Sample records for wasting disease prion

  1. Chronic wasting disease prion infection of differentiated neurospheres.

    PubMed

    Iwamaru, Yoshifumi; Mathiason, Candace K; Telling, Glenn C; Hoover, Edward A

    2017-07-04

    A possible strategy to develop more diverse cell culture systems permissive to infection with naturally occurring prions is to exploit culture of neurospheres from transgenic mice expressing the normal prion protein (PrP) of the native host species. Accordingly, we developed differentiated neurosphere cultures from the cervid PrP-expressing mice to investigate whether this in vitro system would support replication of non-adapted cervid-origin chronic wasting disease (CWD) prions. Here we report the successful amplification of disease-associated PrP in differentiated neurosphere cultures within 3 weeks after exposure to CWD prions from both white-tailed deer or elk. This neurosphere culture system provides a new in vitro tool that can be used to assess non-adapted CWD prion propagation and transmission.

  2. Chronic wasting disease prions are not transmissible to transgenic mice overexpressing human prion protein.

    PubMed

    Sandberg, Malin K; Al-Doujaily, Huda; Sigurdson, Christina J; Glatzel, Markus; O'Malley, Catherine; Powell, Caroline; Asante, Emmanuel A; Linehan, Jacqueline M; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2010-10-01

    Chronic wasting disease (CWD) is a prion disease that affects free-ranging and captive cervids, including mule deer, white-tailed deer, Rocky Mountain elk and moose. CWD-infected cervids have been reported in 14 USA states, two Canadian provinces and in South Korea. The possibility of a zoonotic transmission of CWD prions via diet is of particular concern in North America where hunting of cervids is a popular sport. To investigate the potential public health risks posed by CWD prions, we have investigated whether intracerebral inoculation of brain and spinal cord from CWD-infected mule deer transmits prion infection to transgenic mice overexpressing human prion protein with methionine or valine at polymorphic residue 129. These transgenic mice have been utilized in extensive transmission studies of human and animal prion disease and are susceptible to BSE and vCJD prions, allowing comparison with CWD. Here, we show that these mice proved entirely resistant to infection with mule deer CWD prions arguing that the transmission barrier associated with this prion strain/host combination is greater than that observed with classical BSE prions. However, it is possible that CWD may be caused by multiple prion strains. Further studies will be required to evaluate the transmission properties of distinct cervid prion strains as they are characterized.

  3. Chronic wasting disease: Bambi vs. the prion

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) was first described in Colorado in 1967 and subsequently recognized as a prion disease in 1980. CWD has a long and asymptomatic incubation period (> 1 year) followed by a short disease course that ends in the death of the animal. There is no known treatment or cure for ...

  4. Chronic Wasting Disease Prions in Elk Antler Velvet

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy or prion disease of captive and free ranging white tailed deer, mule deer, Rocky Mountain elk and moose in the some parts of the United States and Canada. The presence of the disease has sharply curtailed movement of captive...

  5. Mineral licks as environmental reservoirs of chronic wasting disease prions

    PubMed Central

    Plummer, Ian H.; Johnson, Chad J.; Chesney, Alexandra R.; Pedersen, Joel A.

    2018-01-01

    Chronic wasting disease (CWD) is a fatal neurodegenerative disease of deer, elk, moose, and reindeer (cervids) caused by misfolded prion proteins. The disease has been reported across North America and recently discovered in northern Europe. Transmission of CWD in wild cervid populations can occur through environmental routes, but limited ability to detect prions in environmental samples has prevented the identification of potential transmission “hot spots”. We establish widespread CWD prion contamination of mineral licks used by free-ranging cervids in an enzootic area in Wisconsin, USA. We show mineral licks can serve as reservoirs of CWD prions and thus facilitate disease transmission. Furthermore, mineral licks attract livestock and other wildlife that also obtain mineral nutrients via soil and water consumption. Exposure to CWD prions at mineral licks provides potential for cross-species transmission to wildlife, domestic animals, and humans. Managing deer use of mineral licks warrants further consideration to help control outbreaks of CWD. PMID:29719000

  6. Quinacrine promotes replication and conformational mutation of chronic wasting disease prions.

    PubMed

    Bian, Jifeng; Kang, Hae-Eun; Telling, Glenn C

    2014-04-22

    Quinacrine's ability to reduce levels of pathogenic prion protein (PrP(Sc)) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrP(Sc) accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrP(Sc) deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrP(Sc) conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds.

  7. Quinacrine promotes replication and conformational mutation of chronic wasting disease prions

    PubMed Central

    Bian, Jifeng; Kang, Hae-Eun; Telling, Glenn C.

    2014-01-01

    Quinacrine’s ability to reduce levels of pathogenic prion protein (PrPSc) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrPSc accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrPSc deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrPSc conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds. PMID:24711410

  8. Pathways of Prion Spread during Early Chronic Wasting Disease in Deer.

    PubMed

    Hoover, Clare E; Davenport, Kristen A; Henderson, Davin M; Denkers, Nathaniel D; Mathiason, Candace K; Soto, Claudio; Zabel, Mark D; Hoover, Edward A

    2017-05-15

    Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrP CWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrP CWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrP CWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrP CWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrP CWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion. IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrP CWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion

  9. Pathways of Prion Spread during Early Chronic Wasting Disease in Deer

    PubMed Central

    Hoover, Clare E.; Davenport, Kristen A.; Henderson, Davin M.; Denkers, Nathaniel D.; Mathiason, Candace K.; Soto, Claudio; Zabel, Mark D.

    2017-01-01

    ABSTRACT Among prion infections, two scenarios of prion spread are generally observed: (i) early lymphoid tissue replication or (ii) direct neuroinvasion without substantial antecedent lymphoid amplification. In nature, cervids are infected with chronic wasting disease (CWD) prions by oral and nasal mucosal exposure, and studies of early CWD pathogenesis have implicated pharyngeal lymphoid tissue as the earliest sites of prion accumulation. However, knowledge of chronological events in prion spread during early infection remains incomplete. To investigate this knowledge gap in early CWD pathogenesis, we exposed white-tailed deer to CWD prions by mucosal routes and performed serial necropsies to assess PrPCWD tissue distribution by real-time quaking-induced conversion (RT-QuIC) and tyramide signal amplification immunohistochemistry (TSA-IHC). Although PrPCWD was not detected by either method in the initial days (1 and 3) postexposure, we observed PrPCWD seeding activity and follicular immunoreactivity in oropharyngeal lymphoid tissues at 1 and 2 months postexposure (MPE). At 3 MPE, PrPCWD replication had expanded to all systemic lymphoid tissues. By 4 MPE, the PrPCWD burden in all lymphoid tissues had increased and approached levels observed in terminal disease, yet there was no evidence of nervous system invasion. These results indicate the first site of CWD prion entry is in the oropharynx, and the initial phase of prion amplification occurs in the oropharyngeal lymphoid tissues followed by rapid dissemination to systemic lymphoid tissues. This lymphoid replication phase appears to precede neuroinvasion. IMPORTANCE Chronic wasting disease (CWD) is a universally fatal transmissible spongiform encephalopathy affecting cervids, and natural infection occurs through oral and nasal mucosal exposure to infectious prions. Terminal disease is characterized by PrPCWD accumulation in the brain and lymphoid tissues of affected animals. However, the initial sites of prion

  10. Molecular mechanisms of chronic wasting disease prion propagation

    PubMed Central

    Moreno, Julie A.; Telling, Glenn C.

    2018-01-01

    Prion disease epidemics, which have been unpredictable recurrences, are of significant concern for animal and human health. Examples include kuru, once the leading cause of death among the Fore people in Papua New Guinea and caused by mortuary feasting; bovine spongiform encephalopathy (BSE) and its subsequent transmission to humans in the form of variant Creutzfeldt-Jakob disease (vCJD); and repeated examples of large-scale prion disease epidemics in animals caused by contaminated vaccines. The etiology of chronic wasting disease (CWD), a relatively new and burgeoning prion epidemic in deer, elk, and moose (members of the cervid family), is more enigmatic. The disease was first described in captive and later in wild mule deer and subsequently in free-ranging as well as captive Rocky Mountain elk, white-tailed deer, and most recently moose. It is therefore the only recognized prion disorder of both wild and captive animals. In addition to its expanding range of hosts, CWD continues to spread to new geographical areas, including recent cases in Norway. The unparalleled efficiency of the contagious transmission of the disease combined with high densities of deer in certain areas of North America complicates strategies for controlling CWD and raises concerns about its potential spread to new species. Because there is a high prevalence of CWD in deer and elk, which are commonly hunted and consumed by humans, the possibility of zoonotic transmission is particularly concerning. Here we review the current status of naturally occurring CWD and describe advances in our understanding of its molecular pathogenesis, as shown by studies of CWD prions in novel in vivo and in vitro systems. PMID:28193766

  11. Transmission of chronic wasting disease identifies a prion strain causing cachexia and heart infection in hamsters.

    PubMed

    Bessen, Richard A; Robinson, Cameron J; Seelig, Davis M; Watschke, Christopher P; Lowe, Diana; Shearin, Harold; Martinka, Scott; Babcock, Alex M

    2011-01-01

    Chronic wasting disease (CWD) is an emerging prion disease of free-ranging and captive cervids in North America. In this study we established a rodent model for CWD in Syrian golden hamsters that resemble key features of the disease in cervids including cachexia and infection of cardiac muscle. Following one to three serial passages of CWD from white-tailed deer into transgenic mice expressing the hamster prion protein gene, CWD was subsequently passaged into Syrian golden hamsters. In one passage line there were preclinical changes in locomotor activity and a loss of body mass prior to onset of subtle neurological symptoms around 340 days. The clinical symptoms included a prominent wasting disease, similar to cachexia, with a prolonged duration. Other features of CWD in hamsters that were similar to cervid CWD included the brain distribution of the disease-specific isoform of the prion protein, PrP(Sc), prion infection of the central and peripheral neuroendocrine system, and PrP(Sc) deposition in cardiac muscle. There was also prominent PrP(Sc) deposition in the nasal mucosa on the edge of the olfactory sensory epithelium with the lumen of the nasal airway that could have implications for CWD shedding into nasal secretions and disease transmission. Since the mechanism of wasting disease in prion diseases is unknown this hamster CWD model could provide a means to investigate the physiological basis of cachexia, which we propose is due to a prion-induced endocrinopathy. This prion disease phenotype has not been described in hamsters and we designate it as the 'wasting' or WST strain of hamster CWD.

  12. An overview of animal prion diseases

    PubMed Central

    2011-01-01

    Prion diseases are transmissible neurodegenerative conditions affecting human and a wide range of animal species. The pathogenesis of prion diseases is associated with the accumulation of aggregates of misfolded conformers of host-encoded cellular prion protein (PrPC). Animal prion diseases include scrapie of sheep and goats, bovine spongiform encephalopathy (BSE) or mad cow disease, transmissible mink encephalopathy, feline spongiform encephalopathy, exotic ungulate spongiform encephalopathy, chronic wasting disease of cervids and spongiform encephalopathy of primates. Although some cases of sporadic atypical scrapie and BSE have also been reported, animal prion diseases have basically occurred via the acquisition of infection from contaminated feed or via the exposure to contaminated environment. Scrapie and chronic wasting disease are naturally sustaining epidemics. The transmission of BSE to human has caused more than 200 cases of variant Cruetzfeldt-Jacob disease and has raised serious public health concerns. The present review discusses the epidemiology, clinical neuropathology, transmissibility and genetics of animal prion diseases. PMID:22044871

  13. Infectious Prions in the Saliva and Blood of Deer with Chronic Wasting Disease

    NASA Astrophysics Data System (ADS)

    Mathiason, Candace K.; Powers, Jenny G.; Dahmes, Sallie J.; Osborn, David A.; Miller, Karl V.; Warren, Robert J.; Mason, Gary L.; Hays, Sheila A.; Hayes-Klug, Jeanette; Seelig, Davis M.; Wild, Margaret A.; Wolfe, Lisa L.; Spraker, Terry R.; Miller, Michael W.; Sigurdson, Christina J.; Telling, Glenn C.; Hoover, Edward A.

    2006-10-01

    A critical concern in the transmission of prion diseases, including chronic wasting disease (CWD) of cervids, is the potential presence of prions in body fluids. To address this issue directly, we exposed cohorts of CWD-naïve deer to saliva, blood, or urine and feces from CWD-positive deer. We found infectious prions capable of transmitting CWD in saliva (by the oral route) and in blood (by transfusion). The results help to explain the facile transmission of CWD among cervids and prompt caution concerning contact with body fluids in prion infections.

  14. Limited amplification of chronic wasting disease prions in the peripheral tissues of intracerebrally inoculated cattle

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is a fatal neurodegenerative disease, classified as a prion disease or transmissible spongiform encephalopathy (TSE) similar to bovine spongiform encephalopathy (BSE). Cervids affected by CWD accumulate an abnormal protease resistant prion protein throughout the central...

  15. Prions and prion diseases: fundamentals and mechanistic details.

    PubMed

    Ryou, Chongsuk

    2007-07-01

    Prion diseases, often called transmissible spongiform encephalopathies (TSEs), are infectious diseases that accompany neurological dysfunctions in many mammalian hosts. Prion diseases include Creutzfeldt-Jakob disease (CJD) in humans, bovine spongiform encephalopathy (BSE, "mad cow disease") in cattle, scrapie in sheep, and chronic wasting disease (CWD) in deer and elks. The cause of these fatal diseases is a proteinaceous pathogen termed prion that lacks functional nucleic acids. As demonstrated in the BSE outbreak and its transmission to humans, the onset of disease is not limited to a certain species but can be transmissible from one host species to another. Such a striking nature ofprions has generated huge concerns in public health and attracted serious attention in the scientific communities. To date, the potential transmission ofprions to humans via foodbome infectiorn and iatrogenic routes has not been alleviated. Rather, the possible transmission of human to human or cervids to human aggravates the terrifying situation across the globe. In this review, basic features about prion diseases including clinical and pathological characteristics, etiology, and transmission of diseases are described. Based on recently accumulated evidences, the molecular and biochemical aspects of prions, with an emphasis on the molecular interactions involved in prion conversion that is critical during prion replication and pathogenesis, are also addressed.

  16. Enzymatic Digestion of Chronic Wasting Disease Prions Bound to Soil

    PubMed Central

    SAUNDERS, SAMUEL E.; BARTZ, JASON C.; VERCAUTEREN, KURT C.; BARTELT-HUNT, SHANNON L.

    2010-01-01

    Chronic wasting disease (CWD) and sheep scrapie can be transmitted via indirect environmental routes, and it is known that soil can serve as a reservoir of prion infectivity. Given the strong interaction between the prion protein (PrP) and soil, we hypothesized that binding to soil enhances prion resistance to enzymatic digestion, thereby facilitating prion longevity in the environment and providing protection from host degradation. We characterized the performance of a commercially available subtilisin enzyme, the Prionzyme, to degrade soil-bound and unbound CWD and HY TME PrP as a function of pH, temperature, and treatment time. The subtilisin enzyme effectively degraded PrP adsorbed to a wide range of soils and soil minerals below the limits of detection. Signal loss occurred rapidly at high pH (12.5) and within 7 d under conditions representative of the natural environment (pH 7.4, 22°C). We observed no apparent difference in enzyme effectiveness between bound and unbound CWD PrP. Our results show that although adsorbed prions do retain relative resistance to enzymatic digestion compared with other brain homogenate proteins, they can be effectively degraded when bound to soil. Our results also suggest a topical application of a subtilisin enzyme solution may be an effective decontamination method to limit disease transmission via environmental ‘hot spots’ of prion infectivity. PMID:20450190

  17. Prion Diseases as Transmissible Zoonotic Diseases

    PubMed Central

    Lee, Jeongmin; Kim, Su Yeon; Hwang, Kyu Jam; Ju, Young Ran; Woo, Hee-Jong

    2013-01-01

    Prion diseases, also called transmissible spongiform encephalopathies (TSEs), lead to neurological dysfunction in animals and are fatal. Infectious prion proteins are causative agents of many mammalian TSEs, including scrapie (in sheep), chronic wasting disease (in deer and elk), bovine spongiform encephalopathy (BSE; in cattle), and Creutzfeldt–Jakob disease (CJD; in humans). BSE, better known as mad cow disease, is among the many recently discovered zoonotic diseases. BSE cases were first reported in the United Kingdom in 1986. Variant CJD (vCJD) is a disease that was first detected in 1996, which affects humans and is linked to the BSE epidemic in cattle. vCJD is presumed to be caused by consumption of contaminated meat and other food products derived from affected cattle. The BSE epidemic peaked in 1992 and decreased thereafter; this decline is continuing sharply owing to intensive surveillance and screening programs in the Western world. However, there are still new outbreaks and/or progression of prion diseases, including atypical BSE, and iatrogenic CJD and vCJD via organ transplantation and blood transfusion. This paper summarizes studies on prions, particularly on prion molecular mechanisms, BSE, vCJD, and diagnostic procedures. Risk perception and communication policies of the European Union for the prevention of prion diseases are also addressed to provide recommendations for appropriate government policies in Korea. PMID:24159531

  18. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine and cervid prion protein

    USDA-ARS?s Scientific Manuscript database

    Identifying transmissible spongiform encephalopathy (TSE) reservoirs that could lead to disease re-emergence is imperative to U.S. scrapie eradication efforts. Transgenic mice expressing the cervid (TgElk) or ovine (Tg338) prion protein have aided characterization of chronic wasting disease (CWD) an...

  19. Primary transmission of chronic wasting disease versus scrapie prions from small ruminants to transgenic mice expressing ovine or cervid prion protein.

    PubMed

    Madsen-Bouterse, Sally A; Schneider, David A; Zhuang, Dongyue; Dassanayake, Rohana P; Balachandran, Aru; Mitchell, Gordon B; O'Rourke, Katherine I

    2016-09-01

    Development of mice expressing either ovine (Tg338) or cervid (TgElk) prion protein (PrP) have aided in characterization of scrapie and chronic wasting disease (CWD), respectively. Experimental inoculation of sheep with CWD prions has demonstrated the potential for interspecies transmission but, infection with CWD versus classical scrapie prions may be difficult to differentiate using validated diagnostic platforms. In this study, mouse bioassay in Tg338 and TgElk was utilized to evaluate transmission of CWD versus scrapie prions from small ruminants. Mice (≥5 per homogenate) were inoculated with brain homogenates from clinically affected sheep or goats with naturally acquired classical scrapie, white-tailed deer with naturally acquired CWD (WTD-CWD) or sheep with experimentally acquired CWD derived from elk (sheep-passaged-CWD). Survival time (time to clinical disease) and attack rates (brain accumulation of protease resistant PrP, PrPres) were determined. Inoculation with classical scrapie prions resulted in clinical disease and 100 % attack rates in Tg338, but no clinical disease at endpoint (>300 days post-inoculation, p.i.) and low attack rates (6.8 %) in TgElk. Inoculation with WTD-CWD prions yielded no clinical disease or brain PrPres accumulation in Tg338 at endpoint (>500 days p.i.), but rapid onset of clinical disease (~121 days p.i.) and 100 % attack rate in TgElk. Sheep-passaged-CWD resulted in transmission to both mouse lines with 100 % attack rates at endpoint in Tg338 and an attack rate of ~73 % in TgElk with some culled due to clinical disease. These primary transmission observations demonstrate the potential of bioassay in Tg338 and TgElk to help differentiate possible infection with CWD versus classical scrapie prions in sheep and goats.

  20. Prion-Seeding Activity in Cerebrospinal Fluid of Deer with Chronic Wasting Disease

    PubMed Central

    Haley, Nicholas J.; Van de Motter, Alexandra; Carver, Scott; Henderson, Davin; Davenport, Kristen; Seelig, Davis M.; Mathiason, Candace; Hoover, Edward

    2013-01-01

    Transmissible spongiform encephalopathies (TSEs), or prion diseases, are a uniformly fatal family of neurodegenerative diseases in mammals that includes chronic wasting disease (CWD) of cervids. The early and ante-mortem identification of TSE-infected individuals using conventional western blotting or immunohistochemistry (IHC) has proven difficult, as the levels of infectious prions in readily obtainable samples, including blood and bodily fluids, are typically beyond the limits of detection. The development of amplification-based seeding assays has been instrumental in the detection of low levels of infectious prions in clinical samples. In the present study, we evaluated the cerebrospinal fluid (CSF) of CWD-exposed (n=44) and naïve (n=4) deer (n=48 total) for CWD prions (PrPd) using two amplification assays: serial protein misfolding cyclic amplification with polytetrafluoroethylene beads (sPMCAb) and real-time quaking induced conversion (RT-QuIC) employing a truncated Syrian hamster recombinant protein substrate. Samples were evaluated blindly in parallel with appropriate positive and negative controls. Results from amplification assays were compared to one another and to obex immunohistochemistry, and were correlated to available clinical histories including CWD inoculum source (e.g. saliva, blood), genotype, survival period, and duration of clinical signs. We found that both sPMCAb and RT-QuIC were capable of amplifying CWD prions from cervid CSF, and results correlated well with one another. Prion seeding activity in either assay was observed in approximately 50% of deer with PrPd detected by IHC in the obex region of the brain. Important predictors of amplification included duration of clinical signs and time of first tonsil biopsy positive results, and ultimately the levels of PrPd identified in the obex by IHC. Based on our findings, we expect that both sPMCAb and RT-QuIC may prove to be useful detection assays for the detection of prions in CSF. PMID

  1. The prion diseases of animals

    USDA-ARS?s Scientific Manuscript database

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative diseases that affect several species of animals and include bovine spongiform encephalopathy (BSE), scrapie in sheep and goats, chronic wasting disease (CWD) in cervids, and transmissible mink encephalopat...

  2. Disease-associated prion protein detected in lymphoid tissues from pigs challenged with the agent of chronic wasting disease

    USDA-ARS?s Scientific Manuscript database

    Aims: Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of cervids. We previously demonstrated that disease-associated prion protein (PrPSc) can be detected in the brain and retina from pigs challenged intracranially or orally with the CWD agent. In that study,...

  3. Infectious Prions in the Pregnancy Microenvironment of Chronic Wasting Disease-Infected Reeves' Muntjac Deer.

    PubMed

    Nalls, Amy V; McNulty, Erin; Hoover, Clare E; Pulscher, Laura A; Hoover, Edward A; Mathiason, Candace K

    2017-08-01

    Ample evidence exists for the presence of infectious agents at the maternal-fetal interface, often with grave outcomes to the developing fetus (i.e., Zika virus, brucella, cytomegalovirus, and toxoplasma). While less studied, pregnancy-related transmissible spongiform encephalopathies (TSEs) have been implicated in several species, including humans. Our previous work has shown that prions can be transferred from mother to offspring, resulting in the development of clinical TSE disease in offspring born to muntjac dams infected with chronic wasting disease (CWD) (1). We further demonstrated protein misfolding cyclic amplification (PMCA)-competent prions within the female reproductive tract and in fetal tissues harvested from CWD experimentally and naturally exposed cervids (1, 2). To assess whether the PMCA-competent prions residing at the maternal-fetal interface were infectious and to determine if the real-time quaking-induced conversion (RT-QuIC) methodology may enhance our ability to detect amyloid fibrils within the pregnancy microenvironment, we employed a mouse bioassay and RT-QuIC. In this study, we have demonstrated RT-QuIC seeding activity in uterus, placentome, ovary, and amniotic fluid but not in allantoic fluids harvested from CWD-infected Reeves' muntjac dams showing clinical signs of infection (clinically CWD-infected) and in some placentomes from pre-clinically CWD-infected dams. Prion infectivity was confirmed within the uterus, amniotic fluid, and the placentome, the semipermeable interface that sustains the developing fetus, of CWD-infected dams. This is the first report of prion infectivity within the cervid pregnancy microenvironment, revealing a source of fetal CWD exposure prior to the birthing process, maternal grooming, or encounters with contaminated environments. IMPORTANCE The facile dissemination of chronic wasting disease within captive and free-range cervid populations has led to questions regarding the transmission dynamics of this

  4. Infectious Prions in the Pregnancy Microenvironment of Chronic Wasting Disease-Infected Reeves' Muntjac Deer

    PubMed Central

    Nalls, Amy V.; McNulty, Erin; Hoover, Clare E.; Pulscher, Laura A.; Hoover, Edward A.

    2017-01-01

    ABSTRACT Ample evidence exists for the presence of infectious agents at the maternal-fetal interface, often with grave outcomes to the developing fetus (i.e., Zika virus, brucella, cytomegalovirus, and toxoplasma). While less studied, pregnancy-related transmissible spongiform encephalopathies (TSEs) have been implicated in several species, including humans. Our previous work has shown that prions can be transferred from mother to offspring, resulting in the development of clinical TSE disease in offspring born to muntjac dams infected with chronic wasting disease (CWD) (1). We further demonstrated protein misfolding cyclic amplification (PMCA)-competent prions within the female reproductive tract and in fetal tissues harvested from CWD experimentally and naturally exposed cervids (1, 2). To assess whether the PMCA-competent prions residing at the maternal-fetal interface were infectious and to determine if the real-time quaking-induced conversion (RT-QuIC) methodology may enhance our ability to detect amyloid fibrils within the pregnancy microenvironment, we employed a mouse bioassay and RT-QuIC. In this study, we have demonstrated RT-QuIC seeding activity in uterus, placentome, ovary, and amniotic fluid but not in allantoic fluids harvested from CWD-infected Reeves' muntjac dams showing clinical signs of infection (clinically CWD-infected) and in some placentomes from pre-clinically CWD-infected dams. Prion infectivity was confirmed within the uterus, amniotic fluid, and the placentome, the semipermeable interface that sustains the developing fetus, of CWD-infected dams. This is the first report of prion infectivity within the cervid pregnancy microenvironment, revealing a source of fetal CWD exposure prior to the birthing process, maternal grooming, or encounters with contaminated environments. IMPORTANCE The facile dissemination of chronic wasting disease within captive and free-range cervid populations has led to questions regarding the transmission dynamics

  5. Current and future molecular diagnostics for prion diseases.

    PubMed

    Lehto, Marty T; Peery, Harry E; Cashman, Neil R

    2006-07-01

    It is now widely held that the infectious agents underlying the transmissible spongiform encephalopathies are prions, which are primarily composed of a misfolded, protease-resistant isoform of the host prion protein. Untreatable prion disorders include some human diseases, such as Creutzfeldt-Jakob disease, and diseases of economically important animals, such as bovine spongiform encephalopathy (cattle) and chronic wasting disease (deer and elk). Detection and diagnosis of prion disease (and presymptomatic incubation) is contingent upon developing novel assays, which exploit properties uniquely possessed by this misfolded protein complex, rather than targeting an agent-specific nucleic acid. This review highlights some of the conventional and disruptive technologies developed to respond to this challenge.

  6. Alteration of the chronic wasting disease species barrier by in vitro prion amplification

    USGS Publications Warehouse

    Kurt, Timothy D.; Seelig, Davis M.; Schneider, Jay R.; Johnson, Christopher J.; Telling, Glenn C.; Heisey, Dennis M.; Hoover, Edward A.

    2011-01-01

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) of cervids now detected in 19 states of the United States, three Canadian provinces, and South Korea. Whether noncervid species can be infected by CWD and thereby serve as reservoirs for the infection is not known. To investigate this issue, we previously used serial protein misfolding cyclic amplification (sPMCA) to demonstrate that CWD prions can amplify in brain homogenates from several species sympatric with cervids, including prairie voles (Microtus ochrogaster) and field mice (Peromyscus spp.). Here, we show that prairie voles are susceptible to mule deer CWD prions in vivo and that sPMCA amplification of CWD prions in vole brain enhances the infectivity of CWD for this species. Prairie voles inoculated with sPMCA products developed clinical signs of TSE disease approximately 300 days prior to, and more consistently than, those inoculated with CWD prions from deer brain. Moreover, the deposition patterns and biochemical properties of protease-resistant form of PrP (PrPRES) in the brains of affected voles differed from those in cervidized transgenic (CerPrP) mice infected with CWD. In addition, voles inoculated orally with sPMCA products developed clinical signs of TSE and were positive for PrPRES deposition, whereas those inoculated orally with deer-origin CWD prions did not. These results demonstrate that transspecies sPMCA of CWD prions can enhance the infectivity and adapt the host range of CWD prions and thereby may be useful to assess determinants of prion species barriers.

  7. The expanding universe of prion diseases.

    PubMed

    Watts, Joel C; Balachandran, Aru; Westaway, David

    2006-03-01

    Prions cause fatal and transmissible neurodegenerative disease. These etiological infectious agents are formed in greater part from a misfolded cell-surface protein called PrP(C). Several mammalian species are affected by the diseases, and in the case of "mad cow disease" (BSE) the agent has a tropism for humans, with negative consequences for agribusiness and public health. Unfortunately, the known universe of prion diseases is expanding. At least four novel prion diseases--including human diseases variant Creutzfeldt-Jakob disease (vCJD) and sporadic fatal insomnia (sFI), bovine amyloidotic spongiform encephalopathy (BASE), and Nor98 of sheep--have been identified in the last ten years, and chronic wasting disease (CWD) of North American deer (Odocoileus Specis) and Rocky Mountain elk (Cervus elaphus nelsoni) is undergoing a dramatic spread across North America. While amplification (BSE) and dissemination (CWD, commercial sourcing of cervids from the wild and movement of farmed elk) can be attributed to human activity, the origins of emergent prion diseases cannot always be laid at the door of humankind. Instead, the continued appearance of new outbreaks in the form of "sporadic" disease may be an inevitable outcome in a situation where the replicating pathogen is host-encoded.

  8. The Expanding Universe of Prion Diseases

    PubMed Central

    Watts, Joel C; Balachandran, Aru; Westaway, David

    2006-01-01

    Prions cause fatal and transmissible neurodegenerative disease. These etiological infectious agents are formed in greater part from a misfolded cell-surface protein called PrPC. Several mammalian species are affected by the diseases, and in the case of “mad cow disease” (BSE) the agent has a tropism for humans, with negative consequences for agribusiness and public health. Unfortunately, the known universe of prion diseases is expanding. At least four novel prion diseases—including human diseases variant Creutzfeldt-Jakob disease (vCJD) and sporadic fatal insomnia (sFI), bovine amyloidotic spongiform encephalopathy (BASE), and Nor98 of sheep—have been identified in the last ten years, and chronic wasting disease (CWD) of North American deer (Odocoileus Specis) and Rocky Mountain elk (Cervus elaphus nelsoni) is undergoing a dramatic spread across North America. While amplification (BSE) and dissemination (CWD, commercial sourcing of cervids from the wild and movement of farmed elk) can be attributed to human activity, the origins of emergent prion diseases cannot always be laid at the door of humankind. Instead, the continued appearance of new outbreaks in the form of “sporadic” disease may be an inevitable outcome in a situation where the replicating pathogen is host-encoded. PMID:16609731

  9. Detection of chronic wasting disease prion seeding activity in deer and elk feces by real-time quaking-induced conversion

    PubMed Central

    Tennant, Joanne M.; Haley, Nicholas J.; Denkers, Nathaniel D.; Mathiason, Candace K.; Hoover, Edward A.

    2017-01-01

    Chronic wasting disease (CWD) is an emergent prion disease affecting cervid species in North America, Canada, South Korea, and recently, Norway. Detection of CWD has been advanced by techniques that rely on amplification of low levels of prion amyloid to a detectable level. However, the increased sensitivity of amplification assays is often compromised by inhibitors and/or activators in complex biologic samples including body fluids, excreta, or the environment. Here, we adapt real-time quaking-induced conversion conditions to specifically detect CWD prions in fecal samples from both experimentally infected deer and naturally infected elk and estimate environmental contamination. The results have application to detection, surveillance and management of CWD, and potentially to other protein-misfolding diseases. PMID:28703697

  10. Detection and Control of Prion Diseases in Food Animals

    PubMed Central

    Hedlin, Peter; Taschuk, Ryan; Potter, Andrew; Griebel, Philip; Napper, Scott

    2012-01-01

    Transmissible spongiform encephalopathies (TSEs), or prion diseases, represent a unique form of infectious disease based on misfolding of a self-protein (PrPC) into a pathological, infectious conformation (PrPSc). Prion diseases of food animals gained notoriety during the bovine spongiform encephalopathy (BSE) outbreak of the 1980s. In particular, disease transmission to humans, to the generation of a fatal, untreatable disease, elevated the perspective on livestock prion diseases from food production to food safety. While the immediate threat posed by BSE has been successfully addressed through surveillance and improved management practices, another prion disease is rapidly spreading. Chronic wasting disease (CWD), a prion disease of cervids, has been confirmed in wild and captive populations with devastating impact on the farmed cervid industries. Furthermore, the unabated spread of this disease through wild populations threatens a natural resource that is a source of considerable economic benefit and national pride. In a worst-case scenario, CWD may represent a zoonotic threat either through direct transmission via consumption of infected cervids or through a secondary food animal, such as cattle. This has energized efforts to understand prion diseases as well as to develop tools for disease detection, prevention, and management. Progress in each of these areas is discussed. PMID:23738120

  11. Human prion diseases: surgical lessons learned from iatrogenic prion transmission.

    PubMed

    Bonda, David J; Manjila, Sunil; Mehndiratta, Prachi; Khan, Fahd; Miller, Benjamin R; Onwuzulike, Kaine; Puoti, Gianfranco; Cohen, Mark L; Schonberger, Lawrence B; Cali, Ignazio

    2016-07-01

    The human prion diseases, or transmissible spongiform encephalopathies, have captivated our imaginations since their discovery in the Fore linguistic group in Papua New Guinea in the 1950s. The mysterious and poorly understood "infectious protein" has become somewhat of a household name in many regions across the globe. From bovine spongiform encephalopathy (BSE), commonly identified as mad cow disease, to endocannibalism, media outlets have capitalized on these devastatingly fatal neurological conditions. Interestingly, since their discovery, there have been more than 492 incidents of iatrogenic transmission of prion diseases, largely resulting from prion-contaminated growth hormone and dura mater grafts. Although fewer than 9 cases of probable iatrogenic neurosurgical cases of Creutzfeldt-Jakob disease (CJD) have been reported worldwide, the likelihood of some missed cases and the potential for prion transmission by neurosurgery create considerable concern. Laboratory studies indicate that standard decontamination and sterilization procedures may be insufficient to completely remove infectivity from prion-contaminated instruments. In this unfortunate event, the instruments may transmit the prion disease to others. Much caution therefore should be taken in the absence of strong evidence against the presence of a prion disease in a neurosurgical patient. While the Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) have devised risk assessment and decontamination protocols for the prevention of iatrogenic transmission of the prion diseases, incidents of possible exposure to prions have unfortunately occurred in the United States. In this article, the authors outline the historical discoveries that led from kuru to the identification and isolation of the pathological prion proteins in addition to providing a brief description of human prion diseases and iatrogenic forms of CJD, a brief history of prion disease nosocomial transmission

  12. Human prion diseases: surgical lessons learned from iatrogenic prion transmission

    PubMed Central

    Bonda, David J.; Manjila, Sunil; Mehndiratta, Prachi; Khan, Fahd; Miller, Benjamin R.; Onwuzulike, Kaine; Puoti, Gianfranco; Cohen, Mark L.; Schonberger, Lawrence B.; Cali, Ignazio

    2016-01-01

    The human prion diseases, or transmissible spongiform encephalopathies, have captivated our imaginations since their discovery in the Fore linguistic group in Papua New Guinea in the 1950s. The mysterious and poorly understood “infectious protein” has become somewhat of a household name in many regions across the globe. From bovine spongiform encephalopathy (BSE), commonly identified as mad cow disease, to endocannibalism, media outlets have capitalized on these devastatingly fatal neurological conditions. Interestingly, since their discovery, there have been more than 492 incidents of iatrogenic transmission of prion diseases, largely resulting from prion-contaminated growth hormone and dura mater grafts. Although fewer than 9 cases of probable iatrogenic neurosurgical cases of Creutzfeldt-Jakob disease (CJD) have been reported worldwide, the likelihood of some missed cases and the potential for prion transmission by neurosurgery create considerable concern. Laboratory studies indicate that standard decontamination and sterilization procedures may be insufficient to completely remove infectivity from prion-contaminated instruments. In this unfortunate event, the instruments may transmit the prion disease to others. Much caution therefore should be taken in the absence of strong evidence against the presence of a prion disease in a neurosurgical patient. While the Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) have devised risk assessment and decontamination protocols for the prevention of iatrogenic transmission of the prion diseases, incidents of possible exposure to prions have unfortunately occurred in the United States. In this article, the authors outline the historical discoveries that led from kuru to the identification and isolation of the pathological prion proteins in addition to providing a brief description of human prion diseases and iatrogenic forms of CJD, a brief history of prion disease nosocomial

  13. Prion disease tempo determined by host-dependent substrate reduction

    PubMed Central

    Mays, Charles E.; Kim, Chae; Haldiman, Tracy; van der Merwe, Jacques; Lau, Agnes; Yang, Jing; Grams, Jennifer; Di Bari, Michele A.; Nonno, Romolo; Telling, Glenn C.; Kong, Qingzhong; Langeveld, Jan; McKenzie, Debbie; Westaway, David; Safar, Jiri G.

    2014-01-01

    The symptoms of prion infection can take years or decades to manifest following the initial exposure. Molecular markers of prion disease include accumulation of the misfolded prion protein (PrPSc), which is derived from its cellular precursor (PrPC), as well as downregulation of the PrP-like Shadoo (Sho) glycoprotein. Given the overlapping cellular environments for PrPC and Sho, we inferred that PrPC levels might also be altered as part of a host response during prion infection. Using rodent models, we found that, in addition to changes in PrPC glycosylation and proteolytic processing, net reductions in PrPC occur in a wide range of prion diseases, including sheep scrapie, human Creutzfeldt-Jakob disease, and cervid chronic wasting disease. The reduction in PrPC results in decreased prion replication, as measured by the protein misfolding cyclic amplification technique for generating PrPSc in vitro. While PrPC downregulation is not discernible in animals with unusually short incubation periods and high PrPC expression, slowly evolving prion infections exhibit downregulation of the PrPC substrate required for new PrPSc synthesis and as a receptor for pathogenic signaling. Our data reveal PrPC downregulation as a previously unappreciated element of disease pathogenesis that defines the extensive, presymptomatic period for many prion strains. PMID:24430187

  14. Modeling Routes of Chronic Wasting Disease Transmission: Environmental Prion Persistence Promotes Deer Population Decline and Extinction

    PubMed Central

    Almberg, Emily S.; Cross, Paul C.; Johnson, Christopher J.; Heisey, Dennis M.; Richards, Bryan J.

    2011-01-01

    Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R 0, may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress. PMID:21603638

  15. Modeling routes of chronic wasting disease transmission: Environmental prion persistence promotes deer population decline and extinction

    USGS Publications Warehouse

    Almberg, Emily S.; Cross, Paul C.; Johnson, Christopher J.; Heisey, Dennis M.; Richards, Bryan J.

    2011-01-01

    Chronic wasting disease (CWD) is a fatal disease of deer, elk, and moose transmitted through direct, animal-to-animal contact, and indirectly, via environmental contamination. Considerable attention has been paid to modeling direct transmission, but despite the fact that CWD prions can remain infectious in the environment for years, relatively little information exists about the potential effects of indirect transmission on CWD dynamics. In the present study, we use simulation models to demonstrate how indirect transmission and the duration of environmental prion persistence may affect epidemics of CWD and populations of North American deer. Existing data from Colorado, Wyoming, and Wisconsin's CWD epidemics were used to define plausible short-term outcomes and associated parameter spaces. Resulting long-term outcomes range from relatively low disease prevalence and limited host-population decline to host-population collapse and extinction. Our models suggest that disease prevalence and the severity of population decline is driven by the duration that prions remain infectious in the environment. Despite relatively low epidemic growth rates, the basic reproductive number, R0, may be much larger than expected under the direct-transmission paradigm because the infectious period can vastly exceed the host's life span. High prion persistence is expected to lead to an increasing environmental pool of prions during the early phases (i.e. approximately during the first 50 years) of the epidemic. As a consequence, over this period of time, disease dynamics will become more heavily influenced by indirect transmission, which may explain some of the observed regional differences in age and sex-specific disease patterns. This suggests management interventions, such as culling or vaccination, will become increasingly less effective as CWD epidemics progress.

  16. Comparative prion disease gene expression profiling using the prion disease mimetic, cuprizone

    PubMed Central

    Moody, Laura R; Herbst, Allen J; Yoo, Han Sang; Vanderloo, Joshua P

    2009-01-01

    Identification of genes expressed in response to prion infection may elucidate biomarkers for disease, identify factors involved in agent replication, mechanisms of neuropathology and therapeutic targets. Although several groups have sought to identify gene expression changes specific to prion disease, expression profiles rife with cell population changes have consistently been identified. Cuprizone, a neurotoxicant, qualitatively mimics the cell population changes observed in prion disease, resulting in both spongiform change and astrocytosis. The use of cuprizone-treated animals as an experimental control during comparative expression profiling allows for the identification of transcripts whose expression increases during prion disease and remains unchanged during cuprizone-triggered neuropathology. In this study, expression profiles from the brains of mice preclinically and clinically infected with Rocky Mountain Laboratory (RML) mouse-adapted scrapie agent and age-matched controls were profiled using Affymetrix gene arrays. In total, 164 genes were differentially regulated during prion infection. Eighty-three of these transcripts have been previously undescribed as differentially regulated during prion disease. A 0.4% cuprizone diet was utilized as a control for comparative expression profiling. Cuprizone treatment induced spongiosis and astrocyte proliferation as indicated by glial fibrillary acidic protein (Gfap) transcriptional activation and immunohistochemistry. Gene expression profiles from brain tissue obtained from cuprizone-treated mice identified 307 differentially regulated transcript changes. After comparative analysis, 17 transcripts unaffected by cuprizone treatment but increasing in expression from preclinical to clinical prion infection were identified. Here we describe the novel use of the prion disease mimetic, cuprizone, to control for cell population changes in the brain during prion infection. PMID:19535908

  17. Detection of Chronic Wasting Disease Prions in Salivary, Urinary, and Intestinal Tissues of Deer: Potential Mechanisms of Prion Shedding and Transmission▿

    PubMed Central

    Haley, Nicholas J.; Mathiason, Candace K.; Carver, Scott; Zabel, Mark; Telling, Glenn C.; Hoover, Edward A.

    2011-01-01

    Efficient horizontal transmission is a signature trait of chronic wasting disease (CWD) in cervids. Infectious prions shed into excreta appear to play a key role in this facile transmission, as has been demonstrated by bioassays of cervid and transgenic species and serial protein misfolding cyclic amplification (sPMCA). However, the source(s) of infectious prions in these body fluids has yet to be identified. In the present study, we analyzed tissues proximate to saliva, urine, and fecal production by sPMCA in an attempt to elucidate this unique aspect of CWD pathogenesis. Oropharyngeal, urogenital, and gastrointestinal tissues along with blood and obex from CWD-exposed cervids (comprising 27 animals and >350 individual samples) were analyzed and scored based on the apparent relative CWD burden. PrPCWD-generating activity was detected in a range of tissues and was highest in the salivary gland, urinary bladder, and distal intestinal tract. In the same assays, blood from the same animals and unseeded normal brain homogenate controls (n = 116 of 117) remained negative. The PrP-converting activity in peripheral tissues varied from 10−11- to 100-fold of that found in brain of the same animal. Deer with highest levels of PrPCWD amplification in the brain had higher and more widely disseminated prion amplification in excretory tissues. Interestingly, PrPCWD was not demonstrable in these excretory tissues by conventional Western blotting, suggesting a low prion burden or the presence of protease-sensitive infectious prions destroyed by harsh proteolytic treatments. These findings offer unique insights into the transmission of CWD in particular and prion infection and trafficking overall. PMID:21525361

  18. Molecular Barriers to Zoonotic Transmission of Prions

    PubMed Central

    Barria, Marcelo A.; Balachandran, Aru; Morita, Masanori; Kitamoto, Tetsuyuki; Barron, Rona; Manson, Jean; Knight, Richard; Ironside, James W.

    2014-01-01

    The risks posed to human health by individual animal prion diseases cannot be determined a priori and are difficult to address empirically. The fundamental event in prion disease pathogenesis is thought to be the seeded conversion of normal prion protein to its pathologic isoform. We used a rapid molecular conversion assay (protein misfolding cyclic amplification) to test whether brain homogenates from specimens of classical bovine spongiform encephalopathy (BSE), atypical BSE (H-type BSE and L-type BSE), classical scrapie, atypical scrapie, and chronic wasting disease can convert normal human prion protein to the abnormal disease-associated form. None of the tested prion isolates from diseased animals were as efficient as classical BSE in converting human prion protein. However, in the case of chronic wasting disease, there was no absolute barrier to conversion of the human prion protein. PMID:24377702

  19. Genetic predictions of prion disease susceptibility in carnivore species based on variability of the prion gene coding region.

    PubMed

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A; Arnemo, Jon M; Tryland, Morten; Girling, Simon; Miller, Michael W; Tranulis, Michael A; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrP(C)) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrP(C) protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter.

  20. Genetic Predictions of Prion Disease Susceptibility in Carnivore Species Based on Variability of the Prion Gene Coding Region

    PubMed Central

    Stewart, Paula; Campbell, Lauren; Skogtvedt, Susan; Griffin, Karen A.; Arnemo, Jon M.; Tryland, Morten; Girling, Simon; Miller, Michael W.; Tranulis, Michael A.; Goldmann, Wilfred

    2012-01-01

    Mammalian species vary widely in their apparent susceptibility to prion diseases. For example, several felid species developed prion disease (feline spongiform encephalopathy or FSE) during the bovine spongiform encephalopathy (BSE) epidemic in the United Kingdom, whereas no canine BSE cases were detected. Whether either of these or other groups of carnivore species can contract other prion diseases (e.g. chronic wasting disease or CWD) remains an open question. Variation in the host-encoded prion protein (PrPC) largely explains observed disease susceptibility patterns within ruminant species, and may explain interspecies differences in susceptibility as well. We sequenced and compared the open reading frame of the PRNP gene encoding PrPC protein from 609 animal samples comprising 29 species from 22 genera of the Order Carnivora; amongst these samples were 15 FSE cases. Our analysis revealed that FSE cases did not encode an identifiable disease-associated PrP polymorphism. However, all canid PrPs contained aspartic acid or glutamic acid at codon 163 which we propose provides a genetic basis for observed susceptibility differences between canids and felids. Among other carnivores studied, wolverine (Gulo gulo) and pine marten (Martes martes) were the only non-canid species to also express PrP-Asp163, which may impact on their prion diseases susceptibility. Populations of black bear (Ursus americanus) and mountain lion (Puma concolor) from Colorado showed little genetic variation in the PrP protein and no variants likely to be highly resistant to prions in general, suggesting that strain differences between BSE and CWD prions also may contribute to the limited apparent host range of the latter. PMID:23236380

  1. Progress and problems in the biology, diagnostics, and therapeutics of prion diseases

    PubMed Central

    Aguzzi, Adriano; Heikenwalder, Mathias; Miele, Gino

    2004-01-01

    The term “prion” was introduced by Stanley Prusiner in 1982 to describe the atypical infectious agent that causes transmissible spongiform encephalopathies, a group of infectious neurodegenerative diseases that include scrapie in sheep, Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids, and bovine spongiform encephalopathy in cattle. Over the past twenty years, the word “prion” has been taken to signify various subtly different concepts. In this article, we refer to the prion as the transmissible principle underlying prion diseases, without necessarily implying any specific biochemical or structural identity. When Prusiner started his seminal work, the study of transmissible spongiform encephalopathies was undertaken by only a handful of scientists. Since that time, the “mad cow” crisis has put prion diseases on the agenda of both politicians and the media. Significant progress has been made in prion disease research, and many aspects of prion pathogenesis are now understood. And yet the diagnostic procedures available for prion diseases are not nearly as sensitive as they ought to be, and no therapeutic intervention has been shown to reliably affect the course of the diseases. This article reviews recent progress in the areas of pathogenesis of, diagnostics of, and therapy for prion diseases and highlights some conspicuous problems that remain to be addressed in each of these fields. PMID:15254579

  2. Prion protein immunocytochemistry helps to establish the true incidence of prion diseases.

    PubMed

    Lantos, P L; McGill, I S; Janota, I; Doey, L J; Collinge, J; Bruce, M T; Whatley, S A; Anderton, B H; Clinton, J; Roberts, G W

    1992-11-23

    Creutzfeldt-Jakob disease (CJD) and Gerstmann-Strüssler-Scheinker disease (GSSD) are transmissible spongiform encephalopathies or prion diseases affecting man. It has been reported that prion diseases may occur without the histological hallmarks of spongiform encephalopathies: vacuolation of the cerebral grey matter, neuronal loss and astrocytosis. These cases without characteristic neuropathology may go undiagnosed and consequently the true incidence of transmissible dementias is likely to have been under-estimated. Immunocytochemistry using antibodies to prion protein gives positive staining of these cases, albeit the pattern of immunostaining differs from that seen in typical forms. Accumulation of prion protein is a molecular hallmark of prion diseases, and thus a reproducible, speedy and cost-efficient immunocytochemical screening of unusual dementias may help to establish the true incidence of prion diseases.

  3. Ethics in Prion Disease

    PubMed Central

    Bechtel, Kendra; Geschwind, Michael D.

    2013-01-01

    This paper is intended to discuss some of the scientific and ethical issues that are created by increased research efforts towards earlier diagnosis, as well as to treatment of, human prion diseases (and related dementias), including the resulting consequences for individuals, their families, and society. Most patients with prion disease currently are diagnosed when they are about 2/3 of the way through their disease course (Geschwind, Kuo et al. 2010; Paterson, Torres-Chae et al. 2012), when the disease has progressed so far that even treatments that stop the disease process would probably have little benefit. Although there are currently no treatments available for prion diseases, we and others have realized that we must diagnose patients earlier and with greater accuracy so that future treatments have hope of success. As approximately 15% of prion diseases have a autosomal dominant genetic etiology, this further adds to the complexity of ethical issues, particularly regarding when to conduct genetic testing, release of genetic results, and when or if to implement experimental therapies. Human prion diseases are both infectious and transmissible; great care is required to balance the needs of the family and individual with both public health needs and strained hospital budgets. It is essential to proactively examine and address the ethical issues involved, as well as to define and in turn provide best standards of care. PMID:23906487

  4. Potential approaches for heterologous prion protein treatment of prion diseases

    PubMed Central

    Seelig, Davis M.; Goodman, Patricia A.; Skinner, Pamela J.

    2016-01-01

    ABSTRACT Prion diseases, or transmissible spongiform encephalopathies (TSEs) are progressive, fatal neurodegenerative diseases with no effective treatment. The pathology of these diseases involves the conversion of a protease sensitive form of the cellular prion protein (PrPC) into a protease resistant infectious form (PrPres). The efficiency of this conversion is predicated upon a number of factors, most notably a strong homology between cellular PrPC and PrPres. In our recently published study, we infected mice with the RML-Chandler strain of scrapie and treated them with heterologous hamster prion proteins. This treatment was seen to reduce clinical signs of prion disease, to delay the onset of clinical symptoms and to prolong survival. In this current article we discuss potential mechanisms of action of treatment with heterologous prion proteins. We also discuss potential extensions of these studies using a heterologous rabbit PrP-based treatment strategy or a peptide based strategy, and improvement of treatment delivery including a lentiviral-based system. PMID:26636482

  5. Detecting and quantifying prions: Mass spectrometry-based approaches

    USDA-ARS?s Scientific Manuscript database

    Prions are novel pathogens that cause a set of rare fatal neurological diseases know as transmissible spongiform encephalopathies. Examples of these diseases include Creutzfeldt-Jakob disease, scrapie and chronic wasting disease. Prions are able to recruit a normal cellular prion protein and convert...

  6. Ophthalmic Surgery in Prion Diseases

    PubMed Central

    Hamaguchi, Tsuyoshi; Noguchi-Shinohara, Moeko; Nakamura, Yosikazu; Sato, Takeshi; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro

    2007-01-01

    Eleven (1.8%) of 597 patients underwent ophthalmic surgery within 1 month before the onset of prion disease or after the onset. All ophthalmologists reused surgical instruments that had been incompletely sterilized to eliminate infectious prion protein. Ophthalmologists should be aware of prion diseases as a possible cause of visual symptoms and use disposable instruments whenever possible. PMID:17370537

  7. Genetics Home Reference: prion disease

    MedlinePlus

    ... from eating beef products containing PrP Sc from cattle with prion disease . In cows, this form of the disease is known as bovine spongiform encephalopathy (BSE) or, more commonly, "mad cow disease." Another example of an acquired human prion ...

  8. Experimental oral transmission of chronic wasting disease to red deer (Cervus elaphus elaphus): Early detection and late stage distribution of protease-resistant prion protein

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease CWD is the transmissible spongiform encephalopathy or prion disease of wild and farmed cervid ruminants, including Rocky Mountain elk (Cervus elaphus nelsoni), white tailed deer (Odocoileus virginianus), mule deer (Odocoileus hemionus), or moose (Alces alces). Reliable data ...

  9. Copper and the Prion Protein: Methods, Structures, Function, and Disease

    NASA Astrophysics Data System (ADS)

    Millhauser, Glenn L.

    2007-05-01

    The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans. Although the precise function of PrPC in healthy tissues is not known, recent research demonstrates that it binds Cu(II) in an unusual and highly conserved region of the protein termed the octarepeat domain. This review describes recent connections between copper and PrPC, with an emphasis on the electron paramagnetic resonance elucidation of the specific copper-binding sites, insights into PrPC function, and emerging connections between copper and prion disease.

  10. Prion Disease Induces Alzheimer Disease-Like Neuropathologic Changes

    PubMed Central

    Tousseyn, Thomas; Bajsarowicz, Krystyna; Sánchez, Henry; Gheyara, Ania; Oehler, Abby; Geschwind, Michael; DeArmond, Bernadette; DeArmond, Stephen J.

    2016-01-01

    We examined the brains of 266 patients with prion diseases (PrionD) and found that 46 (17%) had Alzheimer disease (AD)-like changes. To explore potential mechanistic links between PrionD and AD, we exposed human brain aggregates (Hu BrnAggs) to brain homogenate from a patient with sporadic Creutzfeldt-Jakob disease (CJD) and found that the neurons in the Hu BrnAggs produced many β-amyloid (β42) inclusions, whereas uninfected, control-exposed Hu BrnAggs did not. Western blots of 20-pooled CJD-infected BrnAggs verified higher Aβ42 levels than controls. We next examined the CA1 region of the hippocampus from 14 patients with PrionD and found that 5 patients had low levels of scrapie-associated prion protein (PrPSc), many Aβ42 intraneuronal inclusions, low APOE-4, and no significant nerve cell loss. Seven patients had high levels of PrPSc, low Aβ42, high APOE-4 and 40% nerve cell loss, suggesting that APOE-4 and PrPSc together cause neuron loss in PrionD. There were also increased levels of hyperphosphorylated tau protein (Hτ) and Hτ-positive neuropil threads and neuron bodies in both PrionD and AD groups. The brains of 6 age-matched control patients without dementia did not contain Aβ42 deposits; however, there were rare Hτ-positive threads in 5 controls and 2 controls had a few Hτ-positive nerve cell bodies. We conclude that PrionD may trigger biochemical changes similar to AD and suggest that PrionD are diseases of PrPSc, Aβ42, APOE-4 and abnormal tau. PMID:26226132

  11. Survival time and stability properties of disease-associated prion protein in chronic wasting disease of elk

    USDA-ARS?s Scientific Manuscript database

    Background: The Rocky Mountain elk (Cervus elaphus nelsoni) prion protein gene exhibits amino acid polymorphism at codon 132, with 132L (leucine) and 132M (methionine) allelic variants present in the population. We have previously shown that following experimental oral challenge with chronic wasting...

  12. Statistical Mechanics of Prion Diseases

    NASA Astrophysics Data System (ADS)

    Slepoy, A.; Singh, R. R.; Pázmándi, F.; Kulkarni, R. V.; Cox, D. L.

    2001-07-01

    We present a two-dimensional, lattice based, protein-level statistical mechanical model for prion diseases (e.g., mad cow disease) with concomitant prion protein misfolding and aggregation. Our studies lead us to the hypothesis that the observed broad incubation time distribution in epidemiological data reflect fluctuation dominated growth seeded by a few nanometer scale aggregates, while much narrower incubation time distributions for innoculated lab animals arise from statistical self-averaging. We model ``species barriers'' to prion infection and assess a related treatment protocol.

  13. A naturally occurring variant of the human prion protein completely prevents prion disease.

    PubMed

    Asante, Emmanuel A; Smidak, Michelle; Grimshaw, Andrew; Houghton, Richard; Tomlinson, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Richard-Londt, Angela; Linehan, Jacqueline M; Brandner, Sebastian; Alpers, Michael; Whitfield, Jerome; Mead, Simon; Wadsworth, Jonathan D F; Collinge, John

    2015-06-25

    Mammalian prions, transmissible agents causing lethal neurodegenerative diseases, are composed of assemblies of misfolded cellular prion protein (PrP). A novel PrP variant, G127V, was under positive evolutionary selection during the epidemic of kuru--an acquired prion disease epidemic of the Fore population in Papua New Guinea--and appeared to provide strong protection against disease in the heterozygous state. Here we have investigated the protective role of this variant and its interaction with the common, worldwide M129V PrP polymorphism. V127 was seen exclusively on a M129 PRNP allele. We demonstrate that transgenic mice expressing both variant and wild-type human PrP are completely resistant to both kuru and classical Creutzfeldt-Jakob disease (CJD) prions (which are closely similar) but can be infected with variant CJD prions, a human prion strain resulting from exposure to bovine spongiform encephalopathy prions to which the Fore were not exposed. Notably, mice expressing only PrP V127 were completely resistant to all prion strains, demonstrating a different molecular mechanism to M129V, which provides its relative protection against classical CJD and kuru in the heterozygous state. Indeed, this single amino acid substitution (G→V) at a residue invariant in vertebrate evolution is as protective as deletion of the protein. Further study in transgenic mice expressing different ratios of variant and wild-type PrP indicates that not only is PrP V127 completely refractory to prion conversion but acts as a potent dose-dependent inhibitor of wild-type prion propagation.

  14. Lichens: Unexpected anti-prion agents?

    USGS Publications Warehouse

    Rodriguez, Cynthia M.; Bennett, James P.; Johnson, Christopher J.

    2012-01-01

    The prion diseases sheep scrapie and cervid chronic wasting disease are transmitted, in part, via an environmental reservoir of infectivity; prions released from infected animals persist in the environment and can cause disease years later. Central to controlling disease transmission is the identification of methods capable of inactivating these agents on the landscape. We have found that certain lichens, common, ubiquitous, symbiotic organisms, possess a serine protease capable of degrading prion protein (PrP) from prion-infected animals. The protease functions against a range of prion strains from various hosts and reduces levels of abnormal PrP by at least two logs. We have now tested more than 20 lichen species from several geographical locations and from various taxa and found that approximately half of these species degrade PrP. Critical next steps include examining the effect of lichens on prion infectivity and cloning the protease responsible for PrP degradation. The impact of lichens on prions in the environment remains unknown. We speculate that lichens could have the potential to degrade prions when they are shed from infected animals onto lichens or into environments where lichens are abundant. In addition, lichens are frequently consumed by cervids and many other animals and the effect of dietary lichens on prion disease transmission should also be considered.

  15. Genetics of Prion Disease in Cattle

    PubMed Central

    Murdoch, Brenda M.; Murdoch, Gordon K.

    2015-01-01

    Bovine spongiform encephalopathy (BSE) is a prion disease that is invariably fatal in cattle and has been implicated as a significant human health risk. As a transmissible disease of livestock, it has impacted food safety, production practices, global trade, and profitability. Genetic polymorphisms that alter the prion protein in humans and sheep are associated with transmissible spongiform encephalopathy susceptibility or resistance. In contrast, there is no strong evidence that nonsynonymous mutations in the bovine prion gene (PRNP) are associated with classical BSE (C-BSE) disease susceptibility, though two bovine PRNP insertion/deletion polymorphisms, in the putative region, are associated with susceptibility to C-BSE. However, these associations do not explain the full extent of BSE susceptibility, and loci outside of PRNP appear to be associated with disease incidence in some cattle populations. This article provides a review of the current state of genetic knowledge regarding prion diseases in cattle. PMID:26462233

  16. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    PubMed Central

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-01-01

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621

  17. Inherited prion disease A117V is not simply a proteinopathy but produces prions transmissible to transgenic mice expressing homologous prion protein.

    PubMed

    Asante, Emmanuel A; Linehan, Jacqueline M; Smidak, Michelle; Tomlinson, Andrew; Grimshaw, Andrew; Jeelani, Asif; Jakubcova, Tatiana; Hamdan, Shyma; Powell, Caroline; Brandner, Sebastian; Wadsworth, Jonathan D F; Collinge, John

    2013-01-01

    Prions are infectious agents causing fatal neurodegenerative diseases of humans and animals. In humans, these have sporadic, acquired and inherited aetiologies. The inherited prion diseases are caused by one of over 30 coding mutations in the human prion protein (PrP) gene (PRNP) and many of these generate infectious prions as evidenced by their experimental transmissibility by inoculation to laboratory animals. However, some, and in particular an extensively studied type of Gerstmann-Sträussler-Scheinker syndrome (GSS) caused by a PRNP A117V mutation, are thought not to generate infectious prions and instead constitute prion proteinopathies with a quite distinct pathogenetic mechanism. Multiple attempts to transmit A117V GSS have been unsuccessful and typical protease-resistant PrP (PrP(Sc)), pathognomonic of prion disease, is not detected in brain. Pathogenesis is instead attributed to production of an aberrant topological form of PrP, C-terminal transmembrane PrP ((Ctm)PrP). Barriers to transmission of prion strains from one species to another appear to relate to structural compatibility of PrP in host and inoculum and we have therefore produced transgenic mice expressing human 117V PrP. We found that brain tissue from GSS A117V patients did transmit disease to these mice and both the neuropathological features of prion disease and presence of PrP(Sc) was demonstrated in the brains of recipient transgenic mice. This PrP(Sc) rapidly degraded during laboratory analysis, suggesting that the difficulty in its detection in patients with GSS A117V could relate to post-mortem proteolysis. We conclude that GSS A117V is indeed a prion disease although the relative contributions of (Ctm)PrP and prion propagation in neurodegeneration and their pathogenetic interaction remains to be established.

  18. Cross-species transmission of CWD prions.

    PubMed

    Kurt, Timothy D; Sigurdson, Christina J

    2016-01-01

    Prions cause fatal neurodegenerative diseases in humans and animals and can be transmitted zoonotically. Chronic wasting disease (CWD) is a highly transmissible prion disease of wild deer and elk that affects cervids over extensive regions of the United States and Canada. The risk of cross-species CWD transmission has been experimentally evaluated in a wide array of mammals, including non-human primates and mouse models expressing human cellular prion protein. Here we review the determinants of cross-species CWD transmission, and propose a model that may explain a structural barrier for CWD transmission to humans.

  19. Screening of intact yeasts and cell extracts to reduce Scrapie prions during biotransformation of food waste.

    PubMed

    Huyben, David; Boqvist, Sofia; Passoth, Volkmar; Renström, Lena; Allard Bengtsson, Ulrika; Andréoletti, Olivier; Kiessling, Anders; Lundh, Torbjörn; Vågsholm, Ivar

    2018-02-08

    Yeasts can be used to convert organic food wastes to protein-rich animal feed in order to recapture nutrients. However, the reuse of animal-derived waste poses a risk for the transmission of infectious prions that can cause neurodegeneration and fatality in humans and animals. The aim of this study was to investigate the ability of yeasts to reduce prion activity during the biotransformation of waste substrates-thereby becoming a biosafety hurdle in such a circular food system. During pre-screening, 30 yeast isolates were spiked with Classical Scrapie prions and incubated for 72 h in casein substrate, as a waste substitute. Based on reduced Scrapie seeding activity, waste biotransformation and protease activities, intact cells and cell extracts of 10 yeasts were further tested. Prion analysis showed that five yeast species reduced Scrapie seeding activity by approximately 1 log10 or 90%. Cryptococcus laurentii showed the most potential to reduce prion activity since both intact and extracted cells reduced Scrapie by 1 log10 and achieved the highest protease activity. These results show that select forms of yeast can act as a prion hurdle during the biotransformation of waste. However, the limited ability of yeasts to reduce prion activity warrants caution as a sole barrier to transmission as higher log reductions are needed before using waste-cultured yeast in circular food systems.

  20. FATE AND TRANSPORT OF PRIONS FROM CHRONIC WASTING DISEASE (CWD) WASTE IN MUNICIPAL SOLID WASTE LANDFILLS

    EPA Science Inventory

    CWD is a fatal neurologic disease of deer and elk caused by an infectious abnormal protein called a prion. Infected free-ranging or captive deer and elk have been found in several states including Wisconsin, Illinois and Minnesota in Region 5. The management of CWD may call for...

  1. PRION-1 scales analysis supports use of functional outcome measures in prion disease

    PubMed Central

    Mead, S.; Ranopa, M.; Gopalakrishnan, G.S.; Thompson, A.G.B.; Rudge, P.; Wroe, S.; Kennedy, A.; Hudson, F.; MacKay, A.; Darbyshire, J.H.; Walker, A.S.

    2011-01-01

    Objectives: Human prion diseases are heterogeneous but invariably fatal neurodegenerative disorders with no known effective therapy. PRION-1, the largest clinical trial in prion disease to date, showed no effect of the potential therapeutic quinacrine on survival. Although there are several limitations to the usefulness of survival as an outcome measure, there have been no comprehensive studies of alternatives. Methods: To address this we did comparative analyses of neurocognitive, psychiatric, global, clinician-rated, and functional scales, focusing on validity, variability, and impact on statistical power over 77 person-years follow-up in 101 symptomatic patients in PRION-1. Results: Quinacrine had no demonstrable benefit on any of the 8 scales (p > 0.4). All scales had substantial numbers of patients with the worst possible score at enrollment (Glasgow Coma Scale score being least affected) and were impacted by missing data due to disease progression. These effects were more significant for cognitive/psychiatric scales than global, clinician-rated, or functional scales. The Barthel and Clinical Dementia Rating scales were the most valid and powerful in simulated clinical trials of an effective therapeutic. A combination of selected subcomponents from these 2 scales gave somewhat increased power, compared to use of survival, to detect clinically relevant effects in future clinical trials of feasible size. Conclusions: Our findings have implications for the choice of primary outcome measure in prion disease clinical trials. Prion disease presents the unusual opportunity to follow patients with a neurodegenerative disease through their entire clinical course, and this provides insights relevant to designing outcome measures in related conditions. PMID:22013183

  2. Transmission of chronic wasting disease of white-tailed deer to Suffolk sheep following intracranial inoculation

    USDA-ARS?s Scientific Manuscript database

    Background: Interspecies transmission studies are an opportunity to better understand the potential host ranges of prion diseases. Chronic wasting disease (CWD) of cervids and scrapie of sheep and goats have a similar tissue distribution of abnormal prion protein (PrPSc) and prion disease exposure a...

