rik; Franco, Antonio; Hendriks, A Jan; King, Henry; Huijbregts, Mark A J

    2018-02-01

    Deriving reliable estimates of chemical emissions to the environment is a key challenge for impact and risk assessment methods and typically the associated uncertainty is not characterised. We have developed an approach to spatially quantify annual chemical emission loads to the aquatic environment together with their associated uncertainty using consumer survey data and publicly accessible and non-confidential data sources. The approach is applicable for chemicals widely used across a product sector. Product usage data from consumer survey studies in France, the Netherlands, South Korea and the USA were combined with information on typical product formulations, wastewater removal rates, and the spatial distribution of populations and wastewater treatment plants (WWTPs) in the four countries. Results are presented for three chemicals common to three types of personal care products (shampoo, conditioner, and bodywash) at WWTP and national levels. Uncertainty in WWTP-specific emission estimates was characterised with a 95% confidence interval and ranged up to a factor of 4.8 around the mean, mainly due to uncertainty associated with removal efficiency. Estimates of whole country product usage were comparable to total market estimates derived from sectorial market sales data with differences ranging from a factor 0.8 (for the Netherlands) to 5 (for the USA). The proposed approach is suitable where measured data on chemical emissions is missing and is applicable for use in risk assessments and chemical footprinting methods when applied to specific product categories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Antibiotic resistance in wastewater treatment plants: Tackling the black box.

    PubMed

    Manaia, Célia M; Rocha, Jaqueline; Scaccia, Nazareno; Marano, Roberto; Radu, Elena; Biancullo, Francesco; Cerqueira, Francisco; Fortunato, Gianuário; Iakovides, Iakovos C; Zammit, Ian; Kampouris, Ioannis; Vaz-Moreira, Ivone; Nunes, Olga C

    2018-06-01

    Wastewater is among the most important reservoirs of antibiotic resistance in urban environments. The abundance of carbon sources and other nutrients, a variety of possible electron acceptors such as oxygen or nitrate, the presence of particles onto which bacteria can adsorb, or a fairly stable pH and temperature are examples of conditions favouring the remarkable diversity of microorganisms in this peculiar habitat. The wastewater microbiome brings together bacteria of environmental, human and animal origins, many harbouring antibiotic resistance genes (ARGs). Although numerous factors contribute, mostly in a complex interplay, for shaping this microbiome, the effect of specific potential selective pressures such as antimicrobial residues or metals, is supposedly determinant to dictate the fate of antibiotic resistant bacteria (ARB) and ARGs during wastewater treatment. This paper aims to enrich the discussion on the ecology of ARB&ARGs in urban wastewater treatment plants (UWTPs), intending to serve as a guide for wastewater engineers or other professionals, who may be interested in studying or optimizing the wastewater treatment for the removal of ARB&ARGs. Fitting this aim, the paper overviews and discusses: i) aspects of the complexity of the wastewater system and/or treatment that may affect the fate of ARB&ARGs; ii) methods that can be used to explore the resistome, meaning the whole ARB&ARGs, in wastewater habitats; and iii) some frequently asked questions for which are proposed addressing modes. The paper aims at contributing to explore how ARB&ARGs behave in UWTPs having in mind that each plant is a unique system that will probably need a specific procedure to maximize ARB&ARGs removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Removal of antibiotics from urban wastewater by constructed wetland optimization.

    PubMed

    Hijosa-Valsero, María; Fink, Guido; Schlüsener, Michael P; Sidrach-Cardona, Ricardo; Martín-Villacorta, Javier; Ternes, Thomas; Bécares, Eloy

    2011-04-01

    Seven mesocosm-scale constructed wetlands (CWs), differing in their design characteristics, were set up in the open air to assess their efficiency to remove antibiotics from urban raw wastewater. A conventional wastewater treatment plant (WWTP) was simultaneously monitored. The experiment took place in autumn. An analytical methodology including HPLC-MS/MS was developed to measure antibiotic concentrations in the soluble water fraction, in the suspended solids fraction and in the WWTP sludge. Considering the soluble water fraction, the only easily eliminated antibiotics in the WWTP were doxycycline (61±38%) and sulfamethoxazole (60±26%). All the studied types of CWs were efficient for the removal of sulfamethoxazole (59±30-87±41%), as found in the WWTP, and, in addition, they removed trimethoprim (65±21-96±29%). The elimination of other antibiotics in CWs was limited by the specific system-configuration: amoxicillin (45±15%) was only eliminated by a free-water (FW) subsurface flow (SSF) CW planted with Typha angustifolia; doxycycline was removed in FW systems planted with T. angustifolia (65±34-75±40%), in a Phragmites australis-floating macrophytes system (62±31%) and in conventional horizontal SSF-systems (71±39%); clarithromycin was partially eliminated by an unplanted FW-SSF system (50±18%); erythromycin could only be removed by a P. australis-horizontal SSF system (64±30%); and ampicillin was eliminated by a T. angustifolia-floating macrophytes system (29±4%). Lincomycin was not removed by any of the systems (WWTP or CWs). The presence or absence of plants, the vegetal species (T. angustifolia or P. australis), the flow type and the CW design characteristics regulated the specific removal mechanisms. Therefore, CWs are not an overall solution to remove antibiotics from urban wastewater during cold seasons. However, more studies are needed to assess their ability in warmer periods and to determine the behaviour of full-scale systems. Copyright

  3. Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants.

    PubMed

    Silva, Catarina; Rosa, Maria João

    2015-01-01

    The energy costs usually represent the second largest part of the running costs of a wastewater treatment plant (WWTP). It is therefore crucial to increase the energy efficiency of these infrastructures and to implement energy management systems, where quantitative performance metrics, such as performance indicators (PIs), play a key role. This paper presents energy PIs which cover the unit energy consumption, production, net use from external sources and costs, and the results used to validate them and derive their reference values. The results of a field study with 17 Portuguese WWTPs (5-year period) were consistent with the results obtained through an international literature survey on the two key parcels of the energy balance--consumption and production. The unit energy consumption showed an overall inverse relation with the volume treated, and the reference values reflect this relation for trickling filters and for activated sludge systems (conventional, with coagulation/filtration (C/F) and with nitrification and C/F). The reference values of electrical energy production were derived from the methane generation potential (converted to electrical energy) and literature data, whereas those of energy net use were obtained by the difference between the energy consumption and production.

  4. Occurrence of sulfonamide residues along the Ebro River basin: removal in wastewater treatment plants and environmental impact assessment.

    PubMed

    García-Galán, M Jesús; Díaz-Cruz, M Silvia; Barceló, Damià

    2011-02-01

    Sulfonamides (SAs) have become one of the antibiotic families most frequently found in all kind of environmental waters. In the present work, the presence of 16 SAs and one of their acetylated metabolites in different water matrices of the Ebro River basin has been evaluated during two different sampling campaigns carried out in 2007 and 2008. Influent and effluent samples from seven wastewater treatment plants (WWTPs), together with a total of 28 river water samples were analyzed by on-line solid phase extraction-liquid chromathography-tandem mass spectrometry (on-line SPE-LC-MS/MS). Sulfamethoxazole and sulfapyridine were the SAs most frequently detected in WWTPs (96-100%), showing also the highest concentrations, ranging from 27.2 ng L(-1) to 596 ng L(-1) for sulfamethoxazole and from 3.7 ng L(-1) to 227 ng L(-1) for sulfapyridine. Sulfamethoxazole was also the SA most frequently detected in surface waters (85% of the samples) at concentrations between 11 ng L(-1) and 112 ng L(-1). In order to assess the effectiveness of the wastewater treatment in degrading SAs, removal efficiencies in the seven WWTPs were calculated for each individual SA (ranging from 4% to 100%) and correlated to the corresponding hydraulic retention times or residence times of the SAs in the plants. SAs half-lives were also estimated, ranging from to 2.5 hours (sulfadimethoxine) to 128 h (sulfamethazine). The contribution of the WWTPs to the presence of SAs depends on both the load of SAs discharging on the surface water from the WWTP effluent but also on the flow of the receiving waters in the discharge sites and the dilution exerted; WWTP4 exerts the highest pressure on the receiving water course. Finally, the potential environmental risk posed by SAs was evaluated calculating the hazard quotients (HQ) to different non-target organisms in effluent and river water. The degree of susceptibility resulted in algae>daphnia>fish. Sulfamethoxazole was the only SA posing a risk to algae in

  5. Polar pollutants entry into the water cycle by municipal wastewater: a European perspective.

    PubMed

    Reemtsma, Thorsten; Weiss, Stefan; Mueller, Jutta; Petrovic, Mira; González, Susana; Barcelo, Damia; Ventura, Francesc; Knepper, Thomas P

    2006-09-01

    The effluents of eight municipal wastewater treatment plants (WWTP) in Western Europe were analyzed by liquid-chromatography-mass spectrometry for the occurrence of 36 polar pollutants, comprising household and industrial chemicals, pharmaceuticals, and personal care products. In a long-term study of the effluents of three WWTP over 10 months, sulfophenyl carboxylates and ethylene diamino tetraacetate (EDTA) were detected above 10 microg/L on average, while benzotriazoles, benzothiazole-2-sulfonate, diclofenac, and carbamazepine showed mean concentrations of 1-10 microg/L, followed by some flame retardants, naphthalene disulfonates, and personal care products in the range of 0.1-1 microg/L. Half of the determined compounds were not significantly removed in tertiary wastewater treatment. By dividing the effluent concentration of a compound by its relative removal in WWTP a water cycle spreading index (WCSI) was calculated for each compound. We propose that this index provides a measure for the potential of a polar compound to spread along a partially closed water cycle after discharge with municipal wastewater and to occur in raw waters used for drinking water production. Polar pollutants in surface water samples of different catchments showed increasing concentration for compounds with increasing WCSI.

  6. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  7. Fossil organic carbon in wastewater and its fate in treatment plants.

    PubMed

    Law, Yingyu; Jacobsen, Geraldine E; Smith, Andrew M; Yuan, Zhiguo; Lant, Paul

    2013-09-15

    This study reports the presence of fossil organic carbon in wastewater and its fate in wastewater treatment plants. The findings pinpoint the inaccuracy of current greenhouse gas accounting guidelines which defines all organic carbon in wastewater to be of biogenic origin. Stable and radiocarbon isotopes ((13)C and (14)C) were measured throughout the process train in four municipal wastewater treatment plants equipped with secondary activated sludge treatment. Isotopic mass balance analyses indicate that 4-14% of influent total organic carbon (TOC) is of fossil origin with concentrations between 6 and 35 mg/L; 88-98% of this is removed from the wastewater. The TOC mass balance analysis suggests that 39-65% of the fossil organic carbon from the influent is incorporated into the activated sludge through adsorption or from cell assimilation while 29-50% is likely transformed to carbon dioxide (CO2) during secondary treatment. The fossil organic carbon fraction in the sludge undergoes further biodegradation during anaerobic digestion with a 12% decrease in mass. 1.4-6.3% of the influent TOC consists of both biogenic and fossil carbon is estimated to be emitted as fossil CO2 from activated sludge treatment alone. The results suggest that current greenhouse gas accounting guidelines, which assume that all CO2 emission from wastewater is biogenic may lead to underestimation of emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Wastewater Treatment Effluent Reduces the Abundance and Diversity of Benthic Bacterial Communities in Urban and Suburban Rivers

    PubMed Central

    Drury, Bradley; Rosi-Marshall, Emma

    2013-01-01

    In highly urbanized areas, wastewater treatment plant (WWTP) effluent can represent a significant component of freshwater ecosystems. As it is impossible for the composition of WWTP effluent to match the composition of the receiving system, the potential exists for effluent to significantly impact the chemical and biological characteristics of the receiving ecosystem. We assessed the impacts of WWTP effluent on the size, activity, and composition of benthic microbial communities by comparing two distinct field sites in the Chicago metropolitan region: a highly urbanized river receiving effluent from a large WWTP and a suburban river receiving effluent from a much smaller WWTP. At sites upstream of effluent input, the urban and suburban rivers differed significantly in chemical characteristics and in the composition of their sediment bacterial communities. Although effluent resulted in significant increases in inorganic nutrients in both rivers, surprisingly, it also resulted in significant decreases in the population size and diversity of sediment bacterial communities. Tag pyrosequencing of bacterial 16S rRNA genes revealed significant effects of effluent on sediment bacterial community composition in both rivers, including decreases in abundances of Deltaproteobacteria, Desulfococcus, Dechloromonas, and Chloroflexi sequences and increases in abundances of Nitrospirae and Sphingobacteriales sequences. The overall effect of the WWTP inputs was that the two rivers, which were distinct in chemical and biological properties upstream of the WWTPs, were almost indistinguishable downstream. These results suggest that WWTP effluent has the potential to reduce the natural variability that exists among river ecosystems and indicate that WWTP effluent may contribute to biotic homogenization. PMID:23315724

  9. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse.

    PubMed

    Opher, Tamar; Friedler, Eran

    2016-11-01

    Municipal wastewater (WW) effluent represents a reliable and significant source for reclaimed water, very much needed nowadays. Water reclamation and reuse has become an attractive option for conserving and extending available water sources. The decentralized approach to domestic WW treatment benefits from the advantages of source separation, which makes available simple small-scale systems and on-site reuse, which can be constructed on a short time schedule and occasionally upgraded with new technological developments. In this study we perform a Life Cycle Assessment to compare between the environmental impacts of four alternatives for a hypothetical city's water-wastewater service system. The baseline alternative is the most common, centralized approach for WW treatment, in which WW is conveyed to and treated in a large wastewater treatment plant (WWTP) and is then discharged to a stream. The three alternatives represent different scales of distribution of the WW treatment phase, along with urban irrigation and domestic non-potable water reuse (toilet flushing). The first alternative includes centralized treatment at a WWTP, with part of the reclaimed WW (RWW) supplied back to the urban consumers. The second and third alternatives implement de-centralized greywater (GW) treatment with local reuse, one at cluster level (320 households) and one at building level (40 households). Life cycle impact assessment results show a consistent disadvantage of the prevailing centralized approach under local conditions in Israel, where seawater desalination is the marginal source of water supply. The alternative of source separation and GW reuse at cluster level seems to be the most preferable one, though its environmental performance is only slightly better than GW reuse at building level. Centralized WW treatment with urban reuse of WWTP effluents is not advantageous over decentralized treatment of GW because the supply of RWW back to consumers is very costly in materials and

  10. Study on evaluation index system of operational performance of municipal wastewater treatment plants in China

    NASA Astrophysics Data System (ADS)

    Xiaoxin, Zhang; Jin, Huang; Ling, Lin; Yan, Li

    2018-05-01

    According to the undeveloped evaluation method for the operational performance of the municipal wastewater treatment plants, this paper analyzes the policies related to sewage treatment industry based on the investigation of the municipal wastewater treatment plants. The applicable evaluation method for the operational performance was proposed from environmental protection performance, resources and energy consumption, technical and economic performance, production management and main equipment, providing a reliable basis for scientific evaluation of the operation as well as improving the operational performance of municipal wastewater treatment plant.

  11. Benchmark simulation Model no 2 in Matlab-simulink: towards plant-wide WWTP control strategy evaluation.

    PubMed

    Vreck, D; Gernaey, K V; Rosen, C; Jeppsson, U

    2006-01-01

    In this paper, implementation of the Benchmark Simulation Model No 2 (BSM2) within Matlab-Simulink is presented. The BSM2 is developed for plant-wide WWTP control strategy evaluation on a long-term basis. It consists of a pre-treatment process, an activated sludge process and sludge treatment processes. Extended evaluation criteria are proposed for plant-wide control strategy assessment. Default open-loop and closed-loop strategies are also proposed to be used as references with which to compare other control strategies. Simulations indicate that the BM2 is an appropriate tool for plant-wide control strategy evaluation.

  12. Cod Fractions In Mechanical-Biological Wastewater Treatment Plant

    NASA Astrophysics Data System (ADS)

    Płuciennik-Koropczuk, Ewelina; Jakubaszek, Anita; Myszograj, Sylwia; Uszakiewicz, Sylwia

    2017-03-01

    The paper presents results of studies concerning the designation of COD fraction in the raw, mechanically treated and biologically treated wastewater. The test object was a wastewater treatment plant with the output of over 20,000 PE. The results were compared with data received in the ASM models. During investigation following fractions of COD were determined: dissolved non-biodegradable SI, dissolved easily biodegradable SS, in organic suspension slowly degradable XS and in organic suspension non-biodegradable XI. Methodology for determining the COD fraction was based on the guidelines ATV-A 131. The real percentage of each fraction in total COD in raw wastewater are different from data received in ASM models.

  13. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in Central Greece.

    PubMed

    Papageorgiou, Myrsini; Kosma, Christina; Lambropoulou, Dimitra

    2016-02-01

    A comprehensive study, which contains the seasonal occurrence, removal, mass loading and environmental risk assessment of 55 multi-class pharmaceuticals and personal care products (PPCPs), took place in the wastewater treatment plant (WWTP) of Volos, Greece. A one year monitoring study was performed and the samples were collected from the influent and the effluent of the WWTP. Solid phase extraction was used for the pre-concentration of the samples followed by an LC-DAD-ESI/MS analysis. Positive samples were further confirmed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The maximum concentrations of the PPCPs varied between 21 ng/L and 15,320 ng/L in the influents and between 18 ng/L and 9965 ng/L in the effluents. The most commonly detected PPCPs were the diuretic furosemide, the beta-blockers atenolol and metoprolol, the analgesics paracetamol, nimesulide, salicylic acid and diclofenac and the psychomotor stimulant caffeine. The removal efficiencies ranged between negative and high removal rates, demonstrating that the WWTP is not able to efficiently remove the complex mixture of PPCPs. The estimated mass loads ranged between 5.1 and 3513 mg/day/1000 inhabitants for WWTP influent and between 4.1 to 2141 mg/day/1000 inhabitants for WWTP effluent. Finally, environmental risk assessment has been regarded a necessary part of the general research. According to the results produced from the calculation of the risk quotient on three trophic levels, the anti-inflammatory drug diclofenac and the antibiotics, trimethoprim and ciprofloxacin, identified to be of high potential environmental risk for acute toxicity, while diclofenac also for chronic toxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Behavior of pharmaceuticals in waste water treatment plant in Japan.

    PubMed

    Matsuo, H; Sakamoto, H; Arizono, K; Shinohara, R

    2011-07-01

    The fate of pharmaceuticals in a wastewater treatment plant (WWTP) in Kumamoto, Japan with activated sludge treatment is reported. Selected pharmaceuticals were detected in influent. Results from the present study confirmed that Acetaminophen, Amoxicillin, Ampicillin and Famotidine were removed at a high rate (>90% efficiency). In contrast, removal efficiency of Ketoprofen, Losartan, Oseltamivir, Carbamazepine, and Diclofenac was relatively low (<50%). The selected pharmaceuticals were also detected in raw sludge. In digestive process, Indomethacin, Atenolol, Famotidine, Trimethoprim and Cyclofosamide were removed at a high (>70% efficiency). On the other hand, removal of Carbamazepine, Ketoprofen and Diclofenac was not efficient (<50%).

  15. Validation and implementation of model based control strategies at an industrial wastewater treatment plant.

    PubMed

    Demey, D; Vanderhaegen, B; Vanhooren, H; Liessens, J; Van Eyck, L; Hopkins, L; Vanrolleghem, P A

    2001-01-01

    In this paper, the practical implementation and validation of advanced control strategies, designed using model based techniques, at an industrial wastewater treatment plant is demonstrated. The plant under study is treating the wastewater of a large pharmaceutical production facility. The process characteristics of the wastewater treatment were quantified by means of tracer tests, intensive measurement campaigns and the use of on-line sensors. In parallel, a dynamical model of the complete wastewater plant was developed according to the specific kinetic characteristics of the sludge and the highly varying composition of the industrial wastewater. Based on real-time data and dynamic models, control strategies for the equalisation system, the polymer dosing and phosphorus addition were established. The control strategies are being integrated in the existing SCADA system combining traditional PLC technology with robust PC based control calculations. The use of intelligent control in wastewater treatment offers a wide spectrum of possibilities to upgrade existing plants, to increase the capacity of the plant and to eliminate peaks. This can result in a more stable and secure overall performance and, finally, in cost savings. The use of on-line sensors has a potential not only for monitoring concentrations, but also for manipulating flows and concentrations. This way the performance of the plant can be secured.

  16. Modeling and monitoring cyclic and linear volatile methylsiloxanes in a wastewater treatment plant using constant water level sequencing batch reactors.

    PubMed

    Wang, De-Gao; Du, Juan; Pei, Wei; Liu, Yongjun; Guo, Mingxing

    2015-04-15

    The fate of cyclic and linear volatile methylsiloxanes (VMSs) was evaluated in a wastewater treatment plant (WWTP) using constant water level sequencing batch reactors from Dalian, China. Influent, effluent, and sewage sludge samples were collected for seven consecutive days. The mean concentrations of cyclic VMSs (cVMSs) in influent and effluent samples are 1.05 μg L(-1) and 0.343 μg L(-1); the total removal efficiency of VMSs is >60%. Linear VMS (lVMS) concentration is under the quantification limitation in aquatic samples but is found in sludge samples with a value of 90 μg kg(-1). High solid-water partition coefficients result in high VMS concentrations in sludge with the mean value of 5030 μg kg(-1). No significant differences of the daily mass flows are found when comparing the concentration during the weekend and during working days. The estimated mass load of total cVMSs is 194 mg d(-1)1000 inhabitants(-1) derived for the population. A mass balance model of the WWTP was developed and derived to simulate the fate of cVMSs. The removal by sorption on sludge increases, and the volatilization decreases with increasing hydrophobicity and decreasing volatility for cVMSs. Sensitivity analysis shows that the total suspended solid concentration in the effluent, mixed liquor suspended solid concentration, the sewage sludge flow rate, and the influent flow rate are the most influential parameters on the mass distribution of cVMSs in this WWTP. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Development of a protocol to optimize electric power consumption and life cycle environmental impacts for operation of wastewater treatment plant.

    PubMed

    Piao, Wenhua; Kim, Changwon; Cho, Sunja; Kim, Hyosoo; Kim, Minsoo; Kim, Yejin

    2016-12-01

    In wastewater treatment plants (WWTPs), the portion of operating costs related to electric power consumption is increasing. If the electric power consumption decreased, however, it would be difficult to comply with the effluent water quality requirements. A protocol was proposed to minimize the environmental impacts as well as to optimize the electric power consumption under the conditions needed to meet the effluent water quality standards in this study. This protocol was comprised of six phases of procedure and was tested using operating data from S-WWTP to prove its applicability. The 11 major operating variables were categorized into three groups using principal component analysis and K-mean cluster analysis. Life cycle assessment (LCA) was conducted for each group to deduce the optimal operating conditions for each operating state. Then, employing mathematical modeling, six improvement plans to reduce electric power consumption were deduced. The electric power consumptions for suggested plans were estimated using an artificial neural network. This was followed by a second round of LCA conducted on the plans. As a result, a set of optimized improvement plans were derived for each group that were able to optimize the electric power consumption and life cycle environmental impact, at the same time. Based on these test results, the WWTP operating management protocol presented in this study is deemed able to suggest optimal operating conditions under which power consumption can be optimized with minimal life cycle environmental impact, while allowing the plant to meet water quality requirements.

  18. Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk.

    PubMed

    Pan, Chang-Gui; Liu, You-Sheng; Ying, Guang-Guo

    2016-12-01

    Perfluoroalkyl substances (PFASs) are a group of chemicals with wide industrial and commercial applications, and have been received great attentions due to their persistence in the environment. The information about their presence in urban water cycle is still limited. This study aimed to investigate the occurrence and removal efficiency of eighteen PFASs in wastewater treatment plants (WWTPs) and drinking water plants (DWTPs) with different treatment processes. The results showed that both perfluorobutane sulfonic acid (PFBS) and perfluorooctane sulfonic acid (PFOS) were the predominant compounds in the water phase of WWTPs and DWTPs, while PFOS was dominant in dewatered sludge of WWTPs. The average total PFASs concentrations in the three selected WWTPs were 19.6-232 ng/L in influents, 15.5-234 ng/L in effluents, and 31.5-49.1 ng/g dry weight in sludge. The distribution pattern of PFASs differed between the wastewater and sludge samples, indicating strong partition of PFASs with long carbon chains to sludge. In the WWTPs, most PFASs were not eliminated efficiently in conventional activated sludge treatment, while the membrane bio-reactor (MBR) and Unitank removed approximately 50% of long chain (C ≥ 8) perfluorocarboxylic acids (PFCAs). The daily mass loads of total PFASs in WWTPs were in the range of 1956-24773 mg in influent and 1548-25085 mg in effluent. PFASs were found at higher concentrations in the wastewater from plant A with some industrial wastewater input than from the other two plants (plant B and plant C) with mainly domestic wastewater sources. Meanwhile, the average total PFASs concentrations in the two selected DWTPs were detected at 4.74-14.3 ng/L in the influent and 3.34-13.9 ng/L in the effluent. In DWTPs, only granular activated carbon (GAC) and powder activated carbon (PAC) showed significant removal of PFASs. The PFASs detected in the tap water would not pose immediate health risks in the short term exposure. The findings from this

  19. Successful startup of a full-scale acrylonitrile wastewater biological treatment plant (ACN-WWTP) by eliminating the inhibitory effects of toxic compounds on nitrification.

    PubMed

    Han, Yuanyuan; Jin, Xibiao; Wang, Feng; Liu, Yongdi; Chen, Xiurong

    2014-01-01

    During the startup of a full-scale anoxic/aerobic (A/O) biological treatment plant for acrylonitrile wastewater, the removal efficiencies of NH(3)-N and total Kjeldahl nitrogen (TKN) were 1.29 and 0.83% on day 30, respectively. The nitrification process was almost totally inhibited, which was mainly caused by the inhibitory effects of toxic compounds. To eliminate the inhibition, cultivating the bacteria that degrade toxic compounds with patience was applied into the second startup of the biological treatment plant. After 75 days of startup, the inhibitory effects of the toxic compounds on nitrification were eliminated. The treatment plant has been operated stably for more than 3 years. During the last 100 days, the influent concentrations of chemical oxygen demand (COD), NH(3)-N, TKN and total cyanide (TCN) were 831-2,164, 188-516, 306-542 and 1.17-9.57 mg L(-1) respectively, and the effluent concentrations were 257 ± 30.9, 3.30 ± 1.10, 31.6 ± 4.49 and 0.40 ± 0.10 mg L(-1) (n = 100), respectively. Four strains of cyanide-degrading bacteria which were able to grow with cyanide as the sole carbon and nitrogen source were isolated from the full-scale biological treatment plant. They were short and rod-shaped under scanning electron microscopy (SEM) and were identified as Brevundimonas sp., Rhizobium sp., Dietzia natronolimnaea and Microbacterium sp., respectively.

  20. Technical, hygiene, economic, and life cycle assessment of full-scale moving bed biofilm reactors for wastewater treatment in India.

    PubMed

    Singh, Anju; Kamble, Sheetal Jaisingh; Sawant, Megha; Chakravarthy, Yogita; Kazmi, Absar; Aymerich, Enrique; Starkl, Markus; Ghangrekar, Makarand; Philip, Ligy

    2018-01-01

    Moving bed biofilm reactor (MBBR) is a highly effective biological treatment process applied to treat both urban and industrial wastewaters in developing countries. The present study investigated the technical performance of ten full-scale MBBR systems located across India. The biochemical oxygen demand, chemical oxygen demand, total suspended solid, pathogens, and nutrient removal efficiencies were low as compared to the values claimed in literature. Plant 1 was considered for evaluation of environmental impacts using life cycle assessment approach. CML 2 baseline 2000 methodology was adopted, in which 11 impact categories were considered. The life cycle impact assessment results revealed that the main environmental hot spot of this system was energy consumption. Additionally, two scenarios were compared: scenario 1 (direct discharge of treated effluent, i.e., no reuse) and scenario 2 (effluent reuse and tap water replacement). The results showed that scenario 2 significantly reduce the environmental impact in all the categories ultimately decreasing the environmental burden. Moreover, significant economic and environmental benefits can be obtained in scenario 2 by replacing the freshwater demand for non-potable uses. To enhance the performance of wastewater treatment plant (WWTP), there is a need to optimize energy consumption and increase wastewater collection efficiency to maximize the operating capacity of plant and minimize overall environmental footprint. It was concluded that MBBR can be a good alternative for upgrading and optimizing existing municipal wastewater treatment plants with appropriate tertiary treatment. Graphical abstract ᅟ.

  1. Meta-Analysis of the Reduction of Norovirus and Male-Specific Coliphage Concentrations in Wastewater Treatment Plants.

    PubMed

    Pouillot, Régis; Van Doren, Jane M; Woods, Jacquelina; Plante, Daniel; Smith, Mark; Goblick, Gregory; Roberts, Christopher; Locas, Annie; Hajen, Walter; Stobo, Jeffrey; White, John; Holtzman, Jennifer; Buenaventura, Enrico; Burkhardt, William; Catford, Angela; Edwards, Robyn; DePaola, Angelo; Calci, Kevin R

    2015-07-01

    Human norovirus (NoV) is the leading cause of foodborne illness in the United States and Canada. Wastewater treatment plant (WWTP) effluents impacting bivalve mollusk-growing areas are potential sources of NoV contamination. We have developed a meta-analysis that evaluates WWTP influent concentrations and log10 reductions of NoV genotype I (NoV GI; in numbers of genome copies per liter [gc/liter]), NoV genotype II (NoV GII; in gc/liter), and male-specific coliphage (MSC; in number of PFU per liter), a proposed viral surrogate for NoV. The meta-analysis included relevant data (2,943 measurements) reported in the scientific literature through September 2013 and previously unpublished surveillance data from the United States and Canada. Model results indicated that the mean WWTP influent concentration of NoV GII (3.9 log10 gc/liter; 95% credible interval [CI], 3.5, 4.3 log10 gc/liter) is larger than the value for NoV GI (1.5 log10 gc/liter; 95% CI, 0.4, 2.4 log10 gc/liter), with large variations occurring from one WWTP to another. For WWTPs with mechanical systems and chlorine disinfection, mean log10 reductions were -2.4 log10 gc/liter (95% CI, -3.9, -1.1 log10 gc/liter) for NoV GI, -2.7 log10 gc/liter (95% CI, -3.6, -1.9 log10 gc/liter) for NoV GII, and -2.9 log10 PFU per liter (95% CI, -3.4, -2.4 log10 PFU per liter) for MSCs. Comparable values for WWTPs with lagoon systems and chlorine disinfection were -1.4 log10 gc/liter (95% CI, -3.3, 0.5 log10 gc/liter) for NoV GI, -1.7 log10 gc/liter (95% CI, -3.1, -0.3 log10 gc/liter) for NoV GII, and -3.6 log10 PFU per liter (95% CI, -4.8, -2.4 PFU per liter) for MSCs. Within WWTPs, correlations exist between mean NoV GI and NoV GII influent concentrations and between the mean log10 reduction in NoV GII and the mean log10 reduction in MSCs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Current status of urban wastewater treatment plants in China.

    PubMed

    Zhang, Q H; Yang, W N; Ngo, H H; Guo, W S; Jin, P K; Dzakpasu, Mawuli; Yang, S J; Wang, Q; Wang, X C; Ao, D

    2016-01-01

    The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48×10(8)m(3)/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1×10(4)m(3)/d-5×10(4)m(3)/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Benchmarking wastewater treatment plants under an eco-efficiency perspective.

    PubMed

    Lorenzo-Toja, Yago; Vázquez-Rowe, Ian; Amores, María José; Termes-Rifé, Montserrat; Marín-Navarro, Desirée; Moreira, María Teresa; Feijoo, Gumersindo

    2016-10-01

    The new ISO 14045 framework is expected to slowly start shifting the definition of eco-efficiency toward a life-cycle perspective, using Life Cycle Assessment (LCA) as the environmental impact assessment method together with a system value assessment method for the economic analysis. In the present study, a set of 22 wastewater treatment plants (WWTPs) in Spain were analyzed on the basis of eco-efficiency criteria, using LCA and Life Cycle Costing (LCC) as a system value assessment method. The study is intended to be useful to decision-makers in the wastewater treatment sector, since the combined method provides an alternative scheme for analyzing the relationship between environmental impacts and costs. Two midpoint impact categories, global warming and eutrophication potential, as well as an endpoint single score indicator were used for the environmental assessment, while LCC was used for value assessment. Results demonstrated that substantial differences can be observed between different WWTPs depending on a wide range of factors such as plant configuration, plant size or even legal discharge limits. Based on these results the benchmarking of wastewater treatment facilities was performed by creating a specific classification and certification scheme. The proposed eco-label for the WWTPs rating is based on the integration of the three environmental indicators and an economic indicator calculated within the study under the eco-efficiency new framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants.

    PubMed

    Ning, Xun-An; Wang, Jing-Yu; Li, Rui-Jing; Wen, Wei-Bin; Chen, Chang-Min; Wang, Yu-Jie; Yang, Zuo-Yi; Liu, Jing-Yong

    2015-10-01

    The occurrence and removal of benzene, toluene, ethylbenzene, xylenes, styrene and isopropylbenzene (BTEXSI) from 6 textile dyeing wastewater treatment plants (TDWTPs) were investigated in this study. The practical capacities of the 6 representative plants, which used the activated sludge process, ranged from 1200 to 26000 m(3) d(-1). The results indicated that BTEXSI were ubiquitous in the raw textile dyeing wastewater, except for isopropylbenzene, and that toluene and xylenes were predominant in raw wastewaters (RWs). TDWTP-E was selected to study the residual BTEXSI at different stages. The total BTEXSI reduction on the aerobic process of TDWTP-E accounted for 82.2% of the entire process. The total BTEXSI concentrations from the final effluents (FEs) were observed to be below 1 μg L(-1), except for TDWTP-F (2.12 μg L(-1)). Volatilization and biodegradation rather than sludge sorption contributed significantly to BTEXSI removal in the treatment system. BTEXSI were not found to be the main contaminants in textile dyeing wastewater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Characteristics of microbial community involved in early biofilms formation under the influence of wastewater treatment plant effluent.

    PubMed

    Peng, Yuke; Li, Jie; Lu, Junling; Xiao, Lin; Yang, Liuyan

    2018-04-01

    Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities. Copyright © 2017. Published by Elsevier B.V.

  6. In vivo and in vitro neurochemical-based assessments of wastewater effluents from the Maumee River area of concern.

    EPA Science Inventory

    Fathead minnows (Pimephales promelas) were caged for four days at multiple locations upstream and downstream of a wastewater treatment plant (WWTP) discharge into the Maumee River (USA, OH). Grab water samples collected at the same location were extracted using several different ...

