Sample records for wasting maintains muscle

  1. Sex Differences in Muscle Wasting.

    PubMed

    Anderson, Lindsey J; Liu, Haiming; Garcia, Jose M

    2017-01-01

    With aging and other muscle wasting diseases, men and women undergo similar pathological changes in skeletal muscle: increased inflammation, enhanced oxidative stress, mitochondrial dysfunction, satellite cell senescence, elevated apoptosis and proteasome activity, and suppressed protein synthesis and myocyte regeneration. Decreased food intake and physical activity also indirectly contribute to muscle wasting. Sex hormones also play important roles in maintaining skeletal muscle homeostasis. Testosterone is a potent anabolic factor promoting muscle protein synthesis and muscular regeneration. Estrogens have a protective effect on skeletal muscle by attenuating inflammation; however, the mechanisms of estrogen action in skeletal muscle are less well characterized than those of testosterone. Age- and/or disease-induced alterations in sex hormones are major contributors to muscle wasting. Hence, men and women may respond differently to catabolic conditions because of their hormonal profiles. Here we review the similarities and differences between men and women with common wasting conditions including sarcopenia and cachexia due to cancer, end-stage renal disease/chronic kidney disease, liver disease, chronic heart failure, and chronic obstructive pulmonary disease based on the literature in clinical studies. In addition, the responses in men and women to the commonly used therapeutic agents and their efficacy to improve muscle mass and function are also reviewed.

  2. Nutrient modulation in the management of disease-induced muscle wasting: evidence from human studies.

    PubMed

    Brook, Matthew S; Wilkinson, Daniel J; Atherton, Philip J

    2017-11-01

    In addition to being essential for movement, skeletal muscles act as both a store and source of key macronutrients. As such, muscle is an important tissue for whole body homeostasis, undergoing muscle wasting in times of starvation, disease, and stress, for example, to provide energy substrates for other tissues. Yet, muscle wasting is also associated with disability, comorbidities, and mortality. As nutrition is so crucial to maintaining muscle homeostasis 'in health', it has been postulated that muscle wasting in cachexia syndromes may be alleviated by nutritional interventions. This review will highlight recent work in this area in relation to muscle kinetics, the acute metabolic (e.g. dietary protein), and longer-term effects of dietary interventions. Whole body and skeletal muscle protein synthesis invariably exhibit deranged kinetics (favouring catabolism) in wasting states; further, many of these conditions harbour blunted anabolic responses to protein nutrition compared with healthy controls. These derangements underlie muscle wasting. Recent trials of essential amino acid and protein-based nutrition have shown some potential for therapeutic benefit. Nutritional modulation, particularly of dietary amino acids, may have benefits to prevent or attenuate disease-induced muscle wasting. Nonetheless, there remains a lack of recent studies exploring these key concepts to make conclusive recommendations.

  3. Serum myostatin levels are independently associated with skeletal muscle wasting in patients with heart failure.

    PubMed

    Furihata, Takaaki; Kinugawa, Shintaro; Fukushima, Arata; Takada, Shingo; Homma, Tsuneaki; Masaki, Yoshihiro; Abe, Takahiro; Yokota, Takashi; Oba, Koji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-10-01

    It has been reported that skeletal muscle mass and strength are decreased in patients with heart failure (HF), and HF is associated with both reduced exercise capacity and adverse clinical outcomes. Myostatin has been known as a negative regulator of muscle growth, follistatin as the myostatin antagonist, maintaining tissue homeostasis. We thus determined serum myostatin levels in HF patients and whether they are associated with skeletal muscle wasting. Forty one consecutive HF patients (58±15years old, New York Heart Association class I-III) and 30 age-matched healthy subjects as controls (53±8years old) were studied. Serum myostatin levels were significantly lower in HF patients than controls (18.7±7.4 vs. 23.6±5.2ng/mL, P<0.001). Circumference of the thickest part of the right thigh was significantly small (468±72 vs. 559±37mm, P=0.001) and lower extremity muscular strength was lower in patients with HF (129±55 vs. 219±52N×m, P<0.001). Fourteen HF patients (34%) had muscle wasting. By univariate analysis, higher age, higher serum follistatin, and lower serum myostatin were significantly associated with the presence of muscle wasting. By multivariate analysis, serum myostatin levels were independently associated with muscle wasting (OR=0.77, 95% CI [0.58, 0.93], P=0.02). Serum myostatin levels were significantly decreased in HF patients and associated with lower extremity muscle wasting, suggesting that myostatin may be an important factor for maintaining skeletal muscle mass and strength in HF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Estrogen Maintains Skeletal Muscle in Septic Rats Associated with Altering Hypothalamic Inflammation and Neuropeptides.

    PubMed

    Zhao, Chenyan; Li, Jun; Cheng, Minhua; Shi, Jialing; Shen, Juanhong; Gao, Tao; Xi, Fengchan; Yu, Wenkui

    2017-03-01

    Muscle wasting is one of the main contributors to the worse outcomes in sepsis. Whether estrogen could alleviate muscle wasting induced by sepsis remains unclear. This study was designed to test the effect of estrogen on muscle wasting and its relationship with central alteration in sepsis. Thirty Sprague-Dawley rats were divided into 3 groups: control group, sepsis group, and estrogen treated sepsis group. Animals were intraperitoneally injected with lipopolysaccharide (10 mg/kg) or saline, followed by subcutaneous injection of 17β-estradiol (1 mg/kg) or saline. Twenty-four hours later, all animals were killed and their hypothalamus and skeletal muscles were harvested for analysis. Muscle wasting markers, hypothalamic neuropeptides, and hypothalamic inflammatory markers were measured. As a result, lipopolysaccharide administration caused a significant increase in muscle wasting, hypothalamic inflammation, and anorexigenic neuropeptides (POMC and CART) gene expression, and a significant decrease in orexigenic neuropeptides (AgRP and NPY) gene expression. Administration of estrogen signifcantl attenuated lipopolysaccharide-induced muscle wasting (body weight and extensor digitorum longus loss [52 and 62 %], tyrosine and 3-methylhistidine release [17 and 22 %], muscle ring fnger 1 [MuRF-1; 65 %], and muscle atrophy F-box [MAFbx] gene expression), hypothalamic inflammation (Tumor necrosis factor-α and interlukin-1β [69 and 70%]) as well as alteration of POMC, CART and AgRP (61, 37, and 1008 %) expression.In conclusion, estrogen could alleviate sepsis-induced muscle wasting and it was associated with reducing hypothalamic inflammation and alteration of hypothalamic neuropeptides. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Using polyphenol derivatives to prevent muscle wasting.

    PubMed

    Francaux, Marc; Deldicque, Louise

    2018-05-01

    To highlight recent evidence for the ability of polyphenols and their derivatives to reduce muscle wasting in different pathological states. From January 2016 to August 2017, four articles dealt with the effects of polyphenols on muscle wasting, which were all carried out in mice. The four studies found that polyphenols reduced muscle mass loss associated with cancer cachexia, acute inflammation or sciatic nerve section. One study even showed that muscle mass was totally preserved when rutin was added to the diet of mice undergoing cancer cachexia. The beneficial effects of polyphenols on muscle wasting were mainly due to a reduction in the activation of the nuclear factor-kappa B pathway, a lower oxidative stress level and a better mitochondrial function. In addition, urolithin B was found to have a testosterone-like effect and to favorably regulate muscle protein balance. During the last 20 months, additional data have been collected about the beneficial effects of rutin, curcumin, quercetin, ellagitanins and urolithin B to limit the loss of muscle mass associated with several pathological states. However, currently, scientific evidence lacks for their use as nutraceuticals in human.

  6. Control of food intake and muscle wasting in cachexia.

    PubMed

    Amitani, Marie; Asakawa, Akihiro; Amitani, Haruka; Inui, Akio

    2013-10-01

    Cachexia is characterized by anorexia, weakness, weight loss, and muscle wasting. Anorexia and muscle wasting are the key features of cachexia and they affect mortality, morbidity, and quality of life. Consistent studies have found that feeding-regulating peptides such as melanocortin, ghrelin, and leptin are related to muscle metabolism, and the balance of catabolism and anabolism in muscle is regulated in the hypothalamus, which also regulates appetite and energy expenditure. In cachexia, proinflammatory cytokines, such as TNF-α, IL-1, IL-6 and Angiotensin II induce muscle atrophy. The mechanism is suggested via upregulation of MuRF1 and MAFbx. In contrast, the orexigenic peptide, AgRP and ghrelin have the effect to decrease proinflammatory cytokines and increase body weight, food intake, and muscle mass. The understandings of the pathological mechanism of anorexia and muscle metabolism in view of the crosstalk between brain and muscle will open the new way for the management of cachexia. In this review, we describe recent experimental and clinical studies that have examined the regulation of food intake and muscle wasting in cachexia. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Coupling between skeletal muscle fiber size and capillarization is maintained during healthy aging.

    PubMed

    Barnouin, Yoann; McPhee, Jamie S; Butler-Browne, Gillian; Bosutti, Alessandra; De Vito, Giuseppe; Jones, David A; Narici, Marco; Behin, Anthony; Hogrel, Jean-Yves; Degens, Hans

    2017-08-01

    As muscle capillarization is related to the oxidative capacity of the muscle and the size of muscle fibres, capillary rarefaction may contribute to sarcopenia and functional impairment in older adults. Therefore, it is important to assess how ageing affects muscle capillarization and the interrelationship between fibre capillary supply with the oxidative capacity and size of the fibres. Muscle biopsies from healthy recreationally active young (22 years; 14 men and 5 women) and older (74 years; 22 men and 6 women) people were assessed for muscle capillarization and the distribution of capillaries with the method of capillary domains. Oxidative capacity of muscle fibres was assessed with quantitative histochemistry for succinate dehydrogenase (SDH) activity. There was no significant age-related reduction in muscle fibre oxidative capacity. Despite 18% type II fibre atrophy (P = 0.019) and 23% fewer capillaries per fibre (P < 0.002) in the old people, there was no significant difference in capillary distribution between young and old people, irrespective of sex. The capillary supply to a fibre was primarily determined by fibre size and only to a small extent by oxidative capacity, irrespective of age and sex. Based on SDH, the maximal oxygen consumption supported by a capillary did not differ significantly between young and old people. The similar quantitative and qualitative distribution of capillaries within muscle from healthy recreationally active older people and young adults indicates that the age-related capillary rarefaction, which does occur, nevertheless maintains the coupling between skeletal muscle fibre size and capillarization during healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  8. Bladder smooth muscle organ culture preparation maintains the contractile phenotype

    PubMed Central

    Wang, Tanchun; Kendig, Derek M.; Chang, Shaohua; Trappanese, Danielle M.; Chacko, Samuel

    2012-01-01

    Smooth muscle cells, when subjected to culture, modulate from a contractile to a secretory phenotype. This has hampered the use of cell culture for molecular techniques to study the regulation of smooth muscle biology. The goal of this study was to develop a new organ culture model of bladder smooth muscle (BSM) that would maintain the contractile phenotype and aid in the study of BSM biology. Our results showed that strips of BSM subjected to up to 9 days of organ culture maintained their contractile phenotype, including the ability to achieve near-control levels of force with a temporal profile similar to that of noncultured tissues. The technical aspects of our organ culture preparation that were responsible, in part, for the maintenance of the contractile phenotype were a slight longitudinal stretch during culture and subjection of the strips to daily contraction-relaxation. The tissues contained viable cells throughout the cross section of the strips. There was an increase in extracellular collagenous matrix, resulting in a leftward shift in the passive length-tension relationship. There were no significant changes in the content of smooth muscle-specific α-actin, calponin, h-caldesmon, total myosin heavy chain, protein kinase G, Rho kinase-I, or the ratio of SM1 to SM2 myosin isoforms. Moreover the organ cultured tissues maintained functional voltage-gated calcium channels and large-conductance calcium-activated potassium channels. Therefore, we propose that this novel BSM organ culture model maintains the contractile phenotype and will be a valuable tool for the use in cellular/molecular biology studies of bladder myocytes. PMID:22896042

  9. CORTICOSTEROIDS AND MUSCLE WASTING ROLE OF TRANSCRIPTION FACTORS, NUCLEAR COFACTORS, AND HYPERACETYLATION

    PubMed Central

    Hasselgren, Per-Olof; Alamdari, Nima; Aversa, Zaira; Gonnella, Patricia; Smith, Ira J; Tizio, Steven

    2010-01-01

    Purpose of review The purpose of this review is to discuss novel insight into mechanisms of glucocorticoid-regulated muscle wasting, in particular the role of transcription factors and nuclear cofactors. In addition, novel strategies that may become useful in the treatment or prevention of glucocorticoid-induced muscle wasting are reviewed. Recent findings Studies suggest that glucocorticoid-induced upregulation of the transcription factors FOXO1 and C/EBPβ and downregulation of MyoD and myogenin are involved in glucocorticoid-induced muscle wasting. In addition, glucocorticoid-induced hyperacetylation caused by increased expression of the nuclear cofactor p300 and its histone acetyl transferase activity and decreased expression and activity of histone deacetylases (HDACs) plays an important role in glucocorticoid-induced muscle proteolysis and wasting. Other mechanisms may also be involved in glucocorticoid-induced muscle wasting, including insulin resistance and store-operated calcium entry. Novel potential strategies to prevent or treat glucocorticoid-induced muscle wasting include the use of small molecule HDAC activators, dissociated glucocorticoid receptor agonists, and 11β-hydroxysteroid dehydrogenase type 1 inhibitors. Summary An increased understanding of molecular mechanisms regulating glucocorticoid-induced muscle wasting will help develop new strategies to prevent and treat this debilitating condition. PMID:20473154

  10. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    PubMed Central

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  11. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions.

    PubMed

    Holeček, Milan

    2017-08-01

    Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the essential amino acid leucine that has been reported to have anabolic effects on protein metabolism. The aims of this article were to summarize the results of studies of the effects of HMB on skeletal muscle and to examine the evidence for the rationale to use HMB as a nutritional supplement to exert beneficial effects on muscle mass and function in various conditions of health and disease. The data presented here indicate that the beneficial effects of HMB have been well characterized in strength-power and endurance exercise. HMB attenuates exercise-induced muscle damage and enhances muscle hypertrophy and strength, aerobic performance, resistance to fatigue, and regenerative capacity. HMB is particularly effective in untrained individuals who are exposed to strenuous exercise and in trained individuals who are exposed to periods of high physical stress. The low effectiveness of HMB in strength-trained athletes could be due to the suppression of the proteolysis that is induced by the adaptation to training, which may blunt the effects of HMB. Studies performed with older people have demonstrated that HMB can attenuate the development of sarcopenia in elderly subjects and that the optimal effects of HMB on muscle growth and strength occur when it is combined with exercise. Studies performed under in vitro conditions and in various animal models suggest that HMB may be effective in treatment of muscle wasting in various forms of cachexia. However, there are few clinical reports of the effects of HMB on muscle wasting in cachexia; in addition, most of these studies evaluated the therapeutic potential of combinations of various agents. Therefore, it has not been possible to determine whether HMB was effective or if there was a synergistic effect. Although most of the endogenous HMB is produced in the liver, there are no reports regarding the levels and the effects of HMB supplementation in subjects with

  12. Mechanisms Regulating Neuromuscular Junction Development and Function and Causes of Muscle Wasting.

    PubMed

    Tintignac, Lionel A; Brenner, Hans-Rudolf; Rüegg, Markus A

    2015-07-01

    The neuromuscular junction is the chemical synapse between motor neurons and skeletal muscle fibers. It is designed to reliably convert the action potential from the presynaptic motor neuron into the contraction of the postsynaptic muscle fiber. Diseases that affect the neuromuscular junction may cause failure of this conversion and result in loss of ambulation and respiration. The loss of motor input also causes muscle wasting as muscle mass is constantly adapted to contractile needs by the balancing of protein synthesis and protein degradation. Finally, neuromuscular activity and muscle mass have a major impact on metabolic properties of the organisms. This review discusses the mechanisms involved in the development and maintenance of the neuromuscular junction, the consequences of and the mechanisms involved in its dysfunction, and its role in maintaining muscle mass during aging. As life expectancy is increasing, loss of muscle mass during aging, called sarcopenia, has emerged as a field of high medical need. Interestingly, aging is also accompanied by structural changes at the neuromuscular junction, suggesting that the mechanisms involved in neuromuscular junction maintenance might be disturbed during aging. In addition, there is now evidence that behavioral paradigms and signaling pathways that are involved in longevity also affect neuromuscular junction stability and sarcopenia. Copyright © 2015 the American Physiological Society.

  13. Spermine oxidase maintains basal skeletal muscle gene expression and fiber size and is strongly repressed by conditions that cause skeletal muscle atrophy

    PubMed Central

    Bongers, Kale S.; Fox, Daniel K.; Kunkel, Steven D.; Stebounova, Larissa V.; Murry, Daryl J.; Pufall, Miles A.; Ebert, Scott M.; Dyle, Michael C.; Bullard, Steven A.; Dierdorff, Jason M.

    2014-01-01

    Skeletal muscle atrophy is a common and debilitating condition that remains poorly understood at the molecular level. To better understand the mechanisms of muscle atrophy, we used mouse models to search for a skeletal muscle protein that helps to maintain muscle mass and is specifically lost during muscle atrophy. We discovered that diverse causes of muscle atrophy (limb immobilization, fasting, muscle denervation, and aging) strongly reduced expression of the enzyme spermine oxidase. Importantly, a reduction in spermine oxidase was sufficient to induce muscle fiber atrophy. Conversely, forced expression of spermine oxidase increased muscle fiber size in multiple models of muscle atrophy (immobilization, fasting, and denervation). Interestingly, the reduction of spermine oxidase during muscle atrophy was mediated by p21, a protein that is highly induced during muscle atrophy and actively promotes muscle atrophy. In addition, we found that spermine oxidase decreased skeletal muscle mRNAs that promote muscle atrophy (e.g., myogenin) and increased mRNAs that help to maintain muscle mass (e.g., mitofusin-2). Thus, in healthy skeletal muscle, a relatively low level of p21 permits expression of spermine oxidase, which helps to maintain basal muscle gene expression and fiber size; conversely, during conditions that cause muscle atrophy, p21 expression rises, leading to reduced spermine oxidase expression, disruption of basal muscle gene expression, and muscle fiber atrophy. Collectively, these results identify spermine oxidase as an important positive regulator of muscle gene expression and fiber size, and elucidate p21-mediated repression of spermine oxidase as a key step in the pathogenesis of skeletal muscle atrophy. PMID:25406264

  14. THE RENIN-ANGIOTENSIN SYSTEM AND THE BIOLOGY OF SKELETAL MUSCLE: MECHANISMS OF MUSCLE WASTING IN CHRONIC DISEASE STATES.

    PubMed

    Delafontaine, Patrice; Yoshida, Tadashi

    2016-01-01

    Sarcopenia and cachexia are muscle-wasting syndromes associated with aging and with many chronic diseases such as congestive heart failure, diabetes, cancer, chronic obstructive pulmonary disease, and renal failure. While mechanisms are complex, these conditions are often accompanied by elevated angiotensin II (Ang II). We found that Ang II infusion in rodents leads to skeletal muscle wasting via alterations in insulin-like growth factor-1 signaling, increased apoptosis, enhanced muscle protein breakdown via the ubiquitin-proteasome system, and decreased appetite resulting from downregulation of hypothalamic orexigenic neuropeptides orexin and neuropeptide Y. Furthermore, Ang II inhibits skeletal muscle stem cell proliferation, leading to lowered muscle regenerative capacity. Distinct stem cell Ang II receptor subtypes are critical for regulation of muscle regeneration. In ischemic mouse congestive heart failure model skeletal muscle wasting and attenuated muscle regeneration are Ang II dependent. These data suggest that the renin-angiotensin system plays a critical role in mechanisms underlying cachexia in chronic disease states.

  15. Molecular mechanisms and treatment targets of muscle wasting and cachexia in heart failure: an overview.

    PubMed

    Ebner, Nicole; Elsner, Sebastian; Springer, Jochen; von Haehling, Stephan

    2014-03-01

    This article aims to describe molecular pathways involved in the development of muscle wasting and cachexia, diagnostic possibilities, and potential treatments that have seen clinical testing in recent heart failure trials. An understanding of the specific changes that cause an anabolic-catabolic imbalance is an essential first step in the development of pharmaceutical intervention strategies aimed at blocking muscle wasting. Skeletal muscle mass and muscle strength are the most important determinants of exercise capacity in patients with heart failure. In contrast to cachexia, muscle wasting is not usually associated with weight loss, implying the need for sophisticated assessment methods to correctly diagnose muscle wasting, for example the use of computed tomography, magnetic resonance imaging, or dual energy X-ray absorptiometry. Simpler techniques such as handgrip strength, exercise testing, or even a biomarker may help in determining patients with a high pre-test probability of muscle wasting. Despite intensive research efforts in the field of muscle wasting during the last couple of decades, no effective treatment of muscle wasting currently exists other than exercise training. This situation remains true even though study of the molecular pathways involved in muscle wasting suggests many therapeutic targets. Easily applicable diagnostic tools may help to identify patients at risk of developing muscle wasting.

  16. The emerging role of skeletal muscle oxidative metabolism as a biological target and cellular regulator of cancer-induced muscle wasting.

    PubMed

    Carson, James A; Hardee, Justin P; VanderVeen, Brandon N

    2016-06-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle's metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting?