  3. Atypical scrapie prions from sheep and lack of disease in transgenic mice overexpressing human prion protein.

    PubMed

    Wadsworth, Jonathan D F; Joiner, Susan; Linehan, Jacqueline M; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M; Griffiths, Peter C; Groschup, Martin H; Hope, James; Brandner, Sebastian; Asante, Emmanuel A; Collinge, John

    2013-11-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants.

  4. Atypical Scrapie Prions from Sheep and Lack of Disease in Transgenic Mice Overexpressing Human Prion Protein

    PubMed Central

    Joiner, Susan; Linehan, Jacqueline M.; Balkema-Buschmann, Anne; Spiropoulos, John; Simmons, Marion M.; Griffiths, Peter C.; Groschup, Martin H.; Hope, James; Brandner, Sebastian; Asante, Emmanuel A.; Collinge, John

    2013-01-01

    Public and animal health controls to limit human exposure to animal prions are focused on bovine spongiform encephalopathy (BSE), but other prion strains in ruminants may also have zoonotic potential. One example is atypical/Nor98 scrapie, which evaded statutory diagnostic methods worldwide until the early 2000s. To investigate whether sheep infected with scrapie prions could be another source of infection, we inoculated transgenic mice that overexpressed human prion protein with brain tissue from sheep with natural field cases of classical and atypical scrapie, sheep with experimental BSE, and cattle with BSE. We found that these mice were susceptible to BSE prions, but disease did not develop after prolonged postinoculation periods when mice were inoculated with classical or atypical scrapie prions. These data are consistent with the conclusion that prion disease is less likely to develop in humans after exposure to naturally occurring prions of sheep than after exposure to epizootic BSE prions of ruminants. PMID:24188521

  5. In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk.

    PubMed

    Selariu, Anca; Powers, Jenny G; Nalls, Amy; Brandhuber, Monica; Mayfield, Amber; Fullaway, Stephenie; Wyckoff, Christy A; Goldmann, Wilfred; Zabel, Mark M; Wild, Margaret A; Hoover, Edward A; Mathiason, Candace K

    2015-11-01

    The presence of disease-associated prions in tissues and bodily fluids of chronic wasting disease (CWD)-infected cervids has received much investigation, yet little is known about mother-to-offspring transmission of CWD. Our previous work demonstrated that mother-to-offspring transmission is efficient in an experimental setting. To address the question of relevance in a naturally exposed free-ranging population, we assessed maternal and fetal tissues derived from 19 elk dam-calf pairs collected from free-ranging Rocky Mountain elk from north-central Colorado, a known CWD endemic region. Conventional immunohistochemistry identified three of 19 CWD-positive dams, whereas a more sensitive assay [serial protein misfolding cyclic amplification (sPMCA)] detected CWD prion seeding activity (PrPCWD) in 15 of 19 dams. PrPCWD distribution in tissues was widespread, and included the central nervous system (CNS), lymphoreticular system, and reproductive, secretory, excretory and adipose tissues. Interestingly, five of 15 sPMCA-positive dams showed no evidence of PrPCWD in either CNS or lymphoreticular system, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the 15 sPMCA-positive dams revealed PrPCWD in 80 % of fetuses (12 of 15), regardless of gestational stage. These findings demonstrated that PrPCWD is more abundant in peripheral tissues of CWD-exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of CWD in naturally exposed cervid populations.

  6. In utero transmission and tissue distribution of chronic wasting disease-associated prions in free-ranging Rocky Mountain elk

    PubMed Central

    Selariu, Anca; Powers, Jenny G.; Nalls, Amy; Brandhuber, Monica; Mayfield, Amber; Fullaway, Stephenie; Wyckoff, Christy A.; Goldmann, Wilfred; Zabel, Mark M.; Wild, Margaret A.; Hoover, Edward A.

    2015-01-01

    The presence of disease-associated prions in tissues and bodily fluids of chronic wasting disease (CWD)-infected cervids has received much investigation, yet little is known about mother-to-offspring transmission of CWD. Our previous work demonstrated that mother-to-offspring transmission is efficient in an experimental setting. To address the question of relevance in a naturally exposed free-ranging population, we assessed maternal and fetal tissues derived from 19 elk dam–calf pairs collected from free-ranging Rocky Mountain elk from north-central Colorado, a known CWD endemic region. Conventional immunohistochemistry identified three of 19 CWD-positive dams, whereas a more sensitive assay [serial protein misfolding cyclic amplification (sPMCA)] detected CWD prion seeding activity (PrPCWD) in 15 of 19 dams. PrPCWD distribution in tissues was widespread, and included the central nervous system (CNS), lymphoreticular system, and reproductive, secretory, excretory and adipose tissues. Interestingly, five of 15 sPMCA-positive dams showed no evidence of PrPCWD in either CNS or lymphoreticular system, sites typically assessed in diagnosing CWD. Analysis of fetal tissues harvested from the 15 sPMCA-positive dams revealed PrPCWD in 80 % of fetuses (12 of 15), regardless of gestational stage. These findings demonstrated that PrPCWD is more abundant in peripheral tissues of CWD-exposed elk than current diagnostic methods suggest, and that transmission of prions from mother to offspring may contribute to the efficient transmission of CWD in naturally exposed cervid populations. PMID:26358706

  7. Bile Acids Reduce Prion Conversion, Reduce Neuronal Loss, and Prolong Male Survival in Models of Prion Disease

    PubMed Central

    Cortez, Leonardo M.; Campeau, Jody; Norman, Grant; Kalayil, Marian; Van der Merwe, Jacques; McKenzie, Debbie

    2015-01-01

    ABSTRACT Prion diseases are fatal neurodegenerative disorders associated with the conversion of cellular prion protein (PrPC) into its aberrant infectious form (PrPSc). There is no treatment available for these diseases. The bile acids tauroursodeoxycholic acid (TUDCA) and ursodeoxycholic acid (UDCA) have been recently shown to be neuroprotective in other protein misfolding disease models, including Parkinson's, Huntington's and Alzheimer's diseases, and also in humans with amyotrophic lateral sclerosis. Here, we studied the therapeutic efficacy of these compounds in prion disease. We demonstrated that TUDCA and UDCA substantially reduced PrP conversion in cell-free aggregation assays, as well as in chronically and acutely infected cell cultures. This effect was mediated through reduction of PrPSc seeding ability, rather than an effect on PrPC. We also demonstrated the ability of TUDCA and UDCA to reduce neuronal loss in prion-infected cerebellar slice cultures. UDCA treatment reduced astrocytosis and prolonged survival in RML prion-infected mice. Interestingly, these effects were limited to the males, implying a gender-specific difference in drug metabolism. Beyond effects on PrPSc, we found that levels of phosphorylated eIF2α were increased at early time points, with correlated reductions in postsynaptic density protein 95. As demonstrated for other neurodegenerative diseases, we now show that TUDCA and UDCA may have a therapeutic role in prion diseases, with effects on both prion conversion and neuroprotection. Our findings, together with the fact that these natural compounds are orally bioavailable, permeable to the blood-brain barrier, and U.S. Food and Drug Administration-approved for use in humans, make these compounds promising alternatives for the treatment of prion diseases. IMPORTANCE Prion diseases are fatal neurodegenerative diseases that are transmissible to humans and other mammals. There are no disease-modifying therapies available, despite decades

  8. Sex effects in mouse prion disease incubation time.

    PubMed

    Akhtar, Shaheen; Wenborn, Adam; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E

    2011-01-01

    Prion disease incubation time in mice is determined by many factors including PrP expression level, Prnp alleles, genetic background, prion strain and route of inoculation. Sex differences have been described in age of onset for vCJD and in disease duration for both vCJD and sporadic CJD and have also been shown in experimental models. The sex effects reported for mouse incubation times are often contradictory and detail only one strain of mice or prions, resulting in broad generalisations and a confusing picture. To clarify the effect of sex on prion disease incubation time in mice we have compared male and female transmission data from twelve different inbred lines of mice inoculated with at least two prion strains, representing both mouse-adapted scrapie and BSE. Our data show that sex can have a highly significant difference on incubation time. However, this is limited to particular mouse and prion strain combinations. No sex differences were seen in endogenous PrP(C) levels nor in the neuropathological markers of prion disease: PrP(Sc) distribution, spongiosis, neuronal loss and gliosis. These data suggest that when comparing incubation times between experimental groups, such as testing the effects of modifier genes or therapeutics, single sex groups should be used.

  9. Metal Dyshomeostasis and Their Pathological Role in Prion and Prion-Like Diseases: The Basis for a Nutritional Approach

    PubMed Central

    Toni, Mattia; Massimino, Maria L.; De Mario, Agnese; Angiulli, Elisa; Spisni, Enzo

    2017-01-01

    Metal ions are key elements in organisms' life acting like cofactors of many enzymes but they can also be potentially dangerous for the cell participating in redox reactions that lead to the formation of reactive oxygen species (ROS). Any factor inducing or limiting a metal dyshomeostasis, ROS production and cell injury may contribute to the onset of neurodegenerative diseases or play a neuroprotective action. Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative disorders affecting the central nervous system (CNS) of human and other mammalian species. The causative agent of TSEs is believed to be the scrapie prion protein PrPSc, the β sheet-rich pathogenic isoform produced by the conformational conversion of the α-helix-rich physiological isoform PrPC. The peculiarity of PrPSc is its ability to self-propagate in exponential fashion in cells and its tendency to precipitate in insoluble and protease-resistance amyloid aggregates leading to neuronal cell death. The expression “prion-like diseases” refers to a group of neurodegenerative diseases that share some neuropathological features with prion diseases such as the involvement of proteins (α-synuclein, amyloid β, and tau) able to precipitate producing amyloid deposits following conformational change. High social impact diseases such as Alzheimer's and Parkinson's belong to prion-like diseases. Accumulating evidence suggests that the exposure to environmental metals is a risk factor for the development of prion and prion-like diseases and that metal ions can directly bind to prion and prion-like proteins affecting the amount of amyloid aggregates. The diet, source of metal ions but also of natural antioxidant and chelating agents such as polyphenols, is an aspect to take into account in addressing the issue of neurodegeneration. Epidemiological data suggest that the Mediterranean diet, based on the abundant consumption of fresh vegetables and

  10. Clinically Unsuspected Prion Disease Among Patients With Dementia Diagnoses in an Alzheimer's Disease Database.

    PubMed

    Maddox, Ryan A; Blase, J L; Mercaldo, N D; Harvey, A R; Schonberger, L B; Kukull, W A; Belay, E D

    2015-12-01

    Brain tissue analysis is necessary to confirm prion diseases. Clinically unsuspected cases may be identified through neuropathologic testing. National Alzheimer's Coordinating Center (NACC) Minimum and Neuropathologic Data Set for 1984 to 2005 were reviewed. Eligible patients had dementia, underwent autopsy, had available neuropathologic data, belonged to a currently funded Alzheimer's Disease Center (ADC), and were coded as having an Alzheimer's disease clinical diagnosis or a nonprion disease etiology. For the eligible patients with neuropathology indicating prion disease, further clinical information, collected from the reporting ADC, determined whether prion disease was considered before autopsy. Of 6000 eligible patients in the NACC database, 7 (0.12%) were clinically unsuspected but autopsy-confirmed prion disease cases. The proportion of patients with dementia with clinically unrecognized but autopsy-confirmed prion disease was small. Besides confirming clinically suspected cases, neuropathology is useful to identify unsuspected clinically atypical cases of prion disease. © The Author(s) 2015.

  11. Guinea Pig Prion Protein Supports Rapid Propagation of Bovine Spongiform Encephalopathy and Variant Creutzfeldt-Jakob Disease Prions.

    PubMed

    Watts, Joel C; Giles, Kurt; Saltzberg, Daniel J; Dugger, Brittany N; Patel, Smita; Oehler, Abby; Bhardwaj, Sumita; Sali, Andrej; Prusiner, Stanley B

    2016-11-01

    The biochemical and neuropathological properties of bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) prions are faithfully maintained upon transmission to guinea pigs. However, primary and secondary transmissions of BSE and vCJD in guinea pigs result in long incubation periods of ∼450 and ∼350 days, respectively. To determine if the incubation periods of BSE and vCJD prions could be shortened, we generated transgenic (Tg) mice expressing guinea pig prion protein (GPPrP). Inoculation of Tg(GPPrP) mice with BSE and vCJD prions resulted in mean incubation periods of 210 and 199 days, respectively, which shortened to 137 and 122 days upon serial transmission. In contrast, three different isolates of sporadic CJD prions failed to transmit disease to Tg(GPPrP) mice. Many of the strain-specified biochemical and neuropathological properties of BSE and vCJD prions, including the presence of type 2 protease-resistant PrP Sc , were preserved upon propagation in Tg(GPPrP) mice. Structural modeling revealed that two residues near the N-terminal region of α-helix 1 in GPPrP might mediate its susceptibility to BSE and vCJD prions. Our results demonstrate that expression of GPPrP in Tg mice supports the rapid propagation of BSE and vCJD prions and suggest that Tg(GPPrP) mice may serve as a useful paradigm for bioassaying these prion isolates. Variant Creutzfeldt-Jakob disease (vCJD) and bovine spongiform encephalopathy (BSE) prions are two of the prion strains most relevant to human health. However, propagating these strains in mice expressing human or bovine prion protein has been difficult because of prolonged incubation periods or inefficient transmission. Here, we show that transgenic mice expressing guinea pig prion protein are fully susceptible to vCJD and BSE prions but not to sporadic CJD prions. Our results suggest that the guinea pig prion protein is a better, more rapid substrate than either bovine or human prion protein for

  12. Correlation analysis for the incubation period of prion disease.

    PubMed

    Bae, Se-Eun; Jung, Sunghoon; Kim, Ha-Yeon; Son, Hyeon S

    2012-07-01

    Previous studies have shown that genetic quantitative trait loci (QTL), strain barriers, inoculation dose and inoculation method modulate the incubation period of prion diseases. We examined the relationship between a diverse set of physical, genetic and immunological characteristics and the incubation period of prion disease using correlation analyses. We found that incubation period was highly correlated with brain weight. In addition, mean corpuscular volume and cell size were strongly correlated with incubation period, indicating that the physical magnitude of prion-infected organs or individual cells may be important in determining the incubation period. Given the same prion inoculation dose, animals with a lower brain weight, mean corpuscular volume or cell size may experience more virulent disease, as the effective concentration of abnormal prion, which might regulate the attachment rate of prions to aggregates, is increased with smaller capacity of brains and cells. This is partly consistent with previous theoretical modeling. The strong correlations between incubation period and physical properties of the brain and cells in this study suggest that the mechanism underlying prion disease pathology may be physical, indicating that the incubation process is governed by simple chemical stoichiometry.

  13. Correlation analysis for the incubation period of prion disease

    PubMed Central

    Bae, Se-Eun; Jung, Sunghoon; Kim, Ha-Yeon; Son, Hyeon S.

    2012-01-01

    Previous studies have shown that genetic quantitative trait loci (QTL), strain barriers, inoculation dose and inoculation method modulate the incubation period of prion diseases. We examined the relationship between a diverse set of physical, genetic and immunological characteristics and the incubation period of prion disease using correlation analyses. We found that incubation period was highly correlated with brain weight. In addition, mean corpuscular volume and cell size were strongly correlated with incubation period, indicating that the physical magnitude of prion-infected organs or individual cells may be important in determining the incubation period. Given the same prion inoculation dose, animals with a lower brain weight, mean corpuscular volume or cell size may experience more virulent disease, as the effective concentration of abnormal prion, which might regulate the attachment rate of prions to aggregates, is increased with smaller capacity of brains and cells. This is partly consistent with previous theoretical modeling. The strong correlations between incubation period and physical properties of the brain and cells in this study suggest that the mechanism underlying prion disease pathology may be physical, indicating that the incubation process is governed by simple chemical stoichiometry. PMID:22561168

  14. Double-Edge Sword of Sustained ROCK Activation in Prion Diseases through Neuritogenesis Defects and Prion Accumulation

    PubMed Central

    Alleaume-Butaux, Aurélie; Nicot, Simon; Pietri, Mathéa; Baudry, Anne; Dakowski, Caroline; Tixador, Philippe; Ardila-Osorio, Hector; Haeberlé, Anne-Marie; Bailly, Yannick; Peyrin, Jean-Michel; Launay, Jean-Marie; Kellermann, Odile; Schneider, Benoit

    2015-01-01

    In prion diseases, synapse dysfunction, axon retraction and loss of neuronal polarity precede neuronal death. The mechanisms driving such polarization defects, however, remain unclear. Here, we examined the contribution of RhoA-associated coiled-coil containing kinases (ROCK), key players in neuritogenesis, to prion diseases. We found that overactivation of ROCK signaling occurred in neuronal stem cells infected by pathogenic prions (PrPSc) and impaired the sprouting of neurites. In reconstructed networks of mature neurons, PrPSc-induced ROCK overactivation provoked synapse disconnection and dendrite/axon degeneration. This overactivation of ROCK also disturbed overall neurotransmitter-associated functions. Importantly, we demonstrated that beyond its impact on neuronal polarity ROCK overactivity favored the production of PrPSc through a ROCK-dependent control of 3-phosphoinositide-dependent kinase 1 (PDK1) activity. In non-infectious conditions, ROCK and PDK1 associated within a complex and ROCK phosphorylated PDK1, conferring basal activity to PDK1. In prion-infected neurons, exacerbated ROCK activity increased the pool of PDK1 molecules physically interacting with and phosphorylated by ROCK. ROCK-induced PDK1 overstimulation then canceled the neuroprotective α-cleavage of normal cellular prion protein PrPC by TACE α-secretase, which physiologically precludes PrPSc production. In prion-infected cells, inhibition of ROCK rescued neurite sprouting, preserved neuronal architecture, restored neuronal functions and reduced the amount of PrPSc. In mice challenged with prions, inhibition of ROCK also lowered brain PrPSc accumulation, reduced motor impairment and extended survival. We conclude that ROCK overactivation exerts a double detrimental effect in prion diseases by altering neuronal polarity and triggering PrPSc accumulation. Eventually ROCK emerges as therapeutic target to combat prion diseases. PMID:26241960

  15. Disturbed vesicular trafficking of membrane proteins in prion disease.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  16. Prions, prionoids and pathogenic proteins in Alzheimer disease.

    PubMed

    Ashe, Karen H; Aguzzi, Adriano

    2013-01-01

    Like patients with prion disease, Alzheimer patients suffer from a fatal, progressive form of dementia. There is growing evidence that amyloid-β (Aβ) aggregates may be transmissible similar to prions, at least under extreme experimental conditions. However, unlike mice infected with prion protein (PrP) prions, those inoculated with Aβ do not die. The transmission of Aβ and PrP thus differs conspicuously in the neurological effects they induce in their hosts, the difference being no less than a matter of life and death. Far from being a mere academic nuance, this distinction between Aβ and PrP begs the crucial questions of what, exactly, controls prion toxicity and how prion toxicity relates to prion infectivity.

  17. MAD COW DISEASE: New Recruits for French Prion Research.

    PubMed

    Casassus, B

    2000-12-01

    As panic over "mad cow disease" engulfs France and threatens to spread to other countries in Western Europe, French research minister Roger-Gérard Schwartzenberg last week unveiled detailed plans for spending $27 million the government has earmarked for prion disease research in 2001. Next year's budget for studying prions--infectious, abnormal proteins linked to bovine spongiform encephalopathy and its human form, variant Creutzfeldt-Jakob disease--will triple France's current prion research spending.

  18. Ethical issues in human prion diseases.

    PubMed

    Tabrizi, S J; Elliott, C L; Weissmann, C

    2003-01-01

    Prion diseases or transmissible spongiform encephalopathies are a group of closely related transmissible neurodegenerative conditions of humans and animals, all of which are incurable. In recent years, they have captured public attention with the emergence of the bovine spongiform encephalopathy (BSE) epidemic in Europe, and more recently with the appearance of variant CJD (vCJD) in humans, a novel form of Creutzfeldt-Jakob disease (CJD) that is linked to dietary exposure to BSE. In this chapter, we outline ethical questions posed by research, diagnostic procedures and therapy in the field of prion diseases.

  19. Molecular pathogenesis of sporadic prion diseases in man

    PubMed Central

    Safar, Jiri G.

    2012-01-01

    The yeast, fungal and mammalian prions determine heritable and infectious traits that are encoded in alternative conformations of proteins. They cause lethal sporadic, familial and infectious neurodegenerative conditions in man, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), kuru, sporadic fatal insomnia (SFI) and likely variable protease-sensitive prionopathy (VPSPr). The most prevalent of human prion diseases is sporadic (s)CJD. Recent advances in amplification and detection of prions led to considerable optimism that early and possibly preclinical diagnosis and therapy might become a reality. Although several drugs have already been tested in small numbers of sCJD patients, there is no clear evidence of any agent’s efficacy. Therefore, it remains crucial to determine the full spectrum of sCJD prion strains and the conformational features in the pathogenic human prion protein governing replication of sCJD prions. Research in this direction is essential for the rational development of diagnostic as well as therapeutic strategies. Moreover, there is growing recognition that fundamental processes involved in human prion propagation – intercellular induction of protein misfolding and seeded aggregation of misfolded host proteins – are of far wider significance. This insight leads to new avenues of research in the ever-widening spectrum of age-related human neurodegenerative diseases that are caused by protein misfolding and that pose a major challenge for healthcare. PMID:22421210

  20. Kuru prions and sporadic Creutzfeldt–Jakob disease prions have equivalent transmission properties in transgenic and wild-type mice

    PubMed Central

    Wadsworth, Jonathan D. F.; Joiner, Susan; Linehan, Jacqueline M.; Desbruslais, Melanie; Fox, Katie; Cooper, Sharon; Cronier, Sabrina; Asante, Emmanuel A.; Mead, Simon; Brandner, Sebastian; Hill, Andrew F.; Collinge, John

    2008-01-01

    Kuru provides our principal experience of an epidemic human prion disease and primarily affected the Fore linguistic group of the Eastern Highlands of Papua New Guinea. Kuru was transmitted by the practice of consuming dead relatives as a mark of respect and mourning (transumption). To date, detailed information of the prion strain type propagated in kuru has been lacking. Here, we directly compare the transmission properties of kuru prions with sporadic, iatrogenic, and variant Creutzfeldt–Jakob disease (CJD) prions in Prnp-null transgenic mice expressing human prion protein and in wild-type mice. Molecular and neuropathological data from these transmissions show that kuru prions are distinct from variant CJD and have transmission properties equivalent to those of classical (sporadic) CJD prions. These findings are consistent with the hypothesis that kuru originated from chance consumption of an individual with sporadic CJD. PMID:18316717

  1. Lesion of the Olfactory Epithelium Accelerates Prion Neuroinvasion and Disease Onset when Prion Replication Is Restricted to Neurons

    PubMed Central

    Crowell, Jenna; Wiley, James A.; Bessen, Richard A.

    2015-01-01

    Natural prion diseases of ruminants are moderately contagious and while the gastrointestinal tract is the primary site of prion agent entry, other mucosae may be entry sites in a subset of infections. In the current study we examined prion neuroinvasion and disease induction following disruption of the olfactory epithelium in the nasal mucosa since this site contains environmentally exposed olfactory sensory neurons that project directly into the central nervous system. Here we provide evidence for accelerated prion neuroinvasion and clinical onset from the olfactory mucosa after disruption and regeneration of the olfactory epithelium and when prion replication is restricted to neurons. In transgenic mice with neuron restricted replication of prions, there was a reduction in survival when the olfactory epithelium was disrupted prior to intranasal inoculation and there was >25% decrease in the prion incubation period. In a second model, the neurotropic DY strain of transmissible mink encephalopathy was not pathogenic in hamsters by the nasal route, but 50% of animals exhibited brain infection and/or disease when the olfactory epithelium was disrupted prior to intranasal inoculation. A time course analysis of prion deposition in the brain following loss of the olfactory epithelium in models of neuron-restricted prion replication suggests that neuroinvasion from the olfactory mucosa is via the olfactory nerve or brain stem associated cranial nerves. We propose that induction of neurogenesis after damage to the olfactory epithelium can lead to prion infection of immature olfactory sensory neurons and accelerate prion spread to the brain. PMID:25822718

  2. The intricate mechanisms of neurodegeneration in prion diseases

    PubMed Central

    Soto, Claudio; Satani, Nikunj

    2010-01-01

    Prion diseases are a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission, involving a protein-only infectious agent that propagates the disease by transmitting protein conformational changes. The disease results from extensive and progressive brain degeneration. The molecular mechanisms involved in neurodegeneration are not entirely known but involve multiple processes operating simultaneously and synergistically in the brain, including spongiform degeneration, synaptic alterations, brain inflammation, neuronal death and the accumulation of protein aggregates. Here, we review the pathways implicated in prion-induced brain damage and put the pieces together into a possible model of neurodegeneration in prion disorders. A more comprehensive understanding of the molecular basis of brain degeneration is essential to develop a much needed therapy for these devastating diseases. PMID:20889378

  3. Prying into the Prion Hypothesis for Parkinson's Disease.

    PubMed

    Brundin, Patrik; Melki, Ronald

    2017-10-11

    In Parkinson's disease, intracellular α-synuclein inclusions form in neurons. We suggest that prion-like behavior of α-synuclein is a key component in Parkinson's disease pathogenesis. Although multiple molecular changes are involved in the triggering of the disease process, we propose that neuron-to-neuron transfer is a crucial event that is essential for Lewy pathology to spread from one brain region to another. In this review, we describe key findings in human postmortem brains, cultured cells, and animal models of disease that support the idea that α-synuclein can act as a prion. We consider potential triggers of the α-synuclein misfolding and why the aggregates escape cellular degradation under disease conditions. We also discuss whether different strains of α-synuclein fibrils can underlie differences in cellular and regional distribution of aggregates in different synucleinopathies. Our conclusion is that α-synuclein probably acts as a prion in human diseases, and a deeper understanding of this step in the pathogenesis of Parkinson's disease can facilitate the development of disease-modifying therapies in the future. Dual Perspectives Companion Paper: Parkinson's Disease Is Not Simply a Prion Disorder, by D. James Surmeier, José A. Obeso, and Glenda M. Halliday. Copyright © 2017 the authors 0270-6474/17/379808-11$15.00/0.

  4. A role for astroglia in prion diseases.

    PubMed

    Aguzzi, Adriano; Liu, Yingjun

    2017-12-04

    In this issue of JEM, Krejciova et al. (https://doi.org/10.1084/jem.20161547) report that astrocytes derived from human iPSCs can replicate human CJD prions. These observations provide a new, potentially very valuable model for studying human prions in cellula and for identifying antiprion compounds that might serve as clinical candidates. Furthermore, they add to the evidence that astrocytes may not be just innocent bystanders in prion diseases. © 2017 Aguzzi and Liu.

  5. Prions and prion-like proteins.

    PubMed

    Fraser, Paul E

    2014-07-18

    Prions are self-replicating protein aggregates and are the primary causative factor in a number of neurological diseases in mammals. The prion protein (PrP) undergoes a conformational transformation leading to aggregation into an infectious cellular pathogen. Prion-like protein spreading and transmission of aggregates between cells have also been demonstrated for other proteins associated with Alzheimer disease and Parkinson disease. This protein-only phenomenon may therefore have broader implications in neurodegenerative disorders. The minireviews in this thematic series highlight the recent advances in prion biology and the roles these unique proteins play in disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. CWDPRNP: A tool for cervid prion sequence analysis in program R

    USGS Publications Warehouse

    Miller, William L.; Walter, W. David

    2017-01-01

    Chronic wasting disease is a fatal, neurological disease caused by an infectious prion protein, which affects economically and ecologically important members of the family Cervidae. Single nucleotide polymorphisms within the prion protein gene have been linked to differential susceptibility to the disease in many species. Wildlife managers are seeking to determine the frequencies of disease-associated alleles and genotypes and delineate spatial genetic patterns. The CWDPRNP package, implemented in program R, provides a unified framework for analyzing prion protein gene variability and spatial structure.

  7. Direct Detection of Soil-Bound Prions

    PubMed Central

    Genovesi, Sacha; Leita, Liviana; Sequi, Paolo; Andrighetto, Igino; Sorgato, M. Catia; Bertoli, Alessandro

    2007-01-01

    Scrapie and chronic wasting disease are contagious prion diseases affecting sheep and cervids, respectively. Studies have indicated that horizontal transmission is important in sustaining these epidemics, and that environmental contamination plays an important role in this. In the perspective of detecting prions in soil samples from the field by more direct methods than animal-based bioassays, we have developed a novel immuno-based approach that visualises in situ the major component (PrPSc) of prions sorbed onto agricultural soil particles. Importantly, the protocol needs no extraction of the protein from soil. Using a cell-based assay of infectivity, we also report that samples of agricultural soil, or quartz sand, acquire prion infectivity after exposure to whole brain homogenates from prion-infected mice. Our data provide further support to the notion that prion-exposed soils retain infectivity, as recently determined in Syrian hamsters intracerebrally or orally challanged with contaminated soils. The cell approach of the potential infectivity of contaminated soil is faster and cheaper than classical animal-based bioassays. Although it suffers from limitations, e.g. it can currently test only a few mouse prion strains, the cell model can nevertheless be applied in its present form to understand how soil composition influences infectivity, and to test prion-inactivating procedures. PMID:17957252

  8. Immunology of Prion Protein and Prions.

    PubMed

    Mabbott, Neil A

    2017-01-01

    Many natural prion diseases are acquired peripherally, such as following the oral consumption of contaminated food or pasture. After peripheral exposure many prion isolates initially accumulate to high levels within the host's secondary lymphoid tissues. The replication of prions within these tissues is essential for their efficient spread to the brain where they ultimately cause neurodegeneration. This chapter describes our current understanding of the critical tissues, cells, and molecules which the prions exploit to mediate their efficient propagation from the site of exposure (such as the intestine) to the brain. Interactions between the immune system and prions are not only restricted to the secondary lymphoid tissues. Therefore, an account of how the activation status of the microglial in the brain can also influence progression of prion disease pathogenesis is provided. Prion disease susceptibility may also be influenced by additional factors such as chronic inflammation, coinfection with other pathogens, and aging. Finally, the potential for immunotherapy to provide a means of safe and effective prophylactic or therapeutic intervention in these currently untreatable diseases is considered. © 2017 Elsevier Inc. All rights reserved.

  9. Chronic wasting disease in free-ranging Wisconsin white-tailed deer

    USGS Publications Warehouse

    Joly, D.O.; Ribic, C.A.; Langenberg, J.A.; Beheler, K.; Batha, C.A.; Dhuey, B.J.; Rolley, R.E.; Bartelt, G.; VanDeelen, T.R.; Samuel, M.D.

    2003-01-01

    Three White-tailed Deer shot within 5 km during the 2001 hunting season in Wisconsin tested positive for chronic wasting disease, a prion disease of cervids. Subsequent sampling within 18 km showed a 3% prevalence (n=476). This discovery represents an important range extension for chronic wasting disease into the eastern United States.

  10. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases.

    PubMed

    Kabir, M Enamul; Safar, Jiri G

    2014-01-01

    There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrP(C)) to a misfolded pathogenic conformer (PrP(Sc)). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrP(Sc). Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrP(Sc) particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrP(Sc). Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and

  11. The Prion Concept and Synthetic Prions.

    PubMed

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  12. Gene knockout of tau expression does not contribute to the pathogenesis of prion disease.

    PubMed

    Lawson, Victoria A; Klemm, Helen M; Welton, Jeremy M; Masters, Colin L; Crouch, Peter; Cappai, Roberto; Ciccotosto, Giuseppe D

    2011-11-01

    Prion diseases or transmissible spongiform encephalopathies are a group of fatal and transmissible disorders affecting the central nervous system of humans and animals. The principal agent of prion disease transmission and pathogenesis is proposed to be an abnormal protease-resistant isoform of the normal cellular prion protein. The microtubule-associated protein tau is elevated in patients with Creutzfeldt-Jakob disease. To determine whether tau expression contributes to prion disease pathogenesis, tau knockout and control wild-type mice were infected with the M1000 strain of mouse-adapted human prions. Immunohistochemical analysis for total tau expression in prion-infected wild-type mice indicated tau aggregation in the cytoplasm of a subpopulation of neurons in regions associated with spongiform change. Western immunoblot analysis of brain homogenates revealed a decrease in total tau immunoreactivity and epitope-specific changes in tau phosphorylation. No significant difference in incubation period or other disease features were observed between tau knockout and wild-type mice with clinical prion disease. These results demonstrate that, in this model of prion disease, tau does not contribute to the pathogenesis of prion disease and that changes in the tau protein profile observed in mice with clinical prion disease occurs as a consequence of the prion-induced pathogenesis.

  13. Prion peripheralization is a host-driven trait of prion infection, independent of strain

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD), like scrapie of sheep, is a horizontally transmissible spongiform encephalopathy. Proposed natural routes of transmission for both agents include saliva, urine, and feces, and are likely related to an accumulation of misfolded prion proteins in peripheral excretory tis...

  14. Increased expression of p62/SQSTM1 in prion diseases and its association with pathogenic prion protein.

    PubMed

    Homma, Takujiro; Ishibashi, Daisuke; Nakagaki, Takehiro; Satoh, Katsuya; Sano, Kazunori; Atarashi, Ryuichiro; Nishida, Noriyuki

    2014-03-28

    Prion diseases are neurodegenerative disorders characterized by the aggregation of abnormally folded prion protein (PrP(Sc)). In this study, we focused on the mechanism of clearance of PrP(Sc), which remains unclear. p62 is a cytosolic protein known to mediate both the formation and degradation of aggregates of abnormal proteins. The levels of p62 protein increased in prion-infected brains and persistently infected cell cultures. Upon proteasome inhibition, p62 co-localized with PrP(Sc), forming a large aggregate in the perinuclear region, hereafter referred to as PrP(Sc)-aggresome. These aggregates were surrounded with autophagosome marker LC3 and lysosomes in prion-infected cells. Moreover, transient expression of the phosphomimic form of p62, which has enhanced ubiquitin-binding activity, reduced the amount of PrP(Sc) in prion-infected cells, indicating that the activation of p62 could accelerate the clearance of PrP(Sc). Our findings would thus suggest that p62 could be a target for the therapeutic control of prion diseases.

  15. Ultraviolet-ozone treatment reduces levels of disease-associated prion protein and prion infectivity

    USGS Publications Warehouse

    Johnson, C.J.; Gilbert, P.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2009-01-01

    Background. Transmissible spongiform encephalopathies (TSEs) are a group of fatal neurodegenerative diseases caused by novel infectious agents referred to as prions. Prions appear to be composed primarily, if not exclusively, of a misfolded isoform of the cellular prion protein. TSE infectivity is remarkably stable and can resist many aggressive decontamination procedures, increasing human, livestock and wildlife exposure to TSEs. Findings. We tested the hypothesis that UV-ozone treatment reduces levels of the pathogenic prion protein and inactivates the infectious agent. We found that UV-ozone treatment decreased the carbon and prion protein content in infected brain homogenate to levels undetectable by dry-ashing carbon analysis or immunoblotting, respectively. After 8 weeks of ashing, UV-ozone treatment reduced the infectious titer of treated material by a factor of at least 105. A small amount of infectivity, however, persisted despite UV-ozone treatment. When bound to either montmorillonite clay or quartz surfaces, PrPTSE was still susceptible to degradation by UV-ozone. Conclusion. Our findings strongly suggest that UV-ozone treatment can degrade pathogenic prion protein and inactivate prions, even when the agent is associated with surfaces. Using larger UV-ozone doses or combining UV-ozone treatment with other decontaminant methods may allow the sterilization of TSE-contaminated materials. ?? 2009 Aiken et al; licensee BioMed Central Ltd.

  16. Alteration of the endocannabinoid system in mouse brain during prion disease.

    PubMed

    Petrosino, S; Ménard, B; Zsürger, N; Di Marzo, V; Chabry, J

    2011-03-17

    Prion diseases are neurodegenerative disorders characterized by deposition of the pathological prion protein (PrPsc) within the brain of affected humans and animals. Microglial cell activation is a common feature of prion diseases; alterations of various neurotransmitter systems and neurotransmission have been also reported. Owing to its ability to modulate both neuroimmune responses and neurotransmission, it was of interest to study the brain endocannabinoid system in a prion-infected mouse model. The production of the endocannabinoid, 2-arachidonoyglycerol (2-AG), was enhanced 10 weeks post-infection, without alteration of the other endocannabinoid, anandamide. The CB2 receptor expression was up-regulated in brains of prion-infected mice as early as 10 weeks and up to 32 weeks post-infection whereas the mRNAs of other cannabinoid receptors (CBRs) remain unchanged. The observed alterations of the endocannabinoid system were specific for prion infection since no significant changes were observed in the brain of prion-resistant mice, that is, mice devoid of the Prnp gene. Our study highlights important alterations of the endocannabinoid system during early stages of the disease long before the clinical signs of the disease. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Fate of Prions in Soil: A Review

    PubMed Central

    Smith, Christen B.; Booth, Clarissa J.; Pedersen, Joel A.

    2011-01-01

    Prions are the etiological agents of transmissible spongiform encephalopathies (TSEs), a class of fatal neurodegenerative diseases affecting humans and other mammals. The pathogenic prion protein is a misfolded form of the host-encoded prion protein and represents the predominant, if not sole, component of the infectious agent. Environmental routes of TSE transmission are implicated in epizootics of sheep scrapie and chronic wasting disease (CWD) of deer, elk, and moose. Soil represents a plausible environmental reservoir of scrapie and CWD agents, which can persist in the environment for years. Attachment to soil particles likely influences the persistence and infectivity of prions in the environment. Effective methods to inactivate TSE agents in soil are currently lacking, and the effects of natural degradation mechanisms on TSE infectivity are largely unknown. An improved understanding of the processes affecting the mobility, persistence, and bioavailability of prions in soil is needed for the management of TSE-contaminated environments. PMID:21520752

  18. Infectious Prion Protein Alters Manganese Transport and Neurotoxicity in a Cell Culture Model of Prion Disease

    PubMed Central

    Martin, Dustin P.; Anantharam, Vellareddy; Jin, Huajun; Witte, Travis; Houk, Robert; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2011-01-01

    Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrPC). Although the exact function of PrPC has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrPC protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC50 = 428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases. PMID:21871919

  19. Lions and prions and deer demise.

    PubMed

    Miller, Michael W; Swanson, Heather M; Wolfe, Lisa L; Quartarone, Fred G; Huwer, Sherri L; Southwick, Charles H; Lukacs, Paul M

    2008-01-01

    Contagious prion diseases--scrapie of sheep and chronic wasting disease of several species in the deer family--give rise to epidemics that seem capable of compromising host population viability. Despite this prospect, the ecological consequences of prion disease epidemics in natural populations have received little consideration. Using a cohort study design, we found that prion infection dramatically lowered survival of free-ranging adult (>2-year-old) mule deer (Odocoileus hemionus): estimated average life expectancy was 5.2 additional years for uninfected deer but only 1.6 additional years for infected deer. Prion infection also increased nearly fourfold the rate of mountain lions (Puma concolor) preying on deer, suggesting that epidemics may alter predator-prey dynamics by facilitating hunting success. Despite selective predation, about one fourth of the adult deer we sampled were infected. High prevalence and low survival of infected deer provided a plausible explanation for the marked decline in this deer population since the 1980s. Remarkably high infection rates sustained in the face of intense predation show that even seemingly complete ecosystems may offer little resistance to the spread and persistence of contagious prion diseases. Moreover, the depression of infected populations may lead to local imbalances in food webs and nutrient cycling in ecosystems in which deer are important herbivores.

  20. The Ecology of Prions

    PubMed Central

    Ortega, Aimee

    2017-01-01

    SUMMARY Chronic wasting disease (CWD) affects cervids and is the only known prion disease readily transmitted among free-ranging wild animal populations in nature. The increasing spread and prevalence of CWD among cervid populations threaten the survival of deer and elk herds in North America, and potentially beyond. This review focuses on prion ecology, specifically that of CWD, and the current understanding of the role that the environment may play in disease propagation. We recount the discovery of CWD, discuss the role of the environment in indirect CWD transmission, and consider potentially relevant environmental reservoirs and vectors. We conclude by discussing how understanding the environmental persistence of CWD lends insight into transmission dynamics and potential management and mitigation strategies. PMID:28566466

  1. Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection

    NASA Astrophysics Data System (ADS)

    Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark

    2015-02-01

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  2. Prion amplification and hierarchical Bayesian modeling refine detection of prion infection.

    PubMed

    Wyckoff, A Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J; Pulford, Bruce; Wild, Margaret; Antolin, Michael; VerCauteren, Kurt; Zabel, Mark

    2015-02-10

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  3. Horizontal transmission of chronic wasting disease in reindeer

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is a naturally-occurring, fatal prion disease of cervids. Reindeer (Rangifer tarandus tarandus) are susceptible to CWD following oral challenge, and CWD was recently reported in a free-ranging reindeer of Norway. Potential contact between CWD-affected cervids and Rangif...

  4. Detecting and discriminating among pathogenic protein conformers(prions), using mass spectrometry-based and antibody-based approaches(Abstract)

    USDA-ARS?s Scientific Manuscript database

    A set of fatal neurological diseases that includes scrapie and chronic wasting disease (CWD) are caused by a pathological protein referred to as a prion (PrPSc). A prion propagates an infection by converting a normal cellular protein (PrPC) into a prion. Unlike viral, bacterial, or fungal pathogens,...

  5. Prion diseases and adult neurogenesis: how do prions counteract the brain's endogenous repair machinery?

    PubMed

    Relaño-Ginés, Aroa; Lehmann, Sylvain; Crozet, Carole

    2014-01-01

    Scientific advances in stem cell biology and adult neurogenesis have raised the hope that neurodegenerative disorders could benefit from stem cell-based therapy. Adult neurogenesis might be part of the physiological regenerative process, however it might become impaired by the disease's mechanism and therefore contribute to neurodegeneration. In prion disorders this endogenous repair system has rarely been studied. Whether adult neurogenesis plays a role or not in brain repair or in the propagation of prion pathology remains unclear. We have recently investigated the status of adult neural stem cells isolated from prion-infected mice. We were able to show that neural stem cells accumulate and replicate prions thus resulting in an alteration of their neuronal destiny. We also reproduced these results in adult neural stem cells, which were infected in vitro. The fact that endogenous adult neurogenesis could be altered by the accumulation of misfolded prion protein represents another great challenge. Inhibiting prion propagation in these cells would thus help the endogenous neurogenesis to compensate for the injured neuronal system. Moreover, understanding the endogenous modulation of the neurogenesis system would help develop effective neural stem cell-based therapies.

  6. Unraveling the key to the resistance of canids to prion diseases

    PubMed Central

    Fernández-Borges, Natalia; Sánchez-Martín, Manuel A.; Pumarola, Martí

    2017-01-01

    One of the characteristics of prions is their ability to infect some species but not others and prion resistant species have been of special interest because of their potential in deciphering the determinants for susceptibility. Previously, we developed different in vitro and in vivo models to assess the susceptibility of species that were erroneously considered resistant to prion infection, such as members of the Leporidae and Equidae families. Here we undertake in vitro and in vivo approaches to understand the unresolved low prion susceptibility of canids. Studies based on the amino acid sequence of the canine prion protein (PrP), together with a structural analysis in silico, identified unique key amino acids whose characteristics could orchestrate its high resistance to prion disease. Cell- and brain-based PMCA studies were performed highlighting the relevance of the D163 amino acid in proneness to protein misfolding. This was also investigated by the generation of a novel transgenic mouse model carrying this substitution and these mice showed complete resistance to disease despite intracerebral challenge with three different mouse prion strains (RML, 22L and 301C) known to cause disease in wild-type mice. These findings suggest that dog D163 amino acid is primarily, if not totally, responsible for the prion resistance of canids. PMID:29131852

  7. Insights into mechanisms of transmission and pathogenesis from transgenic mouse models of prion diseases

    PubMed Central

    Moreno, Julie A.; Telling, Glenn C.

    2018-01-01

    Prions represent a new paradigm of protein-mediated information transfer. In the case of mammals, prions are the cause of fatal, transmissible neurodegenerative diseases, sometimes referred to as transmissible spongiform encephalopathies (TSE’s), which frequently occur as epidemics. An increasing body of evidence indicates that the canonical mechanism of conformational corruption of cellular prion protein (PrPC) by the pathogenic isoform (PrPSc) that is the basis of prion formation in TSE’s, is common to a spectrum of proteins associated with various additional human neurodegenerative disorders, including the more common Alzheimer’s and Parkinson’s diseases. The peerless infectious properties of TSE prions, and the unparalleled tools for their study, therefore enable elucidation of mechanisms of template-mediated conformational propagation that are generally applicable to these related disease states. Many unresolved issues remain including the exact molecular nature of the prion, the detailed cellular and molecular mechanisms of prion propagation, and the means by which prion diseases can be both genetic and infectious. In addition, we know little about the mechanism by which neurons degenerate during prion diseases. Tied to this, the physiological role of the normal form of the prion protein remains unclear and it is uncertain whether or not loss of this function contributes to prion pathogenesis. The factors governing the transmission of prions between species remain unclear, in particular the means by which prion strains and PrP primary structure interact to affect inter-species prion transmission. Despite all these unknowns, advances in our understanding of prions have occurred because of their transmissibility to experimental animals and the development of transgenic (Tg) mouse models has done much to further our understanding about various aspects of prion biology. In this review we will focus on advances in our understanding of prion biology that

  8. A prion primer

    PubMed Central

    Cashman, N R

    1997-01-01

    By biological and medical criteria, prions are infectious agents; however, many of their properties differ profoundly from those of conventional microbes. Prions are "encoded" by alterations in protein conformation rather than in nucleic acid or amino acid sequence. New epidemic prion diseases (bovine spongiform encephalopathy and new variant Creutzfeldt-Jakob disease) have recently emerged under the active surveillance of the modern world. The risk of contracting prion disease from blood products or other biologicals is now a focus of worldwide concern. Much has been discovered about prions and prion diseases, but much remains to be done. PMID:9371069

  9. Alzheimer's Disease and Prion Protein

    PubMed Central

    Zhou, Jiayi; Liu, Bingqian

    2013-01-01

    Summary Alzheimer's disease (AD) is a devastating neurodegenerative disease with progressive loss of memory and cognitive function, pathologically hallmarked by aggregates of the amyloid-beta (Aβ) peptide and hyperphosphorylated tau in the brain. Aggregation of Aβ under the form of amyloid fibrils has long been considered central to the pathogenesis of AD. However, recent evidence has indicated that soluble Aβ oligomers, rather than insoluble fibrils, are the main neurotoxic species in AD. The cellular prion protein (PrPC) has newly been identified as a cell surface receptor for Aβ oligomers. PrPC is a cell surface glycoprotein that plays a key role in the propagation of prions, proteinaceous infectious agents that replicate by imposing their abnormal conformation to PrPC molecules. In AD, PrPC acts to transduce the neurotoxic signals arising from Aβ oligomers, leading to synaptic failure and cognitive impairment. Interestingly, accumulating evidence has also shown that aggregated Aβ or tau possesses prion-like activity, a property that would allow them to spread throughout the brain. In this article, we review recent findings regarding the function of PrPC and its role in AD, and discuss potential therapeutic implications of PrPC-based approaches in the treatment of AD. PMID:25343100

  10. Clinical stage of infection is critical in the antemortem diagnosis of chronic wasting disease in deer and elk

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is an efficiently transmitted spongiform encephalopathy of cervids (e.g. deer, elk, and moose), and is the only known prion disease affecting both free-ranging wildlife and captive animals. The antemortem detection of CWD and other prion diseases has proven difficult, d...

  11. Resistance of fallow deer (dama dama) to chronic wasting disease under natural exposure in a heavily contaminated environment

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease or CWD is a transmissible spongiform encephalopathy or prion disorder of cervid ruminants in several regions of the US and Canada. The prion disorders are characterized by misfolding of the host cellular prion protein into a relatively protease resistant and potentially neur...

  12. Prion Strain Characterization of a Novel Subtype of Creutzfeldt-Jakob Disease.

    PubMed

    Galeno, Roberta; Di Bari, Michele Angelo; Nonno, Romolo; Cardone, Franco; Sbriccoli, Marco; Graziano, Silvia; Ingrosso, Loredana; Fiorini, Michele; Valanzano, Angelina; Pasini, Giulia; Poleggi, Anna; Vinci, Ramona; Ladogana, Anna; Puopolo, Maria; Monaco, Salvatore; Agrimi, Umberto; Zanusso, Gianluigi; Pocchiari, Maurizio

    2017-06-01

    In 2007, we reported a patient with an atypical form of Creutzfeldt-Jakob disease (CJD) heterozygous for methionine-valine (MV) at codon 129 who showed a novel pathological prion protein (PrP TSE ) conformation with an atypical glycoform (AG) profile and intraneuronal PrP deposition. In the present study, we further characterize the conformational properties of this pathological prion protein (PrP TSE MV AG ), showing that PrP TSE MV AG is composed of multiple conformers with biochemical properties distinct from those of PrP TSE type 1 and type 2 of MV sporadic CJD (sCJD). Experimental transmission of CJD-MV AG to bank voles and gene-targeted transgenic mice carrying the human prion protein gene (TgHu mice) showed unique transmission rates, survival times, neuropathological changes, PrP TSE deposition patterns, and PrP TSE glycotypes that are distinct from those of sCJD-MV1 and sCJD-MV2. These biochemical and experimental data suggest the presence of a novel prion strain in CJD-MV AG IMPORTANCE Sporadic Creutzfeldt-Jakob disease is caused by the misfolding of the cellular prion protein, which assumes two different major conformations (type 1 and type 2) and, together with the methionine/valine polymorphic codon 129 of the prion protein gene, contribute to the occurrence of distinct clinical-pathological phenotypes. Inoculation in laboratory rodents of brain tissues from the six possible combinations of pathological prion protein types with codon 129 genotypes results in the identification of 3 or 4 strains of prions. We report on the identification of a novel strain of Creutzfeldt-Jakob disease isolated from a patient who carried an abnormally glycosylated pathological prion protein. This novel strain has unique biochemical characteristics, does not transmit to humanized transgenic mice, and shows exclusive transmission properties in bank voles. The identification of a novel human prion strain improves our understanding of the pathogenesis of the disease and of

  13. Molecular approaches to detecting and discriminating among prions, a class of pathogenic molecules(Abstract)

    USDA-ARS?s Scientific Manuscript database

    Prions (PrPSc)are the pathogens that cause a set of fatal neurological diseases that include scrapie and chronic wasting disease (CWD). They are composed solely of protein and unlike viral, bacterial, or fungal pathogens, the information necessary to convert the normal cellular prion protein (PrPC) ...

  14. Regulation of MicroRNAs-Mediated Autophagic Flux: A New Regulatory Avenue for Neurodegenerative Diseases With Focus on Prion Diseases

    PubMed Central

    Shah, Syed Zahid Ali; Zhao, Deming; Hussain, Tariq; Sabir, Naveed; Yang, Lifeng

    2018-01-01

    Prion diseases are fatal neurological disorders affecting various mammalian species including humans. Lack of proper diagnostic tools and non-availability of therapeutic remedies are hindering the control strategies for prion diseases. MicroRNAs (miRNAs) are abundant endogenous short non-coding essential RNA molecules that negatively regulate the target genes after transcription. Several biological processes depend on miRNAs, and altered profiles of these miRNAs are potential biomarkers for various neurodegenerative diseases, including prion diseases. Autophagic flux degrades the misfolded prion proteins to reduce chronic endoplasmic reticulum stress and enhance cell survival. Recent evidence suggests that specific miRNAs target and regulate the autophagic mechanism, which is critical for alleviating cellular stress. miRNAs-mediated regulation of these specific proteins involved in the autophagy represents a new target with highly significant therapeutic prospects. Here, we will briefly describe the biology of miRNAs, the use of miRNAs as potential biomarkers with their credibility, the regulatory mechanism of miRNAs in major neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and prion diseases, degradation pathways for aggregated prion proteins, the role of autophagy in prion diseases. Finally, we will discuss the miRNAs-modulated autophagic flux in neurodegenerative diseases and employ them as potential therapeutic intervention strategy in prion diseases. PMID:29867448

  15. Yeast Prions: Structure, Biology, and Prion-Handling Systems

    PubMed Central

    Shewmaker, Frank P.; Bateman, David A.; Edskes, Herman K.; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E.

    2015-01-01

    SUMMARY A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. PMID:25631286

  16. PrionHome: a database of prions and other sequences relevant to prion phenomena.

    PubMed

    Harbi, Djamel; Parthiban, Marimuthu; Gendoo, Deena M A; Ehsani, Sepehr; Kumar, Manish; Schmitt-Ulms, Gerold; Sowdhamini, Ramanathan; Harrison, Paul M

    2012-01-01

    Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions), prionoids (i.e., proteins that propagate like prions between individual cells), and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant), and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments). We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic sequences, showing

  17. PrionHome: A Database of Prions and Other Sequences Relevant to Prion Phenomena

    PubMed Central

    Harbi, Djamel; Parthiban, Marimuthu; Gendoo, Deena M. A.; Ehsani, Sepehr; Kumar, Manish; Schmitt-Ulms, Gerold; Sowdhamini, Ramanathan; Harrison, Paul M.

    2012-01-01

    Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions), prionoids (i.e., proteins that propagate like prions between individual cells), and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant), and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments). We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic sequences, showing

  18. Identification of Major Signaling Pathways in Prion Disease Progression Using Network Analysis

    PubMed Central

    Newaz, Khalique; Sriram, K.; Bera, Debajyoti

    2015-01-01

    Prion diseases are transmissible neurodegenerative diseases that arise due to conformational change of normal, cellular prion protein (PrPC) to protease-resistant isofrom (rPrPSc). Deposition of misfolded PrpSc proteins leads to an alteration of many signaling pathways that includes immunological and apoptotic pathways. As a result, this culminates in the dysfunction and death of neuronal cells. Earlier works on transcriptomic studies have revealed some affected pathways, but it is not clear which is (are) the prime network pathway(s) that change during the disease progression and how these pathways are involved in crosstalks with each other from the time of incubation to clinical death. We perform network analysis on large-scale transcriptomic data of differentially expressed genes obtained from whole brain in six different mouse strain-prion strain combination models to determine the pathways involved in prion diseases, and to understand the role of crosstalks in disease propagation. We employ a notion of differential network centrality measures on protein interaction networks to identify the potential biological pathways involved. We also propose a crosstalk ranking method based on dynamic protein interaction networks to identify the core network elements involved in crosstalk with different pathways. We identify 148 DEGs (differentially expressed genes) potentially related to the prion disease progression. Functional association of the identified genes implicates a strong involvement of immunological pathways. We extract a bow-tie structure that is potentially dysregulated in prion disease. We also propose an ODE model for the bow-tie network. Predictions related to diseased condition suggests the downregulation of the core signaling elements (PI3Ks and AKTs) of the bow-tie network. In this work, we show using transcriptomic data that the neuronal dysfunction in prion disease is strongly related to the immunological pathways. We conclude that these

  19. Yeast prions: structure, biology, and prion-handling systems.

    PubMed

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E

    2015-03-01

    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Resistance of Soil-Bound Prions to Rumen Digestion

    PubMed Central

    Saunders, Samuel E.; Bartelt-Hunt, Shannon L.; Bartz, Jason C.

    2012-01-01

    Before prion uptake and infection can occur in the lower gastrointestinal system, ingested prions are subjected to anaerobic digestion in the rumen of cervids and bovids. The susceptibility of soil-bound prions to rumen digestion has not been evaluated previously. In this study, prions from infectious brain homogenates as well as prions bound to a range of soils and soil minerals were subjected to in vitro rumen digestion, and changes in PrP levels were measured via western blot. Binding to clay appeared to protect noninfectious hamster PrPc from complete digestion, while both unbound and soil-bound infectious PrPSc proved highly resistant to rumen digestion. In addition, no change in intracerebral incubation period was observed following active rumen digestion of unbound hamster HY TME prions and HY TME prions bound to a silty clay loam soil. These results demonstrate that both unbound and soil-bound prions readily survive rumen digestion without a reduction in infectivity, further supporting the potential for soil-mediated transmission of chronic wasting disease (CWD) and scrapie in the environment. PMID:22937149

  1. Prion diseases in humans: an update.

    PubMed

    Butler, Rob

    2006-10-01

    The year 2006 marks 20 years from the first identified bovine spongiform encephalitis in cows and 10 years from the first description of variant Creutzfeldt-Jakob disease in humans. The threatened epidemic in humans now appears unlikely, but psychiatrists need to be aware of recent developments in prion diseases.

  2. Spontaneous Generation of Infectious Prion Disease in Transgenic Mice

    PubMed Central

    Castilla, Joaquín; Pintado, Belén; Gutiérrez-Adan, Alfonso; Andréoletti, Olivier; Aguilar-Calvo, Patricia; Arroba, Ana-Isabel; Parra-Arrondo, Beatriz; Ferrer, Isidro; Manzanares, Jorge; Espinosa, Juan-Carlos

    2013-01-01

    We generated transgenic mice expressing bovine cellular prion protein (PrPC) with a leucine substitution at codon 113 (113L). This protein is homologous to human protein with mutation 102L, and its genetic link with Gerstmann–Sträussler–Scheinker syndrome has been established. This mutation in bovine PrPC causes a fully penetrant, lethal, spongiform encephalopathy. This genetic disease was transmitted by intracerebral inoculation of brain homogenate from ill mice expressing mutant bovine PrP to mice expressing wild-type bovine PrP, which indicated de novo generation of infectious prions. Our findings demonstrate that a single amino acid change in the PrPC sequence can induce spontaneous generation of an infectious prion disease that differs from all others identified in hosts expressing the same PrPC sequence. These observations support the view that a variety of infectious prion strains might spontaneously emerge in hosts displaying random genetic PrPC mutations. PMID:24274622

  3. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility.

    PubMed

    Donaldson, David S; Sehgal, Anuj; Rios, Daniel; Williams, Ifor R; Mabbott, Neil A

    2016-12-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer's patches is essential for the efficient spread of disease to the brain. To replicate within Peyer's patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer's patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer's patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases.

  4. The influence of PRNP polymorphisms on human prion disease susceptibility: an update.

    PubMed

    Kobayashi, Atsushi; Teruya, Kenta; Matsuura, Yuichi; Shirai, Tsuyoshi; Nakamura, Yoshikazu; Yamada, Masahito; Mizusawa, Hidehiro; Mohri, Shirou; Kitamoto, Tetsuyuki

    2015-08-01

    Two normally occurring polymorphisms of the human PRNP gene, methionine (M)/valine (V) at codon 129 and glutamic acid (E)/lysine (K) at codon 219, can affect the susceptibility to prion diseases. It has long been recognized that 129M/M homozygotes are overrepresented in sporadic Creutzfeldt-Jakob disease (CJD) patients and variant CJD patients, whereas 219E/K heterozygotes are absent in sporadic CJD patients. In addition to these pioneering findings, recent progress in experimental transmission studies and worldwide surveillance of prion diseases have identified novel relationships between the PRNP polymorphisms and the prion disease susceptibility. For example, although 219E/K heterozygosity confers resistance against the development of sporadic CJD, this genotype is not entirely protective against acquired forms (iatrogenic CJD and variant CJD) or genetic forms (genetic CJD and Gerstmann-Sträussler-Scheinker syndrome) of prion diseases. In addition, 129M/V heterozygotes predispose to genetic CJD caused by a pathogenic PRNP mutation at codon 180. These findings show that the effects of the PRNP polymorphisms may be more complicated than previously thought. This review aims to summarize recent advances in our knowledge about the influence of the PRNP polymorphisms on the prion disease susceptibility.

  5. Mother to Offspring Transmission of Chronic Wasting Disease in Reeves’ Muntjac Deer

    PubMed Central

    Nalls, Amy V.; McNulty, Erin; Powers, Jenny; Seelig, Davis M.; Hoover, Clare; Haley, Nicholas J.; Hayes-Klug, Jeanette; Anderson, Kelly; Stewart, Paula; Goldmann, Wilfred; Hoover, Edward A.; Mathiason, Candace K.

    2013-01-01

    The horizontal transmission of prion diseases has been well characterized in bovine spongiform encephalopathy (BSE), chronic wasting disease (CWD) of deer and elk and scrapie of sheep, and has been regarded as the primary mode of transmission. Few studies have monitored the possibility of vertical transmission occurring within an infected mother during pregnancy. To study the potential for and pathway of vertical transmission of CWD in the native cervid species, we used a small cervid model–the polyestrous breeding, indoor maintainable, Reeves’ muntjac deer–and determined that the susceptibility and pathogenesis of CWD in these deer reproduce that in native mule and white-tailed deer. Moreover, we demonstrate here that CWD prions are transmitted from doe to fawn. Maternal CWD infection also appears to result in lower percentage of live birth offspring. In addition, evolving evidence from protein misfolding cyclic amplification (PMCA) assays on fetal tissues suggest that covert prion infection occurs in utero. Overall, our findings demonstrate that transmission of prions from mother to offspring can occur, and may be underestimated for all prion diseases. PMID:23977159

  6. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma.

    PubMed

    Daus, Martin L

    2016-01-04

    In 1982, the term "prions" (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being "heretical" but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the "protein-only hypothesis" expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed.

  7. Prion Diseases: Update on Mad Cow Disease, Variant Creutzfeldt-Jakob Disease, and the Transmissible Spongiform Encephalopathies.

    PubMed

    Janka, Jacqueline; Maldarelli, Frank

    2004-08-01

    Transmissible spongiform encephalopathies (TSEs) are a group of progressive, fatal neurodegenerative disorders that share a common spongiform histopathology. TSEs may be transmitted in a sporadic, familial, iatrogenic, or zoonotic fashion. The putative infectious agent of TSE, the prion, represents a novel paradigm of infectious disease with disease transmission in the absence of nucleic acid. Several small but spectacular epidemics of TSEs in man have prompted widespread public health and food safety concerns. Although TSEs affect a comparatively small number of individuals, prion research has revealed fascinating insights of direct relevance to common illnesses. This paper reviews recent advances that have shed new light on the nature of prions and TSEs.

  8. Increased Abundance of M Cells in the Gut Epithelium Dramatically Enhances Oral Prion Disease Susceptibility

    PubMed Central

    Sehgal, Anuj; Rios, Daniel

    2016-01-01

    Many natural prion diseases of humans and animals are considered to be acquired through oral consumption of contaminated food or pasture. Determining the route by which prions establish host infection will identify the important factors that influence oral prion disease susceptibility and to which intervention strategies can be developed. After exposure, the early accumulation and replication of prions within small intestinal Peyer’s patches is essential for the efficient spread of disease to the brain. To replicate within Peyer’s patches, the prions must first cross the gut epithelium. M cells are specialised epithelial cells within the epithelia covering Peyer’s patches that transcytose particulate antigens and microorganisms. M cell-development is dependent upon RANKL-RANK-signalling, and mice in which RANK is deleted only in the gut epithelium completely lack M cells. In the specific absence of M cells in these mice, the accumulation of prions within Peyer’s patches and the spread of disease to the brain was blocked, demonstrating a critical role for M cells in the initial transfer of prions across the gut epithelium in order to establish host infection. Since pathogens, inflammatory stimuli and aging can modify M cell-density in the gut, these factors may also influence oral prion disease susceptibility. Mice were therefore treated with RANKL to enhance M cell density in the gut. We show that prion uptake from the gut lumen was enhanced in RANKL-treated mice, resulting in shortened survival times and increased disease susceptibility, equivalent to a 10-fold higher infectious titre of prions. Together these data demonstrate that M cells are the critical gatekeepers of oral prion infection, whose density in the gut epithelium directly limits or enhances disease susceptibility. Our data suggest that factors which alter M cell-density in the gut epithelium may be important risk factors which influence host susceptibility to orally acquired prion diseases

  9. Emergence of two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical Creutzfeldt-Jakob disease prions.

    PubMed

    Chapuis, Jérôme; Moudjou, Mohammed; Reine, Fabienne; Herzog, Laetitia; Jaumain, Emilie; Chapuis, Céline; Quadrio, Isabelle; Boulliat, Jacques; Perret-Liaudet, Armand; Dron, Michel; Laude, Hubert; Rezaei, Human; Béringue, Vincent

    2016-02-05

    Mammalian prions are proteinaceous pathogens responsible for a broad range of fatal neurodegenerative diseases in humans and animals. These diseases can occur spontaneously, such as Creutzfeldt-Jakob disease (CJD) in humans, or be acquired or inherited. Prions are primarily formed of macromolecular assemblies of the disease-associated prion protein PrP(Sc), a misfolded isoform of the host-encoded prion protein PrP(C). Within defined host-species, prions can exist as conformational variants or strains. Based on both the M/V polymorphism at codon 129 of PrP and the electrophoretic signature of PrP(Sc) in the brain, sporadic CJD is classified in different subtypes, which may encode different strains. A transmission barrier, the mechanism of which remains unknown, limits prion cross-species propagation. To adapt to the new host, prions have the capacity to 'mutate' conformationally, leading to the emergence of a variant with new biological properties. Here, we transmitted experimentally one rare subtype of human CJD, designated cortical MM2 (129 MM with type 2 PrP(Sc)), to transgenic mice overexpressing either human or the VRQ allele of ovine PrP(C). In marked contrast with the reported absence of transmission to knock-in mice expressing physiological levels of human PrP, this subtype transmitted faithfully to mice overexpressing human PrP, and exhibited unique strain features. Onto the ovine PrP sequence, the cortical MM2 subtype abruptly evolved on second passage, thereby allowing emergence of a pair of strain variants with distinct PrP(Sc) biochemical characteristics and differing tropism for the central and lymphoid tissues. These two strain components exhibited remarkably distinct replicative properties in cell-free amplification assay, allowing the 'physical' cloning of the minor, lymphotropic component, and subsequent isolation in ovine PrP mice and RK13 cells. Here, we provide in-depth assessment of the transmissibility and evolution of one rare subtype of

  10. Transmission of scrapie prions to primate after an extended silent incubation period.

    PubMed

    Comoy, Emmanuel E; Mikol, Jacqueline; Luccantoni-Freire, Sophie; Correia, Evelyne; Lescoutra-Etchegaray, Nathalie; Durand, Valérie; Dehen, Capucine; Andreoletti, Olivier; Casalone, Cristina; Richt, Juergen A; Greenlee, Justin J; Baron, Thierry; Benestad, Sylvie L; Brown, Paul; Deslys, Jean-Philippe

    2015-06-30

    Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.