  7. Contribution of Geographic Information Systems and location models to planning of wastewater systems.

    PubMed

    Leitão, J P; Matos, J S; Gonçalves, A B; Matos, J L

    2005-01-01

    This paper presents the contributions of Geographic Information Systems (GIS) and location models towards planning regional wastewater systems (sewers and wastewater treatment plants) serving small agglomerations, i.e. agglomerations with less than 2,000 inhabitants. The main goal was to develop a decision support tool for tracing and locating regional wastewater systems. The main results of the model are expressed in terms of number, capacity and location of Wastewater Treatment Plants (WWTP) and the length of main sewers. The decision process concerning the location and capacity of wastewater systems has a number of parameters that can be optimized. These parameters include the total sewer length and number, capacity and location of WWTP. The optimization of parameters should lead to the minimization of construction and operation costs of the integrated system. Location models have been considered as tools for decision support, mainly when a geo-referenced database can be used. In these cases, the GIS may represent an important role for the analysis of data and results especially in the preliminary stage of planning and design. After selecting the spatial location model and the heuristics, two greedy algorithms were implemented in Visual Basic for Applications on the ArcGIS software environment. To illustrate the application of these algorithms a case study was developed, in a rural area located in the central part of Portugal.

  8. Community-based wastewater treatment systems and water quality of an Indonesian village.

    PubMed

    Lim, H S; Lee, L Y; Bramono, S E

    2014-03-01

    This paper examines the impact of community-based water treatment systems on water quality in a peri-urban village in Yogyakarta, Indonesia. Water samples were taken from the wastewater treatment plants (WWTPs), irrigation canals, paddy fields and wells during the dry and wet seasons. The samples were tested for biological and chemical oxygen demand, nutrients (ammonia, nitrate, total nitrogen and total phosphorus) and Escherichia coli. Water quality in this village is affected by the presence of active septic tanks, WWTP effluent discharge, small-scale tempe industries and external sources. We found that the WWTPs remove oxygen-demanding wastes effectively but discharged nutrients, such as nitrate and ammonia, into irrigation canals. Irrigation canals had high levels of E. coli as well as oxygen-demanding wastes. Well samples had high E. coli, nitrate and total nitrogen levels. Rainfall tended to increase concentrations of biological and chemical oxygen demand and some nutrients. All our samples fell within the drinking water standards for nitrate but failed the international and Indonesian standards for E. coli. Water quality in this village can be improved by improving the WWTP treatment of nutrients, encouraging more villagers to be connected to WWTPs and controlling hotspot contamination areas in the village.

  9. A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants.

    PubMed

    Monteith, Hugh D; Sahely, Halla R; MacLean, Heather L; Bagley, David M

    2005-01-01

    Municipal wastewater treatment may lead to the emission of greenhouse gases. The current Intergovenmental Panel on Climate Change (Geneva, Switzerland) approach attributes only methane emissions to wastewater treatment, but this approach may overestimate greenhouse gas emissions from the highly aerobic processes primarily used in North America. To better estimate greenhouse gas emissions, a procedure is developed that can be used either with plant-specific data or more general regional data. The procedure was evaluated using full-scale data from 16 Canadian wastewater treatment facilities and then applied to all 10 Canadian provinces. The principal greenhouse gas emitted from municipal wastewater treatment plants was estimated to be carbon dioxide (CO2), with very little methane expected. The emission rates ranged from 0.005 kg CO2-equivalent/m3 treated for primary treatment facilities to 0.26 kg CO2-equivalent/m3 for conventional activated sludge, with anaerobic sludge digestion to over 0.8 kg CO2-equivalent/m3 for extended aeration with aerobic digestion. Increasing the effectiveness of biogas generation and use will decrease the greenhouse gas emissions that may be assigned to the wastewater treatment plant.

  10. Transport and fate of microplastic particles in wastewater treatment plants.

    PubMed

    Carr, Steve A; Liu, Jin; Tesoro, Arnold G

    2016-03-15

    Municipal wastewater treatment plants (WWTPs) are frequently suspected as significant point sources or conduits of microplastics to the environment. To directly investigate these suspicions, effluent discharges from seven tertiary plants and one secondary plant in Southern California were studied. The study also looked at influent loads, particle size/type, conveyance, and removal at these wastewater treatment facilities. Over 0.189 million liters of effluent at each of the seven tertiary plants were filtered using an assembled stack of sieves with mesh sizes between 400 and 45 μm. Additionally, the surface of 28.4 million liters of final effluent at three tertiary plants was skimmed using a 125 μm filtering assembly. The results suggest that tertiary effluent is not a significant source of microplastics and that these plastic pollutants are effectively removed during the skimming and settling treatment processes. However, at a downstream secondary plant, an average of one micro-particle in every 1.14 thousand liters of final effluent was counted. The majority of microplastics identified in this study had a profile (color, shape, and size) similar to the blue polyethylene particles present in toothpaste formulations. Existing treatment processes were determined to be very effective for removal of microplastic contaminants entering typical municipal WWTPs. Published by Elsevier Ltd.

  11. Characterization of screenings from three municipal wastewater treatment plants in the Region Rhône-Alpes.

    PubMed

    Le Hyaric, R; Canler, J-P; Barillon, B; Naquin, P; Gourdon, R

    2009-01-01

    The objective of this study was to analyze the composition of the screenings sampled from three municipal wastewater treatment plants (wwtp) located in the Region Rhône-Alpes, France. The plants were equipped with multi screening stages with gap sizes ranging from 60 to 3 mm. Waste production flows from each plant were monitored over at least 48 hours in each sampling campaign in order to calculate average production rates. Waste samples of at least 7 kg were collected from each screening stage in each plant at different seasons to evaluate the influence of different parameters on the composition of the waste. An overall 30 samples were thereby collected between May 2007 and February 2008, dried at 80 degrees C for a week, and subsequently hand sorted into 10 fractions of waste materials. Results showed that the average production varied between 0.53 and 3.49 kg (wet mass) per capita per year. The highest production rates were observed during or immediately after rainy weather conditions. The dry matter content ranged between 14.4 and 29.2% of wet mass, and the volatile matter content was between 70.0 and 90.5% of dry mass. The predominant materials in the screenings were found to be sanitary textiles which accounted for 65.2% to 73.6% of dry weight and fines (<20 mm) which accounted for 15.2% to 18.2% of dry weight. These proportions were relatively similar in each plant and each sampling campaign.

  12. Multidrug-Resistant and Extended Spectrum Beta-Lactamase-Producing Escherichia coli in Dutch Surface Water and Wastewater

    PubMed Central

    Blaak, Hetty; Lynch, Gretta; Italiaander, Ronald; Hamidjaja, Raditijo A.; Schets, Franciska M.; de Roda Husman, Ana Maria

    2015-01-01

    Objective The goal of the current study was to gain insight into the prevalence and concentrations of antimicrobial resistant (AMR) Escherichia coli in Dutch surface water, and to explore the role of wastewater as AMR contamination source. Methods The prevalence of AMR E. coli was determined in 113 surface water samples obtained from 30 different water bodies, and in 33 wastewater samples obtained at five health care institutions (HCIs), seven municipal wastewater treatment plants (mWWTPs), and an airport WWTP. Overall, 846 surface water and 313 wastewater E. coli isolates were analysed with respect to susceptibility to eight antimicrobials (representing seven different classes): ampicillin, cefotaxime, tetracycline, ciprofloxacin, streptomycin, sulfamethoxazole, trimethoprim, and chloramphenicol. Results Among surface water isolates, 26% were resistant to at least one class of antimicrobials, and 11% were multidrug-resistant (MDR). In wastewater, the proportions of AMR/MDR E. coli were 76%/62% at HCIs, 69%/19% at the airport WWTP, and 37%/27% and 31%/20% in mWWTP influents and effluents, respectively. Median concentrations of MDR E. coli were 2.2×102, 4.0×104, 1.8×107, and 4.1×107 cfu/l in surface water, WWTP effluents, WWTP influents and HCI wastewater, respectively. The different resistance types occurred with similar frequencies among E. coli from surface water and E. coli from municipal wastewater. By contrast, among E. coli from HCI wastewater, resistance to cefotaxime and resistance to ciprofloxacin were significantly overrepresented compared to E. coli from municipal wastewater and surface water. Most cefotaxime-resistant E. coliisolates produced ESBL. In two of the mWWTP, ESBL-producing variants were detected that were identical with respect to phylogenetic group, sequence type, AMR-profile, and ESBL-genotype to variants from HCI wastewater discharged onto the same sewer and sampled on the same day (A1/ST23/CTX-M-1, B23/ST131/CTX-M-15, D2/ST405/CTX

  13. Probabilistic analysis of risks to US drinking water intakes from 1,4-dioxane in domestic wastewater treatment plant effluents.

    PubMed

    Simonich, Staci Massey; Sun, Ping; Casteel, Ken; Dyer, Scott; Wernery, Dave; Garber, Kevin; Carr, Gregory; Federle, Thomas

    2013-10-01

    The risks of 1,4-dioxane (dioxane) concentrations in wastewater treatment plant (WWTP) effluents, receiving primarily domestic wastewater, to downstream drinking water intakes was estimated using distributions of measured dioxane concentrations in effluents from 40 WWTPs and surface water dilution factors of 1323 drinking water intakes across the United States. Effluent samples were spiked with a d8 -1,4-dioxane internal standard in the field immediately after sample collection. Dioxane was extracted with ENVI-CARB-Plus solid phase columns and analyzed by GC/MS/MS, with a limit of quantification of 0.30 μg/L. Measured dioxane concentrations in domestic wastewater effluents ranged from <0.30 to 3.30 μg/L, with a mean concentration of 1.11 ± 0.60 μg/L. Dilution of upstream inputs of effluent were estimated for US drinking water intakes using the iSTREEM model at mean flow conditions, assuming no in-stream loss of dioxane. Dilution factors ranged from 2.6 to 48 113, with a mean of 875. The distributions of dilution factors and dioxane concentration in effluent were then combined using Monte Carlo analysis to estimate dioxane concentrations at drinking water intakes. This analysis showed the probability was negligible (p = 0.0031) that dioxane inputs from upstream WWTPs could result in intake concentrations exceeding the USEPA drinking water advisory concentration of 0.35 μg/L, before any treatment of the water for drinking use. © 2013 SETAC.

  14. Methicillin-Resistant Staphylococcus aureus (MRSA) Detected at Four U.S. Wastewater Treatment Plants

    PubMed Central

    Goldstein, Rachel E. Rosenberg; Micallef, Shirley A.; Gibbs, Shawn G.; Davis, Johnnie A.; He, Xin; George, Ashish; Kleinfelter, Lara M.; Schreiber, Nicole A.; Mukherjee, Sampa; Joseph, Sam W.

    2012-01-01

    Background: The incidence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections is increasing in the United States, and it is possible that municipal wastewater could be a reservoir of this microorganism. To date, no U.S. studies have evaluated the occurrence of MRSA in wastewater. Objective: We examined the occurrence of MRSA and methicillin-susceptible S. aureus (MSSA) at U.S. wastewater treatment plants. Methods: We collected wastewater samples from two Mid-Atlantic and two Midwest wastewater treatment plants between October 2009 and October 2010. Samples were analyzed for MRSA and MSSA using membrane filtration. Isolates were confirmed using biochemical tests and PCR (polymerase chain reaction). Antimicrobial susceptibility testing was performed by Sensititre® microbroth dilution. Staphylococcal cassette chromosome mec (SCCmec) typing, Panton-Valentine leucocidin (PVL) screening, and pulsed field gel electrophoresis (PFGE) were performed to further characterize the strains. Data were analyzed by two-sample proportion tests and analysis of variance. Results: We detected MRSA (n = 240) and MSSA (n = 119) in 22 of 44 (50%) and 24 of 44 (55%) wastewater samples, respectively. The odds of samples being MRSA-positive decreased as treatment progressed: 10 of 12 (83%) influent samples were MRSA-positive, while only one of 12 (8%) effluent samples was MRSA-positive. Ninety-three percent and 29% of unique MRSA and MSSA isolates, respectively, were multidrug resistant. SCCmec types II and IV, the pvl gene, and USA types 100, 300, and 700 (PFGE strain types commonly found in the United States) were identified among the MRSA isolates. Conclusions: Our findings raise potential public health concerns for wastewater treatment plant workers and individuals exposed to reclaimed wastewater. Because of increasing use of reclaimed wastewater, further study is needed to evaluate the risk of exposure to antibiotic-resistant bacteria in treated

  15. Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants

    EPA Pesticide Factsheets

    Detail for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems, on complying with part 68 with respect to chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.

  16. DNA DAMAGE AND VITELLOGENIN RESPONSES IN FERAL FISH EXPOSED TO URBANIZATION AND WASTE WATER TREATMENT EFFLUENT IN SOUTH CAROLINA, USA

    EPA Science Inventory

    This study was designed to look at the impact of urbanization and a wastewater treatment plant (WWTP) by using field-collected bluegill (Lepomis machrochkrus). Fish were collected from four locations in the same river: above city (reference); below city and above the WWTP; direc...

  17. Prediction of wastewater treatment plants performance based on artificial fish school neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Ruicheng; Li, Chong

    2011-10-01

    A reliable model for wastewater treatment plant is essential in providing a tool for predicting its performance and to form a basis for controlling the operation of the process. This would minimize the operation costs and assess the stability of environmental balance. For the multi-variable, uncertainty, non-linear characteristics of the wastewater treatment system, an artificial fish school neural network prediction model is established standing on actual operation data in the wastewater treatment system. The model overcomes several disadvantages of the conventional BP neural network. The results of model calculation show that the predicted value can better match measured value, played an effect on simulating and predicting and be able to optimize the operation status. The establishment of the predicting model provides a simple and practical way for the operation and management in wastewater treatment plant, and has good research and engineering practical value.

  18. Characterization of the potential impact of retention tank emptying on wastewater primary treatment: a new element for CSO management.

    PubMed

    Maruejouls, T; Lessard, P; Wipliez, B; Pelletier, G; Vanrolleghem, P A

    2011-01-01

    Theoretical studies have shown that discharges from retention tanks could have a negative impact on the WWTP's (Wastewater Treatment Plant) effluent. Characterization of such discharges is necessary to better understand these impacts. This study aims at: (1) characterizing water quality during emptying of a tank; and (2) characterizing the temporal variation of settling velocities of the waters released to the WWTP. Two full-scale sampling campaigns (18 rain events) have been realized in Quebec City and laboratory analyses have shown a wide variability of total suspended solids (TSS) and Chemical Oxygen Demand (COD) concentrations in the water released from the tank. Suspended solids seem to settle quickly because they are only found in large amounts during the first 15 min of pumping to the WWTP. These solids are hypothesized to come from the pumping in which solids remained after a previous event. When these solids are evacuated, low TSS containing waters are pumped from the retention tank. A second concentration peak occurs at the end of the emptying period when the tank is cleaned with wash water. Finally, settling velocity studies allowed characterizing combined sewer wastewaters by separating three main fractions of pollutants which correspond to the beginning, middle and end of emptying. In most cases, it is noticed that particle settling velocities increase as the pollutant load increases.

  19. Anammox biofilm in activated sludge swine wastewater treatment plants.

    PubMed

    Suto, Ryu; Ishimoto, Chikako; Chikyu, Mikio; Aihara, Yoshito; Matsumoto, Toshimi; Uenishi, Hirohide; Yasuda, Tomoko; Fukumoto, Yasuyuki; Waki, Miyoko

    2017-01-01

    We investigated anammox with a focus on biofilm in 10 wastewater treatment plants (WWTPs) that use activated sludge treatment of swine wastewater. In three plants, we found red biofilms in aeration tanks or final sedimentation tanks. The biofilm had higher anammox 16S rRNA gene copy numbers (up to 1.35 × 10 12 copies/g-VSS) and higher anammox activity (up to 295 μmoL/g-ignition loss/h) than suspended solids in the same tank. Pyrosequencing analysis revealed that Planctomycetes accounted for up to 17.7% of total reads in the biofilm. Most of them were related to Candidatus Brocadia or Ca. Jettenia. The highest copy number and the highest proportion of Planctomycetes were comparable to those of enriched anammox sludge. Thus, swine WWTPs that use activated sludge treatment can fortuitously acquire anammox biofilm. Thus, concentrated anammox can be detected by focusing on red biofilm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Influence of data collection schemes on the Life Cycle Assessment of a municipal wastewater treatment plant.

    PubMed

    Yoshida, Hiroko; Clavreul, Julie; Scheutz, Charlotte; Christensen, Thomas H

    2014-06-01

    A Life Cycle Assessment (LCA) of a municipal wastewater treatment plant (WWTP) was conducted to illustrate the effect of an emission inventory data collection scheme on the outcomes of an environmental impact assessment. Due to their burden in respect to data collection, LCAs often rely heavily on existing emission and operational data, which are gathered under either compulsory monitoring or reporting requirements under law. In this study, an LCA was conducted using three input data sources: Information compiled under compulsory disclosure requirements (the European Pollutant Release and Transfer Registry), compliance with national discharge limits, and a state-of-the-art emission data collection scheme conducted at the same WWTP. Parameter uncertainty for each collection scheme was assessed through Monte Carlo simulation. The comparison of the results confirmed that LCA results depend heavily on input data coverage. Due to the threshold on reporting value, the E-PRTR did not capture the impact for particulate matter emission, terrestrial acidification, or terrestrial eutrophication. While the current practice can capture more than 90% of non-carcinogenic human toxicity and marine eutrophication, an LCA based on the data collection scheme underestimates impact potential due to limitations of substance coverage. Besides differences between data collection schemes, the results showed that 3-13,500% of the impacts came from background systems, such as from the provisioning of fuel, electricity, and chemicals, which do not need to be disclosed currently under E-PRTR. The incidental release of pollutants was also assessed by employing a scenario-based approach, the results of which demonstrated that these non-routine emissions could increase overall WWTP greenhouse gas emissions by between 113 and 210%. Overall, current data collection schemes have the potential to provide standardized data collection and form the basis for a sound environmental impact assessment, but

  1. Distinct enantiomeric signals of ibuprofen and naproxen in treated wastewater and sewer overflow.

    PubMed

    Khan, Stuart J; Wang, Lili; Hashim, Nor H; McDonald, James A

    2014-11-01

    Ibuprofen and naproxen are commonly used members of a class of pharmaceuticals known as 2-arylpropionic acids (2-APAs). Both are chiral chemicals and can exist as either of two (R)- and (S)-enantiomers. Enantioselective analyses of effluents from municipal wastewater treatment plants (WWTPs) and from untreated sewage overflow reveal distinctly different enantiomeric fractions for both pharmaceuticals. The (S)-enantiomers of both were dominant in untreated sewage overflow, but the relative proportions of the (R)-enantiomers were shown to be increased in WWTP effluents. (R)-naproxen was below method detection limits (<1 ng.L(-1)) in sewage overflow, but measurable at higher concentrations in WWTP effluents. Accordingly, enantiomeric fractions (EF) for naproxen were consistently 1.0 in sewage overflow, but ranged from 0.7–0.9 in WWTP effluents. Ibuprofen EF ranged from 0.6–0.8 in sewage overflow and receiving waters, and was 0.5 in two WWTP effluents. Strong evidence is provided to indicate that chiral inversion of (S)-2-APAs to produce (R)-2-APAs may occur during wastewater treatment processes. It is concluded that this characterization of the enantiomeric fractions for ibuprofen and naproxen in particular effluents could facilitate the distinction of treated and untreated sources of pharmaceutical contamination in surface waters.

  2. Use of a Battery of Chemical and Ecotoxicological Methods for the Assessment of the Efficacy of Wastewater Treatment Processes to Remove Estrogenic Potency

    PubMed Central

    Beresford, Nicola; Baynes, Alice; Kanda, Rakesh; Mills, Matthew R.; Arias-Salazar, Karla; Collins, Terrence J.; Jobling, Susan

    2016-01-01

    Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies. PMID:27684328

  3. Tertiary ozonation of industrial wastewater for the removal of estrogenic compounds (NP and BPA): a full-scale case study.

    PubMed

    Bertanza, G; Papa, M; Pedrazzani, R; Repice, C; Dal Grande, M

    2013-01-01

    Wastewater treatment plant (WWTP) effluents are considered to be a major source for the release in the aquatic environment of endocrine-disrupting compounds (EDCs). Ozone has proved to be a suitable solution for polishing secondary domestic effluents. In this work, the performance of a full-scale ozonation plant was investigated in order to assess the removal efficiency of four target EDCs: nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate and bisphenol A. The studied system was the tertiary treatment stage of a municipal WWTP which receives an important industrial (textile) load. Chemical analyses showed that the considered substances occurred with a significant variability, typical of real wastewaters; based on this, ozonation performance was carefully evaluated and it appeared to be negatively affected by flow-rate increase (during rainy days, with consequent contact time reduction). Moreover, EDCs' measured removal efficiency was lower than what could be predicted based on literature data, because of the relatively high residual content of biorefractory compounds still present after biological treatment.

  4. Presence of Aeromonas spp in water from drinking-water- and wastewater-treatment plants in Mexico City.

    PubMed

    Villarruel-López, Angélica; Fernández-Rendón, Elizabeth; Mota-de-la-Garza, Lydia; Ortigoza-Ferado, Jorge

    2005-01-01

    The frequency of Aeromonas spp in three wastewater-treatment plants (WWTPs) and two drinking-water plants (DWPs) in México City was determined. Samples were taken throughout a year by the Moore's swab technique. A total of 144 samples were obtained from WWTPs and 96 from DWPs of both incoming and outflowing water. Aeromonas spp was isolated in 31% of the samples, from both kinds of sources. The technique used for the isolation of the pathogen was suitable for samples with high associate microbiota content and for those with a scarce microbial content. The presence of mesophilic-aerobic, coliform, and fecal-coliform organisms was investigated to determine whether there was any correlation with the presence of Aeromonas spp. Most samples from WWTP, which did not comply with the Mexican standards, had the pathogen, and some of the samples from the outflow of the DWP, which were within the limits set by the Mexican standards, also had Aeromonas spp. Most samples containing Aeromonas spp. had concentrations below 0.1 ppm residual chlorine, and the strains were resistant to 0.3 ppm, which supports the recommendation to increase the residual chlorine concentration to 0.5 to 1.0 ppm, as recommended by the Mexican standards.

  5. Work-Facilitating Information Visualization Techniques for Complex Wastewater Systems

    NASA Astrophysics Data System (ADS)

    Ebert, Achim; Einsfeld, Katja

    The design and the operation of urban drainage systems and wastewater treatment plants (WWTP) have become increasingly complex. This complexity is due to increased requirements concerning process technology, technical, environmental, economical, and occupational safety aspects. The plant operator has access not only to some timeworn filers and measured parameters but also to numerous on-line and off-line parameters that characterize the current state of the plant in detail. Moreover, expert databases and specific support pages of plant manufactures are accessible through the World Wide Web. Thus, the operator is overwhelmed with predominantly unstructured data.

  6. Fate of NDMA precursors through an MBR-NF pilot plant for urban wastewater reclamation and the effect of changing aeration conditions.

    PubMed

    Mamo, Julian; Insa, Sara; Monclús, Hèctor; Rodríguez-Roda, Ignasi; Comas, Joaquim; Barceló, Damià; Farré, Maria José

    2016-10-01

    The removal of N-nitrosodimethylamine (NDMA) formation potential through a membrane bioreactor (MBR) coupled to a nanofiltration (NF) pilot plant that treats urban wastewater is investigated. The results are compared to the fate of the individual NDMA precursors detected: azithromycin, citalopram, erythromycin, clarithromycin, ranitidine, venlafaxine and its metabolite o-desmethylvenlafaxine. Specifically, the effect of dissolved oxygen in the aerobic chamber of the MBR pilot plant on the removal of NDMA formation potential (FP) and individual precursors is studied. During normal aerobic operation, implying a fully nitrifying system, the MBR was able to reduce NDMA precursors above 94%, however this removal percentage was reduced to values as low as 72% when changing the conditions to minimize nitrification. Removal decreased also for azithromycin (68-59%), citalopram (31-17%), venlafaxine (35-15%) and erythromycin (61-16%) on average during nitrifying versus non-nitrifying conditions. The removal of clarithromycin, o-desmethylvenlafaxine and ranitidine could not be correlated with the nitrification inhibition, as it varied greatly during the experiment time. The MBR pilot plant is coupled to a nanofiltration (NF) system and the results on the rejection of both, NDMA FP and individual precursors, through this system was above 90%. Finally, results obtained for the MBR pilot plant are compared to the percentage of removal by a conventional full scale biological wastewater treatment plant (WWTP) fed with the same influent. During aerobic operation, the removal of NDMA FP by the MBR pilot plant was similar to the full scale WWTP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Evaporation and air-stripping to assess and reduce ethanolamines toxicity in oily wastewater.

    PubMed

    Libralato, G; Ghirardini, A Volpi; Avezzù, F

    2008-05-30

    Toxicity from industrial oily wastewater remains a problem even after conventional activated sludge treatment process, because of the persistence of some toxicant compounds. This work verified the removal efficiency of organic and inorganic pollutants and the effects of evaporation and air-stripping techniques on oily wastewater toxicity reduction. In a lab-scale plant, a vacuum evaporation procedure at three different temperatures and an air-stripping stage were tested on oily wastewater. Toxicity reduction/removal was observed at each treatment step via Microtox bioassay. A case study monitoring real scale evaporation was also done in a full-size wastewater treatment plant (WWTP). To implement part of a general project of toxicity reduction evaluation, additional investigations took into account the monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) role in toxicity definition after the evaporation phase, both as pure substances and mixtures. Only MEA and TEA appeared to contribute towards effluent toxicity.

  8. Research on the enhancement of biological nitrogen removal at low temperatures from ammonium-rich wastewater by the bio-electrocoagulation technology in lab-scale systems, pilot-scale systems and a full-scale industrial wastewater treatment plant.

    PubMed

    Li, Liang; Qian, Guangsheng; Ye, Linlin; Hu, Xiaomin; Yu, Xin; Lyu, Weijian

    2018-09-01

    In cold areas, nitrogen removal performance of wastewater treatment plants (WWTP) declines greatly in winter. This paper systematically describes the enhancement effect of a periodic reverse electrocoagulation technology on biological nitrogen removal at low temperatures. The study showed that in the lab-scale systems, the electrocoagulation technology improved the biomass amount, enzyme activity and the amount of nitrogen removal bacteria (Nitrosomonas, Nitrobacter, Paracoccus, Thauera and Enterobacter). This enhanced nitrification and denitrification of activated sludge at low temperatures. In the pilot-scale systems, the electrocoagulation technology increased the relative abundance of cold-adapted microorganisms (Luteimonas and Trueperaceae) at low temperatures. In a full-scale industrial WWTP, comparison of data from winter 2015 and winter 2016 showed that effluent chemical oxygen demand (COD), NH 4 + -N, and NO 3 - -N reduced by 10.37, 3.84, and 136.43 t, respectively, throughout the winter, after installation of electrocoagulation devices. These results suggest that the electrocoagulation technology is able to improve the performance of activated sludge under low-temperature conditions. This technology provides a new way for upgrading of the performance of WWTPs in cold areas. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system.

    PubMed

    Li, Jianan; Cheng, Weixiao; Xu, Like; Strong, P J; Chen, Hong

    2015-03-01

    In this study, we determined the abundance of 8 antibiotics (3 tetracyclines, 4 sulfonamides, and 1 trimethoprim), 12 antibiotic-resistant genes (10 tet, 2 sul), 4 antibiotic-resistant bacteria (tetracycline, sulfamethoxazole, and combined resistance), and class 1 integron integrase gene (intI1) in the effluent of residential areas, hospitals, and municipal wastewater treatment plant (WWTP) systems. The concentrations of total/individual targets (antibiotics, genes, and bacteria) varied remarkably among different samples, but the hospital samples generally had a lower abundance than the residential area samples. The WWTP demonstrated removal efficiencies of 50.8% tetracyclines, 66.8% sulfonamides, 0.5 logs to 2.5 logs tet genes, and less than 1 log of sul and intI1 genes, as well as 0.5 log to 1 log removal for target bacteria. Except for the total tetracycline concentration and the proportion of tetracycline-resistant bacteria (R (2) = 0.330, P < 0.05), there was no significant correlation between antibiotics and the corresponding resistant bacteria (P > 0.05). In contrast, various relationships were identified between antibiotics and antibiotic resistance genes (P < 0.05). Tet (A) and tet (B) displayed noticeable relationships with both tetracycline and combined antibiotic-resistant bacteria (P < 0.01).

  10. Energy benchmarking in wastewater treatment plants: the importance of site operation and layout.

    PubMed

    Belloir, C; Stanford, C; Soares, A

    2015-01-01

    Energy benchmarking is a powerful tool in the optimization of wastewater treatment plants (WWTPs) in helping to reduce costs and greenhouse gas emissions. Traditionally, energy benchmarking methods focused solely on reporting electricity consumption, however, recent developments in this area have led to the inclusion of other types of energy, including electrical, manual, chemical and mechanical consumptions that can be expressed in kWh/m3. In this study, two full-scale WWTPs were benchmarked, both incorporated preliminary, secondary (oxidation ditch) and tertiary treatment processes, Site 1 also had an additional primary treatment step. The results indicated that Site 1 required 2.32 kWh/m3 against 0.98 kWh/m3 for Site 2. Aeration presented the highest energy consumption for both sites with 2.08 kWh/m3 required for Site 1 and 0.91 kWh/m3 in Site 2. The mechanical energy represented the second biggest consumption for Site 1 (9%, 0.212 kWh/m3) and chemical input was significant in Site 2 (4.1%, 0.026 kWh/m3). The analysis of the results indicated that Site 2 could be optimized by constructing a primary settling tank that would reduce the biochemical oxygen demand, total suspended solids and NH4 loads to the oxidation ditch by 55%, 75% and 12%, respectively, and at the same time reduce the aeration requirements by 49%. This study demonstrated that the effectiveness of the energy benchmarking exercise in identifying the highest energy-consuming assets, nevertheless it points out the need to develop a holistic overview of the WWTP and the need to include parameters such as effluent quality, site operation and plant layout to allow adequate benchmarking.

  11. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

    USGS Publications Warehouse

    Cavallin, Jenna E.; Jensen, Kathleen M.; Kahl, Michael D.; Villeneuve, Daniel L.; Lee, Kathy E.; Schroeder, Anthony L.; Mayasich, Joe; Eid, Evan P.; Nelson, Krysta R.; Milsk, Rebecca Y.; Blackwell, Brett R.; Berninger, Jason P.; LaLone, Carlie A.; Blanskma, Chad; Jicha, Terri M.; Elonen, Colleen M.; Johnson, Rodney C.; Ankley, Gerald T.

    2016-01-01

    Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.

  12. Free water surface wetlands for wastewater treatment in Sweden: nitrogen and phosphorus removal.

    PubMed

    Andersson, J L; Kallner Bastviken, S; Tonderski, K S

    2005-01-01

    In South Sweden, free water surface wetlands have been built to treat wastewater from municipal wastewater treatment plants. Commonly, nitrogen removal has been the prime aim, though a significant removal of tot-P and BOD7 has been observed. In this study, performance data for 3-8 years from four large (20-28 ha) FWS wetlands have been evaluated. Two of them receive effluent from WWTP with only mechanical and chemical treatment. At the other two, the wastewater has also been treated biologically resulting in lower concentrations of BOD7 and NH4+-N. The wetlands performed satisfactorily and removed 0.7-1.5 ton N ha(-1) yr(-1) as an average for the time period investigated, with loads between 1.7 and 6.3 ton N ha(-1)yr(-1). Treatment capacity depended on the pre-treatment of the water, as reflected in the k20-values for N removal (first order area based model). In the wetlands with no biological pre-treatment, the k20-values were 0.61 and 1.1 m month(-1), whereas for the other two they were 1.7 and 2.5 m month(-1). P removal varied between 10 and 41 kg ha(-1) yr(-1), and was related to differences in loads, P speciation and to the internal cycling of P in the wetlands.

  13. Mercury mass balance at a wastewater treatment plant employing sludge incineration with offgas mercury control.

    PubMed

    Balogh, Steven J; Nollet, Yabing H

    2008-01-15

    Efforts to reduce the deliberate use of mercury (Hg) in modern industrialized societies have been largely successful, but the minimization and control of Hg in waste streams are of continuing importance. Municipal wastewater treatment plants are collection points for domestic, commercial, and industrial wastewaters, and Hg removal during wastewater treatment is essential for protecting receiving waters. Subsequent control of the Hg removed is also necessary to preclude environmental impacts. We present here a mass balance for Hg at a large metropolitan wastewater treatment plant that has recently been upgraded to provide for greater control of the Hg entering the plant. The upgrade included a new fluidized bed sludge incineration facility equipped with activated carbon addition and baghouse carbon capture for the removal of Hg from the incinerator offgas. Our results show that Hg discharges to air and water from the plant represented less than 5% of the mass of Hg entering the plant, while the remaining Hg was captured in the ash/carbon residual stream exiting the new incineration process. Sub-optimum baghouse operation resulted in some of the Hg escaping collection there and accumulating with the ash/carbon particulate matter in the secondary treatment tanks. Overall, the treatment process is effective in removing Hg from wastewater and sequestering it in a controllable stream for secure disposal.

  14. A survey of crop-derived transgenes in activated and digester sludges in wastewater treatment plants in the United States.

    PubMed

    Gardner, Courtney M; Gwin, Carley A; Gunsch, Claudia K

    2018-04-01

    The use of transgenic crops has become increasingly common in the United States over the last several decades. Increasing evidence suggests that DNA may be protected from enzymatic digestion and acid hydrolysis in the digestive tract, suggesting that crop-derived transgenes may enter into wastewater treatment plants (WWTPs) intact. Given the historical use of antibiotic resistance genes as selection markers in transgenic crop development, it is important to consider the fate of these transgenes. Herein we detected and quantified crop-derived transgenes in WWTPs. All viable US WWTP samples were found to contain multiple gene targets (p35, nos, bla and nptII) at significantly higher levels than control samples. Control wastewater samples obtained from France, where transgenic crops are not cultivated, contained significantly fewer copies of the nptII gene than US activated and digester sludges. No significant differences were measured for the bla antibiotic resistance gene (ARG). In addition, a nested PCR (polymerase chain reaction) assay was developed that targeted the bla ARG located in regions flanked by the p35 promoter and nos terminator. Overall this work suggests that transgenic crops may have provided an environmental source of nptII; however, follow-up studies are needed to ascertain the viability of these genes as they exit WWTPs.