    PubMed

    Sakkas, Giorgos K; Schambelan, Morris; Mulligan, Kathleen

    2009-11-01

    Weight loss and low BMI due to an underlying illness have been associated with increased mortality, reduced functional capacity, and diminished quality of life. There is a need for well tolerated, long-term approaches to maintain body weight in patients with cachexia or wasting. The purpose of this review is to highlight the scientific and clinical evidence derived from the recent literature investigating the rationale for and potential medical use of creatine supplementation in patients with cachexia or wasting. Some studies have demonstrated that supplementation with creatine can increase creatine reserves in skeletal muscle and increase muscle mass and performance in various disease states that affect muscle size and function. The mechanisms underlying these effects are not clear. It has been suggested that creatine supplementation may increase intramuscular phosphocreatine stores and promote more rapid recovery of adenosine triphosphate levels following exercise, thus allowing users to exercise for longer periods or at higher intensity levels. Other hypothesized mechanisms include attenuation of proinflammatory cytokines, stimulation of satellite cell proliferation and upregulation of genes that promote protein synthesis and cell repair. Creatine is a generally well tolerated, low-cost, over-the-counter nutritional supplement that shows potential in improving lean body mass and functionality in patients with wasting diseases. However, placebo-controlled studies have shown variable effects, with improvements in some and not in others. Additional studies with longer follow-up are required to identify the populations that might benefit most from creatine supplementation.

  18. Impact of supplementation with amino acids or their metabolites on muscle wasting in patients with critical illness or other muscle wasting illness: a systematic review.

    PubMed

    Wandrag, L; Brett, S J; Frost, G; Hickson, M

    2015-08-01

    Muscle wasting during critical illness impairs recovery. Dietary strategies to minimise wasting include nutritional supplements, particularly essential amino acids. We reviewed the evidence on enteral supplementation with amino acids or their metabolites in the critically ill and in muscle wasting illness with similarities to critical illness, aiming to assess whether this intervention could limit muscle wasting in vulnerable patient groups. Citation databases, including MEDLINE, Web of Knowledge, EMBASE, the meta-register of controlled trials and the Cochrane Collaboration library, were searched for articles from 1950 to 2013. Search terms included 'critical illness', 'muscle wasting', 'amino acid supplementation', 'chronic obstructive pulmonary disease', 'chronic heart failure', 'sarcopenia' and 'disuse atrophy'. Reviews, observational studies, sport nutrition, intravenous supplementation and studies in children were excluded. One hundred and eighty studies were assessed for eligibility and 158 were excluded. Twenty-two studies were graded according to standardised criteria using the GRADE methodology: four in critical care populations, and 18 from other clinically relevant areas. Methodologies, interventions and outcome measures used were highly heterogeneous and meta-analysis was not appropriate. Methodology and quality of studies were too varied to draw any firm conclusion. Dietary manipulation with leucine enriched essential amino acids (EAA), β-hydroxy-β-methylbutyrate and creatine warrant further investigation in critical care; EAA has demonstrated improvements in body composition and nutritional status in other groups with muscle wasting illness. High-quality research is required in critical care before treatment recommendations can be made. © 2014 The British Dietetic Association Ltd.

  19. Myoglobin plasma level related to muscle mass and fiber composition: a clinical marker of muscle wasting?

    PubMed

    Weber, Marc-André; Kinscherf, Ralf; Krakowski-Roosen, Holger; Aulmann, Michael; Renk, Hanna; Künkele, Annette; Edler, Lutz; Kauczor, Hans-Ulrich; Hildebrandt, Wulf

    2007-08-01

    Progressive muscle wasting is a central feature of cancer-related cachexia and has been recognized as a determinant of poor prognosis and quality of life. However, until now, no easily assessable clinical marker exists that allows to predict or to track muscle wasting. The present study evaluated the potential of myoglobin (MG) plasma levels to indicate wasting of large locomotor muscles and, moreover, to reflect the loss of MG-rich fiber types, which are most relevant for daily performance. In 17 cancer-cachectic patients (weight loss 22%) and 27 age- and gender-matched healthy controls, we determined plasma levels of MG and creatine kinase (CK), maximal quadriceps muscle cross-sectional area (CSA) by magnetic resonance imaging, muscle morphology and fiber composition in biopsies from the vastus lateralis muscle, body cell mass (BCM) by impedance technique as well as maximal oxygen uptake (VO(2)max). In cachectic patients, plasma MG, muscle CSA, BCM, and VO(2)max were 30-35% below control levels. MG showed a significant positive correlation to total muscle CSA (r = 0.65, p < 0.001) and to the CSA fraction formed by type 1 and 2a fibers (r = 0.80, p < 0.001). However, when adjusted for body height and age by multiple regression, MG yielded a largely improved prediction of total CSA (multiple r = 0.83, p < 0.001) and of fiber type 1 and 2a CSA (multiple r = 0.89, p < 0.001). The correlations between CK and these muscle parameters were weaker, and elevated CK values were observed in 20% of control subjects despite a prior abstinence from exercise for 5 days. In conclusion, plasma MG, when adjusted for anthropometric parameters unaffected by weight, may be considered as a novel marker of muscle mass (CSA) indicating best the mass of MG-rich type 1 and 2a fibers as well as VO(2)max as an important functional readout. CK plasma levels appear to be less reliable because prolonged increases are observed in even subclinical myopathies or after exercise. Notably, cancer

  20. Emerging therapies for the treatment of skeletal muscle wasting in chronic obstructive pulmonary disease.

    PubMed

    Passey, Samantha L; Hansen, Michelle J; Bozinovski, Steven; McDonald, Christine F; Holland, Anne E; Vlahos, Ross

    2016-10-01

    Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that constitutes a major global health burden. A significant proportion of patients experience skeletal muscle wasting and loss of strength as a comorbidity of their COPD, a condition that severely impacts on their quality of life and survival. At present, the lung pathology is considered to be largely irreversible; however, the inherent adaptability of muscle tissue offers therapeutic opportunities to tackle muscle wasting and potentially reverse or delay the progression of this aspect of the disease, to improve patients' quality of life. Muscle wasting in COPD is complex, with contributions from a number of factors including inflammatory cytokines, oxidative stress, growth and anabolic hormones, nutritional status, and physical activity. In this review, we discuss current and emerging therapeutic approaches to treat muscle wasting in COPD, including a number of pharmacological therapies that are in development for muscle atrophy in other pathological states that could be of relevance for treating muscle wasting in COPD patients. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia.

    PubMed

    Bonetto, Andrea; Aydogdu, Tufan; Kunzevitzky, Noelia; Guttridge, Denis C; Khuri, Sawsan; Koniaris, Leonidas G; Zimmers, Teresa A

    2011-01-01

    Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such that amino acids liberated by increased proteolysis in cachexia are

  2. STAT3 Activation in Skeletal Muscle Links Muscle Wasting and the Acute Phase Response in Cancer Cachexia

    PubMed Central

    Kunzevitzky, Noelia; Guttridge, Denis C.; Khuri, Sawsan; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2011-01-01

    Background Cachexia, or weight loss despite adequate nutrition, significantly impairs quality of life and response to therapy in cancer patients. In cancer patients, skeletal muscle wasting, weight loss and mortality are all positively associated with increased serum cytokines, particularly Interleukin-6 (IL-6), and the presence of the acute phase response. Acute phase proteins, including fibrinogen and serum amyloid A (SAA) are synthesized by hepatocytes in response to IL-6 as part of the innate immune response. To gain insight into the relationships among these observations, we studied mice with moderate and severe Colon-26 (C26)-carcinoma cachexia. Methodology/Principal Findings Moderate and severe C26 cachexia was associated with high serum IL-6 and IL-6 family cytokines and highly similar patterns of skeletal muscle gene expression. The top canonical pathways up-regulated in both were the complement/coagulation cascade, proteasome, MAPK signaling, and the IL-6 and STAT3 pathways. Cachexia was associated with increased muscle pY705-STAT3 and increased STAT3 localization in myonuclei. STAT3 target genes, including SOCS3 mRNA and acute phase response proteins, were highly induced in cachectic muscle. IL-6 treatment and STAT3 activation both also induced fibrinogen in cultured C2C12 myotubes. Quantitation of muscle versus liver fibrinogen and SAA protein levels indicates that muscle contributes a large fraction of serum acute phase proteins in cancer. Conclusions/Significance These results suggest that the STAT3 transcriptome is a major mechanism for wasting in cancer. Through IL-6/STAT3 activation, skeletal muscle is induced to synthesize acute phase proteins, thus establishing a molecular link between the observations of high IL-6, increased acute phase response proteins and muscle wasting in cancer. These results suggest a mechanism by which STAT3 might causally influence muscle wasting by altering the profile of genes expressed and translated in muscle such

  3. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    PubMed

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  4. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management.

    PubMed

    Vitorino, Rui; Moreira-Gonçalves, Daniel; Ferreira, Rita

    2015-05-01

    Cancer cachexia represents a critical problem in clinical oncology due to its negative impact on patients' quality of life, therapeutic tolerance and survival. This paraneoplasic condition is characterized by significant weight loss mainly from skeletal muscle wasting. Understanding the molecular mechanisms underlying cancer cachexia is urgent in order to develop and apply efficient therapeutic strategies. Mitochondrial dysfunction is an early event in cancer-induced muscle wasting. Decreased ability for ATP synthesis, impaired mitochondrial biogenesis, increased oxidative stress, impairment of protein quality control systems, increased susceptibility to mitophagy and to apoptosis were all shown to mediate contractile dysfunction and wasting in cancer cachexia. Anti-inflammatory therapies as well as exercise training seem to counteract muscle mass loss in part by improving mitochondrial functionality. Given its central role in muscle wasting, mitochondrial plasticity should be viewed as a key therapeutic target for the preservation of muscle mass in cancer cachexia. Few studies have addressed the mitochondrial events modulated by cancer cachexia and contradictory data were reported. Scarcer studies have focused on the mitochondrial adaptation to anticancer cachexia strategies.

  5. Muscle wasting and cachexia in heart failure: mechanisms and therapies.

    PubMed

    von Haehling, Stephan; Ebner, Nicole; Dos Santos, Marcelo R; Springer, Jochen; Anker, Stefan D

    2017-06-01

    Body wasting is a serious complication that affects a large proportion of patients with heart failure. Muscle wasting, also known as sarcopenia, is the loss of muscle mass and strength, whereas cachexia describes loss of weight. After reaching guideline-recommended doses of heart failure therapies, the most promising approach to treating body wasting seems to be combined therapy that includes exercise, nutritional counselling, and drug treatment. Nutritional considerations include avoiding excessive salt and fluid intake, and replenishment of deficiencies in trace elements. Administration of omega-3 polyunsaturated fatty acids is beneficial in selected patients. High-calorific nutritional supplements can also be useful. The prescription of aerobic exercise training that provokes mild or moderate breathlessness has good scientific support. Drugs with potential benefit in the treatment of body wasting that have been tested in clinical studies in patients with heart failure include testosterone, ghrelin, recombinant human growth hormone, essential amino acids, and β 2 -adrenergic receptor agonists. In this Review, we summarize the pathophysiological mechanisms of muscle wasting and cachexia in heart failure, and highlight the potential treatment strategies. We aim to provide clinicians with the relevant information on body wasting to understand and treat these conditions in patients with heart failure.

  6. Attenuation of skeletal muscle wasting with recombinant human growth hormone secreted from a tissue-engineered bioartificial muscle

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Del Tatto, M.; Shansky, J.; Goldstein, L.; Russell, K.; Genes, N.; Chromiak, J.; Yamada, S.

    1998-01-01

    Skeletal muscle wasting is a significant problem in elderly and debilitated patients. Growth hormone (GH) is an anabolic growth factor for skeletal muscle but is difficult to deliver in a therapeutic manner by injection owing to its in vivo instability. A novel method is presented for the sustained secretion of recombinant human GH (rhGH) from genetically modified skeletal muscle implants, which reduces host muscle wasting. Proliferating murine C2C12 skeletal myoblasts stably transduced with the rhGH gene were tissue engineered in vitro into bioartificial muscles (C2-BAMs) containing organized postmitotic myofibers secreting 3-5 microg of rhGH/day in vitro. When implanted subcutaneously into syngeneic mice, C2-BAMs delivered a sustained physiologic dose of 2.5 to 11.3 ng of rhGH per milliliter of serum. rhGH synthesized and secreted by the myofibers was in the 22-kDa monomeric form and was biologically active, based on downregulation of a GH-sensitive protein synthesized in the liver. Skeletal muscle disuse atrophy was induced in mice by hindlimb unloading, causing the fast plantaris and slow soleus muscles to atrophy by 21 to 35% ( < 0.02). This atrophy was significantly attenuated 41 to 55% (p < 0.02) in animals that received C2-BAM implants, but not in animals receiving daily injections of purified rhGH (1 mg/kg/day). These data support the concept that delivery of rhGH from BAMs may be efficacious in treating muscle-wasting disorders.

  7. Tumor induces muscle wasting in mice through releasing extracellular Hsp70 and Hsp90.

    PubMed

    Zhang, Guohua; Liu, Zhelong; Ding, Hui; Zhou, Yong; Doan, Hoang Anh; Sin, Ka Wai Thomas; Zhu, Zhiren J; Flores, Rene; Wen, Yefei; Gong, Xing; Liu, Qingyun; Li, Yi-Ping

    2017-09-19

    Cachexia, characterized by muscle wasting, is a major contributor to cancer-related mortality. However, the key cachexins that mediate cancer-induced muscle wasting remain elusive. Here, we show that tumor-released extracellular Hsp70 and Hsp90 are responsible for tumor's capacity to induce muscle wasting. We detected high-level constitutive release of Hsp70 and Hsp90 associated with extracellular vesicles (EVs) from diverse cachexia-inducing tumor cells, resulting in elevated serum levels in mice. Neutralizing extracellular Hsp70/90 or silencing Hsp70/90 expression in tumor cells abrogates tumor-induced muscle catabolism and wasting in cultured myotubes and in mice. Conversely, administration of recombinant Hsp70 and Hsp90 recapitulates the catabolic effects of tumor. In addition, tumor-released Hsp70/90-expressing EVs are necessary and sufficient for tumor-induced muscle wasting. Further, Hsp70 and Hsp90 induce muscle catabolism by activating TLR4, and are responsible for elevation of circulating cytokines. These findings identify tumor-released circulating Hsp70 and Hsp90 as key cachexins causing muscle wasting in mice.Cachexia affects many cancer patients causing weight loss and increasing mortality. Here, the authors identify extracellular Hsp70 and Hsp90, either in soluble form or secreted as part of exosomes from tumor cells, to be responsible for tumor induction of cachexia.

  8. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders.

    PubMed

    Smith, Rosamund C; Lin, Boris K

    2013-12-01

    This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume.In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient.Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.

  9. Muscle progenitor cells proliferation doesn't sufficiently contribute to maintaining stretched soleus muscle mass during gravitational unloading

    NASA Astrophysics Data System (ADS)

    Tarakina, M. V.; Turtikova, O. V.; Nemirovskaya, T. L.; Kokontcev, A. A.; Shenkman, B. S.

    Skeletal muscle work hypertrophy is usually connected with muscle progenitor satellite cells (SC) activation with subsequent incorporation of their nuclei into myofibers. Passive stretch of unloaded muscle was earlier established to prevent atrophic processes and is accompanied by enhanced protein synthesis. We hypothesized that elimination of SC proliferation capacity by γ-irradiation would partly avert stretched muscle fiber capability to maintain their size under the conditions of gravitational unloading. To assess the role of muscle progenitor (satellite) cells in development of passive stretch preventive effect SC proliferation was suppressed by local exposing to ionized radiation (2500 rad), subsequent hindlimb suspension or hindlimb suspension with concomitant passive stretch were carried out. Reduction of myofiber cross-sectional area and decrease in myonuclei number accompanying unloaded muscle atrophy were completely abolished by passive stretch both in irradiated and sham-treated animals. We conclude that SC did not make essential contribution to passive stretch preventive action under the conditions of simulated weightlessness.

  10. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training

    PubMed Central

    Bowen, T Scott; Schuler, Gerhard; Adams, Volker

    2015-01-01

    Skeletal muscle provides a fundamental basis for human function, enabling locomotion and respiration. Transmission of external stimuli to intracellular effector proteins via signalling pathways is a highly regulated and controlled process that determines muscle mass by balancing protein synthesis and protein degradation. An impaired balance between protein synthesis and breakdown leads to the development of specific myopathies. Sarcopenia and cachexia represent two distinct muscle wasting diseases characterized by inflammation and oxidative stress, where specific regulating molecules associated with wasting are either activated (e.g. members of the ubiquitin-proteasome system and myostatin) or repressed (e.g. insulin-like growth factor 1 and PGC-1α). At present, no therapeutic interventions are established to successfully treat muscle wasting in sarcopenia and cachexia. Exercise training, however, represents an intervention that can attenuate or even reverse the process of muscle wasting, by exerting anti-inflammatory and anti-oxidative effects that are able to attenuate signalling pathways associated with protein degradation and activate molecules associated with protein synthesis. This review will therefore discuss the molecular mechanisms associated with the pathology of muscle wasting in both sarcopenia and cachexia, as well as highlighting the intracellular effects of exercise training in attenuating the debilitating loss of muscle mass in these specific conditions. PMID:26401465

  11. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training.

    PubMed

    Bowen, T Scott; Schuler, Gerhard; Adams, Volker

    2015-09-01

    Skeletal muscle provides a fundamental basis for human function, enabling locomotion and respiration. Transmission of external stimuli to intracellular effector proteins via signalling pathways is a highly regulated and controlled process that determines muscle mass by balancing protein synthesis and protein degradation. An impaired balance between protein synthesis and breakdown leads to the development of specific myopathies. Sarcopenia and cachexia represent two distinct muscle wasting diseases characterized by inflammation and oxidative stress, where specific regulating molecules associated with wasting are either activated (e.g. members of the ubiquitin-proteasome system and myostatin) or repressed (e.g. insulin-like growth factor 1 and PGC-1α). At present, no therapeutic interventions are established to successfully treat muscle wasting in sarcopenia and cachexia. Exercise training, however, represents an intervention that can attenuate or even reverse the process of muscle wasting, by exerting anti-inflammatory and anti-oxidative effects that are able to attenuate signalling pathways associated with protein degradation and activate molecules associated with protein synthesis. This review will therefore discuss the molecular mechanisms associated with the pathology of muscle wasting in both sarcopenia and cachexia, as well as highlighting the intracellular effects of exercise training in attenuating the debilitating loss of muscle mass in these specific conditions.

  12. Naked mole-rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age

    PubMed Central

    Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G

    2016-01-01

    The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades. PMID:27997359

  13. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders

    PubMed Central

    Smith, Rosamund C.; Lin, Boris K.

    2013-01-01

    Purpose of review This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. Recent findings There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume. In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient. Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Summary Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders. PMID:24157714

  14. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse

    NASA Technical Reports Server (NTRS)

    Tidball, James G.; Spencer, Melissa J.

    2002-01-01

    Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.

  15. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse

    PubMed Central

    Tidball, James G; Spencer, Melissa J

    2002-01-01

    Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease. PMID:12482888

  16. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse.

    PubMed

    Tidball, James G; Spencer, Melissa J

    2002-12-15

    Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.

  17. A mechanism for trauma induced muscle wasting and immune dysfunction

    NASA Astrophysics Data System (ADS)

    Madihally, S.; Toner, M.; Yarmush, M.; Mitchell, R.

    A diverse physiological conditions lead to a hypercatabolic state marked by the loss of proteins, primarily derived from skeletal muscle. The sustained loss of proteins results in loss of muscle mass and strength, poor healing, and long-term hospitalization. These problems are further compounded by the deterioration of immunity to infection which is a leading cause of morbidity and mortality of traumatic patients. In an attempt to understand the signal propagation mechanism(s), we tested the role of Interferon-? (IFN-? ) in an animal burn injury model; IFN-? is best conceptualized as a macrophage activating protein and known to modulate a variety of intracellular processes potentially relevant to muscle wasting and immune dysfunction. Mice congenitally -deficient in IFN-? , and IFN-? -Receptor, and wild type (WT) animals treated with IFN-? neutralizing antibody received either a 20% total body surface area burn or a control sham treatment. At days 1, 2, and 7 following treatment, skeletal muscle, peripheral blood, and spleen were harvested from both groups. Overall body weight, protein turnovers, changes in the lymphocyte subpopulations and alterations in the major histocompatibility complex I expression (MHC I) and proliferation capacity of lymphocytes was measured using mixed lymphocyte reaction (MLR). These results indicate that we can prevent both muscle wasting and immune dysfunction. Based on these observations and our previous other animal model results (using insulin therapy), a novel mechanism of interactions leading to muscle wasting and immune dysfunction will be discussed. Further, implications of these findings on future research and clinical therapies will be discussed in detail.