  11. Transmission of scrapie prions to primate after an extended silent incubation period

    PubMed Central

    Comoy, Emmanuel E.; Mikol, Jacqueline; Luccantoni-Freire, Sophie; Correia, Evelyne; Lescoutra-Etchegaray, Nathalie; Durand, Valérie; Dehen, Capucine; Andreoletti, Olivier; Casalone, Cristina; Richt, Juergen A.; Greenlee, Justin J.; Baron, Thierry; Benestad, Sylvie L.; Brown, Paul; Deslys, Jean-Philippe

    2015-01-01

    Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie. PMID:26123044

  12. Molecular genealogy tools for white-tailed deer with chronic wasting disease

    PubMed Central

    Ernest, Holly B.; Hoar, Bruce R.; Well, Jay A.; O’Rourke, Katherine I.

    2010-01-01

    Molecular genetic data provide powerful tools for genealogy reconstruction to reveal mechanisms underlying disease ecology. White-tailed deer (Odocoileus virginianus) congregate in matriarchal groups; kin-related close social spacing may be a factor in the spread of infectious diseases. Spread of chronic wasting disease (CWD), a prion disorder of deer and their cervid relatives, is presumed to be associated with direct contact between individuals and by exposure to shared food and water sources contaminated with prions shed by infected deer. Key aspects of disease ecology are yet unknown. DNA tools for pedigree reconstruction were developed to fill knowledge gaps in disease dynamics in prion-infected wild animals. Kinship indices using data from microsatellite loci and sequence haplotypes of mitochondrial DNA were employed to assemble genealogies. Molecular genealogy tools will be useful for landscape-level population genetic research and monitoring, in addition to epidemiologic studies examining transmission of CWD in captive and free-ranging cervids. PMID:20592847

  13. The [RNQ+] prion

    PubMed Central

    Stein, Kevin C

    2011-01-01

    The formation of fibrillar amyloid is most often associated with protein conformational disorders such as prion diseases, Alzheimer disease and Huntington disease. Interestingly, however, an increasing number of studies suggest that amyloid structures can sometimes play a functional role in normal biology. Several proteins form self-propagating amyloids called prions in the budding yeast Saccharomyces cerevisiae. These unique elements operate by creating a reversible, epigenetic change in phenotype. While the function of the non-prion conformation of the Rnq1 protein is unclear, the prion form, [RNQ+], acts to facilitate the de novo formation of other prions to influence cellular phenotypes. The [RNQ+] prion itself does not adversely affect the growth of yeast, but the overexpression of Rnq1p can form toxic aggregated structures that are not necessarily prions. The [RNQ+] prion is also involved in dictating the aggregation and toxicity of polyglutamine proteins ectopically expressed in yeast. Thus, the [RNQ+] prion provides a tractable model that has the potential to reveal significant insight into the factors that dictate how amyloid structures are initiated and propagated in both physiological and pathological contexts. PMID:22052347

  14. Variably Protease-Sensitive Prionopathy: A New Sporadic Disease of the Prion Protein

    PubMed Central

    Zou, Wen-Quan; Puoti, Gianfranco; Xiao, Xiangzhu; Yuan, Jue; Qing, Liuting; Cali, Ignazio; Shimoji, Miyuki; Langeveld, Jan P. M.; Castellani, Rudy; Notari, Silvio; Crain, Barbara; Schmidt, Robert E.; Geschwind, Michael; DeArmond, Stephen J.; Cairns, Nigel J.; Dickson, Dennis; Honig, Lawrence; Torres, Juan Maria; Mastrianni, James; Capellari, Sabina; Giaccone, Giorgio; Belay, Ermias D.; Schonberger, Lawrence B.; Cohen, Mark; Perry, George; Kong, Qingzhong; Parchi, Piero; Tagliavini, Fabrizio; Gambetti, Pierluigi

    2011-01-01

    Objective The objective of the study is to report 2 new genotypic forms of protease-sensitive prionopathy (PSPr), a novel prion disease described in 2008, in 11 subjects all homozygous for valine at codon 129 of the prion protein (PrP) gene (129VV). The 2 new PSPr forms affect individuals who are either homozygous for methionine (129MM) or heterozygous for methionine/valine (129MV). Methods Fifteen affected subjects with 129MM, 129MV, and 129VV underwent comparative evaluation at the National Prion Disease Pathology Surveillance Center for clinical, histopathologic, immunohistochemical, genotypical, and PrP characteristics. Results Disease duration (between 22 and 45 months) was significantly different in the 129VV and 129MV subjects. Most other phenotypic features along with the PrP electrophoretic profile were similar but distinguishable in the 3 129 genotypes. A major difference laid in the sensitivity to protease digestion of the disease-associated PrP, which was high in 129VV but much lower, or altogether lacking, in 129MV and 129MM. This difference prompted the substitution of the original designation with “variably protease-sensitive prionopathy” (VPSPr). None of the subjects had mutations in the PrP gene coding region. Interpretation Because all 3 129 genotypes are involved, and are associated with distinguishable phenotypes, VPSPr becomes the second sporadic prion protein disease with this feature after Creutzfeldt-Jakob disease, originally reported in 1920. However, the characteristics of the abnormal prion protein suggest that VPSPr is different from typical prion diseases, and perhaps more akin to subtypes of Gerstmann-Sträussler-Scheinker disease. PMID:20695009

  15. Meat and bone meal and mineral feed additives may increase the risk of oral prion disease transmission

    USGS Publications Warehouse

    Johnson, C.J.; McKenzie, D.; Pedersen, J.A.; Aiken, Judd M.

    2011-01-01

    Ingestion of prion-contaminated materials is postulated to be a primary route of prion disease transmission. Binding of prions to soil (micro)particles dramatically enhances peroral disease transmission relative to unbound prions, and it was hypothesized that micrometer-sized particles present in other consumed materials may affect prion disease transmission via the oral route of exposure. Small, insoluble particles are present in many substances, including soil, human foods, pharmaceuticals, and animal feeds. It is known that meat and bone meal (MBM), a feed additive believed responsible for the spread of bovine spongiform encephalopathy (BSE), contains particles smaller than 20 ??m and that the pathogenic prion protein binds to MBM. The potentiation of disease transmission via the oral route by exposure to MBM or three micrometer-sized mineral feed additives was determined. Data showed that when the disease agent was bound to any of the tested materials, the penetrance of disease was increased compared to unbound prions. Our data suggest that in feed or other prion-contaminated substances consumed by animals or, potentially, humans, the addition of MBM or the presence of microparticles could heighten risks of prion disease acquisition. Copyright ?? 2011 Taylor & Francis Group, LLC.

  16. Meat and bone meal and mineral feed additives may increase the risk of oral prion disease transmission

    USGS Publications Warehouse

    Johnson, Christopher J.; McKenzie, Debbie; Pedersen, Joel A.; Aiken, Judd M.

    2011-01-01

    Ingestion of prion-contaminated materials is postulated to be a primary route of prion disease transmission. Binding of prions to soil (micro)particles dramatically enhances peroral disease transmission relative to unbound prions, and it was hypothesized that micrometer-sized particles present in other consumed materials may affect prion disease transmission via the oral route of exposure. Small, insoluble particles are present in many substances, including soil, human foods, pharmaceuticals, and animal feeds. It is known that meat and bone meal (MBM), a feed additive believed responsible for the spread of bovine spongiform encephalopathy (BSE), contains particles smaller than 20 μm and that the pathogenic prion protein binds to MBM. The potentiation of disease transmission via the oral route by exposure to MBM or three micrometer-sized mineral feed additives was determined. Data showed that when the disease agent was bound to any of the tested materials, the penetrance of disease was increased compared to unbound prions. Our data suggest that in feed or other prion-contaminated substances consumed by animals or, potentially, humans, the addition of MBM or the presence of microparticles could heighten risks of prion disease acquisition.

  17. Yeast Prions and Human Prion-like Proteins: Sequence Features and Prediction Methods

    PubMed Central

    Cascarina, Sean; Ross, Eric D.

    2014-01-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis (ALS). This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms. PMID:24390581

  18. Yeast prions and human prion-like proteins: sequence features and prediction methods.

    PubMed

    Cascarina, Sean M; Ross, Eric D

    2014-06-01

    Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

  19. Human Tonsil-Derived Follicular Dendritic-Like Cells are Refractory to Human Prion Infection in Vitro and Traffic Disease-Associated Prion Protein to Lysosomes

    PubMed Central

    Krejciova, Zuzana; De Sousa, Paul; Manson, Jean; Ironside, James W.; Head, Mark W.

    2014-01-01

    The molecular mechanisms involved in human cellular susceptibility to prion infection remain poorly defined. This is due, in part, to the absence of any well characterized and relevant cultured human cells susceptible to infection with human prions, such as those involved in Creutzfeldt-Jakob disease. In variant Creutzfeldt-Jakob disease, prion replication is thought to occur first in the lymphoreticular system and then spread into the brain. We have, therefore, examined the susceptibility of a human tonsil-derived follicular dendritic cell-like cell line (HK) to prion infection. HK cells were found to display a readily detectable, time-dependent increase in cell-associated abnormal prion protein (PrPTSE) when exposed to medium spiked with Creutzfeldt-Jakob disease brain homogenate, resulting in a coarse granular perinuclear PrPTSE staining pattern. Despite their high level of cellular prion protein expression, HK cells failed to support infection, as judged by longer term maintenance of PrPTSE accumulation. Colocalization studies revealed that exposure of HK cells to brain homogenate resulted in increased numbers of detectable lysosomes and that these structures immunostained intensely for PrPTSE after exposure to Creutzfeldt-Jakob disease brain homogenate. Our data suggest that human follicular dendritic-like cells and perhaps other human cell types are able to avoid prion infection by efficient lysosomal degradation of PrPTSE. PMID:24183781

  20. Nanomedicine for prion disease treatment: new insights into the role of dendrimers.

    PubMed

    McCarthy, James M; Appelhans, Dietmar; Tatzelt, Jörg; Rogers, Mark S

    2013-01-01

    Despite their devastating impact, no effective therapeutic yet exists for prion diseases at the symptomatic stage in humans or animals. Progress is hampered by the difficulty in identifying compounds that affect PrP (Sc) and the necessity of any potential therapeutic to gain access to the CNS. Synthetic polymers known as dendrimers are a particularly promising candidate in this area. Studies with cell culture models of prion disease and prion infected brain homogenate have demonstrated that numerous species of dendrimers eliminate PrP (Sc) in a dose and time dependent fashion and specific glycodendrimers are capable of crossing the CNS. However, despite their potential a number of important questions remained unanswered such as what makes an effective dendrimer and how dendrimers eliminate prions intracellularly. In a number of recent studies we have tackled these questions and revealed for the first time that a specific dendrimer can inhibit the intracellular conversion of PrP (C) to PrP (Sc) and that a high density of surface reactive groups is a necessity for dendrimers in vitro anti-prion activity. Understanding how a therapeutic works is a vital component in maximising its activity and these studies therefore represent a significant development in the race to find effective treatments for prion diseases.

  1. Prions in Yeast

    PubMed Central

    Liebman, Susan W.; Chernoff, Yury O.

    2012-01-01

    The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the “protein only” model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions. PMID:22879407

  2. Disease Transmission by Misfolded Prion-Protein Isoforms, Prion-Like Amyloids, Functional Amyloids and the Central Dogma

    PubMed Central

    Daus, Martin L.

    2016-01-01

    In 1982, the term “prions” (proteinaceous infectious particles) was coined to specify a new principle of infection. A misfolded isoform of a cellular protein has been described as the causative agent of a fatal neurodegenerative disease. At the beginning of prion research scientists assumed that the infectious agent causing transmissible spongiform encephalopathy (TSE) was a virus, but some unconventional properties of these pathogens were difficult to bring in line with the prevailing viral model. The discovery that prions (obviously devoid of any coding nucleic acid) can store and transmit information similarly to DNA was initially even denoted as being “heretical” but is nowadays mainly accepted by the scientific community. This review describes, from a historical point of view, how the “protein-only hypothesis” expands the Central Dogma. Definition of both, the prion principle and the Central Dogma, have been essential steps to understand information storage and transfer within and among cells and organisms. Furthermore, the current understanding of the infectivity of prion-proteins after misfolding is summarized succinctly. Finally, prion-like amyloids and functional amyloids, as found in yeast and bacteria, will be discussed. PMID:26742083

  3. MEAT AND BONE MEAL AND MINERAL FEED ADDITIVES MAY INCREASE THE RISK OF ORAL PRION DISEASE TRANSMISSION

    PubMed Central

    Johnson, Christopher J.; McKenzie, Debbie; Pedersen, Joel A.; Aiken, Judd M.

    2011-01-01

    Ingestion of prion-contaminated materials is postulated to be a primary route of prion disease transmission. Binding of prions to soil (micro)particles dramatically enhances peroral disease transmission relative to unbound prions, and it was hypothesized that micrometer–sized particles present in other consumed materials may affect prion disease transmission via the oral route of exposure. Small, insoluble particles are present in many substances, including soil, human foods, pharmaceuticals, and animal feeds. It is known that meat and bone meal (MBM), a feed additive believed responsible for the spread of bovine spongiform encephalopathy (BSE), contains particles smaller than 20 μm and that the pathogenic prion protein binds to MBM. The potentiation of disease transmission via the oral route by exposure to MBM or three micrometer-sized mineral feed additives was determined. Data showed that when the disease agent was bound to any of the tested materials, the penetrance of disease was increased compared to unbound prions. Our data suggest that in feed or other prion–contaminated substances consumed by animals or, potentially, humans, the addition of MBM or the presence of microparticles could heighten risks of prion disease acquisition. PMID:21218345

  4. Soil humic substances hinder the propagation of prions

    NASA Astrophysics Data System (ADS)

    Leita, Liviana; Giachin, Gabriele; Margon, Alja; Narkiewicz, Joanna; Legname, Giuseppe

    2013-04-01

    Prions are infectious pathogens causing fatal neurodegenerative disorders, known as transmissible spongiform encephalopathies (TSEs), or prion diseases, which affect different mammalian species. TSEs include scrapie in sheep, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in mule deer, elk, and moose (cervids), and Creutzfeldt-Jakob disease (CJD) in humans. The prominent, if not only, component of prions is a misfolded conformer (PrPSc) of a constitutive sialoglycoprotein, the cellular prion protein (PrPC). A notable feature of prion diseases is horizontal transmission between grazing animals, implying that contaminated soil may serve to propagate the disease. In this respect, it has been reported that grazing animals ingest from tens to hundreds grams of soil per day, either incidentally through the diet, or deliberately in answering salt needs, and that mule deer can develop CWD after grazing in locations that previously housed infected animals. Prions may enter the environment through different routes, including animal excreta and secreta which mainly contribute to soil contamination. Recent studies have proven that prions can be retained in soil, which could act as a carrier of infectivity even several years after the contamination. However, within the large spread of potentially infected lands, prion diseases have become endemic only in geographically limited regions. The reasons for this geographical distribution remain unknown, but it suggests a role of the different kinds of soil in either enhancing or attenuating prion infectivity. The extent of prion transmission from the contaminated environment is unknown. Several studies have tried to address the issue of prion interaction with soil, but, at the present, different approaches show several drawbacks and technical difficulties, as soil is a complex, multi-component system of both mineral and organic interacting substances. Most research has focused on the adsorption

  5. Life cycle of cytosolic prions.

    PubMed

    Hofmann, Julia; Vorberg, Ina

    2013-01-01

    Prions are self-templating protein aggregates that were originally identified as the causative agent of prion diseases in mammals, but have since been discovered in other kingdoms. Mammalian prions represent a unique class of infectious agents that are composed of misfolded prion protein. Prion proteins usually exist as soluble proteins but can refold and assemble into highly ordered, self-propagating prion polymers. The prion concept is also applicable to a growing number of non-Mendelian elements of inheritance in lower eukaryotes. While prions identified in mammals are clearly pathogens, prions in lower eukaryotes can be either detrimental or beneficial to the host. Prion phenotypes in fungi are transmitted vertically from mother to daughter cells during cell division and horizontally during mating or abortive mating, but extracellular phases have not been reported. Recent findings now demonstrate that in a mammalian cell environment, protein aggregates derived from yeast prion domains exhibit a prion life cycle similar to mammalian prions propagated ex vivo. This life cycle includes a soluble state of the protein, an induction phase by exogenous prion fibrils, stable replication of prion entities, vertical transmission to progeny and natural horizontal transmission to neighboring cells. Our data reveal that mammalian cells contain all co-factors required for cytosolic prion propagation and dissemination. This has important implications for understanding prion-like properties of disease-related protein aggregates. In light of the growing number of identified functional amyloids, cell-to-cell propagation of cytosolic protein conformers might not only be relevant for the spreading of disease-associated proteins, but might also be of more general relevance under non-disease conditions.

  6. Sod1 deficiency reduces incubation time in mouse models of prion disease.

    PubMed

    Akhtar, Shaheen; Grizenkova, Julia; Wenborn, Adam; Hummerich, Holger; Fernandez de Marco, Mar; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E

    2013-01-01

    Prion infections, causing neurodegenerative conditions such as Creutzfeldt-Jakob disease and kuru in humans, scrapie in sheep and BSE in cattle are characterised by prolonged and variable incubation periods that are faithfully reproduced in mouse models. Incubation time is partly determined by genetic factors including polymorphisms in the prion protein gene. Quantitative trait loci studies in mice and human genome-wide association studies have confirmed that multiple genes are involved. Candidate gene approaches have also been used and identified App, Il1-r1 and Sod1 as affecting incubation times. In this study we looked for an association between App, Il1-r1 and Sod1 representative SNPs and prion disease incubation time in the Northport heterogeneous stock of mice inoculated with the Chandler/RML prion strain. No association was seen with App, however, significant associations were seen with Il1-r1 (P = 0.02) and Sod1 (P<0.0001) suggesting that polymorphisms at these loci contribute to the natural variation observed in incubation time. Furthermore, following challenge with Chandler/RML, ME7 and MRC2 prion strains, Sod1 deficient mice showed highly significant reductions in incubation time of 20, 13 and 24%, respectively. No differences were detected in Sod1 expression or activity. Our data confirm the protective role of endogenous Sod1 in prion disease.

  7. Prion pathogenesis and secondary lymphoid organs (SLO): tracking the SLO spread of prions to the brain.

    PubMed

    Mabbott, Neil A

    2012-01-01

    Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrP (Sc), an abnormally folded isoform of the cellular prion protein (PrP (C)), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases.

  8. The role of genetics in chronic wasting disease of North American cervids

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is an important management issue for many North American cervid populations. This fatal prion disease has led to deer population declines in areas with high infection rates and to economic loses even in low-prevalence areas. Because potential for cross-species transmiss...

  9. An Enzymatic Treatment of Soil-Bound Prions Effectively Inhibits Replication ▿

    PubMed Central

    Saunders, Samuel E.; Bartz, Jason C.; Vercauteren, Kurt C.; Bartelt-Hunt, Shannon L.

    2011-01-01

    Chronic wasting disease (CWD) and scrapie can be transmitted through indirect environmental routes, possibly via soil, and a practical decontamination strategy for prion-contaminated soil is currently unavailable. In the laboratory, an enzymatic treatment under environmentally relevant conditions (22°C, pH 7.4) can degrade soil-bound PrPSc below the limits of Western blot detection. We developed and used a quantitative serial protein misfolding cyclic amplification (PMCA) protocol to characterize the amplification efficiency of treated soil samples relative to controls of known infectious titer. Our results suggest large (104- to >106-fold) decreases in soil-bound prion infectivity following enzyme treatment, demonstrating that a mild enzymatic treatment could effectively reduce the risk of prion disease transmission via soil or other environmental surfaces. PMID:21571886

  10. Infectivity-associated PrPSc and disease duration-associated PrPSc of mouse BSE prions

    PubMed Central

    Miyazawa, Kohtaro; Okada, Hiroyuki; Masujin, Kentaro; Iwamaru, Yoshifumi; Yokoyama, Takashi

    2015-01-01

    ABSTRACT Disease-related prion protein (PrPSc), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrPSc in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the prion infectivity was not simply proportional to the amount of PrPSc in the brain. Centrifugation (20,000 ×g) of the brain homogenate showed that most of the PrPSc was precipitated into the pellet, and the supernatant contained only a slight amount of PrPSc. Interestingly, mice inoculated with the obtained supernatant showed incubation periods that were approximately 15 d longer than those of mice inoculated with the crude homogenate even though both inocula contained almost the same infectivity. Our results suggest that a small population of fine PrPSc may be responsible for prion infectivity and that large, aggregated PrPSc may contribute to determining prion disease duration. PMID:26555211

  11. Prion protein degradation by lichens of the genus Cladonia

    USGS Publications Warehouse

    Bennett, James P.; Rodriguez, Cynthia M.; Johnson, Christopher J.

    2012-01-01

    It has recently been discovered that lichens contain a serine protease capable of degrading the pathogenic prion protein, the etiological agent of prion diseases such as sheep scrapie and cervid chronic wasting disease. Limited methods are available to degrade or inactivate prion disease agents, especially in the environment, and lichens or their serine protease could prove important for management of these diseases. Scant information is available regarding the presence or absence of the protease responsible for degrading prion protein (PrP) in lichen species and, in this study, we tested the hypothesis that PrP degradation activity in lichens is phylogenetically-based by testing 44 species of Cladonia lichens, a genus for which a significant portion of the phylogeny is well established. We categorized PrP degradation activity among the 44 species (high, moderate, low or none) and found that activity in Cladonia species did not correspond with phylogenetic position of the species. Degradation of PrP did correspond, however, with three classical taxonomic characters within the genus: species with brown apothecia, no usnic acid, and the presence of a cortex. Of the 44 species studied, 18 (41%) had either high or moderate PrP degradation activity, suggesting the protease may be frequent in this genus of lichens.

  12. [Doctor Francoise Cathala and history of prions diseases].

    PubMed

    Court, L; Hauw, J-J

    2015-12-01

    Doctor Françoise Cathala Pagesy, MD, MS, born on July 7, 1921 in Paris, passed away peacefully at home on November 5, 2012. Unconventional, passionate and enthusiastic neurologist and virologist, she devoted her life to research on latent and slow viral infections, specializing mainly on unconventional transmissible agents or prions. As a research member of Inserm (French Institute for Medical Research), she soon joined the team of Carlton Gajdusek (the NINCDS - National Institute of Nervous Central System and Stroke - of NIH), who first demonstrated the transmissibility of kuru and Creutzfeldt-Jakob disease to monkeys. When she came back to Paris, where she was followed by one of NIH members, Paul Brown, she joined the Centre de Recherches du Service de Santé des Armées (Army Health Research Center), in Percy-Clamart, where she found the experimental design and the attentive help needed for her research, which appeared heretical to many French virologists, including some authorities. A large number of research programs were set up with numerous collaborations involving CEA (Center for Atomic Energy) and other institutions in Paris and Marseilles on epidemiology, results of tissue inoculation, electrophysiology and neuropathology of human and animal prions diseases, and resistance of the infectious agent. International symposia were set up, where met, in the Val-de-Grâce hospital in Paris, the research community on "slow viral diseases". Stanley Prusiner introduced the concept - then badly accepted and still in evolution - of prion, a protein only infectious agent. Before retiring from Inserm, Françoise Cathala predicted and was involved in some of the huge sanitary crises in France. These were, first, Creutzfeldt-Jakob disease from contaminated growth hormone extracted from cadavers, which led parents to instigate legal procedure - a quite unusual practice in France. The second was Mad cow disease in the United Kingdom then in France, followed by new variant

  13. Evidence for distinct chronic wasting disease (CWD) strains in experimental CWD in ferrets

    PubMed Central

    Perrott, Matthew R.; Sigurdson, Christina J.; Mason, Gary L.

    2012-01-01

    Chronic wasting disease (CWD) is an evolving prion disease of cervids (deer, elk and moose) that has been recognized in North America and Korea. Infection of non-cervid reservoir or transport species in nature is not reported. However, the ferret (Mustela putorius furo) is susceptible to CWD after experimental inoculation. Here, we report that infection of ferrets with either of two ferret CWD isolates by various routes of exposure has revealed biologically distinct strain-like properties distinguished by different clinical progression and survival period. The isolates of ferret CWD were also differentiated by the distribution of the infectious prion protein (PrPCWD) in the brain and periphery, and by the proteinase K sensitivity of PrPCWD. These findings suggest that diversity in prion conformers exists in CWD-infected cervids. PMID:21918005

  14. Evidence that bank vole PrP is a universal acceptor for prions.

    PubMed

    Watts, Joel C; Giles, Kurt; Patel, Smita; Oehler, Abby; DeArmond, Stephen J; Prusiner, Stanley B

    2014-04-01

    Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP), we inoculated Tg(M109) and Tg(I109) mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109) and Tg(I109) mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD) subtype MM1, into Tg(M109) mice gave incubation periods of ∼200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ∼250 days, which shortened to ∼150 days upon second passage in Tg(M109) mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109) mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates--including the size of proteinase K-resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability--were remarkably conserved upon serial passage in Tg(M109) mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions.

  15. The Good, the Bad, and the Ugly of Dendritic Cells during Prion Disease

    PubMed Central

    Mabbott, Neil Andrew; Bradford, Barry Matthew

    2015-01-01

    Prions are a unique group of proteinaceous pathogens which cause neurodegenerative disease and can be transmitted by a variety of exposure routes. After peripheral exposure, the accumulation and replication of prions within secondary lymphoid organs are obligatory for their efficient spread from the periphery to the brain where they ultimately cause neurodegeneration and death. Mononuclear phagocytes (MNP) are a heterogeneous population of dendritic cells (DC) and macrophages. These cells are abundant throughout the body and display a diverse range of roles based on their anatomical locations. For example, some MNP are strategically situated to provide a first line of defence against pathogens by phagocytosing and destroying them. Conventional DC are potent antigen presenting cells and migrate via the lymphatics to the draining lymphoid tissue where they present the antigens to lymphocytes. The diverse roles of MNP are also reflected in various ways in which they interact with prions and in doing so impact on disease pathogenesis. Indeed, some studies suggest that prions exploit conventional DC to infect the host. Here we review our current understanding of the influence of MNP in the pathogenesis of the acquired prion diseases with particular emphasis on the role of conventional DC. PMID:26697507

  16. Estimating Prion Adsorption Capacity of Soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS)

    PubMed Central

    Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043

  17. Estimating prion adsorption capacity of soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS).

    PubMed

    Wyckoff, A Christy; Lockwood, Krista L; Meyerett-Reid, Crystal; Michel, Brady A; Bender, Heather; VerCauteren, Kurt C; Zabel, Mark D

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200 × g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.

  18. Tau prions from Alzheimer’s disease and chronic traumatic encephalopathy patients propagate in cultured cells

    PubMed Central

    Woerman, Amanda L.; Aoyagi, Atsushi; Patel, Smita; Kazmi, Sabeen A.; Lobach, Iryna; Grinberg, Lea T.; McKee, Ann C.; Seeley, William W.; Olson, Steven H.; Prusiner, Stanley B.

    2016-01-01

    Tau prions are thought to aggregate in the central nervous system, resulting in neurodegeneration. Among the tauopathies, Alzheimer’s disease (AD) is the most common, whereas argyrophilic grain disease (AGD), corticobasal degeneration (CBD), chronic traumatic encephalopathy (CTE), Pick’s disease (PiD), and progressive supranuclear palsy (PSP) are less prevalent. Brain extracts from deceased individuals with PiD, a neurodegenerative disorder characterized by three-repeat (3R) tau prions, were used to infect HEK293T cells expressing 3R tau fused to yellow fluorescent protein (YFP). Extracts from AGD, CBD, and PSP patient samples, which contain four-repeat (4R) tau prions, were transmitted to HEK293 cells expressing 4R tau fused to YFP. These studies demonstrated that prion propagation in HEK cells requires isoform pairing between the infecting prion and the recipient substrate. Interestingly, tau aggregates in AD and CTE, containing both 3R and 4R isoforms, were unable to robustly infect either 3R- or 4R-expressing cells. However, AD and CTE prions were able to replicate in HEK293T cells expressing both 3R and 4R tau. Unexpectedly, increasing the level of 4R isoform expression alone supported the propagation of both AD and CTE prions. These results allowed us to determine the levels of tau prions in AD and CTE brain extracts. PMID:27911827

  19. Crystallographic Studies of Prion Protein (PrP) Segments Suggest How Structural Changes Encoded by Polymorphism at Residue 129 Modulate Susceptibility to Human Prion Disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostol, Marcin I.; Sawaya, Michael R.; Cascio, Duilio

    2010-09-23

    A single nucleotide polymorphism (SNP) in codon 129 of the human prion gene, leading to a change from methionine to valine at residue 129 of prion protein (PrP), has been shown to be a determinant in the susceptibility to prion disease. However, the molecular basis of this effect remains unexplained. In the current study, we determined crystal structures of prion segments having either Met or Val at residue 129. These 6-residue segments of PrP centered on residue 129 are 'steric zippers,' pairs of interacting {beta}-sheets. Both structures of these 'homozygous steric zippers' reveal direct intermolecular interactions between Met or Valmore » in one sheet and the identical residue in the mating sheet. These two structures, plus a structure-based model of the heterozygous Met-Val steric zipper, suggest an explanation for the previously observed effects of this locus on prion disease susceptibility and progression.« less

  20. Cell Biology Approaches to Studying Prion Diseases.

    PubMed

    Priola, Suzette A

    2017-01-01

    During the course of prion infection, the normally soluble and protease-sensitive mammalian prion protein (PrP C ) is refolded into an insoluble, partially protease-resistant, and infectious form called PrP Sc . The conformational conversion of PrP C to PrP Sc is a critical event during prion infection and is essential for the production of prion infectivity. This chapter briefly summarizes the ways in which cell biological approaches have enhanced our understanding of how PrP contributes to different aspects of prion pathogenesis.

  1. Porcine prion protein amyloid.

    PubMed

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  2. Increased infectivity of anchorless mouse scrapie prions in transgenic mice overexpressing human prion protein.

    PubMed

    Race, Brent; Phillips, Katie; Meade-White, Kimberly; Striebel, James; Chesebro, Bruce

    2015-06-01

    Prion protein (PrP) is found in all mammals, mostly as a glycoprotein anchored to the plasma membrane by a C-terminal glycosylphosphatidylinositol (GPI) linkage. Following prion infection, host protease-sensitive prion protein (PrPsen or PrPC) is converted into an abnormal, disease-associated, protease-resistant form (PrPres). Biochemical characteristics, such as the PrP amino acid sequence, and posttranslational modifications, such as glycosylation and GPI anchoring, can affect the transmissibility of prions as well as the biochemical properties of the PrPres generated. Previous in vivo studies on the effects of GPI anchoring on prion infectivity have not examined cross-species transmission. In this study, we tested the effect of lack of GPI anchoring on a species barrier model using mice expressing human PrP. In this model, anchorless 22L prions derived from tg44 mice were more infectious than 22L prions derived from C57BL/10 mice when tested in tg66 transgenic mice, which expressed wild-type anchored human PrP at 8- to 16-fold above normal. Thus, the lack of the GPI anchor on the PrPres from tg44 mice appeared to reduce the effect of the mouse-human PrP species barrier. In contrast, neither source of prions induced disease in tgRM transgenic mice, which expressed human PrP at 2- to 4-fold above normal. Prion protein (PrP) is found in all mammals, usually attached to cells by an anchor molecule called GPI. Following prion infection, PrP is converted into a disease-associated form (PrPres). While most prion diseases are species specific, this finding is not consistent, and species barriers differ in strength. The amino acid sequence of PrP varies among species, and this variability affects prion species barriers. However, other PrP modifications, including glycosylation and GPI anchoring, may also influence cross-species infectivity. We studied the effect of PrP GPI anchoring using a mouse-to-human species barrier model. Experiments showed that prions produced by

  3. Distinct prion-like strains of amyloid beta implicated in phenotypic diversity of Alzheimer's disease.

    PubMed

    Cohen, Mark; Appleby, Brian; Safar, Jiri G

    2016-01-01

    Vast evidence on human prions demonstrates that variable disease phenotypes, rates of propagation, and targeting of distinct brain structures are determined by unique conformers (strains) of pathogenic prion protein (PrP(Sc)). Recent progress in the development of advanced biophysical tools that inventory structural characteristics of amyloid beta (Aβ) in the brain cortex of phenotypically diverse Alzheimer's disease (AD) patients, revealed unique spectrum of oligomeric particles in the cortex of rapidly progressive cases, implicating these structures in variable rates of propagation in the brain, and in distict disease manifestation. Since only ∼30% of phenotypic diversity of AD can be explained by polymorphisms in risk genes, these and transgenic bioassay data argue that structurally distinct Aβ particles play a major role in the diverse pathogenesis of AD, and may behave as distinct prion-like strains encoding diverse phenotypes. From these observations and our growing understanding of prions, there is a critical need for new strain-specific diagnostic strategies for misfolded proteins causing these elusive disorders. Since targeted drug therapy can induce mutation and evolution of prions into new strains, effective treatments of AD will require drugs that enhance clearance of pathogenic conformers, reduce the precursor protein, or inhibit the conversion of precursors into prion-like states.

  4. Prion pathogenesis and secondary lymphoid organs (SLO)

    PubMed Central

    Mabbott, Neil A.

    2012-01-01

    Prion diseases are subacute neurodegenerative diseases that affect humans and a range of domestic and free-ranging animal species. These diseases are characterized by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. The pathology during prion disease appears to occur almost exclusively within the central nervous system. The extensive neurodegeneration which occurs ultimately leads to the death of the host. An intriguing feature of the prion diseases, when compared with other protein-misfolding diseases, is their transmissibility. Following peripheral exposure, some prion diseases accumulate to high levels within lymphoid tissues. The replication of prions within lymphoid tissue has been shown to be important for the efficient spread of disease to the brain. This article describes recent progress in our understanding of the cellular mechanisms that influence the propagation of prions from peripheral sites of exposure (such as the lumen of the intestine) to the brain. A thorough understanding of these events will lead to the identification of important targets for therapeutic intervention, or alternatively, reveal additional processes that influence disease susceptibility to peripherally-acquired prion diseases. PMID:22895090

  5. A closer look at prion strains

    PubMed Central

    Solforosi, Laura; Milani, Michela; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto

    2013-01-01

    Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states. Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages. This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves. PMID:23357828

  6. The Gut-Associated Lymphoid Tissues in the Small Intestine, Not the Large Intestine, Play a Major Role in Oral Prion Disease Pathogenesis

    PubMed Central

    Donaldson, David S.; Else, Kathryn J.

    2015-01-01

    ABSTRACT Prion diseases are infectious neurodegenerative disorders characterized by accumulations of abnormally folded cellular prion protein in affected tissues. Many natural prion diseases are acquired orally, and following exposure, the early replication of some prion isolates upon follicular dendritic cells (FDC) within gut-associated lymphoid tissues (GALT) is important for the efficient spread of disease to the brain (neuroinvasion). Prion detection within large intestinal GALT biopsy specimens has been used to estimate human and animal disease prevalence. However, the relative contributions of the small and large intestinal GALT to oral prion pathogenesis were unknown. To address this issue, we created mice that specifically lacked FDC-containing GALT only in the small intestine. Our data show that oral prion disease susceptibility was dramatically reduced in mice lacking small intestinal GALT. Although these mice had FDC-containing GALT throughout their large intestines, these tissues were not early sites of prion accumulation or neuroinvasion. We also determined whether pathology specifically within the large intestine might influence prion pathogenesis. Congruent infection with the nematode parasite Trichuris muris in the large intestine around the time of oral prion exposure did not affect disease pathogenesis. Together, these data demonstrate that the small intestinal GALT are the major early sites of prion accumulation and neuroinvasion after oral exposure. This has important implications for our understanding of the factors that influence the risk of infection and the preclinical diagnosis of disease. IMPORTANCE Many natural prion diseases are acquired orally. After exposure, the accumulation of some prion diseases in the gut-associated lymphoid tissues (GALT) is important for efficient spread of disease to the brain. However, the relative contributions of GALT in the small and large intestines to oral prion pathogenesis were unknown. We show that the

  7. Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease

    PubMed Central

    Concha-Marambio, Luis; Pritzkow, Sandra; Moda, Fabio; Tagliavini, Fabrizio; Ironside, James W.; Schulz, Paul E.; Soto, Claudio

    2017-01-01

    Human prion diseases are infectious and invariably fatal neurodegenerative diseases. They include sporadic Creutzfeldt-Jakob disease (sCJD), the most common form, and variant CJD (vCJD), which is caused by interspecies transmission of prions from cattle infected by bovine spongiform encephalopathy. Development of a biochemical assay for the sensitive, specific, early, and noninvasive detection of prions (PrPSc) in the blood of patients affected by prion disease is a top medical priority to increase the safety of the blood supply. vCJD has already been transmitted from human to human by blood transfusion, and the number of asymptomatic carriers of vCJD in the U.K. alone is estimated to be 1 in 2000 people. We used the protein misfolding cyclic amplification (PMCA) technique to analyze blood samples from 14 cases of vCJD and 153 controls, including patients affected by sCJD and other neurodegenerative or neurological disorders as well as healthy subjects. Our results showed that PrPSc could be detected with 100% sensitivity and specificity in blood samples from vCJD patients. Detection was possible in any of the blood fractions analyzed and could be done with as little as a few microliters of sample volume. The PrPSc concentration in blood was estimated to be ~0.5 pg/ml. Our findings suggest that PMCA may be useful for premortem noninvasive diagnosis of vCJD and to identify prion contamination of the blood supply. Further studies are needed to fully validate the technology. PMID:28003548

  8. Oral Prion Disease Pathogenesis Is Impeded in the Specific Absence of CXCR5-Expressing Dendritic Cells

    PubMed Central

    Bradford, Barry M.; Reizis, Boris

    2017-01-01

    ABSTRACT After oral exposure, the early replication of certain prion strains upon stromal cell-derived follicular dendritic cells (FDC) in the Peyer's patches in the small intestine is essential for the efficient spread of disease to the brain. However, little is known of how prions are initially conveyed from the gut lumen to establish infection on FDC. Our previous data suggest that mononuclear phagocytes such as CD11c+ conventional dendritic cells play an important role in the initial propagation of prions from the gut lumen into Peyer's patches. However, whether these cells conveyed orally acquired prions toward FDC within Peyer's patches was not known. The chemokine CXCL13 is expressed by FDC and follicular stromal cells and modulates the homing of CXCR5-expressing cells toward the FDC-containing B cell follicles. Here, novel compound transgenic mice were created in which a CXCR5 deficiency was specifically restricted to CD11c+ cells. These mice were used to determine whether CXCR5-expressing conventional dendritic cells propagate prions toward FDC after oral exposure. Our data show that in the specific absence of CXCR5-expressing conventional dendritic cells the early accumulation of prions upon FDC in Peyer's patches and the spleen was impaired, and disease susceptibility significantly reduced. These data suggest that CXCR5-expressing conventional dendritic cells play an important role in the efficient propagation of orally administered prions toward FDC within Peyer's patches in order to establish host infection. IMPORTANCE Many natural prion diseases are acquired by oral consumption of contaminated food or pasture. Once the prions reach the brain they cause extensive neurodegeneration, which ultimately leads to death. In order for the prions to efficiently spread from the gut to the brain, they first replicate upon follicular dendritic cells within intestinal Peyer's patches. How the prions are first delivered to follicular dendritic cells to establish

  9. Brain-water diffusion coefficients reflect the severity of inherited prion disease

    PubMed Central

    Hyare, H.; Wroe, S.; Siddique, D.; Webb, T.; Fox, N. C.; Stevens, J.; Collinge, J.; Yousry, T.; Thornton, J. S.

    2010-01-01

    Objective: Inherited prion diseases are progressive neurodegenerative conditions, characterized by cerebral spongiosis, gliosis, and neuronal loss, caused by mutations within the prion protein (PRNP) gene. We wished to assess the potential of diffusion-weighted MRI as a biomarker of disease severity in inherited prion diseases. Methods: Twenty-five subjects (mean age 45.2 years) with a known PRNP mutation including 19 symptomatic patients, 6 gene-positive asymptomatic subjects, and 7 controls (mean age 54.1 years) underwent conventional and diffusion-weighted MRI. An index of normalized brain volume (NBV) and region of interest (ROI) mean apparent diffusion coefficient (ADC) for the head of caudate, putamen, and pulvinar nuclei were recorded. ADC histograms were computed for whole brain (WB) and gray matter (GM) tissue fractions. Clinical assessment utilized standardized clinical scores. Mann-Whitney U test and regression analyses were performed. Results: Symptomatic patients exhibited an increased WB mean ADC (p = 0.006) and GM mean ADC (p = 0.024) compared to controls. Decreased NBV and increased mean ADC measures significantly correlated with clinical measures of disease severity. Using a stepwise multivariate regression procedure, GM mean ADC was an independent predictor of Clinician's Dementia Rating score (p = 0.001), Barthel Index of activities of daily living (p = 0.001), and Rankin disability score (p = 0.019). Conclusions: Brain volume loss in inherited prion diseases is accompanied by increased cerebral apparent diffusion coefficient (ADC), correlating with increased disease severity. The association between gray matter ADC and clinical neurologic status suggests this measure may prove a useful biomarker of disease activity in inherited prion diseases. GLOSSARY ADAS-Cog = Alzheimer's Disease Assessment Scale–Cognitive subscale; ADC = apparent diffusion coefficient; ADL = Barthel Activities of Daily Living scale; BET = brain extraction tool; BPRS

  10. Recombinant human prion protein inhibits prion propagation in vitro.

    PubMed

    Yuan, Jue; Zhan, Yi-An; Abskharon, Romany; Xiao, Xiangzhu; Martinez, Manuel Camacho; Zhou, Xiaochen; Kneale, Geoff; Mikol, Jacqueline; Lehmann, Sylvain; Surewicz, Witold K; Castilla, Joaquín; Steyaert, Jan; Zhang, Shulin; Kong, Qingzhong; Petersen, Robert B; Wohlkonig, Alexandre; Zou, Wen-Quan

    2013-10-09

    Prion diseases are associated with the conformational conversion of the cellular prion protein (PrP(C)) into the pathological scrapie isoform (PrP(Sc)) in the brain. Both the in vivo and in vitro conversion of PrP(C) into PrP(Sc) is significantly inhibited by differences in amino acid sequence between the two molecules. Using protein misfolding cyclic amplification (PMCA), we now report that the recombinant full-length human PrP (rHuPrP23-231) (that is unglycosylated and lacks the glycophosphatidylinositol anchor) is a strong inhibitor of human prion propagation. Furthermore, rHuPrP23-231 also inhibits mouse prion propagation in a scrapie-infected mouse cell line. Notably, it binds to PrP(Sc), but not PrP(C), suggesting that the inhibitory effect of recombinant PrP results from blocking the interaction of brain PrP(C) with PrP(Sc). Our findings suggest a new avenue for treating prion diseases, in which a patient's own unglycosylated and anchorless PrP is used to inhibit PrP(Sc) propagation without inducing immune response side effects.

  11. Experimental Transmission of the Chronic Wasting Disease Agent to Swine after Oral or Intracranial Inoculation.

    PubMed

    Moore, S Jo; West Greenlee, M Heather; Kondru, Naveen; Manne, Sireesha; Smith, Jodi D; Kunkle, Robert A; Kanthasamy, Anumantha; Greenlee, Justin J

    2017-10-01

    Chronic wasting disease (CWD) is a naturally occurring, fatal neurodegenerative disease of cervids. The potential for swine to serve as hosts for the agent of CWD is unknown. The purpose of this study was to investigate the susceptibility of swine to the CWD agent following experimental oral or intracranial inoculation. Crossbred piglets were assigned to three groups, intracranially inoculated ( n = 20), orally inoculated ( n = 19), and noninoculated ( n = 9). At approximately the age at which commercial pigs reach market weight, half of the pigs in each group were culled ("market weight" groups). The remaining pigs ("aged" groups) were allowed to incubate for up to 73 months postinoculation (mpi). Tissues collected at necropsy were examined for disease-associated prion protein (PrP Sc ) by Western blotting (WB), antigen capture enzyme immunoassay (EIA), immunohistochemistry (IHC), and in vitro real-time quaking-induced conversion (RT-QuIC). Brain samples from selected pigs were also bioassayed in mice expressing porcine prion protein. Four intracranially inoculated aged pigs and one orally inoculated aged pig were positive by EIA, IHC, and/or WB. By RT-QuIC, PrP Sc was detected in lymphoid and/or brain tissue from one or more pigs in each inoculated group. The bioassay was positive in four out of five pigs assayed. This study demonstrates that pigs can support low-level amplification of CWD prions, although the species barrier to CWD infection is relatively high. However, detection of infectivity in orally inoculated pigs with a mouse bioassay raises the possibility that naturally exposed pigs could act as a reservoir of CWD infectivity. IMPORTANCE We challenged domestic swine with the chronic wasting disease agent by inoculation directly into the brain (intracranially) or by oral gavage (orally). Disease-associated prion protein (PrP Sc ) was detected in brain and lymphoid tissues from intracranially and orally inoculated pigs as early as 8 months of age (6

  12. Production of cattle lacking prion protein

    PubMed Central

    Richt, Jürgen A; Kasinathan, Poothappillai; Hamir, Amir N; Castilla, Joaquin; Sathiyaseelan, Thillai; Vargas, Francisco; Sathiyaseelan, Janaki; Wu, Hua; Matsushita, Hiroaki; Koster, Julie; Kato, Shinichiro; Ishida, Isao; Soto, Claudio; Robl, James M; Kuroiwa, Yoshimi

    2010-01-01

    Prion diseases are caused by propagation of misfolded forms of the normal cellular prion protein PrPC, such as PrPBSE in bovine spongiform encephalopathy (BSE) in cattle and PrPCJD in Creutzfeldt-Jakob disease (CJD) in humans1. Disruption of PrPC expression in mice, a species that does not naturally contract prion diseases, results in no apparent developmental abnormalities2–5. However, the impact of ablating PrPC function in natural host species of prion diseases is unknown. Here we report the generation and characterization of PrPC-deficient cattle produced by a sequential gene-targeting system6. At over 20 months of age, the cattle are clinically, physiologically, histopathologically, immunologically and reproductively normal. Brain tissue homogenates are resistant to prion propagation in vitro as assessed by protein misfolding cyclic amplification7. PrPC-deficient cattle may be a useful model for prion research and could provide industrial bovine products free of prion proteins. PMID:17195841

  13. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  14. Octarepeat region flexibility impacts prion function, endoproteolysis and disease manifestation

    PubMed Central

    Lau, Agnes; McDonald, Alex; Daude, Nathalie; Mays, Charles E; Walter, Eric D; Aglietti, Robin; Mercer, Robert CC; Wohlgemuth, Serene; van der Merwe, Jacques; Yang, Jing; Gapeshina, Hristina; Kim, Chae; Grams, Jennifer; Shi, Beipei; Wille, Holger; Balachandran, Aru; Schmitt-Ulms, Gerold; Safar, Jiri G; Millhauser, Glenn L; Westaway, David

    2015-01-01

    The cellular prion protein (PrPC) comprises a natively unstructured N-terminal domain, including a metal-binding octarepeat region (OR) and a linker, followed by a C-terminal domain that misfolds to form PrPSc in Creutzfeldt-Jakob disease. PrPC β-endoproteolysis to the C2 fragment allows PrPSc formation, while α-endoproteolysis blocks production. To examine the OR, we used structure-directed design to make novel alleles, ‘S1’ and ‘S3’, locking this region in extended or compact conformations, respectively. S1 and S3 PrP resembled WT PrP in supporting peripheral nerve myelination. Prion-infected S1 and S3 transgenic mice both accumulated similar low levels of PrPSc and infectious prion particles, but differed in their clinical presentation. Unexpectedly, S3 PrP overproduced C2 fragment in the brain by a mechanism distinct from metal-catalysed hydrolysis reported previously. OR flexibility is concluded to impact diverse biological endpoints; it is a salient variable in infectious disease paradigms and modulates how the levels of PrPSc and infectivity can either uncouple or engage to drive the onset of clinical disease. PMID:25661904

  15. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease

    PubMed Central

    King, Oliver D.; Gitler, Aaron D.; Shorter, James

    2012-01-01

    Prions are self-templating protein conformers that are naturally transmitted between individuals and promote phenotypic change. In yeast, prion-encoded phenotypes can be beneficial, neutral or deleterious depending upon genetic background and environmental conditions. A distinctive and portable ‘prion domain’ enriched in asparagine, glutamine, tyrosine and glycine residues unifies the majority of yeast prion proteins. Deletion of this domain precludes prionogenesis and appending this domain to reporter proteins can confer prionogenicity. An algorithm designed to detect prion domains has successfully identified 19 domains that can confer prion behavior. Scouring the human genome with this algorithm enriches a select group of RNA-binding proteins harboring a canonical RNA recognition motif (RRM) and a putative prion domain. Indeed, of 210 human RRM-bearing proteins, 29 have a putative prion domain, and 12 of these are in the top 60 prion candidates in the entire genome. Startlingly, these RNA-binding prion candidates are inexorably emerging, one by one, in the pathology and genetics of devastating neurodegenerative disorders, including: amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U), Alzheimer’s disease and Huntington’s disease. For example, FUS and TDP-43, which rank 1st and 10th among RRM-bearing prion candidates, form cytoplasmic inclusions in the degenerating motor neurons of ALS patients and mutations in TDP-43 and FUS cause familial ALS. Recently, perturbed RNA-binding proteostasis of TAF15, which is the 2nd ranked RRM-bearing prion candidate, has been connected with ALS and FTLD-U. We strongly suspect that we have now merely reached the tip of the iceberg. We predict that additional RNA-binding prion candidates identified by our algorithm will soon surface as genetic modifiers or causes of diverse neurodegenerative conditions. Indeed, simple prion-like transfer mechanisms involving the

  16. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions.

    PubMed

    Nyström, Sofie; Hammarström, Per

    2015-05-11

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.

  17. De novo generation of infectious prions with bacterially expressed recombinant prion protein.

    PubMed

    Zhang, Zhihong; Zhang, Yi; Wang, Fei; Wang, Xinhe; Xu, Yuanyuan; Yang, Huaiyi; Yu, Guohua; Yuan, Chonggang; Ma, Jiyan

    2013-12-01

    The prion hypothesis is strongly supported by the fact that prion infectivity and the pathogenic conformer of prion protein (PrP) are simultaneously propagated in vitro by the serial protein misfolding cyclic amplification (sPMCA). However, due to sPMCA's enormous amplification power, whether an infectious prion can be formed de novo with bacterially expressed recombinant PrP (rPrP) remains to be satisfactorily resolved. To address this question, we performed unseeded sPMCA with rPrP in a laboratory that has never been exposed to any native prions. Two types of proteinase K (PK)-resistant and self-perpetuating recombinant PrP conformers (rPrP-res) with PK-resistant cores of 17 or 14 kDa were generated. A bioassay revealed that rPrP-res(17kDa) was highly infectious, causing prion disease in wild-type mice with an average survival time of about 172 d. In contrast, rPrP-res(14kDa) completely failed to induce any disease. Our findings reveal that sPMCA is sufficient to initiate various self-perpetuating PK-resistant rPrP conformers, but not all of them possess in vivo infectivity. Moreover, generating an infectious prion in a prion-free environment establishes that an infectious prion can be formed de novo with bacterially expressed rPrP.

  18. Mitigation of Prion Infectivity and Conversion Capacity by a Simulated Natural Process—Repeated Cycles of Drying and Wetting

    PubMed Central

    Yuan, Qi; Eckland, Thomas; Telling, Glenn; Bartz, Jason; Bartelt-Hunt, Shannon

    2015-01-01

    Prions enter the environment from infected hosts, bind to a wide range of soil and soil minerals, and remain highly infectious. Environmental sources of prions almost certainly contribute to the transmission of chronic wasting disease in cervids and scrapie in sheep and goats. While much is known about the introduction of prions into the environment and their interaction with soil, relatively little is known about prion degradation and inactivation by natural environmental processes. In this study, we examined the effect of repeated cycles of drying and wetting on prion fitness and determined that 10 cycles of repeated drying and wetting could reduce PrPSc abundance, PMCA amplification efficiency and extend the incubation period of disease. Importantly, prions bound to soil were more susceptible to inactivation by repeated cycles of drying and wetting compared to unbound prions, a result which may be due to conformational changes in soil-bound PrPSc or consolidation of the bonding between PrPSc and soil. This novel finding demonstrates that naturally-occurring environmental process can degrade prions. PMID:25665187

  19. Prion disease susceptibility is affected by β-structure folding propensity and local side-chain interactions in PrP

    PubMed Central

    Khan, M. Qasim; Sweeting, Braden; Mulligan, Vikram Khipple; Arslan, Pharhad Eli; Cashman, Neil R.; Pai, Emil F.; Chakrabartty, Avijit

    2010-01-01

    Prion diseases occur when the normally α-helical prion protein (PrP) converts to a pathological β-structured state with prion infectivity (PrPSc). Exposure to PrPSc from other mammals can catalyze this conversion. Evidence from experimental and accidental transmission of prions suggests that mammals vary in their prion disease susceptibility: Hamsters and mice show relatively high susceptibility, whereas rabbits, horses, and dogs show low susceptibility. Using a novel approach to quantify conformational states of PrP by circular dichroism (CD), we find that prion susceptibility tracks with the intrinsic propensity of mammalian PrP to convert from the native, α-helical state to a cytotoxic β-structured state, which exists in a monomer–octamer equilibrium. It has been controversial whether β-structured monomers exist at acidic pH; sedimentation equilibrium and dual-wavelength CD evidence is presented for an equilibrium between a β-structured monomer and octamer in some acidic pH conditions. Our X-ray crystallographic structure of rabbit PrP has identified a key helix-capping motif implicated in the low prion disease susceptibility of rabbits. Removal of this capping motif increases the β-structure folding propensity of rabbit PrP to match that of PrP from mouse, a species more susceptible to prion disease. PMID:21041683

  20. Prion disease susceptibility is affected by beta-structure folding propensity and local side-chain interactions in PrP.

    PubMed

    Khan, M Qasim; Sweeting, Braden; Mulligan, Vikram Khipple; Arslan, Pharhad Eli; Cashman, Neil R; Pai, Emil F; Chakrabartty, Avijit

    2010-11-16

    Prion diseases occur when the normally α-helical prion protein (PrP) converts to a pathological β-structured state with prion infectivity (PrP(Sc)). Exposure to PrP(Sc) from other mammals can catalyze this conversion. Evidence from experimental and accidental transmission of prions suggests that mammals vary in their prion disease susceptibility: Hamsters and mice show relatively high susceptibility, whereas rabbits, horses, and dogs show low susceptibility. Using a novel approach to quantify conformational states of PrP by circular dichroism (CD), we find that prion susceptibility tracks with the intrinsic propensity of mammalian PrP to convert from the native, α-helical state to a cytotoxic β-structured state, which exists in a monomer-octamer equilibrium. It has been controversial whether β-structured monomers exist at acidic pH; sedimentation equilibrium and dual-wavelength CD evidence is presented for an equilibrium between a β-structured monomer and octamer in some acidic pH conditions. Our X-ray crystallographic structure of rabbit PrP has identified a key helix-capping motif implicated in the low prion disease susceptibility of rabbits. Removal of this capping motif increases the β-structure folding propensity of rabbit PrP to match that of PrP from mouse, a species more susceptible to prion disease.

  1. Emerging prion disease drives host selection in a wildlife population

    USGS Publications Warehouse

    Robinson, Stacie J.; Samuel, Michael D.; Johnson, Chad J.; Adams, Marie; McKenzie, Debbie I.

    2012-01-01

    Infectious diseases are increasingly recognized as an important force driving population dynamics, conservation biology, and natural selection in wildlife populations. Infectious agents have been implicated in the decline of small or endangered populations and may act to constrain population size, distribution, growth rates, or migration patterns. Further, diseases may provide selective pressures that shape the genetic diversity of populations or species. Thus, understanding disease dynamics and selective pressures from pathogens is crucial to understanding population processes, managing wildlife diseases, and conserving biological diversity. There is ample evidence that variation in the prion protein gene (PRNP) impacts host susceptibility to prion diseases. Still, little is known about how genetic differences might influence natural selection within wildlife populations. Here we link genetic variation with differential susceptibility of white-tailed deer to chronic wasting disease (CWD), with implications for fitness and disease-driven genetic selection. We developed a single nucleotide polymorphism (SNP) assay to efficiently genotype deer at the locus of interest (in the 96th codon of the PRNP gene). Then, using a Bayesian modeling approach, we found that the more susceptible genotype had over four times greater risk of CWD infection; and, once infected, deer with the resistant genotype survived 49% longer (8.25 more months). We used these epidemiological parameters in a multi-stage population matrix model to evaluate relative fitness based on genotype-specific population growth rates. The differences in disease infection and mortality rates allowed genetically resistant deer to achieve higher population growth and obtain a long-term fitness advantage, which translated into a selection coefficient of over 1% favoring the CWD-resistant genotype. This selective pressure suggests that the resistant allele could become dominant in the population within an

  2. Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells

    PubMed Central

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Oguma, Ayumi; Teruya, Kenta; Kurahashi, Hiroshi; Hara, Hideyuki; Sakaguchi, Suehiro

    2017-01-01

    ABSTRACT Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear. IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds

  3. Prion 2005: Between Fundamentals and Society's Needs.

    PubMed

    Treiber, Carina

    2006-01-25

    Prion diseases for the most part affect individuals older than 60 years of age and share features with other diseases characterized by protein deposits in the brain, such as Alzheimer's disease and Parkinson's disease. The international conference "Prion 2005: Between Fundamentals and Society's Needs," organized by the German Transmissible Spongiform Encephalopathies Research Platform, aimed to integrate and coordinate the research efforts of participants to better achieve prevention, treatment, control, and management of prion diseases, including Creutzfeldt-Jakob disease and fatal familial insomnia in humans. Several main topics were discussed, such as the molecular characteristics of prion strains, the cell biology of cellular and pathogenic forms of the prion proteins, the pathogenesis of the diseases they cause, emerging problems, and promising approaches for therapy and new diagnostic tools. The presentations at the Prion 2005 conference provided new insights in both basic and applied research, which will have broad implications for society's needs.

  4. Infectivity-associated PrP(Sc) and disease duration-associated PrP(Sc) of mouse BSE prions.

    PubMed

    Miyazawa, Kohtaro; Okada, Hiroyuki; Masujin, Kentaro; Iwamaru, Yoshifumi; Yokoyama, Takashi

    2015-01-01

    Disease-related prion protein (PrP(Sc)), which is a structural isoform of the host-encoded cellular prion protein, is thought to be a causative agent of transmissible spongiform encephalopathies. However, the specific role of PrP(Sc) in prion pathogenesis and its relationship to infectivity remain controversial. A time-course study of prion-affected mice was conducted, which showed that the prion infectivity was not simply proportional to the amount of PrP(Sc) in the brain. Centrifugation (20,000 ×g) of the brain homogenate showed that most of the PrP(Sc) was precipitated into the pellet, and the supernatant contained only a slight amount of PrP(Sc). Interestingly, mice inoculated with the obtained supernatant showed incubation periods that were approximately 15 d longer than those of mice inoculated with the crude homogenate even though both inocula contained almost the same infectivity. Our results suggest that a small population of fine PrP(Sc) may be responsible for prion infectivity and that large, aggregated PrP(Sc) may contribute to determining prion disease duration.

  5. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology.

    PubMed

    Allison, W Ted; DuVal, Michèle G; Nguyen-Phuoc, Kim; Leighton, Patricia L A

    2017-10-24

    Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins' function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrP C , is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas.

  6. Yeast and Fungal Prions: Amyloid-Handling Systems, Amyloid Structure, and Prion Biology.

    PubMed

    Wickner, R B; Edskes, H K; Gorkovskiy, A; Bezsonov, E E; Stroobant, E E

    2016-01-01

    Yeast prions (infectious proteins) were discovered by their outré genetic properties and have become important models for an array of human prion and amyloid diseases. A single prion protein can become any of many distinct amyloid forms (called prion variants or strains), each of which is self-propagating, but with different biological properties (eg, lethal vs mild). The folded in-register parallel β sheet architecture of the yeast prion amyloids naturally suggests a mechanism by which prion variant information can be faithfully transmitted for many generations. The yeast prions rely on cellular chaperones for their propagation, but can be cured by various chaperone imbalances. The Btn2/Cur1 system normally cures most variants of the [URE3] prion that arise. Although most variants of the [PSI+] and [URE3] prions are toxic or lethal, some are mild in their effects. Even the most mild forms of these prions are rare in the wild, indicating that they too are detrimental to yeast. The beneficial [Het-s] prion of Podospora anserina poses an important contrast in its structure, biology, and evolution to the yeast prions characterized thus far. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Immunization with synthetic peptide vaccine fails to protect mule deer (Odocoileus hemionus) from chronic wasting disease

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy of deer and elk. The disorder is characterized by accumulation of an abnormally folded isoform of the normal cellular prion protein. Disease prevalence in farmed herds of white tailed deer can exceed 80%. Attempts to control ...

  8. Generation of Infectious Prions and Detection with the Prion-Infected Cell Assay.

    PubMed

    Vella, Laura J; Coleman, Bradley; Hill, Andrew F

    2017-01-01

    Cell lines propagating prions are an efficient and useful means for studying the cellular and molecular mechanisms implicated in prion disease. Utilization of cell-based models has led to the finding that PrP C and PrP Sc are released from cells in association with extracellular vesicles known as exosomes. Exosomes have been shown to act as vehicles for infectivity, transferring infectivity between cell lines and providing a mechanism for prion spread between tissues. Here, we describe the methods for generating a prion-propagating cell line with prion-infected brain homogenate, cell lysate, conditioned media, and exosomes and also detection of protease-resistant PrP with the prion-infected cell assay.

  9. Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells.

    PubMed

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Oguma, Ayumi; Teruya, Kenta; Kurahashi, Hiroshi; Hara, Hideyuki; Sakaguchi, Suehiro; Doh-Ura, Katsumi

    2017-03-15

    Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear. IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds, and

  10. Translational Research in Alzheimer’s and Prion Diseases

    PubMed Central

    Di Fede, Giuseppe; Giaccone, Giorgio; Salmona, Mario; Tagliavini, Fabrizio

    2017-01-01

    Translational neuroscience integrates the knowledge derived by basic neuroscience with the development of new diagnostic and therapeutic tools that may be applied to clinical practice in neurological diseases. This information can be used to improve clinical trial designs and outcomes that will accelerate drug development, and to discover novel biomarkers which can be efficiently employed to early recognize neurological disorders and provide information regarding the effects of drugs on the underlying disease biology. Alzheimer’s disease (AD) and prion disease are two classes of neurodegenerative disorders characterized by incomplete knowledge of the molecular mechanisms underlying their occurrence and the lack of valid biomarkers and effective treatments. For these reasons, the design of therapies that prevent or delay the onset, slow the progression, or improve the symptoms associated to these disorders is urgently needed. During the last few decades, translational research provided a framework for advancing development of new diagnostic devices and promising disease-modifying therapies for patients with prion encephalopathies and AD. In this review, we provide present evidence of how supportive can be the translational approach to the study of dementias and show some results of our preclinical studies which have been translated to the clinical application following the ‘bed-to-bench-and-back’ research model. PMID:29172000

  11. The many shades of prion strain adaptation.

    PubMed

    Baskakov, Ilia V

    2014-01-01

    In several recent studies transmissible prion disease was induced in animals by inoculation with recombinant prion protein amyloid fibrils produced in vitro. Serial transmission of amyloid fibrils gave rise to a new class of prion strains of synthetic origin. Gradual transformation of disease phenotypes and PrP(Sc) properties was observed during serial transmission of synthetic prions, a process that resembled the phenomenon of prion strain adaptation. The current article discusses the remarkable parallels between phenomena of prion strain adaptation that accompanies cross-species transmission and the evolution of synthetic prions occurring within the same host. Two alternative mechanisms underlying prion strain adaptation and synthetic strain evolution are discussed. The current article highlights the complexity of the prion transmission barrier and strain adaptation and proposes that the phenomenon of prion adaptation is more common than previously thought.

  12. Genetic population structure and relatedness of Colorado mule deer (Odocoileus hemionus) and incidence of chronic wasting disease

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease is a transmissible spongiform encephalopathy or prion disease of farmed and free ranging mule deer, white tailed deer, Rocky Mountain elk, and moose in some areas of the United States. The disease is enzootic in herds of free ranging mule deer in the Rocky Mountain National ...

  13. Virus Infections on Prion Diseased Mice Exacerbate Inflammatory Microglial Response

    PubMed Central

    Lins, Nara; Mourão, Luiz; Trévia, Nonata; Passos, Aline; Farias, José Augusto; Assunção, Jarila; Bento-Torres, João; Consentino Kronka Sosthenes, Marcia; Diniz, José Antonio Picanço; Vasconcelos, Pedro Fernando da Costa

    2016-01-01

    We investigated possible interaction between an arbovirus infection and the ME7 induced mice prion disease. C57BL/6, females, 6-week-old, were submitted to a bilateral intrahippocampal injection of ME7 prion strain (ME7) or normal brain homogenate (NBH). After injections, animals were organized into two groups: NBH (n = 26) and ME7 (n = 29). At 15th week after injections (wpi), animals were challenged intranasally with a suspension of Piry arbovirus 0.001% or with NBH. Behavioral changes in ME7 animals appeared in burrowing activity at 14 wpi. Hyperactivity on open field test, errors on rod bridge, and time reduction in inverted screen were detected at 15th, 19th, and 20th wpi respectively. Burrowing was more sensitive to earlier hippocampus dysfunction. However, Piry-infection did not significantly affect the already ongoing burrowing decline in the ME7-treated mice. After behavioral tests, brains were processed for IBA1, protease-resistant form of PrP, and Piry virus antigens. Although virus infection in isolation did not change the number of microglia in CA1, virus infection in prion diseased mice (at 17th wpi) induced changes in number and morphology of microglia in a laminar-dependent way. We suggest that virus infection exacerbates microglial inflammatory response to a greater degree in prion-infected mice, and this is not necessarily correlated with hippocampal-dependent behavioral deficits. PMID:28003864

  14. Multiparameter MR imaging in the 6-OPRI variant of inherited prion disease.

    PubMed

    De Vita, E; Ridgway, G R; Scahill, R I; Caine, D; Rudge, P; Yousry, T A; Mead, S; Collinge, J; Jäger, H R; Thornton, J S; Hyare, H

    2013-09-01

    Inherited prion diseases represent over 15% of human prion cases and are a frequent cause of early onset dementia. The purpose of this study was to define the distribution of changes in cerebral volumetric and microstructural parenchymal tissues in a specific inherited human prion disease mutation combining VBM with VBA of cerebral MTR and MD. VBM and VBA of cerebral MTR and MD were performed in 16 healthy control participants and 9 patients with the 6-OPRI mutation. An analysis of covariance consisting of diagnostic grouping with age and total intracranial volume as covariates was performed. On VBM, there was a significant reduction in gray matter volume in patients compared with control participants in the basal ganglia, perisylvian cortex, lingual gyrus, and precuneus. Significant MTR reduction and MD increases were more anatomically extensive than volume differences on VBM in the same cortical areas, but MTR and MD changes were not seen in the basal ganglia. Gray matter and WM changes were seen in brain areas associated with motor and cognitive functions known to be impaired in patients with the 6-OPRI mutation. There were some differences in the anatomic distribution of MTR-VBA and MD-VBA changes compared with VBM, likely to reflect regional variations in the type and degree of the respective pathophysiologic substrates. Combined analysis of complementary multiparameter MR imaging data furthers our understanding of prion disease pathophysiology.