  15. Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents

    PubMed Central

    2010-01-01

    Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally <1 μg/L. Four pharmaceuticals (methadone, oxycodone, butalbital, and metaxalone) in samples of NY3 effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents. PMID:20521847

  16. Energy-nutrients-water nexus: integrated resource recovery in municipal wastewater treatment plants.

    PubMed

    Mo, Weiwei; Zhang, Qiong

    2013-09-30

    Wastewater treatment consumes large amounts of energy and materials to comply with discharge standards. At the same time, wastewater contains resources, which can be recovered for secondary uses if treated properly. Hence, the goal of this paper is to review the available resource recovery methods onsite or offsite of municipal wastewater treatment plants. These methods are categorized into three major resource recovery approaches: onsite energy generation, nutrient recycling and water reuse. Under each approach, the review provides the advantages and disadvantages, recovery potentials and current application status of each method, as well as the synthesized results of the life cycle studies for each approach. From a comprehensive literature review, it was found that, in addition to technology improvements, there is also a need to evaluate the applications of the resource recovery methods in wastewater treatment plants from a life cycle perspective. Future research should investigate the integration of the resource recovery methods to explore the combined benefits and potential tradeoffs of these methods under different scales. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Application of the SCADA system in wastewater treatment plants.

    PubMed

    Dieu, B

    2001-01-01

    The implementation of the SCADA system has a positive impact on the operations, maintenance, process improvement and savings for the City of Houston's Wastewater Operations branch. This paper will discuss the system's evolvement, the external/internal architecture, and the human-machine-interface graphical design. Finally, it will demonstrate the system's successes in monitoring the City's sewage and sludge collection/distribution systems, wet-weather facilities and wastewater treatment plants, complying with the USEPA requirements on the discharge, and effectively reducing the operations and maintenance costs.

  18. Modelling the catchment-scale environmental impacts of wastewater treatment in an urban sewage system for CO₂ emission assessment.

    PubMed

    Mouri, Goro; Oki, Taikan

    2010-01-01

    Water shortages and water pollution are a global problem. Increases in population can have further acute effects on water cycles and on the availability of water resources. Thus, wastewater management plays an important role in mitigating negative impacts on natural ecosystems and human environments and is an important area of research. In this study, we modelled catchment-scale hydrology, including water balances, rainfall, contamination, and urban wastewater treatment. The entire water resource system of a basin, including a forest catchment and an urban city area, was evaluated synthetically from a spatial distribution perspective with respect to water quantity and quality; the Life Cycle Assessment (LCA) technique was applied to optimize wastewater treatment management with the aim of improving water quality and reducing CO₂ emissions. A numerical model was developed to predict the water cycle and contamination in the catchment and city; the effect of a wastewater treatment system on the urban region was evaluated; pollution loads were evaluated quantitatively; and the effects of excluding rainwater from the treatment system during flooding and of urban rainwater control on water quality were examined. Analysis indicated that controlling the amount of rainwater inflow to a wastewater treatment plant (WWTP) in an urban area with a combined sewer system has a large impact on reducing CO₂ emissions because of the load reduction on the urban sewage system.

  19. The effectiveness of coagulation for water reclamation from a wastewater treatment plant that has a long hydraulic and sludge retention times: A case study.

    PubMed

    Cui, Xiaochun; Zhou, Dandan; Fan, Wei; Huo, Mingxin; Crittenden, John C; Yu, Zhisen; Ju, Pengfei; Wang, Yang

    2016-08-01

    Coagulation is a feasible process to reclaim municipal wastewater, however, the role of coagulation in removing effluent organic matter (EfOM) from underutilized wastewater treatment plants (WWTPs) has not been fully explored. We identified the characteristics of the EfOM from a typical underutilized WWTP (i.e., the ratio of actual capacity to design capacity is 50%-70%), and investigated the performance of coagulation on suspended solids (SS) and dissolved organic matter (DOM) removal. The effluent could even satisfy the highest national standard of China (Class 1 A) for WWTP effluent, as evaluated by the traditional parameters such as SS and chemical oxygen demand (COD). However, the DOM in the EfOM we studied contained considerable biomass-associated products (BAPs), which were dominated by proteins with a molecular weight of approximately 150 kDa. In addition, protein also dominated the DOM after coagulation. Fulvic acid and humic-like acid organics were poorly removed by either AlCl3 or polyaluminum chloride (PAC) coagulation, even with a dosage as high as 24 mg Al L(-1). Biodegradability was very poor, as the ratio of biological oxygen demand (BOD5) to COD was less than 0.17. After coagulation the typical BAPs, protein and polysaccharide, remained as high as 1.6 mg L(-1) and 1.2 mg L(-1) respectively. In this study we found coagulation was ineffective for removal of recalcitrant BAPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Comparative analysis of effluent water quality from a municipal treatment plant and two on-site wastewater treatment systems.

    PubMed

    Garcia, Santos N; Clubbs, Rebekah L; Stanley, Jacob K; Scheffe, Brian; Yelderman, Joe C; Brooks, Bryan W

    2013-06-01

    Though decentralized on-site technologies are extensively employed for wastewater treatment around the globe, an understanding of effluent water quality impairments associated with these systems remain less understood than effluent discharges from centralized municipal wastewater treatment facilities. Using a unique experimental facility, a novel comparative analysis of effluent water quality was performed from model decentralized aerobic (ATS) and septic (STS) on-site wastewater treatment systems and a centralized municipal wastewater treatment plant (MTP). The ATS and STS units did not benefit from further soil treatment. Each system received common influent wastewater from the Waco, Texas, USA Metropolitan Area Regional Sewerage System. We tested the hypothesis that MTP effluent would exhibit higher water quality than on-site effluents, based on parameters selected for study. A tiered testing approach was employed to assess the three effluent discharges: select routine water quality parameters (Tier I), whole effluent toxicity (Tier II), and select endocrine-active compounds (Tier III). Contrary to our hypothesis, ATS effluent was not statistically different from MTP effluents, based on Tier I and III parameters, but reproductive responses of Daphnia magna were slightly more sensitive to ATS than MTP effluents. STS effluent water quality was identified as most degraded of the three wastewater treatment systems. Parameters used to assess centralized wastewater treatment plant effluent water quality such as whole effluent toxicity and endocrine active substances appear useful for water quality assessments of decentralized discharges. Aerobic on-site wastewater treatment systems may represent more robust options than traditional septic systems for on-site wastewater treatment in watersheds with appreciable groundwater - surface water exchange. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Mass Balance Assessment for Six Neonicotinoid Insecticides During Conventional Wastewater and Wetland Treatment: Nationwide Reconnaissance in United States Wastewater

    PubMed Central

    2016-01-01

    Occurrence and removal of six high-production high-volume neonicotinoids was investigated in 13 conventional wastewater treatment plants (WWTPs) and one engineered wetland. Flow-weighted daily composites were analyzed by isotope dilution liquid chromatography tandem mass spectrometry, revealing the occurrence of imidacloprid, acetamiprid, and clothianidin at ng/L concentrations in WWTP influent (60.5 ± 40.0; 2.9 ± 1.9; 149.7 ± 289.5, respectively) and effluent (58.5 ± 29.1; 2.3 ± 1.4; 70.2 ± 121.8, respectively). A mass balance showed insignificant removal of imidacloprid (p = 0.09, CI = 95%) and limited removal of the sum of acetamiprid and its degradate, acetamiprid-N-desmethyl (18 ± 4%, p = 0.01, CI = 95%). Clothianidin was found only intermittently, whereas thiamethoxam, thiacloprid, and dinotefuran were never detected. In the wetland, no removal of imidacloprid or acetamiprid was observed. Extrapolation of data from 13 WWTPs to the nation as a whole suggests annual discharges on the order of 1000–3400 kg/y of imidacloprid contained in treated effluent to surface waters nationwide. This first mass balance and first United States nationwide wastewater reconnaissance identified imidacloprid, acetamiprid, and clothianidin as recalcitrant sewage constituents that persist through wastewater treatment to enter water bodies at significant loadings, potentially harmful to sensitive aquatic invertebrates. PMID:27196423

  2. Diversity and population structure of sewage derived microorganisms in wastewater treatment plant influent

    PubMed Central

    McLellan, S.L.; Huse, S.M.; Mueller-Spitz, S.R.; Andreishcheva, E.N.; Sogin, M.L.

    2009-01-01

    The release of untreated sewage introduces non-indigenous microbial populations of uncertain composition into surface waters. We used massively parallel 454 sequencing of hypervariable regions in rRNA genes to profile microbial communities from eight untreated sewage influent samples of two wastewater treatment plants (WWTP) in metropolitan Milwaukee. The sewage profiles included a discernable human fecal signature made up of several taxonomic groups including multiple Bifidobacteriaceae, Coriobacteriaceae, Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae genera. The fecal signature made up a small fraction of the taxa present in sewage but the relative abundance of these sequence tags mirrored the population structures of human fecal samples. These genera were much more prevalent in the sewage influent than standard indicators species. High-abundance sequences from taxonomic groups within the Beta- and Gammaproteobacteria dominated the sewage samples but occurred at very low levels in fecal and surface water samples, suggesting that these organisms proliferate within the sewer system. Samples from Jones Island (JI – servicing residential plus a combined sewer system) and South Shore (SS – servicing a residential area) WWTPs had very consistent community profiles, with greater similarity between WWTPs on a given collection day than the same plant collected on different days. Rainfall increased influent flows at SS and JI WWTPs, and this corresponded to greater diversity in the community at both plants. Overall, the sewer system appears to be a defined environment with both infiltration of rainwater and stormwater inputs modulating community composition. Microbial sewage communities represent a combination of inputs from human fecal microbes and enrichment of specific microbes from the environment to form a unique population structure. PMID:19840106

  3. Biological treatment of wastewater discharged from biodiesel fuel production plant with alkali-catalyzed transesterification.

    PubMed

    Suehara, Ken-ichiro; Kawamoto, Yoshihiro; Fujii, Eiko; Kohda, Jiro; Nakano, Yasuhisa; Yano, Takuo

    2005-10-01

    The biological treatment of wastewater discharged from a biodiesel fuel (BDF) production plant conducting alkali catalysis transesterification was investigated. BDF wastewater has a high pH and high hexane-extracted oil and low nitrogen concentrations, and inhibits the growth of microorganisms. The biological treatment of BDF wastewater is difficult because the composition of such wastewater is not suitable for microbial growth. To apply the microbiological treatment of BDF wastewater using an oil degradable yeast, Rhodotorula mucilaginosa, the pH was adjusted to 6.8 and several nutrients such as a nitrogen source (ammonium sulfate, ammonium chloride or urea), yeast extract, KH2PO4 and MgSO4.7H2O were added to the wastewater. The optimal initial concentration of yeast extract was 1 g/l and the optimal C/N ratio was between 17 and 68 when using urea as a nitrogen source. A growth inhibitor was also present in the BDF wastewater, and this growth inhibitor could be detected by measuring the solid content in an aqueous phase after the hexane extraction of the wastewater. Microorganisms could not grow at solid contents higher than 2.14 g/l in the wastewater. To avoid the growth inhibition, the BDF wastewater was diluted with the same volume of water. Oil degradation in the diluted BDF wastewater was observed and the best result was obtained under the determined optimal conditions. This treatment system is simple because no controllers, except for a temperature, are necessary. These results suggest that the biological treatment system developed for BDF wastewater is useful for small-scale BDF production plants.

  4. Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Li, Jing; Zhou, Liantong; Zhang, Xiangyu; Xu, Caijia; Dong, Liming; Yao, Maosheng

    2016-01-01

    Air samples from twelve sampling sites (including seven intra-plant sites, one upwind site and four downwind sites) from a wastewater treatment plant (WWTP) in Beijing were collected using a Reuter Centrifugal Sampler High Flow (RCS); and their microbial fractions were studied using culturing and high throughput gene sequence. In addition, the viable (fluorescent) bioaerosol concentrations for 7 intra-plant sites were also monitored for 30 min each using an ultraviolet aerodynamic particle sizer (UV-APS). Both air and water samples collected from the plant were investigated for possible bacterial antibiotic resistance genes and integrons using polymerase chain reaction (PCR) coupled with gel electrophoresis. The results showed that the air near sludge thickening basin was detected to have the highest level of culturable bacterial aerosols (up to 1697 CFU/m3) and fungal aerosols (up to 930 CFU/m3). For most sampling sites, fluorescent peaks were observed at around 3-4 μm, except the office building with a peak at 1.5 μm, with a number concentration level up to 1233-6533 Particles/m3. About 300 unique bacterial species, including human opportunistic pathogens, such as Comamonas Testosteroni and Moraxella Osloensis, were detected from the air samples collected over the biological reaction basin. In addition, we have detected the sul2 gene resistant to cotrimoxazole (also known as septra, bactrim and TMP-SMX) and class 1 integrase gene from the air samples collected from the screen room and the biological reaction basin. Overall, the screen room, sludge thickening basin and biological reaction basin imposed significant microbial exposure risks, including those from airborne antibiotic resistance genes.

  5. Distribution of polychlorinated biphenyls in an urban riparian zone affected by wastewater treatment plant effluent and the transfer to terrestrial compartment by invertebrates.

    PubMed

    Yu, Junchao; Wang, Thanh; Han, Shanlong; Wang, Pu; Zhang, Qinghua; Jiang, Guibin

    2013-10-01

    In this study, we investigated the distribution of polychlorinated biphenyls (PCBs) in a riparian zone affected by the effluent from a wastewater treatment plant (WWTP). River water, sediment, aquatic invertebrates and samples from the surrounding terrestrial compartment such as soil, reed plants and several land based invertebrates were collected. A relatively narrow range of δ(13)C values was found among most invertebrates (except butterflies, grasshoppers), indicating a similar energy source. The highest concentration of total PCBs was observed in zooplankton (151.1 ng/g lipid weight), and soil dwelling invertebrates showed higher concentrations than phytophagous insects at the riparian zone. The endobenthic oligochaete Tubifex tubifex (54.28 ng/g lw) might be a useful bioindicator of WWTP derived PCBs contamination. High bioaccumulation factors (BAFs) were observed in collected aquatic invertebrates, although the biota-sediment/soil accumulation factors (BSAF) remained relatively low. Emerging aquatic insects such as chironomids could carry waterborne PCBs to the terrestrial compartment via their lifecycles. The estimated annual flux of PCBs for chironomids ranged from 0.66 to 265 ng⋅m(-2)⋅y(-1). Although a high prevalence of PCB-11 and PCB-28 was found for most aquatic based samples in this riparian zone, the mid-chlorinated congeners (e.g. PCB-153 and PCB-138) became predominant among chironomids and dragonflies as well as soil dwelling invertebrates, which might suggest a selective biodriven transfer of different PCB congeners. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent.

    PubMed

    Yuan, Quan; Wang, Haiyan; Hang, Qianyu; Deng, Yangfan; Liu, Kai; Li, Chunmei; Zheng, Shengzhi

    2015-09-01

    The moving bed biofilm reactors (MBBRs) were used to remove the residual NO3(-)-N of wastewater treatment plant (WWTP) effluent, and the MBBR carriers for denitrification were compared. The results showed that high denitrification efficiency can be achieved with polyethylene, polypropylene, polyurethane foam, and haydite carriers under following conditions: 7.2 to 8.0 pH, 24 to 26 °C temperature, 12 h hydraulic retention time (HRT), and 25.5 mg L(-1) external methanol dosage, while the WWTP effluent total nitrogen (TN) was between 2.6 and 15.4 mg L(-1) and NO3(-)-N was between 0.2 and 12.6 mg L(-1). The MBBR filled with polyethylene carriers had higher TN and NO3(-)-N removal rate (44.9 ± 19.1 and 83.4 ± 13.0%, respectively) than those with other carriers. The minimum effluent TN and NO3(-)-N of polyethylene MBBR were 1.6 and 0.1 mg L(-1), respectively, and the maximum denitrification rate reached 23.0 g m(-2) day(-1). When chemical oxygen demand (COD)/TN ratio dropped from 6 to 4, the NO3(-)- N and TN removal efficiency decreased significantly in all reactors except for that filled with polyethylene, which indicated that the polyethylene MBBR can resist influent fluctuation much better. The three-dimensional excitation-emission matrix analysis showed that all the influent and effluent of MBBRs contain soluble microbial products (SMPs)-like organics and biochemical oxygen demand (BOD), which can be removed better by MBBRs filled with haydite and polyethylene carriers. The nitrous oxide reductase (nosZ)-based terminal restriction fragment length polymorphism (T-RFLP) analysis suggested that the dominant bacteria in polyethylene MBBR are the key denitrificans.

  7. A new strategy to maximize organic matter valorization in municipalities: Combination of urban wastewater with kitchen food waste and its treatment with AnMBR technology.

    PubMed

    Moñino, P; Aguado, D; Barat, R; Jiménez, E; Giménez, J B; Seco, A; Ferrer, J

    2017-04-01

    The aim of this study was to evaluate the feasibility of treating the kitchen food waste (FW) jointly with urban wastewater (WW) in a wastewater treatment plant (WWTP) by anaerobic membrane technology (AnMBR). The experience was carried out in six different periods in an AnMBR pilot-plant for a total of 536days, varying the SRT, HRT and the food waste penetration factor (PF) of food waste disposers. The results showed increased methane production of up to 190% at 70days SRT, 24h HRT and 80% PF, compared with WW treatment only. FW COD and biodegradability were higher than in WW, so that the incorporation of FW into the treatment increases the organic load and the methane production and reduces sludge production (0.142 vs 0.614kgVSSkgremovedCOD -1 , at 70days SRT, 24h HRT and 80% PF, as compared to WW treatment only). Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Efficient nitrogen removal via simultaneous nitrification and denitrification in a penicillin wastewater biological treatment plant.

    PubMed

    Luo, Weiwei; Jin, Xibiao; Yu, Yonglian; Zhou, Sichen; Lu, Shuguang

    2014-01-01

    Nitrogen-removal performance was investigated in a penicillin wastewater biological treatment plant (P-WWTP) reconstructed from a cyclic activated sludge system (CASS) tank designed for simultaneous nitrification and denitrification (SND). Good performance was obtained during a 900-day operation period, as indicated by effluent chemical oxygen demand (COD), total nitrogen (TN) and ammonia nitrogen (NH₃‒N) values of 318 ± 34, 28.7 ± 2.4 and<0.2 mg L⁻¹ when the influent COD, total Kjeldahl nitrogen (TKN) and NH₃‒N were 3089 ± 453, 251.4 ± 26.5 and 124.8 ± 26.8 mg L⁻¹, respectively. Nitrification and denitrification occurred at different spaces, that is, 71.4% of TN removal occurred in the first 40% of the aeration tank, while 68.8% of the TKN removal occurred in 40-100% of the aeration tank. Sufficient easily biodegradable organics (EBO) in wastewater were key to the occurrence of SND. The denitrification rate under aeration conditions was 10.7 mg N g VSS⁻¹ h⁻¹ when EBO were sufficient, but 0.98 mg N g VSS⁻¹ h⁻¹ when EBO were completely degraded. Nitrification primarily occurred in the rear of the aeration tank owing to the competition for oxygen between carbonaceous oxidation and nitrification. The nitrification rate was only 7.13 mg NOD g VSS⁻¹ h⁻¹ at the beginning of the reaction, but 14.7 mg NOD g VSS⁻¹ h⁻¹ when EBO were completely degraded. These results will facilitate the improvement of nitrogen removal by existing WWTPs.

  9. Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production.

    PubMed

    Torres-Lozada, Patricia; Díaz-Granados, José Sánchez; Parra-Orobio, Brayan Alexis

    2015-01-01

    Water purification and wastewater treatment generate sludge, which must be adequately handled to prevent detrimental effects to the environment and public health. In this study, we examined the influence of the application of settled sludge from a drinking water treatment plant (S(DWTP)) on the anaerobic digestion (AD) of the thickened primary sludge from a municipal wastewater treatment plant (S(WWTP)) which uses chemically assisted primary treatment (CAPT). On both plants the primary coagulant is ferric chloride. The study was performed at laboratory scale using specific methanogenic activity (SMA) tests, in which mixtures of S(WWTP)-S(DWTP) with the ratios 100:00, 80:20, 75:25, 70:30 and 00:100 were evaluated. Methane detection was also performed by gas chromatography for a period of 30 days. Our results show that all evaluated ratios that incorporate S(DWTP), produce an inhibitory effect on the production of methane. The reduction in methane production ranged from 26% for the smallest concentration of S(DWTP) (20%) to more than 70% for concentrations higher than 25%. The results indicated that the hydrolytic stage was significantly affected, with the hydrolysis constant Kh also reduced by approximately 70% (0.24-0.26 day(-1) for the different ratios compared with 0.34 day(-1) for the S(WWTP) alone). This finding demonstrates that the best mixtures to be considered for anaerobic co-digestion must contain a fraction of S(DWTP) below 20%.

  10. Reproductive health of bass in the potomac, USA, drainage: Part 1. exploring the effects of proximity to wastewater treatment plant discharge

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.; Guy, C.P.; Pinkney, A.E.; Mullcan, J.E.; Alvarezw, D.A.

    2009-01-01

    Abstract-Intersex (specifically, testicular oocytes) has been observed in male smalimouth bass (SMB; Micropterus dolomieu) and other centrarchids in the South Branch of the Potomac River, USA, and forks of the Shenandoah River, USA. during the past five years. This condition often is associated with exposure to estrogenic endocrine-disrupting chemicals in some fish species, but such chemicals and their sources have yet to be identified in the Potomac. In an attempt to better understand the plausible causes of this condition, we investigated the reproductive health of bass sampled up- and downstream of wastewater treatment plant (WWTP) effluent point sources on the Potomac River in Maryland, USA. Smallmouth bass were sampled from the Conococheague Creek and the Monocacy River, and largemouth bass (LMB; Micropterus salmoides) were collected near the Blue Plains WWTP on the mainstem of the Potomac River. Chemical analyses of compounds captured in passive samplers at these locations also were conducted. A high prevalence of intersex (82-l00%) was identified in male SMB at all sites regardless of collection area. A lower prevalence of intersex (23%) was identified in male LMB collected at the Blue Plains site. When up- and downstream fish were compared, significant differences were noted only in fish from the Conococheague. Differences included condition factor, gonadosomatic index, plasma vitellogenin concentration, and estrogen to testosterone ratio. In general, chemicals associated with wastewater effluent, storm-water runoff, and agriculture were more prevalent at the downstream sampling sites. An exception was atrazine and its associated metabolites, which were present in greater concentrations at the upstream sites. It appears that proximity to effluent from WWTPs may influence the reproductive health of bass in the Potomac watershed, but inputs from other sources likely contribute to the widespread, high incidence of testicular oocytes. ?? 2009 SETAC.

  11. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  12. A Miniature Wastewater Cleaning Plant to Demonstrate Primary Treatment in the Classroom

    ERIC Educational Resources Information Center

    Ne´el, Bastien; Cardoso, Catia; Perret, Didier; Bakker, Eric

    2015-01-01

    A small-scale wastewater cleaning plant is described that includes the key physical pretreatment steps followed by the chemical treatment of mud by flocculation. Water, clay particles, and riverside deposits mimicked odorless wastewater. After a demonstration of the optimization step, the flocculation process was carried out with iron(III)…

  13. Characterization and Quantitation of a Novel β-Lactamase Gene Found in a Wastewater Treatment Facility and the Surrounding Coastal Ecosystem▿

    PubMed Central

    Uyaguari, Miguel I.; Fichot, Erin B.; Scott, Geoffrey I.; Norman, R. Sean

    2011-01-01

    Wastewater treatment plants (WWTPs) are engineered structures that collect, concentrate, and treat human waste, ultimately releasing treated wastewater into local environments. While WWTPs efficiently remove most biosolids, it has been shown that many antibiotics and antibiotic-resistant bacteria can survive the treatment process. To determine how WWTPs influence the concentration and dissemination of antibiotic-resistant genes into the environment, a functional metagenomic approach was used to identify a novel antibiotic resistance gene within a WWTP, and quantitative PCR (qPCR) was used to determine gene copy numbers within the facility and the local coastal ecosystem. From the WWTP metagenomic library, the fosmid insert contained in one highly resistant clone (MIC, ∼416 μg ml−1 ampicillin) was sequenced and annotated, revealing 33 putative genes, including a 927-bp gene that is 42% identical to a functionally characterized β-lactamase from Staphylococcus aureus PC1. Isolation and subcloning of this gene, referred to as blaM-1, conferred ampicillin resistance to its Escherichia coli host. When normalized to volume, qPCR showed increased concentrations of blaM-1 during initial treatment stages but 2-fold-decreased concentrations during the final treatment stage. The concentration ng−1 DNA increased throughout the WWTP process from influent to effluent, suggesting that blaM-1 makes up a significant proportion of the overall genetic material being released into the coastal ecosystem. Average discharge was estimated to be 3.9 × 1014 copies of the blaM-1 gene released daily into this coastal ecosystem. Furthermore, the gene was observed in all sampled coastal water and sediment samples surrounding the facility. Our results suggest that WWTPs may be a pathway for the dissemination of novel antibiotic resistance genes into the environment. PMID:21965412

  14. Spatial and temporal variation in de facto wastewater reuse in drinking water systems across the U.S.A.

    PubMed

    Rice, Jacelyn; Westerhoff, Paul

    2015-01-20

    De facto potable reuse occurs when treated wastewater is discharged into surface waters upstream of potable drinking water treatment plant (DWTP) intakes. Wastewater treatment plant (WWTP) discharges may pose water quality risks at the downstream DWTP, but additional flow aids in providing a reliable water supply source. In this work de facto reuse is analyzed for 2056 surface water intakes serving 1210 DWTPs across the U.S.A. that serve greater than 10,000 people, covering approximately 82% of the nation’s population. An ArcGIS model is developed to assess spatial relationships between DWTPs and WWTPs, with a python script designed to perform a network analysis by hydrologic region. A high frequency of de facto reuse occurrence was observed; 50% of the DWTP intakes are potentially impacted by upstream WWTP discharges. However, the magnitude of de facto reuse was seen to be relatively low, where 50% of the impacted intakes contained less than 1% treated municipal wastewater under average streamflow conditions. De facto reuse increased greatly under low streamflow conditions (modeled by Q95), with 32 of the 80 sites yielding at least 50% treated wastewater, this portion of the analysis is limited to sites where stream gauge data was readily available.

  15. Wastewater treatment plant effluent introduces recoverable shifts in microbial community composition in urban streams

    NASA Astrophysics Data System (ADS)

    Ledford, S. H.; Price, J. R.; Ryan, M. O.; Toran, L.; Sales, C. M.

    2017-12-01

    New technologies are allowing for intense scrutiny of the impact of land use on microbial communities in stream networks. We used a combination of analytical chemistry, real-time polymerase chain reaction (qPCR) and targeted amplicon sequencing for a preliminary study on the impact of wastewater treatment plant effluent discharge on urban streams. Samples were collected on two dates above and below treatment plants on the Wissahickon Creek, and its tributary, Sandy Run, in Montgomery County, PA, USA. As expected, effluent was observed to be a significant source of nutrients and human and non-specific fecal associated taxa. There was an observed increase in the alpha diversity at locations immediately below effluent outflows, which contributed many taxa involved in wastewater treatment processes and nutrient cycling to the stream's microbial community. Unexpectedly, modeling of microbial community shifts along the stream was not controlled by concentrations of measured nutrients. Furthermore, partial recovery, in the form of decreasing abundances of bacteria and nutrients associated with wastewater treatment plant processes, nutrient cycling bacteria, and taxa associated with fecal and sewage sources, was observed between effluent sources. Antecedent moisture conditions impacted overall microbial community diversity, with higher diversity occurring after rainfall. These findings hint at resilience in stream microbial communities to recover from wastewater treatment plant effluent and are vital to understanding the impacts of urbanization on microbial stream communities.

  16. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico.

    PubMed

    Brown, Kathryn D; Kulis, Jerzy; Thomson, Bruce; Chapman, Timothy H; Mawhinney, Douglas B

    2006-08-01

    This study had three objectives: 1) determine occurrence of antibiotics in effluent from hospitals, residential facilities, and dairies, and in municipal wastewater 2) determine antibiotic removal at a large wastewater treatment plant (WWTP) in Albuquerque, NM, and 3) determine concentrations of antibiotics in the Rio Grande, which receives wastewater from the Albuquerque WWTP. Twenty-three samples of wastewater and 3 samples of Rio Grande water were analyzed for the presence of 11 antibiotics. Fifty-eight percent of samples had at least one antibiotic present while 25% had three or more. Hospital effluent had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, ofloxacin, lincomycin, and penicillin G, with 4 of 5 hospital samples having at least one antibiotic detected and 3 having four or more. At the residential sampling sites, ofloxacin was found in effluent from assisted living and retirement facilities, while the student dormitory had no detects. Only lincomycin was detected in dairy effluent (in 2 of 8 samples, at 700 and 6600 ng/L). Municipal wastewater had detections of sulfamethoxazole, trimethoprim, ciprofloxacin, and ofloxacin, with 4 of 6 samples having at least one antibiotic present and 3 having 3 or more. The relatively high concentrations (up to 35,500 ng/L) of ofloxacin found in hospital and residential effluent may be of concern due to potential genotoxic effects and development of antibiotic resistance. At the Albuquerque WWTP, both raw wastewater and treated effluent had detections of sulfamethoxazole, trimethoprim, and ofloxacin, at concentrations ranging from 110 to 470 ng/L. However, concentrations in treated effluent were reduced by 20% to 77%. No antibiotics were detected in the Rio Grande upstream of the Albuquerque WWTP discharge, and only one antibiotic, sulfamethoxazole, was detected in the Rio Grande (300 ng/L) below the WWTP.

  17. Ozonation performance of WWTP secondary effluent of antibiotic manufacturing wastewater.

    PubMed

    Zheng, Shaokui; Cui, Cancan; Liang, Qianjin; Xia, Xinghui; Yang, Fan

    2010-11-01

    The ozonation performance of wastewater treatment plant secondary effluent of oxytetracycline (OTC) manufacturing wastewater was investigated in terms of ozone dosage and initial pH levels when OTC contributed to a negligible fraction in the chemical oxygen demand (COD) ingredients of the medium-organic-strength wastewater with low biodegradability. A particular emphasis was placed on ammonia, OTC, and residual antibacterial activity (RAA) (evaluated using the objective pathogenic bacterium Staphylococcus aureus). It appears that an ozone dosage of 657 mg L⁻¹ (120 min of reaction) was enough to achieve an OTC abatement of 96%, and COD and biochemical oxygen demand removals of 29% and 33%, respectively, at initial levels of 10.4, 1360, and 300 mg L⁻¹ , respectively. There is a clear correlation between complete OTC depletion and complete RAA disappearance with an increase of ozone dosage. The presence of plentiful non-antibiotic refractory substances influenced the determination of the optimum ozone dosage for biodegradability enhancement and OTC/RAA reduction as well as the ozonation transformation of NH(3). The initial pH adjustment from the original level (pH 9) to pH 11 significantly reduced COD removal while RAA and NH(3) levels were not significantly influenced. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents.

    PubMed

    Loos, Robert; Carvalho, Raquel; António, Diana C; Comero, Sara; Locoro, Giovanni; Tavazzi, Simona; Paracchini, Bruno; Ghiani, Michela; Lettieri, Teresa; Blaha, Ludek; Jarosova, Barbora; Voorspoels, Stefan; Servaes, Kelly; Haglund, Peter; Fick, Jerker; Lindberg, Richard H; Schwesig, David; Gawlik, Bernd M

    2013-11-01

    In the year 2010, effluents from 90 European wastewater treatment plants (WWTPs) were analyzed for 156 polar organic chemical contaminants. The analyses were complemented by effect-based monitoring approaches aiming at estrogenicity and dioxin-like toxicity analyzed by in vitro reporter gene bioassays, and yeast and diatom culture acute toxicity optical bioassays. Analyses of organic substances were performed by solid-phase extraction (SPE) or liquid-liquid extraction (LLE) followed by liquid chromatography tandem mass spectrometry (LC-MS-MS) or gas chromatography high-resolution mass spectrometry (GC-HRMS). Target microcontaminants were pharmaceuticals and personal care products (PPCPs), veterinary (antibiotic) drugs, perfluoroalkyl substances (PFASs), organophosphate ester flame retardants, pesticides (and some metabolites), industrial chemicals such as benzotriazoles (corrosion inhibitors), iodinated x-ray contrast agents, and gadolinium magnetic resonance imaging agents; in addition biological endpoints were measured. The obtained results show the presence of 125 substances (80% of the target compounds) in European wastewater effluents, in concentrations ranging from low nanograms to milligrams per liter. These results allow for an estimation to be made of a European median level for the chemicals investigated in WWTP effluents. The most relevant compounds in the effluent waters with the highest median concentration levels were the artificial sweeteners acesulfame and sucralose, benzotriazoles (corrosion inhibitors), several organophosphate ester flame retardants and plasticizers (e.g. tris(2-chloroisopropyl)phosphate; TCPP), pharmaceutical compounds such as carbamazepine, tramadol, telmisartan, venlafaxine, irbesartan, fluconazole, oxazepam, fexofenadine, diclofenac, citalopram, codeine, bisoprolol, eprosartan, the antibiotics trimethoprim, ciprofloxacine, sulfamethoxazole, and clindamycine, the insect repellent N,N'-diethyltoluamide (DEET), the pesticides

  19. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.

    PubMed

    Crutchik, D; Garrido, J M

    2011-01-01

    Struvite crystallization (MgNH(4)PO(4)·6H(2)O, MAP) could be an alternative for the sustainable and economical recovery of phosphorus from concentrated wastewater streams. Struvite precipitation is recommended for those wastewaters which have high orthophosphate concentration. However the presence of a cheap magnesium source is required in order to make the process feasible. For those wastewater treatment plants (WWTP) located near the seashore magnesium could be economically obtained using seawater. However seawater contains calcium ions that could interfere in the process, by promoting the precipitation of amorphous magnesium and calcium phosphates. Precipitates composition was affected by the NH(4)(+)/PO(4)(3-) molar ratio used. Struvite or magnesium and calcium phosphates were obtained when NH(4)(+)/PO(4)(3-) was fixed at 4.7 or 1.0, respectively. This study demonstrates that by manipulating the NH(4)(+)/PO(4)(3-) it is possible to obtain pure struvite crystals, instead of precipitates of amorphous magnesium and calcium phosphates. This was easily performed by using either raw or secondary treated wastewater with different ammonium concentrations.

  20. Guidelines to Career Development for Wastewater Treatment Plant Personnel.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Education and Manpower Planning.

    The guidelines were written to promote job growth and improvement in the personnel who manage, operate, and maintain wastewater treatment plants. Trained operators and technicians are the key components in any water pollution control facility. The approach is to move from employment to training through specific modules for 21 standard job…

  1. Anaerobic co-digestion of sludge with other organic wastes in small wastewater treatment plants: an economic considerations evaluation.