  18. PABPN1-Dependent mRNA Processing Induces Muscle Wasting

    PubMed Central

    Raz, Yotam; van Putten, Maaike; Paniagua-Soriano, Guillem; Krom, Yvonne D.; Florea, Bogdan I.; Raz, Vered

    2016-01-01

    Poly(A) Binding Protein Nuclear 1 (PABPN1) is a multifunctional regulator of mRNA processing, and its expression levels specifically decline in aging muscles. An expansion mutation in PABPN1 is the genetic cause of oculopharyngeal muscle dystrophy (OPMD), a late onset and rare myopathy. Moreover, reduced PABPN1 expression correlates with symptom manifestation in OPMD. PABPN1 regulates alternative polyadenylation site (PAS) utilization. However, the impact of PAS utilization on cell and tissue function is poorly understood. We hypothesized that altered PABPN1 expression levels is an underlying cause of muscle wasting. To test this, we stably down-regulated PABPN1 in mouse tibialis anterior (TA) muscles by localized injection of adeno-associated viruses expressing shRNA to PABPN1 (shPab). We found that a mild reduction in PABPN1 levels causes muscle pathology including myofiber atrophy, thickening of extracellular matrix and myofiber-type transition. Moreover, reduced PABPN1 levels caused a consistent decline in distal PAS utilization in the 3’-UTR of a subset of OPMD-dysregulated genes. This alternative PAS utilization led to up-regulation of Atrogin-1, a key muscle atrophy regulator, but down regulation of proteasomal genes. Additionally reduced PABPN1 levels caused a reduction in proteasomal activity, and transition in MyHC isotope expression pattern in myofibers. We suggest that PABPN1-mediated alternative PAS utilization plays a central role in aging-associated muscle wasting. PMID:27152426

  19. Myostatin gene inactivation prevents skeletal muscle wasting in cancer.

    PubMed

    Gallot, Yann S; Durieux, Anne-Cécile; Castells, Josiane; Desgeorges, Marine M; Vernus, Barbara; Plantureux, Léa; Rémond, Didier; Jahnke, Vanessa E; Lefai, Etienne; Dardevet, Dominique; Nemoz, Georges; Schaeffer, Laurent; Bonnieu, Anne; Freyssenet, Damien G

    2014-12-15

    Cachexia is a muscle-wasting syndrome that contributes significantly to morbidity and mortality of many patients with advanced cancers. However, little is understood about how the severe loss of skeletal muscle characterizing this condition occurs. In the current study, we tested the hypothesis that the muscle protein myostatin is involved in mediating the pathogenesis of cachexia-induced muscle wasting in tumor-bearing mice. Myostatin gene inactivation prevented the severe loss of skeletal muscle mass induced in mice engrafted with Lewis lung carcinoma (LLC) cells or in Apc(Min) (/+) mice, an established model of colorectal cancer and cachexia. Mechanistically, myostatin loss attenuated the activation of muscle fiber proteolytic pathways by inhibiting the expression of atrophy-related genes, MuRF1 and MAFbx/Atrogin-1, along with autophagy-related genes. Notably, myostatin loss also impeded the growth of LLC tumors, the number and the size of intestinal polyps in Apc(Min) (/+) mice, thus strongly increasing survival in both models. Gene expression analysis in the LLC model showed this phenotype to be associated with reduced expression of genes involved in tumor metabolism, activin signaling, and apoptosis. Taken together, our results reveal an essential role for myostatin in the pathogenesis of cancer cachexia and link this condition to tumor growth, with implications for furthering understanding of cancer as a systemic disease. ©2014 American Association for Cancer Research.

  20. Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting

    PubMed Central

    Nury, David; Doucet, Christine; Coux, Olivier

    2007-01-01

    Muscle wasting, characterized by the loss of protein mass in myofibers, is in most cases largely due to the activation of intracellular protein degradation by the ubiquitin proteasome system (UPS). During the last decade, mechanisms contributing to this activation have been unraveled and key mediators of this process identified. Even though much remains to be understood, the available information already suggests screens for new compounds inhibiting these mechanisms and highlights the potential for pharmaceutical drugs able to treat muscle wasting when it becomes deleterious. This review presents an overview of the main pathways contributing to UPS activation in muscle and describes the present state of efforts made to develop new strategies aimed at blocking or slowing muscle wasting. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ). PMID:18047744

  1. Selective androgen receptor modulators for the prevention and treatment of muscle wasting associated with cancer.

    PubMed

    Dalton, James T; Taylor, Ryan P; Mohler, Michael L; Steiner, Mitchell S

    2013-12-01

    This review highlights selective androgen receptor modulators (SARMs) as emerging agents in late-stage clinical development for the prevention and treatment of muscle wasting associated with cancer. Muscle wasting, including a loss of skeletal muscle, is a cancer-related symptom that begins early in the progression of cancer and affects a patient's quality of life, ability to tolerate chemotherapy, and survival. SARMs increase muscle mass and improve physical function in healthy and diseased individuals, and potentially may provide a new therapy for muscle wasting and cancer cachexia. SARMs modulate the same anabolic pathways targeted with classical steroidal androgens, but within the dose range in which expected effects on muscle mass and function are seen androgenic side-effects on prostate, skin, and hair have not been observed. Unlike testosterone, SARMs are orally active, nonaromatizable, nonvirilizing, and tissue-selective anabolic agents. Recent clinical efficacy data for LGD-4033, MK-0773, MK-3984, and enobosarm (GTx-024, ostarine, and S-22) are reviewed. Enobosarm, a nonsteroidal SARM, is the most well characterized clinically, and has consistently demonstrated increases in lean body mass and better physical function across several populations along with a lower hazard ratio for survival in cancer patients. Completed in May 2013, results for the Phase III clinical trials entitled Prevention and treatment Of muscle Wasting in patiEnts with Cancer1 (POWER1) and POWER2 evaluating enobosarm for the prevention and treatment of muscle wasting in patients with nonsmall cell lung cancer will be available soon, and will potentially establish a SARM, enobosarm, as the first drug for the prevention and treatment of muscle wasting in cancer patients.

  2. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    PubMed Central

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  3. Muscle wasting in osteoarthritis model induced by anterior cruciate ligament transection.

    PubMed

    Silva, Jordana Miranda de Souza; Alabarse, Paulo Vinicius Gil; Teixeira, Vivian de Oliveira Nunes; Freitas, Eduarda Correa; de Oliveira, Francine Hehn; Chakr, Rafael Mendonça da Silva; Xavier, Ricardo Machado

    2018-01-01

    This study aimed to investigate the molecular pathways involved in muscle wasting in an animal model of osteoarthritis (OA) induced by anterior cruciate ligament transection (ACLT) in rats. Reduction of protein syntheses, increased proteolysis and impaired muscle regeneration are important pathways related to muscle wasting, and myogenin, MyoD, myostatin and MuRF-1 are some of their markers. Female Wistar rats were allocated into two groups: OA (submitted to the ACLT) and SHAM (submitted to surgery without ACLT). Nociception, spontaneous exploratory locomotion and body weight of animals were evaluated weekly. Twelve weeks after the disease induction, animals were euthanized, and the right knee joints were collected. Gastrocnemius muscle of the right hind paw were dissected and weighed. Gastrocnemius was used for evaluation of muscle atrophy and expression of IL-1β, TNF-α, Pax7, myogenin, MyoD, myostatin and MuRF-1. Histopathology of the knee confirmed the development of the disease in animals of OA group. Gastrocnemius of OA animals showed a reduction of about 10% in area and an increased IL-1β expression compared to animals of SHAM group. Expression of myostatin was increased in OA group, while myogenin expression was decreased. TNF-α, Pax7, MuRF-1 and MyoD expression was similar in both OA and SHAM groups. Nociception was significantly elevated in OA animals in the last two weeks of experimental period. Spontaneous exploratory locomotion, body weight and weight of gastrocnemius showed no difference between OA and SHAM groups. Gastrocnemius atrophy in OA induced by ACLT involves elevated expression of IL-1β within the muscle, as well as increased expression of myostatin and decreased expression of myogenin. Therefore, muscle wasting may be linked to impaired muscle regeneration.

  4. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia.

    PubMed

    Bonetto, Andrea; Aydogdu, Tufan; Jin, Xiaoling; Zhang, Zongxiu; Zhan, Rui; Puzis, Leopold; Koniaris, Leonidas G; Zimmers, Teresa A

    2012-08-01

    Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C(2)C(12) myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia.

  5. JAK/STAT3 pathway inhibition blocks skeletal muscle wasting downstream of IL-6 and in experimental cancer cachexia

    PubMed Central

    Bonetto, Andrea; Aydogdu, Tufan; Jin, Xiaoling; Zhang, Zongxiu; Zhan, Rui; Puzis, Leopold; Koniaris, Leonidas G.

    2012-01-01

    Cachexia, the metabolic dysregulation leading to sustained loss of muscle and adipose tissue, is a devastating complication of cancer and other chronic diseases. Interleukin-6 and related cytokines are associated with muscle wasting in clinical and experimental cachexia, although the mechanisms by which they might induce muscle wasting are unknown. One pathway activated strongly by IL-6 family ligands is the JAK/STAT3 pathway, the function of which has not been evaluated in regulation of skeletal muscle mass. Recently, we showed that skeletal muscle STAT3 phosphorylation, nuclear localization, and target gene expression are activated in C26 cancer cachexia, a model with high IL-6 family ligands. Here, we report that STAT3 activation is a common feature of muscle wasting, activated in muscle by IL-6 in vivo and in vitro and by different types of cancer and sterile sepsis. Moreover, STAT3 activation proved both necessary and sufficient for muscle wasting. In C2C12 myotubes and in mouse muscle, mutant constitutively activated STAT3-induced muscle fiber atrophy and exacerbated wasting in cachexia. Conversely, inhibiting STAT3 pharmacologically with JAK or STAT3 inhibitors or genetically with dominant negative STAT3 and short hairpin STAT3 reduced muscle atrophy downstream of IL-6 or cancer. These results indicate that STAT3 is a primary mediator of muscle wasting in cancer cachexia and other conditions of high IL-6 family signaling. Thus STAT3 could represent a novel therapeutic target for the preservation of skeletal muscle in cachexia. PMID:22669242

  6. The Drosophila muscle LIM protein, Mlp84B, cooperates with D-titin to maintain muscle structural integrity.

    PubMed

    Clark, Kathleen A; Bland, Jennifer M; Beckerle, Mary C

    2007-06-15

    Muscle LIM protein (MLP) is a cytoskeletal LIM-only protein expressed in striated muscle. Mutations in human MLP are associated with cardiomyopathy; however, the molecular mechanism by which MLP functions is not established. A Drosophila MLP homolog, mlp84B, displays many of the same features as the vertebrate protein, illustrating the utility of the fly for the study of MLP function. Animals lacking Mlp84B develop into larvae with a morphologically intact musculature, but the mutants arrest during pupation with impaired muscle function. Mlp84B displays muscle-specific expression and is a component of the Z-disc and nucleus. Preventing nuclear retention of Mlp84B does not affect its function, indicating that Mlp84B site of action is likely to be at the Z-disc. Within the Z-disc, Mlp84B is colocalized with the N-terminus of D-titin, a protein crucial for sarcomere organization and stretch mechanics. The mlp84B mutants phenotypically resemble weak D-titin mutants. Furthermore, reducing D-titin activity in the mlp84B background leads to pronounced enhancement of the mlp84B muscle defects and loss of muscle structural integrity. The genetic interactions between mlp84B and D-titin reveal a role for Mlp84B in maintaining muscle structural integrity that was not obvious from analysis of the mlp84B mutants themselves, and suggest Mlp84B and D-titin cooperate to stabilize muscle sarcomeres.

  7. The zebrafish dystrophic mutant softy maintains muscle fibre viability despite basement membrane rupture and muscle detachment

    PubMed Central

    Jacoby, Arie S.; Busch-Nentwich, Elisabeth; Bryson-Richardson, Robert J.; Hall, Thomas E.; Berger, Joachim; Berger, Silke; Sonntag, Carmen; Sachs, Caroline; Geisler, Robert; Stemple, Derek L.; Currie, Peter D.

    2009-01-01

    Summary The skeletal muscle basement membrane fulfils several crucial functions during development and in the mature myotome and defects in its composition underlie certain forms of muscular dystrophy. A major component of this extracellular structure is the laminin polymer, which assembles into a resilient meshwork that protects the sarcolemma during contraction. Here we describe a zebrafish mutant, softy, which displays severe embryonic muscle degeneration as a result of initial basement membrane failure. The softy phenotype is caused by a mutation in the lamb2 gene, identifying laminin β2 as an essential component of this basement membrane. Uniquely, softy homozygotes are able to recover and survive to adulthood despite the loss of myofibre adhesion. We identify the formation of ectopic, stable basement membrane attachments as a novel means by which detached fibres are able to maintain viability. This demonstration of a muscular dystrophy model possessing innate fibre viability following muscle detachment suggests basement membrane augmentation as a therapeutic strategy to inhibit myofibre loss. PMID:19736328

  8. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed

    Evans, P D; Siegler, M V

    1982-03-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion.

  9. Ubiquitin-protein ligases in muscle wasting: multiple parallel pathways?

    NASA Technical Reports Server (NTRS)

    Lecker, Stewart H.; Goldberg, A. L. (Principal Investigator)

    2003-01-01

    PURPOSE OF REVIEW: Studies in a wide variety of animal models of muscle wasting have led to the concept that increased protein breakdown via the ubiquitin-proteasome pathway is responsible for the loss of muscle mass seen as muscle atrophy. The complexity of the ubiquitination apparatus has hampered our understanding of how this pathway is activated in atrophying muscles and which ubiquitin-conjugating enzymes in muscle are responsible. RECENT FINDINGS: Recent experiments have shown that two newly identified ubiquitin-protein ligases (E3s), atrogin-1/MAFbx and MURF-1, are critical in the development of muscle atrophy. Other in-vitro studies also implicated E2(14k) and E3alpha, of the N-end rule pathway, as playing an important role in the process. SUMMARY: It seems likely that multiple pathways of ubiquitin conjugation are activated in parallel in atrophying muscle, perhaps to target for degradation specific classes of muscle proteins. The emerging challenge will be to define the protein targets for, as well as inhibitors of, these E3s.

  10. PGC-1α is important for maintaining the balance of muscle mass and myofiber types in unloaded muscle atrophy

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoping; He, Jian; Wang, Fei; Zhang, Peng; Liu, Hongju; Li, Wenjiong

    2016-07-01

    maintaining the balance of muscle mass and myofiber type MHCs in unloaded muscle atrophy via suppressing Smad3 activation. This report may prompt a hopeful therapeutic strategy for maintaining muscle mass and fiber type composition in disused muscle atrophies such as space weightlessness- or immobilization-induced muscle atrophy. Acknowledgments This work was supported by the Natural Sciences Foundation of China (31171144, 81272177 and 31171148), the State Key Laboratory Grant of Space Medicine Fundamentals and Application (SMFA13A01), and the National Key Laboratory Grant of Human Factors Engineering (SYFD140051801).

  11. Melanocortin antagonism ameliorates muscle wasting and inflammation in chronic kidney disease.

    PubMed

    Cheung, Wai W; Mak, Robert H

    2012-11-01

    Aberrant melanocortin signaling has been implicated in the pathogenesis of wasting in chronic kidney disease (CKD). Previously, we demonstrated that agouti-related peptide (AgRP), a melenocortin-4 receptor antagonist, reduced CKD-associated cachexia in CKD mice. Our previous studies with AgRP utilized dual energy X-ray (DXA) densitometry to assess the body composition in mice (Cheung W, Kuo HJ, Markison S, Chen C, Foster AC, Marks DL, Mak RH. J Am Soc Nephrol 18: 2517-2524, 2007; Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. J Clin Invest 115: 1659-1665, 2005). DXA is unable to differentiate water content in mice, and fluid retention in CKD may lead to an overestimate of lean mass. In this study, we employed quantitative magnetic resonance technique to evaluate body composition change following central administration of AgRP in a CKD mouse model. AgRP treatment improved energy expenditure, total body mass, fat mass, and lean body mass in CKD mouse. We also investigated the effect of CKD-associated cachexia on the signaling pathways leading to wasting in skeletal muscle, as well as whether these changes can be ameliorated by central administration of AgRP. AgRP treatment caused an overall decrease in proinflammatory cytokines, which may be one important mechanism of its effects. Muscle wasting in CKD may be due to the activation of proteolytic pathways as well as inhibition of myogenesis and muscle regeneration processes. Our results suggest that these aberrant pathological pathways leading to muscle wasting in CKD mice were ameliorated by central administration of AgRP.

  12. Mechanisms underlying ICU muscle wasting and effects of passive mechanical loading

    PubMed Central

    2012-01-01

    Introduction Critically ill ICU patients commonly develop severe muscle wasting and impaired muscle function, leading to delayed recovery, with subsequent increased morbidity and financial costs, and decreased quality of life for survivors. Critical illness myopathy (CIM) is a frequently observed neuromuscular disorder in ICU patients. Sepsis, systemic corticosteroid hormone treatment and post-synaptic neuromuscular blockade have been forwarded as the dominating triggering factors. Recent experimental results from our group using a unique experimental rat ICU model show that the mechanical silencing associated with CIM is the primary triggering factor. This study aims to unravel the mechanisms underlying CIM, and to evaluate the effects of a specific intervention aiming at reducing mechanical silencing in sedated and mechanically ventilated ICU patients. Methods Muscle gene/protein expression, post-translational modifications (PTMs), muscle membrane excitability, muscle mass measurements, and contractile properties at the single muscle fiber level were explored in seven deeply sedated and mechanically ventilated ICU patients (not exposed to systemic corticosteroid hormone treatment, post-synaptic neuromuscular blockade or sepsis) subjected to unilateral passive mechanical loading for 10 hours per day (2.5 hours, four times) for 9 ± 1 days. Results These patients developed a phenotype considered pathognomonic of CIM; that is, severe muscle wasting and a preferential myosin loss (P < 0.001). In addition, myosin PTMs specific to the ICU condition were observed in parallel with an increased sarcolemmal expression and cytoplasmic translocation of neuronal nitric oxide synthase. Passive mechanical loading for 9 ± 1 days resulted in a 35% higher specific force (P < 0.001) compared with the unloaded leg, although it was not sufficient to prevent the loss of muscle mass. Conclusion Mechanical silencing is suggested to be a primary mechanism underlying CIM; that is

  13. Inducible nitric oxide synthase (iNOS) in muscle wasting syndrome, sarcopenia, and cachexia

    PubMed Central

    Hall, Derek T.; Ma, Jennifer F.; Di Marco, Sergio; Gallouzi, Imed-Eddine

    2011-01-01

    Muscle atrophy—also known as muscle wasting—is a debilitating syndrome that slowly develops with age (sarcopenia) or rapidly appears at the late stages of deadly diseases such as cancer, AIDS, and sepsis (cachexia). Despite the prevalence and the drastic detrimental effects of these two syndromes, there are currently no widely used, effective treatment options for those suffering from muscle wasting. In an attempt to identify potential therapeutic targets, the molecular mechanisms of sarcopenia and cachexia have begun to be elucidated. Growing evidence suggests that inflammatory cytokines may play an important role in the pathology of both syndromes. As one of the key cytokines involved in both sarcopenic and cachectic muscle wasting, tumor necrosis factor α (TNFα) and its downstream effectors provide an enticing target for pharmacological intervention. However, to date, no drugs targeting the TNFα signaling pathway have been successful as a remedial option for the treatment of muscle wasting. Thus, there is a need to identify new effectors in this important pathway that might prove to be more efficacious targets. Inducible nitric oxide synthase (iNOS) has recently been shown to be an important mediator of TNFα-induced cachectic muscle loss, and studies suggest that it may also play a role in sarcopenia. In addition, investigations into the mechanism of iNOS-mediated muscle loss have begun to reveal potential therapeutic strategies. In this review, we will highlight the potential for targeting the iNOS/NO pathway in the treatment of muscle loss and discuss its functional relevance in sarcopenia and cachexia. PMID:21832306

  14. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed Central

    Evans, P D; Siegler, M V

    1982-01-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion. PMID:6808122

  15. Skeletal muscle strength and endurance are maintained during moderate dehydration.

    PubMed

    Périard, J D; Tammam, A H; Thompson, M W

    2012-08-01

    This study investigated the effects of moderate dehydration (~2.5% body weight) on muscle strength and endurance using percutaneous electrical stimulation to quantify central and peripheral fatigue, and isolate the combined effects of exercise-heat stress and dehydration, vs. the effect of dehydration alone. Force production and voluntary activation were calculated in 10 males during 1 brief and 15 repeated maximal voluntary isometric contractions performed prior to (control) walking in the heat (35°C), immediately following exercise, and the next morning (dehydration). The protocol was also performed in a euhydrated state. During the brief contractions, force production and voluntary activation were maintained in all trials. In contrast, force production decreased throughout the repeated contractions, regardless of hydration status (P<0.001). The decline in force was greater immediately following exercise-heat stress dehydration compared with control and euhydration (P<0.001). When dehydration was isolated from acute post-exercise dehydration, force production was maintained similarly to control and euhydration. Despite the progressive decline in force production and the increased fatigability observed during the repeated contractions, voluntary activation remained elevated throughout each muscle function test. Therefore, moderate dehydration, isolated from acute exercise-heat stress, does not appear to influence strength during a single contraction or enhance fatigability. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Muscle wasting in cancer: the role of mitochondria.

    PubMed

    Argilés, Josep M; López-Soriano, Francisco J; Busquets, Silvia

    2015-05-01

    The aim of the present review is to examine the impact of mitochondrial dysfunction in cancer cachexia. Oxidative pathways are altered in this tissue during muscle wasting and this seems to be a consequence of mitochondrial abnormalities that include altered morphology and function, decreased ATP synthesis and uncoupling. An alteration of energy balance is the immediate cause of cachexia. Both alterations in energy intake and expenditure are responsible for the wasting syndrome associated with different types of pathological conditions, such as cancer. Different types of molecular mechanisms contribute to energy expenditure and, therefore, involuntary body weight loss, one of which is mitochondrial dysfunction.

  17. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  18. Comparative molecular analysis of early and late cancer cachexia-induced muscle wasting in mouse models.