  15. Metabotropic glutamate receptor 5 couples cellular prion protein to intracellular signalling in Alzheimer’s disease

    PubMed Central

    Haas, Laura T.; Salazar, Santiago V.; Kostylev, Mikhail A.; Um, Ji Won; Kaufman, Adam C.

    2016-01-01

    Alzheimer’s disease-related phenotypes in mice can be rescued by blockade of either cellular prion protein or metabotropic glutamate receptor 5. We sought genetic and biochemical evidence that these proteins function cooperatively as an obligate complex in the brain. We show that cellular prion protein associates via transmembrane metabotropic glutamate receptor 5 with the intracellular protein mediators Homer1b/c, calcium/calmodulin-dependent protein kinase II, and the Alzheimer’s disease risk gene product protein tyrosine kinase 2 beta. Coupling of cellular prion protein to these intracellular proteins is modified by soluble amyloid-β oligomers, by mouse brain Alzheimer’s disease transgenes or by human Alzheimer’s disease pathology. Amyloid-β oligomer-triggered phosphorylation of intracellular protein mediators and impairment of synaptic plasticity in vitro requires Prnp–Grm5 genetic interaction, being absent in transheterozygous loss-of-function, but present in either single heterozygote. Importantly, genetic coupling between Prnp and Grm5 is also responsible for signalling, for survival and for synapse loss in Alzheimer’s disease transgenic model mice. Thus, the interaction between metabotropic glutamate receptor 5 and cellular prion protein has a central role in Alzheimer’s disease pathogenesis, and the complex is a potential target for disease-modifying intervention. PMID:26667279

  16. RML prions act through Mahogunin and Attractin-independent pathways.

    PubMed

    Gunn, Teresa M; Carlson, George A

    2013-01-01

    While the conversion of the normal form of prion protein to a conformationally distinct pathogenic form is recognized to be the primary cause of prion disease, it is not clear how this leads to spongiform change, neuronal dysfunction and death. Mahogunin ring finger-1 (Mgrn1) and Attractin (Atrn) null mutant mice accumulate vacuoles throughout the brain that appear very similar to those associated with prion disease, but they do not accumulate the protease-resistant scrapie form of the prion protein or become sick. A study demonstrating an interaction between cytosolically-exposed prion protein and MGRN1 suggested that disruption of MGRN1 function may contribute to prion disease pathogenesis, but we recently showed that neither loss of MGRN1 nor MGRN1 overexpression influences the onset or progression of prion disease following intracerebral inoculation with Rocky Mountain Laboratory prions. Here, we show that loss of ATRN also has no effect on prion disease onset or progression and discuss possible mechanisms that could cause vacuolation of the central nervous system in Mgrn1 and Atrn null mutant mice and whether the same pathways might contribute to this intriguing phenotype in prion disease.

  17. Prions are affected by evolution at two levels.

    PubMed

    Wickner, Reed B; Kelly, Amy C

    2016-03-01

    Prions, infectious proteins, can transmit diseases or be the basis of heritable traits (or both), mostly based on amyloid forms of the prion protein. A single protein sequence can be the basis for many prion strains/variants, with different biological properties based on different amyloid conformations, each rather stably propagating. Prions are unique in that evolution and selection work at both the level of the chromosomal gene encoding the protein, and on the prion itself selecting prion variants. Here, we summarize what is known about the evolution of prion proteins, both the genes and the prions themselves. We contrast the one known functional prion, [Het-s] of Podospora anserina, with the known disease prions, the yeast prions [PSI+] and [URE3] and the transmissible spongiform encephalopathies of mammals.

  18. Soluble Aβ aggregates can inhibit prion propagation.

    PubMed

    Sarell, Claire J; Quarterman, Emma; Yip, Daniel C-M; Terry, Cassandra; Nicoll, Andrew J; Wadsworth, Jonathan D F; Farrow, Mark A; Walsh, Dominic M; Collinge, John

    2017-11-01

    Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrP C ). Ligands that bind to PrP C can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrP C , and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrP C and emphasize the bidirectional nature of the interplay between Aβ and PrP C in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common. © 2017 The Authors.

  19. Mucosal transmission and pathogenesis of chronic wasting disease in ferrets.

    PubMed

    Perrott, Matthew R; Sigurdson, Christina J; Mason, Gary L; Hoover, Edward A

    2013-02-01

    Chronic wasting disease (CWD) of cervids is almost certainly transmitted by mucosal contact with the causative prion, whether by direct (animal-to-animal) or indirect (environmental) means. Yet the sites and mechanisms of prion entry remain to be further understood. This study sought to extend this understanding by demonstrating that ferrets exposed to CWD via several mucosal routes developed infection, CWD prion protein (PrP(CWD)) amplification in lymphoid tissues, neural invasion and florid transmissible spongiform encephalopathy lesions resembling those in native cervid hosts. The ferrets developed extensive PrP(CWD) accumulation in the nervous system, retina and olfactory epithelium, with lesser deposition in tongue, muscle, salivary gland and the vomeronasal organ. PrP(CWD) accumulation in mucosal sites, including upper respiratory tract epithelium, olfactory epithelium and intestinal Peyer's patches, make the shedding of prions by infected ferrets plausible. It was also observed that regionally targeted exposure of the nasopharyngeal mucosa resulted in an increased attack rate when compared with oral exposure. The latter finding suggests that nasal exposure enhances permissiveness to CWD infection. The ferret model has further potential for investigation of portals for initiation of CWD infection.

  20. Mucosal transmission and pathogenesis of chronic wasting disease in ferrets

    PubMed Central

    Perrott, Matthew R.; Sigurdson, Christina J.; Mason, Gary L.

    2013-01-01

    Chronic wasting disease (CWD) of cervids is almost certainly transmitted by mucosal contact with the causative prion, whether by direct (animal-to-animal) or indirect (environmental) means. Yet the sites and mechanisms of prion entry remain to be further understood. This study sought to extend this understanding by demonstrating that ferrets exposed to CWD via several mucosal routes developed infection, CWD prion protein (PrPCWD) amplification in lymphoid tissues, neural invasion and florid transmissible spongiform encephalopathy lesions resembling those in native cervid hosts. The ferrets developed extensive PrPCWD accumulation in the nervous system, retina and olfactory epithelium, with lesser deposition in tongue, muscle, salivary gland and the vomeronasal organ. PrPCWD accumulation in mucosal sites, including upper respiratory tract epithelium, olfactory epithelium and intestinal Peyer’s patches, make the shedding of prions by infected ferrets plausible. It was also observed that regionally targeted exposure of the nasopharyngeal mucosa resulted in an increased attack rate when compared with oral exposure. The latter finding suggests that nasal exposure enhances permissiveness to CWD infection. The ferret model has further potential for investigation of portals for initiation of CWD infection. PMID:23100363

  1. Differential effects of divalent cations on elk prion protein fibril formation and stability

    USDA-ARS?s Scientific Manuscript database

    Misfolding of the normally folded prion protein of mammals (PrPC) into infectious fibrils causes a variety of different diseases, from scrapie in sheep to bovine spongiform encephalopathy in cattle to chronic wasting disease (CWD) in deer and elk. The misfolded form of PrPC, termed PrPSc, or in this...

  2. Transport of the Pathogenic Prion Protein through Landfill Materials

    PubMed Central

    Jacobson, Kurt H.; Lee, Seunghak; McKenzie, Debbie; Benson, Craig H.; Pedersen, Joel A.

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrPTSE) is the major, if not sole, component of the infectious agent. Recent TSE outbreaks in domesticated and wild animal populations has created the need for safe and effective disposal of large quantities of potentially infected materials. Here, we report the results of a study to evaluate the potential for transport of PrPTSE derived from carcasses and associated wastes in a municipal solid waste (MSW) landfill. Column experiments were conducted to evaluate PrPTSE transport in quartz sand, two fine-textured burial soils currently used in landfill practice, a green waste residual material (a potential burial material), and fresh and aged MSW. PrPTSE was retained by quartz sand and the fine-textured burial soils, with no detectable PrPTSE eluted over more than 40 pore volumes. In contrast, PrPTSE was more mobile in MSW and green waste residual. Transport parameters were estimated from the experimental data and used to model PrPTSE migration in a MSW landfill. To the extent that the PrPTSE used mimics that released from decomposing carcasses, burial of CWD-infected materials at MSW landfills could provide secure containment of PrPTSE provided reasonable burial strategies (e.g., encasement in soil) are used. PMID:19368208

  3. The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein

    PubMed Central

    Nepravishta, Ridvan; Mandaliti, Walter; Melino, Sonia; Margon, Alja; Scaini, Denis; Mazzei, Pierluigi; Piccolo, Alessandro; Legname, Giuseppe; Paci, Maurizio; Leita, Liviana

    2017-01-01

    Humic substances (HS) are the largest constituent of soil organic matter and are considered as a key component of the terrestrial ecosystem. HS may facilitate the transport of organic and inorganic molecules, as well as the sorption interactions with environmentally relevant proteins such as prions. Prions enter the environment through shedding from live hosts, facilitating a sustained incidence of animal prion diseases such as Chronic Wasting Disease and scrapie in cervid and ovine populations, respectively. Changes in prion structure upon environmental exposure may be significant as they can affect prion infectivity and disease pathology. Despite its relevance, the mechanisms of prion interaction with HS are still not completely understood. The goal of this work is to advance a structural-level picture of the encapsulation of recombinant, non-infectious, prion protein (PrP) into different natural HS. We observed that PrP precipitation upon addition of HS is mainly driven by a mechanism of “salting-out” whereby PrP molecules are rapidly removed from the solution and aggregate in insoluble adducts with humic molecules. Importantly, this process does not alter the protein folding since insoluble PrP retains its α-helical content when in complex with HS. The observed ability of HS to promote PrP insolubilization without altering its secondary structure may have potential relevance in the context of “prion ecology”. These results suggest that soil organic matter interacts with prions possibly without altering the protein structures. This may facilitate prions preservation from biotic and abiotic degradation leading to their accumulation in the environment. PMID:29161325

  4. Spontaneous generation of rapidly transmissible prions in transgenic mice expressing wild-type bank vole prion protein.

    PubMed

    Watts, Joel C; Giles, Kurt; Stöhr, Jan; Oehler, Abby; Bhardwaj, Sumita; Grillo, Sunny K; Patel, Smita; DeArmond, Stephen J; Prusiner, Stanley B

    2012-02-28

    Currently, there are no animal models of the most common human prion disorder, sporadic Creutzfeldt-Jakob disease (CJD), in which prions are formed spontaneously from wild-type (WT) prion protein (PrP). Interestingly, bank voles (BV) exhibit an unprecedented promiscuity for diverse prion isolates, arguing that bank vole PrP (BVPrP) may be inherently prone to adopting misfolded conformations. Therefore, we constructed transgenic (Tg) mice expressing WT BVPrP. Tg(BVPrP) mice developed spontaneous CNS dysfunction between 108 and 340 d of age and recapitulated the hallmarks of prion disease, including spongiform degeneration, pronounced astrogliosis, and deposition of alternatively folded PrP in the brain. Brain homogenates of ill Tg(BVPrP) mice transmitted disease to Tg(BVPrP) mice in ∼35 d, to Tg mice overexpressing mouse PrP in under 100 d, and to WT mice in ∼185 d. Our studies demonstrate experimentally that WT PrP can spontaneously form infectious prions in vivo. Thus, Tg(BVPrP) mice may be useful for studying the spontaneous formation of prions, and thus may provide insight into the etiology of sporadic CJD.

  5. Prion replication without host adaptation during interspecies transmissions.

    PubMed

    Bian, Jifeng; Khaychuk, Vadim; Angers, Rachel C; Fernández-Borges, Natalia; Vidal, Enric; Meyerett-Reid, Crystal; Kim, Sehun; Calvi, Carla L; Bartz, Jason C; Hoover, Edward A; Agrimi, Umberto; Richt, Jürgen A; Castilla, Joaquín; Telling, Glenn C

    2017-01-31

    Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrP C ) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrP C Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrP C conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrP C was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrP C from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrP C also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders.

  6. Prion replication without host adaptation during interspecies transmissions

    PubMed Central

    Bian, Jifeng; Khaychuk, Vadim; Angers, Rachel C.; Fernández-Borges, Natalia; Meyerett-Reid, Crystal; Kim, Sehun; Calvi, Carla L.; Bartz, Jason C.; Hoover, Edward A.; Agrimi, Umberto; Richt, Jürgen A.; Castilla, Joaquín; Telling, Glenn C.

    2017-01-01

    Adaptation of prions to new species is thought to reflect the capacity of the host-encoded cellular form of the prion protein (PrPC) to selectively propagate optimized prion conformations from larger ensembles generated in the species of origin. Here we describe an alternate replicative process, termed nonadaptive prion amplification (NAPA), in which dominant conformers bypass this requirement during particular interspecies transmissions. To model susceptibility of horses to prions, we produced transgenic (Tg) mice expressing cognate PrPC. Although disease transmission to only a subset of infected TgEq indicated a significant barrier to EqPrPC conversion, the resulting horse prions unexpectedly failed to cause disease upon further passage to TgEq. TgD expressing deer PrPC was similarly refractory to deer prions from diseased TgD infected with mink prions. In both cases, the resulting prions transmitted to mice expressing PrPC from the species of prion origin, demonstrating that transmission barrier eradication of the originating prions was ephemeral and adaptation superficial in TgEq and TgD. Horse prions produced in vitro by protein misfolding cyclic amplification of mouse prions using horse PrPC also failed to infect TgEq but retained tropism for wild-type mice. Concordant patterns of neuropathology and prion deposition in susceptible mice infected with NAPA prions and the corresponding prion of origin confirmed preservation of strain properties. The comparable responses of both prion types to guanidine hydrochloride denaturation indicated this occurs because NAPA precludes selection of novel prion conformations. Our findings provide insights into mechanisms regulating interspecies prion transmission and a framework to reconcile puzzling epidemiological features of certain prion disorders. PMID:28096357

  7. Proteinase-activated receptor 2 and disease biomarkers in cerebrospinal fluid in cases with autopsy-confirmed prion diseases and other neurodegenerative diseases.

    PubMed

    Rohan, Zdenek; Smetakova, Magdalena; Kukal, Jaromir; Rusina, Robert; Matej, Radoslav

    2015-03-31

    Proteinase-activated receptor 2 (PAR-2) has been shown to promote both neurotoxic and neuroprotective effects. Similarly, other routinely used nonspecific markers of neuronal damage can be found in cerebrospinal fluid (CSF) and can be used as biomarkers for different neurodegenerative disorders. Using enzyme-linked immunosorbent assays and western blotting we assessed PAR-2, total-tau, phospho-tau, beta-amyloid levels, and protein 14-3-3 in the CSF of former patients who had undergone a neuropathological autopsy after death and who had been definitively diagnosed with a prion or other neurodegenerative disease. We did not find any significant correlation between levels of PAR-2 and other biomarkers, nor did we find any differences in PAR-2 levels between prion diseases and other neurodegenerative conditions. However, we confirmed that very high total-tau levels were significantly associated with definitive prion diagnoses and exhibited greater sensitivity and specificity than protein 14-3-3, which is routinely used as a marker. Our study showed that PAR-2, in CSF, was not specifically altered in prion diseases compared to other neurodegenerative conditions. Our results also confirmed that very high total-tau protein CSF levels were significantly associated with a definitive Creutzfeldt-Jakob disease (CJD) diagnosis and should be routinely tested as a diagnostic marker. Observed individual variability in CSF biomarkers provide invaluable feedback from neuropathological examinations even in "clinically certain" cases.

  8. Phosphorylated human tau associates with mouse prion protein amyloid in scrapie-infected mice but does not increase progression of clinical disease.

    PubMed

    Race, Brent; Phillips, Katie; Kraus, Allison; Chesebro, Bruce

    2016-07-03

    Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model.

  9. Inactivation of Prions and Amyloid Seeds with Hypochlorous Acid

    PubMed Central

    Kraus, Allison; Phillips, Katie; Contreras, Luis; Zanusso, Gianluigi; Caughey, Byron

    2016-01-01

    Hypochlorous acid (HOCl) is produced naturally by neutrophils and other cells to kill conventional microbes in vivo. Synthetic preparations containing HOCl can also be effective as microbial disinfectants. Here we have tested whether HOCl can also inactivate prions and other self-propagating protein amyloid seeds. Prions are deadly pathogens that are notoriously difficult to inactivate, and standard microbial disinfection protocols are often inadequate. Recommended treatments for prion decontamination include strongly basic (pH ≥~12) sodium hypochlorite bleach, ≥1 N sodium hydroxide, and/or prolonged autoclaving. These treatments are damaging and/or unsuitable for many clinical, agricultural and environmental applications. We have tested the anti-prion activity of a weakly acidic aqueous formulation of HOCl (BrioHOCl) that poses no apparent hazard to either users or many surfaces. For example, BrioHOCl can be applied directly to skin and mucous membranes and has been aerosolized to treat entire rooms without apparent deleterious effects. Here, we demonstrate that immersion in BrioHOCl can inactivate not only a range of target microbes, including spores of Bacillus subtilis, but also prions in tissue suspensions and on stainless steel. Real-time quaking-induced conversion (RT-QuIC) assays showed that BrioHOCl treatments eliminated all detectable prion seeding activity of human Creutzfeldt-Jakob disease, bovine spongiform encephalopathy, cervine chronic wasting disease, sheep scrapie and hamster scrapie; these findings indicated reductions of ≥103- to 106-fold. Transgenic mouse bioassays showed that all detectable hamster-adapted scrapie infectivity in brain homogenates or on steel wires was eliminated, representing reductions of ≥~105.75-fold and >104-fold, respectively. Inactivation of RT-QuIC seeding activity correlated with free chlorine concentration and higher order aggregation or destruction of proteins generally, including prion protein. Brio

  10. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    PubMed

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Proteolysis suppresses spontaneous prion generation in yeast.

    PubMed

    Okamoto, Atsushi; Hosoda, Nao; Tanaka, Anri; Newnam, Gary P; Chernoff, Yury O; Hoshino, Shin-Ichi

    2017-12-08

    Prions are infectious proteins that cause fatal neurodegenerative disorders including Creutzfeldt-Jakob and bovine spongiform encephalopathy (mad cow) diseases. The yeast [ PSI + ] prion is formed by the translation-termination factor Sup35, is the best-studied prion, and provides a useful model system for studying such diseases. However, despite recent progress in the understanding of prion diseases, the cellular defense mechanism against prions has not been elucidated. Here, we report that proteolytic cleavage of Sup35 suppresses spontaneous de novo generation of the [ PSI + ] prion. We found that during yeast growth in glucose media, a maximum of 40% of Sup35 is cleaved at its N-terminal prion domain. This cleavage requires the vacuolar proteases PrA-PrB. Cleavage occurs in a manner dependent on translation but independently of autophagy between the glutamine/asparagine-rich (Q/N-rich) stretch critical for prion formation and the oligopeptide-repeat region required for prion maintenance, resulting in the removal of the Q/N-rich stretch from the Sup35 N terminus. The complete inhibition of Sup35 cleavage, by knocking out either PrA ( pep4 Δ) or PrB ( prb1 Δ), increased the rate of de novo formation of [ PSI + ] prion up to ∼5-fold, whereas the activation of Sup35 cleavage, by overproducing PrB, inhibited [ PSI + ] formation. On the other hand, activation of the PrB pathway neither cleaved the amyloid conformers of Sup35 in [ PSI + ] strains nor eliminated preexisting [ PSI + ]. These findings point to a mechanism antagonizing prion generation in yeast. Our results underscore the usefulness of the yeast [ PSI + ] prion as a model system to investigate defense mechanisms against prion diseases and other amyloidoses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The celecoxib derivatives AR-12 and AR-14 induce autophagy and clear prion-infected cells from prions.

    PubMed

    Abdulrahman, Basant A; Abdelaziz, Dalia; Thapa, Simrika; Lu, Li; Jain, Shubha; Gilch, Sabine; Proniuk, Stefan; Zukiwski, Alexander; Schatzl, Hermann M

    2017-12-14

    Prion diseases are fatal infectious neurodegenerative disorders that affect both humans and animals. The autocatalytic conversion of the cellular prion protein (PrP C ) into the pathologic isoform PrP Sc is a key feature in prion pathogenesis. AR-12 is an IND-approved derivative of celecoxib that demonstrated preclinical activity against several microbial diseases. Recently, AR-12 has been shown to facilitate clearance of misfolded proteins. The latter proposes AR-12 to be a potential therapeutic agent for neurodegenerative disorders. In this study, we investigated the role of AR-12 and its derivatives in controlling prion infection. We tested AR-12 in prion infected neuronal and non-neuronal cell lines. Immunoblotting and confocal microscopy results showed that AR-12 and its analogue AR-14 reduced PrP Sc levels after only 72 hours of treatment. Furthermore, infected cells were cured of PrP Sc after exposure of AR-12 or AR-14 for only two weeks. We partially attribute the influence of the AR compounds on prion propagation to autophagy stimulation, in line with our previous findings that drug-induced stimulation of autophagy has anti-prion effects in vitro and in vivo. Taken together, this study demonstrates that AR-12 and the AR-14 analogue are potential new therapeutic agents for prion diseases and possibly protein misfolding disorders involving prion-like mechanisms.

  13. Structural characterization of POM6 Fab and mouse prion protein complex identifies key regions for prions conformational conversion.

    PubMed

    Baral, Pravas Kumar; Swayampakula, Mridula; Aguzzi, Adriano; James, Michael N G

    2018-05-01

    Conversion of the cellular prion protein PrP C into its pathogenic isoform PrP S c is the hallmark of prion diseases, fatal neurodegenerative diseases affecting many mammalian species including humans. Anti-prion monoclonal antibodies can arrest the progression of prion diseases by stabilizing the cellular form of the prion protein. Here, we present the crystal structure of the POM6 Fab fragment, in complex with the mouse prion protein (moPrP). The prion epitope of POM6 is in close proximity to the epitope recognized by the purportedly toxic antibody fragment, POM1 Fab also complexed with moPrP. The POM6 Fab recognizes a larger binding interface indicating a likely stronger binding compared to POM1. POM6 and POM1 exhibit distinct biological responses. Structural comparisons of the bound mouse prion proteins from the POM6 Fab:moPrP and POM1 Fab:moPrP complexes reveal several key regions of the prion protein that might be involved in initiating mis-folding events. The structural data of moPrP:POM6 Fab complex are available in the PDB under the accession number www.rcsb.org/pdb/search/structidSearch.do?structureId=6AQ7. © 2018 Federation of European Biochemical Societies.

  14. Insights into intragenic and extragenic effectors of prion propagation using chimeric prion proteins

    PubMed Central

    Kalastavadi, Tejas; Tank, Elizabeth MH

    2008-01-01

    The study of fungal prion proteins affords remarkable opportunities to elucidate both intragenic and extragenic effectors of prion propagation. The yeast prion protein Sup35 and the self-perpetuating [PSI+] prion state is one of the best characterized fungal prions. While there is little sequence homology among known prion proteins, one region of striking similarity exists between Sup35p and the mammalian prion protein PrP. This region is comprised of roughly five octapeptide repeats of similar composition. The expansion of the repeat region in PrP is associated with inherited prion diseases. In order to learn more about the effects of PrP repeat expansions on the structural properties of a protein that undergoes a similar transition to a self-perpetuating aggregate, we generated chimeric Sup35-PrP proteins. Using both in vivo and in vitro systems we described the effect of repeat length on protein misfolding, aggregation, amyloid formation and amyloid stability. We found that repeat expansions in the chimeric prion proteins increase the propensity to initiate prion propagation and enhance the formation of amyloid fibers without significantly altering fiber stability. PMID:19098443

  15. Biology and Genetics of Prions Causing Neurodegeneration

    PubMed Central

    Prusiner, Stanley B.

    2014-01-01

    Prions are proteins that acquire alternative conformations that become self-propagating. Transformation of proteins into prions is generally accompanied by an increase in β-sheet structure and a propensity to aggregate into oligomers. Some prions are beneficial and perform cellular functions, whereas others cause neurodegeneration. In mammals, more than a dozen proteins that become prions have been identified and a similar number has been found in fungi. In both mammals and fungi, variations in the prion conformation encipher the biological properties of distinct prion strains. Increasing evidence argues that prions cause many neurodegenerative diseases (NDs), including Alzheimer’s, Parkinson’s, Creutzfeldt-Jakob, and Lou Gehrig’s diseases, as well as the tauopathies. The majority of NDs are sporadic, and 10% to 20% are inherited. The late onset of heritable NDs, like their sporadic counterparts, may reflect the stochastic nature of prion formation; the pathogenesis of such illnesses seems to require prion accumulation to exceed some critical threshold before neurological dysfunction manifests. PMID:24274755

  16. Overexpression of the Hspa13 (Stch) gene reduces prion disease incubation time in mice.

    PubMed

    Grizenkova, Julia; Akhtar, Shaheen; Hummerich, Holger; Tomlinson, Andrew; Asante, Emmanuel A; Wenborn, Adam; Fizet, Jérémie; Poulter, Mark; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E

    2012-08-21

    Prion diseases are fatal neurodegenerative disorders that include bovine spongiform encephalopathy (BSE) and scrapie in animals and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by long incubation periods, variation in which is determined by many factors including genetic background. In some cases it is possible that incubation time may be directly correlated to the level of gene expression. To test this hypothesis, we combined incubation time data from five different inbred lines of mice with quantitative gene expression profiling in normal brains and identified five genes with expression levels that correlate with incubation time. One of these genes, Hspa13 (Stch), is a member of the Hsp70 family of ATPase heat shock proteins, which have been previously implicated in prion propagation. To test whether Hspa13 plays a causal role in determining the incubation period, we tested two overexpressing mouse models. The Tc1 human chromosome 21 (Hsa21) transchromosomic mouse model of Down syndrome is trisomic for many Hsa21 genes including Hspa13 and following Chandler/Rocky Mountain Laboratory (RML) prion inoculation, shows a 4% reduction in incubation time. Furthermore, a transgenic model with eightfold overexpression of mouse Hspa13 exhibited highly significant reductions in incubation time of 16, 15, and 7% following infection with Chandler/RML, ME7, and MRC2 prion strains, respectively. These data further implicate Hsp70-like molecular chaperones in protein misfolding disorders such as prion disease.

  17. Cellular Aspects of Prion Replication In Vitro

    PubMed Central

    Grassmann, Andrea; Wolf, Hanna; Hofmann, Julia; Graham, James; Vorberg, Ina

    2013-01-01

    Prion diseases or transmissible spongiform encephalopathies (TSEs) are fatal neurodegenerative disorders in mammals that are caused by unconventional agents predominantly composed of aggregated misfolded prion protein (PrP). Prions self-propagate by recruitment of host-encoded PrP into highly ordered β-sheet rich aggregates. Prion strains differ in their clinical, pathological and biochemical characteristics and are likely to be the consequence of distinct abnormal prion protein conformers that stably replicate their alternate states in the host cell. Understanding prion cell biology is fundamental for identifying potential drug targets for disease intervention. The development of permissive cell culture models has greatly enhanced our knowledge on entry, propagation and dissemination of TSE agents. However, despite extensive research, the precise mechanism of prion infection and potential strain effects remain enigmatic. This review summarizes our current knowledge of the cell biology and propagation of prions derived from cell culture experiments. We discuss recent findings on the trafficking of cellular and pathologic PrP, the potential sites of abnormal prion protein synthesis and potential co-factors involved in prion entry and propagation. PMID:23340381

  18. Animal models for testing anti-prion drugs.

    PubMed

    Fernández-Borges, Natalia; Elezgarai, Saioa R; Eraña, Hasier; Castilla, Joaquín

    2013-01-01

    Prion diseases belong to a group of fatal infectious diseases with no effective therapies available. Throughout the last 35 years, less than 50 different drugs have been tested in different experimental animal models without hopeful results. An important limitation when searching for new drugs is the existence of appropriate models of the disease. The three different possible origins of prion diseases require the existence of different animal models for testing anti-prion compounds. Wild type, over-expressing transgenic mice and other more sophisticated animal models have been used to evaluate a diversity of compounds which some of them were previously tested in different in vitro experimental models. The complexity of prion diseases will require more pre-screening studies, reliable sporadic (or spontaneous) animal models and accurate chemical modifications of the selected compounds before having an effective therapy against human prion diseases. This review is intended to put on display the more relevant animal models that have been used in the search of new antiprion therapies and describe some possible procedures when handling chemical compounds presumed to have anti-prion activity prior to testing them in animal models.

  19. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases.

    PubMed

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2017-09-04

    Progression of pathology in neurodegenerative diseases is hypothesized to be a non-cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a "donor cell" that is the source of misfolded aggregates to an "acceptor cell" in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer's, Huntington's, and Parkinson's diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies. © 2017 Victoria and Zurzolo.

  20. The spread of prion-like proteins by lysosomes and tunneling nanotubes: Implications for neurodegenerative diseases

    PubMed Central

    Victoria, Guiliana Soraya

    2017-01-01

    Progression of pathology in neurodegenerative diseases is hypothesized to be a non–cell-autonomous process that may be mediated by the productive spreading of prion-like protein aggregates from a “donor cell” that is the source of misfolded aggregates to an “acceptor cell” in which misfolding is propagated by conversion of the normal protein. Although the proteins involved in the various diseases are unrelated, common pathways appear to be used for their intercellular propagation and spreading. Here, we summarize recent evidence of the molecular mechanisms relevant for the intercellular trafficking of protein aggregates involved in prion, Alzheimer’s, Huntington’s, and Parkinson’s diseases. We focus in particular on the common roles that lysosomes and tunneling nanotubes play in the formation and spreading of prion-like assemblies. PMID:28724527

  1. Chronic wasting disease in a Wisconsin white-tailed deer farm

    USGS Publications Warehouse

    Keane, D.P.; Barr, D.J.; Bochsler, P.N.; Hall, S.M.; Gidlewski, T.; O'Rourke, K. I.; Spraker, T.R.; Samuel, M.D.

    2008-01-01

    In September 2002, chronic wasting disease (CWD), a prion disorder of captive and wild cervids, was diagnosed in a white-tailed deer (Odocoileus virginianus) from a captive farm in Wisconsin. The facility was subsequently quarantined, and in January 2006 the remaining 76 deer were depopulated. Sixty animals (79%) were found to be positive by immunohistochemical staining for the abnormal prion protein (PrPCWD) in at least one tissue; the prevalence of positive staining was high even in young deer. Although none of the deer displayed clinical signs suggestive of CWD at depopulation, 49 deer had considerable accumulation of the abnormal prion in the medulla at the level of the obex. Extraneural accumulation of the abnormal protein was observed in 59 deer, with accumulation in the retropharyngeal lymph node in 58 of 59 (98%), in the tonsil in 56 of 59 (95%), and in the rectal mucosal lymphoid tissue in 48 of 58 (83%). The retina was positive in 4 deer, all with marked accumulation of prion in the obex. One deer was considered positive for PrPCWD in the brain but not in the extraneural tissue, a novel observation in white-tailed deer. The infection rate in captive deer was 20-fold higher than in wild deer. Although weakly related to infection rates in extraneural tissues, prion genotype was strongly linked to progression of prion accumulation in the obex. Antemortem testing by biopsy of rectoanal mucosal-associated lymphoid tissue (or other peripheral lymphoid tissue) may be a useful adjunct to tonsil biopsy for surveillance in captive herds at risk for CWD infection.

  2. Classifying prion and prion-like phenomena.

    PubMed

    Harbi, Djamel; Harrison, Paul M

    2014-01-01

    The universe of prion and prion-like phenomena has expanded significantly in the past several years. Here, we overview the challenges in classifying this data informatically, given that terms such as "prion-like", "prion-related" or "prion-forming" do not have a stable meaning in the scientific literature. We examine the spectrum of proteins that have been described in the literature as forming prions, and discuss how "prion" can have a range of meaning, with a strict definition being for demonstration of infection with in vitro-derived recombinant prions. We suggest that although prion/prion-like phenomena can largely be apportioned into a small number of broad groups dependent on the type of transmissibility evidence for them, as new phenomena are discovered in the coming years, a detailed ontological approach might be necessary that allows for subtle definition of different "flavors" of prion / prion-like phenomena.

  3. Characterization of Variant Creutzfeldt-Jakob Disease Prions in Prion Protein-humanized Mice Carrying Distinct Codon 129 Genotypes*

    PubMed Central

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W.; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-01-01

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype. PMID:23792955

  4. Characterization of variant Creutzfeldt-Jakob disease prions in prion protein-humanized mice carrying distinct codon 129 genotypes.

    PubMed

    Takeuchi, Atsuko; Kobayashi, Atsushi; Ironside, James W; Mohri, Shirou; Kitamoto, Tetsuyuki

    2013-07-26

    To date, all clinical variant Creutzfeldt-Jakob disease (vCJD) patients are homozygous for methionine at polymorphic codon 129 (129M/M) of the prion protein (PrP) gene. However, the appearance of asymptomatic secondary vCJD infection in individuals with a PRNP codon 129 genotype other than M/M and transmission studies using animal models have raised the concern that all humans might be susceptible to vCJD prions, especially via secondary infection. To reevaluate this possibility and to analyze in detail the transmission properties of vCJD prions to transgenic animals carrying distinct codon 129 genotype, we performed intracerebral inoculation of vCJD prions to humanized knock-in mice carrying all possible codon 129 genotypes (129M/M, 129M/V, or 129V/V). All humanized knock-in mouse lines were susceptible to vCJD infection, although the attack rate gradually decreased from 129M/M to 129M/V and to 129V/V. The amount of PrP deposition including florid/amyloid plaques in the brain also gradually decreased from 129M/M to 129M/V and to 129V/V. The biochemical properties of protease-resistant abnormal PrP in the brain and transmissibility of these humanized mouse-passaged vCJD prions upon subpassage into knock-in mice expressing bovine PrP were not affected by the codon 129 genotype. These results indicate that individuals with the 129V/V genotype may be more susceptible to secondary vCJD infection than expected and may lack the neuropathological characteristics observed in vCJD patients with the 129M/M genotype. Besides the molecular typing of protease-resistant PrP in the brain, transmission studies using knock-in mice carrying bovine PrP may aid the differential diagnosis of secondary vCJD infection, especially in individuals with the 129V/V genotype.

  5. Proteomics analyses for the global proteins in the brain tissues of different human prion diseases.

    PubMed

    Shi, Qi; Chen, Li-Na; Zhang, Bao-Yun; Xiao, Kang; Zhou, Wei; Chen, Cao; Zhang, Xiao-Mei; Tian, Chan; Gao, Chen; Wang, Jing; Han, Jun; Dong, Xiao-Ping

    2015-04-01

    Proteomics changes of brain tissues have been described in different neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. However, the brain proteomics of human prion disease remains less understood. In the study, the proteomics patterns of cortex and cerebellum of brain tissues of sporadic Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD were analyzed with isobaric tags for relative and absolute quantitation combined with multidimensional liquid chromatography and MS analysis, with the brains from three normal individuals as controls. Global protein profiling, significant pathway, and functional categories were analyzed. In total, 2287 proteins were identified with quantitative information both in cortex and cerebellum regions. Cerebellum tissues appeared to contain more up- and down-regulated proteins (727 proteins) than cortex regions (312 proteins) of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD. Viral myocarditis, Parkinson's disease, Alzheimer's disease, lysosome, oxidative phosphorylation, protein export, and drug metabolism-cytochrome P450 were the most commonly affected pathways of the three kinds of diseases. Almost coincident biological functions were identified in the brain tissues of the three diseases. In all, data here demonstrate that the brain tissues of Creutzfeldt-Jakob disease, fatal familial insomnia, and G114V genetic CJD have obvious proteomics changes at their terminal stages, which show the similarities not only among human prion diseases but also with other neurodegeneration diseases. This is the first study to provide a reference proteome map for human prion diseases and will be helpful for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Synthetic Prions Provide Clues for Understanding Prion Diseases.

    PubMed

    Imberdis, Thibaut; Harris, David A

    2016-04-01

    This Commentary highlights the article by Makarava et al that discusses the formation of synthetic prions and the role of substrate levels in their evolution. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Accelerating Yeast Prion Biology using Droplet Microfluidics

    NASA Astrophysics Data System (ADS)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  8. Familial Prion Disease with Alzheimer Disease-Like Tau Pathology and Clinical Phenotype

    PubMed Central

    Jayadev, Suman; Nochlin, David; Poorkaj, Parvoneh; Steinbart, Ellen J.; Mastrianni, James A.; Montine, Thomas J.; Ghetti, Bernardino; Schellenberg, Gerard D.; Bird, Thomas D.; Leverenz, James B.

    2011-01-01

    Objective To describe the Alzheimer disease (AD)-like clinical and pathological features, including marked neurofibrillary tangle (NFT) pathology, of a familial prion disease due to a rare nonsense mutation of the prion gene (PRNP). Methods Longitudinal clinical assessments were available for the proband and her mother. After death, both underwent neuropathological evaluation. PRNP was sequenced after failure to find immunopositive Aβ deposits in the proband and the documentation of prion protein (PrP) immunopositive pathology. Results The proband presented at age 42 years with a 3-year history of progressive short-term memory impairment and depression. Neuropsychological testing found impaired memory performance, with relatively preserved attention and construction. She was diagnosed with AD and died at age 47 years. Neuropathologic evaluation revealed extensive limbic and neocortical NFT formation and neuritic plaques consistent with a Braak stage of VI. The NFTs were immunopositive, with multiple tau antibodies, and electron microscopy revealed paired helical filaments. However, the neuritic plaques were immunonegative for Aβ, whereas immunostaining for PrP was positive. The mother of the proband had a similar presentation, including depression, and had been diagnosed clinically and pathologically as AD. Reevaluation of her brain tissue confirmed similar tau and PrP immunostaining findings. Genetic analysis revealed that both the proband and her mother had a rare PRNP mutation (Q160X) that resulted in the production of truncated PrP. Interpretation We suggest that PRNP mutations that result in a truncation of PrP lead to a prolonged clinical course consistent with a clinical diagnosis of AD and severe AD-like NFTs. PMID:21416485

  9. Quantifying the relative amounts of PrP polymorphisms present in prions isolated from heterozygous prion-infected animals

    USDA-ARS?s Scientific Manuscript database

    Prions cause protein misfolding diseases, such as transmissible spongiform encephalopathy. They propagate infections by converting a normal cellular prion protein into a prion (PrPSc). PrPC and PrPSc are isosequential and differ only in their respective conformations. PrPC is monomeric and sensit...

  10. Kinetic and Stochastic Models of 1D yeast ``prions"

    NASA Astrophysics Data System (ADS)

    Kunes, Kay

    2005-03-01

    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.

  11. A brief history of prions

    PubMed Central

    Zabel, Mark D.; Reid, Crystal

    2015-01-01

    Proteins were described as distinct biological molecules and their significance in cellular processes was recognized as early as the 18th century. At the same time, Spanish shepherds observed a disease that compelled their Merino sheep to pathologically scrape against fences, a defining clinical sign that led to the disease being named scrapie. In the late 19th century, Robert Koch published his postulates for defining causative agents of disease. In the early 20th century, pathologists Creutzfeldt and Jakob described a neurodegenerative disease that would later be included with scrapie into a group of diseases known as transmissible spongiform encephalopathies (TSEs). Later that century, mounting evidence compelled a handful of scientists to betray the prevailing biological dogma governing pathogen replication that Watson and Crick so convincingly explained by cracking the genetic code just two decades earlier. Because TSEs seemed to defy these new rules, J.S. Griffith theorized mechanisms by which a pathogenic protein could encipher its own replication blueprint without a genetic code. Stanley Prusiner called this proteinaceous infectious pathogen a prion. Here we offer a concise account of the discovery of prions, the causative agent of TSEs, in the wider context of protein biochemistry and infectious disease. We highlight the discovery of prions in yeast and discuss the implication of prions as epigenomic carriers of biological and pathological information. We also consider expanding the prion hypothesis to include other proteins whose alternate isoforms confer new biological or pathological properties. PMID:26449713

  12. Profoundly different prion diseases in knock-in mice carrying single PrP codon substitutions associated with human diseases.

    PubMed

    Jackson, Walker S; Borkowski, Andrew W; Watson, Nicki E; King, Oliver D; Faas, Henryk; Jasanoff, Alan; Lindquist, Susan

    2013-09-03

    In man, mutations in different regions of the prion protein (PrP) are associated with infectious neurodegenerative diseases that have remarkably different clinical signs and neuropathological lesions. To explore the roots of this phenomenon, we created a knock-in mouse model carrying the mutation associated with one of these diseases [Creutzfeldt-Jakob disease (CJD)] that was exactly analogous to a previous knock-in model of a different prion disease [fatal familial insomnia (FFI)]. Together with the WT parent, this created an allelic series of three lines, each expressing the same protein with a single amino acid difference, and with all native regulatory elements intact. The previously described FFI mice develop neuronal loss and intense reactive gliosis in the thalamus, as seen in humans with FFI. In contrast, CJD mice had the hallmark features of CJD, spongiosis and proteinase K-resistant PrP aggregates, initially developing in the hippocampus and cerebellum but absent from the thalamus. A molecular transmission barrier protected the mice from any infectious prion agents that might have been present in our mouse facility and allowed us to conclude that the diseases occurred spontaneously. Importantly, both models created agents that caused a transmissible neurodegenerative disease in WT mice. We conclude that single codon differences in a single gene in an otherwise normal genome can cause remarkably different neurodegenerative diseases and are sufficient to create distinct protein-based infectious elements.

  13. Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations.

    PubMed

    Zhou, Shuangyan; Shi, Danfeng; Liu, Xuewei; Liu, Huanxiang; Yao, Xiaojun

    2016-02-24

    Recent studies uncovered a novel protective prion protein variant: V127 variant, which was reported intrinsically resistant to prion conversion and propagation. However, the structural basis of its protective effect is still unknown. To uncover the origin of the protective role of V127 variant, molecular dynamics simulations were performed to explore the influence of G127V mutation on two key processes of prion propagation: dimerization and fibril formation. The simulation results indicate V127 variant is unfavorable to form dimer by reducing the main-chain H-bond interactions. The simulations of formed fibrils consisting of β1 strand prove V127 variant will make the formed fibril become unstable and disorder. The weaker interaction energies between layers and reduced H-bonds number for V127 variant reveal this mutation is unfavorable to the formation of stable fibril. Consequently, we find V127 variant is not only unfavorable to the formation of dimer but also unfavorable to the formation of stable core and fibril, which can explain the mechanism on the protective role of V127 variant from the molecular level. Our findings can deepen the understanding of prion disease and may guide the design of peptide mimetics or small molecule to mimic the protective effect of V127 variant.

  14. The inhibition of prions through blocking prion conversion by permanently charged branched polyamines of low cytotoxicity.

    PubMed

    Lim, Yong-beom; Mays, Charles E; Kim, Younghwan; Titlow, William B; Ryou, Chongsuk

    2010-03-01

    Branched polyamines are effective in inhibiting prions in a cationic surface charge density dependent manner. However, toxicity associated with branched polyamines, in general, often hampers the successful application of the compounds to treat prion diseases. Here, we report that constitutively maintained cationic properties in branched polyamines reduced the intrinsic toxicity of the compounds while retaining the anti-prion activities. In prion-infected neuroblastoma cells, quaternization of amines in polyethyleneimine (PEI) and polyamidoamine (PAMAM) dendrimers markedly increased the nontoxic concentration ranges of the compounds and still supported, albeit reduced, an appreciable level of anti-prion activity in clearing prions from the infected cells. Furthermore, quaternized PEI was able to degrade prions at acidic pH conditions and inhibit the in vitro prion propagation facilitated by conversion of the normal prion protein isoform to its misfolded counterpart, although such activities were decreased by quaternization. Quaternized PAMAM was least effective in degrading prions but efficiently inhibited prion conversion with the same efficacy as unmodified PAMAM. Our results suggest that quaternization represents an effective strategy for developing nontoxic branched polyamines with potent anti-prion activity. This study highlights the importance of polyamine structural control for developing polyamine-based anti-prion agents and understanding of an action mechanism of quaternized branched polyamines. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Ascertainment Bias Causes False Signal of Anticipation in Genetic Prion Disease

    PubMed Central

    Minikel, Eric Vallabh; Zerr, Inga; Collins, Steven J.; Ponto, Claudia; Boyd, Alison; Klug, Genevieve; Karch, André; Kenny, Joanna; Collinge, John; Takada, Leonel T.; Forner, Sven; Fong, Jamie C.; Mead, Simon; Geschwind, Michael D.

    2014-01-01

    Anticipation is the phenomenon whereby age of onset in genetic disease decreases in successive generations. Three independent reports have claimed anticipation in Creutzfeldt-Jakob disease (CJD) caused by the c.598G>A mutation in PRNP encoding a p.Glu200Lys (E200K) substitution in the prion protein. If confirmed, this finding would carry clear implications for genetic counseling. We analyzed pedigrees with this mutation from four prion centers worldwide (n = 217 individuals with the mutation) to analyze age of onset and death in affected and censored individuals. We show through simulation that selective ascertainment of individuals whose onset falls within the historical window since the mutation’s 1989 discovery is sufficient to create robust false signals both of anticipation and of heritability of age of onset. In our data set, the number of years of anticipation observed depends upon how strictly the data are limited by the ascertainment window. Among individuals whose disease was directly observed at a study center, a 28-year difference between parent and child age of onset is observed (p = 0.002), but including individuals ascertained retrospectively through family history reduces this figure to 7 years (p = 0.005). Applying survival analysis to the most thoroughly ascertained subset of data eliminates the signal of anticipation. Moreover, even non-CJD deaths exhibit 16 years anticipation (p = 0.002), indicating that ascertainment bias can entirely explain observed anticipation. We suggest that reports of anticipation in genetic prion disease are driven entirely by ascertainment bias. Guidelines for future studies claiming statistical evidence for anticipation are suggested. PMID:25279981

  16. PrPC expression and prion seeding activity in the alimentary tract and lymphoid tissue of deer

    PubMed Central

    Davenport, Kristen A.; Hoover, Clare E.; Bian, Jifeng; Telling, Glenn C.; Mathiason, Candace K.; Hoover, Edward A.

    2017-01-01

    The agent responsible for prion diseases is a misfolded form of a normal protein (PrPC). The prion hypothesis stipulates that PrPC must be present for the disease to manifest. Cervid populations across the world are infected with chronic wasting disease, a horizontally-transmissible prion disease that is likely spread via oral exposure to infectious prions (PrPCWD). Though PrPCWD has been identified in many tissues, there has been little effort to characterize the overall PrPC expression in cervids and its relationship to PrPCWD accumulation. We used immunohistochemistry (IHC), western blot and enzyme-linked immunosorbent assay to describe PrPC expression in naïve white-tailed deer. We used real-time, quaking-induced conversion (RT-QuIC) to detect prion seeding activity in CWD-infected deer. We assessed tissues comprising the alimentary tract, alimentary-associated lymphoid tissue and systemic lymphoid tissue from 5 naïve deer. PrPC was expressed in all tissues, though expression was often very low compared to the level in the CNS. IHC identified specific cell types wherein PrPC expression is very high. To compare the distribution of PrPC to PrPCWD, we examined 5 deer with advanced CWD infection. Using RT-QuIC, we detected prion seeding activity in all 21 tissues. In 3 subclinical deer sacrificed 4 months post-inoculation, we detected PrPCWD consistently in alimentary-associated lymphoid tissue, irregularly in alimentary tract tissues, and not at all in the brain. Contrary to our hypothesis that PrPC levels dictate prion accumulation, PrPC expression was higher in the lower gastrointestinal tissues than in the alimentary-associated lymphoid system and was higher in salivary glands than in the oropharyngeal lymphoid tissue. These data suggest that PrPC expression is not the sole driver of prion accumulation and that alimentary tract tissues accumulate prions before centrifugal spread from the brain occurs. PMID:28880938

  17. Distinct pathological phenotypes of Creutzfeldt-Jakob disease in recipients of prion-contaminated growth hormone.

    PubMed

    Cali, Ignazio; Miller, Cathleen J; Parisi, Joseph E; Geschwind, Michael D; Gambetti, Pierluigi; Schonberger, Lawrence B

    2015-06-25

    The present study compares the clinical, pathological and molecular features of a United States (US) case of growth hormone (GH)-associated Creutzfeldt-Jakob disease (GH-CJD) (index case) to those of two earlier referred US cases of GH-CJD and one case of dura mater (d)-associated CJD (dCJD). All iatrogenic CJD (iCJD) subjects were methionine (M) homozygous at codon 129 (129MM) of the prion protein (PrP) gene and had scrapie prion protein (PrP(Sc)) type 1 (iCJDMM1). The index subject presented with ataxia, weight loss and changes in the sleep pattern about 38 years after the midpoint of GH treatment. Autopsy examination revealed a neuropathological phenotype reminiscent of both sCJDMV2-K (a sporadic CJD subtype in subjects methionine/valine heterozygous at codon 129 with PrP(Sc) type 2 and the presence of kuru plaques) and variant CJD (vCJD). The two earlier cases of GH-CJDMM1 and the one of dCJDMM1 were associated with neuropathological phenotypes that differed from that of the index case mainly because they lacked PrP plaques. The phenotype of the earlier GH-CJDMM1 cases shared several, but not all, characteristics with sCJDMM1, whereas dCJDMM1 was phenotypically indistinguishable from sCJDMM1. Two distinct groups of dCJDMM1 have also been described in Japan based on clinical features, the presence or absence of PrP plaques and distinct PK-resistant PrP(Sc) (resPrP(Sc)) electrophoretic mobilities. The resPrP(Sc) electrophoretic mobility was, however, identical in our GH-CJDMM1 and dCJDMM1 cases, and matched that of sCJDMM1. Our study shows that receipt of prion-contaminated GH can lead to a prion disease with molecular features (129MM and PrP(Sc) type 2) and phenotypic characteristics that differ from those of sporadic prion disease (sCJDMM1), a difference that may reflect adaptation of "heterologous" prion strains to the 129MM background.

  18. A closer look at prion strains: characterization and important implications.

    PubMed

    Solforosi, Laura; Milani, Michela; Mancini, Nicasio; Clementi, Massimo; Burioni, Roberto

    2013-01-01

    Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrP (Sc) ), a pathogenic isoform of the host-encoded cellular prion protein (PrP (C) ). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrP (Sc) conformational and aggregation states. Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrP (Sc) biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages. This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves.

  19. New insights into structural determinants of prion protein folding and stability.

    PubMed

    Benetti, Federico; Legname, Giuseppe

    2015-01-01

    Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.

  20. A brief history of prions.

    PubMed

    Zabel, Mark D; Reid, Crystal

    2015-12-01

    Proteins were described as distinct biological molecules and their significance in cellular processes was recognized as early as the 18th century. At the same time, Spanish shepherds observed a disease that compelled their Merino sheep to pathologically scrape against fences, a defining clinical sign that led to the disease being named scrapie. In the late 19th century, Robert Koch published his postulates for defining causative agents of disease. In the early 20th century, pathologists Creutzfeldt and Jakob described a neurodegenerative disease that would later be included with scrapie into a group of diseases known as transmissible spongiform encephalopathies (TSEs). Later that century, mounting evidence compelled a handful of scientists to betray the prevailing biological dogma governing pathogen replication that Watson and Crick so convincingly explained by cracking the genetic code just two decades earlier. Because TSEs seemed to defy these new rules, J.S. Griffith theorized mechanisms by which a pathogenic protein could encipher its own replication blueprint without a genetic code. Stanley Prusiner called this proteinaceous infectious pathogen a prion. Here we offer a concise account of the discovery of prions, the causative agent of TSEs, in the wider context of protein biochemistry and infectious disease. We highlight the discovery of prions in yeast and discuss the implication of prions as epigenomic carriers of biological and pathological information. We also consider expanding the prion hypothesis to include other proteins whose alternate isoforms confer new biological or pathological properties. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. PrionScan: an online database of predicted prion domains in complete proteomes.

    PubMed

    Espinosa Angarica, Vladimir; Angulo, Alfonso; Giner, Arturo; Losilla, Guillermo; Ventura, Salvador; Sancho, Javier

    2014-02-05

    Prions are a particular type of amyloids related to a large variety of important processes in cells, but also responsible for serious diseases in mammals and humans. The number of experimentally characterized prions is still low and corresponds to a handful of examples in microorganisms and mammals. Prion aggregation is mediated by specific protein domains with a remarkable compositional bias towards glutamine/asparagine and against charged residues and prolines. These compositional features have been used to predict new prion proteins in the genomes of different organisms. Despite these efforts, there are only a few available data sources containing prion predictions at a genomic scale. Here we present PrionScan, a new database of predicted prion-like domains in complete proteomes. We have previously developed a predictive methodology to identify and score prionogenic stretches in protein sequences. In the present work, we exploit this approach to scan all the protein sequences in public databases and compile a repository containing relevant information of proteins bearing prion-like domains. The database is updated regularly alongside UniprotKB and in its present version contains approximately 28000 predictions in proteins from different functional categories in more than 3200 organisms from all the taxonomic subdivisions. PrionScan can be used in two different ways: database query and analysis of protein sequences submitted by the users. In the first mode, simple queries allow to retrieve a detailed description of the properties of a defined protein. Queries can also be combined to generate more complex and specific searching patterns. In the second mode, users can submit and analyze their own sequences. It is expected that this database would provide relevant insights on prion functions and regulation from a genome-wide perspective, allowing researches performing cross-species prion biology studies. Our database might also be useful for guiding experimentalists

  2. Stimulating the Release of Exosomes Increases the Intercellular Transfer of Prions.

    PubMed

    Guo, Belinda B; Bellingham, Shayne A; Hill, Andrew F

    2016-03-04

    Exosomes are small extracellular vesicles released by cells and play important roles in intercellular communication and pathogen transfer. Exosomes have been implicated in several neurodegenerative diseases, including prion disease and Alzheimer disease. Prion disease arises upon misfolding of the normal cellular prion protein, PrP(C), into the disease-associated isoform, PrP(Sc). The disease has a unique transmissible etiology, and exosomes represent a novel and efficient method for prion transmission. The precise mechanism by which prions are transmitted from cell to cell remains to be fully elucidated, although three hypotheses have been proposed: direct cell-cell contact, tunneling nanotubes, and exosomes. Given the reported presence of exosomes in biological fluids and in the lipid and nucleic acid contents of exosomes, these vesicles represent an ideal mechanism for encapsulating prions and potential cofactors to facilitate prion transmission. This study investigates the relationship between exosome release and intercellular prion dissemination. Stimulation of exosome release through treatment with an ionophore, monensin, revealed a corresponding increase in intercellular transfer of prion infectivity. Conversely, inhibition of exosome release using GW4869 to target the neutral sphingomyelinase pathway induced a decrease in intercellular prion transmission. Further examination of the effect of monensin on PrP conversion revealed that monensin also alters the conformational stability of PrP(C), leading to increased generation of proteinase K-resistant prion protein. The findings presented here provide support for a positive relationship between exosome release and intercellular transfer of prion infectivity, highlighting an integral role for exosomes in facilitating the unique transmissible nature of prions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Mountain lions prey selectively on prion-infected mule deer

    PubMed Central

    Krumm, Caroline E.; Conner, Mary M.; Hobbs, N. Thompson; Hunter, Don O.; Miller, Michael W.

    2010-01-01

    The possibility that predators choose prey selectively based on age or condition has been suggested but rarely tested. We examined whether mountain lions (Puma concolor) selectively prey upon mule deer (Odocoileus hemionus) infected with chronic wasting disease, a prion disease. We located kill sites of mountain lions in the northern Front Range of Colorado, USA, and compared disease prevalence among lion-killed adult (≥2 years old) deer with prevalence among sympatric deer taken by hunters in the vicinity of kill sites. Hunter-killed female deer were less likely to be infected than males (odds ratios (OR) = 0.2, 95% confidence intervals (CI) = 0.1–0.6; p = 0.015). However, both female (OR = 8.5, 95% CI = 2.3–30.9) and male deer (OR = 3.2, 95% CI = 1–10) killed by a mountain lion were more likely to be infected than same-sex deer killed in the vicinity by a hunter (p < 0.001), suggesting that mountain lions in this area actively selected prion-infected individuals when targeting adult mule deer as prey items. PMID:19864271

  4. Retrospective investigation of chronic wasting disease of cervids at the Toronto Zoo, 1973–2003

    PubMed Central

    Dubé, Caroline; Mehren, Kay G.; Barker, Ian K.; Peart, Brian L.; Balachandran, Aru

    2006-01-01

    The occurrence of chronic wasting disease (CWD) at the Toronto Zoo was investigated retrospectively, based on an examination of management, animal health, and postmortem records, and immunohistochemical studies. Records of animal movements, clinical signs, and postmortem findings were examined for all cervids 1973–2003. All available samples of fixed, wax-embedded lymphoid or central nervous system tissue from cervids that died at the Toronto Zoo from 1973 to 2003, > 12 months of age, were tested, using prion protein immunostaining. Chronic wasting disease prion antigen was detected in 8 of 105 animals tested: 7 mule deer and 1 black-tailed deer. The most likely method of introduction was the importation of CWD-infected animals from a zoo in the United States. Animal-to-animal contact and environmental contamination were the most likely methods of spread of CWD at the zoo. No mule deer left the Toronto Zoo site, and the last animal with CWD died in 1981. Historic findings and ongoing testing of cervids indicate that the Toronto Zoo collection has very low risk of currently being infected with CWD. PMID:17217088

  5. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay

    USGS Publications Warehouse

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitroprion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

  6. Soil clay content underlies prion infection odds

    USGS Publications Warehouse

    David, Walter W.; Walsh, D.P.; Farnsworth, Matthew L.; Winkelman, D.L.; Miller, M.W.

    2011-01-01

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. ?? 2011 Macmillan Publishers Limited. All rights reserved.

  7. Soil clay content underlies prion infection odds

    PubMed Central

    David Walter, W.; Walsh, Daniel P.; Farnsworth, Matthew L.; Winkelman, Dana L.; Miller, Michael W.

    2011-01-01

    Environmental factors—especially soil properties—have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings. PMID:21326232

  8. Soil clay content underlies prion infection odds.

    PubMed

    David Walter, W; Walsh, Daniel P; Farnsworth, Matthew L; Winkelman, Dana L; Miller, Michael W

    2011-02-15

    Environmental factors-especially soil properties-have been suggested as potentially important in the transmission of infectious prion diseases. Because binding to montmorillonite (an aluminosilicate clay mineral) or clay-enriched soils had been shown to enhance experimental prion transmissibility, we hypothesized that prion transmission among mule deer might also be enhanced in ranges with relatively high soil clay content. In this study, we report apparent influences of soil clay content on the odds of prion infection in free-ranging deer. Analysis of data from prion-infected deer herds in northern Colorado, USA, revealed that a 1% increase in the clay-sized particle content in soils within the approximate home range of an individual deer increased its odds of infection by up to 8.9%. Our findings suggest that soil clay content and related environmental properties deserve greater attention in assessing risks of prion disease outbreaks and prospects for their control in both natural and production settings.

  9. Ascertainment bias causes false signal of anticipation in genetic prion disease.

    PubMed

    Minikel, Eric Vallabh; Zerr, Inga; Collins, Steven J; Ponto, Claudia; Boyd, Alison; Klug, Genevieve; Karch, André; Kenny, Joanna; Collinge, John; Takada, Leonel T; Forner, Sven; Fong, Jamie C; Mead, Simon; Geschwind, Michael D

    2014-10-02

    Anticipation is the phenomenon whereby age of onset in genetic disease decreases in successive generations. Three independent reports have claimed anticipation in Creutzfeldt-Jakob disease (CJD) caused by the c.598G > A mutation in PRNP encoding a p.Glu200Lys (E200K) substitution in the prion protein. If confirmed, this finding would carry clear implications for genetic counseling. We analyzed pedigrees with this mutation from four prion centers worldwide (n = 217 individuals with the mutation) to analyze age of onset and death in affected and censored individuals. We show through simulation that selective ascertainment of individuals whose onset falls within the historical window since the mutation's 1989 discovery is sufficient to create robust false signals both of anticipation and of heritability of age of onset. In our data set, the number of years of anticipation observed depends upon how strictly the data are limited by the ascertainment window. Among individuals whose disease was directly observed at a study center, a 28-year difference between parent and child age of onset is observed (p = 0.002), but including individuals ascertained retrospectively through family history reduces this figure to 7 years (p = 0.005). Applying survival analysis to the most thoroughly ascertained subset of data eliminates the signal of anticipation. Moreover, even non-CJD deaths exhibit 16 years anticipation (p = 0.002), indicating that ascertainment bias can entirely explain observed anticipation. We suggest that reports of anticipation in genetic prion disease are driven entirely by ascertainment bias. Guidelines for future studies claiming statistical evidence for anticipation are suggested. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  10. Rapid and Highly Sensitive Detection of Variant Creutzfeldt - Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies

    PubMed Central

    Belondrade, Maxime; Nicot, Simon; Béringue, Vincent; Coste, Joliette; Lehmann, Sylvain; Bougard, Daisy

    2016-01-01

    The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. PMID:26800081

  11. Effects of a naturally occurring amino acid substitution in bovine PrP: a model for inherited prion disease in a natural host species

    USDA-ARS?s Scientific Manuscript database

    The most common hereditary prion disease is human Creutzfeldt-Jakob disease (CJD) associated with a mutation in the prion gene (PRNP) resulting in a glutamic acid to lysine substitution at position 200 (E200K) in the prion protein. Models of E200K CJD in transgenic mice have proven interesting but h...

  12. ER stress signaling and neurodegeneration: At the intersection between Alzheimer's disease and Prion-related disorders.

    PubMed

    Torres, Mauricio; Matamala, José Manuel; Duran-Aniotz, Claudia; Cornejo, Victor Hugo; Foley, Andrew; Hetz, Claudio

    2015-09-02

    Alzheimer's and Prion diseases are two neurodegenerative conditions sharing different pathophysiological characteristics. Disease symptoms are associated with the abnormal accumulation of protein aggregates, which are generated by the misfolding and oligomerization of specific proteins. Recent functional studies uncovered a key role of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in the occurrence of synaptic dysfunction and neurodegeneration in Prion-related disorders and Alzheimer's disease. Here we review common pathological features of both diseases, emphasizing the link between amyloid formation, its pathogenesis and alterations in ER proteostasis. The potential benefits of targeting the UPR as a therapeutic strategy is also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Infectious prions and proteinopathies.

    PubMed

    Barron, Rona M

    2017-01-02

    Transmissible spongiform encephalopathies (TSEs) are caused by an infectious agent that is thought to consist of only misfolded and aggregated prion protein (PrP). Unlike conventional micro-organisms, the agent spreads and propagates by binding to and converting normal host PrP into the abnormal conformer, increasing the infectious titre. Synthetic prions, composed of refolded fibrillar forms of recombinant PrP (rec-PrP) have been generated to address whether PrP aggregates alone are indeed infectious prions. In several reports, the development of TSE disease has been described following inoculation and passage of rec-PrP fibrils in transgenic mice and hamsters. However in studies described here we show that inoculation of rec-PrP fibrils does not always cause clinical TSE disease or increased infectious titre, but can seed the formation of PrP amyloid plaques in PrP-P101L knock-in transgenic mice (101LL). These data are reminiscent of the "prion-like" spread of misfolded protein in other models of neurodegenerative disease following inoculation of transgenic mice with pre-formed amyloid seeds. Protein misfolding, even when the protein is PrP, does not inevitably lead to the development of an infectious TSE disease. It is possible that most in vivo and in vitro produced misfolded PrP is not infectious and that only a specific subpopulation is associated with infectivity and neurotoxicity.

  14. Role of prion protein aggregation in neurotoxicity.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2012-01-01

    In several neurodegenerative diseases, such as Parkinson, Alzheimer's, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death.

  15. Physiological and environmental control of yeast prions

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.; Chernoff, Yury O.

    2014-01-01

    Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions. PMID:24236638

  16. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains.

    PubMed

    Orrú, Christina D; Groveman, Bradley R; Raymond, Lynne D; Hughson, Andrew G; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-06-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested.

  17. Mechanical Deformation Mechanisms and Properties of Prion Fibrils Probed by Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Choi, Bumjoon; Kim, Taehee; Ahn, Eue Soo; Lee, Sang Woo; Eom, Kilho

    2017-03-01

    Prion fibrils, which are a hallmark for neurodegenerative diseases, have recently been found to exhibit the structural diversity that governs disease pathology. Despite our recent finding concerning the role of the disease-specific structure of prion fibrils in determining their elastic properties, the mechanical deformation mechanisms and fracture properties of prion fibrils depending on their structures have not been fully characterized. In this work, we have studied the tensile deformation mechanisms of prion and non-prion amyloid fibrils by using steered molecular dynamics simulations. Our simulation results show that the elastic modulus of prion fibril, which is formed based on left-handed β-helical structure, is larger than that of non-prion fibril constructed based on right-handed β-helix. However, the mechanical toughness of prion fibril is found to be less than that of non-prion fibril, which indicates that infectious prion fibril is more fragile than non-infectious (non-prion) fibril. Our study sheds light on the role of the helical structure of amyloid fibrils, which is related to prion infectivity, in determining their mechanical deformation mechanisms and properties.