    PubMed

    Pavan, P; Bolzonella, D; Battistoni, E; Cecchi, F

    2007-01-01

    This paper deals with an economic comparison between costs and incomes in small wastewater treatment plants where the anaerobic co-digestion process of sludge and biowaste with energy recovery is operated. Plants in the size range 1,000-30,000 persons equivalent (pe) were considered in the study: typical costs, comprehensive of capital and operating costs, were in the range euro69-105 per person per year depending on the plant size: the smaller the size the higher the specific cost. The incomes deriving from taxes and fees for wastewater treatment are generally in the range euro36-54 per person per year and can only partially cover costs in small wastewater treatment plants. However, the co-treatment of biowaste and the use of produced energy for extra credits (green certificates) determine a clear improvement in the possible revenues from the plant. These were calculated to be euro23-25 per person per year; as a consequence the costs and incomes can be considered comparable for wastewater treatment plants (WWTPs) with size larger than 10,000 pe. Therefore, anaerobic co-digestion of biowaste and sludge can also be considered a sustainable solution for small wastewater treatment plants in rural areas where several different kinds of biowaste are available to enhance biogas production in anaerobic reactors.

  2. Are perfluoroalkyl acids in waste water treatment plant effluents the result of primary emissions from the technosphere or of environmental recirculation?

    PubMed

    Filipovic, Marko; Berger, Urs

    2015-06-01

    Wastewater treatment plants (WWTP) have been suggested to be one of the major pathways of perfluoroalkyl acids (PFAAs) from the technosphere to the aquatic environment. The origin of PFAAs in WWTP influents is either from current primary emissions or a result of recirculation of PFAAs that have been residing and transported in the environment for several years or decades. Environmental recirculation can then occur when PFAAs from the environment enter the wastewater stream in, e.g., tap water. In this study 13 PFAAs and perfluorooctane sulfonamide were analyzed in tap water as well as WWTP influent, effluent and sludge from three Swedish cities: Bromma (in the metropolitan area of Stockholm), Bollebygd and Umeå. A mass balance of the WWTPs was assembled for each PFAA. Positive mass balances were observed for PFHxA and PFOA in all WWTPs, indicating the presence of precursor compounds in the technosphere. With regard to environmental recirculation, tap water was an important source of PFAAs to the Bromma WWTP influent, contributing >40% for each quantified sulfonic acid and up to 30% for the carboxylic acids. The PFAAs in tap water from Bollebygd and Umeå did not contribute significantly to the PFAA load in the WWTP influents. Our results show that in order to estimate current primary emissions from the technosphere, it may be necessary to correct the PFAA emission rates in WWTP effluents for PFAAs present in tap water, especially in the case of elevated levels in tap water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Occurrence of antibiotics in pharmaceutical industrial wastewater, wastewater treatment plant and sea waters in Tunisia.

    PubMed

    Tahrani, Leyla; Van Loco, Joris; Ben Mansour, Hedi; Reyns, Tim

    2016-04-01

    Antibiotics are among the most commonly used group of pharmaceuticals in human medicine. They can therefore reach surface and groundwater bodies through different routes, such as wastewater treatment plant effluents, surface runoff, or infiltration of water used for agricultural purposes. It is well known that antibiotics pose a significant risk to environmental and human health, even at low concentrations. The aim of the present study was to evaluate the presence of aminoglycosides and phenicol antibiotics in municipal wastewaters, sea water and pharmaceutical effluents in Tunisia. All analysed water samples contained detectable levels of aminoglycoside and phenicol antibiotics. The highest concentrations in wastewater influents were observed for neomycin and kanamycin B (16.4 ng mL(-1) and 7.5 ng mL(-1), respectively). Chloramphenicol was found in wastewater influents up to 3 ng mL(-1). It was observed that the waste water treatment plants were not efficient in completely removing these antibiotics. Chloramphenicol and florfenicol were found in sea water samples near aquaculture sites at levels up to, respectively, 15.6 ng mL(-1) and 18.4 ng mL(-1). Also aminoglycoside antibiotics were found near aquaculture sites with the highest concentration of 3.4 ng mL(-1) for streptomycin. In pharmaceutical effluents, only gentamycin was found at concentrations up to 19 ng mL(-1) over a sampling period of four months.

  4. Androgenic endocrine disruptors in wastewater treatment plant effluents in India: Their influence on reproductive processes and systemic toxicity in male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Vikas; Chakraborty, Ajanta; Viswanath, Gunda

    2008-01-01

    Endocrine-disrupting chemicals (EDC) are linked to human health and diseases as they mimic or block the normal functioning of endogenous hormones. The present work dealt with a comparative study of the androgenic potential of wastewater treatment plant (WWTP) influents and effluents in Northern region of India, well known for its polluted water. Water samples were screened for their androgenic potential using the Hershberger assay and when they were found positive for androgenicity, we studied their mode of action in intact rats. The data showed a significant change in the weight and structure of sex accessory tissues (SATs) of castrated andmore » intact rats. Reverse transcriptase polymerase chain reaction (RT-PCR) analysis demonstrated a significant change in the expression patterns of the major steroidogenic enzymes in adrenal and testis: cytochrome P450{sub SCC}, cytochrome P450{sub C17}, 3{beta}-hydroxysteroid dehydrogenase, 17{beta}-hydroxysteroid dehydrogenase. This was further supported by increased enzymatic activities measured in vitro spectrophotometrically. Serum hormone profile showed a decreased level of gonadotrophic hormones and increased testosterone level. Further, increase in the serum level of alkaline phosphatase, SGPT and SGOT and histopathological changes in kidney and liver of treated animals, confirmed the toxic effects of contaminating chemicals. Analysis of water samples using HPLC and GC-MS showed the presence of various compounds and from them, four prominent aromatic compounds viz. nonylphenol, hexachlorobenzene and two testosterone equivalents, were identified. Our data suggest that despite rigorous treatment, the final treated effluent from WWTP still has enough androgenic and toxic compounds to affect general health.« less

  5. Prevalence and proliferation of antibiotic resistance genes in two municipal wastewater treatment plants.

    PubMed

    Mao, Daqing; Yu, Shuai; Rysz, Michal; Luo, Yi; Yang, Fengxia; Li, Fengxiang; Hou, Jie; Mu, Quanhua; Alvarez, P J J

    2015-11-15

    The propagation of antibiotic resistance genes (ARGs) is an emerging health concern worldwide. Thus, it is important to understand and mitigate their occurrence in different systems. In this study, 30 ARGs that confer resistance to tetracyclines, sulfonamides, quinolones or macrolides were detected in two activated sludge wastewater treatment plants (WWTPs) in northern China. Bacteria harboring ARGs persisted through all treatment units, and survived disinfection by chlorination in greater percentages than total Bacteria (assessed by 16S rRNA genes). Although the absolute abundances of ARGs were reduced from the raw influent to the effluent by 89.0%-99.8%, considerable ARG levels [(1.0 ± 0.2) × 10(3) to (9.5 ± 1.8) × 10(5) copies/mL)] were found in WWTP effluent samples. ARGs were concentrated in the waste sludge (through settling of bacteria and sludge dewatering) at (1.5 ± 2.3) × 10(9) to (2.2 ± 2.8) × 10(11) copies/g dry weight. Twelve ARGs (tetA, tetB, tetE, tetG, tetH, tetS, tetT, tetX, sul1, sul2, qnrB, ermC) were discharged through the dewatered sludge and plant effluent at higher rates than influent values, indicating overall proliferation of resistant bacteria. Significant antibiotic concentrations (2%-50% of raw influent concentrations) remained throughout all treatment units. This apparently contributed selective pressure for ARG replication since the relative abundance of resistant bacteria (assessed by ARG/16S rRNA gene ratios) was significantly correlated to the corresponding effluent antibiotic concentrations. Similarly, the concentrations of various heavy metals (which induce a similar bacterial resistance mechanism as antibiotics - efflux pumps) were also correlated to the enrichment of some ARGs. Thus, curtailing the release of antibiotics and heavy metals to sewage systems (or enhancing their removal in pre-treatment units) may alleviate their selective pressure and mitigate ARG proliferation in WWTPs. Copyright © 2015 Elsevier Ltd. All

  6. Wastewater management in small towns - understanding the failure of small treatment plants in Bolivia.

    PubMed

    Cossio, Claudia; McConville, Jennifer; Rauch, Sebastien; Wilén, Britt-Marie; Dalahmeh, Sahar; Mercado, Alvaro; Romero, Ana M

    2018-06-01

    Wastewater management in developing countries is a challenge, especially in small towns with rapid population growth. This study aims at assessing the performance and management of five treatment plants (TPs) in rural areas of Cochabamba, Bolivia. Pollutants' concentrations, wastewater flows, hydraulic and organic loads and hydraulic retention times were determined in three small treatment plants (2000-10,000 population equivalent [p.e.]; flow > 432 m 3 /d) and two very small treatment plants (<2000 p.e.; flow < 432 m 3 /d). The performance assessment was based on operational parameters, treatment efficiency and effluent quality. Management data were collected through semi-structured interviews with managers of local water associations. The results support that the poor performance of the TPs is due to lack of operational expertise and financial resources for adequate operation and maintenance (O&M). Additionally, effective treatment was affected by the type of technology used and whether the plant design included plans for O&M with available resources. This study contributes to a better understanding of actual operating conditions of wastewater TPs in small towns, thus providing needed information regarding technology selection, design, implementation and operation.

  7. IMPACT ON DISINFECTION AT PEAK FLOWS DURING BLENDING/PARTIAL BYPASSING OF SECONDARY TREATMENT

    EPA Science Inventory

    A U.S EPA study evaluated the impact on disinfection during peak flows when a portion of the flow to the wastewater treatment plant (WWTP) bypasses secondary treatment prior to disinfection. The practice of bypassing secondary treatment during peak flows, referred to as “blending...

  8. Calibration and simulation of two large wastewater treatment plants operated for nutrient removal.

    PubMed

    Ferrer, J; Morenilla, J J; Bouzas, A; García-Usach, F

    2004-01-01

    Control and optimisation of plant processes has become a priority for WWTP managers. The calibration and verification of a mathematical model provides an important tool for the investigation of advanced control strategies that may assist in the design or optimization of WWTPs. This paper describes the calibration of the ASM2d model for two full scale biological nitrogen and phosphorus removal plants in order to characterize the biological process and to upgrade the plants' performance. Results from simulation showed a good correspondence with experimental data demonstrating that the model and the calibrated parameters were able to predict the behaviour of both WWTPs. Once the calibration and simulation process was finished, a study for each WWTP was done with the aim of improving its performance. Modifications focused on reactor configuration and operation strategies were proposed.

  9. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H₂O₂ Advanced Oxidation Treatment at Pilot Scale.

    PubMed

    Rott, Eduard; Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-05-07

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H₂O₂ AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m³ (0.4 kW, 1 m³/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H₂O₂ AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl₂), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl₂ was needed, resulting in AOX concentrations of up to 520 µg/L.

  10. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river.

    PubMed

    Rodriguez-Mozaz, Sara; Chamorro, Sara; Marti, Elisabet; Huerta, Belinda; Gros, Meritxell; Sànchez-Melsió, Alexandre; Borrego, Carles M; Barceló, Damià; Balcázar, Jose Luis

    2015-02-01

    Antibiotic resistance has become a major health concern; thus, there is a growing interest in exploring the occurrence of antibiotic resistance genes (ARGs) in the environment as well as the factors that contribute to their emergence. Aquatic ecosystems provide an ideal setting for the acquisition and spread of ARGs due to the continuous pollution by antimicrobial compounds derived from anthropogenic activities. We investigated, therefore, the pollution level of a broad range of antibiotics and ARGs released from hospital and urban wastewaters, their removal through a wastewater treatment plant (WWTP) and their presence in the receiving river. Several antimicrobial compounds were detected in all water samples collected. Among antibiotic families, fluoroquinolones were detected at the highest concentration, especially in hospital effluent samples. Although good removal efficiency by treatment processes was observed for several antimicrobial compounds, most antibiotics were still present in WWTP effluents. The results also revealed that copy numbers of ARGs, such as blaTEM (resistance to β-lactams), qnrS (reduced susceptibility to fluoroquinolones), ermB (resistance to macrolides), sulI (resistance to sulfonamides) and tetW (resistance to tetracyclines), were detected at the highest concentrations in hospital effluent and WWTP influent samples. Although there was a significant reduction in copy numbers of these ARGs in WWTP effluent samples, this reduction was not uniform across analyzed ARGs. Relative concentration of ermB and tetW genes decreased as a result of wastewater treatment, whereas increased in the case of blaTEM, sulI and qnrS genes. The incomplete removal of antibiotics and ARGs in WWTP severely affected the receiving river, where both types of emerging pollutants were found at higher concentration in downstream waters than in samples collected upstream from the discharge point. Taken together, our findings demonstrate a widespread occurrence of

  11. Potentials of real time control, stormwater infiltration and urine separation to minimize river impacts: dynamic long term simulation of sewer network, pumping stations, pressure pipes and waste water treatment plant.

    PubMed

    Peters, C; Keller, S; Sieker, H; Jekel, M

    2007-01-01

    River Panke (Berlin, Germany) suffers from hydraulic peak loads and pollutant loads from separate sewers and combined sewer overflows (CSOs). Pumping the wastewater through long pressure pipes causes extreme peak loads to the wastewater treatment plant (WWTP) during stormwater events. In order to find a good solution, it is essential not to decide on one approach at the beginning, but to evaluate a number of different approaches. For this reason, an integrated simulation study is carried out, assessing the potentials of real time control (RTC), stormwater infiltration, storage and urine separation. Criteria for the assessment are derived and multi-criteria analysis is applied. Despite spatial limitations, infiltration has the highest potential and is very effective with respect to both overflows and the WWTP. Due to a high percentage of separate systems, urine separation has a similar potential and causes the strongest benefits at the WWTP. Unconventional control strategies can lead to significant improvement (comparable to infiltrating the water from approximately 10% of the sealed area).

  12. Fate of organic microcontaminants in wastewater treatment and river systems: An uncertainty assessment in view of sampling strategy, and compound consumption rate and degradability.

    PubMed

    Aymerich, I; Acuña, V; Ort, C; Rodríguez-Roda, I; Corominas, Ll

    2017-11-15

    The growing awareness of the relevance of organic microcontaminants on the environment has led to a growing number of studies on attenuation of these compounds in wastewater treatment plants (WWTP) and rivers. However, the effects of the sampling strategies (frequency and duration of composite samples) on the attenuation estimates are largely unknown. Our goal was to assess how frequency and duration of composite samples influence uncertainty of the attenuation estimates in WWTPs and rivers. Furthermore, we also assessed how compound consumption rate and degradability influence uncertainty. The assessment was conducted through simulating the integrated wastewater system of Puigcerdà (NE Iberian Peninsula) using a sewer pattern generator and a coupled model of WWTP and river. Results showed that the sampling strategy is especially critical at the influent of WWTP, particularly when the number of toilet flushes containing the compound of interest is small (≤100 toilet flushes with compound day -1 ), and less critical at the effluent of the WWTP and in the river due to the mixing effects of the WWTP. For example, at the WWTP, when evaluating a compound that is present in 50 pulses·d -1 using a sampling frequency of 15-min to collect a 24-h composite sample, the attenuation uncertainty can range from 94% (0% degradability) to 9% (90% degradability). The estimation of attenuation in rivers is less critical than in WWTPs, as the attenuation uncertainty was lower than 10% for all evaluated scenarios. Interestingly, the errors in the estimates of attenuation are usually lower than those of loads for most sampling strategies and compound characteristics (e.g. consumption and degradability), although the opposite occurs for compounds with low consumption and inappropriate sampling strategies at the WWTP. Hence, when designing a sampling campaign, one should consider the influence of compounds' consumption and degradability as well as the desired level of accuracy in

  13. Energy recovery from thermal treatment of dewatered sludge in wastewater treatment plants.

    PubMed

    Yang, Qingfeng; Dussan, Karla; Monaghan, Rory F D; Zhan, Xinmin

    Sewage sludge is a by-product generated from municipal wastewater treatment (WWT) processes. This study examines the conversion of sludge via energy recovery from gasification/combustion for thermal treatment of dewatered sludge. The present analysis is based on a chemical equilibrium model of thermal conversion of previously dewatered sludge with moisture content of 60-80%. Prior to combustion/gasification, sludge is dried to a moisture content of 25-55% by two processes: (1) heat recovered from syngas/flue gas cooling and (2) heat recovered from syngas combustion. The electricity recovered from the combined heat and power process can be reused in syngas cleaning and in the WWT plant. Gas temperature, total heat and electricity recoverable are evaluated using the model. Results show that generation of electricity from dewatered sludge with low moisture content (≤ 70%) is feasible within a self-sufficient sludge treatment process. Optimal conditions for gasification correspond to an equivalence ratio of 2.3 and dried sludge moisture content of 25%. Net electricity generated from syngas combustion can account for 0.071 kWh/m(3) of wastewater treated, which is up to 25.4-28.4% of the WWT plant's total energy consumption.

  14. An innovative implementation of LCA within the EIA procedure: Lessons learned from two Wastewater Treatment Plant case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larrey-Lassalle, Pyrène, E-mail: pyrene.larrey-lassalle@irstea.fr; LGEI, Ecole des mines d'Alès, 6 avenue de Clavières, 30319 Alès Cedex; Catel, Laureline

    Life Cycle Assessment (LCA) has been identified in the literature as a promising tool to increase the performance of environmental assessments at different steps in the Environmental Impact Assessment (EIA) procedure. However, few publications have proposed a methodology for an extensive integration, and none have compared the results with existing EIA conclusions without LCA. This paper proposes a comprehensive operational methodology for implementing an LCA within an EIA. Based on a literature review, we identified four EIA steps that could theoretically benefit from LCA implementation, i.e., (a) the environmental comparison of alternatives, (b) the identification of key impacts, (c) themore » impact assessment, and (d) the impact of mitigation measures. For each of these steps, an LCA was implemented with specific goal and scope definitions that resulted in a specific set of indicators. This approach has been implemented in two contrasting Wastewater Treatment Plant (WWTP) projects and compared to existing EIA studies. The results showed that the two procedures, i.e., EIAs with or without inputs from LCA, led to different conclusions. The environmental assessments of alternatives and mitigation measures were not carried out in the original studies and showed that other less polluting technologies could have been chosen. Regarding the scoping step, the selected environmental concerns were essentially different. Global impacts such as climate change or natural resource depletion were not taken into account in the original EIA studies. Impacts other than those occurring on the project site (off-site impacts) were not assessed, either. All these impacts can be significant compared to those initially considered. On the other hand, unlike current LCA applications, EIAs usually address natural and technological risks and neighbourhood disturbances such as noises or odours, which are very important for the public acceptability of projects. Regarding the impact

  15. Use of naturally growing aquatic plants for wastewater purification.

    PubMed

    Zimmels, Y; Kirzhner, F; Roitman, S

    2004-01-01

    This paper examines potential uses of naturally growing aquatic plants for wastewater purification. These plants enhance the removal of pollutants by consuming part of them in the form of plant nutrients. This applies to urban and agricultural wastewater, in particular, where treatment units of different sizes can be applied at the pollution source. The effectiveness of wastewater purification by different plants was tested on laboratory and pilot scales. The growth rate of the plants was related to the wastewater content in the water. Batch and semicontinuous experiments verified that the plants are capable of decreasing all tested indicators for water quality to levels that permit the use of the purified water for irrigation. This applies to biochemical oxygen demand (BOD), chemical oxygen demand, total suspended solids. pH, and turbidity. In specific cases, the turbidity reached the level of drinking water. Comparison of BOD concentrations with typical levels in water treatment facilities across the country indicates the effectiveness of water purification with plants. A major effect of treatment with plants was elimination of the disturbing smell from the wastewater. It is shown that mixtures of wastewater and polluted water from the Kishon River are amenable in varying degrees to treatment by the plants. The higher the wastewater content in the mixture, the more effective the treatment by the plants. In this context, a scheme for rehabilitation and restoration of the Kishon River is presented and technical and economical aspects of the purification technology are considered.

  16. Emission of artificial sweeteners, select pharmaceuticals, and personal care products through sewage sludge from wastewater treatment plants in Korea.

    PubMed

    Subedi, Bikram; Lee, Sunggyu; Moon, Hyo-Bang; Kannan, Kurunthachalam

    2014-07-01

    Concern over the occurrence of artificial sweeteners (ASWs) as well as pharmaceuticals and personal care products (PPCPs) in the environment is growing, due to their high use and potential adverse effects on non-target organisms. The data for this study are drawn from a nationwide survey of ASWs in sewage sludge from 40 representative wastewater treatment plants (WWTPs) that receive domestic (WWTPD), industrial (WWTPI), or mixed (domestic plus industrial; WWTPM) wastewaters in Korea. Five ASWs (concentrations ranged from 7.08 to 5220 ng/g dry weight [dw]) and ten PPCPs (4.95-6930 ng/g dw) were determined in sludge. Aspartame (concentrations ranged from 28.4 to 5220 ng/g dw) was determined for the first time in sewage sludge. The median concentrations of ASWs and PPCPs in sludge from domestic WWTPs were 0.8-2.5 and 1.0-3.4 times, respectively, the concentrations found in WWTPs that receive combined domestic and industrial wastewaters. Among the five ASWs analyzed, the median environmental emission rates of aspartame through domestic WWTPs (both sludge and effluent discharges combined) were calculated to be 417 μg/capita/day, followed by sucralose (117 μg/capita/day), acesulfame (90 μg/capita/day), and saccharin (66μg/capita/day). The per-capita emission rates of select PPCPs, such as antimicrobials (triclocarban: 158 μg/capita/day) and analgesics (acetaminophen: 59 μg/capita/day), were an order of magnitude higher than those calculated for antimycotic (miconazole) and anthelmintic (thiabendazole) drugs analyzed in this study. Multiple linear regression analysis of measured concentrations of ASWs and PPCPs in sludge revealed that several WWTP parameters, such as treatment capacity, population-served, sludge production rate, and hydraulic retention time could influence the concentrations found in sludge. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Course on Operational Considerations in Wastewater Treatment Plant Design. Student Manual.

    ERIC Educational Resources Information Center

    Stottler, Stag and Associates, San Antonio, TX.

    This manual was designed to furnish information for upgrading the design of wastewater treatment plant facilities and to serve as a resource for establishing criteria for upgrading these plants. The manual also furnishes information for modifying plant design to compensate for current organic and hydraulic overloads and/or to meet more stringent…

  18. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China.

    PubMed

    Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui

    2016-01-01

    Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.

  19. EPA (ENVIRONMENTAL PROTECTION AGENCY) DESIGN INFORMATION REPORT: SIDESTREAMS IN WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Performance problems at publicly-owned treatment works are often attributed to the recycling of sidestreams generated in the wastewater treatment and sludge handling systems. Although the volumes of these sidestreams are generally small compared to plant influent flows, sidestrea...

  20. Introduction to Chemistry for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    ERIC Educational Resources Information Center

    South Dakota Dept. of Environmental Protection, Pierre.

    Presented are basic concepts of chemistry necessary for operators who manage drinking water treatment plants and wastewater facilities. It includes discussions of chemical terms and concepts, laboratory procedures for basic analyses of interest to operators, and discussions of appropriate chemical calculations. Exercises are included and answer…

  1. Measuring selected PPCPs in wastewater to estimate the population in different cities in China.

    PubMed

    Gao, Jianfa; O'Brien, Jake; Du, Peng; Li, Xiqing; Ort, Christoph; Mueller, Jochen F; Thai, Phong K

    2016-10-15

    Sampling and analysis of wastewater from municipal wastewater treatment plants (WWTPs) has become a useful tool for understanding exposure to chemicals. Both wastewater based studies and management and planning of the catchment require information on catchment population in the time of monitoring. Recently, a model has been developed and calibrated using selected pharmaceutical and personal care products (PPCPs) measured in influent wastewater for estimating population in different catchments in Australia. The present study aimed at evaluating the feasibility of utilizing this population estimation approach in China. Twenty-four hour composite influent samples were collected from 31 WWTPs in 17 cities with catchment sizes from 200,000-3,450,000 people representing all seven regions of China. The samples were analyzed for 19 PPCPs using liquid chromatography coupled to tandem mass spectrometry in direct injection mode. Eight chemicals were detected in more than 50% of the samples. Significant positive correlations were found between individual PPCP mass loads and population estimates provided by WWTP operators. Using the PPCP mass load modeling approach calibrated with WWTP operator data, we estimated the population size of each catchment with good agreement with WWTP operator values (between 50-200% for all sites and 75-125% for 23 of the 31 sites). Overall, despite much lower detection and relatively high heterogeneity in PPCP consumption across China the model provided a good estimate of the population contributing to a given wastewater sample. Wastewater analysis could also provide objective PPCP consumption status in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Validation of a plant-wide phosphorus modelling approach with minerals precipitation in a full-scale WWTP.

    PubMed

    Kazadi Mbamba, Christian; Flores-Alsina, Xavier; John Batstone, Damien; Tait, Stephan

    2016-09-01

    The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant-wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simulation tools applicable to a broad range of wastewater engineering problems, this paper evaluates a plant-wide model built with sub-models from the Benchmark Simulation Model No. 2-P (BSM2-P) with an improved/expanded physico-chemical framework (PCF). The PCF includes a simple and validated equilibrium approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation. With default rate kinetic and stoichiometric parameters, a good general agreement is observed between the full-scale datasets and the simulated results under steady-state conditions. Simulation results show differences between measured and modelled phosphorus as little as 4-15% (relative) throughout the entire plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts on nutrient loading across the entire plant. A forecasted implementation of nutrient recovery by struvite crystallization (model scenario only), reduced the phosphorus content in the treatment plant influent (via centrate recycling) considerably and thus decreased phosphorus in the treated outflow by up to 43%. Overall, the evaluated plant-wide model is able to jointly describe the physico-chemical and biological processes, and is advocated for future use as a tool for

  3. Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by Chlorella vulgaris.

    PubMed

    Ruiz, J; Alvarez, P; Arbib, Z; Garrido, C; Barragán, J; Perales, J A

    2011-10-01

    This study evaluates the feasibility of removing nutrients by the microalgae Chlorella vulgaris, using urban wastewater as culture medium, namely the effluent subjected to secondary biological treatment in a wastewater treatment plant (WWTP). For this, laboratory experiments were performed in batch cultures to study the effect of initial nitrogen and phosphorus concentrations on growth and reduction of nutrient performance of C. vulgaris. The microalga was cultivated in enriched wastewater containing different phosphorus (1.3-143.5 mg x L(-1) P.PO4(3-)), ammonium (5.8-226.8 mg x L(-1) N-NH4+) and nitrate (1.5-198.3 mg x L(-1) N-NO3-) concentrations. The nutrient removal and growth kinetics have been studied: maximum productivity of 0.95 g SS x L(-1) x day(-1), minimum yield factor for cells on substrate (Y) of 11.51 g cells x g nitrogen(-1) and 0.04 g cells x g phosphorus(-1) were observed. The results suggested that C. vulgaris has a high potential to reduce nutrients in secondary WWTP effluents.

  4. Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China

    PubMed Central

    Ma, Ru

    2016-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo) is a recently discovered biological process which has been arousing global attention because of its potential in minimizing greenhouse gases emissions. In this study, molecular biological techniques and potential n-damo activity batch experiments were conducted to investigate the presence and diversity of M. oxyfera bacteria in paddy field, corn field, and wastewater treatment plant (WWTP) sites in northern China, as well as lab-scale n-damo enrichment culture. N-damo enrichment culture showed the highest abundance of M. oxyfera bacteria, and positive correlation was observed between potential n-damo rate and abundance of M. oxyfera bacteria. Both paddy field and corn field sites were believed to be better inoculum than WWTP for the enrichment of M. oxyfera bacteria due to their higher abundance and the diversity of M. oxyfera bacteria. Comparative analysis revealed that long biomass retention time, low NH\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{4}^{+}$\\end{document}4+ and high NO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${}_{2}^{-}$\\end{document}2− content were suitable for the growth of M. oxyfera bacteria. PMID:27994974

  5. Treatment of micropollutants in municipal wastewater: ozone or powdered activated carbon?

    PubMed

    Margot, Jonas; Kienle, Cornelia; Magnet, Anoÿs; Weil, Mirco; Rossi, Luca; de Alencastro, Luiz Felippe; Abegglen, Christian; Thonney, Denis; Chèvre, Nathalie; Schärer, Michael; Barry, D A

    2013-09-01

    Many organic micropollutants present in wastewater, such as pharmaceuticals and pesticides, are poorly removed in conventional wastewater treatment plants (WWTPs). To reduce the release of these substances into the aquatic environment, advanced wastewater treatments are necessary. In this context, two large-scale pilot advanced treatments were tested in parallel over more than one year at the municipal WWTP of Lausanne, Switzerland. The treatments were: i) oxidation by ozone followed by sand filtration (SF) and ii) powdered activated carbon (PAC) adsorption followed by either ultrafiltration (UF) or sand filtration. More than 70 potentially problematic substances (pharmaceuticals, pesticides, endocrine disruptors, drug metabolites and other common chemicals) were regularly measured at different stages of treatment. Additionally, several ecotoxicological tests such as the Yeast Estrogen Screen, a combined algae bioassay and a fish early life stage test were performed to evaluate effluent toxicity. Both treatments significantly improved the effluent quality. Micropollutants were removed on average over 80% compared with raw wastewater, with an average ozone dose of 5.7 mg O3 l(-1) or a PAC dose between 10 and 20 mg l(-1). Depending on the chemical properties of the substances (presence of electron-rich moieties, charge and hydrophobicity), either ozone or PAC performed better. Both advanced treatments led to a clear reduction in toxicity of the effluents, with PAC-UF performing slightly better overall. As both treatments had, on average, relatively similar efficiency, further criteria relevant to their implementation were considered, including local constraints (e.g., safety, sludge disposal, disinfection), operational feasibility and cost. For sensitive receiving waters (drinking water resources or recreational waters), the PAC-UF treatment, despite its current higher cost, was considered to be the most suitable option, enabling good removal of most micropollutants

  6. Seasonal bacterial community succession in four typical wastewater treatment plants: correlations between core microbes and process performance.

    PubMed

    Zhang, Bo; Yu, Quanwei; Yan, Guoqi; Zhu, Hubo; Xu, Xiang Yang; Zhu, Liang

    2018-03-15

    To understand the seasonal variation of the activated sludge (AS) bacterial community and identify core microbes in different wastewater processing systems, seasonal AS samples were taken from every biological treatment unit within 4 full-scale wastewater treatment plants. These plants adopted A2/O, A/O and oxidation ditch processes and were active in the treatment of different types and sources of wastewater, some domestic and others industrial. The bacterial community composition was analyzed using high-throughput sequencing technology. The correlations among microbial community structure, dominant microbes and process performance were investigated. Seasonal variation had a stronger impact on the AS bacterial community than any variation within different wastewater treatment system. Facing seasonal variation, the bacterial community within the oxidation ditch process remained more stable those in either the A2/O or A/O processes. The core genera in domestic wastewater treatment systems were Nitrospira, Caldilineaceae, Pseudomonas and Lactococcus. The core genera in the textile dyeing and fine chemical industrial wastewater treatment systems were Nitrospira, Thauera and Thiobacillus.

  7. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater.

    PubMed

    Zietzschmann, F; Müller, J; Sperlich, A; Ruhl, A S; Meinel, F; Altmann, J; Jekel, M

    2014-01-01

    This study investigates the applicability of the rapid small-scale column test (RSSCT) concept for testing of granular activated carbon (GAC) for organic micro-pollutants (OMPs) removal from wastewater treatment plant (WWTP) effluent. The chosen experimental setup was checked using pure water, WWTP effluent, different GAC products, and variable hydrodynamic conditions with different flow velocities and differently sized GAC, as well as different empty bed contact times (EBCTs). The setup results in satisfying reproducibility and robustness. RSSCTs in combination with WWTP effluent are effective when comparing the OMP removal potentials of different GAC products and are a useful tool for the estimation of larger filters. Due to the potentially high competition between OMPs and bulk organics, breakthrough curves are likely to have unfavorable shapes when treating WWTP effluent. This effect can be counteracted by extending the EBCT. With respect to the strong competition observed in GAC treatment of WWTP effluent, the small organic acid and neutral substances are retained longer in the RSSCT filters and are likely to cause the majority of the observed adsorption competition with OMPs.

  8. Enterobius vermicularis as a Novel Surrogate for the Presence of Helminth Ova in Tertiary Wastewater Treatment Plants

    PubMed Central

    Rudko, Sydney P.; Ruecker, Norma J.; Ashbolt, Nicholas J.; Neumann, Norman F.

    2017-01-01

    ABSTRACT Significant effort has gone into assessing the fate and removal of viruses, bacteria, and protozoan parasites during wastewater treatment to provide data addressing potential health risks associated with reuse options. Comparatively less is known about the fate of parasitic worm species ova in these complex systems. It is largely assumed that these helminths settle, are removed with the sludge, and consequently represent a relatively low risk for wastewater reuse applications. However, helminths are a highly diverse group of organisms that display a wide range of physical properties that complicate the application of a single treatment for helminth reduction during wastewater treatment. Moreover, their diverse biological and physical properties make some ova highly resistant to both disinfection (i.e., with chlorine or UV treatment) and physical removal (settling) through the wastewater treatment train, indicating that there may be reason to broaden the scope of our investigations into whether parasitic worm eggs can be identified in treated wastewater. The ubiquitous human parasitic nematode Enterobius vermicularis (pinworm) produces small, buoyant ova. Utilizing a novel diagnostic quantitative PCR (qPCR), this study monitored E. vermicularis presence at two full-scale wastewater treatment plants over the course of 8 months and demonstrated incomplete physical removal of E. vermicularis ova through tertiary treatment, with removal efficiencies approximating only 0.5 and 1.6 log10 at the two wastewater treatment plants based on qPCR. These findings demonstrate the need for more-diverse surrogates of helminthic ova to fully assess treatment performance with respect to reclaimed wastewaters. IMPORTANCE Helminths, despite being a diverse and environmentally resistant class of pathogens, are often underestimated and ignored when treatment performance at modern wastewater treatment plants is considered. A one-size-fits-all surrogate for removal of helminth ova

  9. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants.