    PubMed

    Sun, Rulin; Zhang, Santao; Lu, Xing; Hu, Wenjun; Lou, Ning; Zhao, Yan; Zhou, Jia; Zhang, Xiaoping; Yang, Hongmei

    2016-12-01

    Cancer-induced muscle wasting, which commonly occurs in cancer cachexia, is characterized by impaired quality of life and poor patient survival. To identify an appropriate treatment, research on the mechanism underlying muscle wasting is essential. Thus far, studies on muscle wasting using cancer cachectic models have generally focused on early cancer cachexia (ECC), before severe body weight loss occurs. In the present study, we established models of ECC and late cancer cachexia (LCC) and compared different stages of cancer cachexia using two cancer cachectic mouse models induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC). In each model, tumor-bearing (TB) and control (CN) mice were injected with cancer cells and PBS, respectively. The TB and CN mice, which were euthanized on the 24th day or the 36th day after injection, were defined as the ECC and ECC-CN mice or the LCC and LCC-CN mice. In addition, the tissues were harvested and analyzed. We found that both the ECC and LCC mice developed cancer cachexia. The amounts of muscle loss differed between the ECC and LCC mice. Moreover, the expression of some molecules was altered in the muscles from the LCC mice but not in those from the ECC mice compared with their CN mice. In conclusion, the molecules with altered expression in the muscles from the ECC and LCC mice were not exactly the same. These findings may provide some clues for therapy which could prevent the muscle wasting in cancer cachexia from progression to the late stage.

  19. Elevated expression of activins promotes muscle wasting and cachexia.

    PubMed

    Chen, Justin L; Walton, Kelly L; Winbanks, Catherine E; Murphy, Kate T; Thomson, Rachel E; Makanji, Yogeshwar; Qian, Hongwei; Lynch, Gordon S; Harrison, Craig A; Gregorevic, Paul

    2014-04-01

    In models of cancer cachexia, inhibiting type IIB activin receptors (ActRIIBs) reverse muscle wasting and prolongs survival, even with continued tumor growth. ActRIIB mediates signaling of numerous TGF-β proteins; of these, we demonstrate that activins are the most potent negative regulators of muscle mass. To determine whether activin signaling in the absence of tumor-derived factors induces cachexia, we used recombinant serotype 6 adeno-associated virus (rAAV6) vectors to increase circulating activin A levels in C57BL/6 mice. While mice injected with control vector gained ~10% of their starting body mass (3.8±0.4 g) over 10 wk, mice injected with increasing doses of rAAV6:activin A exhibited weight loss in a dose-dependent manner, to a maximum of -12.4% (-4.2±1.1 g). These reductions in body mass in rAAV6:activin-injected mice correlated inversely with elevated serum activin A levels (7- to 24-fold). Mechanistically, we show that activin A reduces muscle mass and function by stimulating the ActRIIB pathway, leading to deleterious consequences, including increased transcription of atrophy-related ubiquitin ligases, decreased Akt/mTOR-mediated protein synthesis, and a profibrotic response. Critically, we demonstrate that the muscle wasting and fibrosis that ensues in response to excessive activin levels is fully reversible. These findings highlight the therapeutic potential of targeting activins in cachexia.

  20. The TWEAK-Fn14 system: breaking the silence of cytokine-induced skeletal muscle wasting.

    PubMed

    Bhatnagar, S; Kumar, A

    2012-01-01

    The occurrence of skeletal muscle atrophy, a devastating complication of a large number of disease states and inactivity/disuse conditions, provides a never ending quest to identify novel targets for its therapy. Proinflammatory cytokines are considered the mediators of muscle wasting in chronic diseases; however, their role in disuse atrophy has just begun to be elucidated. An inflammatory cytokine, tumor necrosis factor (TNF)- like weak inducer of apoptosis (TWEAK), has recently been identified as a potent inducer of skeletal muscle wasting. TWEAK activates various proteolytic pathways and stimulates the degradation of myofibril protein both in vitro and in vivo. Moreover, TWEAK mediates the loss of skeletal muscle mass and function in response to denervation, a model of disuse atrophy. Adult skeletal muscle express very low to minimal levels of TWEAK receptor, Fn14. Specific catabolic conditions such as denervation, immobilization, or unloading rapidly increase the expression of Fn14 in skeletal muscle which in turn stimulates the TWEAK activation of various catabolic pathways leading to muscle atrophy. In this article, we have discussed the emerging roles and the mechanisms of action of TWEAK-Fn14 system in skeletal muscle with particular reference to different models of muscle atrophy and injury and its potential to be used as a therapeutic target for prevention of muscle loss.

  1. Powerful signals for weak muscles.

    PubMed

    Saini, Amarjit; Faulkner, Steve; Al-Shanti, Nasser; Stewart, Claire

    2009-10-01

    The aim of the present review is to summarise, evaluate and critique the different mechanisms involved in anabolic growth of skeletal muscle and the catabolic processes involved in cancer cachexia and sarcopenia of ageing. This is highly relevant, since they represent targets for future promising clinical investigations. Sarcopenia is an inevitable process associated with a gradual reduction in muscle mass and strength, associated with a reduction in motor unit number and atrophy of muscle fibres, especially the fast type IIa fibres. The loss of muscle mass with ageing is clinically important because it leads to diminished functional ability and associated complications. Cachexia is widely recognised as severe and rapid wasting accompanying disease states such as cancer or immunodeficiency disease. One of the main characteristics of cancer cachexia is asthenia or lack of strength, which is directly related to the muscle loss. Indeed, apart from the speed of loss, muscle wasting during cancer and ageing share many common metabolic pathways and mediators. In healthy young individuals, muscles maintain their mass and function because of a balance between protein synthesis and protein degradation associated with rates of anabolic and catabolic processes, respectively. Muscles grow (hypertrophy) when protein synthesis exceeds protein degradation. Conversely, muscles shrink (atrophy) when protein degradation dominates. These processes are not occurring independently of each other, but are finely coordinated by a web of intricate signalling networks. Such signalling networks are in charge of executing environmental and cellular cues that ultimately determine whether muscle proteins are synthesised or degraded. Increasing our understanding for the pathways involved in hypertrophy and atrophy and particularly the interaction of these pathways is essential in designing therapeutic strategies for both prevention and treatment of muscle wasting conditions with age and with

  2. Long-term exercise training prevents mammary tumorigenesis-induced muscle wasting in rats through the regulation of TWEAK signalling.

    PubMed

    Padrão, A I; Figueira, A C C; Faustino-Rocha, A I; Gama, A; Loureiro, M M; Neuparth, M J; Moreira-Gonçalves, D; Vitorino, R; Amado, F; Santos, L L; Oliveira, P A; Duarte, J A; Ferreira, R

    2017-04-01

    Exercise training has been suggested as a non-pharmacological approach to prevent skeletal muscle wasting and improve muscle function in cancer cachexia. However, little is known about the molecular mechanisms underlying such beneficial effect. In this study, we aimed to, firstly, examine the contribution of TWEAK signalling to cancer-induced skeletal muscle wasting and, secondly, evaluate whether long-term exercise alters TWEAK signalling and prevents muscle wasting. Female Sprague-Dawley rats were randomly assigned to control and exercise groups. Fifteen animals from each group were exposed to N-Methyl-N-nitrosourea carcinogen. Animals in exercise groups were submitted to moderate treadmill exercise for 35 weeks. After the experimental period, animals were killed and gastrocnemius muscles were harvested for morphological and biochemical analysis. We verified that exercise training prevented tumour-induced TWEAK/NF-κB signalling in skeletal muscle with a beneficial impact in fibre cross-sectional area and metabolism. Indeed, 35 weeks of exercise training promoted the upregulation of PGC-1α and oxidative phosphorylation complexes. This exercise-induced muscle remodelling in tumour-bearing animals was associated with less malignant mammary lesions. Data support the benefits of an active lifestyle for the prevention of muscle wasting secondary to breast cancer, highlighting TWEAK/NF- κB signalling as a potential therapeutic target for the preservation of muscle mass. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. Suppression of muscle wasting by the plant‐derived compound ursolic acid in a model of chronic kidney disease

    PubMed Central

    Yu, Rizhen; Chen, Ji‐an; Xu, Jing; Cao, Jin; Wang, Yanlin; Thomas, Sandhya S.

    2016-01-01

    Abstract Background Muscle wasting in chronic kidney disease (CKD) and other catabolic disorders contributes to morbidity and mortality, and there are no therapeutic interventions that regularly and safely block losses of muscle mass. We have obtained evidence that impaired IGF‐1/insulin signalling and increases in glucocorticoids, myostatin and/or inflammatory cytokines that contribute to the development of muscle wasting in catabolic disorders by activating protein degradation. Methods Using in vitro and in vivo models of muscle wasting associated with CKD or dexamethasone administration, we measured protein synthesis and degradation and examined mechanisms by which ursolic acid, derived from plants, could block the loss of muscle mass stimulated by CKD or excessive levels of dexamethasone. Results Using cultured C2C12 myotubes to study muscle wasting, we found that exposure to glucocorticoids cause loss of cell proteins plus an increase in myostatin; both responses are significantly suppressed by ursolic acid. Results from promoter and ChIP assays demonstrated a mechanism involving ursolic acid blockade of myostatin promoter activity that is related to CEBP/δ expression. In mouse models of CKD‐induced or dexamethasone‐induced muscle wasting, we found that ursolic acid blocked the loss of muscle mass by stimulating protein synthesis and decreasing protein degradation. These beneficial responses included decreased expression of myostatin and inflammatory cytokines (e.g. TGF‐β, IL‐6 and TNFα), which are initiators of muscle‐specific ubiquitin‐E3 ligases (e.g. Atrogin‐1, MuRF‐1 and MUSA1). Conclusions Ursolic acid improves CKD‐induced muscle mass by suppressing the expression of myostatin and inflammatory cytokines via increasing protein synthesis and reducing proteolysis. PMID:27897418

  4. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    PubMed

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  5. TIF-IA-Dependent Regulation of Ribosome Synthesis in Drosophila Muscle Is Required to Maintain Systemic Insulin Signaling and Larval Growth

    PubMed Central

    Ghosh, Abhishek; Rideout, Elizabeth J.; Grewal, Savraj S.

    2014-01-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis—a limiting step in ribosome biogenesis—via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2—a secreted factor that binds and inhibits dILP activity—from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis. PMID:25356674

  6. F-BOX proteins in cancer cachexia and muscle wasting: emerging regulators and therapeutic opportunities

    PubMed Central

    Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M.; Philip, Philip A.; Azmi, Asfar S.

    2016-01-01

    Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder. PMID:26804424

  7. Beta‐hydroxy‐beta‐methylbutyrate supplementation and skeletal muscle in healthy and muscle‐wasting conditions

    PubMed Central

    2017-01-01

    Abstract Beta‐hydroxy‐beta‐methylbutyrate (HMB) is a metabolite of the essential amino acid leucine that has been reported to have anabolic effects on protein metabolism. The aims of this article were to summarize the results of studies of the effects of HMB on skeletal muscle and to examine the evidence for the rationale to use HMB as a nutritional supplement to exert beneficial effects on muscle mass and function in various conditions of health and disease. The data presented here indicate that the beneficial effects of HMB have been well characterized in strength‐power and endurance exercise. HMB attenuates exercise‐induced muscle damage and enhances muscle hypertrophy and strength, aerobic performance, resistance to fatigue, and regenerative capacity. HMB is particularly effective in untrained individuals who are exposed to strenuous exercise and in trained individuals who are exposed to periods of high physical stress. The low effectiveness of HMB in strength‐trained athletes could be due to the suppression of the proteolysis that is induced by the adaptation to training, which may blunt the effects of HMB. Studies performed with older people have demonstrated that HMB can attenuate the development of sarcopenia in elderly subjects and that the optimal effects of HMB on muscle growth and strength occur when it is combined with exercise. Studies performed under in vitro conditions and in various animal models suggest that HMB may be effective in treatment of muscle wasting in various forms of cachexia. However, there are few clinical reports of the effects of HMB on muscle wasting in cachexia; in addition, most of these studies evaluated the therapeutic potential of combinations of various agents. Therefore, it has not been possible to determine whether HMB was effective or if there was a synergistic effect. Although most of the endogenous HMB is produced in the liver, there are no reports regarding the levels and the effects of HMB supplementation

  8. Selumetinib Attenuates Skeletal Muscle Wasting in Murine Cachexia Model through ERK Inhibition and AKT Activation.

    PubMed

    Quan-Jun, Yang; Yan, Huo; Yong-Long, Han; Li-Li, Wan; Jie, Li; Jin-Lu, Huang; Jin, Lu; Peng-Guo, Chen; Run, Gan; Cheng, Guo

    2017-02-01

    Cancer cachexia is a multifactorial syndrome affecting the skeletal muscle. Previous clinical trials showed that treatment with MEK inhibitor selumetinib resulted in skeletal muscle anabolism. However, it is conflicting that MAPK/ERK pathway controls the mass of the skeletal muscle. The current study investigated the therapeutic effect and mechanisms of selumetinib in amelioration of cancer cachexia. The classical cancer cachexia model was established via transplantation of CT26 colon adenocarcinoma cells into BALB/c mice. The effect of selumetinib on body weight, tumor growth, skeletal muscle, food intake, serum proinflammatory cytokines, E3 ligases, and MEK/ERK-related pathways was analyzed. Two independent experiments showed that 30 mg/kg/d selumetinib prevented the loss of body weight in murine cachexia mice. Muscle wasting was attenuated and the expression of E3 ligases, MuRF1 and Fbx32, was inhibited following selumetinib treatment of the gastrocnemius muscle. Furthermore, selumetinib efficiently reduced tumor burden without influencing the cancer cell proliferation, cumulative food intake, and serum cytokines. These results indicated that the role of selumetinib in attenuating muscle wasting was independent of cancer burden. Detailed analysis of the mechanism revealed AKT and mTOR were activated, while ERK, FoxO3a, and GSK3β were inhibited in the selumetinib -treated cachexia group. These indicated that selumetinib effectively prevented skeletal muscle wasting in cancer cachexia model through ERK inhibition and AKT activation in gastrocnemius muscle via cross-inhibition. The study not only elucidated the mechanism of MEK/ERK inhibition in skeletal muscle anabolism, but also validated selumetinib therapy as an effective intervention against cancer cachexia. Mol Cancer Ther; 16(2); 334-43. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Avocado waste for finishing pigs: Impact on muscle composition and oxidative stability during chilled storage.

    PubMed

    Hernández-López, Silvia H; Rodríguez-Carpena, Javier G; Lemus-Flores, Clemente; Grageola-Nuñez, Fernando; Estévez, Mario

    2016-06-01

    The utilization of agricultural waste materials for pig feeding may be an interesting option for reducing production costs and contributing to sustainability and environmental welfare. In the present study, a mixed diet enriched with avocado waste (TREATED) is used for finishing industrial genotype pigs. The muscle longissimus thoracis et lomborum (LTL) from TREATED pigs was analyzed for composition and oxidative and color stability and compared with muscles obtained from pigs fed a CONTROL diet. Dietary avocado had significant impact on the content and composition of intramuscular fat (IMF), reducing the lipid content in LTL muscles and increasing the degree of unsaturation. This did not increase the oxidative instability of samples. On the contrary, muscles from TREATED pigs had significantly lower lipid and protein oxidation rates during chilled storage. The color of the muscles from TREATED pigs was also preserved from oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities.

    PubMed

    Sukari, Ammar; Muqbil, Irfana; Mohammad, Ramzi M; Philip, Philip A; Azmi, Asfar S

    2016-02-01

    Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. ER stress and subsequent activated calpain play a pivotal role in skeletal muscle wasting after severe burn injury

    PubMed Central

    Shen, Chuanan; Li, Dawei; Wang, Xiaoteng

    2017-01-01

    Severe burns are typically followed by hypermetabolism characterized by significant muscle wasting, which causes considerable morbidity and mortality. The aim of the present study was to explore the underlying mechanisms of skeletal muscle damage/wasting post-burn. Rats were randomized to the sham, sham+4-phenylbutyrate (4-PBA, a pharmacological chaperone promoting endoplasmic reticulum (ER) folding/trafficking, commonly considered as an inhibitor of ER), burn (30% total body surface area), and burn+4-PBA groups; and sacrificed at 1, 4, 7, 14 days after the burn injury. Tibial anterior muscle was harvested for transmission electron microscopy, calcium imaging, gene expression and protein analysis of ER stress / ubiquitin-proteasome system / autophagy, and calpain activity measurement. The results showed that ER stress markers were increased in the burn group compared with the sham group, especially at post-burn days 4 and 7, which might consequently elevate cytoplasmic calcium concentration, promote calpain production as well as activation, and cause skeletal muscle damage/wasting of TA muscle after severe burn injury. Interestingly, treatment with 4-PBA prevented burn-induced ER swelling and altered protein expression of ER stress markers and calcium release, attenuating calpain activation and skeletal muscle damage/wasting after severe burn injury. Atrogin-1 and LC3-II/LC3-I ratio were also increased in the burn group compared with the sham group, while MuRF-1 remained unchanged; 4-PBA decreased atrogin-1 in the burn group. Taken together, these findings suggested that severe burn injury induces ER stress, which in turns causes calpain activation. ER stress and subsequent activated calpain play a critical role in skeletal muscle damage/wasting in burned rats. PMID:29028830

  12. Valproic acid attenuates skeletal muscle wasting by inhibiting C/EBPβ-regulated atrogin1 expression in cancer cachexia.

    PubMed

    Sun, Rulin; Zhang, Santao; Hu, Wenjun; Lu, Xing; Lou, Ning; Yang, Zhende; Chen, Shaoyong; Zhang, Xiaoping; Yang, Hongmei

    2016-07-01

    Muscle wasting is the hallmark of cancer cachexia and is associated with poor quality of life and increased mortality. Valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, has important biological effects in the treatment of muscular dystrophy. To verify whether VPA could ameliorate muscle wasting induced by cancer cachexia, we explored the role of VPA in two cancer cachectic mouse models [induced by colon-26 (C26) adenocarcinoma or Lewis lung carcinoma (LLC)] and atrophied C2C12 myotubes [induced by C26 cell conditioned medium (CCM) or LLC cell conditioned medium (LCM)]. Our data demonstrated that treatment with VPA increased the mass and cross-sectional area of skeletal muscles in tumor-bearing mice. Furthermore, treatment with VPA also increased the diameter of myotubes cultured in conditioned medium. The skeletal muscles in cachectic mice or atrophied myotubes treated with VPA exhibited reduced levels of CCAAT/enhancer binding protein beta (C/EBPβ), resulting in atrogin1 downregulation and the eventual alleviation of muscle wasting and myotube atrophy. Moreover, atrogin1 promoter activity in myotubes was stimulated by CCM via activating the C/EBPβ-responsive cis-element and subsequently inhibited by VPA. In contrast to the effect of VPA on the levels of C/EBPβ, the levels of inactivating forkhead box O3 (FoxO3a) were unaffected. In summary, VPA attenuated muscle wasting and myotube atrophy and reduced C/EBPβ binding to atrogin1 promoter locus in the myotubes. Our discoveries indicate that HDAC inhibition by VPA might be a promising new approach for the preservation of skeletal muscle in cancer cachexia. Copyright © 2016 the American Physiological Society.

  13. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia.

    PubMed

    Bohnert, Kyle R; Gallot, Yann S; Sato, Shuichi; Xiong, Guangyan; Hindi, Sajedah M; Kumar, Ashok

    2016-09-01

    Cachexia is a devastating syndrome that causes morbidity and mortality in a large number of patients with cancer. However, the mechanisms of cancer cachexia remain poorly understood. Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes stress. The ER responds to this stress through activating certain pathways commonly known as the unfolding protein response (UPR). The main function of UPR is to restore homeostasis, but excessive or prolonged activation of UPR can lead to pathologic conditions. In this study, we examined the role of ER stress and UPR in regulation of skeletal muscle mass in naïve conditions and during cancer cachexia. Our results demonstrate that multiple markers of ER stress are highly activated in skeletal muscle of Lewis lung carcinoma (LLC) and Apc(Min/+) mouse models of cancer cachexia. Treatment of mice with 4-phenylbutyrate (4-PBA), a chemical chaperon and a potent inhibitor of ER stress, significantly reduced skeletal muscle strength and mass in both control and LLC-bearing mice. Blocking the UPR also increased the proportion of fast-type fibers in soleus muscle of both control and LLC-bearing mice. Inhibition of UPR reduced the activity of Akt/mTOR pathway and increased the expression of the components of the ubiquitin-proteasome system and autophagy in LLC-bearing mice. Moreover, we found that the inhibition of UPR causes severe atrophy in cultured myotubes. Our study provides initial evidence that ER stress and UPR pathways are essential for maintaining skeletal muscle mass and strength and for protection against cancer cachexia.-Bohnert, K. R., Gallot, Y. S., Sato, S., Xiong, G., Hindi, S. M., Kumar, A. Inhibition of ER stress and unfolding protein response pathways causes skeletal muscle wasting during cancer cachexia. © FASEB.

  14. Dystroglycan and Protein O-Mannosyltransferases 1 and 2 Are Required to Maintain Integrity of Drosophila Larval Muscles

    PubMed Central

    Seabrooke, Sara; Stewart, Bryan A.