  18. Biochemical Characterization of Prions.

    PubMed

    Fiorini, Michele; Bongianni, Matilde; Monaco, Salvatore; Zanusso, Gianluigi

    2017-01-01

    Prion disease or transmissible spongiform encephalopathies are characterized by the presence of the abnormal form of the prion protein (PrP Sc ). The pathological and transmissible properties of PrP Sc are enciphered in its secondary and tertiary structures. Since it's well established that different strains of prions are linked to different conformations of PrP Sc , biochemical characterization of prions seems a preliminary but reliable approach to detect, analyze, and compare prion strains. Experimental biochemical procedures might be helpful in distinguishing PrP Sc physicochemical properties and include resistance to proteinase K (PK) digestion, insolubility in nonionic detergents, PK-resistance under denaturing conditions and sedimentation properties in sucrose gradients. This biochemical approach has been extensively applied in human prion disorders and subsequently expanded for PrP Sc characterization in animals. In particular, in sporadic Creutzfedlt-Jakob disease (sCJD) PrP Sc is characterized by two main glycotypes conventionally named Type 1 and Type 2, based on the apparent gel migration at 21 and 19kDa of the PrP Sc PK-resistant fragment. An additional PrP Sc type was identified in sCJD characterized by an unglycosylated dominant glycoform pattern and in 2010 a variably protease-sensitive prionopathy (VPSPr) was reported showing a PrP Sc with an electrophoretic ladder like pattern. Additionally, the presence of PrP Sc truncated fragments completes the electrophoretic characterization of different prion strains. By two-dimensional (2D) electrophoretic analysis additional PrP Sc pattern was identified, since this procedure provides information about the isoelectric point and the different peptides length related to PK cleavage, as well as to glycosylation extent or GPI anchor presence. We here provide and extensive review on PrP Sc biochemical analysis in human and animal prion disorders. Further, we show that PrP Sc glycotypes observed in CJD share

  19. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclical amplification with beads (PMCAb)

    USGS Publications Warehouse

    Johnson, Chad J.; Aiken, Judd M.; McKenzie, Debbie; Samuel, Michael D.; Pedersen, Joel A.

    2012-01-01

    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/−mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.

  20. Highly Efficient Amplification of Chronic Wasting Disease Agent by Protein Misfolding Cyclic Amplification with Beads (PMCAb)

    PubMed Central

    Johnson, Chad J.; Aiken, Judd M.; McKenzie, Debbie; Samuel, Michael D.; Pedersen, Joel A.

    2012-01-01

    Protein misfolding cyclic amplification (PMCA) has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb) has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD) agent without compromising the specificity of the assay (i.e., no false positive results). Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7×10−13 dilution of 10% brain homogenate (1.3 fg of source brain). Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP)1536+/− mice) allowed detection of CWD agent from the 10−6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 105. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility. PMID:22514738

  1. Secretin receptor involvement in prion-infected cells and animals.

    PubMed

    Kimura, Tomohiro; Nishizawa, Keiko; Oguma, Ayumi; Nishimura, Yuki; Sakasegawa, Yuji; Teruya, Kenta; Nishijima, Ichiko; Doh-ura, Katsumi

    2015-07-08

    The cellular mechanisms behind prion biosynthesis and metabolism remain unclear. Here we show that secretin signaling via the secretin receptor regulates abnormal prion protein formation in prion-infected cells. Animal studies demonstrate that secretin receptor deficiency slightly, but significantly, prolongs incubation time in female but not male mice. This gender-specificity is consistent with our finding that prion-infected cells are derived from females. Therefore, our results provide initial insights into the reasons why age of disease onset in certain prion diseases is reported to occur slightly earlier in females than males. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Attachment of Pathogenic Prion Protein to Model Oxide Surfaces

    PubMed Central

    Jacobson, Kurt H.; Kuech, Thomas R.; Pedersen, Joel A.

    2014-01-01

    Prions are the infectious agents in the class of fatal neurodegenerative diseases known as transmissible spongiform encephalopathies, which affect humans, deer, sheep, and cattle. Prion diseases of deer and sheep can be transmitted via environmental routes, and soil is has been implicated in the transmission of these diseases. Interaction with soil particles is expected to govern the transport, bioavailability and persistence of prions in soil environments. A mechanistic understanding of prion interaction with soil components is critical for understanding the behavior of these proteins in the environment. Here, we report results of a study to investigate the interactions of prions with model oxide surfaces (Al2O3, SiO2) using quartz crystal microbalance with dissipation monitoring and optical waveguide light mode spectroscopy. The efficiency of prion attachment to Al2O3 and SiO2 depended strongly on pH and ionic strength in a manner consistent with electrostatic forces dominating interaction with these oxides. The N-terminal portion of the protein appeared to facilitate attachment to Al2O3 under globally electrostatically repulsive conditions. We evaluated the utility of recombinant prion protein as a surrogate for prions in attachment experiments and found that its behavior differed markedly from that of the infectious agent. Our findings suggest that prions preferentially associate with positively charged mineral surfaces in soils (e.g., iron and aluminum oxides). PMID:23611152

  3. Aβ seeds and prions: How close the fit?

    PubMed

    Rasmussen, Jay; Jucker, Mathias; Walker, Lary C

    2017-07-04

    The prion paradigm is increasingly invoked to explain the molecular pathogenesis of neurodegenerative diseases involving the misfolding and aggregation of proteins other than the prion protein (PrP). Extensive evidence from in vitro and in vivo studies indicates that misfolded and aggregated Aβ peptide, which is the probable molecular trigger for Alzheimer's disease, manifests all of the key characteristics of canonical mammalian prions. These features include a β-sheet rich architecture, tendency to polymerize into amyloid, templated corruption of like protein molecules, ability to form structurally and functionally variant strains, systematic spread by neuronal transport, and resistance to inactivation by heat and formaldehyde. In addition to Aβ, a growing body of research supports the view that the prion-like molecular transformation of specific proteins drives the onset and course of a remarkable variety of clinicopathologically diverse diseases. As such, the expanded prion paradigm could conceptually unify fundamental and translational investigations of these disorders.

  4. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure.

    PubMed

    Wan, William; Stöhr, Jan; Kendall, Amy; Stubbs, Gerald

    2015-01-01

    Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled the complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.

  5. Truncated forms of the prion protein PrP demonstrate the need for complexity in prion structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, William; Stöhr, Jan; Kendall, Amy

    2015-09-01

    Self-propagation of aberrant protein folds is the defining characteristic of prions. Knowing the structural basis of self-propagation is essential to understanding prions and their related diseases. Prion rods are amyloid fibrils, but not all amyloids are prions. Prions have been remarkably intractable to structural studies, so many investigators have preferred to work with peptide fragments, particularly in the case of the mammalian prion protein PrP. We compared the structures of a number of fragments of PrP by X-ray fiber diffraction, and found that although all of the peptides adopted amyloid conformations, only the larger fragments adopted conformations that modeled themore » complexity of self-propagating prions, and even these fragments did not always adopt the PrP structure. It appears that the relatively complex structure of the prion form of PrP is not accessible to short model peptides, and that self-propagation may be tied to a level of structural complexity unobtainable in simple model systems. The larger fragments of PrP, however, are useful to illustrate the phenomenon of deformed templating (heterogeneous seeding), which has important biological consequences.« less

  6. Molecular dynamics studies on the buffalo prion protein.

    PubMed

    Zhang, Jiapu; Wang, Feng; Chatterjee, Subhojyoti

    2016-01-01

    It was reported that buffalo is a low susceptibility species resisting to transmissible spongiform encephalopathies (TSEs) (same as rabbits, horses, and dogs). TSEs, also called prion diseases, are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of species (except for rabbits, dogs, horses, and buffalo), manifesting as scrapie in sheep and goats; bovine spongiform encephalopathy (BSE or "mad-cow" disease) in cattle; chronic wasting disease in deer and elk; and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and Kulu in humans etc. In molecular structures, these neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)), predominantly with α-helices, into insoluble abnormally folded infectious prions (PrP(Sc)), rich in β-sheets. In this article, we studied the molecular structure and structural dynamics of buffalo PrP(C) (BufPrP(C)), in order to understand the reason why buffalo is resistant to prion diseases. We first did molecular modeling of a homology structure constructed by one mutation at residue 143 from the NMR structure of bovine and cattle PrP(124-227); immediately we found that for BufPrP(C)(124-227), there are five hydrogen bonds (HBs) at Asn143, but at this position, bovine/cattle do not have such HBs. Same as that of rabbits, dogs, or horses, our molecular dynamics studies also revealed there is a strong salt bridge (SB) ASP178-ARG164 (O-N) keeping the β2-α2 loop linked in buffalo. We also found there is a very strong HB SER170-TYR218 linking this loop with the C-terminal end of α-helix H3. Other information, such as (i) there is a very strong SB HIS187-ARG156 (N-O) linking α-helices H2 and H1 (if mutation H187R is made at position 187, then the hydrophobic core of PrP(C) will be exposed (L.H. Zhong (2010). Exposure of hydrophobic core in human prion protein pathogenic mutant H187R. Journal of

  7. Role of Prion Protein Aggregation in Neurotoxicity

    PubMed Central

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Florio, Tullio

    2012-01-01

    In several neurodegenerative diseases, such as Parkinson, Alzheimer’s, Huntington, and prion diseases, the deposition of aggregated misfolded proteins is believed to be responsible for the neurotoxicity that characterizes these diseases. Prion protein (PrP), the protein responsible of prion diseases, has been deeply studied for the peculiar feature of its misfolded oligomers that are able to propagate within affected brains, inducing the conversion of the natively folded PrP into the pathological conformation. In this review, we summarize the available experimental evidence concerning the relationship between aggregation status of misfolded PrP and neuronal death in the course of prion diseases. In particular, we describe the main findings resulting from the use of different synthetic (mainly PrP106-126) and recombinant PrP-derived peptides, as far as mechanisms of aggregation and amyloid formation, and how these different spatial conformations can affect neuronal death. In particular, most data support the involvement of non-fibrillar oligomers rather than actual amyloid fibers as the determinant of neuronal death. PMID:22942726

  8. Survey of public perceptions of prion disease risks in Canada: what does the public care about?

    PubMed

    Lemyre, L; Gibson, S; Markon, M P L; Lee, J E C; Brazeau, I; Carroll, A; Boutette, P; Krewski, D

    2009-01-01

    A national public survey on public perceptions of prion disease risk in Canada was conducted from October to December 2007. The survey aimed at documenting the public's perceptions of prion diseases, within the broader context of food safety, in establishing parameters of risk acceptability. It also documented the public's perceptions of prion diseases in delineating social values and ethics that can guide Canada's future policies on prion disease risk management. In addition, the survey served to establish baseline data against which to monitor the evolution of the public's views on and understanding of this important risk issue. In total, 1517 Canadians were randomly selected to be representative of the adult population by region, age, and gender, as per the 2001 Census. This study presents descriptive findings from the survey regarding perceived risk, perceived control, uncertainty, sources of information, trust and knowledge, and beliefs pertaining to bovine spongiform encephalopathy (BSE). The survey data reveal that Canadians do not perceive mad cow disease as a salient risk but consider it more of an economic, political, social, and foreign trade issue than a public health one. Canadians are somewhat prepared to pay a premium to have a safer food supply, but not to the same extent that they desire extra measures pertaining to BSE risk management. In the context of increasing accountability in risk management decisions about food safety and population health issues, it is important to understand the way Canadians perceive such matters and identify their information needs and the factors that influence the acceptability of risks and of risk management policies.

  9. Analysis of the [RNQ+] Prion Reveals Stability of Amyloid Fibers as the Key Determinant of Yeast Prion Variant Propagation*

    PubMed Central

    Kalastavadi, Tejas; True, Heather L.

    2010-01-01

    Variation in pathology of human prion disease is believed to be caused, in part, by distinct conformations of aggregated protein resulting in different prion strains. Several prions also exist in yeast and maintain different self-propagating structures, referred to as prion variants. Investigation of the yeast prion [PSI+] has been instrumental in deciphering properties of prion variants and modeling the physical basis of their formation. Here, we describe the generation of specific variants of the [RNQ+] prion in yeast transformed with fibers formed in vitro in different conditions. The fibers of the Rnq1p prion-forming domain (PFD) that induce different variants in vivo have distinct biochemical properties. The physical basis of propagation of prion variants has been previously correlated to rates of aggregation and disaggregation. With [RNQ+] prion variants, we found that the prion variant does not correlate with the rate of aggregation as anticipated but does correlate with stability. Interestingly, we found that there are differences in the ability of the [RNQ+] prion variants to faithfully propagate themselves and to template the aggregation of other proteins. Incorporating the mechanism of variant formation elucidated in this study with that previously proposed for [PSI+] variants has provided a framework to separate general characteristics of prion variant properties from those specific to individual prion proteins. PMID:20442412

  10. Region-specific protein misfolding cyclic amplification reproduces brain tropism of prion strains.

    PubMed

    Privat, Nicolas; Levavasseur, Etienne; Yildirim, Serfildan; Hannaoui, Samia; Brandel, Jean-Philippe; Laplanche, Jean-Louis; Béringue, Vincent; Seilhean, Danielle; Haïk, Stéphane

    2017-10-06

    Human prion diseases such as Creutzfeldt-Jakob disease are transmissible brain proteinopathies, characterized by the accumulation of a misfolded isoform of the host cellular prion protein (PrP) in the brain. According to the prion model, prions are defined as proteinaceous infectious particles composed solely of this abnormal isoform of PrP (PrP Sc ). Even in the absence of genetic material, various prion strains can be propagated in experimental models. They can be distinguished by the pattern of disease they produce and especially by the localization of PrP Sc deposits within the brain and the spongiform lesions they induce. The mechanisms involved in this strain-specific targeting of distinct brain regions still are a fundamental, unresolved question in prion research. To address this question, we exploited a prion conversion in vitro assay, protein misfolding cyclic amplification (PMCA), by using experimental scrapie and human prion strains as seeds and specific brain regions from mice and humans as substrates. We show here that region-specific PMCA in part reproduces the specific brain targeting observed in experimental, acquired, and sporadic Creutzfeldt-Jakob diseases. Furthermore, we provide evidence that, in addition to cellular prion protein, other region- and species-specific molecular factors influence the strain-dependent prion conversion process. This important step toward understanding prion strain propagation in the human brain may impact research on the molecular factors involved in protein misfolding and the development of ultrasensitive methods for diagnosing prion disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Biological and biochemical characterization of mice expressing prion protein devoid of the octapeptide repeat region after infection with prions.

    PubMed

    Yamaguchi, Yoshitaka; Miyata, Hironori; Uchiyama, Keiji; Ootsuyama, Akira; Inubushi, Sachiko; Mori, Tsuyoshi; Muramatsu, Naomi; Katamine, Shigeru; Sakaguchi, Suehiro

    2012-01-01

    Accumulating lines of evidence indicate that the N-terminal domain of prion protein (PrP) is involved in prion susceptibility in mice. In this study, to investigate the role of the octapeptide repeat (OR) region alone in the N-terminal domain for the susceptibility and pathogenesis of prion disease, we intracerebrally inoculated RML scrapie prions into tg(PrPΔOR)/Prnp(0/0) mice, which express mouse PrP missing only the OR region on the PrP-null background. Incubation times of these mice were not extended. Protease-resistant PrPΔOR, or PrP(Sc)ΔOR, was easily detectable but lower in the brains of these mice, compared to that in control wild-type mice. Consistently, prion titers were slightly lower and astrogliosis was milder in their brains. However, in their spinal cords, PrP(Sc)ΔOR and prion titers were abundant and astrogliosis was as strong as in control wild-type mice. These results indicate that the role of the OR region in prion susceptibility and pathogenesis of the disease is limited. We also found that the PrP(Sc)ΔOR, including the pre-OR residues 23-50, was unusually protease-resistant, indicating that deletion of the OR region could cause structural changes to the pre-OR region upon prion infection, leading to formation of a protease-resistant structure for the pre-OR region.

  12. Chronic Lymphocytic Inflammation Specifies the Organ Tropism of Prions

    NASA Astrophysics Data System (ADS)

    Heikenwalder, Mathias; Zeller, Nicolas; Seeger, Harald; Prinz, Marco; Klöhn, Peter-Christian; Schwarz, Petra; Ruddle, Nancy H.; Weissmann, Charles; Aguzzi, Adriano

    2005-02-01

    Prions typically accumulate in nervous and lymphoid tissues. Because proinflammatory cytokines and immune cells are required for lymphoid prion replication, we tested whether inflammatory conditions affect prion pathogenesis. We administered prions to mice with five inflammatory diseases of the kidney, pancreas, or liver. In all cases, chronic lymphocytic inflammation enabled prion accumulation in otherwise prion-free organs. Inflammatory foci consistently correlated with lymphotoxin up-regulation and ectopic induction of FDC-M1+ cells expressing the normal cellular prion protein PrPC. By contrast, inflamed organs of mice lacking lymphotoxin-α or its receptor did not accumulate the abnormal isoform PrPSc, nor did they display infectivity upon prion inoculation. By expanding the tissue distribution of prions, chronic inflammatory conditions may act as modifiers of natural and iatrogenic prion transmission.

  13. Characterization of the first case of naturally occurring chronic wasting disease in a captive red deer (Cervus elaphus) in North America

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSE) affecting cervids that is caused by the accumulation of an abnormal prion protein. CWD has been diagnosed in captive and free-ranging elk (Cervus canadensis), mule deer (Odocoileus hemionus), white-tailed deer (Odocoile...

  14. Human stem cell–derived astrocytes replicate human prions in a PRNP genotype–dependent manner

    PubMed Central

    Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Rzechorzek, Nina M.; Ullian, Erik M.; Manson, Jean

    2017-01-01

    Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype–dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. PMID:29141869

  15. Controlling the prion propensity of glutamine/asparagine-rich proteins.

    PubMed

    Paul, Kacy R; Ross, Eric D

    2015-01-01

    The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve.

  16. Ovine recombinant PrP as an inhibitor of ruminant prion propagation in vitro.

    PubMed

    Workman, Rob G; Maddison, Ben C; Gough, Kevin C

    2017-07-04

    Prion diseases are fatal and incurable neurodegenerative diseases of humans and animals. Despite years of research, no therapeutic agents have been developed that can effectively manage or reverse disease progression. Recently it has been identified that recombinant prion proteins (rPrP) expressed in bacteria can act as inhibitors of prion replication within the in vitro prion replication system protein misfolding cyclic amplification (PMCA). Here, within PMCA reactions amplifying a range of ruminant prions including distinct Prnp genotypes/host species and distinct prion strains, recombinant ovine VRQ PrP displayed consistent inhibition of prion replication and produced IC50 values of 122 and 171 nM for ovine scrapie and bovine BSE replication, respectively. These findings illustrate the therapeutic potential of rPrPs with distinct TSE diseases.

  17. Disease associated prion protein may deposit in the peripheral nervous system in human transmissible spongiform encephalopathies.

    PubMed

    Hainfellner, J A; Budka, H

    1999-11-01

    There is increasing evidence indicating involvement of the peripheral nervous system (PNS) in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Immunocytochemically detectable deposits of TSE-specific abnormal prion protein (PrP(sc)) are considered as a surrogate marker for infectivity. We used anti-PrP immunocytochemistry to trace PrP(sc) deposition in spinal and enteric ganglia, and peripheral nerve in Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and fatal familial insomnia. Discrete PrP(sc) deposits were detectable only in a few posterior root nerve fibers in an adaxonal location in one of nine CJD and the one GSS patients examined. Follicular dendritic cells of the gut and enteric nervous system were not labeled. Thus, PrP(sc) may spread to the PNS in different forms of human prion disease. In contrast to our observations in experimental scrapie (Groschup et al., Acta Neuropathol, this issue), the deposits were scant. Possible explanations for this discrepancy comprise strain difference, or centripetal (experimental scrapie) versus centrifugal (sporadic and genetic human prion diseases) spread of PrP(sc), resulting in different patterns and amounts of PrP(sc) accumulation in the PNS.

  18. Travel history, hunting, and venison consumption related to prion disease exposure, 2006-2007 FoodNet Population Survey.

    PubMed

    Abrams, Joseph Y; Maddox, Ryan A; Harvey, Alexis R; Schonberger, Lawrence B; Belay, Ermias D

    2011-06-01

    The transmission of bovine spongiform encephalopathy (BSE) to human beings and the spread of chronic wasting disease (CWD) among cervids have prompted concerns about zoonotic transmission of prion diseases. Travel to the United Kingdom and other European countries, hunting for deer or elk, and venison consumption could result in the exposure of US residents to the agents that cause BSE and CWD. The Foodborne Diseases Active Surveillance Network 2006-2007 population survey was used to assess the prevalence of these behaviors among residents of 10 catchment areas across the United States. Of 17,372 survey respondents, 19.4% reported travel to the United Kingdom since 1980, and 29.5% reported travel to any of the nine European countries considered to be BSE-endemic since 1980. The proportion of respondents who had ever hunted deer or elk was 18.5%, and 1.2% had hunted deer or elk in a CWD-endemic area. More than two thirds (67.4%) reported having ever eaten deer or elk meat. Respondents who traveled spent more time in the United Kingdom (median 14 days) than in any other BSE-endemic country. Of the 11,635 respondents who had consumed venison, 59.8% ate venison at most one to two times during their year of highest consumption, and 88.6% had obtained all of their meat from the wild. The survey results were useful in determining the prevalence and frequency of behaviors that could be important factors for foodborne prion transmission. Copyright © 2011 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  19. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions*

    PubMed Central

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-01-01

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrPSc. Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrPC production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrPC present in each part of the brain. Our results suggest that the variable regional distribution of PrPSc in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. PMID:27056328

  20. Prions Adhere to Soil Minerals and Remain Infectious

    PubMed Central

    Johnson, Christopher J; Phillips, Kristen E; Schramm, Peter T; McKenzie, Debbie; Aiken, Judd M; Pedersen, Joel A

    2006-01-01

    An unidentified environmental reservoir of infectivity contributes to the natural transmission of prion diseases (transmissible spongiform encephalopathies [TSEs]) in sheep, deer, and elk. Prion infectivity may enter soil environments via shedding from diseased animals and decomposition of infected carcasses. Burial of TSE-infected cattle, sheep, and deer as a means of disposal has resulted in unintentional introduction of prions into subsurface environments. We examined the potential for soil to serve as a TSE reservoir by studying the interaction of the disease-associated prion protein (PrPSc) with common soil minerals. In this study, we demonstrated substantial PrPSc adsorption to two clay minerals, quartz, and four whole soil samples. We quantified the PrPSc-binding capacities of each mineral. Furthermore, we observed that PrPSc desorbed from montmorillonite clay was cleaved at an N-terminal site and the interaction between PrPSc and Mte was strong, making desorption of the protein difficult. Despite cleavage and avid binding, PrPSc bound to Mte remained infectious. Results from our study suggest that PrPSc released into soil environments may be preserved in a bioavailable form, perpetuating prion disease epizootics and exposing other species to the infectious agent. PMID:16617377

  1. Application of “omics” to Prion Biomarker Discovery

    PubMed Central

    Huzarewich, Rhiannon L. C. H.; Siemens, Christine G.; Booth, Stephanie A.

    2010-01-01

    The advent of genomics and proteomics has been a catalyst for the discovery of biomarkers able to discriminate biological processes such as the pathogenesis of complex diseases. Prompt detection of prion diseases is particularly desirable given their transmissibility, which is responsible for a number of human health risks stemming from exogenous sources of prion protein. Diagnosis relies on the ability to detect the biomarker PrPSc, a pathological isoform of the host protein PrPC, which is an essential component of the infectious prion. Immunochemical detection of PrPSc is specific and sensitive enough for antemortem testing of brain tissue, however, this is not the case in accessible biological fluids or for the detection of recently identified novel prions with unique biochemical properties. A complementary approach to the detection of PrPSc itself is to identify alternative, “surrogate” gene or protein biomarkers indicative of disease. Biomarkers are also useful to track the progress of disease, especially important in the assessment of therapies, or to identify individuals “at risk”. In this review we provide perspective on current progress and pitfalls in the use of “omics” technologies to screen body fluids and tissues for biomarker discovery in prion diseases. PMID:20224650

  2. Biochemical features of genetic Creutzfeldt-Jakob disease with valine-to-isoleucine substitution at codon 180 on the prion protein gene.

    PubMed

    Ito, Yoko; Sanjo, Nobuo; Hizume, Masaki; Kobayashi, Atsushi; Ohgami, Tetsuya; Satoh, Katsuya; Hamaguchi, Tsuyoshi; Yamada, Masahito; Kitamoto, Tetsuyuki; Mizusawa, Hidehiro; Yokota, Takanori

    2018-02-19

    Valine-to-isoleucine substitution at codon 180 of the prion protein gene is only observed in patients with Creutzfeldt-Jakob disease and accounts for approximately half of all cases of genetic prion disease in Japan. In the present study, we investigated the biochemical characteristics of valine-to-isoleucine substitution at codon 180 in the prion protein gene, using samples obtained from the autopsied brains of seven patients with genetic Creutzfeldt-Jakob disease exhibiting this mutation (diagnoses confirmed via neuropathological examination). Among these patients, we observed an absence of diglycosylated and monoglycosylated forms of PrP res at codon 181. Our findings further indicated that the abnormal prion proteins were composed of at least three components, although smaller carboxyl-terminal fragments were predominant. Western blot analyses revealed large amounts of PrP res in the cerebral neocortices, where neuropathological examination revealed marked spongiosis. Relatively smaller amounts of PrP res were detected in the hippocampus, where milder spongiosis was observed, than in the cerebral neocortex. These findings indicate that abnormal prion proteins in the neocortex are associated with severe toxicity, resulting in severe spongiosis. Our findings further indicate that the valine-to-isoleucine substitution is not a polymorphism, but rather an authentic pathogenic mutation associated with specific biochemical characteristics that differ from those observed in sporadic Creutzfeldt-Jakob disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein.

    PubMed

    Joiner, Susan; Asante, Emmanuel A; Linehan, Jacqueline M; Brock, Lara; Brandner, Sebastian; Bellworthy, Susan J; Simmons, Marion M; Hope, James; Collinge, John; Wadsworth, Jonathan D F

    2018-03-15

    The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Conserved properties of human and bovine prion strains on transmission to guinea pigs

    PubMed Central

    Safar, Jiri G.; Giles, Kurt; Lessard, Pierre; Letessier, Frederic; Patel, Smita; Serban, Ana; DeArmond, Stephen J.; Prusiner, Stanley B.

    2011-01-01

    The first transmissions of human prion diseases to rodents used guinea pigs (Gps, Cavia porcellus). Later, transgenic (Tg) mice expressing human or chimeric human/mouse PrP replaced Gps, but the small size of the mouse limits some investigations. To investigate the fidelity of strain-specific prion transmission to Gps, we inoculated “type 1” and “type 2” prion strains into Gps: we measured the incubation times and determined the strain-specified size of the unglycosylated, protease-resistant (r) PrPSc fragment. Prions passaged once in Gps from cases of sporadic (s) Creutzfeldt–Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker (GSS) disease caused by the P102L mutation were used as well as human prions from a variant (v) CJD case, bovine prions from bovine spongiform encephalopathy (BSE), and mouse-passaged scrapie prions. Variant CJD and BSE prions transmitted to all the inoculated Gps with incubation times of 367 ± 4 d and 436 ± 28 d, respectively. On second passage in Gps, vCJD and BSE prions caused disease in 287 ± 4 d and 310 ± 4 d, while sCJD and GSS prions transmitted in 237 ± 4 d and 279 ± 19 d, respectively. Although hamster Sc237 prions transmitted to 2 of 3 Gps after 574 and 792 d, mouse-passaged RML and 301V prion strains, the latter derived from BSE prions, failed to transmit disease to Gps. Those Gps inoculated with vCJD or BSE prions exhibited “type 2” unglycosylated, rPrPSc (19 kDa) while those receiving sCJD or GSS prions displayed “type 1” prions (21 kDa), as determined by Western blotting. Such strain-specific properties were maintained in Gps as well as mice expressing a chimeric human/mouse transgene. Gps may prove particularly useful in further studies of novel human prions such as those causing vCJD. PMID:21727894

  5. Controlling the prion propensity of glutamine/asparagine-rich proteins

    PubMed Central

    Paul, Kacy R; Ross, Eric D

    2015-01-01

    ABSTRACT The yeast Saccharomyces cerevisiae can harbor a number of distinct prions. Most of the yeast prion proteins contain a glutamine/asparagine (Q/N) rich region that drives prion formation. Prion-like domains, defined as regions with high compositional similarity to yeast prion domains, are common in eukaryotic proteomes, and mutations in various human proteins containing prion-like domains have been linked to degenerative diseases, including amyotrophic lateral sclerosis. Here, we discuss a recent study in which we utilized two strategies to generate prion activity in non-prion Q/N-rich domains. First, we made targeted mutations in four non-prion Q/N-rich domains, replacing predicted prion-inhibiting amino acids with prion-promoting amino acids. All four mutants formed foci when expressed in yeast, and two acquired bona fide prion activity. Prion activity could be generated with as few as two mutations, suggesting that many non-prion Q/N-rich proteins may be just a small number of mutations from acquiring aggregation or prion activity. Second, we created tandem repeats of short prion-prone segments, and observed length-dependent prion activity. These studies demonstrate the considerable progress that has been made in understanding the sequence basis for aggregation of prion and prion-like domains, and suggest possible mechanisms by which new prion domains could evolve. PMID:26555096

  6. The role of genetics in chronic wasting disease of North American cervids

    USGS Publications Warehouse

    Robinson, Stacie J.; Samuel, Michael D.; O'Rourke, Katherine; Johnson, Chad J.

    2012-01-01

    Chronic wasting disease (CWD) is a major concern for the management of North American cervid populations. This fatal prion disease has led to declines in populations which have high CWD prevalence and areas with both high and low infection rates have experienced economic losses in wildlife recreation and fears of potential spill-over into livestock or humans. Research from human and veterinary medicine has established that the prion protein gene (Prnp) encodes the protein responsible for transmissible spongiform encephalopathies (TSEs). Polymorphisms in the Prnp gene can lead to different prion forms that moderate individual susceptibility to and progression of TSE infection. Prnp genes have been sequenced in a number of cervid species including those currently infected by CWD (elk, mule deer, white-tailed deer, moose) and those for which susceptibility is not yet determined (caribou, fallow deer, sika deer). Over thousands of sequences examined, the Prnp gene is remarkably conserved within the family Cervidae; only 16 amino acid polymorphisms have been reported within the 256 amino acid open reading frame in the third exon of the Prnp gene. Some of these polymorphisms have been associated with lower rates of CWD infection and slower progression of clinical CWD. Here we review the body of research on Prnp genetics of North American cervids. Specifically, we focus on known polymorphisms in the Prnp gene, observed genotypic differences in CWD infection rates and clinical progression, mechanisms for genetic TSE resistance related to both the cervid host and the prion agent and potential for natural selection for CWD-resistance. We also identify gaps in our knowledge that require future research.

  7. Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner.

    PubMed

    Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Krencik, Robert; Rzechorzek, Nina M; Ullian, Erik M; Manson, Jean; Ironside, James W; Head, Mark W; Chandran, Siddharthan

    2017-12-04

    Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype-dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. © 2017 Krejciova et al.

  8. Prion search and cellular prion protein expression in stranded dolphins.

    PubMed

    Di Guardo, G; Cocumelli, C; Meoli, R; Barbaro, K; Terracciano, G; Di Francesco, C E; Mazzariol, S; Eleni, C

    2012-01-01

    The recent description of a prion disease (PD) case in a free-ranging bottlenose dolphin (Tursiops truncatus) prompted us to carry out an extensive search for the disease-associated isoform (PrPSc) of the cellular prion protein (PrPC) in the brain and in a range of lymphoid tissues from 23 striped dolphins (Stenella coeruleoalba), 5 bottlenose dolphins and 2 Risso s dolphins (Grampus griseus) found stranded between 2007 and 2012 along the Italian coastline. Three striped dolphins and one bottlenose dolphin showed microscopic lesions of encephalitis, with no evidence of spongiform brain lesions being detected in any of the 30 free-ranging cetaceans investigated herein. Nevertheless, we could still observe a prominent PrPC immunoreactivity in the brain as well as in lymphoid tissues from these dolphins. Although immunohistochemical and Western blot investigations yielded negative results for PrPSc deposition in all tissues from the dolphins under study, the reported occurrence of a spontaneous PD case in a wild dolphin is an intriguing issue and a matter of concern for both prion biology and intra/inter-species transmissibility, as well as for cetacean conservation medicine.

  9. Prion infectivity detected in swine challenged with chronic wasting disease via the intracerebral or oral route

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease (CWD) is a naturally-occurring, fatal neurodegenerative disease of North American cervids. The potential for swine to serve as a host for the agent of chronic wasting disease is unknown. In the US, feeding of ruminant by-products to ruminants is prohibited, but feeding of rum...

  10. Resistance of Bovine Spongiform Encephalopathy (BSE) Prions to Inactivation

    PubMed Central

    Giles, Kurt; Glidden, David V.; Beckwith, Robyn; Seoanes, Rose; Peretz, David; DeArmond, Stephen J.; Prusiner, Stanley B.

    2008-01-01

    Distinct prion strains often exhibit different incubation periods and patterns of neuropathological lesions. Strain characteristics are generally retained upon intraspecies transmission, but may change on transmission to another species. We investigated the inactivation of two related prions strains: BSE prions from cattle and mouse-passaged BSE prions, termed 301V. Inactivation was manipulated by exposure to sodium dodecyl sulfate (SDS), variations in pH, and different temperatures. Infectivity was measured using transgenic mouse lines that are highly susceptible to either BSE or 301V prions. Bioassays demonstrated that BSE prions are up to 1,000-fold more resistant to inactivation than 301V prions while Western immunoblotting showed that short acidic SDS treatments reduced protease-resistant PrPSc from BSE prions and 301V prions at similar rates. Our findings argue that despite being derived from BSE prions, mouse 301V prions are not necessarily a reliable model for cattle BSE prions. Extending these comparisons to human sporadic Creutzfeldt-Jakob disease and hamster Sc237 prions, we found that BSE prions were 10- and 106-fold more resistant to inactivation, respectively. Our studies contend that any prion inactivation procedures must be validated by bioassay against the prion strain for which they are intended to be used. PMID:19008948

  11. The Transcription Terminator Rho: A First Bacterial Prion.

    PubMed

    Pallarès, Irantzu; Ventura, Salvador

    2017-06-01

    Traditionally associated with neurodegenerative diseases, prions are increasingly recognized for their potential to confer beneficial traits on eukaryotic organisms. The discovery of the first bacterial prion suggests that the sustained mechanism of prion assembly is an ancient molecular tool aimed at providing fast and persistent adaptation to changing environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Automated decontamination of surface-adherent prions.

    PubMed

    Schmitt, A; Westner, I M; Reznicek, L; Michels, W; Mitteregger, G; Kretzschmar, H A

    2010-09-01

    At present there is no routinely available decontamination procedure in washer-disinfectors to allow the reliable inactivation and/or elimination of prions present on reusable surgical instruments. This means that is not possible to provide assurance for preventing iatrogenic transmission of prion diseases. We need effective procedures in prion decontamination that can be integrated into the usual routine of reprocessing surgical instruments. This article reports on the evaluation of an automated process designed to decontaminate prions in washer-disinfectors using a quantitative, highly sensitive in vivo assay for surface-adherent 22L prions. The automated process showed great advantages when compared with conventional alkaline cleaning. In contrast, the new process was as effective as autoclaving at 134 degrees C for 2h and left no detectable prion infectivity, even for heavily contaminated surfaces. This indicates a reduction of surface-adherent prion infectivity of >7 log units. Due to its compatibility with even delicate surgical instruments, the process can be integrated into the large scale reprocessing of instruments in a central sterile supply department. The system could potentially make an important contribution to the prevention of iatrogenic transmission of prions. Copyright 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  13. Prions amplify through degradation of the VPS10P sorting receptor sortilin.

    PubMed

    Uchiyama, Keiji; Tomita, Mitsuru; Yano, Masashi; Chida, Junji; Hara, Hideyuki; Das, Nandita Rani; Nykjaer, Anders; Sakaguchi, Suehiro

    2017-06-01

    Prion diseases are a group of fatal neurodegenerative disorders caused by prions, which consist mainly of the abnormally folded isoform of prion protein, PrPSc. A pivotal pathogenic event in prion disease is progressive accumulation of prions, or PrPSc, in brains through constitutive conformational conversion of the cellular prion protein, PrPC, into PrPSc. However, the cellular mechanism by which PrPSc is progressively accumulated in prion-infected neurons remains unknown. Here, we show that PrPSc is progressively accumulated in prion-infected cells through degradation of the VPS10P sorting receptor sortilin. We first show that sortilin interacts with PrPC and PrPSc and sorts them to lysosomes for degradation. Consistently, sortilin-knockdown increased PrPSc accumulation in prion-infected cells. In contrast, overexpression of sortilin reduced PrPSc accumulation in prion-infected cells. These results indicate that sortilin negatively regulates PrPSc accumulation in prion-infected cells. The negative role of sortilin in PrPSc accumulation was further confirmed in sortilin-knockout mice infected with prions. The infected mice had accelerated prion disease with early accumulation of PrPSc in their brains. Interestingly, sortilin was reduced in prion-infected cells and mouse brains. Treatment of prion-infected cells with lysosomal inhibitors, but not proteasomal inhibitors, increased the levels of sortilin. Moreover, sortilin was reduced following PrPSc becoming detectable in cells after infection with prions. These results indicate that PrPSc accumulation stimulates sortilin degradation in lysosomes. Taken together, these results show that PrPSc accumulation of itself could impair the sortilin-mediated sorting of PrPC and PrPSc to lysosomes for degradation by stimulating lysosomal degradation of sortilin, eventually leading to progressive accumulation of PrPSc in prion-infected cells.

  14. Orally administered indomethacin acutely reduces cellular prion protein in the small intestine and modestly increases survival of mice exposed to infectious prions.

    PubMed

    Martin, Gary R; Sharkey, Keith A; Jirik, Frank R

    2015-05-01

    The oral uptake of infectious prions represents a common way to acquire a prion disease; thus, host factors, such as gut inflammation and intestinal "leakiness", have the potential to influence infectivity. For example, the ingestion of nonsteroidal anti-inflammatory drugs (NSAIDs) is known to induce intestinal inflammation and increase intestinal permeability. Previously, we reported that normal cellular prion protein (PrP(C)) expression was increased in experimental colitis, and since the level of PrP(C) expressed is a determinant of prion disease propagation, we hypothesized that NSAID administration prior to the oral inoculation of mice with infectious prions would increase intestinal PrP(C) expression and accelerate the onset of neurological disease. In the long-term experiments, one group of mice was gavaged with indomethacin, followed by a second gavage with brain homogenate containing mouse-adapted scrapie (ME7). Control mice received ME7 brain homogenate alone. Brain and splenic tissues were harvested at several time points for immunoblotting, including at the onset of clinical signs of disease. In a second series of experiments, mice were gavaged with indomethacin to assess the acute effects of this treatment on intestinal PrP(C) expression. Acutely, NSAID treatment reduced intestinal PrP(C) expression, and chronically, there was a modest delay in the onset of neurological disease. In contrast to our hypothesis, brief exposure to an NSAID decreased intestinal PrP(C) expression and led to a modest survival advantage following oral ingestion of infectious prions.

  15. Presence of voltage-gated potassium channel complex antibody in a case of genetic prion disease

    PubMed Central

    Jammoul, Adham; Lederman, Richard J; Tavee, Jinny; Li, Yuebing

    2014-01-01

    Voltage-gated potassium channel (VGKC) complex antibody-mediated encephalitis is a recently recognised entity which has been reported to mimic the clinical presentation of Creutzfeldt-Jakob disease (CJD). Testing for the presence of this neuronal surface autoantibody in patients presenting with subacute encephalopathy is therefore crucial as it may both revoke the bleak diagnosis of prion disease and allow institution of potentially life-saving immunotherapy. Tempering this optimistic view is the rare instance when a positive VGKC complex antibody titre occurs in a definite case of prion disease. We present a pathologically and genetically confirmed case of CJD with elevated serum VGKC complex antibody titres. This case highlights the importance of interpreting the result of a positive VGKC complex antibody with caution and in the context of the overall clinical manifestation. PMID:24903967

  16. Diagnostic and prognostic value of human prion detection in cerebrospinal fluid.

    PubMed

    Foutz, Aaron; Appleby, Brian S; Hamlin, Clive; Liu, Xiaoqin; Yang, Sheng; Cohen, Yvonne; Chen, Wei; Blevins, Janis; Fausett, Cameron; Wang, Han; Gambetti, Pierluigi; Zhang, Shulin; Hughson, Andrew; Tatsuoka, Curtis; Schonberger, Lawrence B; Cohen, Mark L; Caughey, Byron; Safar, Jiri G

    2017-01-01

    Several prion amplification systems have been proposed for detection of prions in cerebrospinal fluid (CSF), most recently, the measurements of prion seeding activity with second-generation real-time quaking-induced conversion (RT-QuIC). The objective of this study was to investigate the diagnostic performance of the RT-QuIC prion test in the broad phenotypic spectrum of prion diseases. We performed CSF RT-QuIC testing in 2,141 patients who had rapidly progressive neurological disorders, determined diagnostic sensitivity and specificity in 272 cases that were autopsied, and evaluated the impact of mutations and polymorphisms in the PRNP gene, and type 1 or type 2 human prions on diagnostic performance. The 98.5% diagnostic specificity and 92% sensitivity of CSF RT-QuIC in a blinded retrospective analysis matched the 100% specificity and 95% sensitivity of a blind prospective study. The CSF RT-QuIC differentiated 94% of cases of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 from the sCJD MM2 phenotype, and 80% of sCJD VV2 from sCJD VV1. The mixed prion type 1-2 and cases heterozygous for codon 129 generated intermediate CSF RT-QuIC patterns, whereas genetic prion diseases revealed distinct profiles for each PRNP gene mutation. The diagnostic performance of the improved CSF RT-QuIC is superior to surrogate marker tests for prion diseases such as 14-3-3 and tau proteins, and together with PRNP gene sequencing the test allows the major prion subtypes to be differentiated in vivo. This differentiation facilitates prediction of the clinicopathological phenotype and duration of the disease-two important considerations for envisioned therapeutic interventions. ANN NEUROL 2017;81:79-92. © 2016 American Neurological Association.

  17. Trafficking and degradation pathways in pathogenic conversion of prions and prion-like proteins in neurodegenerative diseases.

    PubMed

    Victoria, Guiliana Soraya; Zurzolo, Chiara

    2015-09-02

    Several neurodegenerative diseases such as transmissible spongiform encephalopathies, Alzheimer's and Parkinson's diseases are caused by the conversion of cellular proteins to a pathogenic conformer. Despite differences in the primary structure and subcellular localization of these proteins, which include the prion protein, α-synuclein and amyloid precursor protein (APP), striking similarity has been observed in their ability to seed and convert naïve protein molecules as well as transfer between cells. This review aims to cover what is known about the intracellular trafficking of these proteins as well as their degradation mechanisms and highlight similarities in their movement through the endocytic pathway that could contribute to the pathogenic conversion and seeding of these proteins which underlies the basis of these diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Biaryl Amides and Hydrazones as Therapeutics for Prion Disease in Transgenic Mice

    PubMed Central

    Lu, Duo; Giles, Kurt; Li, Zhe; Rao, Satish; Dolghih, Elena; Gever, Joel R.; Geva, Michal; Elepano, Manuel L.; Oehler, Abby; Bryant, Clifford; Renslo, Adam R.; Jacobson, Matthew P.; DeArmond, Stephen J.; Silber, B. Michael

    2013-01-01

    The only small-molecule compound demonstrated to substantially extend survival in prion-infected mice is a biaryl hydrazone termed “Compd B” (4-pyridinecarboxaldehyde,2-[4-(5-oxazolyl)phenyl]hydrazone). However, the hydrazone moiety of Compd B results in toxic metabolites, making it a poor candidate for further drug development. We developed a pharmacophore model based on diverse antiprion compounds identified by high-throughput screening; based on this model, we generated biaryl amide analogs of Compd B. Medicinal chemistry optimization led to multiple compounds with increased potency, increased brain concentrations, and greater metabolic stability, indicating that they could be promising candidates for antiprion therapy. Replacing the pyridyl ring of Compd B with a phenyl group containing an electron-donating substituent increased potency, while adding an aryl group to the oxazole moiety increased metabolic stability. To test the efficacy of Compd B, we applied bioluminescence imaging (BLI), which was previously shown to detect prion disease onset in live mice earlier than clinical signs. In our studies, Compd B showed good efficacy in two lines of transgenic mice infected with the mouse-adapted Rocky Mountain Laboratory (RML) strain of prions, but not in transgenic mice infected with human prions. The BLI system successfully predicted the efficacies in all cases long before extension in survival could be observed. Our studies suggest that this BLI system has good potential to be applied in future antiprion drug efficacy studies. PMID:23965382

  19. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    PubMed

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Correlation of cellular factors and differential scrapie prion permissiveness in ovine microglia

    USDA-ARS?s Scientific Manuscript database

    Prion diseases are fatal neurodegenerative disorders by which the native cellular prion protein (PrP-C) is misfolded into an accumulating, disease-associated isoform (PrP-D). To improve the understanding of prion pathogenesis and develop effective treatments, it is essential to elucidate factors con...

  1. Protease resistance of infectious prions is suppressed by removal of a single atom in the cellular prion protein.

    PubMed

    Leske, Henning; Hornemann, Simone; Herrmann, Uli Simon; Zhu, Caihong; Dametto, Paolo; Li, Bei; Laferriere, Florent; Polymenidou, Magdalini; Pelczar, Pawel; Reimann, Regina Rose; Schwarz, Petra; Rushing, Elisabeth Jane; Wüthrich, Kurt; Aguzzi, Adriano

    2017-01-01

    Resistance to proteolytic digestion has long been considered a defining trait of prions in tissues of organisms suffering from transmissible spongiform encephalopathies. Detection of proteinase K-resistant prion protein (PrPSc) still represents the diagnostic gold standard for prion diseases in humans, sheep and cattle. However, it has become increasingly apparent that the accumulation of PrPSc does not always accompany prion infections: high titers of prion infectivity can be reached also in the absence of protease resistant PrPSc. Here, we describe a structural basis for the phenomenon of protease-sensitive prion infectivity. We studied the effect on proteinase K (PK) resistance of the amino acid substitution Y169F, which removes a single oxygen atom from the β2-α2 loop of the cellular prion protein (PrPC). When infected with RML or the 263K strain of prions, transgenic mice lacking wild-type (wt) PrPC but expressing MoPrP169F generated prion infectivity at levels comparable to wt mice. The newly generated MoPrP169F prions were biologically indistinguishable from those recovered from prion-infected wt mice, and elicited similar pathologies in vivo. Surprisingly, MoPrP169F prions showed greatly reduced PK resistance and density gradient analyses showed a significant reduction in high-density aggregates. Passage of MoPrP169F prions into mice expressing wt MoPrP led to full recovery of protease resistance, indicating that no strain shift had taken place. We conclude that a subtle structural variation in the β2-α2 loop of PrPC affects the sensitivity of PrPSc to protease but does not impact prion replication and infectivity. With these findings a specific structural feature of PrPC can be linked to a physicochemical property of the corresponding PrPSc.

  2. Chronic wasting disease (CWD) susceptibility of several North American rodents that are sympatric with cervid CWD epidemics

    USGS Publications Warehouse

    Heisey, D.M.; Mickelsen, N.A.; Schneider, J.R.; Johnson, C.J.; Langenberg, J.A.; Bochsler, P.N.; Keane, D.P.; Barr, D.J.

    2010-01-01

    Chronic wasting disease (CWD) is a highly contagious always fatal neurodegenerative disease that is currently known to naturally infect only species of the deer family, Cervidae. CWD epidemics are occurring in free-ranging cervids at several locations in North America, and other wildlife species are certainly being exposed to infectious material. To assess the potential for transmission, we intracerebrally inoculated four species of epidemic-sympatric rodents with CWD. Transmission was efficient in all species; the onset of disease was faster in the two vole species than the two Peromyscus spp. The results for inocula prepared from CWD-positive deer with or without CWD-resistant genotypes were similar. Survival times were substantially shortened upon second passage, demonstrating adaptation. Unlike all other known prion protein sequences for cricetid rodents that possess asparagine at position 170, our red-backed voles expressed serine and refute previous suggestions that a serine in this position substantially reduces susceptibility to CWD. Given the scavenging habits of these rodent species, the apparent persistence of CWD prions in the environment, and the inevitable exposure of these rodents to CWD prions, our intracerebral challenge results indicate that further investigation of the possibility of natural transmission is warranted. Copyright ?? 2010, American Society for Microbiology. All Rights Reserved.

  3. Early behavioral changes and quantitative analysis of neuropathological features in murine prion disease

    PubMed Central

    Borner, Roseane; Bento-Torres, João; Souza, Diego RV; Sadala, Danyelle B; Trevia, Nonata; Farias, José Augusto; Lins, Nara; Passos, Aline; Quintairos, Amanda; Diniz, José Antônio; Perry, Victor Hugh; Vasconcelos, Pedro Fernando; Cunningham, Colm

    2011-01-01

    Behavioral and neuropathological changes have been widely investigated in murine prion disease but stereological based unbiased estimates of key neuropathological features have not been carried out. After injections of ME7 infected (ME7) or normal brain homogenates (NBH) into dorsal CA1 of albino Swiss mice and C57BL6, we assessed behavioral changes on hippocampal-dependent tasks. We also estimated by optical fractionator at 15 and 18 weeks post-injections (w.p.i.) the total number of neurons, reactive astrocytes, activated microglia and perineuronal nets (PN) in the polymorphic layer of dentate gyrus (PolDG), CA1 and septum in albino Swiss mice. On average, early behavioral changes in albino Swiss mice start four weeks later than in C57BL6. Cluster and discriminant analysis of behavioral data in albino Swiss mice revealed that four of nine subjects start to change their behavior at 12 w.p.i. and reach terminal stage at 22 w.p.i and the remaining subjects start at 22 w.p.i. and reach terminal stage at 26 w.p.i. Biotinylated dextran-amine BDA-tracer experiments in mossy fiber pathway confirmed axonal degeneration and stereological data showed that early astrocytosis, microgliosis and reduction in the perineuronal nets are independent of a change in the number of neuronal cell bodies. Statistical analysis revealed that the septal region had greater levels of neuroinflammation and extracellular matrix damage than CA1. This stereological and multivariate analysis at early stages of disease in an outbred model of prion disease provided new insights connecting behavioral changes and neuroinflammation and seems to be important to understand the mechanisms of prion disease progression. PMID:21862877

  4. Prion-based memory of heat stress in yeast

    PubMed Central

    Chernova, Tatiana A.; Wilkinson, Keith D.

    2017-01-01

    ABSTRACT Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses. PMID:28521568

  5. Prion-based memory of heat stress in yeast.

    PubMed

    Chernova, Tatiana A; Chernoff, Yury O; Wilkinson, Keith D

    2017-05-04

    Amyloids and amyloid-based prions are self-perpetuating protein aggregates which can spread by converting a normal protein of the same sequence into a prion form. They are associated with diseases in humans and mammals, and control heritable traits in yeast and other fungi. Some amyloids are implicated in biologically beneficial processes. As prion formation generates reproducible memory of a conformational change, prions can be considered as molecular memory devices.  We have demonstrated that in yeast, stress-inducible cytoskeleton-associated protein Lsb2 forms a metastable prion in response to high temperature. This prion promotes conversion of other proteins into prions and can persist in a fraction of cells for a significant number of cell generations after stress, thus maintaining the memory of stress in a population of surviving cells. Acquisition of an amino acid substitution required for Lsb2 to form a prion coincides with acquisition of increased thermotolerance in the evolution of Saccharomyces yeast. Thus the ability to form an Lsb2 prion in response to stress coincides with yeast adaptation to growth at higher temperatures. These findings intimately connect prion formation to the cellular response to environmental stresses.

  6. Recombinant human prion protein fragment 90-231, a useful model to study prion neurotoxicity.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Villa, Valentina; Nizzari, Mario; Aceto, Antonio; Florio, Tullio

    2012-01-01

    Transmissible spongiform encephalopathies (TSE), or prion diseases, are a group of fatal neurodegenerative disorders of animals and humans. Human diseases include Creutzfeldt-Jakob (CJD) and Gerstmann-Straussler-Scheinker (GSSD) diseases, fatal familial insomnia, and Kuru. Human and animal TSEs share a common histopathology with a pathognomonic triad: spongiform vacuolation of the grey matter, neuronal death, glial proliferation, and, more inconstantly, amyloid deposition. According to the "protein only" hypothesis, TSEs are caused by a unique post-translational conversion of normal, host-encoded, protease-sensitive prion protein (PrP(sen) or PrP(C)) to an abnormal disease-associated isoform (PrP(res) or PrP(Sc)). To investigate the molecular mechanism of neurotoxicity induced by PrP(Sc) we developed a protocol to obtain millimolar amounts of soluble recombinant polypeptide encompassing the amino acid sequence 90-231 of human PrP (hPrP90-231). This protein corresponds to the protease-resistant prion protein fragment that originates after amino-terminal truncation. Importantly, hPrP90-231 has a flexible backbone that, similar to PrP(C), can undergo to structural rearrangement. This peptide, structurally resembling PrP(C), can be converted in a PrP(Sc)-like conformation, and thus represents a valuable model to study prion neurotoxicity. In this article we summarized our experimental evidence on the molecular and structural mechanisms responsible of hPrP90-231 neurotoxicity on neuroectodermal cell line SHSY5Y and the effects of some PrP pathogen mutations identified in familial TSE.

  7. Prominent pancreatic endocrinopathy and altered control of food intake disrupt energy homeostasis in prion diseases

    USGS Publications Warehouse

    Bailey, J. D.; Berardinelli, J.G.; Rocke, T.E.; Bessen, R.A.

    2008-01-01

    Prion diseases are fatal neurodegenerative diseases that can induce endocrinopathies. The basis of altered endocrine function in prion diseases is not well understood, and the purpose of this study was to investigate the spatiotemporal relationship between energy homeostasis and prion infection in hamsters inoculated with either the 139H strain of scrapie agent, which induces preclinical weight gain, or the HY strain of transmissible mink encephalopathy (TME), which induces clinical weight loss. Temporal changes in body weight, feed, and water intake were measured as well as both non-fasted and fasted concentrations of serum glucose, insulin, glucagon, ??-ketones, and leptin. In 139H scrapie-infected hamsters, polydipsia, hyperphagia, non-fasted hyperinsulinemia with hyperglycemia, and fasted hyperleptinemia were found at preclinical stages and are consistent with an anabolic syndrome that has similarities to type II diabetes mellitus and/or metabolic syndrome X. In HY TME-infected hamsters, hypodipsia, hypersecretion of glucagon (in both non-fasted and fasted states), increased fasted ??-ketones, fasted hypoglycemia, and suppressed non-fasted leptin concentrations were found while feed intake was normal. These findings suggest a severe catabolic syndrome in HY TME infection mediated by chronic increases in glucagon secretion. In both models, alterations of pancreatic endocrine function were not associated with PrPSc deposition in the pancreas. The results indicate that prominent endocrinopathy underlies alterations in body weight, pancreatic endocrine function, and intake of food. The prion-induced alterations of energy homeostasis in 139H scrapie- or HY TME-infected hamsters could occur within areas of the hypothalamus that control food satiety and/or within autonomic centers that provide neural outflow to the pancreas. ?? 2008 Society for Endocrinology.

  8. Live-cell FRET imaging reveals clustering of the prion protein at the cell surface induced by infectious prions.

    PubMed

    Tavares, Evandro; Macedo, Joana A; Paulo, Pedro M R; Tavares, Catarina; Lopes, Carlos; Melo, Eduardo P

    2014-07-01

    Prion diseases are associated to the conversion of the prion protein into a misfolded pathological isoform. The mechanism of propagation of protein misfolding by protein templating remains largely unknown. Neuroblastoma cells were transfected with constructs of the prion protein fused to both CFP-GPI-anchored and to YFP-GPI-anchored and directed to its cell membrane location. Live-cell FRET imaging between the prion protein fused to CFP or YFP was measured giving consistent values of 10±2%. This result was confirmed by fluorescence lifetime imaging microscopy and indicates intermolecular interactions between neighbor prion proteins. In particular, considering that a maximum FRET efficiency of 17±2% was determined from a positive control consisting of a fusion CFP-YFP-GPI-anchored. A stable cell clone expressing the two fusions containing the prion protein was also selected to minimize cell-to-cell variability. In both, stable and transiently transfected cells, the FRET efficiency consistently increased in the presence of infectious prions - from 4±1% to 7±1% in the stable clone and from 10±2% to 16±1% in transiently transfected cells. These results clearly reflect an increased clustering of the prion protein on the membrane in the presence of infectious prions, which was not observed in negative control using constructs without the prion protein and upon addition of non-infected brain. Our data corroborates the recent view that the primary site for prion conversion is the cell membrane. Since our fluorescent cell clone is not susceptible to propagate infectivity, we hypothesize that the initial event of prion infectivity might be the clustering of the GPI-anchored prion protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Prions: Beyond a Single Protein

    PubMed Central

    Das, Alvin S.

    2016-01-01

    SUMMARY Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a “prion.” Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins—not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. PMID:27226089

  10. Presence of voltage-gated potassium channel complex antibody in a case of genetic prion disease.

    PubMed

    Jammoul, Adham; Lederman, Richard J; Tavee, Jinny; Li, Yuebing

    2014-06-05

    Voltage-gated potassium channel (VGKC) complex antibody-mediated encephalitis is a recently recognised entity which has been reported to mimic the clinical presentation of Creutzfeldt-Jakob disease (CJD). Testing for the presence of this neuronal surface autoantibody in patients presenting with subacute encephalopathy is therefore crucial as it may both revoke the bleak diagnosis of prion disease and allow institution of potentially life-saving immunotherapy. Tempering this optimistic view is the rare instance when a positive VGKC complex antibody titre occurs in a definite case of prion disease. We present a pathologically and genetically confirmed case of CJD with elevated serum VGKC complex antibody titres. This case highlights the importance of interpreting the result of a positive VGKC complex antibody with caution and in the context of the overall clinical manifestation. 2014 BMJ Publishing Group Ltd.

  11. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt–Jakob disease

    PubMed Central

    Bishop, Matthew T.; Diack, Abigail B.; Ritchie, Diane L.; Ironside, James W.; Will, Robert G.

    2013-01-01

    Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt–Jakob disease. Three cases of variant Creutzfeldt–Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt–Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt–Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt–Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt–Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt–Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt–Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and

  12. Species-barrier-independent prion replication in apparently resistant species

    NASA Astrophysics Data System (ADS)

    Hill, Andrew F.; Joiner, Susan; Linehan, Jackie; Desbruslais, Melanie; Lantos, Peter L.; Collinge, John

    2000-08-01

    Transmission of prions between mammalian species is thought to be limited by a "species barrier," which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host. Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions. Current definitions of the species barrier, which have been based on clinical end-points, need to be fundamentally reassessed.

  13. Generating Bona Fide Mammalian Prions with Internal Deletions

    PubMed Central

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human

    2016-01-01

    ABSTRACT Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. IMPORTANCE Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal

  14. Diagnostic and Prognostic Value of Human Prion Detection in Cerebrospinal Fluid

    PubMed Central

    Foutz, Aaron; Appleby, Brian S.; Hamlin, Clive; Liu, Xiaoqin; Yang, Sheng; Cohen, Yvonne; Chen, Wei; Blevins, Janis; Fausett, Cameron; Wang, Han; Gambetti, Pierluigi; Zhang, Shulin; Hughson, Andrew; Tatsuoka, Curtis; Schonberger, Lawrence B.; Cohen, Mark L.; Caughey, Byron; Safar, Jiri G.

    2016-01-01

    Objective Several prion amplification systems have been proposed for detection of prions in cerebrospinal fluid (CSF), most recently, the measurements of prion seeding activity with second-generation real-time quaking-induced conversion (RT-QuIC). The objective of this study was to investigate the diagnostic performance of the RT-QuIC prion test in the broad phenotypic spectrum of prion diseases. Methods We performed CSF RT-QuIC testing in 2,141 patients who had rapidly progressive neurological disorders, determined diagnostic sensitivity and specificity in 272 cases which were autopsied, and evaluated the impact of mutations and polymorphisms in the PRNP gene, and Type 1 or Type 2 of human prions on diagnostic performance. Results The 98.5% diagnostic specificity and 92% sensitivity of CSF RT-QuIC in a blinded retrospective analysis matched the 100% specificity and 95% sensitivity of a blind prospective study. The CSF RT-QuIC differentiated 94% of cases of sporadic Creutzfeldt-Jakob disease (sCJD) MM1 from the sCJD MM2 phenotype, and 80% of sCJD VV2 from sCJD VV1. The mixed prion type 1–2 and cases heterozygous for codon 129 generated intermediate CSF RT-QuIC patterns, while genetic prion diseases revealed distinct profiles for each PRNP gene mutation. Interpretation The diagnostic performance of the improved CSF RT-QuIC is superior to surrogate marker tests for prion diseases such as 14-3-3 and Tau proteins and together with PRNP gene sequencing, the test allows the major prion subtypes to be differentiated in vivo. This differentiation facilitates prediction of the clinicopathological phenotype and duration of the disease—two important considerations for envisioned therapeutic interventions. PMID:27893164

  15. [A review of the current research on prions. The evidence suggests the possibility of transmission of the mad cow disease to humans].

    PubMed

    Grandien, M; Wahren, B

    1998-11-25

    Further evidence of the transmissibility of bovine spongiform encephalopathy (BSE) across the species barrier from cow to man has been derived from epidemiological analysis and the characterisation of prion strains. Recent research has shown the persistence of prions after experimental transmission to resistant murine species, and subclinical persistence in cows. The accumulation of pathological prion proteins in tonsils and appendix has been demonstrated prior to clinical confirmation of the presence of the new variant of Creutzfeldt-Jakob disease. Current prion research is focused on the involvement of B lymphocytes as carriers, on the species barrier and cellular receptors, and on macromolecules involved in the conformational change from normal to pathological prion proteins.

  16. Retinal function and morphology are altered in cattle infected with the prion disease transmissible mink encephalopathy.

    PubMed

    Smith, J D; Greenlee, J J; Hamir, A N; Richt, J A; Greenlee, M H West

    2009-09-01

    Transmissible spongiform encephalopathies (TSEs) are a group of diseases that result in progressive and invariably fatal neurologic disease in both animals and humans. TSEs are characterized by the accumulation of an abnormal protease-resistant form of the prion protein in the central nervous system. Transmission of infectious TSEs is believed to occur via ingestion of prion protein-contaminated material. This material is also involved in the transmission of bovine spongiform encephalopathy ("mad cow disease") to humans, which resulted in the variant form of Creutzfeldt-Jakob disease. Abnormal prion protein has been reported in the retina of TSE-affected cattle, but despite these observations, the specific effect of abnormal prion protein on retinal morphology and function has not been assessed. The objective of this study was to identify and characterize potential functional and morphologic abnormalities in the retinas of cattle infected with a bovine-adapted isolate of transmissible mink encephalopathy. We used electroretinography and immunohistochemistry to examine retinas from 10 noninoculated and 5 transmissible mink encephalopathy-inoculated adult Holstein steers. Here we show altered retinal function, as evidenced by prolonged implicit time of the electroretinogram b-wave, in transmissible mink encephalopathy-infected cattle before the onset of clinical illness. We also demonstrate disruption of rod bipolar cell synaptic terminals, indicated by decreased immunoreactivity for the alpha isoform of protein kinase C and vesicular glutamate transporter 1, and activation of Müller glia, as evidenced by increased glial fibrillary acidic protein and glutamine synthetase expression, in the retinas of these cattle at the time of euthanasia due to clinical deterioration. This is the first study to identify both functional and morphologic alterations in the retinas of TSE-infected cattle. Our results support future efforts to focus on the retina for the development of

  17. Pathologic and biochemical characterization of PrPSc from elk with PRNP polymorphisms at codon 132 after experimental infection with the chronic wasting disease agent

    USDA-ARS?s Scientific Manuscript database

    The Rocky Mountain elk (Cervus elaphus nelsoni) prion protein gene (PRNP) is polymorphic at codon 132, with leucine (L132) and methionine (M132) allelic variants present in the population. In elk experimentally inoculated with the chronic wasting disease (CWD) agent, different incubation periods are...

  18. Selective propagation of mouse-passaged scrapie prions with long incubation period from a mixed prion population using GT1-7 cells.

    PubMed

    Miyazawa, Kohtaro; Masujin, Kentaro; Okada, Hiroyuki; Ushiki-Kaku, Yuko; Matsuura, Yuichi; Yokoyama, Takashi

    2017-01-01

    In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.

  19. Yeast prions assembly and propagation: contributions of the prion and non-prion moieties and the nature of assemblies.

    PubMed

    Kabani, Mehdi; Melki, Ronald

    2011-01-01

    Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the "non-prion" domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others.

  20. Generating Bona Fide Mammalian Prions with Internal Deletions.

    PubMed

    Munoz-Montesino, Carola; Sizun, Christina; Moudjou, Mohammed; Herzog, Laetitia; Reine, Fabienne; Chapuis, Jérôme; Ciric, Danica; Igel-Egalon, Angelique; Laude, Hubert; Béringue, Vincent; Rezaei, Human; Dron, Michel

    2016-08-01

    Mammalian prions are PrP proteins with altered structures causing transmissible fatal neurodegenerative diseases. They are self-perpetuating through formation of beta-sheet-rich assemblies that seed conformational change of cellular PrP. Pathological PrP usually forms an insoluble protease-resistant core exhibiting beta-sheet structures but no more alpha-helical content, loosing the three alpha-helices contained in the correctly folded PrP. The lack of a high-resolution prion structure makes it difficult to understand the dynamics of conversion and to identify elements of the protein involved in this process. To determine whether completeness of residues within the protease-resistant domain is required for prions, we performed serial deletions in the helix H2 C terminus of ovine PrP, since this region has previously shown some tolerance to sequence changes without preventing prion replication. Deletions of either four or five residues essentially preserved the overall PrP structure and mutant PrP expressed in RK13 cells were efficiently converted into bona fide prions upon challenge by three different prion strains. Remarkably, deletions in PrP facilitated the replication of two strains that otherwise do not replicate in this cellular context. Prions with internal deletion were self-propagating and de novo infectious for naive homologous and wild-type PrP-expressing cells. Moreover, they caused transmissible spongiform encephalopathies in mice, with similar biochemical signatures and neuropathologies other than the original strains. Prion convertibility and transfer of strain-specific information are thus preserved despite shortening of an alpha-helix in PrP and removal of residues within prions. These findings provide new insights into sequence/structure/infectivity relationship for prions. Prions are misfolded PrP proteins that convert the normal protein into a replicate of their own abnormal form. They are responsible for invariably fatal neurodegenerative

  1. The non-octarepeat copper binding site of the prion protein is a key regulator of prion conversion

    NASA Astrophysics Data System (ADS)

    Giachin, Gabriele; Mai, Phuong Thao; Tran, Thanh Hoa; Salzano, Giulia; Benetti, Federico; Migliorati, Valentina; Arcovito, Alessandro; Longa, Stefano Della; Mancini, Giordano; D'Angelo, Paola; Legname, Giuseppe

    2015-10-01

    The conversion of the prion protein (PrPC) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrPC interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrPC constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrPC coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.