    PubMed

    Ma, Qiao; Qu, Yuan-Yuan; Zhang, Xu-Wang; Shen, Wen-Li; Liu, Zi-Yan; Wang, Jing-Wei; Zhang, Zhao-Jing; Zhou, Ji-Ti

    2015-06-01

    The wastewater from coal-mine industry varies greatly and is resistant to biodegradation for containing large quantities of inorganic and organic pollutants. Microorganisms in activated sludge are responsible for the pollutants' removal, whereas the microbial community composition and structure are far from understood. In the present study, the sludges from five coal-mine wastewater treatment plants were collected and the microbial communities were analyzed by Illumina high-throughput sequencing. The diversities of these sludges were lower than that of the municipal wastewater treatment systems. The most abundant phylum was Proteobacteria ranging from 63.64% to 96.10%, followed by Bacteroidetes (7.26%), Firmicutes (5.12%), Nitrospira (2.02%), Acidobacteria (1.31%), Actinobacteria (1.30%) and Planctomycetes (0.95%). At genus level, Thiobacillus and Comamonas were the two primary genera in all sludges, other major genera included Azoarcus, Thauera, Pseudomonas, Ohtaekwangia, Nitrosomonas and Nitrospira. Most of these core genera were closely related with aromatic hydrocarbon degradation and denitrification processes. Identification of the microbial communities in coal-mine wastewater treatment plants will be helpful for wastewater management and control. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. Operation of Wastewater Treatment Plants. Volume 1. A Field Study Training Program. Third Edition. Revised.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    The purpose of this wastewater treatment field study training program is to: (1) develop new qualified wastewater treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  11. Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants.

    PubMed

    Gray, Neil D; Miskin, Ian P; Kornilova, Oksana; Curtis, Thomas P; Head, Ian M

    2002-03-01

    The occurrence, distribution and activity of archaeal populations within two aerated, activated sludge wastewater treatment systems, one treating domestic waste and the second treating mixed domestic and industrial wastewater, were investigated by denaturing gradient gel electrophoresis (DGGE) analysis of polymerase chain reaction (PCR)-amplified ribosomal RNA gene fragments and process measurements. In the plant receiving mixed industrial and domestic waste the archaeal populations found in the mixed liquor were very similar to those in the influent sewage, though a small number of DGGE bands specific to the mixed liquor were identified. In contrast, the activated sludge treating principally domestic waste harboured distinct archaeal populations associated with the mixed liquor that were not prevalent in the influent sewage. We deduce that the Archaea in the plant treating mixed wastewater were derived principally from the influent, whereas those in the plant treating solely domestic waste were actively growing in the treatment plant. Archaeal 16S rRNA gene sequences related to the Methanosarcinales, Methanomicrobiales and the Methanobacteriales were detected. Methanogenesis was measured in activated sludge samples incubated under oxic and anoxic conditions, demonstrating that the methanogens present in both activated sludge plants were active only in anoxic incubations. The relatively low rates of methanogenesis measured indicated that, although active, the methanogens play a minor role in carbon turnover in activated sludge.

  12. Reproductive health of bass in the Potomac, U.S.A., drainage: part 1. Exploring the effects of proximity to wastewater treatment plant discharge.

    PubMed

    Iwanowicz, Luke R; Blazer, Vicki S; Guy, Christopher P; Pinkney, Alfred E; Mullican, John E; Alvarez, David A

    2009-05-01

    Intersex (specifically, testicular oocytes) has been observed in male smallmouth bass (SMB; Micropterus dolomieu) and other centrarchids in the South Branch of the Potomac River, U.S.A., and forks of the Shenandoah River, U.S.A., during the past five years. This condition often is associated with exposure to estrogenic endocrine-disrupting chemicals in some fish species, but such chemicals and their sources have yet to be identified in the Potomac. In an attempt to better understand the plausible causes of this condition, we investigated the reproductive health of bass sampled up- and downstream of wastewater treatment plant (WWTP) effluent point sources on the Potomac River in Maryland, U.S.A. Smallmouth bass were sampled from the Conococheague Creek and the Monocacy River, and largemouth bass (LMB; Micropterus salmoides) were collected near the Blue Plains WWTP on the mainstem of the Potomac River. Chemical analyses of compounds captured in passive samplers at these locations also were conducted. A high prevalence of intersex (82-100%) was identified in male SMB at all sites regardless of collection area. A lower prevalence of intersex (23%) was identified in male LMB collected at the Blue Plains site. When up- and downstream fish were compared, significant differences were noted only in fish from the Conococheague. Differences included condition factor, gonadosomatic index, plasma vitellogenin concentration, and estrogen to testosterone ratio. In general, chemicals associated with wastewater effluent, storm-water runoff, and agriculture were more prevalent at the downstream sampling sites. An exception was atrazine and its associated metabolites, which were present in greater concentrations at the upstream sites. It appears that proximity to effluent from WWTPs may influence the reproductive health of bass in the Potomac watershed, but inputs from other sources likely contribute to the widespread, high incidence of testicular oocytes.

  13. FATE OF SEX HORMONES IN TWO PILOT-SCALE MUNICIPAL WASTEWATER TREATMENT PLANTS: CONVENTIONAL TREATMENT

    EPA Science Inventory

    The fate of seven sex hormones (estrone (E1), estradiol (E2), estriol (E3), ethinylestradiol (EE2), testosterone, androstenedione, and progesterone) was determined in two pilot-scale wastewater treatment plants operated under conventional loading conditions. The levels of hormon...

  14. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments.

    PubMed

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub; Romalde, Jesús L

    2016-07-01

    Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 10(3) genome copies [GC]/ml) and influents (2.7 × 10(3) GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level, sanitary conditions

  15. Detection and Molecular Characterization of Hepatitis A Virus from Tunisian Wastewater Treatment Plants with Different Secondary Treatments

    PubMed Central

    Ouardani, Imen; Turki, Syrine; Aouni, Mahjoub

    2016-01-01

    ABSTRACT Hepatitis A virus (HAV) is the main causative agent of hepatitis infection associated with waterborne outbreaks worldwide. In Tunisia, there is no specific surveillance system for HAV and current secondary wastewater treatment processes are unable to remove viral particles, which present a potential public health problem. Qualitative and quantitative analysis of HAV in 271 raw and treated wastewater samples from five sewage treatment plants (STPs) during 13 months was performed. Moreover, the efficiency of three secondary wastewater treatment processes (conventional activated sludge, extended aeration, and oxidation ditch activated sludge) was evaluated. Data obtained demonstrated that HAV is endemic in Tunisia and circulates with high prevalence in both raw (66.9%) and treated (40.7%) wastewater. HAV circulates throughout the year in the coastal areas, with the highest rates found during summer and autumn, whereas in central Tunisia, high levels were shown in autumn and winter. Total virus removal was not achieved, since no difference in mean HAV loads was observed in effluents (6.0 × 103 genome copies [GC]/ml) and influents (2.7 × 103 GC/ml). The comparison of the HAV removal values of the three different wastewater treatment methods indicates that extended aeration and oxidation ditch activated sludge had better efficiency in removing viruses than conventional activated sludge did. Molecular characterization revealed that the vast majority of HAV strains belonged to subgenotype IA, with the cocirculation of subgenotype IB in wastewater treatment plants that collect tourism wastewater. IMPORTANCE This report provides important data on the incidence, behavior, seasonality, and genotype distribution of HAV in the environment in Tunisia, as well as the risk of infection derived from its occurrence in effluents due to inadequate wastewater treatment. In addition, these findings seem to confirm that the prevalence of HAV depends on socioeconomic level

  16. Occurrence and environmental implications of the presence of drugs of abuse in wastewater treatment plants of Valencia (Spain)

    NASA Astrophysics Data System (ADS)

    Picó, Yolanda; Andres-Costa, M. Jesus; Andreu, Vicente

    2014-05-01

    Drugs of abuse are continuously discharged into wastewaters due to human excretion as parent compounds and/or secondary metabolites after consumption or accidental disposal into the toilets. (Boles and Wells,2010). Incomplete removal of these compounds during wastewater treatment results in their release to the environment. Pollution by illicit drug residues at very low concentrations is generalized in populated areas, with potential risks for human health and the environment. The impact of treated wastewater effluent on the quality of receiving waters can be evaluated performing an investigated performing an ecotoxicological risk assessment calculating the risk quotient (RQ) of the drugs of abuse level observed. In addition, back-calculation from the concentration of illicit drug in the influents of wastewater treatment plants (WWTPs) provides an important tool for estimating its local consumption (Daughton 2001). Sampling campaigns were in three years, 2011 (March 9th to 15th), 2012 (April 17th to May 1st) and 2013 (March 6th to 12th) in influents and effluents from 3 Wastewater Treatment Plants (WWTPs), Pinedo I, Pinedo II and Quart-Benàger, that treats most of the wastewater of Valencia City and its surrounding towns. Cocaine (COC), amphetamine (AMP), methamphetamine (MAMP), ecstasy (MDMA) and ketamine (KET), Benzoylecgonine (BE), 6-acethylmorphine (6-MAM), and 11-nor-9-carboxy-delta9-tetrahydrocannabinol (THC-COOH) were analyzed using mass spectrometry techniques such as liquid chromatography triple quadrupole mass spectrometry (LC-QqQ-MS/MS) Illicit drugs were extracted using solid phase extraction (SPE) and determined by liquid chromatography tandem mass spectrometry (LC-MS/MS) in positive ionization with an electrospray ionization source (ESI). The determination of drugs of abuse in the influent of the selected WWTP shows that all compounds were detected in 100% of influents from Pinedo I, Pinedo II and Quart-Benàger in samples analyzed during three years

  17. Determination of the Fate of Dissolved Organic Nitrogen in the Three Wastewater Treatment Plants, Jordan

    ERIC Educational Resources Information Center

    Wedyan, Mohammed; Al Harahsheh, Ahmed; Qnaisb, Esam

    2016-01-01

    This research aimed to assess the composition of total dissolved nitrogen (TDN) species, particularly dissolved organic nitrogen (DON), over the traditional wastewater treatment operations in three biological nutrient removal (BNR) wastewater treatment plants (WWTPs) in Jordan. It had been found that the DON percentage was up to 30% of TDN within…

  18. TENORM: Wastewater Treatment Residuals

    EPA Pesticide Factsheets

    Water and wastes which have been discharged into municipal sewers are treated at wastewater treatment plants. These may contain trace amounts of both man-made and naturally occurring radionuclides which can accumulate in the treatment plant and residuals.

  19. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    PubMed Central

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s−1) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s−1 SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  20. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics.

    PubMed

    Weissbrodt, David G; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short

  1. General RMP Guidance - Appendix F: Supplemental Risk Management Program Guidance for Wastewater Treatment Plants

    EPA Pesticide Factsheets

    Additional information for wastewater treatment plants (WWTPs), including publicly owned treatment works (POTWs) and other industrial treatment systems; about compliance for chlorine, ammonia (anhydrous and aqueous), sulfur dioxide, and digester gas.

  2. Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals.

    PubMed

    Santos, Lúcia H M L M; Gros, Meritxell; Rodriguez-Mozaz, Sara; Delerue-Matos, Cristina; Pena, Angelina; Barceló, Damià; Montenegro, M Conceição B S M

    2013-09-01

    The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d(-1) for the university hospital, 155 g d(-1) for the general one, 14 g d(-1) for the pediatric hospital and 1.5 g d(-1) for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients

  3. Strategies for the reduction of Legionella in biological treatment systems.

    PubMed

    Nogueira, R; Utecht, K-U; Exner, M; Verstraete, W; Rosenwinkel, K-H

    A community-wide outbreak of Legionnaire's disease occurred in Warstein, Germany, in August 2013. The epidemic strain, Legionella pneumophila Serogruppe 1, was isolated from an industrial wastewater stream entering the municipal wastewater treatment plant (WWTP) in Wartein, the WWTP itself, the river Wäster and air/water samples from an industrial cooling system 3 km downstream of the WWTP. The present study investigated the effect of physical-chemical disinfection methods on the reduction of the concentration of Legionella in the biological treatment and in the treated effluent entering the river Wäster. Additionally, to gain insight into the factors that promote the growth of Legionella in biological systems, growth experiments were made with different substrates and temperatures. The dosage rates of silver micro-particles, hydrogen peroxide, chlorine dioxide and ozone and pH stress to the activated sludge were not able to decrease the number of culturable Legionella spp. in the effluent. Nevertheless, the UV treatment of secondary treated effluent reduced Legionella spp. on average by 1.6-3.4 log units. Laboratory-scale experiments and full-scale measurements suggested that the aerobic treatment of warm wastewater (30-35 °C) rich in organic nitrogen (protein) is a possible source of Legionella infection.

  4. Operation of Wastewater Treatment Plants, Manual of Practice No. 11.

    ERIC Educational Resources Information Center

    Albertson, Orrie E.; And Others

    This book is intended to be a reference or textbook on the operation of wastewater treatment plants. The book contains thirty-one chapters and three appendices and includes the description, requirements, and latest techniques of conventional unit process operation, as well as the symptoms and corrective measures regarding process problems. Process…

  5. Operation of Wastewater Treatment Plants: A Home Study Training Program.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This manual was prepared by experienced wastewater treatment plant operators to provide a home study course to develop new qualified workers and expand the abilities of existing workers. The objective of this manual is to provide the knowledge and skills necessary for certification. Participants learn the basic operational aspects of treatment…

  6. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants.

    PubMed

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from <28 to 230 mg/L depending on the carbon product. The performance of the PAC products generally gave better results for individual PhACs in regards to carbon availability. All carbon products showed a specific adsorption for a specific PhAC meaning that knowledge of the target pollutants must be acquired before successful design of a treatment system. In spite of different configurations and operating conditions of the different wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Bacteria and fungi in aerosols generated by two different types of wastewater treatment plants.

    PubMed

    Bauer, H; Fuerhacker, M; Zibuschka, F; Schmid, H; Puxbaum, H

    2002-09-01

    Raw wastewater is a potential carrier of pathogenic microorganisms and may pose a health risk when pathogenic microorganisms become aerosolized during aeration. Two different types of wastewater treatment plants were investigated, and the amounts of cultivable bacteria and fungi were measured in the emitted aerosols. Average concentrations of 17,000 CFU m(-3) of mesophilic, 2,100 CFU m(-3) of TSA-SB bacteria (bacteria associated with certain waterborne virulence factors), 1700 CFU m(-3) of mesophilic and 45 CFU m(-3) of thermotolerant fungi, were found in the aerosol emitted by the aeration tank of the activated sludge plant. In the aerosol of the fixed-film reactor 3000 CFU m(-3) mesophilic and 730CFUm(-3) TSA-SB bacteria, and 180 CFUm(-3) mesophilic and 14 CFU m(-3) thermotolerant fungi were measured. The specific emissions per population equivalent between the two types of treatment plants differed by two orders of magnitude. The microbial flux based on the open water surface area of the two treatment plants was similar. The aerosolization ratios of cultivable bacteria (expressed as CFU m(-3) aerosol/m(-3) wastewater) ranged between 8.4 x 10(-11) and 4.9 x 10(-9). The aerosolization ratio of fungi was one to three orders of magnitude higher and a significant difference between the two types of treatment plants could be observed.

  8. Nitrogen removal on recycling water process of wastewater treatment plant effluent using subsurface horizontal wetland with continuous feed

    NASA Astrophysics Data System (ADS)

    Tazkiaturrizki, T.; Soewondo, P.; Handajani, M.

    2018-01-01

    Recycling water is a generic term for water reclamation and reuse to solve the scarcity of water. Constructed wetlands have been recognized as providing many benefits for wastewater treatment including water supply and control by recycling water. This research aims to find the best condition to significantly remove nitrogen using constructed wetland for recycling water of Bojongsoang Waste Water Treatment Plan (WWTP) effluent. Using media of soil, sand, gravel, and vegetation (Typha latifolia and Scirpus grossus) with an aeration system, BOD and COD parameters have been remarkably reduced. On the contrary, the removal efficiency for nitrogen is only between 50-60%. Modifications were then conducted by three step of treatment, i.e., Step I is to remove BOD/COD using Typha latifolia with an aeration system, Step II is todecrease nitrogen using Scirpus grossus with/without aeration, and Step III isto complete the nitrogen removal with denitrification process by Glycine max without aeration. Results of the research show that the nitrogen removal has been successfully increased to a high efficiency between 80-99%. The combination of aeration system and vegetation greatly affects the nitrogen removal. The vegetation acts as the organic nitrogen consumer (plant uptake) for amino acids, nitrate, and ammonium as nutrition, as well as theoxygen supplier to the roots so that aerobic microsites are formed for ammonification microorganisms.

  9. Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants.

    PubMed

    Mbuligwe, Stephen E

    2005-01-01

    In Dar es Salaam City there are more than a thousand tie-and-dye (TAD) small-scale industries (SSIs) that discharge dye-rich wastewater indiscriminately with resultant water pollution. Due to the decentralised nature of the TAD SSIs, coupled with financial constraints facing their operators, control of their pollution needs a simple cost-effective waste treatment technology. Engineered wetland systems (EWSs) constitute such a technology. A pilot scale EWS was evaluated with respect to its effectiveness in treating dye-rich wastewater. The role of wetland plants was assessed through comparing treatment performance efficiencies between an unplanted and vegetated EWS beds. On the whole, it has been demonstrated that the EWS has the potential to effectively treat dye-rich wastewater. Colour, which is the most apparent problem issue with textile wastewater, was reduced by 72-77%. COD was reduced by 68-73%, while sulphate was reduced by 53-59%. The proportionately high COD removal suggests the reduction in colour was accompanied by almost complete degradation of dyes and daughter products. The overall treatment efficiency of the vegetated units was more than twice as high as that of the unplanted bed. On average, the bed vegetated with coco yam plants performed better (7.6%) than the one planted with cattail plants.

  10. A systematic methodology for the robust quantification of energy efficiency at wastewater treatment plants featuring Data Envelopment Analysis.

    PubMed

    Longo, S; Hospido, A; Lema, J M; Mauricio-Iglesias, M

    2018-05-10

    This article examines the potential benefits of using Data Envelopment Analysis (DEA) for conducting energy-efficiency assessment of wastewater treatment plants (WWTPs). WWTPs are characteristically heterogeneous (in size, technology, climate, function …) which limits the correct application of DEA. This paper proposes and describes the Robust Energy Efficiency DEA (REED) in its various stages, a systematic state-of-the-art methodology aimed at including exogenous variables in nonparametric frontier models and especially designed for WWTP operation. In particular, the methodology systematizes the modelling process by presenting an integrated framework for selecting the correct variables and appropriate models, possibly tackling the effect of exogenous factors. As a result, the application of REED improves the quality of the efficiency estimates and hence the significance of benchmarking. For the reader's convenience, this article is presented as a step-by-step guideline to guide the user in the determination of WWTPs energy efficiency from beginning to end. The application and benefits of the developed methodology are demonstrated by a case study related to the comparison of the energy efficiency of a set of 399 WWTPs operating in different countries and under heterogeneous environmental conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  12. A combined model to assess technical and economic consequences of changing conditions and management options for wastewater utilities.

    PubMed

    Giessler, Mathias; Tränckner, Jens

    2018-02-01

    The paper presents a simplified model that quantifies economic and technical consequences of changing conditions in wastewater systems on utility level. It has been developed based on data from stakeholders and ministries, collected by a survey that determined resulting effects and adapted measures. The model comprises all substantial cost relevant assets and activities of a typical German wastewater utility. It consists of three modules: i) Sewer for describing the state development of sewer systems, ii) WWTP for process parameter consideration of waste water treatment plants (WWTP) and iii) Cost Accounting for calculation of expenses in the cost categories and resulting charges. Validity and accuracy of this model was verified by using historical data from an exemplary wastewater utility. Calculated process as well as economic parameters shows a high accuracy compared to measured parameters and given expenses. Thus, the model is proposed to support strategic, process oriented decision making on utility level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enterobius vermicularis as a Novel Surrogate for the Presence of Helminth Ova in Tertiary Wastewater Treatment Plants.

    PubMed

    Rudko, Sydney P; Ruecker, Norma J; Ashbolt, Nicholas J; Neumann, Norman F; Hanington, Patrick C

    2017-06-01

    Significant effort has gone into assessing the fate and removal of viruses, bacteria, and protozoan parasites during wastewater treatment to provide data addressing potential health risks associated with reuse options. Comparatively less is known about the fate of parasitic worm species ova in these complex systems. It is largely assumed that these helminths settle, are removed with the sludge, and consequently represent a relatively low risk for wastewater reuse applications. However, helminths are a highly diverse group of organisms that display a wide range of physical properties that complicate the application of a single treatment for helminth reduction during wastewater treatment. Moreover, their diverse biological and physical properties make some ova highly resistant to both disinfection (i.e., with chlorine or UV treatment) and physical removal (settling) through the wastewater treatment train, indicating that there may be reason to broaden the scope of our investigations into whether parasitic worm eggs can be identified in treated wastewater. The ubiquitous human parasitic nematode Enterobius vermicularis (pinworm) produces small, buoyant ova. Utilizing a novel diagnostic quantitative PCR (qPCR), this study monitored E. vermicularis presence at two full-scale wastewater treatment plants over the course of 8 months and demonstrated incomplete physical removal of E. vermicularis ova through tertiary treatment, with removal efficiencies approximating only 0.5 and 1.6 log 10 at the two wastewater treatment plants based on qPCR. These findings demonstrate the need for more-diverse surrogates of helminthic ova to fully assess treatment performance with respect to reclaimed wastewaters. IMPORTANCE Helminths, despite being a diverse and environmentally resistant class of pathogens, are often underestimated and ignored when treatment performance at modern wastewater treatment plants is considered. A one-size-fits-all surrogate for removal of helminth ova may be

  14. Monitoring and evaluation of antibiotic-resistant bacteria at a municipal wastewater treatment plant in China.

    PubMed

    Huang, Jing-Jing; Hu, Hong-Ying; Lu, Sun-Qin; Li, Yi; Tang, Fang; Lu, Yun; Wei, Bin

    2012-07-01

    The prevalence of antibiotic-resistant bacteria in municipal wastewater treatment plants (WWTPs) is becoming a concern of public health. In order to acquire information on the emission of antibiotic-resistant bacteria from WWTP effluents into natural waters, both average antibiotic tolerance and concentrations of antibiotic-resistant bacteria in the effluent of a WWTP in Beijing, China were investigated. A new index of IC(50)/MIC ratio (the antibiotic concentration required to inhibit 50% of total heterotrophic bacteria compared to the highest minimum inhibitory concentration value of a group of pathogens according to a specific antibiotic, as defined by CLSI) was used to reflect the average antibiotic tolerance of total heterotrophic bacteria in the secondary effluent. The results showed that the IC(50)/MIC ratios of heterotrophic bacteria in the secondary effluent to penicillin, ampicillin, cephalothin, chloramphenicol and rifampicin were >2, >1, >1, and 1.08, respectively, which reflected a significantly high general level of heterotrophic bacteria found in the secondary effluent resistant to these five antibiotics. The concentrations of penicillin-, ampicillin-, cephalothin-, and chloramphenicol-resistant bacteria were as high as 1.5×10(4)-1.9×10(5), 1.2×10(4)-1.5×10(5), 8.9×10(3)-1.9×10(5) and 2.6×10(4)-2.0×10(5) CFU/mL, and the average percentages in relation to total heterotrophic bacteria were 63%, 47%, 55%, and 69%, respectively. The concentrations of tetracycline- and rifampicin-resistant bacteria were 840-6.1×10(3) and 310-6.1×10(4) CFU/mL with average percentages of 2.6% and 11%, respectively. Furthermore, our study found that five- and six-antibiotic-resistant bacteria were widely distributed in four types of enterobacteria from the secondary effluent. The presence of multiple-antibiotic-resistant bacteria from effluents of WWTPs into natural waters could pose a serious problem as a secondary pollutant of drinking water. Copyright © 2011

  15. Tracing pharmaceuticals in a municipal plant for integrated wastewater and organic solid waste treatment.

    PubMed

    Jelic, Aleksandra; Fatone, Francesco; Di Fabio, Silvia; Petrovic, Mira; Cecchi, Franco; Barcelo, Damia

    2012-09-01

    The occurrence and removal of 42 pharmaceuticals, belonging to different therapeutic groups (analgesics and anti-inflammatory drugs, anti-ulcer agent, psychiatric drugs, antiepileptic drug, antibiotics, ß-blockers, diuretics, lipid regulator and cholesterol lowering statin drugs and anti-histamines), were studied in the wastewater and sewage sludge trains of a full scale integrated treatment plant. The plant employs a biological nutrient removal (BNR) process for the treatment of municipal wastewater, and a single-stage mesophilic anaerobic co-digestion for the treatment of wasted activated sludge mixed with the organic fraction of municipal solid waste (OFMSW), followed by a short-cut nitrification-denitrification of the anaerobic supernatant in a sequential batch reactor. Influent and effluent wastewater, as well as thickened, digested and treated sludge were sampled and analyzed for the selected pharmaceuticals in order to study their presence and fate during the treatment. Twenty three compounds were detected in influent and effluent wastewater and eleven in sludge. Infiltration of groundwater in the sewer system led to a dilution of raw sewage, resulting in lower concentrations in wastewater (up to 0.7 μg/L in influent) and sludge (70 ng/g d.w.). Due to the dilution, overall risk quotient for the mixture of pharmaceuticals detected in effluent wastewater was less than one, indicating no direct risk for the aquatic environment. A wide range of removal efficiencies during the treatment was observed, i.e. <20% to 90%. The influent concentrations of the target pharmaceuticals, as polar compounds, were undoubtedly mostly affected by BNR process in the wastewater train, and less by anaerobic-co-digestion. Mass balance calculations showed that less than 2% of the total mass load of the studied pharmaceuticals was removed by sorption. Experimentally estimated distribution coefficients (<500 L/kg) also indicated that the selected pharmaceuticals preferably remain in

  16. The effect of conventional wastewater treatment on the levels of antimicrobial-resistant bacteria in effluent: a meta-analysis of current studies.

    PubMed

    Harris, Suvi; Cormican, Martin; Cummins, Enda

    2012-12-01

    Antimicrobial agents in the environment are a cause for concern. Antimicrobial drug residues and their metabolites reach the aquatic and terrestrial environment primarily through wastewater treatment plants (WWTP). In addition to the potential direct negative health and environmental effects, there is potential for the development of antimicrobial-resistant bacteria. Residue levels below the minimum inhibitory concentration for a bacterial species can be important in selection of resistance. There is uncertainty associated with resistance formation during WWTP processing. A meta-analysis study was carried out to analyse the effect of WWTP processing on the levels of antimicrobial-resistant bacteria within bacterial populations. An analysis of publications relating to multiple antimicrobial-resistant (MAR) bacteria (n = 61), single antimicrobial-resistant (SAR) E. coli (n = 81) and quinolone/fluoroquinolone-resistant (FR) bacteria (n = 19) was carried out. The odds-ratio (OR) of MAR (OR = 1.60, p < 0.01), SAR (OR = 1.33, p < 0.01) and FR (OR = 1.19, p < 0.01) bacteria was determined. The results infer that WWTP processing results in an increase in the proportion of resistant bacteria in effluent, even though the overall bacterial population may have reduced (i.e. a reduction in total bacterial numbers but an increase in the percentage of resistant bacteria). The results support the need for further research into the development of antimicrobial-resistant strains and possible selective pressures operating in WWTPs.

  17. Method Description, Quality Assurance, Environmental Data, and other Information for Analysis of Pharmaceuticals in Wastewater-Treatment-Plant Effluents, Streamwater, and Reservoirs, 2004-2009

    USGS Publications Warehouse

    Phillips, Patrick J.; Smith, Steven G.; Kolpin, Dana W.; Zaugg, Steven D.; Buxton, Herbert T.; Furlong, Edward T.

    2010-01-01

    Abstract Wastewater-treatment-plant (WWTP) effluents are a demonstrated source of pharmaceuticals to the environment. During 2004-09, a study was conducted to identify pharmaceutical compounds in effluents from WWTPs (including two that receive substantial discharges from pharmaceutical formulation facilities), streamwater, and reservoirs. The methods used to determine and quantify concentrations of seven pharmaceuticals are described. In addition, the report includes information on pharmaceuticals formulated or potentially formulated at the two pharmaceutical formulation facilities that provide substantial discharge to two of the WWTPs, and potential limitations to these data are discussed. The analytical methods used to provide data on the seven pharmaceuticals (including opioids, muscle relaxants, and other pharmaceuticals) in filtered water samples also are described. Data are provided on method performance, including spike data, method detection limit results, and an estimation of precision. Quality-assurance data for sample collection and handling are included. Quantitative data are presented for the seven pharmaceuticals in water samples collected at WWTP discharge points, from streams, and at reservoirs. Occurrence data also are provided for 19 pharmaceuticals that were qualitatively identified. Flow data at selected WWTP and streams are presented. Between 2004-09, 35-38 effluent samples were collected from each of three WWTPs in New York and analyzed for seven pharmaceuticals. Two WWTPs (NY2 and NY3) receive substantial inflows (greater than 20 percent of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally less than 1 ug/L. Four pharmaceuticals (methadone, oxycodone

  18. Process auditing and performance improvement in a mixed wastewater-aqueous waste treatment plant.

    PubMed

    Collivignarelli, Maria Cristina; Bertanza, Giorgio; Abbà, Alessandro; Damiani, Silvestro

    2018-02-01

    The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.

  19. Whole effluent assessment of industrial wastewater for determination of BAT compliance. Part 2: metal surface treatment industry.

    PubMed

    Gartiser, Stefan; Hafner, Christoph; Hercher, Christoph; Kronenberger-Schäfer, Kerstin; Paschke, Albrecht

    2010-06-01

    Toxicity testing has become a suitable tool for wastewater evaluation included in several reference documents on best available techniques of the Integrated Pollution Prevention and Control (IPPC) Directive. The IPPC Directive requires that for direct dischargers as well as for indirect dischargers, the same best available techniques should be applied. Within the study, the whole effluent assessment approach of OSPAR has been applied for determining persistent toxicity of indirectly discharged wastewater from the metal surface treatment industry. Twenty wastewater samples from the printed circuit board and electroplating industries which indirectly discharged their wastewater to municipal wastewater treatment plants (WWTP) have been considered in the study. In all factories, the wastewater partial flows were separated in collecting tanks and physicochemically treated in-house. For assessing the behaviour of the wastewater samples in WWTPs, all samples were biologically pretreated for 7 days in the Zahn-Wellens test before ecotoxicity testing. Thus, persistent toxicity could be discriminated from non-persistent toxicity caused, e.g. by ammonium or readily biodegradable compounds. The fish egg test with Danio rerio, the Daphnia magna acute toxicity test, the algae test with Desmodesmus subspicatus, the Vibrio fischeri assay and the plant growth test with Lemna minor have been applied. All tests have been carried out according to well-established DIN or ISO standards and the lowest ineffective dilution (LID) concept. Additionally, genotoxicity was tested in the umu assay. The potential bioaccumulating substances (PBS) were determined by solid-phase micro-extraction and referred to the reference compound 2,3-dimethylnaphthalene. The chemical oxygen demand (COD) and total organic carbon (TOC) values of the effluents were in the range of 30-2,850 mg L(-1) (COD) and 2-614 mg L(-1) (TOC). With respect to the metal concentrations, all samples were not heavily polluted. The

  20. Orientation to Municipal Wastewater Treatment. Training Manual.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  1. Opportunities for Open Automated Demand Response in Wastewater Treatment Facilities in California - Phase II Report. San Luis Rey Wastewater Treatment Plant Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Lisa; Lekov, Alex; McKane, Aimee

    2010-08-20

    This case study enhances the understanding of open automated demand response opportunities in municipal wastewater treatment facilities. The report summarizes the findings of a 100 day submetering project at the San Luis Rey Wastewater Treatment Plant, a municipal wastewater treatment facility in Oceanside, California. The report reveals that key energy-intensive equipment such as pumps and centrifuges can be targeted for large load reductions. Demand response tests on the effluent pumps resulted a 300 kW load reduction and tests on centrifuges resulted in a 40 kW load reduction. Although tests on the facility?s blowers resulted in peak period load reductions ofmore » 78 kW sharp, short-lived increases in the turbidity of the wastewater effluent were experienced within 24 hours of the test. The results of these tests, which were conducted on blowers without variable speed drive capability, would not be acceptable and warrant further study. This study finds that wastewater treatment facilities have significant open automated demand response potential. However, limiting factors to implementing demand response are the reaction of effluent turbidity to reduced aeration load, along with the cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities.« less

  2. Strategies to Combat Antibiotic Resistance in the Wastewater Treatment Plants

    PubMed Central

    Barancheshme, Fateme; Munir, Mariya

    2018-01-01

    The main goal of this manuscript is to review different treatment strategies and mechanisms for combating the antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in the wastewater environment. The high amount of antibiotics is released into the wastewater that may promote selection of ARB and ARGs which find their way into natural environments. Emerging microbial pathogens and increasing antibiotic resistance among them is a global public health issue. The propagation and spread of ARB and ARGs in the environment may result in an increase of antibiotic resistant microbial pathogens which is a worldwide environmental and public health concern. A proper treatment of wastewater is essential before its discharge into rivers, lake, or sewage system to prevent the spread of ARB and ARGs into the environment. This review discusses various treatment options applied for combating the spread of ARB and ARGs in wastewater treatment plants (WWTPs). It was reported that low-energy anaerobic–aerobic treatment reactors, constructed wetlands, and disinfection processes have shown good removal efficiencies. Nanomaterials and biochar combined with other treatment methods and coagulation process are very recent strategies regarding ARB and ARGs removal and need more investigation and research. Based on current studies a wide-ranging removal efficiency of ARGs can be achieved depending on the type of genes present and treatment processes used, still, there are gaps that need to be further investigated. In order to find solutions to control dissemination of antibiotic resistance in the environment, it is important to (1) study innovative strategies in large scale and over a long time to reach an actual evaluation, (2) develop risk assessment studies to precisely understand occurrence and abundance of ARB/ARGs so that their potential risks to human health can be determined, and (3) consider operating and environmental factors that affect the efficiency of each

  3. Occurrence of pharmaceuticals in a municipal wastewater treatment plant: mass balance and removal processes.

    PubMed

    Gao, Pin; Ding, Yunjie; Li, Hui; Xagoraraki, Irene

    2012-06-01

    Occurrence and removal efficiencies of fifteen pharmaceuticals were investigated in a conventional municipal wastewater treatment plant in Michigan. Concentrations of these pharmaceuticals were determined in both wastewater and sludge phases by a high-performance liquid chromatograph coupled to a tandem mass spectrometer. Detailed mass balance analysis was conducted during the whole treatment process to evaluate the contributing processes for pharmaceutical removal. Among the pharmaceuticals studied, demeclocycline, sulfamerazine, erythromycin and tylosin were not detected in the wastewater treatment plant influent. Other target pharmaceuticals detected in wastewater were also found in the corresponding sludge phase. The removal efficiencies of chlortetracycline, tetracycline, sulfamerazine, acetaminophen and caffeine were >99%, while doxycycline, oxytetracycline, sulfadiazine and lincomycin exhibited relatively lower removal efficiencies (e.g., <50%). For sulfamethoxazole, the removal efficiency was approximately 90%. Carbamazepine manifested a net increase of mass, i.e. 41% more than the input from the influent. Based on the mass balance analysis, biotransformation is believed to be the predominant process responsible for the removal of pharmaceuticals (22% to 99%), whereas contribution of sorption to sludge was relatively insignificant (7%) for the investigated pharmaceuticals. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Reduction of sludge production from WWTP using thermal pretreatment and enhanced anaerobic methanisation.