    2007-01-01

    In vertebrates, mutations in Protein O-mannosyltransferase1 (POMT1) or POMT2 are associated with muscular dystrophy due to a requirement for O-linked mannose glycans on the Dystroglycan (Dg) protein. In this study we examine larval body wall muscles of Drosophila mutant for Dg, or RNA interference knockdown for Dg and find defects in muscle attachment, altered muscle contraction, and a change in muscle membrane resistance. To determine if POMTs are required for Dg function in Drosophila, we examine larvae mutant for genes encoding POMT1 or POMT2. Larvae mutant for either POMT, or doubly mutant for both, show muscle attachment and muscle contraction phenotypes identical to those associated with reduced Dg function, consistent with a requirement for O-linked mannose on Drosophila Dg. Together these data establish a central role for Dg in maintaining integrity in Drosophila larval muscles and demonstrate the importance of glycosylation to Dg function in Drosophila. This study opens the possibility of using Drosophila to investigate muscular dystrophy. PMID:17881734

  15. Retraction: Myostatin Induces Degradation of Sarcomeric Proteins through a Smad3 Signaling Mechanism During Skeletal Muscle Wasting

    PubMed Central

    Lokireddy, Sudarsanareddy; McFarlane, Craig; Ge, Xiaojia; Zhang, Huoming; Sze, Siu Kwan; Sharma, Mridula

    2011-01-01

    Ubiquitination-mediated proteolysis is a hallmark of skeletal muscle wasting manifested in response to negative growth factors, including myostatin. Thus, the characterization of signaling mechanisms that induce the ubiquitination of intracellular and sarcomeric proteins during skeletal muscle wasting is of great importance. We have recently characterized myostatin as a potent negative regulator of myogenesis and further demonstrated that elevated levels of myostatin in circulation results in the up-regulation of the muscle-specific E3 ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF1). However, the exact signaling mechanisms by which myostatin regulates the expression of Atrogin-1 and MuRF1, as well as the proteins targeted for degradation in response to excess myostatin, remain to be elucidated. In this report, we have demonstrated that myostatin signals through Smad3 (mothers against decapentaplegic homolog 3) to activate forkhead box O1 and Atrogin-1 expression, which further promotes the ubiquitination and subsequent proteasome-mediated degradation of critical sarcomeric proteins. Smad3 signaling was dispensable for myostatin-dependent overexpression of MuRF1. Although down-regulation of Atrogin-1 expression rescued approximately 80% of sarcomeric protein loss induced by myostatin, only about 20% rescue was seen when MuRF1 was silenced, implicating that Atrogin-1 is the predominant E3 ligase through which myostatin manifests skeletal muscle wasting. Furthermore, we have highlighted that Atrogin-1 not only associates with myosin heavy and light chain, but it also ubiquitinates these sarcomeric proteins. Based on presented data we propose a model whereby myostatin induces skeletal muscle wasting through targeting sarcomeric proteins via Smad3-mediated up-regulation of Atrogin-1 and forkhead box O1. PMID:21964591

  16. Nutritional status and its effects on muscle wasting in patients with chronic heart failure: insights from Studies Investigating Co-morbidities Aggravating Heart Failure.

    PubMed

    Saitoh, Masakazu; Dos Santos, Marcelo Rodrigues; Ebner, Nicole; Emami, Amir; Konishi, Masaaki; Ishida, Junichi; Valentova, Miroslava; Sandek, Anja; Doehner, Wolfram; Anker, Stefan D; von Haehling, Stephan

    2016-12-01

    Inadequate nutritional status has been linked to poor outcomes in patients with heart failure (HF). Skeletal muscle wasting affects about 20% of ambulatory patients with HF. The impact of nutritional intake and appetite on skeletal muscle wasting has not been investigated so far. We sought to investigate the impact of nutritional status on muscle wasting and mortality in ambulatory patients with HF. We studied 130 ambulatory patients with HF who were recruited as a part of the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF) program. Muscle wasting was defined according to criteria of sarcopenia, i.e., appendicular skeletal muscle mass two standard deviations below the mean of a healthy reference group aged 18-40 years. Nutritional status was evaluated using the Mini-Nutritional Assessment-Short Form (MNA-SF). Functional capacity was assessed as peak oxygen consumption (peak VO 2 ) by cardiopulmonary exercise testing, 6‑minute walk testing, and the Short Physical Performance Battery (SPPB). At baseline, 19 patients (15%) presented with muscle wasting. Patients with muscle wasting had significantly lower values of peak VO 2 , 6‑minute walk distance, SPPB, and MNA-SF score than patients without (all p < 0.05). In multivariate analysis, MNA-SF remained an independent predictor of muscle wasting after adjustment for age and New York Heart Association class (odds ratio [OR] 0.66; confidence interval [CI] 0.50-0.88; p < 0.01). A total of 16 (12%) patients died during a mean follow-up of 21 months. In Cox regression analysis, MNA-SF (OR 0.80, CI 0.64-0.99, p = 0.04), left ventricular ejection fraction (OR 0.93, CI 0.86-0.99, p = 0.05), and peak VO 2 (OR 0.78, CI 0.65-0.94, p = 0.008) were predictors of death. MNA-SF is an independent predictor of muscle wasting and mortality in ambulatory patients with HF. Nutritional screening should be included as a fundamental part of the overall assessment of these patients.

  17. Mechanisms to explain wasting of muscle and fat in cancer cachexia.

    PubMed

    Argilés, Josep M; López-Soriano, Francisco J; Busquets, Sílvia

    2007-12-01

    To describe the most relevant recent findings concerning the molecular mechanisms involved in both fat and muscle tissues in cachectic cancer patients. Relevant progress has been made in the mechanism of signalling protein metabolism in skeletal muscle. PI3K has a dual role inhibiting protein degradation by inhibition of Atrogin-1 and MuRF1 gene expression and facilitating AKT phosphorylation, leading to increased protein synthesis. Interestingly, Caspase-3 activity is intimately associated with myofibrillar protein degradation in muscle tissue. With respect to fat metabolism, increased lipolysis in human cancer cachexia seems to be directly connected to increased hormone-sensitive lipase activity. The results and findings described in this review represent important progress in wasting disease mechanisms and may provide hints for future therapeutic approaches in cancer cachexia.

  18. Testosterone replacement maintains smooth muscle content in the corpus cavernosum of orchiectomized rats.

    PubMed

    Halmenschlager, Graziele; Rhoden, Ernani Luis; Motta, Gabriela Almeida; Sagrillo Fagundes, Lucas; Medeiros, Jorge Luiz; Meurer, Rosalva; Rhoden, Cláudia Ramos

    2017-10-01

    To evaluate the effects of testosterone (T) on the maintenance of corpus cavernosum (CC) structure and apoptosis. Animals were divided into three groups: sham operation group ( n  = 8) underwent sham operation; Orchiectomized (Orchiec)+ oily vehicle group ( n  = 8) underwent bilateral orchiectomy and received a single dose of oily vehicle by intramuscular injection (i.m.) 30 days after orchiectomy; and Orchiec + T group ( n  = 8) underwent bilateral orchiectomy and received a single dose of T undecanoate 100 mg/kg i.m. 30 days after the surgery. Animals were euthanized 60 days after the beginning of the experiment with an anesthetic overdose of ketamine and xylazine. Blood samples and penile tissue were collected on euthanasia. Azan's trichrome staining was used to evaluate smooth muscle, Weigert's Fucsin-Resorcin staining was used to evaluate elastic fibers and Picrosirius red staining was used to evaluate collagen. Apoptosis was evaluated using TUNEL technique. T levels decreased in Orchiec + oily vehicle when compared to sham operation and Orchiec + T groups ( p  < 0.001). T deprivation reduced trabecular smooth muscle content and penile diameter and T replacement maintained both parameters ( p  = 0.005 and p  = 0.001, respectively). No difference was observed in the content of sinusoidal space ( p  = 0.207), elastic fibers ( p  = 0.849), collagen ( p  = 0.216) and in apoptosis ( p  = 0.095). Normal testosterone levels maintain CC smooth muscle content and do not influence elastic fibers, collagen content and apoptotic index. Further studies should be performed in order to investigate the mechanisms by which androgen mediates its effects on CC structure.

  19. Lifelong exercise and locally produced insulin-like growth factor-1 (IGF-1) have a modest influence on reducing age-related muscle wasting in mice.

    PubMed

    McMahon, C D; Chai, R; Radley-Crabb, H G; Watson, T; Matthews, K G; Sheard, P W; Soffe, Z; Grounds, M D; Shavlakadze, T

    2014-12-01

    The age-related loss of skeletal muscle mass and function is termed sarcopenia and has been attributed to a decline in concentrations of insulin-like growth factor-1 (IGF-1). We hypothesized that constitutively expressed IGF-1 within skeletal muscles with or without exercise would prevent sarcopenia. Male transgenic mice that overexpress IGF-1 Ea in skeletal muscles were compared with wild-type littermates. Four-month-old mice were assigned to be sedentary, or had access to free-running wheels, until 18 or 28 months of age. In wild-type mice, the mass of the quadriceps muscles was reduced at 28 months and exercise prevented such loss, without affecting the diameter of myofibers. Conversely, increased IGF-1 alone was ineffective, whereas the combination of exercise and IGF-1 was additive in maintaining the diameter of myofibers in the quadriceps muscles. For other muscles, the combination of IGF-1 and exercise was variable and either increased or decreased the mass at 18 months of age, but was ineffective thereafter. Despite an increase in the diameter of myofibers, grip strength was not improved. In conclusion, our data show that exercise and IGF-1 have a modest effect on reducing aged-related wasting of skeletal muscle, but that there is no improvement in muscle function when assessed by grip strength. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Muscle wasting in cancer cachexia: clinical implications, diagnosis, and emerging treatment strategies.

    PubMed

    Dodson, Shontelle; Baracos, Vickie E; Jatoi, Aminah; Evans, William J; Cella, David; Dalton, James T; Steiner, Mitchell S

    2011-01-01

    Cancer cachexia is a complex metabolic condition characterized by loss of skeletal muscle. Common clinical manifestations include muscle wasting, anemia, reduced caloric intake, and altered immune function, which contribute to increased disability, fatigue, diminished quality of life, and reduced survival. The prevalence of cachexia and the impact of this disorder on the patient and family underscore the need for effective management strategies. Dietary supplementation and appetite stimulation alone are inadequate to reverse the underlying metabolic abnormalities of cancer cachexia and have limited long-term impact on patient quality of life and survival. Therapies that can increase muscle mass and physical performance may be a promising option; however, there are currently no drugs approved for the prevention or treatment of cancer cachexia. Several agents are in clinical development, including anabolic agents, such as selective androgen receptor modulators and drugs targeting inflammatory cytokines that promote skeletal muscle catabolism.

  1. Differences in Prevalence of Muscle Wasting in Patients Receiving Peritoneal Dialysis per Dual-Energy X-Ray Absorptiometry Due to Variation in Guideline Definitions of Sarcopenia.

    PubMed

    Hung, Rachel; Wong, Bethany; Goldet, Gabrielle; Davenport, Andrew

    2017-08-01

    Muscle wasting is associated with increased risk for mortality. There is no agreed universal definition for muscle wasting (sarcopenia), and we wished to determine whether using different criteria altered the prevalence in patients treated by peritoneal dialysis. We measured lean body and appendicular lean mass indices in 325 outpatients by dual-energy x-ray absorptiometry, comparing muscle mass with that used to define muscle wasting (sarcopenia) by various clinical guideline publications. Lean body and appendicular lean mass indices did not differ by sex: female, 17.7 ± 4.6 kg/m 2 ; male, 17.4 ± 4.3; female, 6.9 (5.6-8.5) kg/m 2 ; male, 6.7 (5.3-8.3), respectively. Depending on the criteria, the prevalence of muscle wasting varied from 2.2%-31.3% for women and 25.1%-75.6% for men. Male patients were older (58.3 ± 16 vs 53.4 ± 15.7 years). Criteria based on cutoffs derived from young healthy patients gave the higher prevalence rates. The prevalence of muscle wasting was not associated with dialysis adequacy, estimated protein intake, duration of dialysis treatment, comorbidity, diabetes, or ethnicity. The prevalence of sarcopenic obesity was low (<5% females, 7% males). We found that the prevalence varied markedly depending on the cutoff criteria used to define muscle wasting. Very few patients had sarcopenic obesity. The higher prevalence for males requires further study but was not associated with dialysis treatment. Our study highlights the need for agreed criteria to define pathologic muscle wasting from that which is age associated to allow for interventional screening programs.

  2. Waste Feed Delivery System Phase 1 Preliminary Reliability and Availability and Maintainability Analysis [SEC 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARLSON, A.B.

    The document presents updated results of the preliminary reliability, availability, maintainability analysis performed for delivery of waste feed from tanks 241-AZ-101 and 241-AN-105 to British Nuclear Fuels Limited, inc. under the Tank Waste Remediation System Privatization Contract. The operational schedule delay risk is estimated and contributing factors are discussed.

  3. Ubiquinol reduces muscle wasting but not fatigue in tumor-bearing mice.

    PubMed

    Clark, Yvonne Y; Wold, Loren E; Szalacha, Laura A; McCarthy, Donna O

    2015-05-01

    Fatigue is the most common and distressing symptom reported by cancer patients during and after treatment. Tumor growth increases oxidative stress and cytokine production, which causes skeletal muscle wasting and cardiac dysfunction. The purpose of this study was to determine whether treatment with the antioxidant ubiquinol improves muscle mass, cardiac function, and behavioral measures of fatigue in tumor-bearing mice. Adult female mice were inoculated with colon26 tumor cells. Half the control and tumor-bearing mice were administered ubiquinol (500 mg/kg/day) in their drinking water. Voluntary wheel running (i.e., voluntary running activity [VRA]) and grip strength were measured at Days 0, 8, 14, and 17 of tumor growth. Cardiac function was measured using echocardiography on Day 18 or 19. Biomarkers of inflammation, protein degradation, and oxidative stress were measured in serum and heart and gastrocnemius tissue. VRA and grip strength progressively declined in tumor-bearing mice. Muscle mass and myocardial diastolic function were decreased, and expression of proinflammatory cytokines was increased in serum and muscle and heart tissue on Day 19 of tumor growth. Oxidative stress was present only in the heart, while biomarkers of protein degradation were increased only in the gastrocnemius muscle. Ubiquinol increased muscle mass in the tumor-bearing and control animals but had no effect on the expression of biomarkers of inflammation, protein degradation, or oxidative stress or on behavioral measures of fatigue. © The Author(s) 2014.

  4. Muscle Contraction and Force: the Importance of an Ancillary Network, Nutrient Supply and Waste Removal

    PubMed Central

    Brüggemann, Dagmar A.; Risbo, Jens; Pierzynowski, Stefan G.; Harrison, Adrian P.

    2008-01-01

    Muscle contraction studies often focus solely on myofibres and the proteins known to be involved in the processes of sarcomere shortening and cross-bridge cycling, but skeletal muscle also comprises a very elaborate ancillary network of capillaries, which not only play a vital role in terms of nutrient delivery and waste product removal, but are also tethered to surrounding fibres by collagen ”wires”. This paper therefore addresses aspects of the ancillary network of skeletal muscle at both a microscopic and functional level in order to better understand its role holistically as a considerable contributor to force transfer within muscular tissue. PMID:19325816

  5. Muscle wasting in myotonic dystrophies: a model of premature aging.

    PubMed

    Mateos-Aierdi, Alba Judith; Goicoechea, Maria; Aiastui, Ana; Fernández-Torrón, Roberto; Garcia-Puga, Mikel; Matheu, Ander; López de Munain, Adolfo

    2015-01-01

    Myotonic dystrophy type 1 (DM1 or Steinert's disease) and type 2 (DM2) are multisystem disorders of genetic origin. Progressive muscular weakness, atrophy and myotonia are the most prominent neuromuscular features of these diseases, while other clinical manifestations such as cardiomyopathy, insulin resistance and cataracts are also common. From a clinical perspective, most DM symptoms are interpreted as a result of an accelerated aging (cataracts, muscular weakness and atrophy, cognitive decline, metabolic dysfunction, etc.), including an increased risk of developing tumors. From this point of view, DM1 could be described as a progeroid syndrome since a notable age-dependent dysfunction of all systems occurs. The underlying molecular disorder in DM1 consists of the existence of a pathological (CTG) triplet expansion in the 3' untranslated region (UTR) of the Dystrophia Myotonica Protein Kinase (DMPK) gene, whereas (CCTG)n repeats in the first intron of the Cellular Nucleic acid Binding Protein/Zinc Finger Protein 9 (CNBP/ZNF9) gene cause DM2. The expansions are transcribed into (CUG)n and (CCUG)n-containing RNA, respectively, which form secondary structures and sequester RNA-binding proteins, such as the splicing factor muscleblind-like protein (MBNL), forming nuclear aggregates known as foci. Other splicing factors, such as CUGBP, are also disrupted, leading to a spliceopathy of a large number of downstream genes linked to the clinical features of these diseases. Skeletal muscle regeneration relies on muscle progenitor cells, known as satellite cells, which are activated after muscle damage, and which proliferate and differentiate to muscle cells, thus regenerating the damaged tissue. Satellite cell dysfunction seems to be a common feature of both age-dependent muscle degeneration (sarcopenia) and muscle wasting in DM and other muscle degenerative diseases. This review aims to describe the cellular, molecular and macrostructural processes involved in the muscular

  6. Cardiac implications for the use of β2-adrenoceptor agonists for the management of muscle wasting

    PubMed Central

    Molenaar, Peter; Chen, Lu; Parsonage, William A

    2006-01-01

    There are proposals for the implementation of β2-adrenoceptor agonists for the management of muscle wasting diseases. The idea has been initiated by studies in animal models which show that β2-adrenoceptor agonists cause hypertrophy of skeletal muscle. Their use in clinical practice will also need an understanding of possible effects of activation of human heart β2-adrenoceptors. Consequences could include an increased probability of arrhythmias in susceptible patients. PMID:16432500

  7. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response

    PubMed Central

    Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua

    2017-01-01

    Objective Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. Methods The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Results Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Conclusion Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway. PMID:28489606

  8. Pantoprazole blocks the JAK2/STAT3 pathway to alleviate skeletal muscle wasting in cancer cachexia by inhibiting inflammatory response.

    PubMed

    Guo, Dunwei; Wang, Chaoyi; Wang, Qiang; Qiao, Zhongpeng; Tang, Hua

    2017-06-13

    Cancer cachexia is often present in patients with advanced malignant tumors, and the subsequent body weight reduction results in poor quality of life. However, there has been no progress in developing effective clinical therapeutic strategies for skeletal muscle wasting in cancer cachexia. Herein, we explored the functions of pantoprazole on cancer cachexia skeletal muscle wasting. The mouse colon adenocarcinoma cell line C26 was inoculated in the right forelimb of male BALB/C mice to establish a cancer cachexia model. The animals were treated with or without different concentrations of pantoprazole orally, and the body weight, tumor growth, spontaneous activity, and muscle functions were determined at various time points. Two weeks later, the levels of serum IL-6 and TNF-α, the mRNA levels of gastrocnemius JAK2 and STAT3, and the expression levels of p-JAK2, p-STAT3, Fbx32, and MuRF1 were examined with ELISA assay, qRT-PCR assay, and Western blotting, respectively. Further studies were performed to assess the levels of Fbx32 and MuRF1 expression and morphological changes. Pantoprazole can alleviate cancer cachexia-induced body weight reduction and inhibit skeletal muscle wasting in a dose-dependent manner. Our results indicated that pantoprazole treatment can decrease the levels of serum IL-6 and TNF-α (56.3% and 67.6%, respectively), and inhibit the activation of the JAK2/STAT3 signaling pathway. Moreover, the expression levels of MuRF1 and Fbx32 were also suppressed after pantoprazole treatment. Our findings suggested that pantoprazole can alleviate cancer cachexia skeletal muscle wasting by inhibiting the inflammatory response and blocking the JAK2/STAT3 or ubiquitin proteasome pathway.

  9. Cardiac muscle wasting in individuals with cancer cachexia.

    PubMed

    Barkhudaryan, Anush; Scherbakov, Nadja; Springer, Jochen; Doehner, Wolfram

    2017-11-01

    Cachexia is a severe complication of cancer that adversely affects the course of the disease and is associated with high rates of mortality. Patients with cancer manifest symptoms, such as fatigue, shortness of breath, and impaired exercise tolerance, which are clinical signs of chronic heart failure. The aim of this study was to evaluate cardiac muscle wasting in cancer individuals. We retrospectively analysed 177 individuals who died of cancer, including 58 lung, 60 pancreatic, and 59 gastrointestinal (GI) cancers, and 42 cancer-free controls who died of other, non-cardiovascular reasons. Cancer cachexia (CC) was defined based on clinical and/or pathological diagnosis, body mass index (BMI) <20.0 kg/m 2 and/or oedema-free body weight loss of 5.0% during the previous year or less. The pathology reports were analysed for BMI, heart weight (HW), and left and right ventricular wall thicknesses (LVWT and RVWT, respectively). The analysis of clinical data included recording of biochemical parameters and medication data of study patients. CC was detected in 54 (30.5%) subjects. Individuals with CC had a significantly lower HW than non-cachectic subjects (363.1 ± 86.2 vs. 447.0 ± 128.9 g, P < 0.001) and control group (412.9 ± 75.8 g, P < 0.05). BMI correlated with HW in cases with GI cancer (r = 0.44, P < 0.001), lung cancer (r = 0.53, P < 0.0001), and pancreatic cancer (r = 0.39, P < 0.01). Body weight loss in individuals with lung, pancreatic, and GI cancers is accompanied by a decrease in HW. In patients with CC who receive cancer treatment, screening for cardiac muscle wasting may have clinical importance. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  10. [Space flight/bedrest immobilization and bone. Development a devise to maintain the skeletal muscles in space].