  2. Selective propagation of mouse-passaged scrapie prions with long incubation period from a mixed prion population using GT1-7 cells

    PubMed Central

    Masujin, Kentaro; Okada, Hiroyuki; Ushiki-Kaku, Yuko; Matsuura, Yuichi; Yokoyama, Takashi

    2017-01-01

    In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population. PMID:28636656

  3. Biochemical Characterization of Prion Strains in Bank Voles

    PubMed Central

    Pirisinu, Laura; Marcon, Stefano; Di Bari, Michele Angelo; D’Agostino, Claudia; Agrimi, Umberto; Nonno, Romolo

    2013-01-01

    Prions exist as different strains exhibiting distinct disease phenotypes. Currently, the identification of prion strains is still based on biological strain typing in rodents. However, it has been shown that prion strains may be associated with distinct PrPSc biochemical types. Taking advantage of the availability of several prion strains adapted to a novel rodent model, the bank vole, we investigated if any prion strain was actually associated with distinctive PrPSc biochemical characteristics and if it was possible to univocally identify strains through PrPSc biochemical phenotypes. We selected six different vole-adapted strains (three human-derived and three animal-derived) and analyzed PrPSc from individual voles by epitope mapping of protease resistant core of PrPSc (PrPres) and by conformational stability and solubility assay. Overall, we discriminated five out of six prion strains, while two different scrapie strains showed identical PrPSc types. Our results suggest that the biochemical strain typing approach here proposed was highly discriminative, although by itself it did not allow us to identify all prion strains analyzed. PMID:25437201

  4. Isolation of Novel Synthetic Prion Strains by Amplification in Transgenic Mice Coexpressing Wild-Type and Anchorless Prion Proteins

    PubMed Central

    Raymond, Gregory J.; Race, Brent; Hollister, Jason R.; Offerdahl, Danielle K.; Moore, Roger A.; Kodali, Ravindra; Raymond, Lynne D.; Hughson, Andrew G.; Rosenke, Rebecca; Long, Dan; Dorward, David W.

    2012-01-01

    Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrPres]) of the cellular prion protein (PrPC). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrPC. Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrPC and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrPC. To create prions de novo, we fibrillized mouse rPrP in the absence of molecular cofactors, generating fibrils with a PrPres-like protease-resistant banding profile. These fibrils induced the formation of PrPres deposits in transgenic mice coexpressing wt and GPI-anchorless PrPC (wt/GPI−) at a combined level comparable to that of PrPC expression in wt mice. Secondary passage into mice expressing wt, GPI−, or wt plus GPI− PrPC induced TSE disease with novel clinical, histopathological, and biochemical phenotypes. Contrary to laboratory-adapted mouse scrapie strains, the synthetic prion agents exhibited a preference for conversion of GPI− PrPC and, in one case, caused disease only in GPI− mice. Our data show that novel TSE agents can be generated de novo solely from purified mouse rPrP after amplification in mice coexpressing normal levels of wt and anchorless PrPC. These observations provide insight into the minimal elements required to create prions in vitro and suggest that the PrPC GPI anchor can modulate the propagation of synthetic TSE strains. PMID:22915801

  5. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway.

    PubMed

    Lee, J-H; Jeong, J-K; Park, S-Y

    2014-10-10

    Prion diseases are neurodegenerative and infectious disorders that involve accumulation of misfolded scrapie prion protein, and which are characterized by spongiform degeneration. Autophagy, a major homeostatic process responsible for the degradation of cytoplasmic components, has garnered attention as the potential target for neurodegenerative diseases such as prion disease. We focused on protective effects of sulforaphane found in cruciferous vegetables on prion-mediated neurotoxicity and the mechanism of sulforaphane related to autophagy. In human neuroblastoma cells, sulforaphane protected prion protein (PrP) (106-126)-mediated neurotoxicity and increased autophagy flux marker microtubule-associated protein 1 light chain 3-II protein levels, following a decrease of p62 protein level. Pharmacological and genetical inhibition of autophagy by 3MA, wortmannin and knockdown of autophagy-related 5 (ATG5) led to block the effect of sulforaphane against PrP (106-126)-induced neurotoxicity. Furthermore we demonstrated that both sulforaphane-induced autophagy and protective effect of sulforaphane against PrP (106-126)-induced neurotoxicity are dependent on the AMP-activated protein kinase (AMPK) signaling. The present results indicated that sulforaphane of cruciferous vegetables enhanced autophagy flux led to the protection effects against prion-mediated neurotoxicity, which was regulated by AMPK signaling pathways in human neuron cells. Our data also suggest that sulforaphane has a potential value as a therapeutic tool in neurodegenerative disease including prion diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. A novel copper-hydrogen peroxide formulation for prion decontamination.

    PubMed

    Solassol, Jerome; Pastore, Manuela; Crozet, Carole; Perrier, Veronique; Lehmann, Sylvain

    2006-09-15

    With the appearance of variant Creutzfeldt-Jakob disease (CJD) and the detection of infectious prions in the peripheral organs of persons with sporadic CJD, the development of decontamination methods that are compatible with medical equipment has become a major issue. Here, we show that a formulation of copper metal ions in combination with hydrogen peroxide dramatically reduces the level of prion protein (PrP)(Sc) (the scrapie isoform of PrP) present in homogenates of samples from prion-infected brains, including brain samples from humans with CJD. An animal bioassay confirmed the reduction in prion infectivity, indicating that this novel Cu(2+)-H(2)O(2) formulation has great potential for prion decontamination.

  7. Molecular Model of Prion Transmission to Humans

    PubMed Central

    Wight, Darren; Barron, Rona; Jeffrey, Martin; Manson, Jean; Prowse, Christopher; Ironside, James W.; Head, Mark W.

    2009-01-01

    To assess interspecies barriers to transmission of transmissible spongiform encephalopathies, we investigated the ability of disease-associated prion proteins (PrPd) to initiate conversion of the human normal cellular form of prion protein of the 3 major PRNP polymorphic variants in vitro. Protein misfolding cyclic amplification showed that conformation of PrPd partly determines host susceptibility. PMID:19961689

  8. High-resolution structure of infectious prion protein: the final frontier

    PubMed Central

    Diaz-Espinoza, Rodrigo; Soto, Claudio

    2014-01-01

    Prions are the proteinaceous infectious agents responsible for the transmission of prion diseases. The main or sole component of prions is the misfolded prion protein (PrPSc), which is able to template the conversion of the host’s natively folded form of the protein (PrPC). The detailed mechanism of prion replication and the high-resolution structure of PrPSc are unknown. The currently available information on PrPSc structure comes mostly from low-resolution biophysical techniques, which have resulted in quite divergent models. Recent advances in the production of infectious prions, using very pure recombinant protein, offer new hope for PrPSc structural studies. This review highlights the importance of, challenges for and recent progress toward elucidating the elusive structure of PrPSc, arguably the major pending milestone to reach in understanding prions. PMID:22472622

  9. A visual dual-aptamer logic gate for sensitive discrimination of prion diseases-associated isoform with reusable magnetic microparticles and fluorescence quantum dots.

    PubMed

    Xiao, Sai Jin; Hu, Ping Ping; Chen, Li Qiang; Zhen, Shu Jun; Peng, Li; Li, Yuan Fang; Huang, Cheng Zhi

    2013-01-01

    Molecular logic gates, which have attracted increasing research interest and are crucial for the development of molecular-scale computers, simplify the results of measurements and detections, leaving the diagnosis of disease either "yes" or "no". Prion diseases are a group of fatal neurodegenerative disorders that happen in human and animals. The main problem with a diagnosis of prion diseases is how to sensitively and selectively discriminate and detection of the minute amount of PrP(Res) in biological samples. Our previous work had demonstrated that dual-aptamer strategy could achieve highly sensitive and selective discrimination and detection of prion protein (cellular prion protein, PrP(C), and the diseases associated isoform, PrP(Res)) in serum and brain. Inspired by the advantages of molecular logic gate, we further conceived a new concept for dual-aptamer logic gate that responds to two chemical input signals (PrP(C) or PrP(Res) and Gdn-HCl) and generates a change in fluorescence intensity as the output signal. It was found that PrP(Res) performs the "OR" logic operation while PrP(C) performs "XOR" logic operation when they get through the gate consisted of aptamer modified reusable magnetic microparticles (MMPs-Apt1) and quantum dots (QDs-Apt2). The dual-aptamer logic gate simplifies the discrimination results of PrP(Res), leaving the detection of PrP(Res) either "yes" or "no". The development of OR logic gate based on dual-aptamer strategy and two chemical input signals (PrP(Res) and Gdn-HCl) is an important step toward the design of prion diseases diagnosis and therapy systems.

  10. Early increase and late decrease of purkinje cell dendritic spine density in prion-infected organotypic mouse cerebellar cultures.

    PubMed

    Campeau, Jody L; Wu, Gengshu; Bell, John R; Rasmussen, Jay; Sim, Valerie L

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4-5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis.

  11. Mouse-hamster chimeric prion protein (PrP) devoid of N-terminal residues 23-88 restores susceptibility to 22L prions, but not to RML prions in PrP-knockout mice.

    PubMed

    Uchiyama, Keiji; Miyata, Hironori; Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp 0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp 0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp 0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp 0/+ mice, compared with RML- and 22L-inoculated Prnp 0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc.

  12. Mouse-Hamster Chimeric Prion Protein (PrP) Devoid of N-Terminal Residues 23-88 Restores Susceptibility to 22L Prions, but Not to RML Prions in PrP-Knockout Mice

    PubMed Central

    Yano, Masashi; Yamaguchi, Yoshitaka; Imamura, Morikazu; Muramatsu, Naomi; Das, Nandita Rani; Chida, Junji; Hara, Hideyuki; Sakaguchi, Suehiro

    2014-01-01

    Prion infection induces conformational conversion of the normal prion protein PrPC, into the pathogenic isoform PrPSc, in prion diseases. It has been shown that PrP-knockout (Prnp0/0) mice transgenically reconstituted with a mouse-hamster chimeric PrP lacking N-terminal residues 23-88, or Tg(MHM2Δ23-88)/Prnp0/0 mice, neither developed the disease nor accumulated MHM2ScΔ23-88 in their brains after inoculation with RML prions. In contrast, RML-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice developed the disease with abundant accumulation of MHM2ScΔ23-88 in their brains. These results indicate that MHM2Δ23-88 itself might either lose or greatly reduce the converting capacity to MHM2ScΔ23-88, and that the co-expressing wild-type PrPC can stimulate the conversion of MHM2Δ23-88 to MHM2ScΔ23-88 in trans. In the present study, we confirmed that Tg(MHM2Δ23-88)/Prnp0/0 mice remained resistant to RML prions for up to 730 days after inoculation. However, we found that Tg(MHM2Δ23-88)/Prnp0/0 mice were susceptible to 22L prions, developing the disease with prolonged incubation times and accumulating MHM2ScΔ23-88 in their brains. We also found accelerated conversion of MHM2Δ23-88 into MHM2ScΔ23-88 in the brains of RML- and 22L-inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice. However, wild-type PrPSc accumulated less in the brains of these inoculated Tg(MHM2Δ23-88)/Prnp0/+ mice, compared with RML- and 22L-inoculated Prnp0/+ mice. These results show that MHM2Δ23-88 itself can convert into MHM2ScΔ23-88 without the help of the trans-acting PrPC, and that, irrespective of prion strains inoculated, the co-expressing wild-type PrPC stimulates the conversion of MHM2Δ23-88 into MHM2ScΔ23-88, but to the contrary, the co-expressing MHM2Δ23-88 disturbs the conversion of wild-type PrPC into PrPSc. PMID:25330286

  13. Chronic wasting disease in bank voles: characterisation of the shortest incubation time model for prion diseases

    USDA-ARS?s Scientific Manuscript database

    In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with...

  14. Mammalian prions

    PubMed Central

    Salamat, Muhammad Khalid; Munoz-Montesino, Carola; Moudjou, Mohammed; Rezaei, Human; Laude, Hubert; Béringue, Vincent; Dron, Michel

    2013-01-01

    Upon prion infection, abnormal prion protein (PrPSc) self-perpetuate by conformational conversion of α-helix-rich PrPC into β sheet enriched form, leading to formation and deposition of PrPSc aggregates in affected brains. However the process remains poorly understood at the molecular level and the regions of PrP critical for conversion are still debated. Minimal amino acid substitutions can impair prion replication at many places in PrP. Conversely, we recently showed that bona fide prions could be generated after introduction of eight and up to 16 additional amino acids in the H2-H3 inter-helix loop of PrP. Prion replication also accommodated the insertions of an octapeptide at different places in the last turns of H2. This reverse genetic approach reveals an unexpected tolerance of prions to substantial sequence changes in the protease-resistant part which is associated with infectivity. It also demonstrates that conversion does not require the presence of a specific sequence in the middle of the H2-H3 area. We discuss the implications of our findings according to different structural models proposed for PrPSc and questioned the postulated existence of an N- or C-terminal prion domain in the protease-resistant region. PMID:23232499

  15. Structural variants of yeast prions show conformer-specific requirements for chaperone activity

    PubMed Central

    Stein, Kevin C.; True, Heather L.

    2016-01-01

    Summary Molecular chaperones monitor protein homeostasis and defend against the misfolding and aggregation of proteins that is associated with protein conformational disorders. In these diseases, a variety of different aggregate structures can form. These are called prion strains, or variants, in prion diseases, and cause variation in disease pathogenesis. Here, we use variants of the yeast prions [RNQ+] and [PSI+] to explore the interactions of chaperones with distinct aggregate structures. We found that prion variants show striking variation in their relationship with Hsp40s. Specifically, the yeast Hsp40 Sis1, and its human ortholog Hdj1, had differential capacities to process prion variants, suggesting that Hsp40 selectivity has likely changed through evolution. We further show that such selectivity involves different domains of Sis1, with some prion conformers having a greater dependence on particular Hsp40 domains. Moreover, [PSI+] variants were more sensitive to certain alterations in Hsp70 activity as compared to [RNQ+] variants. Collectively, our data indicate that distinct chaperone machinery is required, or has differential capacity, to process different aggregate structures. Elucidating the intricacies of chaperone-client interactions, and how these are altered by particular client structures, will be crucial to understanding how this system can go awry in disease and contribute to pathological variation. PMID:25060529

  16. Clinical and genetic features of human prion diseases in Catalonia: 1993-2002.

    PubMed

    Sanchez-Valle, R; Nos, C; Yagüe, J; Graus, F; Domínguez, A; Saiz, A

    2004-10-01

    We describe the clinical and genetic characteristics of the 85 definite or probable human prion diseases cases died between January 1993 and December 2002 in Catalonia (an autonomous community of Spain, 6 million population). Seventy-three (86%) cases were sporadic Creutzfeld-Jakob diseases (sCJD) (49 definite, 24 probable), with a median age at onset of 66 years. The clinical presentation was dementia in 29 cases, ataxia in 14 and visual symptoms in five. The median survival was 3 months. The 14-3-3 assay was positive in 93% cases, 62% presented periodic sharp wave complexes (PSWC) in EEG but only 18% the typical signs on MRI. Forty-eight sCJD were studied for codon 129 PRNP polymorphism: 69% were methionine/methionine (M/M), 14.5% valine/valine (V/V) and 16.5% M/V. Six out of seven V/V cases did not present PSWC and in two survival was longer than 20 months. Eleven cases (13%) were genetic: five familial fatal insomnia and six familial CJD (fCJD). Up to four (67%) fCJD lacked family history of disease, two presented seizures early at onset and one neurosensorial deafness. The only iatrogenic case was related to a dura mater graft. No case of variant CJD was registered. The study confirms in our population the consistent pattern reported worldwide on human prion diseases. Atypical features were seen more frequently in sporadic 129 V/V CJD and fCJD cases.

  17. [From the Scrapie syndrome of sheep and goat to the mad cow disease - the history of the discovery of prion].

    PubMed

    Liu, Rui; Weng, Yi

    2009-05-01

    Since the discovery of Scrapie Syndrome in sheep and goats in 1730, there emerged a series of diseases such as Creutzfeldt-Jakob disease, kuru disease and mad cow disease etc. In the research of kuru disease, the American scientist D. Carlteton Gajdusek found a new virus without the characteristic of DNA and RNA, which was awarded the Nobel Prize in physiology in 1976. Since then another American scientist, Stanley B. Prusiner, found a new virus-prion, taking protein as the genetic medium, which was awarded the Nobel prize in physiology and medicine in 1997. The discovery of prion is a great landmark in the research of life science, which laid a theoretical foundation for people to conquer a series of diseases such as Scrapie syndrome in sheep and goats, Creutzfeldt-Jakob disease, kuru disease and mad cow disease etc.

  18. Polymorphism of prion protein gene in Arctic fox (Vulpes lagopus).

    PubMed

    Wan, Jiayu; Bai, Xue; Liu, Wensen; Xu, Jing; Xu, Ming; Gao, Hongwei

    2009-07-01

    Prion diseases are fatal neurodegenerative disorders of humans and certain other mammals. Prion protein gene (Prnp) is associated with susceptibility and species barrier to prion diseases. No natural and experimental prion diseases have been documented to date in Arctic fox. In the present study, coding region of Prnp from 135 Arctic foxes were cloned and screened for polymorphisms. Our results indicated that the Arctic fox Prnp open reading frame (ORF) contains 771 nucleotides encoding 257 amino acids. Four single nucleotide polymorphisms (SNPs) (G312C, A337G, C541T, and A723G) were identified. SNPs G312C and A723G produced silent mutations, but SNPs A337G and C541T resulted in a M-V change at codon 113 and R-C at codon 181, respectively. The Arctic fox Prnp amino acid sequence was similar to that of the dog (XM 542906). In short, this study provides preliminary information about genotypes of Prnp in Arctic fox.

  19. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice

    PubMed Central

    Giles, Kurt; Berry, David B.; Condello, Carlo; Dugger, Brittany N.; Li, Zhe; Oehler, Abby; Bhardwaj, Sumita; Elepano, Manuel; Guan, Shenheng; Silber, B. Michael; Olson, Steven H.

    2016-01-01

    Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure–activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano. Potent anti-prion compounds were advanced to pharmacokinetic studies, and the resulting brain-penetrant leads from each series, together with a related N-aryl piperazine lead, were escalated to long-term dosing and efficacy studies. Compounds from each of the four series doubled the survival of mice infected with a mouse-passaged prion strain. Treatment with aryl amides altered prion strain properties, as evidenced by the distinct patterns of neuropathological deposition of prion protein and associated astrocytic gliosis in the brain; however, none of the aryl amide compounds resulted in drug-resistant prion strains, in contrast to previous studies on compounds with the 2-aminothiazole (2-AMT) scaffold. As seen with 2-AMTs and other effective anti-prion compounds reported to date, the novel aryl amides reported here were ineffective in prolonging the survival of transgenic mice infected with human prions. Most encouraging is our discovery that aryl amides show that the development of drug resistance is not an inevitable consequence of efficacious anti-prion therapeutics. PMID:27317802

  20. Theoretical Modeling of Molecular Mechanisms, Time Scales and Strains in Prion Diseases

    DTIC Science & Technology

    2008-01-01

    transmembrane form of the prion protein is localized in the Golgi apparatus of neurons. J. Biol. Chem. 280: 15855-15864. 5 Baskakov, I.V., G. Legname, M.A...research on the prion problem, particularly on a promising new model for the in vitro mammalian prion fibril which involves a new suggestion for a C... new model for in vitro grown fibrils, new domain swapped oligomer models, and models of the influence of proline mutations on the kinetics of

  1. Identification of Alprenolol Hydrochloride as an Anti-prion Compound Using Surface Plasmon Resonance Imaging.

    PubMed

    Miyazaki, Yukiko; Ishikawa, Takeshi; Kamatari, Yuji O; Nakagaki, Takehiro; Takatsuki, Hanae; Ishibashi, Daisuke; Kuwata, Kazuo; Nishida, Noriyuki; Atarashi, Ryuichiro

    2018-04-27

    Prion diseases are transmissible neurodegenerative disorders of humans and animals, which are characterized by the aggregation of abnormal prion protein (PrP Sc ) in the central nervous system. Although several small compounds that bind to normal PrP (PrP C ) have been shown to inhibit structural conversion of the protein, an effective therapy for human prion disease remains to be established. In this study, we screened 1200 existing drugs approved by the US Food and Drug Administration (FDA) for anti-prion activity using surface plasmon resonance imaging (SPRi). Of these drugs, 31 showed strong binding activity to recombinant human PrP, and three of these reduced the accumulation of PrP Sc in prion-infected cells. One of the active compounds, alprenolol hydrochloride, which is used clinically as a β-adrenergic blocker for hypertension, also reduced the accumulation of PrP Sc in the brains of prion-infected mice at the middle stage of the disease when the drug was administered orally with their daily water from the day after infection. Docking simulation analysis suggested that alprenolol hydrochloride fitted into the hotspot within mouse PrP C , which is known as the most fragile structure within the protein. These findings provide evidence that SPRi is useful in identifying effective drug candidates for neurodegenerative diseases caused by abnormal protein aggregation, such as prion diseases.

  2. Persistence of pathogenic prion protein during simulated wastewater treatment processes

    USGS Publications Warehouse

    Hinckley, G.T.; Johnson, C.J.; Jacobson, K.H.; Bartholomay, C.; Mcmahon, K.D.; McKenzie, D.; Aiken, Judd M.; Pedersen, J.A.

    2008-01-01

    Transmissible spongiform encephalopathies (TSEs, prion diseases) are a class of fatal neurodegenerative diseases affecting a variety of mammalian species including humans. A misfolded form of the prion protein (PrP TSE) is the major, if not sole, component of the infectious agent. Prions are highly resistant to degradation and to many disinfection procedures suggesting that, if prions enter wastewater treatment systems through sewers and/or septic systems (e.g., from slaughterhouses, necropsy laboratories, rural meat processors, private game dressing) or through leachate from landfills that have received TSE-contaminated material, prions could survive conventional wastewater treatment Here, we report the results of experiments examining the partitioning and persistence of PrPTSE during simulated wastewater treatment processes including activated and mesophilic anaerobic sludge digestion. Incubation with activated sludge did not result in significant PrPTSE degradation. PrPTSE and prion infectivity partitioned strongly to activated sludge solids and are expected to enter biosolids treatment processes. A large fraction of PrPTSE survived simulated mesophilic anaerobic sludge digestion. The small reduction in recoverable PrPTSE after 20-d anaerobic sludge digestion appeared attributable to a combination of declining extractability with time and microbial degradation. Our results suggest that if prions were to enter municipal wastewater treatment systems, most would partition to activated sludge solids, survive mesophilic anaerobic digestion, and be present in treated biosolids. ?? 2008 American Chemical Society.

  3. [PSI+] Prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies 'species barriers'.

    PubMed

    Bateman, David A; Wickner, Reed B

    2012-02-01

    [PSI+] is a prion of Sup35p, an essential translation termination and mRNA turnover factor. The existence of lethal [PSI+] variants, the absence of [PSI+] in wild strains, the mRNA turnover function of the Sup35p prion domain, and the stress reaction to prion infection suggest that [PSI+] is a disease. Nonetheless, others have proposed that [PSI+] and other yeast prions benefit their hosts. We find that wild Saccharomyces cerevisiae strains are polymorphic for the sequence of the prion domain and particularly in the adjacent M domain. Here we establish that these variations within the species produce barriers to prion transmission. The barriers are partially asymmetric in some cases, and evidence for variant specificity in barriers is presented. We propose that, as the PrP 129M/V polymorphism protects people from Creutzfeldt-Jakob disease, the Sup35p polymorphisms were selected to protect yeast cells from prion infection. In one prion incompatibility group, the barrier is due to N109S in the Sup35 prion domain and several changes in the middle (M) domain, with either the single N109S mutation or the group of M changes (without the N109S) producing a barrier. In another, the barrier is due to a large deletion in the repeat domain. All are outside the region previously believed to determine transmission compatibility. [SWI+], a prion of the chromatin remodeling factor Swi1p, was also proposed to benefit its host. We find that none of 70 wild strains carry this prion, suggesting that it is not beneficial.

  4. Fungal prion HET-s as a model for structural complexity and self-propagation in prions.

    PubMed

    Wan, William; Stubbs, Gerald

    2014-04-08

    The highly ordered and reproducible structure of the fungal prion HET-s makes it an excellent model system for studying the inherent properties of prions, self-propagating infectious proteins that have been implicated in a number of fatal diseases. In particular, the HET-s prion-forming domain readily folds into a relatively complex two-rung β-solenoid amyloid. The faithful self-propagation of this fold involves a diverse array of inter- and intramolecular structural features. These features include a long flexible loop connecting the two rungs, buried polar residues, salt bridges, and asparagine ladders. We have used site-directed mutagenesis and X-ray fiber diffraction to probe the relative importance of these features for the formation of β-solenoid structure, as well as the cumulative effects of multiple mutations. Using fibrillization kinetics and chemical stability assays, we have determined the biophysical effects of our mutations on the assembly and stability of the prion-forming domain. We have found that a diversity of structural features provides a level of redundancy that allows robust folding and stability even in the face of significant sequence alterations and suboptimal environmental conditions. Our findings provide fundamental insights into the structural interactions necessary for self-propagation. Propagation of prion structure seems to require an obligatory level of complexity that may not be reproducible in short peptide models.

  5. Ex vivo mammalian prions are formed of paired double helical prion protein fibrils.

    PubMed

    Terry, Cassandra; Wenborn, Adam; Gros, Nathalie; Sells, Jessica; Joiner, Susan; Hosszu, Laszlo L P; Tattum, M Howard; Panico, Silvia; Clare, Daniel K; Collinge, John; Saibil, Helen R; Wadsworth, Jonathan D F

    2016-05-01

    Mammalian prions are hypothesized to be fibrillar or amyloid forms of prion protein (PrP), but structures observed to date have not been definitively correlated with infectivity and the three-dimensional structure of infectious prions has remained obscure. Recently, we developed novel methods to obtain exceptionally pure preparations of prions from mouse brain and showed that pathogenic PrP in these high-titre preparations is assembled into rod-like assemblies. Here, we have used precise cell culture-based prion infectivity assays to define the physical relationship between the PrP rods and prion infectivity and have used electron tomography to define their architecture. We show that infectious PrP rods isolated from multiple prion strains have a common hierarchical assembly comprising twisted pairs of short fibres with repeating substructure. The architecture of the PrP rods provides a new structural basis for understanding prion infectivity and can explain the inability to systematically generate high-titre synthetic prions from recombinant PrP. © 2016 The Authors.

  6. Semi-purification procedures of prions from a prion-infected brain using sucrose has no influence on the nonenzymatic glycation of the disease-associated prion isoform.

    PubMed

    Choi, Yeong-Gon; Kim, Jae-Il; Choi, Eun-Kyoung; Carp, Richard I; Kim, Yong-Sun

    2016-01-01

    Previous studies have shown that the Nε-carboxymethyl group is linked to not only one or more N-terminal Lys residues but also to one or more Lys residues of the protease-resistant core region of the pathogenic prion isoform (PrPSc) in prion-infected brains. Using an anti-advanced glycation end product (AGE) antibody, we detected nonenzymatically glycated PrPSc (AGE-PrPSc) in prion-infected brains following concentration by a series of ultracentrifugation steps with a sucrose cushion. In the present study, the levels of in vitro nonenzymatic glycation of PrPSc using sucrose were investigated to determine whether sucrose cushion can artificially and nonenzymatically induce in vitro glycation during ultracentrifugation. The first insoluble pellet fraction following the first ultracentrifugation (PU1st) collected from 263K scrapie-infected brains was incubated with sucrose, glucose or colloidal silica coated with polyvinylpyrrolidone (percoll). None of the compounds in vitro resulted in AGE-PrPSc. Nonetheless, glucose and percoll produced AGEs in vitro from other proteins within PU1st of the infected brains. This reaction could lead to the AGE-modified polymer(s) of nonenzymatic glycation-prone protein(s). This study showed that PrPSc is not nonenzymatically glycated in vitro with sucrose, glucose or percoll and that AGE-modified PrPSc can be isolated and enriched from prion-infected brains.

  7. At the centre of neuronal, synaptic and axonal pathology in murine prion disease: degeneration of neuroanatomically linked thalamic and brainstem nuclei

    PubMed Central

    Reis, Renata; Hennessy, Edel; Murray, Caoimhe; Griffin, Éadaoin W.

    2015-01-01

    Aims The processes by which neurons degenerate in chronic neurodegenerative diseases remain unclear. Synaptic loss and axonal pathology frequently precede neuronal loss and protein aggregation demonstrably spreads along neuroanatomical pathways in many neurodegenerative diseases. The spread of neuronal pathology is less studied. Methods We previously demonstrated severe neurodegeneration in the posterior thalamus of multiple prion disease strains. Here we used the ME7 model of prion disease to examine the nature of this degeneration in the posterior thalamus and the major brainstem projections into this region. Results We objectively quantified neurological decline between 16 and 18 weeks post‐inoculation and observed thalamic subregion‐selective neuronal, synaptic and axonal pathology while demonstrating relatively uniform protease‐resistant prion protein (PrP) aggregation and microgliosis across the posterior thalamus. Novel amyloid precursor protein (APP) pathology was particularly prominent in the thalamic posterior (PO) and ventroposterior lateral (VPL) nuclei. The brainstem nuclei forming the major projections to these thalamic nuclei were examined. Massive neuronal loss in the PO was not matched by significant neuronal loss in the interpolaris (Sp5I), while massive synaptic loss in the ventral posteromedial nucleus (VPM) did correspond with significant neuronal loss in the principal trigeminal nucleus. Likewise, significant VPL synaptic loss was matched by significant neuronal loss in the gracile and cuneate nuclei. Conclusion These findings demonstrate significant spread of neuronal pathology from the thalamus to the brainstem in prion disease. The divergent neuropathological features in adjacent neuronal populations demonstrates that there are discrete pathways to neurodegeneration in different neuronal populations. PMID:25727649

  8. Prions and lymphoid organs

    PubMed Central

    O’Connor, Tracy; Aguzzi, Adriano

    2013-01-01

    Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1−/− lymph nodes and rates of neuroinvasion in TNFR1−/− mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1−/− lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)—the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article. PMID:23357827

  9. Optimization of Aryl Amides that Extend Survival in Prion-Infected Mice.

    PubMed

    Giles, Kurt; Berry, David B; Condello, Carlo; Dugger, Brittany N; Li, Zhe; Oehler, Abby; Bhardwaj, Sumita; Elepano, Manuel; Guan, Shenheng; Silber, B Michael; Olson, Steven H; Prusiner, Stanley B

    2016-09-01

    Developing therapeutics for neurodegenerative diseases (NDs) prevalent in the aging population remains a daunting challenge. With the growing understanding that many NDs progress by conformational self-templating of specific proteins, the prototypical prion diseases offer a platform for ND drug discovery. We evaluated high-throughput screening hits with the aryl amide scaffold and explored the structure-activity relationships around three series differing in their N-aryl core: benzoxazole, benzothiazole, and cyano. Potent anti-prion compounds were advanced to pharmacokinetic studies, and the resulting brain-penetrant leads from each series, together with a related N-aryl piperazine lead, were escalated to long-term dosing and efficacy studies. Compounds from each of the four series doubled the survival of mice infected with a mouse-passaged prion strain. Treatment with aryl amides altered prion strain properties, as evidenced by the distinct patterns of neuropathological deposition of prion protein and associated astrocytic gliosis in the brain; however, none of the aryl amide compounds resulted in drug-resistant prion strains, in contrast to previous studies on compounds with the 2-aminothiazole (2-AMT) scaffold. As seen with 2-AMTs and other effective anti-prion compounds reported to date, the novel aryl amides reported here were ineffective in prolonging the survival of transgenic mice infected with human prions. Most encouraging is our discovery that aryl amides show that the development of drug resistance is not an inevitable consequence of efficacious anti-prion therapeutics. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Concentration-dependent Cu(II) binding to prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Lu, Wenchang; Bernholc, Jerry

    2008-03-01

    The prion protein plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The normal function of the prion protein is unknown, but it has been linked to its ability to bind copper ions. Experimental evidence suggests that copper can be bound in three distinct modes depending on its concentration, but only one of those binding modes has been fully characterized experimentally. Using a newly developed hybrid DFT/DFT method [1], which combines Kohn-Sham DFT with orbital-free DFT, we have examined all the binding modes and obtained their detailed binding geometries and copper ion binding energies. Our results also provide explanation for experiments, which have found that when the copper concentration increases the copper binding mode changes, surprisingly, from a stronger to a weaker one. Overall, our results indicate that prion protein can function as a copper buffer. 1. Hodak, Lu, Bernholc, JCP, in press.

  11. Extensive Diversity of Prion Strains Is Defined by Differential Chaperone Interactions and Distinct Amyloidogenic Regions

    PubMed Central

    Stein, Kevin C.; True, Heather L.

    2014-01-01

    Amyloidogenic proteins associated with a variety of unrelated diseases are typically capable of forming several distinct self-templating conformers. In prion diseases, these different structures, called prion strains (or variants), confer dramatic variation in disease pathology and transmission. Aggregate stability has been found to be a key determinant of the diverse pathological consequences of different prion strains. Yet, it remains largely unclear what other factors might account for the widespread phenotypic variation seen with aggregation-prone proteins. Here, we examined a set of yeast prion variants of the [RNQ+] prion that differ in their ability to induce the formation of another yeast prion called [PSI+]. Remarkably, we found that the [RNQ+] variants require different, non-contiguous regions of the Rnq1 protein for both prion propagation and [PSI+] induction. This included regions outside of the canonical prion-forming domain of Rnq1. Remarkably, such differences did not result in variation in aggregate stability. Our analysis also revealed a striking difference in the ability of these [RNQ+] variants to interact with the chaperone Sis1. Thus, our work shows that the differential influence of various amyloidogenic regions and interactions with host cofactors are critical determinants of the phenotypic consequences of distinct aggregate structures. This helps reveal the complex interdependent factors that influence how a particular amyloid structure may dictate disease pathology and progression. PMID:24811344

  12. Introducing a Rigid Loop Structure from Deer into Mouse Prion Protein Increases Its Propensity for Misfolding In Vitro

    PubMed Central

    Kyle, Leah M.; John, Theodore R.; Schätzl, Hermann M.; Lewis, Randolph V.

    2013-01-01

    Prion diseases are fatal neurodegenerative disorders characterized by misfolding of the cellular prion protein (PrPc) into the disease-associated isoform (PrPSc) that has increased β-sheet content and partial resistance to proteolytic digestion. Prion diseases from different mammalian species have varying propensities for transmission upon exposure of an uninfected host to the infectious agent. Chronic Wasting Disease (CWD) is a highly transmissible prion disease that affects free ranging and farmed populations of cervids including deer, elk and moose, as well as other mammals in experimental settings. The molecular mechanisms allowing CWD to maintain comparatively high transmission rates have not been determined. Previous work has identified a unique structural feature in cervid PrP, a rigid loop between β-sheet 2 and α-helix 2 on the surface of the protein. This study was designed to test the hypothesis that the rigid loop has a direct influence on the misfolding process. The rigid loop was introduced into murine PrP as the result of two amino acid substitutions: S170N and N174T. Wild-type and rigid loop murine PrP were expressed in E. coli and purified. Misfolding propensity was compared for the two proteins using biochemical techniques and cell free misfolding and conversion systems. Murine PrP with a rigid loop misfolded in cell free systems with greater propensity than wild type murine PrP. In a lipid-based conversion assay, rigid loop PrP converted to a PK resistant, aggregated isoform at lower concentrations than wild-type PrP. Using both proteins as substrates in real time quaking-induced conversion, rigid loop PrP adopted a misfolded isoform more readily than wild type PrP. Taken together, these findings may help explain the high transmission rates observed for CWD within cervids. PMID:23825561

  13. Development and characterization of an ex-vivo brain slice culture model of chronic wasting disease

    USDA-ARS?s Scientific Manuscript database

    Prion diseases have long incubation times in vivo, therefore, modeling the diseases ex-vivo will advance the development of rationale-based therapeutic strategies. An organotypic slice culture assay (POSCA) was recently developed for scrapie prions by inoculating mouse cerebellar brain slices with R...

  14. Comparative analysis of the prion protein gene sequences in African lion.

    PubMed

    Wu, Chang-De; Pang, Wan-Yong; Zhao, De-Ming

    2006-10-01

    The prion protein gene of African lion (Panthera Leo) was first cloned and polymorphisms screened. The results suggest that the prion protein gene of eight African lions is highly homogenous. The amino acid sequences of the prion protein (PrP) of all samples tested were identical. Four single nucleotide polymorphisms (C42T, C81A, C420T, T600C) in the prion protein gene (Prnp) of African lion were found, but no amino acid substitutions. Sequence analysis showed that the higher homology is observed to felis catus AF003087 (96.7%) and to sheep number M31313.1 (96.2%) Genbank accessed. With respect to all the mammalian prion protein sequences compared, the African lion prion protein sequence has three amino acid substitutions. The homology might in turn affect the potential intermolecular interactions critical for cross species transmission of prion disease.

  15. Induction of PrPSc-specific systemic and mucosal immune responses in white-tailed deer with an oral vaccine for chronic wasting disease

    PubMed Central

    Scruten, Erin; Woodbury, Murray; Potter, Andrew; Griebel, Philip; Tikoo, Suresh K.; Napper, Scott

    2017-01-01

    ABSTRACT The ongoing epidemic of chronic wasting disease (CWD) within cervid populations indicates the need for novel approaches for disease management. A vaccine that either reduces susceptibility to infection or reduces shedding of prions by infected animals, or a combination of both, could be of benefit for disease control. The development of such a vaccine is challenged by the unique nature of prion diseases and the requirement for formulation and delivery in an oral format for application in wildlife settings. To address the unique nature of prions, our group targets epitopes, termed disease specific epitopes (DSEs), whose exposure for antibody binding depends on disease-associated misfolding of PrPC into PrPSc. Here, a DSE corresponding to the rigid loop (RL) region, which was immunogenic following parenteral vaccination, was translated into an oral vaccine. This vaccine consists of a replication-incompetent human adenovirus expressing a truncated rabies glycoprotein G recombinant fusion with the RL epitope (hAd5:tgG-RL). Oral immunization of white-tailed deer with hAd5:tgG-RL induced PrPSc-specific systemic and mucosal antibody responses with an encouraging safety profile in terms of no adverse health effects nor prolonged vector shedding. By building upon proven strategies of formulation for wildlife vaccines, these efforts generate a particular PrPSc-specific oral vaccine for CWD as well as providing a versatile platform, in terms of carrier protein and biological vector, for generation of other oral, peptide-based CWD vaccines. PMID:28968152

  16. High hydrophobic amino acid exposure is responsible of the neurotoxic effects induced by E200K or D202N disease-related mutations of the human prion protein.

    PubMed

    Corsaro, Alessandro; Thellung, Stefano; Bucciarelli, Tonino; Scotti, Luca; Chiovitti, Katia; Villa, Valentina; D'Arrigo, Cristina; Aceto, Antonio; Florio, Tullio

    2011-03-01

    Mutations in prion protein are thought to be causative of inherited prion diseases favoring the spontaneous conversion of the normal prion protein into the scrapie-like pathological prion protein. We previously reported that, by controlled thermal denaturation, human prion protein fragment 90-231 acquires neurotoxic properties when transformed in a β-rich conformation, resembling the scrapie-like conformation. In this study we generated prion protein fragment 90-231 bearing mutations identified in familial prion diseases (D202N and E200K), to analyze their role in the induction of a neurotoxic conformation. Prion protein fragment 90-231(wild type) and the D202N mutant were not toxic in native conformation but induced cell death only after thermal denaturation. Conversely, prion protein fragment 90-231(E200K) was highly toxic in its native structure, suggesting that E200K mutation per se favors the acquisition of a peptide neurotoxic conformation. To identify the structural determinants of prion protein fragment 90-231 toxicity, we show that while the wild type peptide is structured in α-helix, hPrP90-231 E200K is spontaneously refolded in a β-structured conformer characterized by increased proteinase K resistance and propensity to generate fibrils. However, the most significant difference induced by E200K mutation in prion protein fragment 90-231 structure in native conformation we observed, was an increase in the exposure of hydrophobic amino-acids on protein surface that was detected in wild type and D202N proteins only after thermal denaturation. In conclusion, we propose that increased hydrophobicity is one of the main determinants of toxicity induced by different mutations in prion protein-derived peptides. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Du, Zhiqiang; Valtierra, Stephanie; Li, Liming

    2014-01-01

    The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI(+)]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI(+)] and [PIN(+)] ([RNQ(+)]) (Genetics, Vol. 197, 685-700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI(+)] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ(+)] or [SWI(+)]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI(+)] prion stabilizes. Our finding provides strong evidence supporting the "cross-seeding" model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.

  18. The risk of transmitting prion disease by blood or plasma products.

    PubMed

    Knight, Richard

    2010-12-01

    Various experimental studies have shown infectivity in blood in relation to bovine spongiform encephalitis (BSE) and variant Creutzfeldt-Jakob disease (vCJD). Human to human transmission vCJD infection has been reported via transfusion of non-leukocyte-reduced red cells and, probably, via factor VIII concentrates. A number of precautionary measures are in place but uncertainties remain, especially concerning the number of BSE-infected people in the population. Additional measures such as prion filtration need consideration. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Diagnosing Prion Diseases: Mass Spectrometry-Based Approaches

    USDA-ARS?s Scientific Manuscript database

    Mass spectrometry is an established means of quantitating the prions present in infected hamsters. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to stable isotope labeled internal standards were prepared. The limit of detection (LOD) and limi...

  20. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease

    PubMed Central

    Nichols, Tracy A.; Spraker, Terry R.; Gidlewski, Thomas; Cummings, Bruce; Hill, Dana; Kong, Qingzhong; Balachandran, Aru; VerCauteren, Kurt C.; Zabel, Mark D.

    2016-01-01

    ABSTRACT Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain. PMID:27216881

  1. A systematic investigation of production of synthetic prions from recombinant prion protein.

    PubMed

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. © 2015 The Authors.

  2. A systematic investigation of production of synthetic prions from recombinant prion protein

    PubMed Central

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K.; Edgeworth, Julie A.; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M.; Brandner, Sebastian; Hosszu, Laszlo L. P.; Tattum, M. Howard; Jat, Parmjit; Clarke, Anthony R.; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Jackson, Graham S.; Collinge, John

    2015-01-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre ‘synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20 000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. PMID:26631378

  3. Prions, prionoid complexes and amyloids: the bad, the good and something in between.

    PubMed

    Hafner Bratkovič, Iva

    2017-04-19

    Prions are infectious agents causing transmissible spongiform encephalopathies in humans and animals. These protein-based particles template conformational changes in a host-encoded prion protein to an insoluble self-like conformation. Prions are also present in yeast, where they support protein-based epigenetic inheritance. There is emerging evidence that prion-like (prionoid) particles can support a variety of pathological and beneficial functions. The recent data on the prionoid spread of other pathological amyloids are discussed in light of differences between prions and prion-like aggregates. On the other hand, prion-like action has also been found to support important functions such as memory, and amyloids were shown to have a variety of physiological roles from storage to scaffolding in simple organisms and in humans. Higher-order protein complexes play important roles in signalling. Many death-fold domains can polymerise upon nucleation to enhance sensitivity and induce a robust response. Although these polymers are structurally different from amyloids, some of them are characterised by prionoid activities, such as intercellular spread. The initial activation of these complexes is vital for organismal health, whereas prolonged activation leading to unresolved inflammation underlies autoinflammatory and other diseases. Prionoid complexes play important roles far beyond prion diseases and neurodegeneration.

  4. Inherited Creutzfeldt-Jakob disease in a British family associated with a novel 144 base pair insertion of the prion protein gene.

    PubMed Central

    Nicholl, D; Windl, O; de Silva, R; Sawcer, S; Dempster, M; Ironside, J W; Estibeiro, J P; Yuill, G M; Lathe, R; Will, R G

    1995-01-01

    A case of familial Creutzfeldt-Jakob disease associated with a 144 base pair insertion in the open reading frame of the prion protein gene is described. Sequencing of the mutated allele showed an arrangement of six octapeptide repeats, distinct from that of a recently described British family with an insertion of similar size. Thirteen years previously the brother of the proband had died from "Huntington's disease", but re-examination of his neuropathology revealed spongiform encephalopathy and anti-prion protein immunocytochemistry gave a positive result. The independent evolution of at least two distinct pathological 144 base pair insertions in Britain is proposed. The importance of maintaining a high index of suspicion of inherited Creutzfeldt-Jakob disease in cases of familial neurodegenerative disease is stressed. Images PMID:7823070

  5. Real-time Quaking-induced Conversion Assay for Detection of CWD Prions in Fecal Material.

    PubMed

    Cheng, Yo Ching; Hannaoui, Samia; John, Theodore Ralph; Dudas, Sandor; Czub, Stefanie; Gilch, Sabine

    2017-09-29

    The RT-QuIC technique is a sensitive in vitro cell-free prion amplification assay based mainly on the seeded misfolding and aggregation of recombinant prion protein (PrP) substrate using prion seeds as a template for the conversion. RT-QuIC is a novel high-throughput technique which is analogous to real-time polymerase chain reaction (PCR). Detection of amyloid fibril growth is based on the dye Thioflavin T, which fluoresces upon specific interaction with ᵦ-sheet rich proteins. Thus, amyloid formation can be detected in real time. We attempted to develop a reliable non-invasive screening test to detect chronic wasting disease (CWD) prions in fecal extract. Here, we have specifically adapted the RT-QuIC technique to reveal PrP Sc seeding activity in feces of CWD infected cervids. Initially, the seeding activity of the fecal extracts we prepared was relatively low in RT-QuIC, possibly due to potential assay inhibitors in the fecal material. To improve seeding activity of feces extracts and remove potential assay inhibitors, we homogenized the fecal samples in a buffer containing detergents and protease inhibitors. We also submitted the samples to different methodologies to concentrate PrP Sc on the basis of protein precipitation using sodium phosphotungstic acid, and centrifugal force. Finally, the feces extracts were tested by optimized RT-QuIC which included substrate replacement in the protocol to improve the sensitivity of detection. Thus, we established a protocol for sensitive detection of CWD prion seeding activity in feces of pre-clinical and clinical cervids by RT-QuIC, which can be a practical tool for non-invasive CWD diagnosis.

  6. Contact tracing for the control of infectious disease epidemics: Chronic Wasting Disease in deer farms.

    PubMed

    Rorres, Chris; Romano, Maria; Miller, Jennifer A; Mossey, Jana M; Grubesic, Tony H; Zellner, David E; Smith, Gary

    2018-06-01

    Contact tracing is a crucial component of the control of many infectious diseases, but is an arduous and time consuming process. Procedures that increase the efficiency of contact tracing increase the chance that effective controls can be implemented sooner and thus reduce the magnitude of the epidemic. We illustrate a procedure using Graph Theory in the context of infectious disease epidemics of farmed animals in which the epidemics are driven mainly by the shipment of animals between farms. Specifically, we created a directed graph of the recorded shipments of deer between deer farms in Pennsylvania over a timeframe and asked how the properties of the graph could be exploited to make contact tracing more efficient should Chronic Wasting Disease (a prion disease of deer) be discovered in one of the farms. We show that the presence of a large strongly connected component in the graph has a significant impact on the number of contacts that can arise. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Seeded amplification of chronic wasting disease prions in nasal brushings and recto-anal mucosal associated lymphoid tissues from elk by real time quaking-induced conversion

    USGS Publications Warehouse

    Haley, Nicholas J.; Siepker, Chris; Hoon-Hanks , Laura L.; Mitchell, Gordon; Walter, W. David; Manca, Matteo; Monello, Ryan J.; Powers, Jenny G.; Wild, Margaret A.; Hoover, Edward A.; Caughey, Byron; Richt, Jürgen a.; Fenwick, B.W.

    2016-01-01

    Chronic wasting disease (CWD), a transmissible spongiform encephalopathy of cervids, was first documented nearly 50 years ago in Colorado and Wyoming and has since been detected across North America and the Republic of Korea. The expansion of this disease makes the development of sensitive diagnostic assays and antemortem sampling techniques crucial for the mitigation of its spread; this is especially true in cases of relocation/reintroduction or prevalence studies of large or protected herds, where depopulation may be contraindicated. This study evaluated the sensitivity of the real-time quaking-induced conversion (RT-QuIC) assay of recto-anal mucosa-associated lymphoid tissue (RAMALT) biopsy specimens and nasal brushings collected antemortem. These findings were compared to results of immunohistochemistry (IHC) analysis of ante- and postmortem samples. RAMALT samples were collected from populations of farmed and free-ranging Rocky Mountain elk (Cervus elaphus nelsoni; n = 323), and nasal brush samples were collected from a subpopulation of these animals (n = 205). We hypothesized that the sensitivity of RT-QuIC would be comparable to that of IHC analysis of RAMALT and would correspond to that of IHC analysis of postmortem tissues. We found RAMALT sensitivity (77.3%) to be highly correlative between RT-QuIC and IHC analysis. Sensitivity was lower when testing nasal brushings (34%), though both RAMALT and nasal brush test sensitivities were dependent on both the PRNP genotype and disease progression determined by the obex score. These data suggest that RT-QuIC, like IHC analysis, is a relatively sensitive assay for detection of CWD prions in RAMALT biopsy specimens and, with further investigation, has potential for large-scale and rapid automated testing of antemortem samples for CWD.

  8. Incunabular Immunological Events in Prion Trafficking

    PubMed Central

    Michel, Brady; Meyerett-Reid, Crystal; Johnson, Theodore; Ferguson, Adam; Wyckoff, Christy; Pulford, Bruce; Bender, Heather; Avery, Anne; Telling, Glenn; Dow, Steven; Zabel, Mark D.

    2012-01-01

    While prions probably interact with the innate immune system immediately following infection, little is known about this initial confrontation. Here we investigated incunabular events in lymphotropic and intranodal prion trafficking by following highly enriched, fluorescent prions from infection sites to draining lymph nodes. We detected biphasic lymphotropic transport of prions from the initial entry site upon peripheral prion inoculation. Prions arrived in draining lymph nodes cell autonomously within two hours of intraperitoneal administration. Monocytes and dendritic cells (DCs) required Complement for optimal prion delivery to lymph nodes hours later in a second wave of prion trafficking. B cells constituted the majority of prion-bearing cells in the mediastinal lymph node by six hours, indicating intranodal prion reception from resident DCs or subcapsulary sinus macrophages or directly from follicular conduits. These data reveal novel, cell autonomous prion lymphotropism, and a prominent role for B cells in intranodal prion movement. PMID:22679554

  9. Multi-parameter MRI in the 6-OPRI variant of inherited prion disease

    PubMed Central

    De Vita, Enrico; Ridgway, Gerard R.; Scahill, Rachael I; Caine, Diana; Rudge, Peter; Yousry, Tarek A; Mead, Simon; Collinge, John; Jäger, H R; Thornton, John S; Hyare, Harpreet

    2013-01-01

    Background and Purpose To define the distribution of cerebral volumetric and microstructural parenchymal tissue changes in a specific mutation within inherited human prion diseases (IPD) combining voxel-based morphometry (VBM) with voxel-based analysis (VBA) of cerebral magnetization transfer ratio (MTR) and mean diffusivity (MD). Materials and Methods VBM and VBA of cerebral MTR and MD were performed in 16 healthy controls and 9 patients with the 6-octapeptide repeat insertion (6-OPRI) mutation. An ANCOVA consisting of diagnostic grouping with age and total intracranial volume as covariates was performed. Results On VBM there was significant grey matter (GM) volume reduction in patients compared with controls in the basal ganglia, perisylvian cortex, lingual gyrus and precuneus. Significant MTR reduction and MD increases were more anatomically extensive than volume differences on VBM in the same cortical areas, but MTR and MD changes were not seen in the basal ganglia. Conclusions GM and WM changes were seen in brain areas associated with motor and cognitive functions known to be impaired in patients with the 6-OPRI mutation. There were some differences in the anatomical distribution of MTR-VBA and MDVBA changes compared to VBM, likely to reflect regional variations in the type and degree of the respective pathophysiological substrates. Combined analysis of complementary multi-parameter MRI data furthers our understanding of prion disease pathophysiology. PMID:23538406

  10. Prion Protein Devoid of the Octapeptide Repeat Region Delays Bovine Spongiform Encephalopathy Pathogenesis in Mice.

    PubMed

    Hara, Hideyuki; Miyata, Hironori; Das, Nandita Rani; Chida, Junji; Yoshimochi, Tatenobu; Uchiyama, Keiji; Watanabe, Hitomi; Kondoh, Gen; Yokoyama, Takashi; Sakaguchi, Suehiro

    2018-01-01

    Conformational conversion of the cellular isoform of prion protein, PrP C , into the abnormally folded, amyloidogenic isoform, PrP Sc , is a key pathogenic event in prion diseases, including Creutzfeldt-Jakob disease in humans and scrapie and bovine spongiform encephalopathy (BSE) in animals. We previously reported that the octapeptide repeat (OR) region could be dispensable for converting PrP C into PrP Sc after infection with RML prions. We demonstrated that mice transgenically expressing mouse PrP with deletion of the OR region on the PrP knockout background, designated Tg(PrPΔOR)/ Prnp 0 / 0 mice, did not show reduced susceptibility to RML scrapie prions, with abundant accumulation of PrP Sc ΔOR in their brains. We show here that Tg(PrPΔOR)/ Prnp 0 / 0 mice were highly resistant to BSE prions, developing the disease with markedly elongated incubation times after infection with BSE prions. The conversion of PrPΔOR into PrP Sc ΔOR was markedly delayed in their brains. These results suggest that the OR region may have a crucial role in the conversion of PrP C into PrP Sc after infection with BSE prions. However, Tg(PrPΔOR)/ Prnp 0 / 0 mice remained susceptible to RML and 22L scrapie prions, developing the disease without elongated incubation times after infection with RML and 22L prions. PrP Sc ΔOR accumulated only slightly less in the brains of RML- or 22L-infected Tg(PrPΔOR)/ Prnp 0 / 0 mice than PrP Sc in control wild-type mice. Taken together, these results indicate that the OR region of PrP C could play a differential role in the pathogenesis of BSE prions and RML or 22L scrapie prions. IMPORTANCE Structure-function relationship studies of PrP C conformational conversion into PrP Sc are worthwhile to understand the mechanism of the conversion of PrP C into PrP Sc We show here that, by inoculating Tg(PrPΔOR)/ Prnp 0 / 0 mice with the three different strains of RML, 22L, and BSE prions, the OR region could play a differential role in the conversion of

  11. Use of bovine recombinant prion protein and real-time quaking-induced conversion to detect cattle transmissible mink encephalopathy prions and discriminate classical and atypical L- and H-Type bovine spongiform encephalopathy.

    PubMed

    Hwang, Soyoun; Greenlee, Justin J; Nicholson, Eric M

    2017-01-01

    Prions are amyloid-forming proteins that cause transmissible spongiform encephalopathies through a process involving conversion from the normal cellular prion protein to the pathogenic misfolded conformation (PrPSc). This conversion has been used for in vitro assays including serial protein misfolding amplification and real-time quaking induced conversion (RT-QuIC). RT-QuIC can be used for the detection of prions in a variety of biological tissues from humans and animals. Extensive work has been done to demonstrate that RT-QuIC is a rapid, specific, and highly sensitive prion detection assay. RT-QuIC uses recombinant prion protein to detect minute amounts of PrPSc. RT-QuIC has been successfully used to detect PrPSc from different prion diseases with a variety of substrates including hamster, human, sheep, bank vole, bovine and chimeric forms of prion protein. However, recombinant bovine prion protein has not been used to detect transmissible mink encephalopathy (TME) or to differentiate types of bovine spongiform encephalopathy (BSE) in samples from cattle. We evaluated whether PrPSc from TME and BSE infected cattle can be detected with RT-QuIC using recombinant bovine prion proteins, and optimized the reaction conditions to specifically detect cattle TME and to discriminate between classical and atypical BSE by conversion efficiency. We also found that substrate composed of the disease associated E211K mutant protein can be effective for the detection of TME in cattle and that wild type prion protein appears to be a practical substrate to discriminate between the different types of BSEs.

  12. Molecular modeling of the conformational dynamics of the cellular prion protein

    NASA Astrophysics Data System (ADS)

    Nguyen, Charles; Colling, Ian; Bartz, Jason; Soto, Patricia

    2014-03-01

    Prions are infectious agents responsible for transmissible spongiform encephalopathies (TSEs), a type of fatal neurodegenerative disease in mammals. Prions propagate biological information by conversion of the non-pathological version of the prion protein to the infectious conformation, PrPSc. A wealth of knowledge has shed light on the nature and mechanism of prion protein conversion. In spite of the significance of this problem, we are far from fully understanding the conformational dynamics of the cellular isoform. To remedy this situation we employ multiple biomolecular modeling techniques such as docking and molecular dynamics simulations to map the free energy landscape and determine what specific regions of the prion protein are most conductive to binding. The overall goal is to characterize the conformational dynamics of the cell form of the prion protein, PrPc, to gain insight into inhibition pathways against misfolding. NE EPSCoR FIRST Award to Patricia Soto.

  13. Frameshifted prion proteins as pathological agents: quantitative considerations.

    PubMed

    Wills, Peter R

    2013-05-21

    A quantitatively consistent explanation for the titres of infectivity found in a variety of prion-containing preparations is provided on the basis that the ætiological agents of transmissible spongiform encephalopathy comprise a very small population fraction of prion protein (PrP) variants, which contain frameshifted elements in their N-terminal octapeptide-repeat regions. A mechanism for the replication of frameshifted prions is described and calculations are performed to obtain estimates of the concentration of these PrP variants in normal and infected brain, as well as their enrichment in products of protein misfolding cyclic amplification. These calculations resolve the lack of proper quantitative correlation between measures of infectivity and the presence of conformationally-altered, protease-resistant variants of PrP. Experiments, which could confirm or eventually exclude the role of frameshifted variants in the ætiology of prion disease, are suggested. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Increasing Prion Propensity by Hydrophobic Insertion

    PubMed Central

    Petri, Michelina; Flores, Noe; Rogge, Ryan A.; Cascarina, Sean M.; Ross, Eric D.

    2014-01-01

    Prion formation involves the conversion of proteins from a soluble form into an infectious amyloid form. Most yeast prion proteins contain glutamine/asparagine-rich regions that are responsible for prion aggregation. Prion formation by these domains is driven primarily by amino acid composition, not primary sequence, yet there is a surprising disconnect between the amino acids thought to have the highest aggregation propensity and those that are actually found in yeast prion domains. Specifically, a recent mutagenic screen suggested that both aromatic and non-aromatic hydrophobic residues strongly promote prion formation. However, while aromatic residues are common in yeast prion domains, non-aromatic hydrophobic residues are strongly under-represented. Here, we directly test the effects of hydrophobic and aromatic residues on prion formation. Remarkably, we found that insertion of as few as two hydrophobic residues resulted in a multiple orders-of-magnitude increase in prion formation, and significant acceleration of in vitro amyloid formation. Thus, insertion or deletion of hydrophobic residues provides a simple tool to control the prion activity of a protein. These data, combined with bioinformatics analysis, suggest a limit on the number of strongly prion-promoting residues tolerated in glutamine/asparagine-rich domains. This limit may explain the under-representation of non-aromatic hydrophobic residues in yeast prion domains. Prion activity requires not only that a protein be able to form prion fibers, but also that these fibers be cleaved to generate new independently-segregating aggregates to offset dilution by cell division. Recent studies suggest that aromatic residues, but not non-aromatic hydrophobic residues, support the fiber cleavage step. Therefore, we propose that while both aromatic and non-aromatic hydrophobic residues promote prion formation, aromatic residues are favored in yeast prion domains because they serve a dual function, promoting both

  15. Low copper and high manganese levels in prion protein plaques

    USGS Publications Warehouse

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  16. Enhanced neuroinvasion by smaller, soluble prions.

    PubMed

    Bett, Cyrus; Lawrence, Jessica; Kurt, Timothy D; Orru, Christina; Aguilar-Calvo, Patricia; Kincaid, Anthony E; Surewicz, Witold K; Caughey, Byron; Wu, Chengbiao; Sigurdson, Christina J

    2017-04-21

    Infectious prion aggregates can propagate from extraneural sites into the brain with remarkable efficiency, likely transported via peripheral nerves. Yet not all prions spread into the brain, and the physical properties of a prion that is capable of transit within neurons remain unclear. We hypothesized that small, diffusible aggregates spread into the CNS via peripheral nerves. Here we used a structurally diverse panel of prion strains to analyze how the prion conformation impacts transit into the brain. Two prion strains form fibrils visible ultrastructurally in the brain in situ, whereas three strains form diffuse, subfibrillar prion deposits and no visible fibrils. The subfibrillar strains had significantly higher levels of soluble prion aggregates than the fibrillar strains. Primary neurons internalized both the subfibrillar and fibril-forming prion strains by macropinocytosis, and both strain types were transported from the axon terminal to the cell body in vitro. However in mice, only the predominantly soluble, subfibrillar prions, and not the fibrillar prions, were efficiently transported from the tongue to the brain. Sonicating a fibrillar prion strain increased the solubility and enabled prions to spread into the brain in mice, as evident by a 40% increase in the attack rate, indicating that an increase in smaller particles enhances prion neuroinvasion. Our data suggest that the small, highly soluble prion particles have a higher capacity for transport via nerves. These findings help explain how prions that predominantly assemble into subfibrillar states can more effectively traverse into and out of the CNS, and suggest that promoting fibril assembly may slow the neuron-to-neuron spread of protein aggregates.

  17. Prions: Protein Rebels with a Cause!

    ERIC Educational Resources Information Center

    Marshall, Karen E.; Serpell, Louise C.

    2017-01-01

    Traditionally we consider infection to arise from viruses, bacteria and parasites. Prions are infectious proteins without any nucleic acids, and therefore do not represent living things. Despite this, they have the ability to replicate themselves and cause diseases such as mad cow disease (bovine spongiform encepthalopathy) and human…

  18. Transmissibility of Gerstmann-Sträussler-Scheinker syndrome in rodent models: New insights into the molecular underpinnings of prion infectivity.

    PubMed

    Nonno, Romolo; Angelo Di Bari, Michele; Agrimi, Umberto; Pirisinu, Laura

    2016-11-01

    Prion diseases, or transmissible spongiform encephalopathies, have revealed the bewildering phenomenon of transmissibility in neurodegenerative diseases. Hence, the experimental transmissibility of prion-like neurodegenerative diseases via template directed misfolding has become the focus of intense research. Gerstmann-Sträussler-Scheinker disease (GSS) is an inherited prion disease associated with mutations in the prion protein gene. However, with the exception of a few GSS cases with P102L mutation characterized by co-accumulation of protease-resistant PrP core (PrP res ) of ∼21 kDa, attempts to transmit to rodents GSS associated to atypical misfolded prion protein with ∼8 kDa PrP res have been unsuccessful. As a result, these GSS subtypes have often been considered as non-transmissible proteinopathies rather than true prion diseases. In a recent study we inoculated bank voles with GSS cases associated with P102L, A117V and F198S mutations and found that they transmitted efficiently and produced distinct pathological phenotypes, irrespective of the presence of 21 kDa PrP res in the inoculum. This study demonstrates that GSS is a genuine prion disease characterized by both transmissibility and strain variation. We discuss the implications of these findings for the understanding of the heterogeneous clinic-pathological phenotypes of GSS and of the molecular underpinnings of prion infectivity.

  19. [Psychiatric manifestations by prions. A narrative review].

    PubMed

    Carrillo Robles, Daniel; García Maldonado, Gerardo

    2016-01-01

    Prion diseases are a group of rare and rapidly progressive neurodegenerative conditions that may cause neuropsychiatric symptoms. This group of diseases has been described since the 18(th) century, but they were recognized decades later, when it became clear that the humans were affected by infected animals. There was controversy when the problem was attributed to a single protein with infective capacity. The common pathological process is characterized by the conversion of the normal cellular prion protein into an abnormal form. In humans, the illness has been classified as idiopathic, inherited and acquired through exposure to exogenous material containing abnormal prions. The most prominent neurological manifestation of prion diseases is the emergence of a rapidly progressive dementia, mioclonus associated with cerebellar ataxia and also extra pyramidal symptoms. Psychiatric symptoms occur in early stages of the illness and can contribute to timely diagnosis of this syndrome. Psychiatric symptoms have traditionally been grouped in three categories: affective symptoms, impaired motor function and psychotic symptoms. Such events usually occur during the prodromal period prior to the neurological manifestations and consists in the presence of social isolation, onset of delusions, irritability/aggression, visual hallucinations, anxiety and depression, and less frequent first-rank symptoms among others. Definite diagnosis requires post mortem examination. The possibility that a large number of cases may occur in the next years or that many cases have not been considered with this diagnosis is a fact. In our opinion, psychiatrists should be aware of symptoms of this disease. The main objective of this research consisted of assessing the correlation between this disturbance and neuro-psychiatric symptoms and particularly if this psychiatric manifestations integrate a clinical picture suggestive for the diagnosis of these diseases, but firstly reviewed taxonomic

  20. The Use of Monoclonal Antibodies in Human Prion Disease

    NASA Astrophysics Data System (ADS)

    Bodemer, Walter

    Detection of PrP and its pathological isoform(s) is the key to understanding the etiology and pathogenesis of transmissible spongiform encephalopathy. There is ample evidence that PrP isoforms constitute a major component of an unknown and perhaps unconventional infectious agent. An etiological relationship between human and zoonotic transmissible spongiform encephalopathies may be revealed with monoclonal antibodies. Knowledge of the conformational transition rendering a nonpathogenic, almost ubiquitous cellular protein into a pathogenic one is crucial to defining pathomechanisms. The stepwise or even continuous formation of pathogenic molecules can be monitored. Any improvement in the early diagnosis could help to conceive new therapeutic measures which are not currently available. Determination of PrP isoforms in tissue, cells, or body fluids may be of prognostic value. Many experimental approaches in molecular medicine and molecular biology of the prion protein already rely on monoclonal antibodies. Recombinant antibodies such as the single-chain Fv may soon replace traditional hybridoma techniques. Binding affinity can easily be manipulated by a number of techniques, including in vitro mutagenesis - a step which could never be carried out using the traditional hybridoma technology. Monoclonal antibodies are and will remain an essential support for ongoing research on the prion protein in general and on the unconventional infectious prions.