    PubMed

    Graja, S; Chauzy, J; Fernandes, P; Patria, L; Cretenot, D

    2005-01-01

    The objective of the study presented here was to investigate the performance of an enhanced two-step anaerobic process for the treatment of WWTP sludge. This process was developed to answer the urgent need currently faced by WWTP operators to reduce the production of biosolids, for which disposal pathways are facing increasing difficulties. A pilot plant was operated on a full-scale WWTP (2,500 p.e.) over a period of 4 months. It consisted of a thermal pre-treatment of excess sludge at 175 degrees C and 40 min, followed by dewatering and methanisation of the centrate in a fixed-film reactor. The thermal lysis had a two-fold enhancing effect on sludge reduction efficiency: firstly, it allowed a decrease of the HRT in the methaniser to 2.9 days and secondly, it yielded biosolids with a high dewaterability. This contributed to further reductions in the final volume of sludge to be disposed of. The two-step process achieved a sludge reduction efficiency of 65% as TSS, thus giving an interesting treatment option for WWTP facing sludge disposal problems.

  5. Changes in water quality in agricultural catchments after deployment of wastewater treatment plant.

    PubMed

    Langhammer, Jakub; Rödlová, Sylva

    2013-12-01

    Insufficient wastewater remediation in small communities and nonpoint source pollution are the key factors in determining the water quality of small streams in an agricultural landscape. Despite the current extensive construction of municipal wastewater treatment facilities in small communities, the level of organic substances and nutrients in the recipient catchments has not decreased in many areas. This paper analyzes the changes in the water quality of the small streams after the deployment of wastewater treatment plants that were designed to address sources of pollution from small municipalities. The analysis is based on the results from a water quality monitoring network in the small watersheds in the Czech Republic. Five rural catchments with one dominant municipal pollution source, where a wastewater treatment plant was deployed during the monitoring period, were selected according to a predefined set of criteria, from a series of 317 profiles. Basic water quality indicators were selected for the assessment: O₂, BOD-5, COD, TOC, conductivity, NH₄-N, NO₂-N, NO₃-N, PT, and PO₄-P. Results of the analysis showed that the simple deployment of the water treatment facilities at these streams often did not lead to a reduction of contamination in the streams. The expected post-deployment changes, namely, a significant and permanent reduction of stream contamination, occurred only in one catchment, whereas in the remainder of the catchments, only marginal changes or even increased concentrations of the contaminants were detected. As the critical factors that determined the efficiency of wastewater treatment were studied, the need for the consideration of the local conditions during the design of the facility, particularly regarding the size of the catchments, initial level of contamination, proper system of operation, and process optimization of the treatment facility, emerged as the important factor.

  6. Spreading of β-lactam resistance gene (mecA) and methicillin-resistant Staphylococcus aureus through municipal and swine slaughterhouse wastewaters.

    PubMed

    Wan, Min Tao; Chou, Chin Cheng

    2014-11-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a potential zoonotic agent. Municipal wastewater treatment plants (WWTPs) can be reservoirs for MRSA dissemination. It is unclear, however, whether MRSA and its β-lactam resistance gene (mecA) can be spread from WWTPs that treat the wastewater of swine auction markets. The aims of the study were to compare (1) the abundance of the mecA gene in one municipal (M-) and one swine (S-) WWTP and (2) the genotypic and phenotypic characteristics of MRSA isolates from these two types of WWTPs. The concentrations of mecA gene from 96 wastewater samples were quantified using real-time quantitative polymerase chain reaction (real-time qPCR). One hundred and thirteen MRSA isolates were recovered and were characterized by antimicrobial susceptibility testing, minimum inhibitory concentrations (MICs), and staphylococcal cassette chromosome mec (SCCmec) typing. The mecA gene could be detected in all the wastewater samples. A high abundance of recovered mecA gene (2.6 × 10(1) to 1.9 × 10(4) gene copies μg(-1) of total DNA) in swine slaughterhouse wastewater implied a correspondingly high transferring/receiving potential. All MRSA isolates were multidrug resistant (MDR) and showed high MICs to different antimicrobials. The M-WWTP MRSA isolates harbored SCCmec II-IV and VII, whereas those from the S-WWTP harbored SCCmec V and IX. In conclusion, wastewater from swine slaughterhouses can make these slaughterhouses potential hotspots for the dissemination of mecA gene and MRSA, and the high MICs of MRSA from both WWTP origins may pose a health risk not only to workers but also to the general public. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The effect of different mesophilic temperatures during anaerobic digestion of sludge on the overall performance of a WWTP in Sweden.

    PubMed

    Moestedt, J; Rönnberg, J; Nordell, E

    2017-12-01

    This project was initiated to evaluate the effect of alternative process temperatures to 38 °C at the anaerobic digestion step in a Swedish wastewater treatment plant (WWTP) treating mixed sludge. The efficiency of the different temperatures was evaluated with respect to biogas production, volume of sludge produced and nutrient content in the reject water to find the optimum temperature for the WWTP as a whole. Three temperatures, 34 °C, 38 °C and 42 °C, were compared in laboratory scale. Increasing the process temperature to 42 °C resulted in process instability, reduced methane yield, accumulation of volatile fatty acids and higher treatment costs of the reject water. By decreasing the temperature to 34 °C, slightly higher sludge mass was observed and a lower gas production rate, while the specific methane produced remained unchanged compared to 38 °C but foaming was observed at several occasions. In summary 38 °C was proved to be the most favourable temperature for the anaerobic digestion process treating mixed sludge when the evaluation included effects such as foaming, sludge mass and quality of the reject water.

  8. Detection of a wide variety of human and veterinary fluoroquinolone antibiotics in municipal wastewater and wastewater-impacted surface water.

    PubMed

    He, Ke; Soares, Ana Dulce; Adejumo, Hollie; McDiarmid, Melissa; Squibb, Katherine; Blaney, Lee

    2015-03-15

    As annual sales of antibiotics continue to rise, the mass of these specially-designed compounds entering municipal wastewater treatment systems has also increased. Of primary concern here is that antibiotics can inhibit growth of specific microorganisms in biological processes of wastewater treatment plants (WWTPs) or in downstream ecosystems. Growth inhibition studies with Escherichia coli demonstrated that solutions containing 1-10 μg/L of fluoroquinolones can inhibit microbial growth. Wastewater samples were collected on a monthly basis from various treatment stages of a 30 million gallon per day WWTP in Maryland, USA. Samples were analyzed for the presence of 11 fluoroquinolone antibiotics. At least one fluoroquinolone was detected in every sample. Ofloxacin and ciprofloxacin exhibited detection frequencies of 100% and 98%, respectively, across all sampling sites. Concentrations of fluoroquinolones in raw wastewater were as high as 1900 ng/L for ciprofloxacin and 600 ng/L for ofloxacin. Difloxacin, enrofloxacin, fleroxacin, moxifloxacin, norfloxacin, and orbifloxacin were also detected at appreciable concentrations of 9-170 ng/L. The total mass concentration of fluoroquinolones in raw wastewater was in the range that inhibited E. coli growth, suggesting that concerns over antibiotic presence in wastewater and wastewater-impacted surface water are valid. The average removal efficiency of fluoroquinolones during wastewater treatment was approximately 65%; furthermore, the removal efficiency for fluoroquinolones was found to be negatively correlated to biochemical oxygen demand removal and positively correlated to phosphorus removal. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Critical modeling parameters identified for 3D CFD modeling of rectangular final settling tanks for New York City wastewater treatment plants.

    PubMed

    Ramalingam, K; Xanthos, S; Gong, M; Fillos, J; Beckmann, K; Deur, A; McCorquodale, J A

    2012-01-01

    New York City Environmental Protection is in the process of incorporating biological nitrogen removal (BNR) in its wastewater treatment plants (WWTPs) which entails operating the aeration tanks with higher levels of mixed liquor suspended solids (MLSS) than a conventional activated sludge process. The objective of this paper is to discuss two of the important parameters introduced in the 3D CFD model that has been developed by the City College of New York (CCNY) group: (a) the development of the 'discrete particle' measurement technique to carry out the fractionation of the solids in the final settling tank (FST) which has critical implications in the prediction of the effluent quality; and (b) the modification of the floc aggregation (K(A)) and floc break-up (K(B)) coefficients that are found in Parker's flocculation equation (Parker et al. 1970, 1971) used in the CFD model. The dependence of these parameters on the predictions of the CFD model will be illustrated with simulation results on one of the FSTs at the 26th Ward WWTP in Brooklyn, NY.

  10. Identification and removal of polycyclic aromatic hydrocarbons in wastewater treatment processes from coke production plants.

    PubMed

    Zhang, Wanhui; Wei, Chaohai; Yan, Bo; Feng, Chunhua; Zhao, Guobao; Lin, Chong; Yuan, Mengyang; Wu, Chaofei; Ren, Yuan; Hu, Yun

    2013-09-01

    Identification and removal of polycyclic aromatic hydrocarbons (PAHs) were investigated at two coke plants located in Shaoguan, Guangdong Province of China. Samples of raw coking wastewaters and wastewaters from subunits of a coke production plant were analyzed using gas chromatography-mass spectrometry (GC/MS) to provide a detailed chemical characterization of PAHs. The identification and characterization of PAH isomers was based on a positive match of mass spectral data of sample peaks with those for PAH isomers in mass spectra databases with electron impact ionization mass spectra and retention times of internal reference compounds. In total, 270 PAH compounds including numerous nitrogen, oxygen, and sulfur heteroatomic derivatives were positively identified for the first time. Quantitative analysis of target PAHs revealed that total PAH concentrations in coking wastewaters were in the range of 98.5 ± 8.9 to 216 ± 20.2 μg/L, with 3-4-ring PAHs as dominant compounds. Calculation of daily PAH output from four plant subunits indicated that PAHs in the coking wastewater came mainly from ammonia stripping wastewater. Coking wastewater treatment processes played an important role in removing PAHs in coking wastewater, successfully removing 92 % of the target compounds. However, 69 weakly polar compounds, including PAH isomers, were still discharged in the final effluent, producing 8.8 ± 2.7 to 31.9 ± 6.8 g/day of PAHs with potential toxicity to environmental waters. The study of coking wastewater herein proposed can be used to better predict improvement of coke production facilities and treatment conditions according to the identification and removal of PAHs in the coke plant as well as to assess risks associated with continuous discharge of these contaminants to receiving waters.

  11. Effects of fuel processing methods on industrial scale biogas-fuelled solid oxide fuel cell system for operating in wastewater treatment plants

    NASA Astrophysics Data System (ADS)

    Farhad, Siamak; Yoo, Yeong; Hamdullahpur, Feridun

    The performance of three solid oxide fuel cell (SOFC) systems, fuelled by biogas produced through anaerobic digestion (AD) process, for heat and electricity generation in wastewater treatment plants (WWTPs) is studied. Each system has a different fuel processing method to prevent carbon deposition over the anode catalyst under biogas fuelling. Anode gas recirculation (AGR), steam reforming (SR), and partial oxidation (POX) are the methods employed in systems I-III, respectively. A planar SOFC stack used in these systems is based on the anode-supported cells with Ni-YSZ anode, YSZ electrolyte and YSZ-LSM cathode, operated at 800 °C. A computer code has been developed for the simulation of the planar SOFC in cell, stack and system levels and applied for the performance prediction of the SOFC systems. The key operational parameters affecting the performance of the SOFC systems are identified. The effect of these parameters on the electrical and CHP efficiencies, the generated electricity and heat, the total exergy destruction, and the number of cells in SOFC stack of the systems are studied. The results show that among the SOFC systems investigated in this study, the AGR and SR fuel processor-based systems with electrical efficiency of 45.1% and 43%, respectively, are suitable to be applied in WWTPs. If the entire biogas produced in a WWTP is used in the AGR or SR fuel processor-based SOFC system, the electricity and heat required to operate the WWTP can be completely self-supplied and the extra electricity generated can be sold to the electrical grid.

  12. Improving the biological nitrogen removal process in pharmaceutical wastewater treatment plants: a case study.

    PubMed

    Torrijos, M; Carrera, J; Lafuente, J

    2004-04-01

    The Biological Nitrogen Removal (BNR) process of some pharmaceutical wastewater treatment plants has important operational problems. This study shows that, in order to solve these problems, the design of industrial BNR processes should start by analysing three key parameters: the characteristics of the wastewater load, the determination of the maximum TKN removal rate and the detection of toxic or inhibitory compounds in the wastewater. A case study of this analysis in pharmaceutical wastewater is presented here. In this case, the conventional TKN analytical method does not make an accurate characterisation of the wastewater load because it measures a concentration of 100 mg TKN l(-1) whereas the real concentration, determined with a modified TKN analytical method, is 150-500 mg TKN l(-1). Also, the TKN removal of the treatment system is insufficient in some periods because it falls below legal requirements. This problem might be a consequence of the wrong characterisation of wastewater during the design process. The maximum TKN removal at 27 degrees C (24 mg N g VSS(-1) d(-1) or 197 mg N l(-1) d(-1)) was evaluated in a pilot-scale plant. This value is six times greater than the average NLR applied in the full-scale plant. Finally, some of the components of the wastewater, such as p-phenylenediamine, might have inhibitory or toxic effects on the biological process. P-phenylenediamine causes a large decrease in the nitrification rate. This effect was determined by respirometry. This methodology shows that the effect is mainly inhibitory with a contact time of 30 min and if the contact time is longer, 14 hours, a toxic effect is observed.

  13. ED-WAVE tool design approach: Case of a textile wastewater treatment plant in Blantyre, Malawi

    NASA Astrophysics Data System (ADS)

    Chipofya, V.; Kraslawski, A.; Avramenko, Y.

    The ED-WAVE tool is a PC based package for imparting training on wastewater treatment technologies. The system consists of four modules viz. Reference Library, Process Builder, Case Study Manager, and Treatment Adviser. The principles of case-based design and case-based reasoning as applied in the ED-WAVE tool are utilised in this paper to evaluate the design approach of the wastewater treatment plant at Mapeto David Whitehead & Sons (MDW&S) textile and garments factory, Blantyre, Malawi. The case being compared with MDW&S in the ED-WAVE tool is Textile Case 4 in Sri Lanka (2003). Equalisation, coagulation and rotating biological contactors is the sequencing of treatment units at Textile Case 4 in Sri Lanka. Screening, oxidation ditches and sedimentation is the sequencing of treatment units at MDW&S textile and garments factory. The study suggests that aerobic biological treatment is necessary in the treatment of wastewater from a textile and garments factory. MDW&S incorporates a sedimentation process which is necessary for the removal of settleable matter before the effluent is discharged to the municipal wastewater treatment plant. The study confirmed the practical use of the ED-WAVE tool in the design of wastewater treatment systems, where after encountering a new situation; already collected decision scenarios (cases) are invoked and modified in order to arrive at a particular design alternative. What is necessary, however, is to appropriately modify the case arrived at through the Case Study Manager in order to come up with a design appropriate to the local situation taking into account technical, socio-economic and environmental aspects.

  14. Assessment of De Facto Wastewater Reuse across the US: trends between 1980 and 2008.

    PubMed

    Rice, Jacelyn; Wutich, Amber; Westerhoff, Paul

    2013-10-01

    De facto wastewater reuse is the incidental presence of treated wastewater in a water supply source. In 1980 the EPA identified drinking water treatment plants (DWTPs) impacted by upstream wastewater treatment plant (WWTP) discharges and found the top 25 most impacted DWTPs contained between 2% and 16% wastewater discharges from upstream locations (i.e., de facto reuse) under average streamflow conditions. This study is the first to provide an update to the 1980 EPA analysis. An ArcGIS model of DWTPs and WWTPs across the U.S. was created to quantify de facto reuse for the top 25 cities in the 1980 EPA study. From 1980 to 2008, de facto reuse increased for 17 of the 25 DWTPs, as municipal flows upstream of the sites increased by 68%. Under low streamflow conditions, de facto reuse in DWTP supplies ranged from 7% to 100%, illustrating the importance of wastewater in sustainable water supplies. Case studies were performed on four cities to analyze the reasons for changes in de facto reuse over time. Three of the four sites have greater than 20% treated wastewater effluent within their drinking water source for streamflow less than the 25th percentile historic flow.

  15. Wastewater Treatment: The Natural Way

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Wolverton Environmental Services, Inc. is widely acclaimed for innovative work in natural water purification which involves use of aquatic plants to remove pollutants from wastewater at a relatively low-cost. Haughton, Louisiana, visited Wolverton's artificial marsh test site and decided to use this method of wastewater treatment. They built an 11 acre sewage lagoon with a 70 by 900 foot artificial marsh called a vascular aquatic plant microbial filter cell. In the cell, microorganisms and rooted aquatic plants combine to absorb and digest wastewater pollutants, thereby converting sewage to relatively clean water. Raw waste water, after a period in the sewage lagoon, flows over a rock bed populated by microbes that digest nutrients and minerals from the sewage thus partially cleaning it. Additional treatment is provided by the aquatic plants growing in the rock bed, which absorb more of the pollutants and help deodorize the sewage.

  16. Cause and pre-alarm control of bulking and foaming by Microthrix parvicella--a case study in triple oxidation ditch at a wastewater treatment plant.

    PubMed

    Xie, B; Dai, X-C; Xu, Y-T

    2007-05-08

    The cause and control of foaming and bulking in triple oxidation ditch at a wastewater treatment plant (WWTP) were investigated. The results showed that the foaming and bulking was mainly caused by the excessive propagation of Microthrix parvicella, and mostly occurred in the cold winter and spring. Batch and continuous flow experiments indicated that biological techniques such as reducing sludge retention time (SRT) and increasing F/M ratio, chemical methods such as addition of chlorine (NaOCl), quaternary ammonium salt (QAS), or cationic polyacrylamide flocculants (PAM), polyaluminum salt (PAC) could decrease Sludge Volume Index (SVI) and control foaming and bulking at different levels. In practical application, the shorter SRT was effective to control foaming and bulking in initial stage, although it took longer time. Addition of 10gClkgMLSSd(-1) could gradually change the activated sludge with serious foaming and bulking to normal state within a week. Pre-alert control strategies should be established for the control of filamentous foaming and bulking.

  17. 2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

  18. Fuzzy logic for plant-wide control of biological wastewater treatment process including greenhouse gas emissions.

    PubMed

    Santín, I; Barbu, M; Pedret, C; Vilanova, R

    2018-06-01

    The application of control strategies is increasingly used in wastewater treatment plants with the aim of improving effluent quality and reducing operating costs. Due to concerns about the progressive growth of greenhouse gas emissions (GHG), these are also currently being evaluated in wastewater treatment plants. The present article proposes a fuzzy controller for plant-wide control of the biological wastewater treatment process. Its design is based on 14 inputs and 6 outputs in order to reduce GHG emissions, nutrient concentration in the effluent and operational costs. The article explains and shows the effect of each one of the inputs and outputs of the fuzzy controller, as well as the relationship between them. Benchmark Simulation Model no 2 Gas is used for testing the proposed control strategy. The results of simulation results show that the fuzzy controller is able to reduce GHG emissions while improving, at the same time, the common criteria of effluent quality and operational costs. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Plant-wide modelling of phosphorus transformations in wastewater treatment systems: Impacts of control and operational strategies.

    PubMed

    Solon, K; Flores-Alsina, X; Kazadi Mbamba, C; Ikumi, D; Volcke, E I P; Vaneeckhaute, C; Ekama, G; Vanrolleghem, P A; Batstone, D J; Gernaey, K V; Jeppsson, U

    2017-04-15

    The objective of this paper is to report the effects that control/operational strategies may have on plant-wide phosphorus (P) transformations in wastewater treatment plants (WWTP). The development of a new set of biological (activated sludge, anaerobic digestion), physico-chemical (aqueous phase, precipitation, mass transfer) process models and model interfaces (between water and sludge line) were required to describe the required tri-phasic (gas, liquid, solid) compound transformations and the close interlinks between the P and the sulfur (S) and iron (Fe) cycles. A modified version of the Benchmark Simulation Model No. 2 (BSM2) (open loop) is used as test platform upon which three different operational alternatives (A 1 , A 2 , A 3 ) are evaluated. Rigorous sensor and actuator models are also included in order to reproduce realistic control actions. Model-based analysis shows that the combination of an ammonium ( [Formula: see text] ) and total suspended solids (X TSS ) control strategy (A 1 ) better adapts the system to influent dynamics, improves phosphate [Formula: see text] accumulation by phosphorus accumulating organisms (X PAO ) (41%), increases nitrification/denitrification efficiency (18%) and reduces aeration energy (E aeration ) (21%). The addition of iron ( [Formula: see text] ) for chemical P removal (A 2 ) promotes the formation of ferric oxides (X HFO-H , X HFO-L ), phosphate adsorption (X HFO-H,P , X HFO-L,P ), co-precipitation (X HFO-H,P,old , X HFO-L,P,old ) and consequently reduces the P levels in the effluent (from 2.8 to 0.9 g P.m -3 ). This also has an impact on the sludge line, with hydrogen sulfide production ( [Formula: see text] ) reduced (36%) due to iron sulfide (X FeS ) precipitation. As a consequence, there is also a slightly higher energy production (E production ) from biogas. Lastly, the inclusion of a stripping and crystallization unit (A 3 ) for P recovery reduces the quantity of P in the anaerobic digester supernatant

  20. Emission of bacteria and fungi in the air from wastewater treatment plants - a review.

    PubMed

    Korzeniewska, Ewa

    2011-01-01

    An increase in global population, coupled with intensive development of industry and agriculture, has resulted in the generation and accumulation of large amounts of waste around the world. The spread of pathogenic microorganisms, endotoxins, odours and dust particles in the air is an inevitable consequence of waste production and waste management. Thus, the risk of infections associated with wastewater treatment plants (WWTPs) has become of a particular importance in recent decades. Sewage and unstable sludge contain various pathogens such as viruses, bacteria, and human and animal parasites. These microorganisms can be transmitted to the ambient air in wastewater droplets, which are generated during aeration or mechanical moving of the sewage. Bioaerosols generated during wastewater treatment may therefore pose a potential health hazard to workers of these plants or to habitants of their surroundings. The degree of human exposure to airborne bacteria, fungi, endotoxin and other allergens may vary significantly depending upon the type and the capacity of a plant, kind of the facilities, performed activities and meteorological conditions.

  1. Bioavailability of pharmaceuticals in waters close to wastewater treatment plants: use of fish bile for exposure assessment.

    PubMed

    Lahti, Marja; Brozinski, Jenny-Maria; Segner, Helmut; Kronberg, Leif; Oikari, Aimo

    2012-08-01

    Pharmaceuticals are ubiquitous in surface waters as a consequence of discharges from municipal wastewater treatment plants. However, few studies have assessed the bioavailability of pharmaceuticals to fish in natural waters. In the present study, passive samplers and rainbow trout were experimentally deployed next to three municipal wastewater treatment plants in Finland to evaluate the degree of animal exposure. Pharmaceuticals from several therapeutic classes (in total 15) were analyzed by liquid chromatography-tandem mass spectrometry in extracts of passive samplers and in bile and blood plasma of rainbow trout held at polluted sites for 10 d. Each approach indicated the highest exposure near wastewater treatment plant A and the lowest near that of plant C. Diclofenac, naproxen, and ibuprofen were found in rainbow trout, and their concentrations in bile were 10 to 400 times higher than in plasma. The phase I metabolite hydroxydiclofenac was also detected in bile. Hence, bile proved to be an excellent sample matrix for the exposure assessment of fish. Most of the monitored pharmaceuticals were found in passive samplers, implying that they may overestimate the actual exposure of fish in receiving waters. Two biomarkers, hepatic vitellogenin and cytochrome P4501A, did not reveal clear effects on fish, although a small induction of vitellogenin mRNA was observed in trout caged near wastewater treatment plants B and C. Copyright © 2012 SETAC.

  2. Occurrences and behaviors of naphthenic acids in a petroleum refinery wastewater treatment plant.

    PubMed

    Wang, Beili; Wan, Yi; Gao, Yingxin; Zheng, Guomao; Yang, Min; Wu, Song; Hu, Jianying

    2015-05-05

    Naphthenic acids (NAs) are one class of compounds in wastewaters from petroleum industries that are known to cause toxic effects, and their removal from oilfield wastewater is an important challenge for remediation of large volumes of petrochemical effluents. The present study investigated occurrences and behaviors of total NAs and aromatic NAs in a refinery wastewater treatment plant, located in north China, which combined physicochemical and biological processes. Concentrations of total NAs were semiquantified to be 113-392 μg/L in wastewater from all the treatment units, and the percentages of aromatic NAs in total NAs was estimated to be 2.1-8.8%. The mass reduction for total NAs and aromatic NAs was 15±16% and 7.5±24% after the physicochemical treatment, respectively. Great mass reduction (total NAs: 65±11%, aromatic NAs: 86±5%) was observed in the biological treatment units, and antiestrogenic activities observed in wastewater from physicochemical treatment units disappeared in the effluent of the activated sludge system. The distributions of mass fractions of NAs demonstrated that biodegradation via activated sludge was the major mechanism for removing alicyclic NAs, aromatic NAs, and related toxicities in the plant, and the polycyclic NA congener classes were relatively recalcitrant to biodegradation, which is a complete contrast to the preferential adsorption of NAs with higher cyclicity (low Z value). Removal efficiencies of total NAs were 73±17% in summer, which were higher than those in winter (53±15%), and the seasonal variation was possibly due to the relatively high microbial biotransformation activities in the activated sludge system in summer (indexed by O3-NAs/NAs). The results of the investigations indicated that biotransformation of NA mixtures by the activated sludge system were largely affected by temperature, and employing an efficient adsorbent together with biodegradation processes would help cost-effectively remove NAs in petroleum

  3. RECOMMENDED PRACTICE FOR THE USE OF ELECTROMAGNETIC FLOWMETERS IN WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    Electromagnetic flowmeters that conform to the guidelines described in this document can be used to measure the volumetric flowrate of all liquids and sludges normally encountered in wastewater treatment plants, provided that adequate inspection and maintenance are performed as r...

  4. TOXICITY REDUCTION EVALUATION (TRE) AT A MUNICIPAL WASTEWATER TREATMENT PLANT USING MUTAGENICITY AS AN END- POINT

    EPA Science Inventory

    Previous work revealed substantial levels of mutagenicity in effluents from certain municipal wastewater treatment plants. One of these treatment plants was selected for further study to track the effluent mutagenicity to its sources, to chemically characterize the mutagenicity, ...

  5. Impacts of Nitrogen Removal and Re-Application on N2O fluxes from Narragansett Bay: Contrasting Turfgrasses, Salt Marshes, and Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Brannon, E.; Moseman-Valtierra, S.; Quinn, R. K.; Amador, J.; Brown, R.; Lancellotti, B.; Glennon, K.; Celeste, G.; Craver, V.

    2016-12-01

    Narragansett Bay in Rhode Island is characterized by a substantial, historic bay-wide nitrogen (N) gradient. Centralized wastewater treatment plants (WWTPs) are a major anthropogenic N source. Onsite wastewater treatments systems (OWTS), which serve 1/3 of all households in the state, are another anthropogenic N source. Recent state regulation has prompted upgrades to both WWTPs and OWTS to increase N removal capacities. Although this should lower N loads to Narragansett Bay, it has the potential to increase the flux of nitrous oxide (N2O), a potent greenhouse gas. We measured summer-time (2016) N2O fluxes of a major WWTP (biological N removal system at Field's Point in Providence) and three of the most common advanced OWTS in the Narragansett Bay watershed (Orenco Advantex AX20, BioMicrobics FAST, SeptiTech D Series). We also tested impacts of application of recovered N (biosolids from wastewater sludge) on N2O fluxes from a turfgrass (Schedonerus arundinaceus) and dominant native coastal cordgrass (Spartina alterniflora) in mesocosm experiments. Preliminary results indicate that the largest N2O fluxes (245 ± 72 µmol N2O m-2 h-1) were from the Field's Point WWTP. Significant, but smaller N2O fluxes (6 ± 3 µmol N2O m-2 h-1 were also measured from the OWTS. In contrast, N2O fluxes from the N-enriched native coastal cordgrass and turfgrass mesocosms were often non-detectable. However, fluxes from a few mesocosms (max. of 25 µmol N2O m-2 h-1) were on the same order of magnitude as fluxes from the OWTS. A state-wide budget of N2O emissions from turfgrasses, intertidal marshes, and OWTS will be estimated to determine their significance as sources relative to the Field's Point WWTP. This data will be used to identify areas where N2O fluxes can be minimized in the state of RI.

  6. Ionic liquid biodegradability depends on specific wastewater microbial consortia.

    PubMed

    Docherty, Kathryn M; Aiello, Steven W; Buehler, Barbara K; Jones, Stuart E; Szymczyna, Blair R; Walker, Katherine A

    2015-10-01

    Complete biodegradation of a newly-synthesized chemical in a wastewater treatment plant (WWTP) eliminates the potential for novel environmental pollutants. However, differences within- and between-WWTP microbial communities may alter expectations for biodegradation. WWTP communities can also serve as a source of unique consortia that, when enriched, can metabolize chemicals that tend to resist degradation, but are otherwise promising green alternatives. We tested the biodegradability of three ionic liquids (ILs): 1-octyl-3-methylpyridinium bromide (OMP), 1-butyl-3-methylpyridinium bromide (BMP) and 1-butyl-3-methylimidazolium chloride (BMIM). We performed tests using communities from two WWTPs at three time points. Site-specific and temporal variation both influenced community composition, which impacted the success of OMP biodegradability. Neither BMP nor BMIM degraded in any test, suggesting that these ILs are unlikely to be removed by traditional treatment. Following standard biodegradation assays, we enriched for three consortia that were capable of quickly degrading OMP, BMP and BMIM. Our results indicate WWTPs are not functionally redundant with regard to biodegradation of specific ionic liquids. However, consortia can be enriched to degrade chemicals that fail biodegradability assays. This information can be used to prepare pre-treatment procedures and prevent environmental release of novel pollutants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Relative importance of P and N in macrophyte and epilithic algae biomass in a wastewater-impacted oligotrophic river.

    PubMed

    Taube, Nadine; He, Jianxun; Ryan, M Cathryn; Valeo, Caterina

    2016-08-01

    The role of nutrient loading on biomass growth in wastewater-impacted rivers is important in order to effectively optimize wastewater treatment to avoid excessive biomass growth in the receiving water body. This paper directly relates wastewater treatment plant (WWTP) effluent nutrients (including ammonia (NH3-N), nitrate (NO3-N) and total phosphorus (TP)) to the temporal and spatial distribution of epilithic algae and macrophyte biomass in an oligotrophic river. Annual macrophyte biomass, epilithic algae data and WWTP effluent nutrient data from 1980 to 2012 were statistically analysed. Because discharge can affect aquatic biomass growth, locally weighted scatterplot smoothing (LOWESS) was used to remove the influence of river discharge from the aquatic biomass (macrophytes and algae) data before further analysis was conducted. The results from LOWESS indicated that aquatic biomass did not increase beyond site-specific threshold discharge values in the river. The LOWESS-estimated biomass residuals showed a variable response to different nutrients. Macrophyte biomass residuals showed a decreasing trend concurrent with enhanced nutrient removal at the WWTP and decreased effluent P loading, whereas epilithic algae biomass residuals showed greater response to enhanced N removal. Correlation analysis between effluent nutrient concentrations and the biomass residuals (both epilithic algae and macrophytes) suggested that aquatic biomass is nitrogen limited, especially by NH3-N, at most sampling sites. The response of aquatic biomass residuals to effluent nutrient concentrations did not change with increasing distance to the WWTP but was different for P and N, allowing for additional conclusions about nutrient limitation in specific river reaches. The data further showed that the mixing process between the effluent and the river has an influence on the spatial distribution of biomass growth.

  8. Assessment of wastewater treatment plant design for small communities: environmental and economic aspects.

    PubMed

    Molinos-Senante, M; Garrido-Baserba, M; Reif, R; Hernández-Sancho, F; Poch, M

    2012-06-15

    The preliminary design and economic assessment of small wastewater treatment plants (less than 2000 population equivalent) are issues of particular interest since wastewaters from most of these agglomerations are not covered yet. This work aims to assess nine different technologies set-up for the secondary treatment in such type of facilities embracing both economic and environmental parameters. The main novelty of this work is the combination of an innovative environmental decision support system (EDSS) with a pioneer approach based on the inclusion of the environmental benefits derived from wastewater treatment. The integration of methodologies based on cost-benefit analysis tools with the vast amount of knowledge from treatment technologies contained in the EDSS was applied in nine scenarios comprising different wastewater characteristics and reuse options. Hence, a useful economic feasibility indicator is obtained for each technology including internal and external costs and, for the first time, benefits associated with the environmental damage avoided. This new methodology proved to be crucial for supporting the decision process, contributing to improve the sustainability of new treatment facilities and allows the selection of the most feasible technologies of a wide set of possibilities. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Stabilization of heavy metals in fired clay brick incorporated with wastewater treatment plant sludge: Leaching analysis

    NASA Astrophysics Data System (ADS)

    Kadir, A. A.; Hassan, M. I. H.; Salim, N. S. A.; Sarani, N. A.; Ahmad, S.; Rahmat, N. A. I.

    2018-04-01

    Wastewater treatment sludge or known as sewage sludge is regarded as the residue and produced by the sedimentation of the suspended solid during treatment at the wastewater treatment plant. As such, this sludge was gained from the separation process of the liquids and solids. This sludge wastes has becomes national issues in recent years due to the increasing amount caused by population and industrialization growth in Malaysia. This research was conducted to fully utilize the sludge that rich in dangerous heavy metals and at the same time act as low cost alternative materials in brick manufacturing. The investigation includes determination of heavy metal concentration and chemical composition of the sludge, physical and mechanical properties. Wastewater treatment sludge samples were collected from wastewater treatment plant located in Johor, Malaysia. X-Ray Fluorescence was conducted to determine the heavy metals concentration of wastewater treatment sludge. Different percentage of sludges which are 0%, 1%, 5%, 10%, and 20%, has been incorporated into fired clay brick. The leachability of heavy metals in fired clay brick that incorporated with sludge were determined by using Toxicity Characteristic Leaching Procedure (TCLP) and Synthetic Precipitation Leachability Procedure (SPLP) that has been analyzed by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results show a possibility to stabilize the heavy metals in fired clay brick incorporated with wastewater treatment sludge. 20% of the sludge incorporated into the brick is the most suitable for building materials as it leached less heavy metals concentration and complying with USEPA standard.