    PubMed

    Shiba, Naoto; Matsuse, Hiroo; Nago, Takeshi; Masayuki, Omoto; Kawaguchi, Takumi; Tagawa, Yoshihiko

    2012-12-01

    We have developed a "hybrid training system" (HTS) that is designed to maintain the musculoskeletal system of astronauts by using an electrically stimulated antagonist to resist the volitional contraction of agonist muscles in weightlessness. In other words, electrical stimulation generates a resistive force instead of gravity. HTS will become a useful back-up for the standard training device in the International Space Station, or a useful training device in the small space ship for the exploration of the Moon and Mars.

  11. Role of Exosomal MicroRNAs and myomiRs in the Development of Cancer Cachexia-Associated Muscle Wasting.

    PubMed

    Marinho, Rodolfo; Alcântara, Paulo S M; Ottoch, José P; Seelaender, Marilia

    2017-01-01

    Cachexia is a complex metabolic syndrome that promotes great weight loss, with marked muscle mass wasting. In the last years, many efforts have been directed to improve the understanding of the mechanisms involved in the disease. This syndrome is present in up to 80% of cancer patients and, despite its clinical relevance, is underdiagnosed. The orchestration of the molecular and biochemical disruptions observed in cachexia is paralleled by inflammation and the communication among the different body compartments, including the tumor and the skeletal muscle, is still not completely described. One of the mechanisms that may be involved in the transduction of the inflammatory signals and the activation of catabolic status in muscle is the participation of exosomes containing microRNAs (miRNAs) and muscle-specific miRNAs (myomiRs). Exosomes are nanovesicles, measuring from 30 to 100 µm, and able to carry miRNAs in the circulation, promoting cell-cell and tissue-tissue communication in an autocrine, paracrine, and endocrine manner. miRNAs transported in exosomes are preserved from degradation, while these nanoparticles deliver the cargo to specific cell targets, making communication more efficient. Several miRNAs are known to modulate inflammatory pathways, to induce metastasis, to mediate cancer aggressiveness and even to participate in the regulation of protein synthesis and degradation pathways in the skeletal muscle. The aim of this mini-review is to describe the present knowledge about the role of exosomal miRNAs and myomiRs in the induction of muscle mass wasting in cancer cachexia state and to explain which transcription factors, proteins, and pathways are regulated by these molecules.

  12. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis.

    PubMed

    Esteves de Lima, Joana; Bonnin, Marie-Ange; Birchmeier, Carmen; Duprez, Delphine

    2016-08-24

    The importance of mechanical activity in the regulation of muscle progenitors during chick development has not been investigated. We show that immobilization decreases NOTCH activity and mimics a NOTCH loss-of-function phenotype, a reduction in the number of muscle progenitors and increased differentiation. Ligand-induced NOTCH activation prevents the reduction of muscle progenitors and the increase of differentiation upon immobilization. Inhibition of NOTCH ligand activity in muscle fibers suffices to reduce the progenitor pool. Furthermore, immobilization reduces the activity of the transcriptional co-activator YAP and the expression of the NOTCH ligand JAG2 in muscle fibers. YAP forced-activity in muscle fibers prevents the decrease of JAG2 expression and the number of PAX7+ cells in immobilization conditions. Our results identify a novel mechanism acting downstream of muscle contraction, where YAP activates JAG2 expression in muscle fibers, which in turn regulates the pool of fetal muscle progenitors via NOTCH in a non-cell-autonomous manner.

  13. Evaluation of Body Weight, Body Condition, and Muscle Condition in Cats with Hyperthyroidism.

    PubMed

    Peterson, M E; Castellano, C A; Rishniw, M

    2016-11-01

    The contribution of fat loss versus muscle wasting to the loss of body weight seen in hyperthyroid cats is unknown. To investigate body weight, body condition score (BCS), and muscle condition score (MCS) in hyperthyroid cats. Four hundred sixty-two cats with untreated hyperthyroidism, 117 of which were reevaluated after treatment. Prospective cross-sectional and before-after studies. Untreated hyperthyroid cats had body composition evaluated (body weight, BCS, and MCS). A subset of these cats were reevaluated 3-12 months after treatment when euthyroid. Pretreatment body weight (median, 4.36 kg; IQR, 3.5 to 5.2 kg) was lower than premorbid weight (5.45 kg; IQR, 4.6 to 6.4 kg, P < .0001) recorded 1-2 years before diagnosis. 154 (35.3%) cats were thin or emaciated; 357 (77.3%) had loss of muscle mass. Cats showed increases in body weight (median, 4.1 kg to 5.0 kg), BCS (median, 3/5 to 3.5/5), and MCS (2/3 to 3/3) after treatment (P < .001), but mild-to-moderate muscle wasting persisted in 45% of treated cats. Most hyperthyroid cats lose body weight but maintain an ideal or overweight BCS, with only a third being underweight. As in human hyperthyroid patients, this weight loss is associated with muscle wasting, which affects >75% of hyperthyroid cats. Successful treatment leads to weight gain and increase of BCS in most cats, but almost half fail to regain normal muscle mass. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  14. Reactive oxygen species play a role in muscle wasting during thyrotoxicosis.

    PubMed

    Bernardes, Sara Santos; Guarnier, Flávia Alessandra; Marinello, Poliana Camila; Armani, André; Simão, Andréa Name Colado; Cecchini, Rubens; Cecchini, Alessandra Lourenço

    2014-09-01

    The role of reactive oxygen species (ROS) in muscle protein hydrolysis and protein oxidation in thyrotoxicosis has not been explored. This study indicates that ROS play a role in skeletal muscle wasting pathways in thyrotoxicosis. Two experimental groups (rats) were treated for 5 days with either 3,3',5-triiodothyronine (HT) or HT with α-tocopherol (HT + αT). Two controls were used, vehicle (Control) and control treated with αT (Control + αT). Serum T3, peritoneal fat, serum glycerol, muscle and body weight, temperature, mitochondrial metabolism (cytochrome c oxidase activity), oxidative stress parameters and proteolytic activities were examined. High body temperature induced by HT returned to normal when animals were treated with αT, although total body and muscle weight did not. An increase in lipolysis was observed in the HT + αT group, as peritoneal fat decreased significantly together with an increase in serum glycerol. GSH, GSSG and total radical-trapping antioxidant parameter (TRAP) decreased and catalase activity increased in the HT group. The glutathione redox ratio was higher in HT + αT than in both HT and Control + αT groups. Carbonyl proteins, AOPP, mitochondrial and chymotrypsin-like proteolytic activities were higher in the HT group than in the Control. HT treatment with αT restored mitochondrial metabolism, TRAP, carbonyl protein, chymotrypsin-like activity and AOPP to the level as that of the Control + αT. Calpain activity was lower in the HT + αT group than in HT and Control + αT and superoxide dismutase (SOD) activity was higher in the HT + αT group than in the Control + αT. Although αT did not reverse muscle loss, ROS was involved in proteolysis to some degree.

  15. Metformin treatment modulates the tumour-induced wasting effects in muscle protein metabolism minimising the cachexia in tumour-bearing rats.

    PubMed

    Oliveira, André G; Gomes-Marcondes, Maria Cristina C

    2016-07-07

    Cancer-cachexia state frequently induces both fat and protein wasting, leading to death. In this way, the knowledge of the mechanism of drugs and their side effects can be a new feature to treat and to have success, contributing to a better life quality for these patients. Metformin is an oral drug used in type 2 diabetes mellitus, showing inhibitory effect on proliferation in some neoplastic cells. For this reason, we evaluated its modulatory effect on Walker-256 tumour evolution and also on protein metabolism in gastrocnemius muscle and body composition. Wistar rats received or not tumour implant and metformin treatment and were distributed into four groups, as followed: control (C), Walker 256 tumour-bearing (W), metformin-treated (M) and tumour-bearing treated with metformin (WM). Animals were weighed three times a week, and after cachexia state has been detected, the rats were euthanised and muscle and tumour excised and analysed by biochemical and molecular assays. Tumour growth promoted some deleterious effects on chemical body composition, increasing water and decreasing fat percentage, and reducing lean body mass. In muscle tissue, tumour led to a decreased protein synthesis and an increased proteolysis, showing the higher activity of the ubiquitin-proteasome pathway. On the other hand, the metformin treatment likely minimised the tumour-induced wasting state; in this way, this treatment ameliorated chemical body composition, reduced the higher activities of proteolytic enzymes and decreased the protein waste. Metformin treatment not only decreases the tumour growth but also improves the protein metabolism in gastrocnemius muscle in tumour-bearing rats.

  16. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis

    PubMed Central

    Esteves de Lima, Joana; Bonnin, Marie-Ange; Birchmeier, Carmen; Duprez, Delphine

    2016-01-01

    The importance of mechanical activity in the regulation of muscle progenitors during chick development has not been investigated. We show that immobilization decreases NOTCH activity and mimics a NOTCH loss-of-function phenotype, a reduction in the number of muscle progenitors and increased differentiation. Ligand-induced NOTCH activation prevents the reduction of muscle progenitors and the increase of differentiation upon immobilization. Inhibition of NOTCH ligand activity in muscle fibers suffices to reduce the progenitor pool. Furthermore, immobilization reduces the activity of the transcriptional co-activator YAP and the expression of the NOTCH ligand JAG2 in muscle fibers. YAP forced-activity in muscle fibers prevents the decrease of JAG2 expression and the number of PAX7+ cells in immobilization conditions. Our results identify a novel mechanism acting downstream of muscle contraction, where YAP activates JAG2 expression in muscle fibers, which in turn regulates the pool of fetal muscle progenitors via NOTCH in a non-cell-autonomous manner. DOI: http://dx.doi.org/10.7554/eLife.15593.001 PMID:27554485

  17. Combined Strategies for Maintaining Skeletal Muscle Mass and Function in Aging: Myostatin Inactivation and AICAR-Associated Oxidative Metabolism Induction.

    PubMed

    Pauly, Marion; Chabi, Béatrice; Favier, François Bertrand; Vanterpool, Frankie; Matecki, Stefan; Fouret, Gilles; Bonafos, Béatrice; Vernus, Barbara; Feillet-Coudray, Christine; Coudray, Charles; Bonnieu, Anne; Ramonatxo, Christelle

    2015-09-01

    Myostatin (mstn) blockade, resulting in muscle hypertrophy, is a promising therapy to counteract age-related muscle loss. However, oxidative and mitochondrial deficit observed in young mice with myostatin inhibition could be detrimental with aging. The aim of this study was (a) to bring original data on metabolic and mitochondrial consequences of mstn inhibition in old mice, and (b) to examine whether 4-weeks of AICAR treatment, a pharmacological compound known to upregulate oxidative metabolism, may be useful to improve exercise capacity and mitochondrial deficit of 20-months mstn KO versus wild-type (WT) mice. Our results show that despite the enlarged muscle mass, the oxidative and mitochondrial deficit associated with reduced endurance running capacity is maintained in old mstn KO mice but not worsened by aging. Importantly, AICAR treatment induced a significant beneficial effect on running limit time only in old mstn KO mice, with a marked increase in PGC-1α expression and slight beneficial effects on mitochondrial function. We showed that AICAR effects were autophagy-independent. This study underlines the relevance of aged muscle remodelling by complementary approaches that impact both muscle mass and function, and suggest that mstn inhibition and aerobic metabolism activators should be co-developed for delaying age-related deficits in skeletal muscle. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. JunB transcription factor maintains skeletal muscle mass and promotes hypertrophy

    PubMed Central

    Raffaello, Anna; Milan, Giulia; Masiero, Eva; Carnio, Silvia; Lee, Donghoon

    2010-01-01

    The size of skeletal muscle cells is precisely regulated by intracellular signaling networks that determine the balance between overall rates of protein synthesis and degradation. Myofiber growth and protein synthesis are stimulated by the IGF-1/Akt/mammalian target of rapamycin (mTOR) pathway. In this study, we show that the transcription factor JunB is also a major determinant of whether adult muscles grow or atrophy. We found that in atrophying myotubes, JunB is excluded from the nucleus and that decreasing JunB expression by RNA interference in adult muscles causes atrophy. Furthermore, JunB overexpression induces hypertrophy without affecting satellite cell proliferation and stimulated protein synthesis independently of the Akt/mTOR pathway. When JunB is transfected into denervated muscles, fiber atrophy is prevented. JunB blocks FoxO3 binding to atrogin-1 and MuRF-1 promoters and thus reduces protein breakdown. Therefore, JunB is important not only in dividing populations but also in adult muscle, where it is required for the maintenance of muscle size and can induce rapid hypertrophy and block atrophy. PMID:20921137

  19. Maintaining Elastogenicity of Mesenchymal Stem Cell-Derived Smooth Muscle Cells in Two-Dimensional Culture.

    PubMed

    Dahal, Shataakshi; Broekelman, Thomas; Mecham, Robert P; Ramamurthi, Anand

    2018-06-01

    Abdominal aortic aneurysms (AAAs) are localized expansions of the abdominal aorta that grow slowly to rupture. AAA growth is driven by irreversible elastic matrix breakdown in the aorta wall by chronically upregulated matrix metalloproteases (MMPs). Since adult vascular smooth muscle cells (SMCs) poorly regenerate elastic matrix, we previously explored utility of bone marrow mesenchymal stem cells and SMCs derived therefrom (BM-SMCs) for this purpose. One specific differentiated phenotype (cBM-SMCs) generated on a fibronectin substrate in presence of exogenous transforming growth factor-β and platelet-derived growth factor exhibited superior elastogenicity versus other phenotypes, and usefully provided proelastogenic and antiproteolytic stimuli to aneurysmal SMCs. Since in vivo cell therapy demands large cell inoculates, these derived SMCs must be propagated in vitro while maintaining their superior elastogenic, proelastogenic, and antiproteolytic characteristics. In this work, we thus investigated the culture conditions that must be provided to this propagation phase, which ensure that the differentiated SMCs maintain their phenotype and matrix regenerative benefits. Our results indicate that our BM-SMCs retain their phenotype in long-term culture even in the absence of differentiation growth factors and fibronectin substrate, but these conditions must be continued to be provided during postdifferentiation propagation if they are to maintain their superior elastic matrix deposition, crosslinking, and fiber formation properties. Our study, however, showed that cells propagated under these conditions exhibit higher expression of MMP-2, but favorably, no expression of elastolytic MMP-9. Hence, the study outcomes provide crucial guidelines to maintain phenotypic stability of cBM-SMCs during their propagation in two-dimensional culture before their delivery to the AAA wall for therapy.

  20. Atrophy of the quadriceps muscle in children with a painful hip.

    PubMed

    Robben, S G; Lequin, M H; Meradji, M; Diepstraten, A F; Hop, W C

    1999-09-01

    The objective of this study was to determine the degree of muscle wasting of various components of the quadriceps muscle in children with a painful hip. Between January 1994 and September 1997, 327 consecutive children with a unilateral painful hip and/or limping were evaluated prospectively with ultrasonography. Quadriceps thickness was measured on both sides. Moreover, muscle thickness was measured in 59 control subjects. The patients were divided into eight groups; transient synovitis (n = 134), Perthes' disease (n = 35), slipped capital femoral epiphysis (n = 5), osteomyelitis (n = 4), aspecific synovitis (n = 5), rheumatoid arthritis (n = 3) and miscellaneous (n = 16). In 125 patients, no sonographic and radiological abnormalities were found and during follow-up the symptoms disappeared ('no pathology' group). Ipsilateral muscle wasting was present in all patient groups, whereas the control subjects showed no significant difference in muscle thickness between legs. The degree of muscle wasting was compared between transient synovitis, the 'no pathology' group, Perthes' disease and control subjects. For both quadriceps and vastus intermedius muscles, there was a significant difference between these groups, except between control subjects and the 'no pathology' group. For the rectus femoris muscle, there was a significant difference between these groups, except between transient synovitis and 'no pathology'. Muscle wasting showed a positive correlation with duration of symptoms and pre-existing muscle mass. In conclusion, different diseases show different degrees of muscle wasting, and there are different patterns of muscle wasting of various components of the quadriceps femoris muscle.

  1. Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review.

    PubMed

    Demoulin, Christophe; Crielaard, Jean-Michel; Vanderthommen, Marc

    2007-01-01

    This article reviews available techniques for spinal muscle investigation, as well as data on spinal muscles in healthy individuals and in patients with low back pain. In patients with chronic low back pain, medical imaging studies show paraspinal muscle wasting with reductions in cross-sectional surface area and fiber density. In healthy individuals, the paraspinal muscles contain a high proportion of slow-twitch fibers (Type I), reflecting their role in maintaining posture. The proportion of Type I fibers is higher in females, leading to better adaptation to aerobic exertion compared to males. Abnormalities seen in paraspinal muscles from patients with chronic low back pain include marked Type II fiber atrophy, conversion of Type I to Type II fibers, and an increased number of nonspecific abnormalities. Limited data are available from magnetic resonance spectroscopy used to investigate muscle metabolism and from near infrared spectroscopy used to measure oxygen uptake by the paraspinal muscles. Surface electromyography in patients with chronic low back pain shows increased paraspinal muscle fatigability, often with abolition of the flexion-relaxation phenomenon.

  2. Sarcopenia, cachexia, and muscle performance in heart failure: Review update 2016.

    PubMed

    Saitoh, Masakazu; Ishida, Junichi; Doehner, Wolfram; von Haehling, Stephan; Anker, Markus S; Coats, Andrew J S; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Cachexia in the context of heart failure (HF) has been termed cardiac cachexia, and represents a progressive involuntary weight loss. Cachexia is mainly the result of an imbalance in the homeostasis of muscle protein synthesis and degradation due to a lower activity of protein synthesis pathways and an over-activation of protein degradation. In addition, muscle wasting leads to of impaired functional capacity, even after adjusting for clinical relevant variables in patients with HF. However, there is no sufficient therapeutic strategy in muscle wasting in HF patients and very few studies in animal models. Exercise training represents a promising intervention that can prevent or even reverse the process of muscle wasting, and worsening the muscle function and performance in HF with muscle wasting and cachexia. The pathological mechanisms and effective therapeutic approach of cardiac cachexia remain uncertain, because of the difficulty to establish animal cardiac cachexia models, thus novel animal models are warranted. Furthermore, the use of improved animal models will lead to a better understanding of the pathways that modulate muscle wasting and therapeutics of muscle wasting of cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The Role of GH/IGF-I Axis in Muscle Homeostasis During Weightlessness

    NASA Technical Reports Server (NTRS)

    Schwartz, Robert J.

    1997-01-01

    Exposure to reduced gravity during space travel profoundly alters the loads placed on bone and muscle. Astronauts suffer significant losses of muscle and bone strength during weightlessness. Exercise as a countermeasure is only partially effective in remedying severe muscle atrophy and bone demineralization. Similar wasting of muscles and bones affects people on Earth during prolonged bed rest or immobilization due to injury. In the absence of weight bearing activity, atrophy occurs primarily in the muscles that act in low power, routine movements and in maintaining posture. Hormonal disfunction could contribute in part to the loss of muscle and bone during spaceflight. Reduced levels of human Growth Hormone (hGH) were found in astronauts during space flight, as well as reduced GH secretory activity was observed from the anterior pituitary in 7-day space flight rats. Growth hormone has been shown to be required for maintenance of muscle mass and bone mineralization, in part by mediating the biosynthesis IGF-I, a small polypeptide growth factor. IGF biosynthesis and secretion plays an important role in potentiating muscle cell differentiation and has been shown to drive the expression of myogenin, a myogenic specific basic helix-loop-helix factor. IGF-I has also been shown to have an important role in potentiating muscle regeneration, repair and adult muscle hypertrophy.

  4. High Fat Diet-Induced Skeletal Muscle Wasting Is Decreased by Mesenchymal Stem Cells Administration: Implications on Oxidative Stress, Ubiquitin Proteasome Pathway Activation, and Myonuclear Apoptosis

    PubMed Central

    Aravena, Javier; Cabrera, Daniel; Simon, Felipe; Ezquer, Fernando

    2016-01-01

    Obesity can lead to skeletal muscle atrophy, a pathological condition characterized by the loss of strength and muscle mass. A feature of muscle atrophy is a decrease of myofibrillar proteins as a result of ubiquitin proteasome pathway overactivation, as evidenced by increased expression of the muscle-specific ubiquitin ligases atrogin-1 and MuRF-1. Additionally, other mechanisms are related to muscle wasting, including oxidative stress, myonuclear apoptosis, and autophagy. Stem cells are an emerging therapy in the treatment of chronic diseases such as high fat diet-induced obesity. Mesenchymal stem cells (MSCs) are a population of self-renewable and undifferentiated cells present in the bone marrow and other mesenchymal tissues of adult individuals. The present study is the first to analyze the effects of systemic MSC administration on high fat diet-induced skeletal muscle atrophy in the tibialis anterior of mice. Treatment with MSCs reduced losses of muscle strength and mass, decreases of fiber diameter and myosin heavy chain protein levels, and fiber type transitions. Underlying these antiatrophic effects, MSC administration also decreased ubiquitin proteasome pathway activation, oxidative stress, and myonuclear apoptosis. These results are the first to indicate that systemically administered MSCs could prevent muscle wasting associated with high fat diet-induced obesity and diabetes. PMID:27579157

  5. Non-invasive ventilation abolishes the IL-6 response to exercise in muscle-wasted COPD patients: a pilot study.

    PubMed

    Hannink, J D C; van Hees, H W H; Dekhuijzen, P N R; van Helvoort, H A C; Heijdra, Y F

    2014-02-01

    Systemic inflammation in patients with chronic obstructive pulmonary disease (COPD) has been related to the development of comorbidities. The level of systemic inflammatory mediators is aggravated as a response to exercise in these patients. The aim of this study was to investigate whether unloading of the respiratory muscles attenuates the inflammatory response to exercise in COPD patients. In a cross-over design, eight muscle-wasted stable COPD patients performed 40 W constant work-rate cycle exercise with and without non-invasive ventilation support (NIV vs control). Patients exercised until symptom limitation for maximally 20 min. Blood samples were taken at rest and at isotime or immediately after exercise. Duration of control and NIV-supported exercise was similar, both 12.9 ± 2.8 min. Interleukin- 6 (IL-6) plasma levels increased significantly by 25 ± 9% in response to control exercise, but not in response to NIV-supported exercise. Leukocyte concentrations increased similarly after control and NIV-supported exercise by ∼15%. Plasma concentrations of C-reactive protein, carbonylated proteins, and production of reactive oxygen species by blood cells were not affected by both exercise modes. This study demonstrates that NIV abolishes the IL-6 response to exercise in muscle-wasted patients with COPD. These data suggest that the respiratory muscles contribute to exercise-induced IL-6 release in these patients. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Substance P is essential for maintaining gut muscle contractility: a novel role for coneurotransmission revealed by botulinum toxin

    PubMed Central

    Li, Cuiping; Micci, Maria-Adelaide; Murthy, Karnam S.