  1. Amyloid cores in prion domains: Key regulators for prion conformational conversion.

    PubMed

    Fernández, María Rosario; Batlle, Cristina; Gil-García, Marcos; Ventura, Salvador

    2017-01-02

    Despite the significant efforts devoted to decipher the particular protein features that encode for a prion or prion-like behavior, they are still poorly understood. The well-characterized yeast prions constitute an ideal model system to address this question, because, in these proteins, the prion activity can be univocally assigned to a specific region of their sequence, known as the prion forming domain (PFD). These PFDs are intrinsically disordered, relatively long and, in many cases, of low complexity, being enriched in glutamine/asparagine residues. Computational analyses have identified a significant number of proteins having similar domains in the human proteome. The compositional bias of these regions plays an important role in the transition of the prions to the amyloid state. However, it is difficult to explain how composition alone can account for the formation of specific contacts that position correctly PFDs and provide the enthalpic force to compensate for the large entropic cost of immobilizing these domains in the initial assemblies. We have hypothesized that short, sequence-specific, amyloid cores embedded in PFDs can perform these functions and, accordingly, act as preferential nucleation centers in both spontaneous and seeded aggregation. We have shown that the implementation of this concept in a prediction algorithm allows to score the prion propensities of putative PFDs with high accuracy. Recently, we have provided experimental evidence for the existence of such amyloid cores in the PFDs of Sup35, Ure2, Swi1, and Mot3 yeast prions. The fibrils formed by these short stretches may recognize and promote the aggregation of the complete proteins inside cells, being thus a promising tool for targeted protein inactivation.

  2. Molecular modelling indicates that the pathological conformations of prion proteins might be beta-helical.

    PubMed Central

    Downing, D T; Lazo, N D

    1999-01-01

    Creutzfeldt-Jakob disease, kuru, scrapie and bovine spongiform encephalopathy are diseases of the mammalian central nervous system that involve the conversion of a cellular protein into an insoluble extracellular isoform. Spectroscopic studies have shown that the precursor protein contains mainly alpha-helical and random-coil conformations, whereas the prion isoform is largely in the beta conformation. The pathogenic prion is resistant to denaturation and protease digestion and can promote the conversion of the precursor protein to the pathogenic form. These properties have yet to be explained in terms of the structural conformations of the proteins. In the present study, molecular modelling showed that prion proteins could adopt the beta-helical conformation, which has been established for a number of fibrous proteins and has been suggested previously as the basis of amyloid fibrils. The beta-helical conformation provides explanations for the biophysical and biochemical stability of prions, their ability to form templates for the transmission of pathological conformation, and the existence of phenotypical strains of the prion diseases. PMID:10510313

  3. The Risk of Prion Infection through Bovine Grafting Materials.

    PubMed

    Kim, Yeoungsug; Rodriguez, Angel Emmanuel; Nowzari, Hessam

    2016-12-01

    Bovine-derived grafting materials are frequently used in a variety of bone augmentation techniques. The aim of this paper is to assess the unique safety issue of bovine-derived grafting materials that is rarely addressed in dental literature: risk of bovine spongiform encephalopathy (BSE). The validity of the current BSE diagnostic methods, surveillance and epidemiological trends in affected countries, and BSE infectivity in bovine bone before and after manufacturing processing were reviewed and analyzed. Prion screening has significant limits. Humans are not safe from the infection of prion disease of other species. Prions can and do break the species barrier. There is evidence there may be tens of thousands of infectious carriers in the western countries alone. This raises concern about the potential for perpetuation of infection via medical procedures. The limited ability to screen prions within the animal genome, along with a long latency period to manifestation of the disease (1 to over 50 years) in infected patients, provides a framework for discussing posible long-term risks of the xenografts that are used so extensively in dentistry. We suggest abolishing the use of bovine bone. © 2016 Wiley Periodicals, Inc.

  4. Prion propagation in cells expressing PrP glycosylation mutants.

    PubMed

    Salamat, Muhammad K; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-04-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrP(C)) to a disease-related isoform (PrP(Sc)). PrP(C) carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrP(C) glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrP(Sc) and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrP(Sc), while PrP(C) with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrP(C), were able to form infectious PrP(Sc). Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection.

  5. Methods and Protocols for Developing Prion Vaccines.

    PubMed

    Marciniuk, Kristen; Taschuk, Ryan; Napper, Scott

    2016-01-01

    Prion diseases denote a distinct form of infectivity that is based in the misfolding of a self-protein (PrP(C)) into a pathological, infectious conformation (PrP(Sc)). Efforts to develop vaccines for prion diseases have been complicated by the potential dangers that are associated with induction of immune responses against a self-protein. As a consequence, there is considerable appeal for vaccines that specifically target the misfolded prion conformation. Such conformation-specific immunotherapy is made possible through the identification of vaccine targets (epitopes) that are exclusively presented as a consequence of misfolding. An immune response directed against these targets, termed disease-specific epitopes (DSEs), has the potential to spare the function of the native form of the protein while clearing, or neutralizing, the infectious isomer. Although identification of DSEs represents a critical first step in the induction of conformation-specific immune responses, substantial efforts are required to translate these targets into functional vaccines. Due to the poor immunogenicity that is inherent to self-proteins, and that is often associated with short peptides, substantial efforts are required to overcome tolerance-to-self and maximize the resultant immune response following DSE-based immunization. This often includes optimization of target sequences in terms of immunogenicity and development of effective formulation and delivery strategies for the associated peptides. Further, these vaccines must satisfy additional criteria from perspectives of specificity (PrP(C) vs. PrP(Sc)) and safety (antibody-induced template-driven misfolding of PrP(C)). The emphasis of this report is on the steps required to translate DSEs into prion vaccines and subsequent evaluation of the resulting immune responses.

  6. Failure of fallow deer (Dama dama) to develop chronic wasting disease when exposed to a contaminated environment and infected mule deer (Odocoileus hemionus).

    PubMed

    Rhyan, Jack C; Miller, Michael W; Spraker, Terry R; McCollum, Matt; Nol, Pauline; Wolfe, Lisa L; Davis, Tracy R; Creekmore, Lynn; O'Rourke, Katherine I

    2011-07-01

    We monitored a herd of fallow deer (Dama dama) for evidence of prion infection for 7 yr by periodic postmortem examination of animals from the herd. The fallow deer were exposed to the chronic wasting disease (CWD) agent from mule deer by living in a paddock considered contaminated with infectivity from its history of housing CWD infected deer and, after the first year of the study, by comingling with infected mule deer (Odocoileus hemionus). At least 8 of 12 mule deer serving as sentinels for prion transmission and 25 additional mule deer serving as sources of infectivity developed clinical CWD or were otherwise confirmed to be infected with CWD via lymphoid tissue immunohistochemistry (IHC). In contrast, none of the 41 exposed fallow deer showed clinical signs suggestive of CWD, IHC staining of disease-associated prion in lymphoid or brain tissues, or evidence of spongiform degeneration in sections of brain stem at the level of the obex when sampled 18 mo to 7 yr after entering the mule deer paddock. The absence of clinical disease and negative IHC results in fallow deer housed in the same contaminated paddock for up to 7 yr and almost continuously exposed to CWD-infected mule deer for up to 6 yr suggests a species barrier or other form of resistance preventing fallow deer infection by the CWD agent or delaying progression of the disease in this species.

  7. Idiopathic Brainstem Neuronal Chromatolysis (IBNC): a novel prion protein related disorder of cattle?

    PubMed Central

    Jeffrey, Martin; Perez, Belinda Baquero; Martin, Stuart; Terry, Linda; González, Lorenzo

    2008-01-01

    Background The epidemic form of Bovine Spongiform Encephalopathy (BSE) is generally considered to have been caused by a single prion strain but at least two strain variants of cattle prion disorders have recently been recognized. An additional neurodegenerative condition, idiopathic brainstem neuronal chromatolysis and hippocampal sclerosis (IBNC), a rare neurological disease of adult cattle, was also recognised in a sub-set of cattle submitted under the BSE Orders in which lesions of BSE were absent. Between the years of 1988 and 1991 IBNC occurred in Scotland with an incidence of 7 cases per 100,000 beef suckler cows over the age of 6 years. Results When the brains of 15 IBNC cases were each tested by immunohistochemistry, all showed abnormal labelling for prion protein (PrP). Immunohistological labelling for PrP was also present in the retina of a single case available for examination. The pattern of PrP labelling in brain is distinct from that seen in other ruminant prion diseases and is absent from brains with other inflammatory conditions and from normal control brains. Brains of IBNC cattle do not reveal abnormal PrP isoforms when tested by the commercial BioRad or Idexx test kits and do not reveal PrPres when tested by Western blotting using stringent proteinase digestion methods. However, some weakly protease resistant isoforms of PrP may be detected when tissues are examined using mild proteinase digestion techniques. Conclusion The study shows that a distinctive neurological disorder of cattle, which has some clinical similarities to BSE, is associated with abnormal PrP labelling in brain but the pathology and biochemistry of IBNC are distinct from BSE. The study is important either because it raises the possibility of a significant increase in the scope of prion disease or because it demonstrates that widespread and consistent PrP alterations may not be confined to prion diseases. Further studies, including transmission experiments, are needed to

  8. Degradation of the Disease-Associated Prion Protein by a Serine Protease from Lichens

    PubMed Central

    Johnson, Christopher J.; Bennett, James P.; Biro, Steven M.; Duque-Velasquez, Juan Camilo; Rodriguez, Cynthia M.; Bessen, Richard A.; Rocke, Tonie E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted. PMID:21589935

  9. Degradation of the disease-associated prion protein by a serine protease from lichens.

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  10. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, C.J.; Bennett, J.P.; Biro, S.M.; Duque-Velasquez, J.C.; Rodriguez, C.M.; Bessen, R.A.; Rocke, T.E.; Bartz, Jason C.

    2011-01-01

    The disease-associated prion protein (PrP(TSE)), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrP(TSE) inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrP(TSE). Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrP(TSE)-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrP(TSE) and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  11. Degradation of the disease-associated prion protein by a serine protease from lichens

    USGS Publications Warehouse

    Johnson, Christopher J.; Bennett, James P.; Biro, S.M.; Duque-Velasquez, J. C.; Rodriguez, Cynthia M.; Bessen, R.A.; Rocke, Tonie E.

    2011-01-01

    The disease-associated prion protein (PrPTSE), the probable etiological agent of the transmissible spongiform encephalopathies (TSEs), is resistant to degradation and can persist in the environment. Lichens, mutualistic symbioses containing fungi, algae, bacteria and occasionally cyanobacteria, are ubiquitous in the environment and have evolved unique biological activities allowing their survival in challenging ecological niches. We investigated PrPTSE inactivation by lichens and found acetone extracts of three lichen species (Parmelia sulcata, Cladonia rangiferina and Lobaria pulmonaria) have the ability to degrade prion protein (PrP) from TSE-infected hamsters, mice and deer. Immunoblots measuring PrP levels and protein misfolding cyclic amplification indicated at least two logs of reductions in PrPTSE. Degradative activity was not found in closely related lichen species or in algae or a cyanobacterium that inhabit lichens. Degradation was blocked by Pefabloc SC, a serine protease inhibitor, but not inhibitors of other proteases or enzymes. Additionally, we found that PrP levels in PrPTSE-enriched preps or infected brain homogenates are also reduced following exposure to freshly-collected P. sulcata or an aqueous extract of the lichen. Our findings indicate that these lichen extracts efficiently degrade PrPTSE and suggest that some lichens could have potential to inactivate TSE infectivity on the landscape or be a source for agents to degrade prions. Further work to clone and characterize the protease, assess its effect on TSE infectivity and determine which organism or organisms present in lichens produce or influence the protease activity is warranted.

  12. Humic substances interfere with detection of pathogenic prion protein

    USGS Publications Warehouse

    Smith, Christen B.; Booth, Clarissa J.; Wadzinski, Tyler J.; Legname, Giuseppe; Chappell, Rick; Johnson, Christopher J.; Pedersen, Joel A.

    2014-01-01

    Studies examining the persistence of prions (the etiological agent of transmissible spongiform encephalopathies) in soil require accurate quantification of pathogenic prion protein (PrPTSE) extracted from or in the presence of soil particles. Here, we demonstrate that natural organic matter (NOM) in soil impacts PrPTSE detection by immunoblotting. Methods commonly used to extract PrPTSE from soils release substantial amounts of NOM, and NOM inhibited PrPTSE immunoblot signal. The degree of immunoblot interference increased with increasing NOM concentration and decreasing NOM polarity. Humic substances affected immunoblot detection of prion protein from both deer and hamsters. We also establish that after interaction with humic acid, PrPTSE remains infectious to hamsters inoculated intracerebrally, and humic acid appeared to slow disease progression. These results provide evidence for interactions between PrPTSE and humic substances that influence both accurate measurement of PrPTSE in soil and disease transmission.

  13. Amino acid sequence of the Amur tiger prion protein.

    PubMed

    Wu, Changde; Pang, Wanyong; Zhao, Deming

    2006-10-01

    Prion diseases are fatal neurodegenerative disorders in human and animal associated with conformational conversion of a cellular prion protein (PrP(C)) into the pathologic isoform (PrP(Sc)). Various data indicate that the polymorphisms within the open reading frame (ORF) of PrP are associated with the susceptibility and control the species barrier in prion diseases. In the present study, partial Prnp from 25 Amur tigers (tPrnp) were cloned and screened for polymorphisms. Four single nucleotide polymorphisms (T423C, A501G, C511A, A610G) were found; the C511A and A610G nucleotide substitutions resulted in the amino acid changes Lysine171Glutamine and Alanine204Threoine, respectively. The tPrnp amino acid sequence is similar to house cat (Felis catus ) and sheep, but differs significantly from other two cat Prnp sequences that were previously deposited in GenBank.

  14. Cellular mechanisms responsible for cell-to-cell spreading of prions.

    PubMed

    Vilette, Didier; Courte, Josquin; Peyrin, Jean Michel; Coudert, Laurent; Schaeffer, Laurent; Andréoletti, Olivier; Leblanc, Pascal

    2018-05-14

    Prions are infectious agents that cause fatal neurodegenerative diseases. Current evidence indicates that they are essentially composed of an abnormally folded protein (PrP Sc ). These abnormal aggregated PrP Sc species multiply in infected cells by recruiting and converting the host PrP C protein into new PrP Sc . How prions move from cell to cell and progressively spread across the infected tissue is of crucial importance and may provide experimental opportunity to delay the progression of the disease. In infected cells, different mechanisms have been identified, including release of infectious extracellular vesicles and intercellular transfer of PrP Sc -containing organelles through tunneling nanotubes. These findings should allow manipulation of the intracellular trafficking events targeting PrP Sc in these particular subcellular compartments to experimentally address the relative contribution of these mechanisms to in vivo prion pathogenesis. In addition, such information may prompt further experimental strategies to decipher the causal roles of protein misfolding and aggregation in other human neurodegenerative diseases.

  15. Molecular Basis for Transmission Barrier and Interference between Closely Related Prion Proteins in Yeast*

    PubMed Central

    Afanasieva, Evgenia G.; Kushnirov, Vitaly V.; Tuite, Mick F.; Ter-Avanesyan, Michael D.

    2011-01-01

    Replicating amyloids, called prions, are responsible for transmissible neurodegenerative diseases in mammals and some heritable phenotypes in fungi. The transmission of prions between species is usually inhibited, being highly sensitive to small differences in amino acid sequence of the prion-forming proteins. To understand the molecular basis of this prion interspecies barrier, we studied the transmission of the [PSI+] prion state from Sup35 of Saccharomyces cerevisiae to hybrid Sup35 proteins with prion-forming domains from four other closely related Saccharomyces species. Whereas all the hybrid Sup35 proteins could adopt a prion form in S. cerevisiae, they could not readily acquire the prion form from the [PSI+] prion of S. cerevisiae. Expression of the hybrid Sup35 proteins in S. cerevisiae [PSI+] cells often resulted in frequent loss of the native [PSI+] prion. Furthermore, all hybrid Sup35 proteins showed different patterns of interaction with the native [PSI+] prion in terms of co-polymerization, acquisition of the prion state, and induced prion loss, all of which were also dependent on the [PSI+] variant. The observed loss of S. cerevisiae [PSI+] can be related to inhibition of prion polymerization of S. cerevisiae Sup35 and formation of a non-heritable form of amyloid. We have therefore identified two distinct molecular origins of prion transmission barriers between closely sequence-related prion proteins: first, the inability of heterologous proteins to co-aggregate with host prion polymers, and second, acquisition by these proteins of a non-heritable amyloid fold. PMID:21454674

  16. The Endoplasmic Reticulum Chaperone GRP78/BiP Modulates Prion Propagation in vitro and in vivo.

    PubMed

    Park, Kyung-Won; Eun Kim, Gyoung; Morales, Rodrigo; Moda, Fabio; Moreno-Gonzalez, Ines; Concha-Marambio, Luis; Lee, Amy S; Hetz, Claudio; Soto, Claudio

    2017-03-23

    Prion diseases are fatal neurodegenerative disorders affecting several mammalian species, characterized by the accumulation of the misfolded form of the prion protein, which is followed by the induction of endoplasmic reticulum (ER) stress and the activation of the unfolded protein response (UPR). GRP78, also called BiP, is a master regulator of the UPR, reducing ER stress levels and apoptosis due to an enhancement of the cellular folding capacity. Here, we studied the role of GRP78 in prion diseases using several in vivo and in vitro approaches. Our results show that a reduction in the expression of this molecular chaperone accelerates prion pathogenesis in vivo. In addition, we observed that prion replication in cell culture was inversely related to the levels of expression of GRP78 and that both proteins interact in the cellular context. Finally, incubation of PrP Sc with recombinant GRP78 led to the dose-dependent reduction of protease-resistant PrP Sc in vitro. Our results uncover a novel role of GRP78 in reducing prion pathogenesis, suggesting that modulating its levels/activity may offer a novel opportunity for designing therapeutic approaches for these diseases. These findings may also have implications for other diseases involving the accumulation of misfolded proteins.

  17. Prion Strain Differences in Accumulation of PrPSc on Neurons and Glia Are Associated with Similar Expression Profiles of Neuroinflammatory Genes: Comparison of Three Prion Strains

    PubMed Central

    Carroll, James A.; Striebel, James F.; Rangel, Alejandra; Woods, Tyson; Phillips, Katie; Peterson, Karin E.; Race, Brent; Chesebro, Bruce

    2016-01-01

    Misfolding and aggregation of host proteins are important features of the pathogenesis of neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia and prion diseases. In all these diseases, the misfolded protein increases in amount by a mechanism involving seeded polymerization. In prion diseases, host prion protein is misfolded to form a pathogenic protease-resistant form, PrPSc, which accumulates in neurons, astroglia and microglia in the CNS. Here using dual-staining immunohistochemistry, we compared the cell specificity of PrPSc accumulation at early preclinical times post-infection using three mouse scrapie strains that differ in brain regional pathology. PrPSc from each strain had a different pattern of cell specificity. Strain 22L was mainly associated with astroglia, whereas strain ME7 was mainly associated with neurons and neuropil. In thalamus and cortex, strain RML was similar to 22L, but in substantia nigra, RML was similar to ME7. Expression of 90 genes involved in neuroinflammation was studied quantitatively using mRNA from thalamus at preclinical times. Surprisingly, despite the cellular differences in PrPSc accumulation, the pattern of upregulated genes was similar for all three strains, and the small differences observed correlated with variations in the early disease tempo. Gene upregulation correlated with activation of both astroglia and microglia detected in early disease prior to vacuolar pathology or clinical signs. Interestingly, the profile of upregulated genes in scrapie differed markedly from that seen in two acute viral CNS diseases (LaCrosse virus and BE polytropic Friend retrovirus) that had reactive gliosis at levels similar to our prion-infected mice. PMID:27046083

  18. Rebels with a cause: molecular features and physiological consequences of yeast prions.

    PubMed

    Garcia, David M; Jarosz, Daniel F

    2014-02-01

    Prions are proteins that convert between structurally and functionally distinct states, at least one of which is self-perpetuating. The prion fold templates the conversion of native protein, altering its structure and function, and thus serves as a protein-based element of inheritance. Molecular chaperones ensure that these prion aggregates are divided and faithfully passed from mother cells to their daughters. Prions were originally identified as the cause of several rare neurodegenerative diseases in mammals, but the last decade has brought great progress in understanding their broad importance in biology and evolution. Most prion proteins regulate information flow in signaling networks, or otherwise affect gene expression. Consequently, switching into and out of prion states creates diverse new traits – heritable changes based on protein structure rather than nucleic acid. Despite intense study of the molecular mechanisms of this paradigm-shifting, epigenetic mode of inheritance, many key questions remain. Recent studies in yeast that support the view that prions are common, often beneficial elements of inheritance that link environmental stress to the appearance of new traits.

  19. Lack of prion transmission by sexual or parental routes in experimentally infected hamsters.

    PubMed

    Morales, Rodrigo; Pritzkow, Sandra; Hu, Ping Ping; Duran-Aniotz, Claudia; Soto, Claudio

    2013-01-01

    Prion diseases are a group of neurodegenerative disorders affecting humans as well as captive and wild animals. The mechanisms and routes governing the natural spread of prions are not completely understood and several hypotheses have been proposed. In this study, we analyzed the effect of gender in prion incubation period, as well as the possibility of prion transmission by sexual and parental contact using 263K infected hamsters as a model. Our results show that males have significantly longer incubation periods compared with females when exposed to the same quantity of infectious material. Importantly, no evidence of sexual or parental prion transmission was found, even 500 d after sexual contact or birth, respectively. Western blotting and PMCA were unable to detect sub-clinical levels of PrP(Sc) in experimental subjects, suggesting a complete absence of prion transmission by these routes. Our results show that sexual and parental transmission of prions does not occur in this model. It remains to be studied whether this conclusion is valid also for other prion strains and species.

  20. The Neutral Sphingomyelinase Pathway Regulates Packaging of the Prion Protein into Exosomes*

    PubMed Central

    Guo, Belinda B.; Bellingham, Shayne A.; Hill, Andrew F.

    2015-01-01

    Prion diseases are a group of transmissible, fatal neurodegenerative disorders associated with the misfolding of the host-encoded prion protein, PrPC, into a disease-associated form, PrPSc. The transmissible prion agent is principally formed of PrPSc itself and is associated with extracellular vesicles known as exosomes. Exosomes are released from cells both in vitro and in vivo, and have been proposed as a mechanism by which prions spread intercellularly. The biogenesis of exosomes occurs within the endosomal system, through formation of intraluminal vesicles (ILVs), which are subsequently released from cells as exosomes. ILV formation is known to be regulated by the endosomal sorting complexes required for transport (ESCRT) machinery, although an alternative neutral sphingomyelinase (nSMase) pathway has been suggested to also regulate this process. Here, we investigate a role for the nSMase pathway in exosome biogenesis and packaging of PrP into these vesicles. Inhibition of the nSMase pathway using GW4869 revealed a role for the nSMase pathway in both exosome formation and PrP packaging. In agreement, targeted knockdown of nSMase1 and nSMase2 in mouse neurons using lentivirus-mediated RNAi also decreases exosome release, demonstrating the nSMase pathway regulates the biogenesis and release of exosomes. We also demonstrate that PrPC packaging is dependent on nSMase2, whereas the packaging of disease-associated PrPSc into exosomes occurs independently of nSMase2. These findings provide further insight into prion transmission and identify a pathway which directly assists exosome-mediated transmission of prions. PMID:25505180

  1. Yeast prions assembly and propagation

    PubMed Central

    2011-01-01

    Yeast prions are self-perpetuating protein aggregates that are at the origin of heritable and transmissible non-Mendelian phenotypic traits. Among these, [PSI+], [URE3] and [PIN+] are the most well documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Fibril assembly depends on the presence of N- or C-terminal prion domains (PrDs) which are not homologous in sequence but share unusual amino-acid compositions, such as enrichment in polar residues (glutamines and asparagines) or the presence of oligopeptide repeats. Purified PrDs form amyloid fibrils that can convert prion-free cells to the prion state upon transformation. Nonetheless, isolated PrDs and full-length prion proteins have different aggregation, structural and infectious properties. In addition, mutations in the “non-prion” domains (non-PrDs) of Sup35p, Ure2p and Rnq1p were shown to affect their prion properties in vitro and in vivo. Despite these evidences, the implication of the functional non-PrDs in fibril assembly and prion propagation has been mostly overlooked. In this review, we discuss the contribution of non-PrDs to prion assemblies, and the structure-function relationship in prion infectivity in the light of recent findings on Sup35p and Ure2p assembly into infectious fibrils from our laboratory and others. PMID:22052349

  2. Strain conformation controls the specificity of cross-species prion transmission in the yeast model.

    PubMed

    Grizel, Anastasia V; Rubel, Aleksandr A; Chernoff, Yury O

    2016-07-03

    Transmissible self-assembled fibrous cross-β polymer infectious proteins (prions) cause neurodegenerative diseases in mammals and control non-Mendelian heritable traits in yeast. Cross-species prion transmission is frequently impaired, due to sequence differences in prion-forming proteins. Recent studies of prion species barrier on the model of closely related yeast species show that colocalization of divergent proteins is not sufficient for the cross-species prion transmission, and that an identity of specific amino acid sequences and a type of prion conformational variant (strain) play a major role in the control of transmission specificity. In contrast, chemical compounds primarily influence transmission specificity via favoring certain strain conformations, while the species origin of the host cell has only a relatively minor input. Strain alterations may occur during cross-species prion conversion in some combinations. The model is discussed which suggests that different recipient proteins can acquire different spectra of prion strain conformations, which could be either compatible or incompatible with a particular donor strain.

  3. Homogenous photocatalytic decontamination of prion infected stainless steel and titanium surfaces.

    PubMed

    Berberidou, Chrysanthi; Xanthopoulos, Konstantinos; Paspaltsis, Ioannis; Lourbopoulos, Athanasios; Polyzoidou, Eleni; Sklaviadis, Theodoros; Poulios, Ioannis

    2013-01-01

    Prions are notorious for their extraordinary resistance to traditional methods of decontamination, rendering their transmission a public health risk. Iatrogenic Creutzfeldt-Jakob disease (iCJD) via contaminated surgical instruments and medical devices has been verified both experimentally and clinically. Standard methods for prion inactivation by sodium hydroxide or sodium hypochlorite have failed, in some cases, to fully remove prion infectivity, while they are often impractical for routine applications. Prion accumulation in peripheral tissues and indications of human-to-human bloodborne prion transmission, highlight the need for novel, efficient, yet user-friendly methods of prion inactivation. Here we show both in vitro and in vivo that homogenous photocatalytic oxidation, mediated by the photo-Fenton reagent, has the potential to inactivate the pathological prion isoform adsorbed on metal substrates. Photocatalytic oxidation with 224 μg mL(-1) Fe (3+), 500 μg mL(-1) h(-1) H 2O 2, UV-A for 480 min lead to 100% survival in golden Syrian hamsters after intracranial implantation of stainless steel wires infected with the 263K prion strain. Interestingly, photocatalytic treatment of 263K infected titanium wires, under the same experimental conditions, prolonged the survival interval significantly, but failed to eliminate infectivity, a result that we correlate with the increased adsorption of PrP(Sc) on titanium, in comparison to stainless steel. Our findings strongly indicate that our, user--and environmentally--friendly protocol can be safely applied to the decontamination of prion infected stainless steel surfaces.

  4. On the kinetics of infection by pathogenic prion protein molecules

    NASA Astrophysics Data System (ADS)

    Durup, Jean

    1997-03-01

    Literature data on the transmission of spongiform encephalopathies between mammal species point to the importance of methionine residuies in species barriers. This in turn favours the assumption of an oligomerization of identical metastable pathogenic prion protein molecules as the rate-determining step in those diseases. Published experimental data on the analogous case of yeast prion proteins closely agree with the proposed scheme.

  5. Transition-metal prion protein attachment: Competition with copper

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2012-02-01

    Prion protein, PrP, is a protein capable of binding copper ions in multiple modes depending on their concentration. Misfolded PrP is implicated in a group of neurodegenerative diseases, which include ``mad cow disease'' and its human form, variant Creutzfeld-Jacob disease. An increasing amount of evidence suggests that attachment of non-copper metal ions to PrP triggers transformations to abnormal forms similar to those observed in prion diseases. In this work, we use hybrid Kohn-Sham/orbital-free density functional theory simulations to investigate copper replacement by other transition metals that bind to PrP, including zinc, iron and manganese. We consider all known copper binding modes in the N-terminal domain of PrP. Our calculations identify modes most susceptible to copper replacement and reveal metals that can successfully compete with copper for attachment to PrP.

  6. Determining the relative susceptibility of four prion protein genotypes to atypical scrapie

    USDA-ARS?s Scientific Manuscript database

    Atypical scrapie is a sheep prion (PrPSc) disease whose epidemiology is consistent with a sporadic origin and is associated with specific polymorphisms of the normal cellular prion protein (PrPC). We describe a mass spectrometry-based method of detecting and quantifying the polymorphisms of sheep P...

  7. Classical Bovine Spongiform Encephalopathy by Transmission of H-Type Prion in Homologous Prion Protein Context

    PubMed Central

    Andréoletti, Olivier; Lacroux, Caroline; Prieto, Irene; Lorenzo, Patricia; Larska, Magdalena; Baron, Thierry; Espinosa, Juan-Carlos

    2011-01-01

    Bovine spongiform encephalopathy (BSE) and BSE-related disorders have been associated with a single major prion strain. Recently, 2 atypical, presumably sporadic forms of BSE have been associated with 2 distinct prion strains that are characterized mainly by distinct Western blot profiles of abnormal protease-resistant prion protein (PrPres), named high-type (BSE-H) and low-type (BSE-L), that also differed from classical BSE. We characterized 5 atypical BSE-H isolates by analyzing their molecular and neuropathologic properties during transmission in transgenic mice expressing homologous bovine prion protein. Unexpectedly, in several inoculated animals, strain features emerged that were highly similar to those of classical BSE agent. These findings demonstrate the capability of an atypical bovine prion to acquire classical BSE–like properties during propagation in a homologous bovine prion protein context and support the view that the epidemic BSE agent could have originated from such a cattle prion. PMID:21888788

  8. Prion Propagation in Cells Expressing PrP Glycosylation Mutants ▿

    PubMed Central

    Salamat, Muhammad K.; Dron, Michel; Chapuis, Jérôme; Langevin, Christelle; Laude, Hubert

    2011-01-01

    Infection by prions involves conversion of a host-encoded cell surface protein (PrPC) to a disease-related isoform (PrPSc). PrPC carries two glycosylation sites variably occupied by complex N-glycans, which have been suggested by previous studies to influence the susceptibility to these diseases and to determine characteristics of prion strains. We used the Rov cell system, which is susceptible to sheep prions, to generate a series of PrPC glycosylation mutants with mutations at one or both attachment sites. We examined their subcellular trafficking and ability to convert into PrPSc and to sustain stable prion propagation in the absence of wild-type PrP. The susceptibility to infection of mutants monoglycosylated at either site differed dramatically depending on the amino acid substitution. Aglycosylated double mutants showed overaccumulation in the Golgi compartment and failed to be infected. Introduction of an ectopic glycosylation site near the N terminus fully restored cell surface expression of PrP but not convertibility into PrPSc, while PrPC with three glycosylation sites conferred cell permissiveness to infection similarly to the wild type. In contrast, predominantly aglycosylated molecules with nonmutated N-glycosylation sequons, produced in cells expressing glycosylphosphatidylinositol-anchorless PrPC, were able to form infectious PrPSc. Together our findings suggest that glycosylation is important for efficient trafficking of anchored PrP to the cell surface and sustained prion propagation. However, properly trafficked glycosylation mutants were not necessarily prone to conversion, thus making it difficult in such studies to discern whether the amino acid changes or glycan chain removal most influences the permissiveness to prion infection. PMID:21248032

  9. Dominant-Negative Inhibition of Prion Formation Diminished by Deletion Mutagenesis of the Prion Protein

    PubMed Central

    Zulianello, Laurence; Kaneko, Kiyotoshi; Scott, Michael; Erpel, Susanne; Han, Dong; Cohen, Fred E.; Prusiner, Stanley B.

    2000-01-01

    Polymorphic basic residues near the C terminus of the prion protein (PrP) in humans and sheep appear to protect against prion disease. In heterozygotes, inhibition of prion formation appears to be dominant negative and has been simulated in cultured cells persistently infected with scrapie prions. The results of nuclear magnetic resonance and mutagenesis studies indicate that specific substitutions at the C-terminal residues 167, 171, 214, and 218 of PrPC act as dominant-negative, inhibitors of PrPSc formation (K. Kaneko et al., Proc. Natl. Acad. Sci. USA 94:10069–10074, 1997). Trafficking of substituted PrPC to caveaola-like domains or rafts by the glycolipid anchor was required for the dominant-negative phenotype; interestingly, amino acid replacements at multiple sites were less effective than single-residue substitutions. To elucidate which domains of PrPC are responsible for dominant-negative inhibition of PrPSc formation, we analyzed whether N-terminally truncated PrP(Q218K) molecules exhibited dominant-negative effects in the conversion of full-length PrPC to PrPSc. We found that the C-terminal domain of PrP is not sufficient to impede the conversion of the full-length PrPC molecule and that N-terminally truncated molecules (with residues 23 to 88 and 23 to 120 deleted) have reduced dominant-negative activity. Whether the N-terminal region of PrP acts by stabilizing the C-terminal domain of the molecule or by modulating the binding of PrPC to an auxiliary molecule that participates in PrPSc formation remains to be established. PMID:10756050

  10. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes.

    PubMed

    Guo, Belinda B; Bellingham, Shayne A; Hill, Andrew F

    2015-02-06

    Prion diseases are a group of transmissible, fatal neurodegenerative disorders associated with the misfolding of the host-encoded prion protein, PrP(C), into a disease-associated form, PrP(Sc). The transmissible prion agent is principally formed of PrP(Sc) itself and is associated with extracellular vesicles known as exosomes. Exosomes are released from cells both in vitro and in vivo, and have been proposed as a mechanism by which prions spread intercellularly. The biogenesis of exosomes occurs within the endosomal system, through formation of intraluminal vesicles (ILVs), which are subsequently released from cells as exosomes. ILV formation is known to be regulated by the endosomal sorting complexes required for transport (ESCRT) machinery, although an alternative neutral sphingomyelinase (nSMase) pathway has been suggested to also regulate this process. Here, we investigate a role for the nSMase pathway in exosome biogenesis and packaging of PrP into these vesicles. Inhibition of the nSMase pathway using GW4869 revealed a role for the nSMase pathway in both exosome formation and PrP packaging. In agreement, targeted knockdown of nSMase1 and nSMase2 in mouse neurons using lentivirus-mediated RNAi also decreases exosome release, demonstrating the nSMase pathway regulates the biogenesis and release of exosomes. We also demonstrate that PrP(C) packaging is dependent on nSMase2, whereas the packaging of disease-associated PrP(Sc) into exosomes occurs independently of nSMase2. These findings provide further insight into prion transmission and identify a pathway which directly assists exosome-mediated transmission of prions. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Spatial epidemiology of chronic wasting disease in Wisconsin white-tailed deer

    USGS Publications Warehouse

    Joly, D.O.; Samuel, M.D.; Langenberg, J.A.; Blanchong, Julie A.; Batha, C.A.; Rolley, R.E.; Keane, D.P.; Ribic, C.A.

    2006-01-01

    Chronic wasting disease (CWD) is a fatal, emerging disease of cervids associated with transmissible protease-resistant prion proteins. The potential for CWD to cause dramatic declines in deer and elk populations and perceived human health risks associated with consuming CWD-contaminated venison have led wildlife agencies to embark on extensive CWD control programs, typically involving culling to reduce deer populations. We characterized the spatial distribution of CWD in white-tailed deer (Odocoileus virginianus) in Wisconsin to facilitate CWD management. We found that CWD prevalence declined with distance from a central location, was locally correlated at a scale of 3.6 km, and was correlated with deer habitat abundance. The latter result is consistent with patterns expected for a positive relationship between density and prevalence of CWD. We recommend management activities focused on culling in geographic areas with high prevalence to have the greatest probability of removing infected individuals. Further research is needed to elucidate the factors in envolved in CWD spread and infection rates, especially the role of density-dependent transmission. ?? Wildlife Disease Association 2006.

  12. Strategies for identifying new prions in yeast

    PubMed Central

    MacLea, Kyle S

    2011-01-01

    The unexpected discovery of two prions, [URE3] and [PSI+], in Saccharomyces cerevisiae led to questions about how many other proteins could undergo similar prion-based structural conversions. However, [URE3] and [PSI+] were discovered by serendipity in genetic screens. Cataloging the full range of prions in yeast or in other organisms will therefore require more systematic search methods. Taking advantage of some of the unique features of prions, various researchers have developed bioinformatic and experimental methods for identifying novel prion proteins. These methods have generated long lists of prion candidates. The systematic testing of some of these prion candidates has led to notable successes; however, even in yeast, where rapid growth rate and ease of genetic manipulation aid in testing for prion activity, such candidate testing is laborious. Development of better methods to winnow the field of prion candidates will greatly aid in the discovery of new prions, both in yeast and in other organisms, and help us to better understand the role of prions in biology. PMID:22052351

  13. MRI and MRS alterations in the preclinical phase of murine prion disease: association with neuropathological and behavioural changes.

    PubMed

    Broom, Kerry A; Anthony, Daniel C; Lowe, John P; Griffin, Julian L; Scott, Helen; Blamire, Andrew M; Styles, Peter; Perry, V Hugh; Sibson, Nicola R

    2007-06-01

    Prion diseases are fatal chronic neurodegenerative diseases. Previous qualitative magnetic resonance imaging (MRI) and spectroscopy (MRS) studies report conflicting results in the symptomatic stages of the disease, but little work has been carried out during the earlier stages of the disease. Here we have used the murine ME7 model of prion disease to quantitatively investigate MRI and MRS changes during the period prior to the onset of overt clinical signs (20+ weeks) and have correlated these with pathological and behavioural abnormalities. Using in vivo MRI, at the later stages of the preclinical period (18 weeks) the diffusion of tissue water was significantly reduced, coinciding with significant microglial activation and behavioural hyperactivity. Using in vivo MRS, we found early (12 weeks) decreases in the ratio of N-acetyl aspartate to both choline (NAA/Cho) and creatine (NAA/Cr) in the thalamus and hippocampus, which were associated with early behavioural deficits. Ex vivo MRS of brain extracts confirmed and extended these findings, showing early (8-12 weeks) decreases in both the neuronal metabolites NAA and glutamate, and the metabolic metabolites lactate and glucose. Increases in the glial metabolite myo-inositol were observed at later stages when microglial and astrocyte activation is substantial. These changes in MRI and MRS signals, which precede overt clinical signs of disease, could provide insights into the pathogenesis of this disease and may enable early detection of pathology.

  14. Inactivation of prion proteins via covalent grafting with methoxypoly(ethylene glycol).

    PubMed

    Scott, Mark D

    2006-01-01

    Transmissible spongiform encephalopathies (TSE) such as bovine spongiform encephalitis (BSE), Creutzfeld-Jakob disease (CJD) as well as other proteinaceous infectious particles (prions) mediated diseases have emerged as a significant concern in transfusion medicine. This concern is derived from both the disease causing potential of prion contaminated blood products but also due to tremendous impact of the active deferral of current and potential blood donors due to their extended stays in BSE prevalent countries (e.g., the United Kingdom). To date, there are no effective means by which infectious prion proteins can be inactivated in cellular and acellular blood products. Based on current work on the covalent grafting of methoxypoly(ethylene glycol) [mPEG] to proteins, viruses, and anuclear, and nucleated cells, it is hypothesized that the conversion of the normal PrP protein to its mutant conformation can be prevented by the covalent grafting of mPEG to the mutant protein. Inactivation of infective protein particles (prions) in both cellular blood products as well as cell free solutions (e.g., clotting factors) could be of medical/commercial value. It is hypothesized that consequent to the covalent modification of donor-derived prions with mPEG the requisite nucleation of the normal and mutant PrP proteins is inhibited due to the increased solubility of the modified mutant PrP and that the conformational conversion arising from the mutant PrP is prevented due to obscuration of protein charge by the heavily hydrated and neutral mPEG polymers, as well as by direct steric hindrance of the interaction due to the highly mobile polymer graft.

  15. Amplified Detection of Prions and Other Amyloids by RT-QuIC in Diagnostics and the Evaluation of Therapeutics and Disinfectants.

    PubMed

    Caughey, Byron; Orru, Christina D; Groveman, Bradley R; Hughson, Andrew G; Manca, Matteo; Raymond, Lynne D; Raymond, Gregory J; Race, Brent; Saijo, Eri; Kraus, Allison

    2017-01-01

    Among the most sensitive, specific and practical of methods for detecting prions are the real-time quaking-induced conversion (RT-QuIC) assays. These assays exploit the fundamental self-propagating activity of prions to amplify the presence of prion seeds by as much as a trillion-fold. The reactions can detect most of the known mammalian prion diseases, often with sensitivities greater than those of animal bioassays. RT-QuIC assays are performed in multiwell plates with fluorescence detection and have now reached the sensitivity and practicality required for routine prion disease diagnostics. Some key strains of prions within particular host species, e.g., humans, cattle, and sheep, can be discriminated by comparison of RT-QuIC responses with different recombinant prion protein substrates. The most thoroughly validated diagnostic application of RT-QuIC is in the diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) using cerebrospinal fluid. Diagnostic sensitivities as high as 96% can be achieved in less than 24h with specificities of 98%-100%. The ability, if needed, to also test nasal swab samples can increase the RT-QuIC sensitivity for sCJD to virtually 100%. In addition to diagnostic applications, RT-QuIC has also been used in the testing of prion disinfectants and potential therapeutics. Mechanistically related assays are also now being developed for other protein misfolding diseases. © 2017 Elsevier Inc. All rights reserved.

  16. Discovery of Novel Anti-prion Compounds Using In Silico and In Vitro Approaches

    PubMed Central

    Hyeon, Jae Wook; Choi, Jiwon; Kim, Su Yeon; Govindaraj, Rajiv Gandhi; Jam Hwang, Kyu; Lee, Yeong Seon; An, Seong Soo A.; Lee, Myung Koo; Joung, Jong Young; No, Kyoung Tai; Lee, Jeongmin

    2015-01-01

    Prion diseases are associated with the conformational conversion of the physiological form of cellular prion protein (PrPC) to the pathogenic form, PrPSc. Compounds that inhibit this process by blocking conversion to the PrPSc could provide useful anti-prion therapies. However, no suitable drugs have been identified to date. To identify novel anti-prion compounds, we developed a combined structure- and ligand-based virtual screening system in silico. Virtual screening of a 700,000-compound database, followed by cluster analysis, identified 37 compounds with strong interactions with essential hotspot PrP residues identified in a previous study of PrPC interaction with a known anti-prion compound (GN8). These compounds were tested in vitro using a multimer detection system, cell-based assays, and surface plasmon resonance. Some compounds effectively reduced PrPSc levels and one of these compounds also showed a high binding affinity for PrPC. These results provide a promising starting point for the development of anti-prion compounds. PMID:26449325

  17. Quantitating PrP polymorphisms present in prions from heterozygous scrapie-infected sheep

    USDA-ARS?s Scientific Manuscript database

    Scrapie is a prion (PrPSc) disease of sheep. The incubation period of sheep scrapie is strongly influenced by polymorphisms at positions 136, 154, and 171 of a sheep’s normal cellular prion protein (PrPC). Chymotrypsin was used to digest sheep recombinant PrP to identify a set of characteristic pept...

  18. Disinfectants and Prions

    USDA-ARS?s Scientific Manuscript database

    Prions are novel pathogens that are believed to be composed solely of protein. They are capable of converting a normal cellular protein into the infectious isoform and thereby propagating an infection. Prion infections are characterized by a long asymptomatic incubation period followed by a relative...

  19. Biosafety of Prions.

    PubMed

    Bistaffa, Edoardo; Rossi, Martina; De Luca, Chiara M G; Moda, Fabio

    2017-01-01

    Prions are the infectious agents that cause devastating and untreatable disorders known as Transmissible Spongiform Encephalopathies (TSEs). The pathologic events and the infectious nature of these transmissible agents are not completely understood yet. Due to the difficulties in inactivating prions, working with them requires specific recommendations and precautions. Moreover, with the advent of innovative technologies, such as the Protein Misfolding Cyclic Amplification (PMCA) and the Real Time Quaking-Induced Conversion (RT-QuIC), prions could be amplified in vitro and the infectious features of the amplified products need to be carefully assessed. © 2017 Elsevier Inc. All rights reserved.

  20. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    PubMed

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  1. Prion Propagation and Toxicity Occur In Vitro with Two-Phase Kinetics Specific to Strain and Neuronal Type

    PubMed Central

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A.

    2013-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrPSc) of the host-encoded prion protein (PrPC), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrPSc distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau. PMID:23255799

  2. Detection of BSE prions by RT-QuIC in cattle with subclinical BSE

    USDA-ARS?s Scientific Manuscript database

    Bovine spongiform encephalopathy (BSE) belongs to a group of fatal prion diseases that result from the misfolding of the cellular prion protein (PrPC) into a pathogenic form (PrPSc) that accumulates in the brain and some lymphoid tissues. In vitro assays such as serial protein misfolding amplificati...

  3. The effects of glutamine/asparagine content on aggregation and heterologous prion induction by yeast prion-like domains.

    PubMed

    Shattuck, Jenifer E; Waechter, Aubrey C; Ross, Eric D

    2017-07-04

    Prion-like domains are low complexity, intrinsically disordered domains that compositionally resemble yeast prion domains. Many prion-like domains are involved in the formation of either functional or pathogenic protein aggregates. These aggregates range from highly dynamic liquid droplets to highly ordered detergent-insoluble amyloid-like aggregates. To better understand the amino acid sequence features that promote conversion to stable, detergent-insoluble aggregates, we used the prediction algorithm PAPA to identify predicted aggregation-prone prion-like domains with a range of compositions. While almost all of the predicted aggregation-prone domains formed foci when expressed in cells, the ability to form the detergent-insoluble aggregates was highly correlated with glutamine/asparagine (Q/N) content, suggesting that high Q/N content may specifically promote conversion to the amyloid state in vivo. We then used this data set to examine cross-seeding between prion-like proteins. The prion protein Sup35 requires the presence of a second prion, [PIN + ], to efficiently form prions, but this requirement can be circumvented by the expression of various Q/N-rich protein fragments. Interestingly, almost all of the Q/N-rich domains that formed SDS-insoluble aggregates were able to promote prion formation by Sup35, highlighting the highly promiscuous nature of these interactions.

  4. Propagation of prion strains through specific conformers of the prion protein.

    PubMed Central

    Scott, M R; Groth, D; Tatzelt, J; Torchia, M; Tremblay, P; DeArmond, S J; Prusiner, S B

    1997-01-01

    Two prion strains with identical incubation periods in mice exhibited distinct incubation periods and different neuropathological profiles upon serial transmission to transgenic mice expressing chimeric Syrian hamster/mouse (MH2M) prion protein (PrP) genes [Tg(MH2M) mice] and subsequent transmission to Syrian hamsters. After transmission to Syrian hamsters, the Me7 strain was indistinguishable from the previously established Syrian hamster strain Sc237, despite having been derived from an independent ancestral source. This apparent convergence suggests that prion diversity may be limited. The Me7 mouse strain could also be transmitted directly to Syrian hamsters, but when derived in this way, its properties were distinct from those of Me7 passaged through Tg(MH2M) mice. The Me7 strain did not appear permanently altered in either case, since the original incubation period could be restored by effectively reversing the series of passages. Prion diversity enciphered in the conformation of the scrapie isoform of PrP (PrP(Sc)) (G. C. Telling et al., Science 274:2079-2082, 1996) seems to be limited by the sequence of the PrP substrates serially converted into PrP(Sc), while prions are propagated through interactions between the cellular and scrapie isoforms of PrP. PMID:9371560

  5. Disease-associated protein seeding suggests a dissociation between misfolded protein accumulation and neurodegeneration in prion disease

    PubMed Central

    Alibhai, James; Diack, Abigail; Manson, Jean

    2017-01-01

    ABSTRACT Chronic neurodegenerative diseases, such as prion diseases or Alzheimer's disease, are associated with progressive accumulation of host proteins which misfold and aggregate. Neurodegeneration is restricted to specific neuronal populations which show clear accumulation of misfolded proteins, whilst neighbouring neurons remain unaffected. Such data raise interesting questions about the vulnerability of specific neuronal populations to neurodegeneration and much research has concentrated only on the mechanisms of neurodegeneration in afflicted neuronal populations. An alternative, undervalued and almost completely unstudied question however is how and why neuronal populations are resilient to neurodegeneration. One potential answer is unaffected regions do not accumulate misfolded proteins, thus mechanisms of neurodegeneration do not become activated. In this perspectives, we discuss novel data from our laboratories which demonstrate that misfolded proteins do accumulate in regions of the brain which do not show evidence of neurodegeneration and further evidence that microglial responses may define the severity of neurodegeneration. PMID:29023184

  6. The complexity and implications of yeast prion domains

    PubMed Central

    2011-01-01

    Prions are infectious proteins with altered conformations converted from otherwise normal host proteins. While there is only one known mammalian prion protein, PrP, a handful of prion proteins have been identified in the yeast Saccharomyces cerevisiae. Yeast prion proteins usually have a defined region called prion domain (PrD) essential for prion properties, which are typically rich in glutamine (Q) and asparagine (N). Despite sharing several common features, individual yeast PrDs are generally intricate and divergent in their compositional characteristics, which potentially implicates their prion phenotypes, such as prion-mediated transcriptional regulations. PMID:22156731

  7. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment

    PubMed Central

    Zhou, Minghai; Ottenberg, Gregory; Sferrazza, Gian Franco; Hubbs, Christopher; Fallahi, Mohammad; Rumbaugh, Gavin; Brantley, Alicia F.

    2015-01-01

    The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer’s, Parkinson’s and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD+) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD+ followed by decreased ATP production, and are completely rescued by treatment with NAD+ or its precursor nicotinamide because of restoration of physiological NAD+ levels. Toxic prion protein-induced NAD+ depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD+. Intranasal NAD+ treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD+ starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD+ replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases. PMID:25678560

  8. Recombinant Prion Protein Refolded with Lipid and RNA Has the Biochemical Hallmarks of a Prion but Lacks In Vivo Infectivity

    PubMed Central

    Timmes, Andrew G.; Moore, Roger A.; Fischer, Elizabeth R.; Priola, Suzette A.

    2013-01-01

    During prion infection, the normal, protease-sensitive conformation of prion protein (PrPC) is converted via seeded polymerization to an abnormal, infectious conformation with greatly increased protease-resistance (PrPSc). In vitro, protein misfolding cyclic amplification (PMCA) uses PrPSc in prion-infected brain homogenates as an initiating seed to convert PrPC and trigger the self-propagation of PrPSc over many cycles of amplification. While PMCA reactions produce high levels of protease-resistant PrP, the infectious titer is often lower than that of brain-derived PrPSc. More recently, PMCA techniques using bacterially derived recombinant PrP (rPrP) in the presence of lipid and RNA but in the absence of any starting PrPSc seed have been used to generate infectious prions that cause disease in wild-type mice with relatively short incubation times. These data suggest that lipid and/or RNA act as cofactors to facilitate the de novo formation of high levels of prion infectivity. Using rPrP purified by two different techniques, we generated a self-propagating protease-resistant rPrP molecule that, regardless of the amount of RNA and lipid used, had a molecular mass, protease resistance and insolubility similar to that of PrPSc. However, we were unable to detect prion infectivity in any of our reactions using either cell-culture or animal bioassays. These results demonstrate that the ability to self-propagate into a protease-resistant insoluble conformer is not unique to infectious PrP molecules. They suggest that the presence of RNA and lipid cofactors may facilitate the spontaneous refolding of PrP into an infectious form while also allowing the de novo formation of self-propagating, but non-infectious, rPrP-res. PMID:23936256

  9. Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection.

    PubMed

    Harris, Julia M; Nguyen, Phil P; Patel, Milan J; Sporn, Zachary A; Hines, Justin K

    2014-07-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have

  10. Functional Diversification of Hsp40: Distinct J-Protein Functional Requirements for Two Prions Allow for Chaperone-Dependent Prion Selection

    PubMed Central

    Patel, Milan J.; Sporn, Zachary A.; Hines, Justin K.

    2014-01-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or ‘strains’. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI +] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI +] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ +] prion propagation. In contrast, weak [PSI +] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ +] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI +]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI +]/[RNQ +] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI +] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion

  11. Celecoxib Inhibits Prion Protein 90-231-Mediated Pro-inflammatory Responses in Microglial Cells.

    PubMed

    Villa, Valentina; Thellung, Stefano; Corsaro, Alessandro; Novelli, Federica; Tasso, Bruno; Colucci-D'Amato, Luca; Gatta, Elena; Tonelli, Michele; Florio, Tullio

    2016-01-01

    Activation of microglia is a central event in the atypical inflammatory response occurring during prion encephalopathies. We report that the prion protein fragment encompassing amino acids 90-231 (PrP90-231), a model of the neurotoxic activity of the pathogenic prion protein (PrP(Sc)), causes activation of both primary microglia cultures and N9 microglial cells in vitro. This effect was characterized by cell proliferation arrest and induction of a secretory phenotype, releasing prostaglandin E2 (PGE2) and nitric oxide (NO). Conditioned medium from PrP90-231-treated microglia induced in vitro cytotoxicity of A1 mesencephalic neurons, supporting the notion that soluble mediators released by activated microglia contributes to the neurodegeneration during prion diseases. The neuroinflammatory role of COX activity, and its potential targeting for anti-prion therapies, was tested measuring the effects of ketoprofen and celecoxib (preferential inhibitors of COX1 and COX2, respectively) on PrP90-231-induced microglial activation. Celecoxib, but not ketoprofen significantly reverted the growth arrest as well as NO and PGE2 secretion induced by PrP90-231, indicating that PrP90-231 pro-inflammatory response in microglia is mainly dependent on COX2 activation. Taken together, these data outline the importance of microglia in the neurotoxicity occurring during prion diseases and highlight the potentiality of COX2-selective inhibitors to revert microglia as adjunctive pharmacological approach to contrast the neuroinflammation-dependent neurotoxicity.

  12. Covalent surface modification of prions: a mass spectrometry-based means of detecting distinctive structural features of prion strains

    USDA-ARS?s Scientific Manuscript database

    Prions (PrPSc) are molecular pathogens that are able to convert the isosequential normal cellular prion protein (PrPC) into a prion. The only demonstrated differences between PrPC and PrPSc is conformational, they are isoforms. A given host can be infected by more than one kind or strain of prion. F...

  13. Combined diffusion imaging and MR spectroscopy in the diagnosis of human prion diseases.

    PubMed

    Galanaud, Damien; Haik, S; Linguraru, M G; Ranjeva, J-P; Faucheux, B; Kaphan, E; Ayache, N; Chiras, J; Cozzone, P; Dormont, D; Brandel, J-P

    2010-08-01

    The physiopathologic bases underlying the signal intensity changes and reduced diffusibility observed in prion diseases (TSEs) are still poorly understood. We evaluated the interest of MRS combined with DWI both as a diagnostic tool and a way to understand the mechanism underlying signal intensity and ADC changes in this setting. We designed a prospective study of multimodal MR imaging in patients with suspected TSEs. Forty-five patients with a suspicion of TSE and 11 age-matched healthy volunteers were included. The MR imaging protocol included T1, FLAIR, and DWI sequences. MRS was performed on the cerebellum, pulvinar, right lenticular nucleus, and frontal cortex. MR images were assessed visually, and ADC values were calculated. Among the 45 suspected cases, 31 fulfilled the criteria for probable or definite TSEs (19 sCJDs, 3 iCJDs, 2 vCJDs, and 7 genetic TSEs); and 14 were classified as AltDs. High signals in the cortex and/or basal ganglia were observed in 26/31 patients with TSEs on FLAIR and 29/31 patients on DWI. In the basal ganglia, high DWI signals corresponded to a decreased ADC. Metabolic alterations, increased mIns, and decreased NAA were observed in all patients with TSEs. ADC values and metabolic changes were not correlated; this finding suggests that neuronal stress (vacuolization), neuronal loss, and astrogliosis do not alone explain the decrease of ADC. MRS combined with other MR imaging is of interest in the diagnosis of TSE and provides useful information for understanding physiopathologic processes underlying prion diseases.

  14. Protein conformation determines the sensibility to high pressure treatment of infectious scrapie prions.

    PubMed

    Heindl, Philipp; García, Avelina Fernández; Butz, Peter; Pfaff, Eberhard; Tauscher, Bernhard

    2006-03-01

    Application of high pressure can be used for gentle pasteurizing of food, minimizing undesirable alterations such as vitamin losses and changes in taste and color. In addition, pressure has become a useful tool for investigating structural changes in proteins. Treatments of proteins with high pressure can reveal conformations that are not obtainable by other physical variables like temperature, since pressure favors structural transitions accompanied with smaller volumes. Here, we discuss both the potential use of high pressure to inactivate infectious TSE material and the application of this thermodynamic parameter for the investigation of prion folding. This review summarizes our findings on the effects of pressure on the structure of native infectious scrapie prions in hamster brain homogenates and on the structure of infectious prion rods isolated from diseased hamsters brains. Native prions were found to be pressure sensitive, whereas isolated prions revealed an extreme pressure-resistant structure. The discussion will be focused on the different pressure behavior of these prion isoforms, which points out differences in the protein structure that have not been taken into consideration before.

  15. Divergent prion strain evolution driven by PrPC expression level in transgenic mice

    PubMed Central

    Le Dur, Annick; Laï, Thanh Lan; Stinnakre, Marie-George; Laisné, Aude; Chenais, Nathalie; Rakotobe, Sabine; Passet, Bruno; Reine, Fabienne; Soulier, Solange; Herzog, Laetitia; Tilly, Gaëlle; Rézaei, Human; Béringue, Vincent; Vilotte, Jean-Luc; Laude, Hubert

    2017-01-01

    Prions induce a fatal neurodegenerative disease in infected host brain based on the refolding and aggregation of the host-encoded prion protein PrPC into PrPSc. Structurally distinct PrPSc conformers can give rise to multiple prion strains. Constrained interactions between PrPC and different PrPSc strains can in turn lead to certain PrPSc (sub)populations being selected for cross-species transmission, or even produce mutation-like events. By contrast, prion strains are generally conserved when transmitted within the same species, or to transgenic mice expressing homologous PrPC. Here, we compare the strain properties of a representative sheep scrapie isolate transmitted to a panel of transgenic mouse lines expressing varying levels of homologous PrPC. While breeding true in mice expressing PrPC at near physiological levels, scrapie prions evolve consistently towards different strain components in mice beyond a certain threshold of PrPC overexpression. Our results support the view that PrPC gene dosage can influence prion evolution on homotypic transmission. PMID:28112164

  16. Incongruity between Prion Conversion and Incubation Period following Coinfection.

    PubMed

    Langenfeld, Katie A; Shikiya, Ronald A; Kincaid, Anthony E; Bartz, Jason C

    2016-06-15

    When multiple prion strains are inoculated into the same host, they can interfere with each other. Strains with long incubation periods can suppress conversion of strains with short incubation periods; however, nothing is known about the conversion of the long-incubation-period strain during strain interference. To investigate this, we inoculated hamsters in the sciatic nerve with long-incubation-period strain 139H prior to superinfection with the short-incubation-period hyper (HY) strain of transmissible mink encephalopathy (TME). First, we found that 139H is transported along the same neuroanatomical tracks as HY TME, adding to the growing body of evidence indicating that PrP(Sc) favors retrograde transneuronal transport. In contrast to a previous report, we found that 139H interferes with HY TME infection, which is likely due to both strains targeting the same population of neurons following sciatic nerve inoculation. Under conditions where 139H blocked HY TME from causing disease, the strain-specific properties of PrP(Sc) corresponded with the strain that caused disease, consistent with our previous findings. In the groups of animals where incubation periods were not altered, we found that the animals contained a mixture of 139H and HY TME PrP(Sc) This finding expands the definition of strain interference to include conditions where PrP(Sc) formation is altered yet disease outcome is unaltered. Overall, these results contradict the premise that prion strains are static entities and instead suggest that strain mixtures are dynamic regardless of incubation period or clinical outcome of disease. Prions can exist as a mixture of strains in naturally infected animals, where they are able to interfere with the conversion of each other and to extend incubation periods. Little is known, however, about the dynamics of strain conversion under conditions where incubation periods are not affected. We found that inoculation of the same animal with two strains can result in

  17. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain.

    PubMed

    Wenborn, Adam; Terry, Cassandra; Gros, Nathalie; Joiner, Susan; D'Castro, Laura; Panico, Silvia; Sells, Jessica; Cronier, Sabrina; Linehan, Jacqueline M; Brandner, Sebastian; Saibil, Helen R; Collinge, John; Wadsworth, Jonathan D F

    2015-05-07

    Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method's effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions.

  18. Mechanism of Unfolding of Human Prion Protein.

    PubMed

    Singh, Reman K; Chamachi, Neharika G; Chakrabarty, Suman; Mukherjee, Arnab

    2017-01-26

    Misfolding and aggregation of prion proteins are associated with several neurodegenerative diseases. Therefore, understanding the mechanism of the misfolding process is of enormous interest in the scientific community. It has been speculated and widely discussed that the native cellular prion protein (PrP C ) form needs to undergo substantial unfolding to a more stable PrP C* state, which may further oligomerize into the toxic scrapie (PrP Sc ) form. Here, we have studied the mechanism of the unfolding of the human prion protein (huPrP) using a set of extensive well-tempered metadynamics simulations. Through multiple microsecond-long metadynamics simulations, we find several possible unfolding pathways. We show that each pathway leads to an unfolded state of lower free energy than the native state. Thus, our study may point to the signature of a PrP C* form that corresponds to a global minimum on the conformational free-energy landscape. Moreover, we find that these global minima states do not involve an increased β-sheet content, as was assumed to be a signature of PrP Sc formation in previous simulation studies. We have further analyzed the origin of metastability of the PrP C form through free-energy surfaces of the chopped helical segments to show that the helices, particularly H2 and H3 of the prion protein, have the tendency to form either a random coil or a β-structure. Therefore, the secondary structural elements of the prion protein are only weakly stabilized by tertiary contacts and solvation forces so that relatively weak perturbations induced by temperature, pressure, pH, and so forth can lead to substantial unfolding with characteristics of intrinsically disordered proteins.

  19. [A case of Creutzfeldt-Jakob in the Mexican north-east and review of current concepts on prion disease].

    PubMed

    Calderón-Garcidueñas, A L; Sagastegui-Rodríguez, J A; Canales-Ibarra, C; Farías-García, R

    2001-01-01

    The case reported here is that of a 50-year-old man from Saltillo, Coahuila, Mexico, who during the previous 15 months developed a demential syndrome and myoclonia. The brain biopsy led to establish a diagnosis of spongiform encephalopathy. The EEG showed periodic sharp wave complexes over the right hemisphere. A review on about prion diseases is included.

  20. Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates.

    PubMed

    Liu, Shu; Hossinger, André; Göbbels, Sarah; Vorberg, Ina M

    2017-03-04

    Extracellular vesicles (EVs) are actively secreted, membrane-bound communication vehicles that exchange biomolecules between cells. EVs also serve as dissemination vehicles for pathogens, including prions, proteinaceous infectious agents that cause transmissible spongiform encephalopathies (TSEs) in mammals. Increasing evidence accumulates that diverse protein aggregates associated with common neurodegenerative diseases are packaged into EVs as well. Vesicle-mediated intercellular transmission of protein aggregates can induce aggregation of homotypic proteins in acceptor cells and might thereby contribute to disease progression. Our knowledge of how protein aggregates are sorted into EVs and how these vesicles adhere to and fuse with target cells is limited. Here we review how TSE prions exploit EVs for intercellular transmission and compare this to the transmission behavior of self-templating cytosolic protein aggregates derived from the yeast prion domain Sup 35 NM. Artificial NM prions are non-toxic to mammalian cell cultures and do not cause loss-of-function phenotypes. Importantly, NM particles are also secreted in association with exosomes that horizontally transmit the prion phenotype to naive bystander cells, a process that can be monitored with high accuracy by automated high throughput confocal microscopy. The high abundance of mammalian proteins with amino acid stretches compositionally similar to yeast prion domains makes the NM cell model an attractive model to study self-templating and dissemination properties of proteins with prion-like domains in the mammalian context.