  10. Occurrence, elimination, enantiomeric distribution and intra-day variations of chiral pharmaceuticals in major wastewater treatment plants in Beijing, China.

    PubMed

    Duan, Lei; Zhang, Yizhe; Wang, Bin; Deng, Shubo; Huang, Jun; Wang, Yujue; Yu, Gang

    2018-04-18

    The occurrence, eliminations, enantiomeric distribution and intra-day variations of five chiral pharmaceuticals (three beta-blockers and two antidepressants) were investigated in eight major WWTPs in Beijing, China. The results revealed that metoprolol (MTP) and venlafaxine (VFX) were of the highest concentrations among the five determined pharmaceuticals with mean concentrations of 803 ng L -1 and 408 ng L -1 , respectively in influents, and 354 ng L -1 and 165 ng L -1 in effluents, respectively. Their removal efficiencies, intra-day concentration changes and enantiomeric profiles during wastewater treatment were further analyzed. Loads of these two chiral pharmaceuticals were also studied to reveal drug use pattern. A/A/O+MBR (anaerobic/anoxic/oxic + membrane bio-reactor) followed by joint disinfection treatment process exhibited the high removal efficiencies. No or weak enantioselectivity was observed in most WWTPs. However, obvious enantiomeric fraction (EF) changing of MTP was observed in WWTP3 employing A/A/O+MBR. Intra-day concentration fluctuations of MTP were smaller than VFX. A quick response to sudden rise influent concentration of MTP was observed in WWTP1 effluent but EF response lagged behind. Similar bihourly EF variations in influents and effluents were also observed in most WWTPs for MTP and VFX in consideration of hydraulic residence time (HRT). Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H2O2 Advanced Oxidation Treatment at Pilot Scale

    PubMed Central

    Kuch, Bertram; Lange, Claudia; Richter, Philipp; Kugele, Amélie; Minke, Ralf

    2018-01-01

    Effluent of a municipal wastewater treatment plant (WWTP) was treated on-site with the UV/chlorine (UV/HOCl) advanced oxidation process (AOP) using a pilot plant equipped with a medium pressure UV lamp with an adjustable performance of up to 1 kW. Results obtained from parallel experiments with the same pilot plant, where the state of the art UV/H2O2 AOP was applied, were compared regarding the removal of emerging contaminants (EC) and the formation of adsorbable organohalogens (AOX). Furthermore, the total estrogenic activity was measured in samples treated with the UV/chlorine AOP. At an energy consumption of 0.4 kWh/m3 (0.4 kW, 1 m3/h) and in a range of oxidant concentrations from 1 to 6 mg/L, the UV/chlorine AOP had a significantly higher EC removal yield than the UV/H2O2 AOP. With free available chlorine concentrations (FAC) in the UV chamber influent of at least 5 mg/L (11 mg/L of dosed Cl2), the total estrogenic activity could be reduced by at least 97%. To achieve a certain concentration of FAC in the UV chamber influent, double to triple the amount of dosed Cl2 was needed, resulting in AOX concentrations of up to 520 µg/L. PMID:29735959

  12. Contribution of waste water treatment plants to pesticide toxicity in agriculture catchments.

    PubMed

    Le, Trong Dieu Hien; Scharmüller, Andreas; Kattwinkel, Mira; Kühne, Ralph; Schüürmann, Gerrit; Schäfer, Ralf B

    2017-11-01

    Pesticide residues are frequently found in water bodies and may threaten freshwater ecosystems and biodiversity. In addition to runoff or leaching from treated agricultural fields, pesticides may enter streams via effluents from wastewater treatment plants (WWTPs). We compared the pesticide toxicity in terms of log maximum Toxic Unit (log mTU) of sampling sites in small agricultural streams of Germany with and without WWTPs in the upstream catchments. We found an approximately half log unit higher pesticide toxicity for sampling sites with WWTPs (p < 0.001). Compared to fungicides and insecticides, herbicides contributed most to the total pesticide toxicity in streams with WWTPs. A few compounds (diuron, terbuthylazin, isoproturon, terbutryn and Metazachlor) dominated the herbicide toxicity. Pesticide toxicity was not correlated with upstream distance to WWTP (Spearman's rank correlation, rho = - 0.11, p > 0.05) suggesting that other context variables are more important to explain WWTP-driven pesticide toxicity. Our results suggest that WWTPs contribute to pesticide toxicity in German streams. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Performance of a biomass adapted to oncological ward wastewater vs. biomass from municipal WWTP on the removal of pharmaceutical molecules.

    PubMed

    Hamon, P; Moulin, P; Ercolei, L; Marrot, B

    2018-01-01

    The performance of a biomass adapted to Oncological Ward Wastewater (OWW) in a membrane bioreactor (MBR) was compared with that of a municipal WWTP, on the removal of pharmaceutical molecules and more specifically on their overall resistance and purifying ability in the presence of pharmaceutical cocktails. Sorption and biotransformation mechanisms on two antineoplastics, one antibiotic and a painkiller were evaluated. Sludge acclimated to OWW allowed for a 34% increase in the removal rate and in the minimum inhibition concentration. The percentage of the amounts of specific pharmaceutical compounds removed by biotransformation or by sorption were measured. These results are positive, as they show that the observed removal of pharmaceutical molecules by biomass acclimated to OWW can mostly be attributed to developed biotransformation, unlike the biomass from the municipal WWTP for which sorption is sometimes the only removal mechanism. The biotransformation kinetic and the solid-water distribution coefficients in this study show good agreement with literature data, even for much higher pharmaceutical concentrations in OWW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Nitrotoga-like bacteria are previously unrecognized key nitrite oxidizers in full-scale wastewater treatment plants.

    PubMed

    Lücker, Sebastian; Schwarz, Jasmin; Gruber-Dorninger, Christiane; Spieck, Eva; Wagner, Michael; Daims, Holger

    2015-03-01

    Numerous past studies have shown members of the genus Nitrospira to be the predominant nitrite-oxidizing bacteria (NOB) in nitrifying wastewater treatment plants (WWTPs). Only recently, the novel NOB 'Candidatus Nitrotoga arctica' was identified in permafrost soil and a close relative was enriched from activated sludge. Still, little is known about diversity, distribution and functional importance of Nitrotoga in natural and engineered ecosystems. Here we developed Nitrotoga 16S rRNA-specific PCR primers and fluorescence in situ hybridization (FISH) probes, which were applied to screen activated sludge samples from 20 full-scale WWTPs. Nitrotoga-like bacteria were detected by PCR in 11 samples and reached abundances detectable by FISH in seven sludges. They coexisted with Nitrospira in most of these WWTPs, but constituted the only detectable NOB in two systems. Quantitative FISH revealed that Nitrotoga accounted for nearly 2% of the total bacterial community in one of these plants, a number comparable to Nitrospira abundances in other WWTPs. Spatial statistics revealed that Nitrotoga coaggregated with ammonia-oxidizing bacteria, strongly supporting a functional role in nitrite oxidation. This activity was confirmed by FISH in combination with microradiography, which revealed nitrite-dependent autotrophic carbon fixation by Nitrotoga in situ. Correlation of the presence or absence with WWTP operational parameters indicated low temperatures as a main factor supporting high Nitrotoga abundances, although in incubation experiments these NOB remained active over an unexpected range of temperatures, and also at different ambient nitrite concentrations. In conclusion, this study demonstrates that Nitrotoga can be functionally important nitrite oxidizers in WWTPs and can even represent the only known NOB in engineered systems.

  15. Methane emission estimates using chamber and tracer release experiments for a municipal waste water treatment plant

    NASA Astrophysics Data System (ADS)

    Yver Kwok, C. E.; Müller, D.; Caldow, C.; Lebègue, B.; Mønster, J. G.; Rella, C. W.; Scheutz, C.; Schmidt, M.; Ramonet, M.; Warneke, T.; Broquet, G.; Ciais, P.

    2015-07-01

    This study presents two methods for estimating methane emissions from a waste water treatment plant (WWTP) along with results from a measurement campaign at a WWTP in Valence, France. These methods, chamber measurements and tracer release, rely on Fourier transform infrared spectroscopy and cavity ring-down spectroscopy instruments. We show that the tracer release method is suitable for quantifying facility- and some process-scale emissions, while the chamber measurements provide insight into individual process emissions. Uncertainties for the two methods are described and discussed. Applying the methods to CH4 emissions of the WWTP, we confirm that the open basins are not a major source of CH4 on the WWTP (about 10 % of the total emissions), but that the pretreatment and sludge treatment are the main emitters. Overall, the waste water treatment plant is representative of an average French WWTP.

  16. Textile wastewater treatment and reuse by solar catalysis: results from a pilot plant in Tunisia.

    PubMed

    Bousselmi, L; Geissen, S U; Schroeder, H

    2004-01-01

    Based on results from bench-scale flow-film-reactors (FFR) and aerated cascade photoreactors, a solar catalytic pilot plant has been built at the site of a textile factory. This plant has an illuminated surface area of 50 m2 and is designed for the treatment of 1 m3 h(-1) of wastewater. The preliminary results are presented and compared with a bench-scale FFR using textile wastewater and dichloroacetic acid. Equivalent degradation kinetics were obtained and it was demonstrated that the solar catalytic technology is able to remove recalcitrant compounds and color. However, on-site optimization is still necessary for wastewater reuse and for an economic application.

  17. A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

    NASA Astrophysics Data System (ADS)

    Dexter, Z. D.; Joseph, C. G.; Zahrim, A. Y.

    2016-06-01

    Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry

  18. Ozonation strategies to reduce sludge production of a seafood industry WWTP.

    PubMed

    Campos, J L; Otero, L; Franco, A; Mosquera-Corral, A; Roca, E

    2009-02-01

    In this work, several alternatives related to the application of ozone in different streams of a seafood industry WWTP were evaluated to minimize the production of waste sludge. The WWTP was composed of two coagulation-flocculation units and a biological unit and generated around of 6550 kg/d of sludge. Ozone was applied to sludge coming from flotation units (110 g TSS/L) at doses up to 0.03 g O(3)/g TSS during batch tests, no solids solubilization being observed. Ozone doses ranging from 0.007 to 0.02 g O(3)/g TSS were also applied to the raw wastewater in a bubble column reaching a 6.8% of TSS removal for the highest ozone dose. Finally, the effect of the pre-ozonation (0.05 g O(3)/g TSS) of wastewater coming from the first flotation unit was tested in two activated sludge systems during 70 days. Ozonation caused a reduction of the observed yield coefficient of biomass from 0.14 to 0.07g TSS/g COD(Tremoved) and a slight improvement of COD removal efficiencies. On the basis of the capacity for ozone production available in the industry, a maximum reduction of sludge generated by the WWTP of 7.5% could be expected.

  19. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.

    PubMed

    Kaindl, Nikolaus

    2010-01-01

    A paper mill producing 500,000 ton of graphic paper annually has an on-site wastewater treatment plant that treats 7,240,000 m³ of wastewater per year, mechanically first, then biologically and at last by ozonation. Increased paper production capacity led to higher COD load in the mill effluent while production of higher proportions of brighter products gave worse biodegradability. Therefore the biological capacity of the WWTP needed to be increased and extra measures were necessary to enhance the efficiency of COD reduction. The full scale implementation of one MBBR with a volume of 1,230 m³ was accomplished in 2000 followed by another MBBR of 2,475 m³ in 2002. An ozonation step with a capacity of 75 kg O₃/h was added in 2004 to meet higher COD reduction demands during the production of brighter products and thus keeping the given outflow limits. Adding a moving bed biofilm reactor prior to the existing activated sludge step gives: (i) cost advantages when increasing biological capacity as higher COD volume loads of MBBRs allow smaller reactors than usual for activated sludge plants; (ii) a relief of strain from the activated sludge step by biological degradation in the MBBR; (iii) equalizing of peaks in the COD load and toxic effects before affecting the activated sludge step; (iv) a stable volume sludge index below 100 ml/g in combination with an optimization of the activated sludge step allows good sludge separation--an important condition for further treatment with ozone. Ozonation and subsequent bio-filtration pre-treated waste water provide: (i) reduction of hard COD unobtainable by conventional treatment; (ii) controllable COD reduction in a very wide range and therefore elimination of COD-peaks; (iii) reduction of treatment costs by combination of ozonation and subsequent bio-filtration; (iv) decrease of the color in the ozonated wastewater. The MBBR step proved very simple to operate as part of the biological treatment. Excellent control of the COD

  20. Occurrence of triclosan, triclocarban, and its lesser chlorinated congeners in Minnesota freshwater sediments collected near wastewater treatment plants

    USGS Publications Warehouse

    Venkatesan, Arjun K.; Pycke, Benny F.G.; Barber, Larry B.; Lee, Kathy E.; Halden, Rolf U.

    2012-01-01

    The antimicrobial agents triclosan (TCS), triclocarban (TCC) and their associated transformation products are of increasing concern as environmental pollutants due to their potential adverse effects on humans and wildlife, including bioaccumulation and endocrine-disrupting activity. Analysis by tandem mass spectrometry of 24 paired freshwater bed sediment samples (top 10 cm) collected by the U.S. Geological Survey near 12 wastewater treatment plants (WWTPs) in Minnesota revealed TCS and TCC concentrations of up to 85 and 822 ng/g dry weight (dw), respectively. Concentrations of TCS and TCC in bed sediments collected downstream of WWTPs were significantly greater than upstream concentrations in 58% and 42% of the sites, respectively. Dichloro- and non-chlorinated carbanilides (DCC and NCC) were detected in sediments collected at all sites at concentrations of up to 160 and 1.1 ng/g dw, respectively. Overall, antimicrobial concentrations were significantly higher in lakes than in rivers and creeks, with relative abundances decreasing from TCC > TCS > DCC > NCC. This is the first statewide report on the occurrence of TCS, TCC and TCC transformation products in freshwater sediments. Moreover, the results suggest biological or chemical TCC dechlorination products to be ubiquitous in freshwater environments of Minnesota, but whether this transformation occurs in the WWTP or bed sediment remains to be determined.

  1. Artificial neural network modelling of a large-scale wastewater treatment plant operation.

    PubMed

    Güçlü, Dünyamin; Dursun, Sükrü

    2010-11-01

    Artificial Neural Networks (ANNs), a method of artificial intelligence method, provide effective predictive models for complex processes. Three independent ANN models trained with back-propagation algorithm were developed to predict effluent chemical oxygen demand (COD), suspended solids (SS) and aeration tank mixed liquor suspended solids (MLSS) concentrations of the Ankara central wastewater treatment plant. The appropriate architecture of ANN models was determined through several steps of training and testing of the models. ANN models yielded satisfactory predictions. Results of the root mean square error, mean absolute error and mean absolute percentage error were 3.23, 2.41 mg/L and 5.03% for COD; 1.59, 1.21 mg/L and 17.10% for SS; 52.51, 44.91 mg/L and 3.77% for MLSS, respectively, indicating that the developed model could be efficiently used. The results overall also confirm that ANN modelling approach may have a great implementation potential for simulation, precise performance prediction and process control of wastewater treatment plants.

  2. Impact of toxic chemicals on local wastewater treatment plant and the environment

    NASA Astrophysics Data System (ADS)

    Bennett, Gary F.

    1989-05-01

    Because toxic chemicals being discharged to sewers were simultaneously interfering with wastewater treatment processes of municipal, biological treatment plants and were passing through these plants to negatively impact the bodies of water to which these plants were discharging, the U.S. Environmental Protection Agency issued regulations governing industrial discharges to municipal sewers. These “Pretreatment Regulations” limit industrial discharges to municipal sewers of heavy metals, oil and grease, acids and bases, and toxic organic chemicals. This paper discusses the evolution of these regulations, the basis for them, the types of regulations (categorical and local), and the rationale for their promulgation based on the impacts of toxics chemicals on the treatment plant and receiving system. Finally, the expected results of these regulations in reducing industrial discharges of toxic chemicals is discussed.

  3. Identifying energy and carbon footprint optimization potentials of a sludge treatment line with Life Cycle Assessment.

    PubMed

    Remy, C; Lesjean, B; Waschnewski, J

    2013-01-01

    This study exemplifies the use of Life Cycle Assessment (LCA) as a tool to quantify the environmental impacts of processes for wastewater treatment. In a case study, the sludge treatment line of a large wastewater treatment plant (WWTP) is analysed in terms of cumulative energy demand and the emission of greenhouse gases (carbon footprint). Sludge treatment consists of anaerobic digestion, dewatering, drying, and disposal of stabilized sludge in mono- or co-incineration in power plants or cement kilns. All relevant forms of energy demand (electricity, heat, chemicals, fossil fuels, transport) and greenhouse gas emissions (fossil CO(2), CH(4), N(2)O) are accounted in the assessment, including the treatment of return liquor from dewatering in the WWTP. Results show that the existing process is positive in energy balance (-162 MJ/PE(COD) * a) and carbon footprint (-11.6 kg CO(2)-eq/PE(COD) * a) by supplying secondary products such as electricity from biogas production or mono-incineration and substituting fossil fuels in co-incineration. However, disposal routes for stabilized sludge differ considerably in their energy and greenhouse gas profiles. In total, LCA proves to be a suitable tool to support future investment decisions with information of environmental relevance on the impact of wastewater treatment, but also urban water systems in general.

  4. Antibiotic resistance genes and intI1 prevalence in a swine wastewater treatment plant and correlation with metal resistance, bacterial community and wastewater parameters.

    PubMed

    Yuan, Qing-Bin; Zhai, Yi-Fan; Mao, Bu-Yun; Hu, Nan

    2018-06-07

    The livestock wastewater treatment plant represents an important reservoir of antibiotic resistance determinants in the environment. The study explored the prevalence of five antibiotic resistance genes (ARGs, including sulI, tetA, qnrD, mphB and mcr-1) and class 1 integron (intI1) in a typical livestock wastewater treatment plant, and analyzed their integrated association with two metal resistance genes (copA and czcA), two pathogens genes (Staphylococcus and Campylobacter), bacterial community and wastewater properties. Results indicated that all investigated genes were detected in the plant. The treatment plant could not completely remove ARGs abundances, with up to 2.2 × 10 4 ~3.7 × 10 8 copies/L of them remaining in the effluent. Mcr-1 was further enriched by 27-fold in the subsequent pond. The correlation analysis showed that mphB significantly correlateed with tetA and intI. Mcr-1 strongly correlated with copA. MphB and intI significantly correlated with czcA. The correlations implied a potential co-selection risk of bacterial resistant to antibiotics and metals. Redundancy analyses indicated that qnrD and mcr-1 strongly correlated with 13 and 14 bacterial genera, respectively. Most ARGs positively correlated to wastewater nutrients, indicating that an efficient reduction of wastewater nutrients would contribute to the antibiotic resistance control. The study will provide useful implications on fates and reductions of ARGs in livestock facilities and receiving environments. Copyright © 2018. Published by Elsevier Inc.

  5. An integrated approach for monitoring efficiency and investments of activated sludge-based wastewater treatment plants at large spatial scale.

    PubMed

    De Gisi, Sabino; Sabia, Gianpaolo; Casella, Patrizia; Farina, Roberto

    2015-08-01

    WISE, the Water Information System for Europe, is the web-portal of the European Commission (EU) that disseminates the quality state of the receiving water bodies and the efficiency of the municipal wastewater treatment plants (WWTPs) in order to monitor advances in the application of both the Water Framework Directive (WFD) as well as the Urban Wastewater Treatment Directive (UWWTD). With the intention to develop WISE applications, the aim of the work was to define and apply an integrated approach capable of monitoring the efficiency and investments of activated sludge-based WWTPs located in a large spatial area, providing the following outcomes useful to the decision-makers: (i) the identification of critical facilities and their critical processes by means of a Performance Assessment System (PAS), (ii) the choice of the most suitable upgrading actions, through a scenario analysis. (iii) the assessment of the investment costs to upgrade the critical WWTPs and (iv) the prioritization of the critical facilities by means of a multi-criteria approach which includes the stakeholders involvement, along with the integration of some technical, environmental, economic and health aspects. The implementation of the proposed approach to a high number of municipal WWTPs highlighted how the PAS developed was able to identify critical processes with a particular effectiveness in identifying the critical nutrient removal ones. In addition, a simplified approach that considers the cost related to a basic-configuration and those for the WWTP integration, allowed to link the critical processes identified and the investment costs. Finally, the questionnaire for the acquisition of data such as that provided by the Italian Institute of Statistics, the PAS defined and the database on the costs, if properly adapted, may allow for the extension of the integrated approach on an EU-scale by providing useful information to water utilities as well as institutions. Copyright © 2015 Elsevier

  6. Spoilt for choice: A critical review on the chemical and biological assessment of current wastewater treatment technologies.

    PubMed

    Prasse, Carsten; Stalter, Daniel; Schulte-Oehlmann, Ulrike; Oehlmann, Jörg; Ternes, Thomas A

    2015-12-15

    The knowledge we have gained in recent years on the presence and effects of compounds discharged by wastewater treatment plants (WWTPs) brings us to a point where we must question the appropriateness of current water quality evaluation methodologies. An increasing number of anthropogenic chemicals is detected in treated wastewater and there is increasing evidence of adverse environmental effects related to WWTP discharges. It has thus become clear that new strategies are needed to assess overall quality of conventional and advanced treated wastewaters. There is an urgent need for multidisciplinary approaches combining expertise from engineering, analytical and environmental chemistry, (eco)toxicology, and microbiology. This review summarizes the current approaches used to assess treated wastewater quality from the chemical and ecotoxicological perspective. Discussed chemical approaches include target, non-target and suspect analysis, sum parameters, identification and monitoring of transformation products, computational modeling as well as effect directed analysis and toxicity identification evaluation. The discussed ecotoxicological methodologies encompass in vitro testing (cytotoxicity, genotoxicity, mutagenicity, endocrine disruption, adaptive stress response activation, toxicogenomics) and in vivo tests (single and multi species, biomonitoring). We critically discuss the benefits and limitations of the different methodologies reviewed. Additionally, we provide an overview of the current state of research regarding the chemical and ecotoxicological evaluation of conventional as well as the most widely used advanced wastewater treatment technologies, i.e., ozonation, advanced oxidation processes, chlorination, activated carbon, and membrane filtration. In particular, possible directions for future research activities in this area are provided. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Theoretical and experimental researches on the operating costs of a wastewater treatment plant

    NASA Astrophysics Data System (ADS)

    Panaitescu, M.; Panaitescu, F.-V.; Anton, I.-A.

    2015-11-01

    Purpose of the work: The total cost of a sewage plants is often determined by the present value method. All of the annual operating costs for each process are converted to the value of today's correspondence and added to the costs of investment for each process, which leads to getting the current net value. The operating costs of the sewage plants are subdivided, in general, in the premises of the investment and operating costs. The latter can be stable (normal operation and maintenance, the establishment of power) or variables (chemical and power sludge treatment and disposal, of effluent charges). For the purpose of evaluating the preliminary costs so that an installation can choose between different alternatives in an incipient phase of a project, can be used cost functions. In this paper will be calculated the operational cost to make several scenarios in order to optimize its. Total operational cost (fixed and variable) is dependent global parameters of wastewater treatment plant. Research and methodology: The wastewater treatment plant costs are subdivided in investment and operating costs. We can use different cost functions to estimate fixed and variable operating costs. In this study we have used the statistical formulas for cost functions. The method which was applied to study the impact of the influent characteristics on the costs is economic analysis. Optimization of plant design consist in firstly, to assess the ability of the smallest design to treat the maximum loading rates to a given effluent quality and, secondly, to compare the cost of the two alternatives for average and maximum loading rates. Results: In this paper we obtained the statistical values for the investment cost functions, operational fixed costs and operational variable costs for wastewater treatment plant and its graphical representations. All costs were compared to the net values. Finally we observe that it is more economical to build a larger plant, especially if maximum loading

  8. Identification of transformation products of antiviral drugs formed during biological wastewater treatment and their occurrence in the urban water cycle.

    PubMed

    Funke, Jan; Prasse, Carsten; Ternes, Thomas A

    2016-07-01

    The fate of five antiviral drugs (abacavir, emtricitabine, ganciclovir, lamivudine and zidovudine) was investigated in biological wastewater treatment. Investigations of degradation kinetics were accompanied by the elucidation of formed transformation products (TPs) using activated sludge lab experiments and subsequent LC-HRMS analysis. Degradation rate constants ranged between 0.46 L d(-1) gSS(-1) (zidovudine) and 55.8 L d(-1) gSS(-1) (abacavir). Despite these differences of the degradation kinetics, the same main biotransformation reaction was observed for all five compounds: oxidation of the terminal hydroxyl-moiety to the corresponding carboxylic acid (formation of carboxy-TPs). In addition, the oxidation of thioether moieties to sulfoxides was observed for emtricitabine and lamivudine. Antiviral drugs were detected in influents of municipal wastewater treatment plants (WWTPs) with concentrations up to 980 ng L(-1) (emtricitabine), while in WWTP effluents mainly the TPs were found with concentration levels up to 1320 ng L(-1) (carboxy-abacavir). Except of zidovudine none of the original antiviral drugs were detected in German rivers and streams, whereas the concentrations of the TPs ranged from 16 ng L(-1) for carboxy-lamivudine up to 750 ng L(-1) for carboxy-acyclovir. These concentrations indicate an appreciable portion from WWTP effluents present in rivers and streams, as well as the high environmental persistence of the carboxy-TPs. As a result three of the carboxylic TPs were detected in finished drinking water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Occurrence of non-steroidal anti-inflammatory drugs in Tehran source water, municipal and hospital wastewaters, and their ecotoxicological risk assessment.

    PubMed

    Eslami, Akbar; Amini, Mostafa M; Yazdanbakhsh, Ahmad Reza; Rastkari, Noushin; Mohseni-Bandpei, Anoushiravan; Nasseri, Simin; Piroti, Ehsan; Asadi, Anvar

    2015-12-01

    Pharmaceuticals are becoming widely distributed in waters and wastewaters and pose a serious threat to public health. The present study aimed to analyze non-steroidal anti-inflammatory drugs (NSAIDs) in surface waters, drinking water, and wastewater in Tehran, Iran. Thirty-six samples were collected from surface waters, tap water, and influent and effluent of municipal and hospital wastewater treatment plants (WWTP). A solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry method was used for the determination of pharmaceuticals, namely ibuprofen (IBP), naproxen (NPX), diclofenac (DIC), and indomethacin (IDM). IBP was found in most of the samples and had the highest concentration. The highest concentrations of NSAIDs were found in the municipal WWTP influents and hospital WWTP effluents. In the municipal WWTP influent samples, the concentrations of IBP, NPX, DIC, and IDM were 1.05, 0.43, 0.23, and 0.11 μg/L, respectively. DIC was found only in one river sample. All NSAIDs were detected in tap water samples. However, their concentration was very low and the maximum values for IBP, NPX, DIC, and IDM were 47, 39, 24, and 37 ng/L, respectively, in tap water samples. Results showed that the measured pharmaceuticals were detected in all rivers with low concentrations in nanograms per liter range, except DIC which was found only in one river. Furthermore, this study showed that the aforementioned pharmaceuticals are not completely removed during their passage through WWTPs. A potential environmental risk of selected NSAIDs for the urban wastewater has been discussed. However, given their low measured concentrations, no ecotoxicological effect is suspected to occur.

  10. Reducing the Anaerobic Digestion Model No. 1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater.

    PubMed

    García-Diéguez, Carlos; Bernard, Olivier; Roca, Enrique

    2013-03-01

    The Anaerobic Digestion Model No. 1 (ADM1) is a complex model which is widely accepted as a common platform for anaerobic process modeling and simulation. However, it has a large number of parameters and states that hinder its calibration and use in control applications. A principal component analysis (PCA) technique was extended and applied to simplify the ADM1 using data of an industrial wastewater treatment plant processing winery effluent. The method shows that the main model features could be obtained with a minimum of two reactions. A reduced stoichiometric matrix was identified and the kinetic parameters were estimated on the basis of representative known biochemical kinetics (Monod and Haldane). The obtained reduced model takes into account the measured states in the anaerobic wastewater treatment (AWT) plant and reproduces the dynamics of the process fairly accurately. The reduced model can support on-line control, optimization and supervision strategies for AWT plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Removal of helminth eggs by centralized and decentralized wastewater treatment plants in South Africa and Lesotho: health implications for direct and indirect exposure to the effluents.

    PubMed

    Amoah, Isaac Dennis; Reddy, Poovendhree; Seidu, Razak; Stenström, Thor Axel

    2018-05-01

    Wastewater may contain contaminants harmful to human health; hence, there is the need for treatment before discharge. Centralized wastewater treatment systems are the favored treatment options globally, but these are not necessarily superior in reduction of pathogens as compared to decentralized wastewater treatment systems (collectively called DEWATS). This study was therefore undertaken to assess the soil-transmitted helminth (STH) and Taenia sp. egg reduction efficiency of selected anaerobic baffled reactors and planted gravel filters compared to centralized wastewater treatment plants in South Africa and Lesotho. The risk of ascariasis with exposure to effluents from the centralized wastewater treatment plants was also assessed using the quantitative microbial risk assessment (QMRA) approach. Eggs of Ascaris spp., hookworm, Trichuris spp., Taenia spp., and Toxocara spp. were commonly detected in the untreated wastewater. The DEWATS plants removed between 95 and 100% of the STH and Taenia sp. eggs, with centralized plants removing between 67 and 100%. Helminth egg concentrations in the final effluents from the centralized wastewater treatment plants were consistently higher than those in the WHO recommended guideline (≤ 1 helminth egg/L) for agricultural use resulting in higher risk of ascariasis. Therefore, in conclusion, DEWATS plants may be more efficient in reducing the concentration of helminth eggs in wastewater, resulting in lower risks of STH infections upon exposure.

  12. Effect of foam on temperature prediction and heat recovery potential from biological wastewater treatment.

    PubMed

    Corbala-Robles, L; Volcke, E I P; Samijn, A; Ronsse, F; Pieters, J G

    2016-05-15

    Heat is an important resource in wastewater treatment plants (WWTPs) which can be recovered. A prerequisite to determine the theoretical heat recovery potential is an accurate heat balance model for temperature prediction. The insulating effect of foam present on the basin surface and its influence on temperature prediction were assessed in this study. Experiments were carried out to characterize the foam layer and its insulating properties. A refined dynamic temperature prediction model, taking into account the effect of foam, was set up. Simulation studies for a WWTP treating highly concentrated (manure) wastewater revealed that the foam layer had a significant effect on temperature prediction (3.8 ± 0.7 K over the year) and thus on the theoretical heat recovery potential (30% reduction when foam is not considered). Seasonal effects on the individual heat losses and heat gains were assessed. Additionally, the effects of the critical basin temperature above which heat is recovered, foam thickness, surface evaporation rate reduction and the non-absorbed solar radiation on the theoretical heat recovery potential were evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mathematical modeling of wastewater-derived biodegradable dissolved organic nitrogen.

    PubMed

    Simsek, Halis

    2016-11-01

    Wastewater-derived dissolved organic nitrogen (DON) typically constitutes the majority of total dissolved nitrogen (TDN) discharged to surface waters from advanced wastewater treatment plants (WWTPs). When considering the stringent regulations on nitrogen discharge limits in sensitive receiving waters, DON becomes problematic and needs to be reduced. Biodegradable DON (BDON) is a portion of DON that is biologically degradable by bacteria when the optimum environmental conditions are met. BDON in a two-stage trickling filter WWTP was estimated using artificial intelligence techniques, such as adaptive neuro-fuzzy inference systems, multilayer perceptron, radial basis neural networks (RBNN), and generalized regression neural networks. Nitrite, nitrate, ammonium, TDN, and DON data were used as input neurons. Wastewater samples were collected from four different locations in the plant. Model performances were evaluated using root mean square error, mean absolute error, mean bias error, and coefficient of determination statistics. Modeling results showed that the R(2) values were higher than 0.85 in all four models for all wastewater samples, except only R(2) in the final effluent sample for RBNN modeling was low (0.52). Overall, it was found that all four computing techniques could be employed successfully to predict BDON.

  14. Post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the performance of a two-stage fluidized bed reactor (FBR) system for the post-treatment of secondary wastewater treatment plant effluents (Shahrak Gharb, Tehran, Iran). The proposed treatment scheme was evaluated using pilot-scale reactors (106-L of capacity) filled with PVC as the fluidized bed (first stage) and gravel for the filtration purpose (second stage). Aluminum sulfate (30 mg/L) and chlorine (1 mg/L) were used for the coagulation and disinfection of the effluent, respectively. To monitor the performance of the FBR system, variation of several parameters (biochemical oxygen demand (BOD5), chemical oxygen demand (COD), turbidity, total phosphorous, total coliform and fecal coliform) were monitored in the effluent wastewater samples. The results showed that the proposed system could effectively reduce BOD5 and COD below 1.95 and 4.06 mg/L, respectively. Turbidity of the effluent could be achieved below 0.75 NTU, which was lower than those reported for the disinfection purpose. The total phosphorus was reduced to 0.52 mg/L, which was near the present phosphorous standard for the prevention of eutrophication process. Depending on both microorganism concentration and applied surface loading rates (5–10 m/h), about 35 to 75% and 67 to 97% of coliform were removed without and with the chlorine addition, respectively. Findings of this study clearly confirmed the efficiency of the FBR system for the post-treatment of the secondary wastewater treatment plant effluents without any solid problem during the chlorination. PMID:24499570

  15. Population Dynamics of Bulking and Foaming Bacteria in a Full-scale Wastewater Treatment Plant over Five Years.

    PubMed

    Jiang, Xiao-Tao; Guo, Feng; Zhang, Tong

    2016-04-11

    Bulking and foaming are two notorious problems in activated sludge wastewater treatment plants (WWTPs), which are mainly associated with the excessive growth of bulking and foaming bacteria (BFB). However, studies on affecting factors of BFB in full-scale WWTPs are still limited. In this study, data sets of high-throughput sequencing (HTS) of 16S V3-V4 amplicons of 58 monthly activated sludge samples from a municipal WWTP was re-analyzed to investigate the BFB dynamics and further to study the determinative factors. The population of BFB occupied 0.6~36% (averagely 8.5% ± 7.3%) of the total bacteria and showed seasonal variations with higher abundance in winter-spring than summer-autumn. Pair-wise correlation analysis and canonical correlation analysis (CCA) showed that Gordonia sp. was positively correlated with NO2-N and negatively correlated with NO3-N, and Nostocodia limicola II Tetraspharea sp. was negatively correlated with temperature and positively correlated with NH3-N in activated sludge. Bacteria species correlated with BFB could be clustered into two negatively related modules. Moreover, with intensive time series sampling, the dominant BFB could be accurately modeled with environmental interaction network, i.e. environmental parameters and biotic interactions between BFB and related bacteria, indicating that abiotic and biotic factors were both crucial to the dynamics of BFB.