    2014-01-01

    Substance P (SP) is commonly coexpressed with ACh in enteric motor neurons, and, according to the classical paradigm, both these neurotransmitters excite smooth muscle via parallel pathways. We hypothesized that, in addition, SP was responsible for maintaining the muscular responsiveness to ACh. We tested this hypothesis by using botulinum toxin (BoNT/A), a known blocker of vesicular release of neurotransmitters including ACh and neuropeptides. BoNT/A was injected into rat pyloric sphincter in different doses; as control we used boiled BoNT/A. At the desired time point, pylorus was dissected out and pyloric contractility was measured ex vivo in an organ bath and by measuring phosphorylation of myosin light chain 20 (MLC20). BoNT/A (10 IU) significantly reduced the response of pyloric muscle to exogenous ACh, an effect that was accompanied by reduced MLC20 phosphorylation in the muscle. Both effects were reversed by exogenous SP. CP-96345, a NK1 receptor antagonist, blocked the ability of exogenous SP to reverse the cholinergic hyporesponsiveness as well as the reduction in MLC20 phosphorylation induced by BoNT/A. In conclusion, we have identified a novel role for SP as a coneurotransmitter that appears to be important for the maintenance of muscular responsiveness to the principal excitatory neurotransmitter, ACh. These results also provide new insight into the effects of botulinum toxin on the enteric nervous system and gastrointestinal smooth muscle. PMID:24699329

  7. Substance P is essential for maintaining gut muscle contractility: a novel role for coneurotransmission revealed by botulinum toxin.

    PubMed

    Li, Cuiping; Micci, Maria-Adelaide; Murthy, Karnam S; Pasricha, Pankaj Jay

    2014-05-15

    Substance P (SP) is commonly coexpressed with ACh in enteric motor neurons, and, according to the classical paradigm, both these neurotransmitters excite smooth muscle via parallel pathways. We hypothesized that, in addition, SP was responsible for maintaining the muscular responsiveness to ACh. We tested this hypothesis by using botulinum toxin (BoNT/A), a known blocker of vesicular release of neurotransmitters including ACh and neuropeptides. BoNT/A was injected into rat pyloric sphincter in different doses; as control we used boiled BoNT/A. At the desired time point, pylorus was dissected out and pyloric contractility was measured ex vivo in an organ bath and by measuring phosphorylation of myosin light chain 20 (MLC20). BoNT/A (10 IU) significantly reduced the response of pyloric muscle to exogenous ACh, an effect that was accompanied by reduced MLC20 phosphorylation in the muscle. Both effects were reversed by exogenous SP. CP-96345, a NK1 receptor antagonist, blocked the ability of exogenous SP to reverse the cholinergic hyporesponsiveness as well as the reduction in MLC20 phosphorylation induced by BoNT/A. In conclusion, we have identified a novel role for SP as a coneurotransmitter that appears to be important for the maintenance of muscular responsiveness to the principal excitatory neurotransmitter, ACh. These results also provide new insight into the effects of botulinum toxin on the enteric nervous system and gastrointestinal smooth muscle. Copyright © 2014 the American Physiological Society.

  8. Glycine administration attenuates skeletal muscle wasting in a mouse model of cancer cachexia.

    PubMed

    Ham, Daniel J; Murphy, Kate T; Chee, Annabel; Lynch, Gordon S; Koopman, René

    2014-06-01

    The non-essential amino acid, glycine, is often considered biologically neutral, but some studies indicate that it could be an effective anti-inflammatory agent. Since inflammation is central to the development of cancer cachexia, glycine supplementation represents a simple, safe and promising treatment. We tested the hypothesis that glycine supplementation reduces skeletal muscle inflammation and preserves muscle mass in tumor-bearing mice. To induce cachexia, CD2F1 mice received a subcutaneous injection of PBS (control, n = 12) or C26 tumor cells (n = 32) in accordance with the protocols developed by Murphy et al. [Murphy KT, Chee A, Trieu J, Naim T, Lynch GS. Importance of functional and metabolic impairments in the characterization of the C-26 murine model of cancer cachexia. Dis Models Mech 2012;5(4):533-545.]. Subcutaneous injections of glycine (n = 16) or PBS (n = 16) were administered daily for 21 days and at the conclusion of treatment, selected muscles, tumor and adipose tissue were collected and prepared for Real-Time RT-PCR or western blot analysis. Glycine attenuated the loss of fat and muscle mass, blunted increases in markers of inflammation (F4/80, P = 0.01 & IL-6 mRNA, P = 0.01) and atrophic signaling (MuRF, P = 0.047; atrogin-1, P = 0.04; LC3B, P = 0.06 and; BNIP3, P = 0.10) and tended to attenuate the loss of body mass (P = 0.07), muscle function (P = 0.06), and oxidative stress (GSSG/GSH, P = 0.06 and DHE, P = 0.07) seen in tumor-bearing mice. Preliminary studies that compared the effect of glycine administration with isonitrogenous doses of alanine or citrulline showed that the observed protective effect was specific to glycine. Glycine protects skeletal muscle from cancer-induced wasting and loss of function, reduces the oxidative and inflammatory burden, and reduces the expression of genes associated with muscle protein breakdown in cancer cachexia. Importantly, these effects were glycine specific. Copyright © 2013 Elsevier Ltd and European

  9. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis.

    PubMed

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-02-01

    Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting.

  10. A model of muscle atrophy based on live microscopy of muscle remodelling in Drosophila metamorphosis

    PubMed Central

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-01-01

    Genes controlling muscle size and survival play important roles in muscle wasting diseases. In Drosophila melanogaster metamorphosis, larval abdominal muscles undergo two developmental fates. While a doomed population is eliminated by cell death, another persistent group is remodelled and survives into adulthood. To identify and characterize genes involved in the development of remodelled muscles, we devised a workflow consisting of in vivo imaging, targeted gene perturbation and quantitative image analysis. We show that inhibition of TOR signalling and activation of autophagy promote developmental muscle atrophy in early, while TOR and yorkie activation are required for muscle growth in late pupation. We discovered changes in the localization of myonuclei during remodelling that involve anti-polar migration leading to central clustering followed by polar migration resulting in localization along the midline. We demonstrate that the Cathepsin L orthologue Cp1 is required for myonuclear clustering in mid, while autophagy contributes to central positioning of nuclei in late metamorphosis. In conclusion, studying muscle remodelling in metamorphosis can provide new insights into the cell biology of muscle wasting. PMID:26998322

  11. The MEK-Inhibitor Selumetinib Attenuates Tumor Growth and Reduces IL-6 Expression but Does Not Protect against Muscle Wasting in Lewis Lung Cancer Cachexia.

    PubMed

    Au, Ernie D; Desai, Aditya P; Koniaris, Leonidas G; Zimmers, Teresa A

    2016-01-01

    Cachexia, or wasting of skeletal muscle and fat, afflicts many patients with chronic diseases including cancer, organ failure, and AIDS. Muscle wasting reduces quality of life and decreases response to therapy. Cachexia is caused partly by elevated inflammatory cytokines, including interleukin-6 (IL-6). Others and we have shown that IL-6 alone is sufficient to induce cachexia both in vitro and in vivo . The mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor Selumetinib has been tested in clinical trials for various cancers. Moreover, Selumetinib has also been shown to inhibit the production of IL-6. In a retrospective analysis of a phase II clinical trial in advanced cholangiocarcinoma, patients treated with Selumetinib experienced significant gains in skeletal muscle vs. patients receiving standard therapy. However, the use of Selumetinib as a treatment for cachexia has yet to be investigated mechanistically. We sought to determine whether MEK inhibition could protect against cancer-induced cachexia in mice. In vitro , Selumetinib induced C2C12 myotube hypertrophy and nuclear accretion. Next we tested Selumetinib in the Lewis lung carcinoma (LLC) model of cancer cachexia. Treatment with Selumetinib reduced tumor mass and reduced circulating and tumor IL-6; however MEK inhibition did not preserve muscle mass. Similar wasting was seen in limb muscles of Selumetinib and vehicle-treated LLC mice, while greater fat and carcass weight loss was observed with Selumetinib treatment. As well, Selumetinib did not block wasting in C2C12 myotubes treated with LLC serum. Taken together, out results suggest that this MEK inhibitor is not protective in LLC cancer cachexia despite lowering IL-6 levels, and further that it might exacerbate tumor-induced weight loss. Differences from other studies might be disease, species or model-specific.

  12. The MEK-Inhibitor Selumetinib Attenuates Tumor Growth and Reduces IL-6 Expression but Does Not Protect against Muscle Wasting in Lewis Lung Cancer Cachexia

    PubMed Central

    Au, Ernie D.; Desai, Aditya P.; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2017-01-01

    Cachexia, or wasting of skeletal muscle and fat, afflicts many patients with chronic diseases including cancer, organ failure, and AIDS. Muscle wasting reduces quality of life and decreases response to therapy. Cachexia is caused partly by elevated inflammatory cytokines, including interleukin-6 (IL-6). Others and we have shown that IL-6 alone is sufficient to induce cachexia both in vitro and in vivo. The mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) inhibitor Selumetinib has been tested in clinical trials for various cancers. Moreover, Selumetinib has also been shown to inhibit the production of IL-6. In a retrospective analysis of a phase II clinical trial in advanced cholangiocarcinoma, patients treated with Selumetinib experienced significant gains in skeletal muscle vs. patients receiving standard therapy. However, the use of Selumetinib as a treatment for cachexia has yet to be investigated mechanistically. We sought to determine whether MEK inhibition could protect against cancer-induced cachexia in mice. In vitro, Selumetinib induced C2C12 myotube hypertrophy and nuclear accretion. Next we tested Selumetinib in the Lewis lung carcinoma (LLC) model of cancer cachexia. Treatment with Selumetinib reduced tumor mass and reduced circulating and tumor IL-6; however MEK inhibition did not preserve muscle mass. Similar wasting was seen in limb muscles of Selumetinib and vehicle-treated LLC mice, while greater fat and carcass weight loss was observed with Selumetinib treatment. As well, Selumetinib did not block wasting in C2C12 myotubes treated with LLC serum. Taken together, out results suggest that this MEK inhibitor is not protective in LLC cancer cachexia despite lowering IL-6 levels, and further that it might exacerbate tumor-induced weight loss. Differences from other studies might be disease, species or model-specific. PMID:28149280

  13. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    PubMed Central

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  14. Study Design and Rationale for the Phase 3 Clinical Development Program of Enobosarm, a Selective Androgen Receptor Modulator, for the Prevention and Treatment of Muscle Wasting in Cancer Patients (POWER Trials).

    PubMed

    Crawford, Jeffrey; Prado, Carla M M; Johnston, Mary Ann; Gralla, Richard J; Taylor, Ryan P; Hancock, Michael L; Dalton, James T

    2016-06-01

    Muscle wasting in cancer is a common and often occult condition that can occur prior to overt signs of weight loss and before a clinical diagnosis of cachexia can be made. Muscle wasting in cancer is an important and independent predictor of progressive functional impairment, decreased quality of life, and increased mortality. Although several therapeutic agents are currently in development for the treatment of muscle wasting or cachexia in cancer, the majority of these agents do not directly inhibit muscle loss. Selective androgen receptor modulators (SARMs) have the potential to increase lean body mass (LBM) and hence muscle mass, without the untoward side effects seen with traditional anabolic agents. Enobosarm, a nonsteroidal SARM, is an agent in clinical development for prevention and treatment of muscle wasting in patients with cancer (POWER 1 and 2 trials). The POWER trials are two identically designed randomized, double-blind, placebo-controlled, multicenter, and multinational phase 3 trials to assess the efficacy of enobosarm for the prevention and treatment of muscle wasting in subjects initiating first-line chemotherapy for non-small-cell lung cancer (NSCLC). To assess enobosarm's effect on both prevention and treatment of muscle wasting, no minimum weight loss is required. These pivotal trials have pioneered the methodological and regulatory fields exploring a therapeutic agent for cancer-associated muscle wasting, a process hereby described. In each POWER trial, subjects will receive placebo (n = 150) or enobosarm 3 mg (n = 150) orally once daily for 147 days. Physical function, assessed as stair climb power (SCP), and LBM, assessed by dual-energy X-ray absorptiometry (DXA), are the co-primary efficacy endpoints in both trials assessed at day 84. Based on extensive feedback from the US Food and Drug Administration (FDA), the co-primary endpoints will be analyzed as a responder analysis. To be considered a physical function responder, a

  15. Complete reversal of muscle wasting in experimental cancer cachexia: Additive effects of activin type II receptor inhibition and β-2 agonist.

    PubMed

    Toledo, Míriam; Busquets, Sílvia; Penna, Fabio; Zhou, Xiaolan; Marmonti, Enrica; Betancourt, Angelica; Massa, David; López-Soriano, Francisco J; Han, H Q; Argilés, Josep M

    2016-04-15

    Formoterol is a highly potent β2-adrenoceptor-selective agonist, which is a muscle growth promoter in many animal species. Myostatin/activin inhibition reverses skeletal muscle loss and prolongs survival of tumor-bearing animals. The aim of this investigation was to evaluate the effects of a combination of the soluble myostatin receptor ActRIIB (sActRIIB) and the β2-agonist formoterol in the cachectic Lewis lung carcinoma model. The combination of formoterol and sActRIIB was extremely effective in reversing muscle wasting associated with experimental cancer cachexia in mice. Muscle weights from tumor-bearing animals were completely recovered following treatment and this was also reflected in the measured grip strength. This combination increased food intake in both control and tumor-bearing animals. The double treatment also prolonged survival significantly without affecting the weight and growth of the primary tumor. In addition, it significantly reduced the number of metastasis. Concerning the mechanisms for the preservation of muscle mass during cachexia, the effects of formoterol and sActRIIB seemed to be additive, since formoterol reduced the rate of protein degradation (as measured in vitro as tyrosine release, using incubated isolated individual muscles) while sActRIIB only affected protein synthesis (as measured in vivo using tritiated phenylalanine). Formoterol also increased the rate of protein synthesis and this seemed to be favored by the presence of sActRIIB. Combining formoterol and sActRIIB seemed to be a very promising treatment for experimental cancer cachexia. Further studies in human patients are necessary and may lead to a highly effective treatment option for muscle wasting associated with cancer. © 2015 UICC.

  16. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    PubMed

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  17. Influence of physical exercise on microRNAs in skeletal muscle regeneration, aging and diseases

    PubMed Central

    Ultimo, Simona; Zauli, Giorgio; Martelli, Alberto M.; Vitale, Marco; McCubrey, James A.; Capitani, Silvano; Neri, Luca M.

    2018-01-01

    Skeletal muscle is a dynamic tissue with remarkable plasticity and its growth and regeneration are highly organized, with the activation of specific transcription factors, proliferative pathways and cytokines. The decline of skeletal muscle tissue with age, is one of the most important causes of functional loss of independence in older adults. Maintaining skeletal muscle function throughout the lifespan is a prerequisite for good health and independent living. Physical activity represents one of the most effective preventive agents for muscle decay in aging. Several studies have underlined the importance of microRNAs (miRNAs) in the control of myogenesis and of skeletal muscle regeneration and function. In this review, we reported an overview and recent advances about the role of miRNAs expressed in the skeletal muscle, miRNAs regulation by exercise in skeletal muscle, the consequences of different physical exercise training modalities in the skeletal muscle miRNA profile, their regulation under pathological conditions and the role of miRNAs in age-related muscle wasting. Specific miRNAs appear to be involved in response to different types of exercise and therefore to play an important role in muscle fiber identity and myofiber gene expression in adults and elder population. Understanding the roles and regulation of skeletal muscle miRNAs during muscle regeneration may result in new therapeutic approaches in aging or diseases with impaired muscle function or re-growth. PMID:29682218

  18. Muscle wasting associated with pathologic change is a risk factor for the exacerbation of joint swelling in collagen-induced arthritis in cynomolgus monkeys

    PubMed Central

    2013-01-01

    Background Not only joint destruction but also muscle wasting due to rheumatoid cachexia has been problem in terms of quality of life of patients with rheumatoid arthritis (RA). In the present study, we performed histopathological examination and assessed relationships between characteristic parameters relating to muscle and joint swelling in a collagen-induced arthritis (CIA) model using cynomolgus monkeys (CMs). Methods Female CMs were used and CIA was induced by twice immunizations using bovine type II collagen with Freund’s complete adjuvant. Arthritis level was evaluated from the degree of swelling at the peripheral joints of the fore and hind limbs. Food consumption, body weight, and serum biochemical parameters were measured sequentially. Five or 6 animals per time point were sacrificed at 2, 3, 5 and 9 weeks after the first immunization to obtain quadriceps femoris specimens for histopathology. Pimonidazole hydrochloride was intravenously administered to determine tissue hypoxia in skeletal muscle. Results Gradual joint swelling was observed and the maximum arthritis score was noted at Week 5. In histopathology, necrosis of muscle fiber in the quadriceps femoris was observed only at Week 2 and the most significant findings such as degeneration, atrophy, and regeneration of muscle fiber were mainly observed at Week 5. Food consumption was decreased up to Week 4 but recovered thereafter. Body weight decreased up to Week 5 and did not completely recover thereafter. A biphasic increase in serum cortisol was also observed at Weeks 2 and 5. Histopathology showed that muscle lesions were mainly composed of degeneration and atrophy of the muscle fibers, and ATPase staining revealed that the changes were more pronounced in type II muscle fiber than type I muscle fiber. In the pimonidazole experiment, mosaic pattern in skeletal muscle was demonstrated in the intact animal, but not the CIA animal. Increased arthritis score was accompanied by a decrease in serum

  19. The wasting continuum in heart failure: from sarcopenia to cachexia.

    PubMed

    von Haehling, Stephan

    2015-11-01

    Sarcopenia (muscle wasting) and cachexia share some pathophysiological aspects. Sarcopenia affects approximately 20 %, cachexia <10 % of ambulatory patients with heart failure (HF). Whilst sarcopenia means loss of skeletal muscle mass and strength that predominantly affects postural rather than non-postural muscles, cachexia means loss of muscle and fat tissue that leads to weight loss. The wasting continuum in HF implies that skeletal muscle is lost earlier than fat tissue and may lead from sarcopenia to cachexia. Both tissues require conservation, and therapies that stop the wasting process have tremendous therapeutic appeal. The present paper reviews the pathophysiology of muscle and fat wasting in HF and discusses potential treatments, including exercise training, appetite stimulants, essential amino acids, growth hormone, testosterone, electrical muscle stimulation, ghrelin and its analogues, ghrelin receptor agonists and myostatin antibodies.

  20. Impaired Regeneration: A Role for the Muscle Microenvironment in Cancer Cachexia

    PubMed Central

    Talbert, Erin E.; Guttridge, Denis C.

    2016-01-01

    While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia. PMID:26385617

  1. The mechanisms of cachexia underlying muscle dysfunction in COPD.

    PubMed

    Remels, A H V; Gosker, H R; Langen, R C J; Schols, A M W J

    2013-05-01

    Pulmonary cachexia is a prevalent, debilitating, and well-recognized feature of COPD associated with increased mortality and loss of peripheral and respiratory muscle function. The exact cause and underlying mechanisms of cachexia in COPD are still poorly understood. Increasing evidence, however, shows that pathological changes in intracellular mechanisms of muscle mass maintenance (i.e., protein turnover and myonuclear turnover) are likely involved. Potential factors triggering alterations in these mechanisms in COPD include oxidative stress, myostatin, and inflammation. In addition to muscle wasting, peripheral muscle in COPD is characterized by a fiber-type shift toward a more type II, glycolytic phenotype and an impaired oxidative capacity (collectively referred to as an impaired oxidative phenotype). Atrophied diaphragm muscle in COPD, however, displays an enhanced oxidative phenotype. Interestingly, intrinsic abnormalities in (lower limb) peripheral muscle seem more pronounced in either cachectic patients or weight loss-susceptible emphysema patients, suggesting that muscle wasting and intrinsic changes in peripheral muscle's oxidative phenotype are somehow intertwined. In this manuscript, we will review alterations in mechanisms of muscle mass maintenance in COPD and discuss the involvement of oxidative stress, inflammation, and myostatin as potential triggers of cachexia. Moreover, we postulate that an impaired muscle oxidative phenotype in COPD can accelerate the process of cachexia, as it renders muscle in COPD less energy efficient, thereby contributing to an energy deficit and weight loss when not dietary compensated. Furthermore, loss of peripheral muscle oxidative phenotype may increase the muscle's susceptibility to inflammation- and oxidative stress-induced muscle damage and wasting.