  1. The Priority position paper: Protecting Europe's food chain from prions.

    PubMed

    Requena, Jesús R; Kristensson, Krister; Korth, Carsten; Zurzolo, Chiara; Simmons, Marion; Aguilar-Calvo, Patricia; Aguzzi, Adriano; Andreoletti, Olivier; Benestad, Sylvie L; Böhm, Reinhard; Brown, Karen; Calgua, Byron; Del Río, José Antonio; Espinosa, Juan Carlos; Girones, Rosina; Godsave, Sue; Hoelzle, Ludwig E; Knittler, Michael R; Kuhn, Franziska; Legname, Giuseppe; Laeven, Paul; Mabbott, Neil; Mitrova, Eva; Müller-Schiffmann, Andreas; Nuvolone, Mario; Peters, Peter J; Raeber, Alex; Roth, Klaus; Schmitz, Matthias; Schroeder, Björn; Sonati, Tiziana; Stitz, Lothar; Taraboulos, Albert; Torres, Juan María; Yan, Zheng-Xin; Zerr, Inga

    2016-05-03

    Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority ( www.prionpriority.eu ) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper ( www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis for

  2. The Priority position paper: Protecting Europe's food chain from prions

    PubMed Central

    Kristensson, Krister; Korth, Carsten; Zurzolo, Chiara; Simmons, Marion; Aguilar-Calvo, Patricia; Aguzzi, Adriano; Andreoletti, Olivier; Benestad, Sylvie L.; Böhm, Reinhard; Brown, Karen; Calgua, Byron; del Río, José Antonio; Espinosa, Juan Carlos; Girones, Rosina; Godsave, Sue; Hoelzle, Ludwig E.; Knittler, Michael R.; Kuhn, Franziska; Legname, Giuseppe; Laeven, Paul; Mitrova, Eva; Müller-Schiffmann, Andreas; Nuvolone, Mario; Peters, Peter J.; Raeber, Alex; Roth, Klaus; Schmitz, Matthias; Schroeder, Björn; Sonati, Tiziana; Stitz, Lothar; Taraboulos, Albert; Torres, Juan María; Yan, Zheng-Xin; Zerr, Inga

    2016-01-01

    ABSTRACT Bovine spongiform encephalopathy (BSE) created a global European crisis in the 1980s and 90s, with very serious health and economic implications. Classical BSE now appears to be under control, to a great extent as a result of a global research effort that identified the sources of prions in meat and bone meal (MBM) and developed new animal-testing tools that guided policy. Priority (www.prionpriority.eu) was a European Union (EU) Framework Program 7 (FP7)-funded project through which 21 European research institutions and small and medium enterprises (SMEs) joined efforts between 2009 and 2014, to conduct coordinated basic and applied research on prions and prion diseases. At the end of the project, the Priority consortium drafted a position paper (www.prionpriority.eu/Priority position paper) with its main conclusions. In the present opinion paper, we summarize these conclusions. With respect to the issue of re-introducing ruminant protein into the feed-chain, our opinion is that sustaining an absolute ban on feeding ruminant protein to ruminants is essential. In particular, the spread and impact of non-classical forms of scrapie and BSE in ruminants is not fully understood and the risks cannot be estimated. Atypical prion agents will probably continue to represent the dominant form of prion diseases in the near future in Europe. Atypical L-type BSE has clear zoonotic potential, as demonstrated in experimental models. Similarly, there are now data indicating that the atypical scrapie agent can cross various species barriers. More epidemiological data from large cohorts are necessary to reach any conclusion on the impact of its transmissibility on public health. Re-evaluations of safety precautions may become necessary depending on the outcome of these studies. Intensified searching for molecular determinants of the species barrier is recommended, since this barrier is key for important policy areas and risk assessment. Understanding the structural basis

  3. A direct assessment of human prion adhered to steel wire using real-time quaking-induced conversion

    PubMed Central

    Mori, Tsuyoshi; Atarashi, Ryuichiro; Furukawa, Kana; Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Nakagaki, Takehiro; Ishibashi, Daisuke; Ichimiya, Kazuko; Hamada, Masahisa; Nakayama, Takehisa; Nishida, Noriyuki

    2016-01-01

    Accidental transmission of prions during neurosurgery has been reported as a consequence of re-using contaminated surgical instruments. Several decontamination methods have been studied using the 263K-hamster prion; however, no studies have directly evaluated human prions. A newly developed in vitro amplification system, designated real-time quaking-induced conversion (RT-QuIC), has allowed the activity of abnormal prion proteins to be assessed within a few days. RT-QuIC using human recombinant prion protein (PrP) showed high sensitivity for prions as the detection limit of our assay was estimated as 0.12 fg of active prions. We applied this method to detect human prion activity on stainless steel wire. When we put wires contaminated with human Creutzfeldt–Jakob disease brain tissue directly into the test tube, typical PrP-amyloid formation was observed within 48 hours, and we could detect the activity of prions at 50% seeding dose on the wire from 102.8 to 105.8 SD50. Using this method, we also confirmed that the seeding activities on the wire were removed following treatment with NaOH. As seeding activity closely correlated with the infectivity of prions using the bioassay, this wire-QuIC assay will be useful for the direct evaluation of decontamination methods for human prions. PMID:27112110

  4. Association mapping of genetic risk factors for chronic wasting disease in wild deer

    USGS Publications Warehouse

    Tomomi Matsumoto,; Samuel, Michael D.; Trent Bollinger,; Margo Pybus,; David W. Coltman,

    2013-01-01

    Chronic wasting disease (CWD) is a fatal transmissible spongiform encephalopathy affecting North American cervids. We assessed the feasibility of association mapping CWD genetic risk factors in wild white-tailed deer (Odocoileus virginianus) and mule deer (Odocoileus hemionus) using a panel of bovine microsatellite markers from three homologous deer linkage groups predicted to contain candidate genes. These markers had a low cross-species amplification rate (27.9%) and showed weak linkage disequilibrium (<1 cM). Markers near the prion protein and the neurofibromin 1 (NF1) genes were suggestively associated with CWD status in white-tailed deer (P = 0.006) and mule deer (P = 0.02), respectively. This is the first time an association between the NF1 region and CWD has been reported.

  5. The Physics of Amyloid Aggregation and Templating in Prions

    NASA Astrophysics Data System (ADS)

    Cox, Daniel

    2012-02-01

    The problem of self-assembled amyloid aggregation of proteins in structures with beta-strands perpendicular to a one dimensional grown axis is interesting at a fundamental level (is this the most generic end state of proteins?), from a biological level (if the self-assembly can be regulated it is of use in contexts like spider silk and bacterial colony formation), for human public health (aggregation unregulated induces diseases like mad cow and Alzheimer's), and for possible materials applications (e.g., in tissue scaffolding). In this presentation, I will review the work of my group in examining the possibility that the left-handed beta helix (LHBH) structure can be the building block of the aggregates of mammalian prion and yeast prion proteins. I will also discuss our efforts to assess the possibility of a novel pH driven structural switch between LHBH and alpha-helical forms in the ordered half of the mammalian prion protein, and now the possibly pH stabilized LHBH structure can template aggregate growth of the disordered half of the protein, identified in numerous experimental studies as most relevant to disease.

  6. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands.

    PubMed

    Magnusson, Karin; Simon, Rozalyn; Sjölander, Daniel; Sigurdson, Christina J; Hammarström, Per; Nilsson, K Peter R

    2014-01-01

    The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies.

  7. Multimodal fluorescence microscopy of prion strain specific PrP deposits stained by thiophene-based amyloid ligands

    PubMed Central

    Magnusson, Karin; Simon, Rozalyn; Sjölander, Daniel; Sigurdson, Christina J; Hammarström, Per; Nilsson, K Peter R

    2014-01-01

    The disease-associated prion protein (PrP) forms aggregates which vary in structural conformation yet share an identical primary sequence. These variations in PrP conformation are believed to manifest in prion strains exhibiting distinctly different periods of disease incubation as well as regionally specific aggregate deposition within the brain. The anionic luminescent conjugated polythiophene (LCP), polythiophene acetic acid (PTAA) has previously been used to distinguish PrP deposits associated with distinct mouse adapted strains via distinct fluorescence emission profiles from the dye. Here, we employed PTAA and 3 structurally related chemically defined luminescent conjugated oligothiophenes (LCOs) to stain brain tissue sections from mice inoculated with 2 distinct prion strains. Our results showed that in addition to emission spectra, excitation, and fluorescence lifetime imaging microscopy (FLIM) can fruitfully be assessed for optical distinction of PrP deposits associated with distinct prion strains. Our findings support the theory that alterations in LCP/LCO fluorescence are due to distinct conformational restriction of the thiophene backbone upon interaction with PrP aggregates associated with distinct prion strains. We foresee that LCP and LCO staining in combination with multimodal fluorescence microscopy might aid in detecting structural differences among discrete protein aggregates and in linking protein conformational features with disease phenotypes for a variety of neurodegenerative proteinopathies. PMID:25495506

  8. Co-existence of Distinct Prion Types Enables Conformational Evolution of Human PrPSc by Competitive Selection*

    PubMed Central

    Haldiman, Tracy; Kim, Chae; Cohen, Yvonne; Chen, Wei; Blevins, Janis; Qing, Liuting; Cohen, Mark L.; Langeveld, Jan; Telling, Glenn C.; Kong, Qingzhong; Safar, Jiri G.

    2013-01-01

    The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrPSc). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrPSc particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrPSc particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrPC substrate, the dominant PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrPSc is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrPSc conformers. PMID:23974118

  9. The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy.

    PubMed

    Vázquez-Fernández, Ester; Vos, Matthijn R; Afanasyev, Pavel; Cebey, Lino; Sevillano, Alejandro M; Vidal, Enric; Rosa, Isaac; Renault, Ludovic; Ramos, Adriana; Peters, Peter J; Fernández, José Jesús; van Heel, Marin; Young, Howard S; Requena, Jesús R; Wille, Holger

    2016-09-01

    The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.

  10. Genotype-dependent Molecular Evolution of Sheep Bovine Spongiform Encephalopathy (BSE) Prions in Vitro Affects Their Zoonotic Potential*

    PubMed Central

    Krejciova, Zuzana; Barria, Marcelo A.; Jones, Michael; Ironside, James W.; Jeffrey, Martin; González, Lorenzo; Head, Mark W.

    2014-01-01

    Prion diseases are rare fatal neurological conditions of humans and animals, one of which (variant Creutzfeldt-Jakob disease) is known to be a zoonotic form of the cattle disease bovine spongiform encephalopathy (BSE). What makes one animal prion disease zoonotic and others not is poorly understood, but it appears to involve compatibility between the prion strain and the host prion protein sequence. Concerns have been raised that the United Kingdom sheep flock may have been exposed to BSE early in the cattle BSE epidemic and that serial BSE transmission in sheep might have resulted in adaptation of the agent, which may have come to phenotypically resemble scrapie while maintaining its pathogenicity for humans. We have modeled this scenario in vitro. Extrapolation from our results suggests that if BSE were to infect sheep in the field it may, with time and in some sheep genotypes, become scrapie-like at the molecular level. However, the results also suggest that if BSE in sheep were to come to resemble scrapie it would lose its ability to affect humans. PMID:25100723

  11. In vitro prion protein conversion suggests risk of bighorn sheep (Ovis canadensis) to transmissible spongiform encephalopathies

    PubMed Central

    2013-01-01

    Background Transmissible spongiform encephalopathies (TSEs) affect both domestic sheep (scrapie) and captive and free-ranging cervids (chronic wasting disease; CWD). The geographical range of bighorn sheep (Ovis canadensis; BHS) overlaps with states or provinces that have contained scrapie-positive sheep or goats and areas with present epizootics of CWD in cervids. No TSEs have been documented in BHS, but the susceptibility of this species to TSEs remains unknown. Results We acquired a library of BHS tissues and found no evidence of preexisting TSEs in these animals. The prion protein gene (Prnp) in all BHS in our library was identical to scrapie-susceptible domestic sheep (A136R154Q171 genotype). Using an in vitro prion protein conversion assay, which has been previously used to assess TSE species barriers and, in our study appears to recollect known species barriers in mice, we assessed the potential transmissibility of TSEs to BHS. As expected based upon Prnp genotype, we observed BHS prion protein conversion by classical scrapie agent and evidence for a species barrier between transmissible mink encephalopathy (TME) and BHS. Interestingly, our data suggest that the species barrier of BHS to white-tailed deer or wapiti CWD agents is likely low. We also used protein misfolding cyclic amplification to confirm that CWD, but not TME, can template prion protein misfolding in A136R154Q171 genotype sheep. Conclusions Our results indicate the in vitro conversion assay used in our study does mimic the species barrier of mice to the TSE agents that we tested. Based on Prnp genotype and results from conversion assays, BHS are likely to be susceptible to infection by classical scrapie. Despite mismatches in amino acids thought to modulate prion protein conversion, our data indicate that A136R154Q171 genotype sheep prion protein is misfolded by CWD agent, suggesting that these animals could be susceptible to CWD. Further investigation of TSE transmissibility to BHS

  12. In vitro prion protein conversion suggests risk of bighorn sheep (Ovis canadensis) to transmissible spongiform encephalopathies

    USGS Publications Warehouse

    Johnson, Christopher J.; Morawski, A.R.; Carlson, C.M.; Chang, H.

    2013-01-01

    Background: Transmissible spongiform encephalopathies (TSEs) affect both domestic sheep (scrapie) and captive and free-ranging cervids (chronic wasting disease; CWD). The geographical range of bighorn sheep (Ovis canadensis; BHS) overlaps with states or provinces that have contained scrapie-positive sheep or goats and areas with present epizootics of CWD in cervids. No TSEs have been documented in BHS, but the susceptibility of this species to TSEs remains unknown. Results: We acquired a library of BHS tissues and found no evidence of preexisting TSEs in these animals. The prion protein gene (Prnp) in all BHS in our library was identical to scrapie-susceptible domestic sheep (A136R 154Q171). Using an in vitro prion protein conversion assay, which has been previously used to assess TSE species barriers and, in our study appears to recollect known species barriers in mice, we assessed the potential transmissibility of TSEs to BHS. As expected based upon Prnp genotype, we observed BHS prion protein conversion by classical scrapie agent and evidence for a species barrier between transmissible mink encephalopathy (TME) and BHS. Interestingly, our data suggest that the species barrier of BHS to white-tailed deer or wapiti CWD agents is likely low. We also used protein misfolding cyclic amplification to confirm that CWD, but not TME, can template prion protein misfolding in A136R 154Q171genotype sheep. Conclusions: Our results indicate the in vitro conversion assay used in our study does mimic the species barrier of mice to the TSE agents that we tested. Based on Prnp genotype and results from conversion assays, BHS are likely to be susceptible to infection by classical scrapie. Despite mismatches in amino acids thought to modulate prion protein conversion, our data indicate that A136R154Q171 genotype sheep prion protein is misfolded by CWD agent, suggesting that these animals could be susceptible to CWD. Further investigation of TSE transmissibility to BHS, including

  13. Prions and lymphoid organs: solved and remaining mysteries.

    PubMed

    O'Connor, Tracy; Aguzzi, Adriano

    2013-01-01

    Prion colonization of secondary lymphoid organs (SLOs) is a critical step preceding neuroinvasion in prion pathogenesis. Follicular dendritic cells (FDCs), which depend on both tumor necrosis factor receptor 1 (TNFR1) and lymphotoxin β receptor (LTβR) signaling for maintenance, are thought to be the primary sites of prion accumulation in SLOs. However, prion titers in RML-infected TNFR1 (-/-) lymph nodes and rates of neuroinvasion in TNFR1 (-/-) mice remain high despite the absence of mature FDCs. Recently, we discovered that TNFR1-independent prion accumulation in lymph nodes relies on LTβR signaling. Loss of LTβR signaling in TNFR1 (-/-) lymph nodes coincided with the de-differentiation of high endothelial venules (HEVs)-the primary sites of lymphocyte entry into lymph nodes. These findings suggest that HEVs are the sites through which prions initially invade lymph nodes from the bloodstream. Identification of HEVs as entry portals for prions clarifies a number of previous observations concerning peripheral prion pathogenesis. However, a number of questions still remain: What is the mechanism by which prions are taken up by HEVs? Which cells are responsible for delivering prions to lymph nodes? Are HEVs the main entry site for prions into lymph nodes or do alternative routes also exist? These questions and others are considered in this article.

  14. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain

    PubMed Central

    Wenborn, Adam; Terry, Cassandra; Gros, Nathalie; Joiner, Susan; D’Castro, Laura; Panico, Silvia; Sells, Jessica; Cronier, Sabrina; Linehan, Jacqueline M.; Brandner, Sebastian; Saibil, Helen R.; Collinge, John; Wadsworth, Jonathan D. F.

    2015-01-01

    Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method’s effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions. PMID:25950908

  15. Serial transmission in rodents of neurodegeneration from transgenic mice expressing mutant prion protein.

    PubMed Central

    Hsiao, K K; Groth, D; Scott, M; Yang, S L; Serban, H; Rapp, D; Foster, D; Torchia, M; Dearmond, S J; Prusiner, S B

    1994-01-01

    Two lines of transgenic (Tg) mice expressing high (H) levels of the mutant P101L prion protein (PrP) developed a neurologic illness and central nervous system pathology indistinguishable from experimental murine scrapie; these mice were designated Tg(MoPrP-P101L)H. Brain homogenates from Tg(MoPrP-P101L)H mice were inoculated intracerebrally into CD-1 Swiss mice, Syrian hamsters, and Tg196 mice, Tg mice expressing the MoPrP-P101L transgene at low levels. None of the CD-1 mice developed central nervous system dysfunction, whereas approximately 10% of hamsters and approximately 40% of the Tg196 mice manifested neurologic signs between 117 and 639 days after inoculation. Serial transmission of neurodegeneration in Tg196 mice and Syrian hamsters was initiated with brain extracts, producing incubation times of approximately 400 and approximately 75 days, respectively. Although the Tg(MoPrP-P101L)H mice appear to accumulate only low levels of infections prions in their brains, the serial transmission of disease to inoculated recipients argues that prion formation occurs de novo in the brains of these uninoculated animals. These Tg mouse studies, taken together with similar findings in humans dying of inherited prion diseases, provide additional evidence that prions lack a foreign nucleic acid. Images PMID:7916462

  16. Transmission and adaptation of chronic wasting disease to hamsters and transgenic mice: evidence for strains.

    PubMed

    Raymond, Gregory J; Raymond, Lynne D; Meade-White, Kimberly D; Hughson, Andrew G; Favara, Cynthia; Gardner, Donald; Williams, Elizabeth S; Miller, Michael W; Race, Richard E; Caughey, Byron

    2007-04-01

    In vitro screening using the cell-free prion protein conversion system indicated that certain rodents may be susceptible to chronic wasting disease (CWD). Therefore, CWD isolates from mule deer, white-tailed deer, and elk were inoculated intracerebrally into various rodent species to assess the rodents' susceptibility and to develop new rodent models of CWD. The species inoculated were Syrian golden, Djungarian, Chinese, Siberian, and Armenian hamsters, transgenic mice expressing the Syrian golden hamster prion protein, and RML Swiss and C57BL10 wild-type mice. The transgenic mice and the Syrian golden, Chinese, Siberian, and Armenian hamsters had limited susceptibility to certain of the CWD inocula, as evidenced by incomplete attack rates and long incubation periods. For serial passages of CWD isolates in Syrian golden hamsters, incubation periods rapidly stabilized, with isolates having either short (85 to 89 days) or long (408 to 544 days) mean incubation periods and distinct neuropathological patterns. In contrast, wild-type mouse strains and Djungarian hamsters were not susceptible to CWD. These results show that CWD can be transmitted and adapted to some species of rodents and suggest that the cervid-derived CWD inocula may have contained or diverged into at least two distinct transmissible spongiform encephalopathy strains.

  17. The Oral Secretion of Infectious Scrapie Prions Occurs in Preclinical Sheep with a Range of PRNP Genotypes

    PubMed Central

    Gough, Kevin C.; Baker, Claire A.; Rees, Helen C.; Terry, Linda A.; Spiropoulos, John; Thorne, Leigh

    2012-01-01

    Preclinical sheep with the highly scrapie-susceptible VRQ/VRQ PRNP genotype secrete prions from the oral cavity. In order to further understand the significance of orally available prions, buccal swabs were taken from sheep with a range of PRNP genotypes and analyzed by serial protein misfolding cyclic amplification (sPMCA). Prions were detected in buccal swabs from scrapie-exposed sheep of genotypes linked to high (VRQ/VRQ and ARQ/VRQ) and low (ARR/VRQ and AHQ/VRQ) lymphoreticular system involvement in scrapie pathogenesis. For both groups, the level of prion detection was significantly higher than that for scrapie-resistant ARR/ARR sheep which were kept in the same farm environment and acted as sentinel controls for prions derived from the environment which might contaminate the oral cavity. In addition, sheep with no exposure to the scrapie agent did not contain any measurable prions within the oral cavity. Furthermore, prions were detected in sheep over a wide age range representing various stages of preclinical disease. These data demonstrate that orally available scrapie prions may be a common feature in sheep incubating scrapie, regardless of the PRNP genotype and any associated high-level accumulation of PrPSc within lymphoreticular tissues. PrPSc was present in buccal swabs from a large proportion of sheep with PRNP genotypes associated with relatively low disease penetrance, indicating that subclinical scrapie infection is likely to be a common occurrence. The significance of positive sPMCA reactions was confirmed by the transmission of infectivity in buccal swab extracts to Tg338 mice, illustrating the likely importance of orally available prions in the horizontal transmission of scrapie. PMID:22013047

  18. Utility of mass spectrometry in the diagnosis of prion diseases

    USDA-ARS?s Scientific Manuscript database

    We developed a sensitive mass spectrometry-based method of quantitating the prions present in a variety of mammalian species. Calibration curves relating the area ratios of the selected analyte peptides and their oxidized analogs to their homologous stable isotope labeled internal standards were pre...

  19. The double life of the ribosome: When its protein folding activity supports prion propagation.

    PubMed

    Voisset, Cécile; Blondel, Marc; Jones, Gary W; Friocourt, Gaëlle; Stahl, Guillaume; Chédin, Stéphane; Béringue, Vincent; Gillet, Reynald

    2017-03-04

    It is no longer necessary to demonstrate that ribosome is the central machinery of protein synthesis. But it is less known that it is also key player of the protein folding process through another conserved function: the protein folding activity of the ribosome (PFAR). This ribozyme activity, discovered more than 2 decades ago, depends upon the domain V of the large rRNA within the large subunit of the ribosome. Surprisingly, we discovered that anti-prion compounds are also potent PFAR inhibitors, highlighting an unexpected link between PFAR and prion propagation. In this review, we discuss the ancestral origin of PFAR in the light of the ancient RNA world hypothesis. We also consider how this ribosomal activity fits into the landscape of cellular protein chaperones involved in the appearance and propagation of prions and other amyloids in mammals. Finally, we examine how drugs targeting the protein folding activity of the ribosome could be active against mammalian prion and other protein aggregation-based diseases, making PFAR a promising therapeutic target for various human protein misfolding diseases.

  20. Variably Protease-Sensitive Prionopathy, a Unique Prion Variant with Inefficient Transmission Properties

    PubMed Central

    Diack, Abigail B.; Ritchie, Diane L.; Peden, Alexander H.; Brown, Deborah; Boyle, Aileen; Morabito, Laura; Maclennan, David; Burgoyne, Paul; Jansen, Casper; Knight, Richard S.; Piccardo, Pedro; Ironside, James W.

    2014-01-01

    Variably protease-sensitive prionopathy (VPSPr) can occur in persons of all codon 129 genotypes in the human prion protein gene (PRNP) and is characterized by a unique biochemical profile when compared with other human prion diseases. We investigated transmission properties of VPSPr by inoculating transgenic mice expressing human PRNP with brain tissue from 2 persons with the valine-homozygous (VV) and 1 with the heterozygous methionine/valine codon 129 genotype. No clinical signs or vacuolar pathology were observed in any inoculated mice. Small deposits of prion protein accumulated in the brains of inoculated mice after challenge with brain material from VV VPSPr patients. Some of these deposits resembled microplaques that occur in the brains of VPSPr patients. Comparison of these transmission properties with those of sporadic Creutzfeldt-Jakob disease in the same lines of mice indicated that VPSPr has distinct biological properties. Moreover, we established that VPSPr has limited potential for human-to-human transmission. PMID:25418327

  1. Classical scrapie prions in ovine blood are associated with B lymphocytes and platelets-rich plasma

    USDA-ARS?s Scientific Manuscript database

    Classical scrapie is a naturally occurring fatal brain disease of sheep and goats which is caused by prions, a novel class of infectious agent, and is accompanied by the accumulation of abnormal isoforms of prion protein (PrP-Sc) in certain neural and lymphoid tissues. Although collection of a blood...

  2. Phenotypic heterogeneity and genetic modification of P102L inherited prion disease in an international series

    PubMed Central

    Webb, T. E. F.; Poulter, M.; Beck, J.; Uphill, J.; Adamson, G.; Campbell, T.; Linehan, J.; Powell, C.; Brandner, S.; Pal, S.; Siddique, D.; Wadsworth, J. D.; Joiner, S.; Alner, K.; Petersen, C.; Hampson, S.; Rhymes, C.; Treacy, C.; Storey, E.; Geschwind, M. D.; Nemeth, A. H.; Wroe, S.; Mead, S.

    2008-01-01

    The largest kindred with inherited prion disease P102L, historically Gerstmann-Sträussler-Scheinker syndrome, originates from central England, with émigrés now resident in various parts of the English-speaking world. We have collected data from 84 patients in the large UK kindred and numerous small unrelated pedigrees to investigate phenotypic heterogeneity and modifying factors. This collection represents by far the largest series of P102L patients so far reported. Microsatellite and genealogical analyses of eight separate European kindreds support multiple distinct mutational events at a cytosine-phosphate diester-guanidine dinucleotide mutation hot spot. All of the smaller P102L kindreds were linked to polymorphic human prion protein gene codon 129M and were not connected by genealogy or microsatellite haplotype background to the large kindred or each other. While many present with classical Gerstmann-Sträussler-Scheinker syndrome, a slowly progressive cerebellar ataxia with later onset cognitive impairment, there is remarkable heterogeneity. A subset of patients present with prominent cognitive and psychiatric features and some have met diagnostic criteria for sporadic Creutzfeldt-Jakob disease. We show that polymorphic human prion protein gene codon 129 modifies age at onset: the earliest eight clinical onsets were all MM homozygotes and overall age at onset was 7 years earlier for MM compared with MV heterozygotes (P = 0.02). Unexpectedly, apolipoprotein E4 carriers have a delayed age of onset by 10 years (P = 0.02). We found a preponderance of female patients compared with males (54 females versus 30 males, P = 0.01), which probably relates to ascertainment bias. However, these modifiers had no impact on a semi-quantitative pathological phenotype in 10 autopsied patients. These data allow an appreciation of the range of clinical phenotype, modern imaging and molecular investigation and should inform genetic counselling of at-risk individuals, with the

  3. Analysis of the Hippocampal Proteome in ME7 Prion Disease Reveals a Predominant Astrocytic Signature and Highlights the Brain-restricted Production of Clusterin in Chronic Neurodegeneration*

    PubMed Central

    Asuni, Ayodeji A.; Gray, Bryony; Bailey, Joanne; Skipp, Paul; Perry, V. Hugh; O'Connor, Vincent

    2014-01-01

    Prion diseases are characterized by accumulation of misfolded protein, gliosis, synaptic dysfunction, and ultimately neuronal loss. This sequence, mirroring key features of Alzheimer disease, is modeled well in ME7 prion disease. We used iTRAQTM/mass spectrometry to compare the hippocampal proteome in control and late-stage ME7 animals. The observed changes associated with reactive glia highlighted some specific proteins that dominate the proteome in late-stage disease. Four of the up-regulated proteins (GFAP, high affinity glutamate transporter (EAAT-2), apo-J (Clusterin), and peroxiredoxin-6) are selectively expressed in astrocytes, but astrocyte proliferation does not contribute to their up-regulation. The known functional role of these proteins suggests this response acts against protein misfolding, excitotoxicity, and neurotoxic reactive oxygen species. A recent convergence of genome-wide association studies and the peripheral measurement of circulating levels of acute phase proteins have focused attention on Clusterin as a modifier of late-stage Alzheimer disease and a biomarker for advanced neurodegeneration. Since ME7 animals allow independent measurement of acute phase proteins in the brain and circulation, we extended our investigation to address whether changes in the brain proteome are detectable in blood. We found no difference in the circulating levels of Clusterin in late-stage prion disease when animals will show behavioral decline, accumulation of misfolded protein, and dramatic synaptic and neuronal loss. This does not preclude an important role of Clusterin in late-stage disease, but it cautions against the assumption that brain levels provide a surrogate peripheral measure for the progression of brain degeneration. PMID:24366862

  4. Prions, amyloids, and RNA: Pieces of a puzzle.

    PubMed

    Nizhnikov, Anton A; Antonets, Kirill S; Bondarev, Stanislav A; Inge-Vechtomov, Sergey G; Derkatch, Irina L

    2016-05-03

    Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.

  5. The NLRP3-Caspase 1 Inflammasome Negatively Regulates Autophagy via TLR4-TRIF in Prion Peptide-Infected Microglia

    PubMed Central

    Lai, Mengyu; Yao, Hao; Shah, Syed Zahid Ali; Wu, Wei; Wang, Di; Zhao, Ying; Wang, Lu; Zhou, Xiangmei; Zhao, Deming; Yang, Lifeng

    2018-01-01

    Prion diseases are neurodegenerative disorders characterized by the accumulation of misfolded prion protein, spongiform changes in the brain, and brain inflammation as a result of the wide-spread activation of microglia. Autophagy is a highly conserved catabolic process for the clearance of cytoplasmic components, including protein aggregates and damaged organelles; this process also eliminates pathological PrPSc as it accumulates during prion infection. The NALP3 inflammasome is a multiprotein complex that is a component of the innate immune system and is responsible for the release of pro-inflammatory cytokines. Our previous study showed that the neurotoxic prion peptide PrP106-126 induces NALP3 inflammasome activation and subsequent IL-1β release in microglia. Autophagy is involved in the regulation of the immune responses and inflammation in many diseases including neurodegenerative diseases. However, the relationship between autophagy and NALP3 inflammasome in prion diseases has not been investigated. In this study, we demonstrated that the processing and release of mature IL-1β is significantly enhanced by the inhibition of autophagy. Conversely, gene-silencing of the NALP3 inflammasome promotes autophagy. Suppression of TRIF or TLR4 by siRNA attenuated PrP106-126-induced autophagy, which is indicating that the TLR4-TRIF signaling pathway is involved in PrP106-26-induced autophagy. Caspase 1 directly cleaved TRIF to diminish TLR-4-TRIF mediated autophagy. Our findings suggest that the inhibition of autophagy by NALP3 inflammasome is probably mediated by activated Caspase-1-induced TRIF cleavage. This is the first study reporting that the NALP3 inflammasome complex negatively regulates autophagy in response to PrP106-126 stimulation in microglia, and partly explains the mechanism of autophagy inhibition by Caspase-1 in PrP106-126-induced BV2 cell activation. Our findings suggest that autophagy up-regulation and inhibition of Caspase-1 may protect against

  6. Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion.

    PubMed

    Haley, Nicholas J; Rielinger, Rachel; Davenport, Kristen A; O'Rourke, Katherine; Mitchell, Gordon; Richt, Jürgen A

    2017-11-01

    In mammals, susceptibility to prion infection is primarily modulated by the host's cellular prion protein (PrP C ) sequence. In the sheep scrapie model, a graded scale of susceptibility has been established both in vivo and in vitro based on PrP C amino acids 136, 154 and 171, leading to global breeding programmes to reduce the prevalence of scrapie in sheep. Chronic wasting disease (CWD) resistance in cervids is often characterized as decreased prevalence and/or protracted disease progression in individuals with specific alleles; at present, no PrP C allele conferring absolute resistance in cervids has been identified. To model the susceptibility of various naturally occurring and hypothetical cervid PrP C alleles in vitro, we compared the amplification rates and amyloid extension efficiencies of eight distinct CWD isolates in recombinant cervid PrP C substrates using real-time quaking-induced conversion. We hypothesized that the in vitro conversion characteristics of these isolates in cervid substrates would correlate to in vivo susceptibility - permitting susceptibility prediction for the rare alleles found in nature. We also predicted that hypothetical alleles with multiple resistance-associated codons would be more resistant to in vitro conversion than natural alleles with a single resistant codon. Our studies demonstrate that in vitro conversion metrics align with in vivo susceptibility, and that alleles with multiple amino acid substitutions, each influencing resistance independently, do not necessarily contribute additively to conversion resistance. Importantly, we found that the naturally occurring whitetail deer QGAK substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo is warranted.

  7. Estimating chronic wasting disease susceptibility in cervids using real-time quaking-induced conversion

    PubMed Central

    Haley, Nicholas J.; Rielinger, Rachel; Davenport, Kristen A.; O'Rourke, Katherine; Mitchell, Gordon; Richt, Jürgen A.

    2017-01-01

    In mammals, susceptibility to prion infection is primarily modulated by the host’s cellular prion protein (PrPC) sequence. In the sheep scrapie model, a graded scale of susceptibility has been established both in vivo and in vitro based on PrPC amino acids 136, 154 and 171, leading to global breeding programmes to reduce the prevalence of scrapie in sheep. Chronic wasting disease (CWD) resistance in cervids is often characterized as decreased prevalence and/or protracted disease progression in individuals with specific alleles; at present, no PrPC allele conferring absolute resistance in cervids has been identified. To model the susceptibility of various naturally occurring and hypothetical cervid PrPC alleles in vitro, we compared the amplification rates and amyloid extension efficiencies of eight distinct CWD isolates in recombinant cervid PrPC substrates using real-time quaking-induced conversion. We hypothesized that the in vitro conversion characteristics of these isolates in cervid substrates would correlate to in vivo susceptibility – permitting susceptibility prediction for the rare alleles found in nature. We also predicted that hypothetical alleles with multiple resistance-associated codons would be more resistant to in vitro conversion than natural alleles with a single resistant codon. Our studies demonstrate that in vitro conversion metrics align with in vivo susceptibility, and that alleles with multiple amino acid substitutions, each influencing resistance independently, do not necessarily contribute additively to conversion resistance. Importantly, we found that the naturally occurring whitetail deer QGAK substrate exhibited the slowest amplification rate among those evaluated, suggesting that further investigation of this allele and its resistance in vivo is warranted. PMID:29058651

  8. Prion diseases: A little prevention can prevent a catastrophe

    USDA-ARS?s Scientific Manuscript database

    Chronic wasting disease and bovine spongiform encephalopathy (BSE) are two of the best known examples of transmissible spongiform encephalopathies (TSEs). These diseases are characterized by a very long asymptomatic incubation period followed by a short disease course that ends in death. TSEs are ca...

  9. Early Minocycline and Late FK506 Treatment Improves Survival and Alleviates Neuroinflammation, Neurodegeneration, and Behavioral Deficits in Prion-Infected Hamsters.

    PubMed

    Shah, Syed Zahid Ali; Zhao, Deming; Taglialatela, Giulio; Khan, Sher Hayat; Hussain, Tariq; Dong, Haodi; Lai, Mengyu; Zhou, Xiangmei; Yang, Lifeng

    2017-04-01

    Prion infections of the central nervous system (CNS) are characterized by initial reactive gliosis followed by overt neuronal death. Gliosis is likely to be caused initially by the deposition of misfolded, proteinase K-resistant, isoforms (termed PrP Sc ) of the normal cellular prion protein (PrP c ) in the brain. Proinflammatory cytokines and chemokines released by PrP Sc -activated glia and stressed neurons may also contribute directly or indirectly to the disease development by enhancing gliosis and inducing neurotoxicity. Recent studies have illustrated that early neuroinflammation activates nuclear factor of activated T cells (NFAT) in the calcineurin signaling cascade, resulting in nuclear translocation of nuclear factor kappa B (NF-κB) to promote apoptosis. Hence, useful therapeutic approaches to slow down the course of prion disease development should control early inflammatory responses to suppress NFAT signaling. Here we used a hamster model of prion diseases to test, for the first time, the neuroprotective and NFAT-suppressive effect of a second-generation semisynthetic tetracycline derivative, minocycline, versus a calcineurin inhibitor, FK506, with known NFAT suppressive activity. Our results indicate that prolonged treatment with minocycline, starting from the presymptomatic stage of prion disease was more effective than FK506 given either during the presymptomatic or symptomatic stage of prion disease. Specifically, minocycline treatment reduced the expression of the astrocyte activation marker glial fibrillary acidic protein and of the microglial activation marker ionized calcium-binding adapter molecule-1, subsequently reducing the level of proinflammatory cytokines interleukin 1β and tumor necrosis factor-α. We further found that minocycline and FK506 treatment inhibited mitogen-activated protein kinase p38 phosphorylation and NF-κB nuclear translocation in a caspase-dependent manner, and enhanced phosphorylated cyclic adenosine monophosphate

  10. A single amino acid (Asp159) from the dog prion protein suppresses the toxicity of the mouse prion protein in Drosophila

    PubMed Central

    Sanchez-Garcia, J; Jensen, K; Zhang, Y; Rincon-Limas, DE; Fernandez-Funez, P

    2016-01-01

    Misfolding of the prion protein (PrP) is the key step in the transmission of spongiform pathologies in humans and several animals. Although PrP is highly conserved in mammals, a few changes in the sequence of endogenous PrP are proposed to confer protection to dogs, which were highly exposed to prion during the mad-cow epidemics. D159 is a unique amino acid found in PrP from dogs and other canines that was shown to alter surface charge, but its functional relevance has never been tested in vivo. Here, we show in transgenic Drosophila that introducing the N159D substitution on mouse PrP decreases its turnover. Additionally, mouse PrP-N159D demonstrates no toxicity and accumulates no pathogenic conformations, suggesting that a single D159 substitution is sufficient to prevent PrP conformational change and pathogenesis. Understanding the mechanisms mediating the protective activity of D159 is likely to lessen the burden of prion diseases in humans and domestic animals. PMID:27477054

  11. New variant of Creutzfeldt-Jakob (vCJD) disease and other human prion diseases under epidemiological surveillance in Brazil.

    PubMed

    Gattás, Vera Lúcia; Lima Neto, Antonio Silva; Dimech, George Santiago; Mancini, Denise; Cantarino, Ligia Maria; Marins, José Ricardo Pio; Luna, Expedito José Albuquerque

    2007-01-01

    To increase the timeliness of detection of human cases of the new variant of Creutzfeldt-Jakob disease (vCJD) and to reduce the risk of transmission, the Brazilian Ministry of Health has established and standardized rules and control measures. These include the definition of criteria for suspect cases, reporting, monitoring, and control measures for illness prevention and transmission. Guidelines to be used by the team of health care staff were published and distributed to health workers. A detailed proposal for a simplified system of surveillance for prion diseases was developed and mandatory reporting introduced. Additional effort is necessary to increase vCJD case detection, thus making it necessary to establish a partnership with health care services for best identification of suspected cases and dissemination of information to all involved in the service dealing with vCJD investigation.

  12. New variant of Creutzfeldt-Jakob (vCJD) disease and other human prion diseases under epidemiological surveillance in Brazil

    PubMed Central

    Gattás, Vera Lúcia; Lima Neto, Antonio Silva; Dimech, George Santiago; Mancini, Denise; Cantarino, Ligia Maria; Marins, José Ricardo Pio; Luna, Expedito José Albuquerque

    2007-01-01

    To increase the timeliness of detection of human cases of the new variant of Creutzfeldt-Jakob disease (vCJD) and to reduce the risk of transmission, the Brazilian Ministry of Health has established and standardized rules and control measures. These include the definition of criteria for suspect cases, reporting, monitoring, and control measures for illness prevention and transmission. Guidelines to be used by the team of health care staff were published and distributed to health workers. A detailed proposal for a simplified system of surveillance for prion diseases was developed and mandatory reporting introduced. Additional effort is necessary to increase vCJD case detection, thus making it necessary to establish a partnership with health care services for best identification of suspected cases and dissemination of information to all involved in the service dealing with vCJD investigation. PMID:29213409

  13. Early Host Responses to Prion Infection: Development of In Vivo and In Vitro Assays

    DTIC Science & Technology

    2006-05-01

    in plasma glycoproteins that are induced by prion infection in mice. The unusual nature of prion disease prompted a systems approach to identify... pheochromocytoma cells (13, 14), spontaneously im- mortalized hamster brain cells (15), the T-antigen immortalized GT1 hypothalamic neuron line (16), and T-antigen...PK- digested (+) or undigested (-) samples are indicated. (MW markers? Nothing unusual here so probably not necessary.)

  14. Exploring Anti-Prion Glyco-Based and Aromatic Scaffolds: A Chemical Strategy for the Quality of Life.

    PubMed

    Blázquez-Sánchez, María Teresa; de Matos, Ana M; Rauter, Amélia P

    2017-05-24

    Prion diseases are fatal neurodegenerative disorders caused by protein misfolding and aggregation, affecting the brain progressively and consequently the quality of life. Alzheimer's is also a protein misfolding disease, causing dementia in over 40 million people worldwide. There are no therapeutics able to cure these diseases. Cellular prion protein is a high-affinity binding partner of amyloid β (Aβ) oligomers, the most toxic species in Alzheimer's pathology. These findings motivate the development of new chemicals for a better understanding of the events involved. Disease control is far from being reached by the presently known therapeutics. In this review we describe the synthesis and mode of action of molecular entities with intervention in prion diseases' biological processes and, if known, their role in Alzheimer's. A diversity of structures is covered, based on glycans, steroids and terpenes, heterocycles, polyphenols, most of them embodying aromatics and a structural complexity. These molecules may be regarded as chemical tools to foster the understanding of the complex mechanisms involved, and to encourage the scientific community towards further developments for the cure of these devastating diseases.

  15. Clinical features in prion protein-deficient and wild-type cattle inoculated with transmissible mink encephalopathy (TME)

    USDA-ARS?s Scientific Manuscript database

    Background: Transmissible spongiform encephalopathies (TSEs) or prion diseases are caused by the propagation of a misfolded form (PrP**d) of the normal cellular prion protein, PrP**c. Recently, we have reported the generation and characterization of PrP**C-deficient cattle (PrP-/-) produced by a seq...

  16. Discovery of small molecules binding to the normal conformation of prion by combining virtual screening and multiple biological activity evaluation methods

    NASA Astrophysics Data System (ADS)

    Li, Lanlan; Wei, Wei; Jia, Wen-Juan; Zhu, Yongchang; Zhang, Yan; Chen, Jiang-Huai; Tian, Jiaqi; Liu, Huanxiang; He, Yong-Xing; Yao, Xiaojun

    2017-12-01

    Conformational conversion of the normal cellular prion protein, PrPC, into the misfolded isoform, PrPSc, is considered to be a central event in the development of fatal neurodegenerative diseases. Stabilization of prion protein at the normal cellular form (PrPC) with small molecules is a rational and efficient strategy for treatment of prion related diseases. However, few compounds have been identified as potent prion inhibitors by binding to the normal conformation of prion. In this work, to rational screening of inhibitors capable of stabilizing cellular form of prion protein, multiple approaches combining docking-based virtual screening, steady-state fluorescence quenching, surface plasmon resonance and thioflavin T fluorescence assay were used to discover new compounds interrupting PrPC to PrPSc conversion. Compound 3253-0207 that can bind to PrPC with micromolar affinity and inhibit prion fibrillation was identified from small molecule databases. Molecular dynamics simulation indicated that compound 3253-0207 can bind to the hotspot residues in the binding pocket composed by β1, β2 and α2, which are significant structure moieties in conversion from PrPC to PrPSc.

  17. In vitro replication highlights the mutability of prions.

    PubMed

    Vanni, Ilaria; Di Bari, Michele Angelo; Pirisinu, Laura; D'Agostino, Claudia; Agrimi, Umberto; Nonno, Romolo

    2014-01-01

    Prions exist as strains, which are thought to reflect PrP(Sc) conformational variants. Prion strains can mutate and it has been proposed that prion mutability depends on an intrinsic heterogeneity of prion populations that would behave as quasispecies. We investigated in vitro prion mutability of 2 strains, by following PrP(Sc) variations of populations serially propagated in PMCA under constant environmental pressure. Each strain was propagated either at low dilution of the seed, i.e., by large population passages, or at limiting dilution, mimicking bottleneck events. In both strains, PrP(Sc) conformational variants were identified only after large population passages, while repeated bottleneck events caused a rapid decline in amplification rates. These findings support the view that mutability is an intrinsic property of prions.

  18. Hot spot of structural ambivalence in prion protein revealed by secondary structure principal component analysis.

    PubMed

    Yamamoto, Norifumi

    2014-08-21

    The conformational conversion of proteins into an aggregation-prone form is a common feature of various neurodegenerative disorders including Alzheimer's, Huntington's, Parkinson's, and prion diseases. In the early stage of prion diseases, secondary structure conversion in prion protein (PrP) causing β-sheet expansion facilitates the formation of a pathogenic isoform with a high content of β-sheets and strong aggregation tendency to form amyloid fibrils. Herein, we propose a straightforward method to extract essential information regarding the secondary structure conversion of proteins from molecular simulations, named secondary structure principal component analysis (SSPCA). The definite existence of a PrP isoform with an increased β-sheet structure was confirmed in a free-energy landscape constructed by mapping protein structural data into a reduced space according to the principal components determined by the SSPCA. We suggest a "spot" of structural ambivalence in PrP-the C-terminal part of helix 2-that lacks a strong intrinsic secondary structure, thus promoting a partial α-helix-to-β-sheet conversion. This result is important to understand how the pathogenic conformational conversion of PrP is initiated in prion diseases. The SSPCA has great potential to solve various challenges in studying highly flexible molecular systems, such as intrinsically disordered proteins, structurally ambivalent peptides, and chameleon sequences.

  19. Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.

    PubMed

    Liu, Shu; Hossinger, André; Hofmann, Julia P; Denner, Philip; Vorberg, Ina M

    2016-07-12

    Prions are infectious protein particles that replicate by templating their aggregated state onto soluble protein of the same type. Originally identified as the causative agent of transmissible spongiform encephalopathies, prions in yeast (Saccharomyces cerevisiae) are epigenetic elements of inheritance that induce phenotypic changes of their host cells. The prototype yeast prion is the translation termination factor Sup35. Prions composed of Sup35 or its modular prion domain NM are heritable and are transmitted vertically to progeny or horizontally during mating. Interestingly, in mammalian cells, protein aggregates derived from yeast Sup35 NM behave as true infectious entities that employ dissemination strategies similar to those of mammalian prions. While transmission is most efficient when cells are in direct contact, we demonstrate here that cytosolic Sup35 NM prions are also released into the extracellular space in association with nanometer-sized membrane vesicles. Importantly, extracellular vesicles are biologically active and are taken up by recipient cells, where they induce self-sustained Sup35 NM protein aggregation. Thus, in mammalian cells, extracellular vesicles can serve as dissemination vehicles for protein-based epigenetic information transfer. Prions are proteinaceous infectious particles that propagate by templating their quaternary structure onto nascent proteins of the same kind. Prions in yeast act as heritable epigenetic elements that can alter the phenotype when transmitted to daughter cells or during mating. Prion activity is conferred by so-called prion domains often enriched in glutamine and asparagine residues. Interestingly, many mammalian proteins also contain domains with compositional similarity to yeast prion domains. We have recently provided a proof-of-principle demonstration that a yeast prion domain also retains its prion activity in mammalian cells. We demonstrate here that cytosolic prions composed of a yeast prion domain are

  20. Temporal resolution of PrPSc transport, PrPSc accumulation, activation of glia and neuronal death in retinas from C57Bl/6 mice inoculated with RML scrapie: Relevance to biomarkers of prion disease progression

    USDA-ARS?s Scientific Manuscript database

    Currently, there is a lack of pathologic landmarks to objectively evaluate the progression of prion disease in vivo. The goal of this work was to determine the temporal relationship between transport of misfolded prion protein to the retina from the brain, accumulation of PrPSc in the retina, the re...

  1. Systematic review of management strategies to control chronic wasting disease in wild deer populations in North America.

    PubMed

    Uehlinger, F D; Johnston, A C; Bollinger, T K; Waldner, C L

    2016-08-22

    Chronic wasting disease (CWD) is a contagious, fatal prion disease affecting cervids in a growing number of regions across North America. Projected deer population declines and concern about potential spread of CWD to other species warrant strategies to manage this disease. Control efforts to date have been largely unsuccessful, resulting in continuing spread and increasing prevalence. This systematic review summarizes peer-reviewed published reports describing field-applicable CWD control strategies in wild deer populations in North America using systematic review methods. Ten databases were searched for peer-reviewed literature. Following deduplication, relevance screening, full-text appraisal, subject matter expert review and qualitative data extraction, nine references were included describing four distinct management strategies. Six of the nine studies used predictive modeling to evaluate control strategies. All six demonstrated one or more interventions to be effective but results were dependant on parameters and assumptions used in the model. Three found preferential removal of CWD infected deer to be effective in reducing CWD prevalence; one model evaluated a test and slaughter strategy, the other selective removal of infected deer by predators and the third evaluated increased harvest of the sex with highest prevalence (males). Three models evaluated non-selective harvest of deer. There were only three reports that examined primary data collected as part of observational studies. Two of these studies supported the effectiveness of intensive non-selective culling; the third study did not find a difference between areas that were subjected to culling and those that were not. Seven of the nine studies were conducted in the United States. This review highlights the paucity of evaluated, field-applicable control strategies for CWD in wild deer populations. Knowledge gaps in the complex epidemiology of CWD and the intricacies inherent to prion diseases currently

  2. Experimental and Theoretical Insights into the Inhibition Mechanism of Prion Fibrillation by Resveratrol and its Derivatives.

    PubMed

    Li, Lanlan; Zhu, Yongchang; Zhou, Shuangyan; An, Xiaoli; Zhang, Yan; Bai, Qifeng; He, Yong-Xing; Liu, Huanxiang; Yao, Xiaojun

    2017-12-20

    Resveratrol and its derivatives have been shown to display beneficial effects to neurodegenerative diseases. However, the molecular mechanism of resveratrol and its derivatives on prion conformational conversion is poorly understood. In this work, the interaction mechanism between prion and resveratrol as well as its derivatives was investigated using steady-state fluorescence quenching, Thioflavin T binding assay, Western blotting, and molecular dynamics simulation. Protein fluorescence quenching method and Thioflavin T assay revealed that resveratrol and its derivatives could interact with prion and interrupt prion fibril formation. Molecular dynamics simulation results indicated that resveratrol can stabilize the PrP 127-147 peptide mainly through π-π stacking interactions between resveratrol and Tyr128. The hydrogen bonds interactions between resveratrol and the PrP 127-147 peptide could further reduce the flexibility and the propensity to aggregate. The results of this study not only can provide useful information about the interaction mechanism between resveratrol and prion, but also can provide useful clues for further design of new inhibitors inhibiting prion aggregation.

  3. Acquisition of Drug Resistance and Dependence by Prions

    PubMed Central

    Oelschlegel, Anja M.; Weissmann, Charles

    2013-01-01

    We have reported that properties of prion strains may change when propagated in different environments. For example, when swainsonine-sensitive 22L prions were propagated in PK1 cells in the presence of swainsonine, drug-resistant variants emerged. We proposed that prions constitute quasi- populations comprising a range of variants with different properties, from which the fittest are selected in a particular environment. Prion populations developed heterogeneity even after biological cloning, indicating that during propagation mutation-like processes occur at the conformational level. Because brain-derived 22L prions are naturally swainsonine resistant, it was not too surprising that prions which had become swa sensitive after propagation in cells could revert to drug resistance. Because RML prions, both after propagation in brain or in PK1 cells, are swainsonine sensitive, we investigated whether it was nonetheless possible to select swainsonine-resistant variants by propagation in the presence of the drug. Interestingly, this was not possible with the standard line of PK1 cells, but in certain PK1 sublines not only swainsonine-resistant, but even swainsonine-dependent populations (i.e. that propagated more rapidly in the presence of the drug) could be isolated. Once established, they could be passaged indefinitely in PK1 cells, even in the absence of the drug, without losing swainsonine dependence. The misfolded prion protein (PrPSc) associated with a swainsonine-dependent variant was less rapidly cleared in PK1 cells than that associated with its drug-sensitive counterpart, indicating that likely structural differences of the misfolded PrP underlie the properties of the prions. In summary, propagation of prions in the presence of an inhibitory drug may not only cause the selection of drug-resistant prions but even of stable variants that propagate more efficiently in the presence of the drug. These adaptations are most likely due to conformational changes of

  4. Prions, From Structure to Epigenetics and Neuronal Functions

    NASA Astrophysics Data System (ADS)

    Lindquist, Susan

    2012-02-01

    Prions are a unique type of protein that can misfold and convert other proteins to the same shape. The well-characterized yeast prion [PSI+] is formed from an inactive amyloid fiber conformation of the translation-termination factor, Sup35. This altered conformation is passed from mother cells to daughters, acting as a template to perpetuate the prion state and providing a mechanism of protein-based inheritance. We employed a variety of methods to determine the structure of Sup35 amyloid fibrils. First, using fluorescent tags and cross-linking we identified specific segments of the protein monomer that form intermolecular contacts in a ``Head-to-Head,'' ``Tail-to-Tail'' fashion while a central region forms intramolecular contacts. Then, using peptide arrays we mapped the region responsible for the prion transmission barrier between two different yeast species. We have also used optical tweezers to reveal that the non-covalent intermolecular contacts between monomers are unusually strong, and maintain fibril integrity even under forces that partially unfold individual monomers and extend fibril length. Based on the handful of known yeast prion proteins we predicted sequences that could be responsible for prion-like amyloid folding. Our screen identified 19 new candidate prions, whose protein-folding properties and diverse cellular functions we have characterized using a combination of genetic and biochemical techniques. Prion-driven phenotypic diversity increases under stress, and can be amplified by the dynamic maturation of prion-initiating states. These qualities allow prions to act as ``bet-hedging'' devices that facilitate the adaptation of yeast to stressful environments, and might speed the evolution of new traits. Together with Kandel and Si, we have also found that a regulatory protein that plays an important role in synaptic plasticity behaves as a prion in yeast. Cytoplasmic polyAdenylation element binding protein, CPEB, maintains synapses by promoting

  5. Evolutionary Descent of Prion Genes from the ZIP Family of Metal Ion Transporters

    PubMed Central

    Schmitt-Ulms, Gerold; Ehsani, Sepehr; Watts, Joel C.; Westaway, David; Wille, Holger

    2009-01-01

    In the more than twenty years since its discovery, both the phylogenetic origin and cellular function of the prion protein (PrP) have remained enigmatic. Insights into a possible function of PrP may be obtained through the characterization of its molecular neighborhood in cells. Quantitative interactome data demonstrated the spatial proximity of two metal ion transporters of the ZIP family, ZIP6 and ZIP10, to mammalian prion proteins in vivo. A subsequent bioinformatic analysis revealed the unexpected presence of a PrP-like amino acid sequence within the N-terminal, extracellular domain of a distinct sub-branch of the ZIP protein family that includes ZIP5, ZIP6 and ZIP10. Additional structural threading and orthologous sequence alignment analyses argued that the prion gene family is phylogenetically derived from a ZIP-like ancestral molecule. The level of sequence homology and the presence of prion protein genes in most chordate species place the split from the ZIP-like ancestor gene at the base of the chordate lineage. This relationship explains structural and functional features found within mammalian prion proteins as elements of an ancient involvement in the transmembrane transport of divalent cations. The phylogenetic and spatial connection to ZIP proteins is expected to open new avenues of research to elucidate the biology of the prion protein in health and disease. PMID:19784368

  6. Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity

    PubMed Central

    2012-01-01

    Background Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres) conformers of the normal cellular prion protein (PrPC), with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. Findings Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. Conclusions This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels. PMID:22534096

  7. Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.

    PubMed

    Akritidis, N

    2011-03-01

    Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  8. Selfish prion of Rnq1 mutant in yeast.

    PubMed

    Kurahashi, Hiroshi; Shibata, Shoichiro; Ishiwata, Masao; Nakamura, Yoshikazu

    2009-05-01

    [PIN(+)] is a prion form of Rnq1 in Saccharomyces cerevisiae and is necessary for the de novo induction of a second prion, [PSI(+)]. We previously isolated a truncated form of Rnq1, named Rnq1Delta100, as a [PSI(+)]-eliminating factor in S. cerevisiae. Rnq1Delta100 deletes the N-terminal non-prion domain of Rnq1, and eliminates [PSI(+)] in [PIN(+)] yeast. Here we found that [PIN(+)] is transmissible to Rnq1Delta100 in the absence of full-length Rnq1, forming a novel prion variant [RNQ1Delta100(+)]. [RNQ1Delta100(+)] has similar [PIN(+)] properties as it stimulates the de novo induction of [PSI(+)] and is eliminated by the null hsp104Delta mutation, but not by Hsp104 overproduction. In contrast, [RNQ1Delta100(+)] inherits the inhibitory activity and hampers the maintenance of [PSI(+)] though less efficiently than [PIN(+)] made of Rnq1-Rnq1Delta100 co-aggregates. Interestingly, [RNQ1Delta100(+)] prion was eliminated by de novo [PSI(+)] induction. Thus, the [RNQ1Delta100(+)] prion demonstrates selfish activity to eliminate a heterologous prion in S. cerevisiae, showing the first instance of a selfish prion variant in living organisms.

  9. Physical, chemical and kinetic factors affecting prion infectivity

    PubMed Central

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Jackson, Graham S.; Collinge, John

    2016-01-01

    ABSTRACT The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process. PMID:27282252

  10. Physical, chemical and kinetic factors affecting prion infectivity.

    PubMed

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C; Wadsworth, Jonathan D F; Clarke, Anthony R; Jackson, Graham S; Collinge, John

    2016-05-03

    The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process.

  11. NMR structure of the bovine prion protein

    PubMed Central

    López García, Francisco; Zahn, Ralph; Riek, Roland; Wüthrich, Kurt

    2000-01-01

    The NMR structures of the recombinant 217-residue polypeptide chain of the mature bovine prion protein, bPrP(23–230), and a C-terminal fragment, bPrP(121–230), include a globular domain extending from residue 125 to residue 227, a short flexible chain end of residues 228–230, and an N-terminal flexibly disordered “tail” comprising 108 residues for the intact protein and 4 residues for bPrP(121–230), respectively. The globular domain contains three α-helices comprising the residues 144–154, 173–194, and 200–226, and a short antiparallel β-sheet comprising the residues 128–131 and 161–164. The best-defined parts of the globular domain are the central portions of the helices 2 and 3, which are linked by the only disulfide bond in bPrP. Significantly increased disorder and mobility is observed for helix 1, the loop 166–172 leading from the β-strand 2 to helix 2, the end of helix 2 and the following loop, and the last turn of helix 3. Although there are characteristic local differences relative to the conformations of the murine and Syrian hamster prion proteins, the bPrP structure is essentially identical to that of the human prion protein. On the other hand, there are differences between bovine and human PrP in the surface distribution of electrostatic charges, which then appears to be the principal structural feature of the “healthy” PrP form that might affect the stringency of the species barrier for transmission of prion diseases between humans and cattle. PMID:10899999

  12. Infrared Microspectroscopy: A Multiple-Screening Platform for Investigating Single-Cell Biochemical Perturbations upon Prion Infection

    PubMed Central

    2011-01-01

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrPSc) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrPC, into nascent PrPSc. The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level. PMID:22778865

  13. Infrared microspectroscopy: a multiple-screening platform for investigating single-cell biochemical perturbations upon prion infection.

    PubMed

    Didonna, Alessandro; Vaccari, Lisa; Bek, Alpan; Legname, Giuseppe

    2011-03-16

    Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of prions in the central nervous system. The pathogenic prion (PrP(Sc)) possesses the capability to convert the host-encoded cellular isoform of the prion protein, PrP(C), into nascent PrP(Sc). The present work aims at providing novel insight into cellular response upon prion infection evidenced by synchrotron radiation infrared microspectroscopy (SR-IRMS). This non-invasive, label-free analytical technique was employed to investigate the biochemical perturbations undergone by prion infected mouse hypothalamic GT1-1 cells at the cellular and subcellular level. A decrement in total cellular protein content upon prion infection was identified by infrared (IR) whole-cell spectra and validated by bicinchoninic acid assay and single-cell volume analysis by atomic force microscopy (AFM). Hierarchical cluster analysis (HCA) of IR data discriminated between infected and uninfected cells and allowed to deduce an increment of lysosomal bodies within the cytoplasm of infected GT1-1 cells, a hypothesis further confirmed by SR-IRMS at subcellular spatial resolution and fluorescent microscopy. The purpose of this work, therefore, consists of proposing IRMS as a powerful multiscreening platform, drawing on the synergy with conventional biological assays and microscopy techniques in order to increase the accuracy of investigations performed at the single-cell level.

  14. New generation QuIC assays for prion seeding activity.

    PubMed

    Orrù, Christina D; Wilham, Jason M; Vascellari, Sarah; Hughson, Andrew G; Caughey, Byron

    2012-01-01

    The ability of abnormal TSE-associated forms of PrP to seed the formation of amyloid fibrils from recombinant PrP(Sen) has served as the basis for several relatively rapid and highly sensitive tests for prion diseases. These tests include rPrP-PMCA (rPMCA), standard quaking-induced conversion (S-QuIC), amyloid seeding assay (ASA), real-time QuIC (RT-QuIC) and enhanced QuIC (eQuIC). Here, we summarize recent improvements in the RT-QuIC-based assays that enhance the practicality, sensitivity and quantitative attributes of assays QuIC and promote the detection of prion seeding activity in dilute, inhibitor-laden fluids such as blood plasma.

  15. Ovine Reference Materials and Assays for Prion Genetic Testing

    USDA-ARS?s Scientific Manuscript database

    Background: Genetic predisposition to scrapie in sheep is associated with variation in the peptide sequence of the ovine prion protein encoded by Prnp. Codon variants implicated in scrapie susceptibility or disease progression include those at amino acid positions 112, 136, 141, 154, and 171. Nin...

  16. Copper attachment to a non-octarepeat site in prion protein

    NASA Astrophysics Data System (ADS)

    Hodak, Miroslav; Bernholc, Jerry

    2010-03-01

    Prion protein, PrP, plays a causative role in several neurodegenerative diseases, including mad cow disease in cattle and Creutzfeldt-Jakob disease in humans. The PrP is known to efficiently bind copper ions and this ability has been linked to its function. PrP contains up to six binding sites, four of which are located in the so-called octarepeat region and are now well known. The binding sites outside this region are still largely undetermined, despite evidence of their relevance to prion diseases. Using a hybrid DFT/DFT, which combines Kohn-Sham DFT with orbital-free DFT to achieve accurate and efficient description of solvent effects in ab initio calculations, we have investigated copper attachment to the sequence GGGTH, which represents the copper binding site located at His96. We have considered both NNNN and NNNO types of copper coordination, as suggested by experiments. Our calculations have determined the geometry of copper attachment site and its energetics. Comparison to the already known binding sites provides insight into the process of copper uptake in PrP.

  17. Select tissue mineral concentrations and chronic wasting disease status in mule deer from North-central Colorado.

    PubMed

    Wolfe, Lisa L; Conner, Mary M; Bedwell, Cathy L; Lukacs, Paul M; Miller, Michael W

    2010-07-01

    Trace mineral imbalances have been suggested as having a causative or contributory role in chronic wasting disease (CWD), a prion disease of several North American cervid species. To begin exploring relationships between tissue mineral concentrations and CWD in natural systems, we measured liver tissue concentrations of copper, manganese, and molybdenum in samples from 447 apparently healthy, adult (> or = 2 yr old) mule deer (Odocoileus hemionus) culled or vehicle killed from free-ranging populations in north-central Colorado, United States, where CWD occurs naturally; we also measured copper concentrations in brain-stem (medulla oblongata at the obex) tissue from 181 of these deer. Analyses revealed a wide range of concentrations of all three minerals among sampled deer (copper: 5.6-331 ppm in liver, 1.5-31.9 ppm in obex; manganese: 0.1-21.4 ppm in liver; molybdenum: 0.5-4.0 ppm in liver). Bayesian multiple regression analysis revealed a negative association between obex copper (-0.097; 95% credible interval -0.192 to -0.006) and the probability of sampled deer also being infected with CWD, as well as a positive association between liver manganese (0.158; 95% credible interval 0.066 to 0.253) and probability of infection. We could not discern whether the tendencies toward lower brain-stem copper concentrations or higher systemic manganese concentrations in infected deer preceded prion infection or rather were the result of infection and its subsequent effects, although the distribution of trace mineral concentrations in infected deer seemed more suggestive of the latter.

  18. Different 2-Aminothiazole Therapeutics Produce Distinct Patterns of Scrapie Prion Neuropathology in Mouse Brains.

    PubMed

    Giles, Kurt; Berry, David B; Condello, Carlo; Hawley, Ronald C; Gallardo-Godoy, Alejandra; Bryant, Clifford; Oehler, Abby; Elepano, Manuel; Bhardwaj, Sumita; Patel, Smita; Silber, B Michael; Guan, Shenheng; DeArmond, Stephen J; Renslo, Adam R; Prusiner, Stanley B

    2015-10-01

    Because no drug exists that halts or even slows any neurodegenerative disease, developing effective therapeutics for any prion disorder is urgent. We recently reported two compounds (IND24 and IND81) with the 2-aminothiazole (2-AMT) chemical scaffold that almost doubled the incubation times in scrapie prion-infected, wild-type (wt) FVB mice when given in a liquid diet. Remarkably, oral prophylactic treatment with IND24 beginning 14 days prior to intracerebral prion inoculation extended survival from ∼120 days to over 450 days. In addition to IND24, we evaluated the pharmacokinetics and efficacy of five additional 2-AMTs; one was not followed further because its brain penetration was poor. Of the remaining four new 2-AMTs, IND114338 doubled and IND125 tripled the incubation times of RML-inoculated wt and Tg4053 mice overexpressing wt mouse prion protein (PrP), respectively. Neuropathological examination of the brains from untreated controls showed a widespread deposition of self-propagating, β-sheet-rich "scrapie" isoform (PrP(Sc)) prions accompanied by a profound astrocytic gliosis. In contrast, mice treated with 2-AMTs had lower levels of PrP(Sc) and associated astrocytic gliosis, with each compound resulting in a distinct pattern of deposition. Notably, IND125 prevented both PrP(Sc) accumulation and astrocytic gliosis in the cerebrum. Progressive central nervous system dysfunction in the IND125-treated mice was presumably due to the PrP(Sc) that accumulated in their brainstems. Disappointingly, none of the four new 2-AMTs prolonged the lives of mice expressing a chimeric human/mouse PrP transgene inoculated with Creutzfeldt-Jakob disease prions. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. The first report of prion-related protein gene (PRNT) polymorphisms in goat.

    PubMed

    Kim, Yong-Chan; Jeong, Byung-Hoon

    2017-06-01

    Prion protein is encoded by the prion protein gene (PRNP). Polymorphisms of several members of the prion gene family have shown association with prion diseases in several species. Recent studies on a novel member of the prion gene family in rams have shown that prion-related protein gene (PRNT) has a linkage with codon 26 of prion-like protein (PRND). In a previous study, codon 26 polymorphism of PRND has shown connection with PRNP haplotype which is strongly associated with scrapie vulnerability. In addition, the genotype of a single nucleotide polymorphism (SNP) at codon 26 of PRND is related to fertilisation capacity. These findings necessitate studies on the SNP of PRNT gene which is connected with PRND. In goat, several polymorphism studies have been performed for PRNP, PRND, and shadow of prion protein gene (SPRN). However, polymorphism on PRNT has not been reported. Hence, the objective of this study was to determine the genotype and allelic distribution of SNPs of PRNT in 238 Korean native goats and compare PRNT DNA sequences between Korean native goats and several ruminant species. A total of five SNPs, including PRNT c.-114G > T, PRNT c.-58A > G in the upstream of PRNT gene, PRNT c.71C > T (p.Ala24Val) and PRNT c.102G > A in the open reading frame (ORF) and c.321C > T in the downstream of PRNT gene, were found in this study. All five SNPs of caprine PRNT gene in Korean native goat are in complete linkage disequilibrium (LD) with a D' value of 1.0. Interestingly, comparative sequence analysis of the PRNT gene revealed five mismatches between DNA sequences of Korean native goats and those of goats deposited in the GenBank. Korean native black goats also showed 5 mismatches in PRNT ORF with cattle. To the best of our knowledge, this is the first genetic research of the PRNT gene in goat.

  20. A Sequence-Dependent DNA Condensation Induced by Prion Protein

    PubMed Central

    2018-01-01

    Different studies indicated that the prion protein induces hybridization of complementary DNA strands. Cell culture studies showed that the scrapie isoform of prion protein remained bound with the chromosome. In present work, we used an oxazole dye, YOYO, as a reporter to quantitative characterization of the DNA condensation by prion protein. We observe that the prion protein induces greater fluorescence quenching of YOYO intercalated in DNA containing only GC bases compared to the DNA containing four bases whereas the effect of dye bound to DNA containing only AT bases is marginal. DNA-condensing biological polyamines are less effective than prion protein in quenching of DNA-bound YOYO fluorescence. The prion protein induces marginal quenching of fluorescence of the dye bound to oligonucleotides, which are resistant to condensation. The ultrastructural studies with electron microscope also validate the biophysical data. The GC bases of the target DNA are probably responsible for increased condensation in the presence of prion protein. To our knowledge, this is the first report of a human cellular protein inducing a sequence-dependent DNA condensation. The increased condensation of GC-rich DNA by prion protein may suggest a biological function of the prion protein and a role in its pathogenesis. PMID:29657864