  16. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent.

    PubMed

    Mason, Sherri A; Garneau, Danielle; Sutton, Rebecca; Chu, Yvonne; Ehmann, Karyn; Barnes, Jason; Fink, Parker; Papazissimos, Daniel; Rogers, Darrin L

    2016-11-01

    Municipal wastewater effluent has been proposed as one pathway for microplastics to enter the aquatic environment. Here we present a broad study of municipal wastewater treatment plant effluent as a pathway for microplastic pollution to enter receiving waters. A total of 90 samples were analyzed from 17 different facilities across the United States. Averaging all facilities and sampling dates, 0.05 ± 0.024 microparticles were found per liter of effluent. Though a small value on a per liter basis, even minor municipal wastewater treatment facilities process millions of liters of wastewater each day, yielding daily discharges that ranged from ∼50,000 up to nearly 15 million particles. Averaging across the 17 facilities tested, our results indicate that wastewater treatment facilities are releasing over 4 million microparticles per facility per day. Fibers and fragments were found to be the most common type of particle within the effluent; however, some fibers may be derived from non-plastic sources. Considerable inter- and intra-facility variation in discharge concentrations, as well as the relative proportions of particle types, was observed. Statistical analysis suggested facilities serving larger populations discharged more particles. Results did not suggest tertiary filtration treatments were an effective means of reducing discharge. Assuming that fragments and pellets found in the effluent arise from the 'microbeads' found in many cosmetics and personal care products, it is estimated that between 3 and 23 billion (with an average of 13 billion) of these microplastic particles are being released into US waterways every day via municipal wastewater. This estimate can be used to evaluate the contribution of microbeads to microplastic pollution relative to other sources (e.g., plastic litter and debris) and pathways (e.g., stormwater) of discharge. Published by Elsevier Ltd.

  17. Full-scale treatment of wastewater from a biodiesel fuel production plant with alkali-catalyzed transesterification.

    PubMed

    De Gisi, Sabino; Galasso, Maurizio; De Feo, Giovanni

    2013-01-01

    The treatment of wastewater derived from a biodiesel fuel (BDF) production plant with alkali-catalyzed transesterification was studied at full scale. The investigated wastewater treatment plant consisted of the following phases: primary adsorption/coagulation/flocculation/sedimentation processes, biological treatment with the combination of trickling filter and activated sludge systems, secondary flocculation/sedimentation processes, and reverse osmosis (RO) system with spiral membranes. All the processes were developed in a continuous mode, while the RO experiment was performed with batch tests. Two types of BDF wastewater were considered: the first wastewater (WW1) had an average total chemical oxygen demand (COD), pH and feed flow rate of 10,850.8 mg/L, 5.9 and 2946.7 L/h, respectively, while the second wastewater (WW2) had an average total COD, pH and feed flow rate of 43,898.9 mg/L, 3.3 and 2884.6 L/h, respectively. The obtained results from the continuous tests showed a COD removal percentage of more than 90% for the two types of wastewater considered. The removal of biorefractory COD and salts was obtained with a membrane technology in order to reuse the RO permeate in the factory production cycle. The rejections percentage of soluble COD, chlorides and sulphates were 92.8%, 95.0% and 99.5%, respectively. Because the spiral membranes required a high number of washing cycles, the use of plane membranes was preferable. Finally, the RO reject material should be evaporated using the large amount of inexpensive heat present in this type of industry.

  18. Agricultural use of municipal wastewater treatment plant ...

    EPA Pesticide Factsheets

    Agricultural use of municipal wastewater treatment plant sewage sludge as a source of per- and polyfluoroalkyl substance (PFAS) contamination in the environment The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processes that link source emissions, environmental concentrations, human exposures, and target-tissue dose. The impact of these tools is improved regulatory programs and policies for EPA.

  19. Inland Treatment of the Brine Generated from Reverse Osmosis Advanced Membrane Wastewater Treatment Plant Using Epuvalisation System

    PubMed Central

    Qurie, Mohannad; Abbadi, Jehad; Scrano, Laura; Mecca, Gennaro; Bufo, Sabino A.; Khamis, Mustafa; Karaman, Rafik

    2013-01-01

    The reverse osmosis (RO) brine generated from the Al-Quds University wastewater treatment plant was treated using an epuvalisation system. The advanced integrated wastewater treatment plant included an activated sludge unit, two consecutive ultrafiltration (UF) membrane filters (20 kD and 100 kD cutoffs) followed by an activated carbon filter and a reverse osmosis membrane. The epuvalisation system consisted of salt tolerant plants grown in hydroponic channels under continuous water flowing in a closed loop system, and placed in a greenhouse at Al-Quds University. Sweet basil (Ocimum basilicum) plants were selected, and underwent two consecutive hydroponic flowing stages using different brine-concentrations: an adaptation stage, in which a 1:1 mixture of brine and fresh water was used; followed by a functioning stage, with 100% brine. A control treatment using fresh water was included as well. The experiment started in April and ended in June (2012). At the end of the experiment, analysis of the effluent brine showed a remarkable decrease of electroconductivity (EC), PO43−, chemical oxygen demand (COD) and K+ with a reduction of 60%, 74%, 70%, and 60%, respectively, as compared to the influent. The effluent of the control treatment showed 50%, 63%, 46%, and 90% reduction for the same parameters as compared to the influent. Plant growth parameters (plant height, fresh and dry weight) showed no significant difference between fresh water and brine treatments. Obtained results suggest that the epuvalisation system is a promising technique for inland brine treatment with added benefits. The increasing of channel number or closed loop time is estimated for enhancing the treatment process and increasing the nutrient uptake. Nevertheless, the epuvalisation technique is considered to be simple, efficient and low cost for inland RO brine treatment. PMID:23823802

  20. Unexpected spatial impact of treatment plant discharges induced by episodic hydrodynamic events: Modelling Lagrangian transport of fine particles by Northern Current intrusions in the bays of Marseille (France).

    PubMed

    Millet, Bertrand; Pinazo, Christel; Banaru, Daniela; Pagès, Rémi; Guiart, Pierre; Pairaud, Ivane

    2018-01-01

    Our study highlights the Lagrangian transport of solid particles discharged at the Marseille Wastewater Treatment Plant (WWTP), located at Cortiou on the southern coastline. We focused on episodic situations characterized by a coastal circulation pattern induced by intrusion events of the Northern Current (NC) on the continental shelf, associated with SE wind regimes. We computed, using MARS3D-RHOMA and ICHTHYOP models, the particle trajectories from a patch of 5.104 passive and conservative fine particles released at the WWTP outlet, during 2 chosen representative periods of intrusion of the NC in June 2008 and in October 2011, associated with S-SE and E-SE winds, respectively. Unexpected results highlighted that the amount of particles reaching the vulnerable shorelines of both northern and southern bays accounted for 21.2% and 46.3% of the WWTP initial patch, in June 2008 and October 2011, respectively. Finally, a conceptual diagram is proposed to highlight the mechanisms of dispersion within the bays of Marseille of the fine particles released at the WWTP outlet that have long been underestimated.

  1. Unexpected spatial impact of treatment plant discharges induced by episodic hydrodynamic events: Modelling Lagrangian transport of fine particles by Northern Current intrusions in the bays of Marseille (France)

    PubMed Central

    Pinazo, Christel; Banaru, Daniela; Pagès, Rémi; Guiart, Pierre; Pairaud, Ivane

    2018-01-01

    Our study highlights the Lagrangian transport of solid particles discharged at the Marseille Wastewater Treatment Plant (WWTP), located at Cortiou on the southern coastline. We focused on episodic situations characterized by a coastal circulation pattern induced by intrusion events of the Northern Current (NC) on the continental shelf, associated with SE wind regimes. We computed, using MARS3D-RHOMA and ICHTHYOP models, the particle trajectories from a patch of 5.104 passive and conservative fine particles released at the WWTP outlet, during 2 chosen representative periods of intrusion of the NC in June 2008 and in October 2011, associated with S-SE and E-SE winds, respectively. Unexpected results highlighted that the amount of particles reaching the vulnerable shorelines of both northern and southern bays accounted for 21.2% and 46.3% of the WWTP initial patch, in June 2008 and October 2011, respectively. Finally, a conceptual diagram is proposed to highlight the mechanisms of dispersion within the bays of Marseille of the fine particles released at the WWTP outlet that have long been underestimated. PMID:29694362

  2. Operation of Wastewater Treatment Plants: A Field Study Training Program. Volume I. Second Edition.

    ERIC Educational Resources Information Center

    California State Univ., Sacramento. Dept. of Civil Engineering.

    This manual was prepared by experienced wastewater collection system workers to provide a home study course to develop new qualified workers and expand the abilities of existing workers. This volume is directed primarily towards entry-level operators and the operators of ponds, package plants, or small treatment plants. Ten chapters examine the…

  3. Nutrient Removal in Wastewater Treatment

    ERIC Educational Resources Information Center

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  4. Solar treatment of cork boiling and bleaching wastewaters in a pilot plant.

    PubMed

    Vilar, Vítor J P; Maldonado, Manuel I; Oller, I; Malato, Sixto; Boaventura, Rui A R

    2009-09-01

    This paper reports on cork boiling and bleaching wastewaters treatment by solar photocatalytic processes, TiO(2)/UV and Fe(2+)/H(2)O(2)/UV (TiO(2)-only for bleaching wastewater), in a pilot plant with compound parabolic collectors. The photo-Fenton reaction (k=0.12L/kJ(UV), r(0)=59.4 mg/kJ(UV)) is much more efficient that TiO(2) photocatalysis and TiO(2)+S(2)O(8)(2-) (k=0.0024 L/kJ(UV), r(0)=1.36 mg/kJ(UV)), leading to 94% mineralization of the bleaching wastewater after 31.5 kJ(UV)/L, consuming 77.1mM of H(2)O(2) (3.0 mmol/kJ(UV)) and using 20 mg/L of iron. For the cork boiling wastewater, after a slow initial reaction rate, the DOC degradation curve shows a first-order kinetics behaviour (k=0.015 L/kJ(UV), r(0)=20.8 mg/kJ(UV)) until 173 kJ(UV)/L ( approximately 300 mgC/L). According to the average oxidation state (AOS), toxicity profiles, respirometry and kinetic results obtained in two solar CPCs plants, the optimal energy dose estimated for phototreatment to reach a biodegradable effluent is 15 kJ(UV)/L and 114 kJ(UV)/L, consuming 33 mM and 151 mM of H(2)OT:/PGN/ELSEVIER/WR/web/00007490/(2), achieving almost 49% and 48% mineralization of the wastewaters, respectively for the cork bleaching and boiling wastewaters.

  5. Effectivity of advanced wastewater treatment: reduction of in vitro endocrine activity and mutagenicity but not of in vivo reproductive toxicity.

    PubMed

    Giebner, Sabrina; Ostermann, Sina; Straskraba, Susanne; Oetken, Matthias; Oehlmann, Jörg; Wagner, Martin

    2018-02-01

    Conventional wastewater treatment plants (WWTPs) have a limited capacity to eliminate micropollutants. One option to improve this is tertiary treatment. Accordingly, the WWTP Eriskirch at the German river Schussen has been upgraded with different combinations of ozonation, sand, and granulated activated carbon filtration. In this study, the removal of endocrine and genotoxic effects in vitro and reproductive toxicity in vivo was assessed in a 2-year long-term monitoring. All experiments were performed with aqueous and solid-phase extracted water samples. Untreated wastewater affected several endocrine endpoints in reporter gene assays. The conventional treatment removed the estrogenic and androgenic activity by 77 and 95 %, respectively. Nevertheless, high anti-estrogenic activities and reproductive toxicity persisted. All advanced treatment technologies further reduced the estrogenic activities by additional 69-86 % compared to conventional treatment, resulting in a complete removal of up to 97 %. In the Ames assay, we detected an ozone-induced mutagenicity, which was removed by subsequent filtration. This demonstrates that a post treatment to ozonation is needed to minimize toxic oxidative transformation products. In the reproduction test with the mudsnail Potamopyrgus antipodarum, a decreased number of embryos was observed for all wastewater samples. This indicates that reproductive toxicants were eliminated by neither the conventional nor the advanced treatment. Furthermore, aqueous samples showed higher anti-estrogenic and reproductive toxicity than extracted samples, indicating that the causative compounds are not extractable or were lost during extraction. This underlines the importance of the adequate handling of wastewater samples. Taken together, this study demonstrates that combinations of multiple advanced technologies reduce endocrine effects in vitro. However, they did not remove in vitro anti-estrogenicity and in vivo reproductive toxicity. This

  6. Occurrence and partitioning of antibiotic compounds found in the water column and bottom sediments from a stream receiving two wastewater treatment plant effluents in northern New Jersey, 2008.

    PubMed

    Gibs, Jacob; Heckathorn, Heather A; Meyer, Michael T; Klapinski, Frank R; Alebus, Marzooq; Lippincott, Robert L

    2013-08-01

    An urban watershed in northern New Jersey was studied to determine the presence of four classes of antibiotic compounds (macrolides, fluoroquinolones, sulfonamides, and tetracyclines) and six degradates in the water column and bottom sediments upstream and downstream from the discharges of two wastewater treatment plants (WWTPs) and a drinking-water intake (DWI). Many antibiotic compounds in the four classes not removed by conventional WWTPs enter receiving waters and partition to stream sediments. Samples were collected at nine sampling locations on 2 days in September 2008. Two of the nine sampling locations were background sites upstream from two WWTP discharges on Hohokus Brook. Another background site was located upstream from a DWI on the Saddle River above the confluence with Hohokus Brook. Because there is a weir downstream of the confluence of Hohokus Brook and Saddle River, the DWI receives water from Hohokus Brook at low stream flows. Eight antibiotic compounds (azithromycin (maximum concentration 0.24 μg/L), ciprofloxacin (0.08 μg/L), enrofloxacin (0.015 μg/L), erythromycin (0.024 μg/L), ofloxacin (0.92 μg/L), sulfamethazine (0.018 μg/L), sulfamethoxazole (0.25 μg/L), and trimethoprim (0.14 μg/L)) and a degradate (erythromycin-H2O (0.84 μg/L)) were detected in the water samples from the sites downstream from the WWTP discharges. The concentrations of six of the eight detected compounds and the detected degradate compound decreased with increasing distance downstream from the WWTP discharges. Azithromycin, ciprofloxacin, ofloxacin, and trimethoprim were detected in stream-bottom sediments. The concentrations of three of the four compounds detected in sediments were highest at a sampling site located downstream from the WWTP discharges. Trimethoprim was detected in the sediments from a background site. Pseudo-partition coefficients normalized for streambed sediment organic carbon concentration were calculated for azithromycin, ciprofloxacin, and

  7. Characterization of CTX-M enzymes, quinolone resistance determinants, and antimicrobial residues from hospital sewage, wastewater treatment plant, and river water.

    PubMed

    Conte, Danieli; Palmeiro, Jussara Kasuko; da Silva Nogueira, Keite; de Lima, Thiago Marenda Rosa; Cardoso, Marco André; Pontarolo, Roberto; Degaut Pontes, Flávia Lada; Dalla-Costa, Libera Maria

    2017-02-01

    Multidrug-resistant (MDR) bacteria are widespread in hospitals and have been increasingly isolated from aquatic environments. The aim of the present study was to characterize extended-spectrum β-lactamase (ESBL) and quinolone-resistant Enterobacteriaceae from a hospital effluent, sanitary effluent, inflow sewage, aeration tank, and outflow sewage within a wastewater treatment plant (WWTP), as well as river water upstream and downstream (URW and DRW, respectively), of the point where the WWTP treated effluent was discharged. β-lactamase (bla) genes, plasmid-mediated quinolone resistance (PMQR), and quinolone resistance-determining regions (QRDRs) were assessed by amplification and sequencing in 55 ESBL-positive and/or quinolone-resistant isolates. Ciprofloxacin residue was evaluated by high performance liquid chromatography. ESBL-producing isolates were identified in both raw (n=29) and treated (n=26) water; they included Escherichia coli (32), Klebsiella pneumoniae (22) and Klebsiella oxytoca (1). Resistance to both cephalosporins and quinolone was observed in 34.4% of E. coli and 27.3% of K. pneumoniae. Resistance to carbapenems was found in 5.4% of K. pneumoniae and in K. oxytoca. Results indicate the presence of bla CTX-M (51/55, 92.7%) and bla SHV (8/55, 14.5%) ESBLs, and bla GES (2/55, 3.6%) carbapenemase-encoding resistance determinants. Genes conferring quinolone resistance were detected at all sites, except in the inflow sewage and aeration tanks. Quinolone resistance was primarily attributed to amino acid substitutions in the QRDR of GyrA (47%) or to the presence of PMQR (aac-(6')-Ib-cr, oqxAB, qnrS, and/or qnrB; 52.9%) determinants. Ciprofloxacin residue was absent only from URW. Our results have shown strains carrying ESBL genes, PMQR determinants, and mutations in the gyrA QRDR genes mainly in hospital effluent, URW, and DRW samples. Antimicrobial use, and the inefficient removal of MDR bacteria and antibiotic residue during sewage treatment, may

  8. Effect of process parameters on greenhouse gas generation by wastewater treatment plants.

    PubMed

    Yerushalmi, L; Shahabadi, M Bani; Haghighat, F

    2011-05-01

    The effect of key process parameters on greenhouse gas (GHG) emission by wastewater treatment plants was evaluated, and the governing parameters that exhibited major effects on the overall on- and off-site GHG emissions were identified. This evaluation used aerobic, anaerobic, and hybrid anaerobic/aerobic treatment systems with food processing industry wastewater. The operating temperature of anaerobic sludge digester was identified to have the highest effect on GHG generation in the aerobic treatment system. The total GHG emissions of 2694 kg CO2e/d were increased by 72.5% with the increase of anaerobic sludge digester temperature from 20 to 40 degrees C. The operating temperature of the anaerobic reactor was the dominant controlling parameter in the anaerobic and hybrid treatment systems. Raising the anaerobic reactor's temperature from 25 to 40 degrees C increased the total GHG emissions from 5822 and 6617 kg CO2e/d by 105.6 and 96.5% in the anaerobic and hybrid treatment systems, respectively.

  9. Biological treatment of TMAH (tetra-methyl ammonium hydroxide) in a full-scale TFT-LCD wastewater treatment plant.

    PubMed

    Hu, Tai-Ho; Whang, Liang-Ming; Liu, Pao-Wen Grace; Hung, Yu-Ching; Chen, Hung-Wei; Lin, Li-Bin; Chen, Chia-Fu; Chen, Sheng-Kun; Hsu, Shu Fu; Shen, Wason; Fu, Ryan; Hsu, Romel

    2012-06-01

    This study evaluated biological treatment of TMAH in a full-scale methanogenic up-flow anaerobic sludge blanket (UASB) followed by an aerobic bioreactor. In general, the UASB was able to perform a satisfactory TMAH degradation efficiency, but the effluent COD of the aerobic bioreactor seemed to increase with an increased TMAH in the influent wastewater. The batch test results confirmed that the UASB sludge under methanogenic conditions would be favored over the aerobic ones for TMAH treatment due to its superb ability of handling high strength of TMAH-containing wastewaters. Based on batch experiments, inhibitory chemicals present in TFT-LCD wastewater like surfactants and sulfate should be avoided to secure a stable methanogenic TMAH degradation. Finally, molecular monitoring of Methanomethylovorans hollandica and Methanosarcina mazei in the full-scale plant, the dominant methanogens in the UASB responsible for TMAH degradation, may be beneficial for a stable TMAH treatment performance. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Biotransformation of caffeine, cotinine, and nicotine in stream sediments: Implications for use as wastewater indicators

    USGS Publications Warehouse

    Bradley, P.M.; Barber, L.B.; Kolpin, D.W.; McMahon, P.B.; Chapelle, F.H.

    2007-01-01

    Microbially catalyzed cleavage of the imadazole ring of caffeine was observed in stream sediments collected upstream and downstream of municipal wastewater treatment plants (WWTP) in three geographically separate stream systems. Microbial demethylation of the N-methyl component of cotinine and its metabolic precursor, nicotine, also was observed in these sediments. These findings indicate that stream sediment microorganisms are able to substantially alter the chemical structure and thus the analytical signatures of these candidate waste indicator compounds. The potential for in situ biotransformation must be considered if these compounds are employed as markers to identify the sources and track the fate of wastewater compounds in surface-water systems.

  11. Biodegradation of the artificial sweetener acesulfame in biological wastewater treatment and sandfilters.

    PubMed

    Castronovo, Sandro; Wick, Arne; Scheurer, Marco; Nödler, Karsten; Schulz, Manoj; Ternes, Thomas A

    2017-03-01

    A considerable removal of the artificial sweetener acesulfame (ACE) was observed during activated sludge processes at 13 wastewater treatment plants (WWTPs) as well as in a full-scale sand filter of a water works. A long-term sampling campaign over a period of almost two years revealed that ACE removal in WWTPs can be highly variable over time. Nitrifying/denitrifying sequencing batch reactors (SBR) as well as aerobic batch experiments with activated sludge and filter sand from a water works confirmed that both activated sludge as well as filter sand can efficiently remove ACE and that the removal can be attributed to biologically mediated degradation processes. The lab results strongly indicated that varying ACE removal in WWTPs is not associated with nitrification processes. Neither an enhancement of the nitrification rate nor the availability of ammonium or the inhibition of ammonium monooxygenase by N-allylthiourea (ATU) affected the degradation. Moreover, ACE was found to be also degradable by activated sludge under denitrifying conditions, while being persistent in the absence of both dissolved oxygen and nitrate. Using ion chromatography coupled with high resolution mass spectrometry, sulfamic acid (SA) was identified as the predominant transformation product (TP). Quantitative analysis of ACE and SA revealed a closed mass balance during the entire test period and confirmed that ACE was quantitatively transformed to SA. Measurements of dissolved organic carbon (DOC) revealed an almost complete removal of the carbon originating from ACE, thereby further confirming that SA is the only relevant final TP in the assumed degradation pathway of ACE. A first analysis of SA in three municipal WWTP revealed similar concentrations in influents and effluents with maximum concentrations of up to 2.3 mg/L. The high concentrations of SA in wastewater are in accordance with the extensive use of SA in acid cleaners, while the degradation of ACE in WWTPs adds only a very

  12. Protecting Lake Ontario - Treating Wastewater from the Remediated Low-Level Radioactive Waste Management Facility - 13227

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freihammer, Till; Chaput, Barb; Vandergaast, Gary

    2013-07-01

    The Port Granby Project is part of the larger Port Hope Area Initiative, a community-based program for the development and implementation of a safe, local, long-term management solution for historic low level radioactive waste (LLRW) and marginally contaminated soils (MCS). The Port Granby Project involves the relocation and remediation of up to 0.45 million cubic metres of such waste from the current Port Granby Waste Management Facility located in the Municipality of Clarington, Ontario, adjacent to the shoreline of Lake Ontario. The waste material will be transferred to a new suitably engineered Long-Term Waste Management Facility (LTWMF) to be locatedmore » inland approximately 700 m from the existing site. The development of the LTWMF will include construction and commissioning of a new Wastewater Treatment Plant (WWTP) designed to treat wastewater consisting of contaminated surface run off and leachate generated during the site remediation process at the Port Granby Waste Management Facility as well as long-term leachate generated at the new LTWMF. Numerous factors will influence the variable wastewater flow rates and influent loads to the new WWTP during remediation. The treatment processes will be comprised of equalization to minimize impacts from hydraulic peaks, fine screening, membrane bioreactor technology, and reverse osmosis. The residuals treatment will comprise of lime precipitation, thickening, dewatering, evaporation and drying. The distribution of the concentration of uranium and radium - 226 over the various process streams in the WWTP was estimated. This information was used to assess potential worker exposure to radioactivity in the various process areas. A mass balance approach was used to assess the distribution of uranium and radium - 226, by applying individual contaminant removal rates for each process element of the WTP, based on pilot scale results and experience-based assumptions. The mass balance calculations were repeated for

  13. Distribution of polycyclic aromatic hydrocarbons in coke plant wastewater.

    PubMed

    Burmistrz, Piotr; Burmistrz, Michał

    2013-01-01

    The subject of examinations presented in this paper is the distribution of polycyclic aromatic hydrocarbons (PAHs) between solid and liquid phases in samples of raw wastewater and wastewater after treatment. The content of 16 PAHs according to the US EPA was determined in the samples of coke plant wastewater from the Zdzieszowice Coke Plant, Poland. The samples contained raw wastewater, wastewater after physico-chemical treatment as well as after biological treatment. The ΣPHA16 content varied between 255.050 μg L(-1) and 311.907 μg L(-1) in raw wastewater and between 0.940 and 4.465 μg L(-1) in wastewater after full treatment. Investigation of the distribution of PAHs showed that 71-84% of these compounds is adsorbed on the surface of suspended solids and 16-29% is dissolved in water. Distribution of individual PAHs and ΣPHA16 between solid phase and liquid phase was described with the use of statistically significant, linear equations. The calculated values of the partitioning coefficient Kp changed from 0.99 to 7.90 for naphthalene in samples containing mineral-organic suspension and acenaphthylene in samples with biological activated sludge, respectively.

  14. Evaluation of new alternatives in wastewater treatment plants based on dynamic modelling and life cycle assessment (DM-LCA).

    PubMed

    Bisinella de Faria, A B; Spérandio, M; Ahmadi, A; Tiruta-Barna, L

    2015-11-01

    With a view to quantifying the energy and environmental advantages of Urine Source-Separation (USS) combined with different treatment processes, five wastewater treatment plant (WWTP) scenarios were compared to a reference scenario using Dynamic Modelling (DM) and Life Cycle Assessment (LCA), and an integrated DM-LCA framework was thus developed. Dynamic simulations were carried out in BioWin(®) in order to obtain a realistic evaluation of the dynamic behaviour and performance of plants under perturbation. LCA calculations were performed within Umberto(®) using the Ecoinvent database. A Python™ interface was used to integrate and convert simulation data and to introduce them into Umberto(®) to achieve a complete LCA evaluation comprising foreground and background processes. Comparisons between steady-state and dynamic simulations revealed the importance of considering dynamic aspects such as nutrient and flow peaks. The results of the evaluation highlighted the potential of the USS scenario for nutrient recovery whereas the Enhanced Primary Clarification (EPC) scenario gave increased biogas production and also notably decreased aeration consumption, leading to a positive energy balance. Both USS and EPC scenarios also showed increased stability of plant operation, with smaller daily averages of total nitrogen and phosphorus. In this context, USS and EPC results demonstrated that the coupled USS + EPC scenario and its combinations with agricultural spreading of N-rich effluent and nitritation/anaerobic deammonification could present an energy-positive balance with respectively 27% and 33% lower energy requirements and an increase in biogas production of 23%, compared to the reference scenario. The coupled scenarios also presented lesser environmental impacts (reduction of 31% and 39% in total endpoint impacts) along with effluent quality well within the specified limits. The marked environmental performance (reduction of global warming) when nitrogen is used

  15. Reduction in excess sludge production in a dairy wastewater treatment plant via nozzle-cavitation treatment: case study of an on-farm wastewater treatment plant.

    PubMed

    Hirooka, Kayako; Asano, Ryoki; Yokoyama, Atsushi; Okazaki, Masao; Sakamoto, Akira; Nakai, Yutaka

    2009-06-01

    Nozzle-cavitation treatment was used to reduce excess sludge production in a dairy wastewater treatment plant. During the 450-d pilot-scale membrane bioreactor (MBR) operation, when 300 l of the sludge mixed liquor (1/10 of the MBR volume) was disintegrated per day by the nozzle-cavitation treatment with the addition of sodium hydrate (final concentration: 0.01% W/W) and returned to the MBR, the amount of excess sludge produced was reduced by 80% compared with that when sludge was not disintegrated. On the basis of the efficiency of CODCr removal and the ammonia oxidation reaction, it was concluded that the nozzle-cavitation treatment did not have a negative impact on the performance of the MBR. The estimation of the inorganic material balance showed that when the mass of the excess sludge was decreased, the inorganic content of the activated sludge increased and some part of the inorganic material was simultaneously solubilized in the effluent.

  16. Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant.

    PubMed

    Kumar, Vinod; Chopra, A K

    2018-01-01

    Phytoremediation experiments were carried out to assess the phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater collected from the activated sludge process- (ASP) based municipal wastewater treatment plant. The results revealed that T. natans significantly (P ≤ .05/P ≤ .01/P ≤ .001) reduced the contents of total dissolved solids (TDS), electrical conductivity (EC), biochemical oxygen demand (BOD 5 ), chemical oxygen demand, total Kjeldahl nitrogen, phosphate ([Formula: see text]), sodium (Na + ), potassium (K + ), calcium (Ca 2+ ), magnesium (Mg 2+ ), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), standard plate count, and most probable number of the municipal wastewater after phytoremediation experiments. The maximum removal of these parameters was obtained at 60 days of the phytoremediation experiments, but the removal rate of these parameters was gradually increased from 15 to 45 days and it was slightly decreased at 60 days. Most contents of Cd, Cu, Fe, Mn and Zn were translocated in the leaves of T. natans, whereas most contents of Cr and Pb were accumulated in the root of T. natans after phytoremediation experiments. The contents of different biochemical components were recorded in the order of total sugar > crude protein > total ash > crude fiber > total fat in T. natans after phytoremediation of municipal wastewater. Therefore, T. natans was found to be effective for the removal of different parameters of municipal wastewater and can be used effectively to reduce the pollution load of municipal wastewater drained from the ASP-based treatment plants.

  17. Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge.

    PubMed

    Jasinska, Edyta J; Goss, Greg G; Gillis, Patricia L; Van Der Kraak, Glen J; Matsumoto, Jacqueline; de Souza Machado, Anderson A; Giacomin, Marina; Moon, Thomas W; Massarsky, Andrey; Gagné, Francois; Servos, Mark R; Wilson, Joanna; Sultana, Tamanna; Metcalfe, Chris D

    2015-10-15

    Contaminants of emerging concern (CECs), including pharmaceuticals, personal care products and estrogens, are detected in wastewater treatment plant (WWTP) discharges. However, analytical monitoring of wastewater and surface water does not indicate whether CECs are affecting the organisms downstream. In this study, fathead minnows (Pimephales promelas) and freshwater mussels Pyganodon grandis Say, 1829 (synonym: Anodonta grandis Say, 1829) were caged for 4 weeks in the North Saskatchewan River, upstream and downstream of the discharge from the WWTP that serves the Edmonton, AB, Canada. Passive samplers deployed indicated that concentrations of pharmaceuticals, personal care products, an estrogen (estrone) and an androgen (androstenedione) were elevated at sites downstream of the WWTP discharge. Several biomarkers of exposure were significantly altered in the tissues of caged fathead minnows and freshwater mussels relative to the upstream reference sites. Biomarkers altered in fish included induction of CYP3A metabolism, an increase in vitellogenin (Vtg) gene expression in male minnows, elevated ratios of oxidized to total glutathione (i.e. GSSG/TGSH), and an increase in the activity of antioxidant enzymes (i.e. glutathione reductase, glutathione-S-transferase). In mussels, there were no significant changes in biomarkers of oxidative stress and the levels of Vtg-like proteins were reduced, not elevated, indicating a generalized stress response. Immune function was altered in mussels, as indicated by elevated lysosomal activity per hemocyte in P. grandis caged closest to the wastewater discharge. This immune response may be due to exposure to bacterial pathogens in the wastewater. Multivariate analysis indicated a response to the CECs Carbamazepine (CBZ) and Trimethoprim (TPM). Overall, these data indicate that there is a 1 km zone of impact for aquatic organisms downstream of WWTP discharge. However, multiple stressors in municipal wastewater make measurement and

  18. Analysis of Wastewater Treatment Efficiency in a Soft Drinks Industry

    NASA Astrophysics Data System (ADS)

    Boguniewicz-Zabłocka, Joanna; Capodaglio, Andrea G.; Vogel, Daniel

    2017-10-01

    During manufacturing processes, most industrial plants generate wastewater which could become harmful to the environment. Discharge of untreated or improperly treated industrial wastewaters into surface water could, in fact, lead to deterioration of the receiving water body's quality. This paper concerns wastewater treatment solutions used in the soft drink production industry: wastewater treatment plant effectiveness analysis was determined in terms of basic pollution indicators, such as BOD, COD, TSS and variable pH. Initially, the performance of mechanic-biological systems for the treatment of wastewater from a specific beverages production process was studied in different periods, due to wastewater flow fluctuation. The study then showed the positive effects on treatment of wastewater augmentation by methanol, nitrogen and phosphorus salts dosed into it during the treatment process. Results confirm that after implemented modification (methanol, nitrogen and phosphorus additions) pollution removal occurs mostly with higher efficiency.

  19. Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale.

    PubMed

    Foteinis, Spyros; Monteagudo, Jose Maria; Durán, Antonio; Chatzisymeon, Efthalia

    2018-01-15

    The environmental sustainability of a semi-industrial solar photo-Fenton reactor, treating real effluents emanating from a pharmaceutical laboratory, is assessed herein. The life cycle assessment/analysis (LCA) methodology was employed and real life cycle inventory (LCI) data was collected from a ferrioxalate-assisted homogeneous solar photo-Fenton wastewater treatment plant (WWTP), at Ciudad Real, Spain. Electricity was provided by photovoltaic (PV) panels in tandem with a battery bank, making the plant autonomous from the local grid. The effective treatment of 1m 3 of secondary-treated pharmaceutical wastewater, containing antipyrine, was used as a functional unit. The main environmental hotspot was identified to be the chemical reagents used to enhance treatment efficiency, mainly hydrogen peroxide (H 2 O 2 ) and to a smaller degree oxalic acid. On the other hand, land use, PV panels, battery units, compound parabolic collectors (CPC), tanks, pipes and pumps, as materials, had a low contribution, ranging from as little as 0.06% up to about 2% on the total CO 2eq emissions. Overall, the solar photo-Fenton process was found to be a sustainable technology for treating wastewater containing micropollutants at semi-industrial level, since the total environmental footprint was found to be 2.71kgCO 2 m -3 or 272mPtm -3 , using IPCC 2013 and ReCiPe impact assessment methods, respectively. A sensitivity analysis revealed that if the excess of solar power is fed back into the grid then the total environmental footprint is reduced. Depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael G. Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Areamore » Sewage Treatment plant.« less