  2. Impaired regeneration: A role for the muscle microenvironment in cancer cachexia.

    PubMed

    Talbert, Erin E; Guttridge, Denis C

    2016-06-01

    While changes in muscle protein synthesis and degradation have long been known to contribute to muscle wasting, a body of literature has arisen which suggests that regulation of the satellite cell and its ensuing regenerative program are impaired in atrophied muscle. Lessons learned from cancer cachexia suggest that this regulation is simply not a consequence, but a contributing factor to the wasting process. In addition to satellite cells, evidence from mouse models of cancer cachexia also suggests that non-satellite progenitor cells from the muscle microenvironment are also involved. This chapter in the series reviews the evidence of dysfunctional muscle repair in multiple wasting conditions. Potential mechanisms for this dysfunctional regeneration are discussed, particularly in the context of cancer cachexia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting.

    PubMed

    Lokireddy, Sudarsanareddy; Wijesoma, Isuru Wijerupage; Sze, Siu Kwan; McFarlane, Craig; Kambadur, Ravi; Sharma, Mridula

    2012-09-01

    Atrogin-1, a muscle-specific E3 ligase, targets MyoD for degradation through the ubiquitin-proteasome-mediated system. Myostatin, a member of the transforming growth factor-β superfamily, potently inhibits myogenesis by lowering MyoD levels. While atrogin-1 is upregulated by myostatin, it is currently unknown whether atrogin-1 plays a role in mediating myostatin signaling to regulate myogenesis. In this report, we have confirmed that atrogin-1 increasingly interacts with MyoD upon recombinant human myostatin (hMstn) treatment. The absence of atrogin-1, however, led to elevated MyoD levels and permitted the differentiation of atrogin-1(-/-) primary myoblast cultures despite the presence of exogenous myostatin. Furthermore, inactivation of atrogin-1 rescued myoblasts from growth inhibition by hMstn. Therefore, these results highlight the central role of atrogin-1 in regulating myostatin signaling during myogenesis. Currently, there are only two known targets of atrogin-1. Thus, we next characterized the associated proteins of atrogin-1 in control and hMstn-treated C2C12 cell cultures by stably expressing tagged atrogin-1 in myoblasts and myotubes, and sequencing the coimmunoprecipitated proteome. We found that atrogin-1 putatively interacts with sarcomeric proteins, transcriptional factors, metabolic enzymes, components of translation, and spliceosome formation. In addition, we also identified that desmin and vimentin, two components of the intermediate filament in muscle, directly interacted with and were degraded by atrogin-1 in response to hMstn. In summary, the muscle wasting effects of the myostatin-atrogin-1 axis are not only limited to the degradation of MyoD and eukaryotic translation initiation factor 3 subunit f, but also encompass several proteins that are involved in a wide variety of cellular activities in the muscle.

  4. The bone morphogenetic protein axis is a positive regulator of skeletal muscle mass

    PubMed Central

    Chen, Justin L.; Qian, Hongwei; Liu, Yingying; Bernardo, Bianca C.; Beyer, Claudia; Watt, Kevin I.; Thomson, Rachel E.; Connor, Timothy; Turner, Bradley J.; McMullen, Julie R.; Larsson, Lars; McGee, Sean L.; Harrison, Craig A.

    2013-01-01

    Although the canonical transforming growth factor β signaling pathway represses skeletal muscle growth and promotes muscle wasting, a role in muscle for the parallel bone morphogenetic protein (BMP) signaling pathway has not been defined. We report, for the first time, that the BMP pathway is a positive regulator of muscle mass. Increasing the expression of BMP7 or the activity of BMP receptors in muscles induced hypertrophy that was dependent on Smad1/5-mediated activation of mTOR signaling. In agreement, we observed that BMP signaling is augmented in models of muscle growth. Importantly, stimulation of BMP signaling is essential for conservation of muscle mass after disruption of the neuromuscular junction. Inhibiting the phosphorylation of Smad1/5 exacerbated denervation-induced muscle atrophy via an HDAC4-myogenin–dependent process, whereas increased BMP–Smad1/5 activity protected muscles from denervation-induced wasting. Our studies highlight a novel role for the BMP signaling pathway in promoting muscle growth and inhibiting muscle wasting, which may have significant implications for the development of therapeutics for neuromuscular disorders. PMID:24145169

  5. 10 CFR 1304.111 - Maintaining records of disclosures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Maintaining records of disclosures. 1304.111 Section 1304.111 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.111 Maintaining records of disclosures. (a) The Board shall maintain a log containing the date, nature, and purpose of each disclosure of...

  6. 10 CFR 1304.111 - Maintaining records of disclosures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Maintaining records of disclosures. 1304.111 Section 1304.111 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.111 Maintaining records of disclosures. (a) The Board shall maintain a log containing the date, nature, and purpose of each disclosure of...

  7. 10 CFR 1304.111 - Maintaining records of disclosures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Maintaining records of disclosures. 1304.111 Section 1304.111 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.111 Maintaining records of disclosures. (a) The Board shall maintain a log containing the date, nature, and purpose of each disclosure of...

  8. 10 CFR 1304.111 - Maintaining records of disclosures.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Maintaining records of disclosures. 1304.111 Section 1304.111 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.111 Maintaining records of disclosures. (a) The Board shall maintain a log containing the date, nature, and purpose of each disclosure of...

  9. Reactive Oxygen Species/Nitric Oxide Mediated Inter-Organ Communication in Skeletal Muscle Wasting Diseases

    PubMed Central

    Leitner, Lucia M.; Wilson, Rebecca J.; Yan, Zhen

    2017-01-01

    Abstract Significance: Cachexia is defined as a complex metabolic syndrome that is associated with underlying illness and a loss of muscle with or without loss of fat mass. This disease is associated with a high incidence with chronic diseases such as heart failure, cancer, chronic obstructive pulmonary disease (COPD), and acquired immunodeficiency syndrome (AIDS), among others. Since there is currently no effective treatment available, cachectic patients have a poor prognosis. Elucidation of the underlying mechanisms is, therefore, an important medical task. Recent Advances: There is accumulating evidence that the diseased organs such as heart, lung, kidney, or cancer tissue secrete soluble factors, including Angiotensin II, myostatin (growth differentiation factor 8 [GDF8]), GDF11, tumor growth factor beta (TGFβ), which act on skeletal muscle. There, they induce a set of genes called atrogenes, which, among others, induce the ubiquitin-proteasome system, leading to protein degradation. Moreover, elevated reactive oxygen species (ROS) levels due to modulation of NADPH oxidases (Nox) and mitochondrial function contribute to disease progression, which is characterized by loss of muscle mass, exercise resistance, and frailty. Critical issues: Although substantial progress was achieved to elucidate the pathophysiology of cachexia, effectice therapeutic strategies are urgently needed. Future Directions: With the identification of key components of the aberrant inter-organ communication leading to cachexia, studies in mice and men to inhibit ROS formation, induction of anti-oxidative superoxide dismutases, and upregulation of muscular nitric oxide (NO) formation either by pharmacological tools or by exercise are promising approaches to reduce the extent of skeletal muscle wasting. Antioxid. Redox Signal. 26, 700–717. PMID:27835923

  10. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    PubMed

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.

  11. Angiotensin II induced catabolic effect and muscle atrophy are redox dependent

    PubMed Central

    Semprun-Prieto, Laura C.; Sukhanov, Sergiy; Yoshida, Tadashi; Rezk, Bashir M.; Gonzalez-Villalobos, Romer A.; Vaughn, Charlotte; Tabony, A. Michael; Delafontaine, Patrice

    2011-01-01

    Angiotensin II (Ang II) causes skeletal muscle wasting via an increase in muscle catabolism. To determine whether the wasting effects of Ang II were related to its ability to increase NADPH oxidase-derived reactive oxygen species (ROS) we infused wild-type C57BL/6J or p47phox−/− mice with vehicle or Ang II for 7 days. Superoxide production was increased 2.4 fold in the skeletal muscle of Ang II infused mice, and this increase was prevented in p47phox−/− mice. Apocynin treatment prevented Ang II-induced superoxide production in skeletal muscle, consistent with Ang II increasing NADPH oxidase derived ROS. Ang II induced loss of body and skeletal muscle weight in C57BL/6J mice, whereas the reduction was significantly attenuated in p47phox−/− animals. The reduction of skeletal muscle weight caused by Ang II was associated with an increase of proteasome activity, and this increase was completely prevented in the skeletal muscle of p47phox−/− mice. In conclusion, Ang II-induced skeletal muscle wasting is in part dependent on NADPH oxidase derived ROS. PMID:21570954

  12. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  13. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  14. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  15. 10 CFR 1304.114 - Responsibility for maintaining adequate safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Responsibility for maintaining adequate safeguards. 1304.114 Section 1304.114 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.114 Responsibility for maintaining adequate safeguards. The Board has the responsibility for maintaining adequate...

  16. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.

    PubMed

    Yoshida, Tadashi; Tabony, A Michael; Galvez, Sarah; Mitch, William E; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-10-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Chemotherapy inhibits skeletal muscle ubiquitin-proteasome-dependent proteolysis.

    PubMed

    Tilignac, Thomas; Temparis, Sandrine; Combaret, Lydie; Taillandier, Daniel; Pouch, Marie-Noëlle; Cervek, Matjaz; Cardenas, Diana M; Le Bricon, Thierry; Debiton, Eric; Samuels, Susan E; Madelmont, Jean-Claude; Attaix, Didier

    2002-05-15

    Chemotherapy has cachectic effects, but it is unknown whether cytostatic agents alter skeletal muscle proteolysis. We hypothesized that chemotherapy-induced alterations in protein synthesis should result in the increased incidence of abnormal proteins, which in turn should stimulate ubiquitin-proteasome-dependent proteolysis. The effects of the nitrosourea cystemustine were investigated in skeletal muscles from both healthy and colon 26 adenocarcinoma-bearing mice, an appropriate model for testing the impact of cytostatic agents. Muscle wasting was seen in both groups of mice 4 days after a single cystemustine injection, and the drug further increased the loss of muscle proteins already apparent in tumor-bearing animals. Cystemustine cured the tumor-bearing mice with 100% efficacy. Surprisingly, within 11 days of treatment, rates of muscle proteolysis progressively decreased below basal levels observed in healthy control mice and contributed to the cessation of muscle wasting. Proteasome-dependent proteolysis was inhibited by mechanisms that include reduced mRNA levels for 20S and 26S proteasome subunits, decreased protein levels of 20S proteasome subunits and the S14 non-ATPase subunit of the 26S proteasome, and impaired chymotrypsin- and trypsin-like activities of the enzyme. A combination of cisplatin and ifosfamide, two drugs that are widely used in the treatment of cancer patients, also depressed the expression of proteasomal subunits in muscles from rats bearing the MatB adenocarcinoma below basal levels. Thus, a down-regulation of ubiquitin-proteasome-dependent proteolysis is observed with various cytostatic agents and contributes to reverse the chemotherapy-induced muscle wasting.

  18. From muscle wasting to sarcopenia and myopenia: update 2012.

    PubMed

    von Haehling, Stephan; Morley, John E; Anker, Stefan D

    2012-12-01

    Human muscle undergoes constant changes. After about age 50, muscle mass decreases at an annual rate of 1-2 %. Muscle strength declines by 1.5 % between ages 50 and 60 and by 3 % thereafter. The reasons for these changes include denervation of motor units and a net conversion of fast type II muscle fibers into slow type I fibers with resulting loss in muscle power necessary for activities of daily living. In addition, lipids are deposited in the muscle, but these changes do not usually lead to a loss in body weight. Once muscle mass in elderly subjects falls below 2 standard deviations of the mean of a young control cohort and the gait speed falls below 0.8 m/s, a clinical diagnosis of sarcopenia can be reached. Assessment of muscle strength using tests such as the short physical performance battery test, the timed get-up-and-go test, or the stair climb power test may also be helpful in establishing the diagnosis. Serum markers may be useful when sarcopenia presence is suspected and may prompt further investigations. Indeed, sarcopenia is one of the four main reasons for loss of muscle mass. On average, it is estimated that 5-13 % of elderly people aged 60-70 years are affected by sarcopenia. The numbers increase to 11-50 % for those aged 80 or above. Sarcopenia may lead to frailty, but not all patients with sarcopenia are frail-sarcopenia is about twice as common as frailty. Several studies have shown that the risk of falls is significantly elevated in subjects with reduced muscle strength. Treatment of sarcopenia remains challenging, but promising results have been obtained using progressive resistance training, testosterone, estrogens, growth hormone, vitamin D, and angiotensin-converting enzyme inhibitors. Interesting nutritional interventions include high-caloric nutritional supplements and essential amino acids that support muscle fiber synthesis.

  19. Potential mechanisms of carbon monoxide and high oxygen packaging in maintaining color stability of different bovine muscles.

    PubMed

    Liu, Chenglong; Zhang, Yimin; Yang, Xiaoyin; Liang, Rongrong; Mao, Yanwei; Hou, Xu; Lu, Xiao; Luo, Xin

    2014-06-01

    The objectives were to compare the effects of packaging methods on color stability, metmyoglobin-reducing-activity (MRA), total-reducing-activity and NADH concentration of different bovine muscles and to explore potential mechanisms in the enhanced color stability by carbon monoxide modified atmosphere packaging (CO-MAP, 0.4% CO/30% CO2/69.6% N2). Steaks from longissimus lumborum (LL), psoas major (PM) and longissimus thoracis (LT) packaged in CO-MAP, high-oxygen modified atmosphere packaging (HiOx-MAP, 80% O2/20% CO2) or vacuum packaging were stored for 0day, 4days, 9days, and 14days or stored for 9days then displayed in air for 0day, 1day, or 3days. The CO-MAP significantly increased red color stability of all muscles, and especially for PM. The PM and LT were more red than LL in CO-MAP, whereas PM had lowest redness in HiOx-MAP. The content of MetMb in CO-MAP was lower than in HiOx-MAP. Steaks in CO-MAP maintained a higher MRA compared with those in HiOx-MAP during storage. After opening packages, the red color of steaks in CO-MAP deteriorated more slowly compared with that of steaks in HiOx-MAP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Skeletal muscle wasting with disuse atrophy is multi-dimensional: the response and interaction of myonuclei, satellite cells and signaling pathways

    PubMed Central

    Brooks, Naomi E.; Myburgh, Kathryn H.

    2014-01-01

    Maintenance of skeletal muscle is essential for health and survival. There are marked losses of skeletal muscle mass as well as strength and physiological function under conditions of low mechanical load, such as space flight, as well as ground based models such as bed rest, immobilization, disuse, and various animal models. Disuse atrophy is caused by mechanical unloading of muscle and this leads to reduced muscle mass without fiber attrition. Skeletal muscle stem cells (satellite cells) and myonuclei are integrally involved in skeletal muscle responses to environmental changes that induce atrophy. Myonuclear domain size is influenced differently in fast and slow twitch muscle, but also by different models of muscle wasting, a factor that is not yet understood. Although the myonuclear domain is 3-dimensional this is rarely considered. Apoptosis as a mechanism for myonuclear loss with atrophy is controversial, whereas cell death of satellite cells has not been considered. Molecular signals such as myostatin/SMAD pathway, MAFbx, and MuRF1 E3 ligases of the ubiquitin proteasome pathway and IGF1-AKT-mTOR pathway are 3 distinctly different contributors to skeletal muscle protein adaptation to disuse. Molecular signaling pathways activated in muscle fibers by disuse are rarely considered within satellite cells themselves despite similar exposure to unloading or low mechanical load. These molecular pathways interact with each other during atrophy and also when various interventions are applied that could alleviate atrophy. Re-applying mechanical load is an obvious method to restore muscle mass, however how nutrient supplementation (e.g., amino acids) may further enhance recovery (or reduce atrophy despite unloading or ageing) is currently of great interest. Satellite cells are particularly responsive to myostatin and to growth factors. Recently, the hibernating squirrel has been identified as an innovative model to study resistance to atrophy. PMID:24672488

  1. Endoplasmic Reticulum Stress, Calcium Dysregulation and Altered Protein Translation: Intersection of Processes That Contribute to Cancer Cachexia Induced Skeletal Muscle Wasting.

    PubMed

    Isaac, Stephanie T; Tan, Timothy C; Polly, Patsie

    2016-01-01

    Cancer cachexia is a debilitating paraneoplastic wasting syndrome characterized by skeletal muscle depletion and unintentional weight loss. It affects up to 50-80% of patients with cancer and directly accounts for one-quarter of cancer-related deaths due to cardio-respiratory failure. Muscle weakness, one of the hallmarks of this syndrome, has been postulated to be due to a combination of muscle breakdown, dysfunction and decrease in the ability to repair, with effective treatment strategies presently limited. Excessive inflammatory cytokine levels due to the host-tumor interaction, such as Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α, are hypothesised to drive this pathological process but the specific mechanisms by which these cytokines produce skeletal muscle dysfunction in cancer cachexia remain undefined. Endoplasmic Reticulum (ER) stress and the associated disruptions in calcium signaling have been implicated in cytokine-mediated disruptions in skeletal muscle and function. Disrupted ER stress-related processes such as the Unfolded Protein Response (UPR), calcium homeostasis and altered muscle protein synthesis have been reported in clinical and experimental cachexia and other inflammation-driven muscle diseases such as myositis, potentially suggesting a link between increased IL-6 and TNF-α and ER stress in skeletal muscle cells. As the concept of upregulated ER stress in skeletal muscle cells due to elevated cytokines is novel and potentially very relevant to our understanding of cancer cachexia, this review aims to examine the potential relationship between inflammatory cytokine mediated muscle breakdown and ER stress, in the context of cancer cachexia, and to discuss the molecular signaling pathways underpinning this pathology.

  2. Optical Cross-Sectional Muscle Area Determination of Drosophila Melanogaster Adult Indirect Flight Muscles.

    PubMed

    Selma-Soriano, Estela; Artero, Rubén; Llamusi, Beatriz

    2018-03-31

    Muscle mass wasting, known as muscle atrophy, is a common phenotype in Drosophila models of neuromuscular diseases. We have used the indirect flight muscles (IFMs) of flies, specifically the dorso-longitudinal muscles (DLM), as the experimental subject to measure the atrophic phenotype brought about by different genetic causes. In this protocol, we describe how to embed fly thorax muscles for semi thin sectioning, how to obtain a good contrast between muscle and the surrounding tissue, and how to process optical microscope images for semiautomatic acquisition of quantifiable data and analysis. We describe three specific applications of the methodological pipeline. First, we show how the method can be applied to quantify muscle degeneration in a myotonic dystrophy fly model; second, measurement of muscle cross-sectional area can help to identify genes that either promote or prevent muscle atrophy and/or muscle degeneration; third, this protocol can be applied to determine whether a candidate compound is able to significantly modify a given atrophic phenotype induced by a disease-causing mutation or by an environmental trigger.

  3. Linking Cancer Cachexia-Induced Anabolic Resistance to Skeletal Muscle Oxidative Metabolism

    PubMed Central

    Montalvo, Ryan N.

    2017-01-01

    Cancer cachexia, a wasting syndrome characterized by skeletal muscle depletion, contributes to increased patient morbidity and mortality. While the intricate balance between protein synthesis and breakdown regulates skeletal muscle mass, the suppression of basal protein synthesis may not account for the severe wasting induced by cancer. Therefore, recent research has shifted to the regulation of “anabolic resistance,” which is the impaired ability of nutrition and exercise to stimulate protein synthesis. Emerging evidence suggests that oxidative metabolism can regulate both basal and induced muscle protein synthesis. While disrupted protein turnover and oxidative metabolism in cachectic muscle have been examined independently, evidence suggests a linkage between these processes for the regulation of cancer-induced wasting. The primary objective of this review is to highlight the connection between dysfunctional oxidative metabolism and cancer-induced anabolic resistance in skeletal muscle. First, we review oxidative metabolism regulation of muscle protein synthesis. Second, we describe cancer-induced alterations in the response to an anabolic stimulus. Finally, we review a role for exercise to inhibit cancer-induced anabolic suppression and mitochondrial dysfunction. PMID:29375734

  4. Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration.

    PubMed

    Pisconti, Addolorata; Banks, Glen B; Babaeijandaghi, Farshad; Betta, Nicole Dalla; Rossi, Fabio M V; Chamberlain, Jeffrey S; Olwin, Bradley B

    2016-01-01

    The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.

  5. Aerobic Exercise Training Prevents Heart Failure-Induced Skeletal Muscle Atrophy by Anti-Catabolic, but Not Anabolic Actions

    PubMed Central

    Souza, Rodrigo W. A.; Piedade, Warlen P.; Soares, Luana C.; Souza, Paula A. T.; Aguiar, Andreo F.; Vechetti-Júnior, Ivan J.; Campos, Dijon H. S.; Fernandes, Ana A. H.; Okoshi, Katashi; Carvalho, Robson F.; Cicogna, Antonio C.; Dal-Pai-Silva, Maeli

    2014-01-01

    Background Heart failure (HF) is associated with cachexia and consequent exercise intolerance. Given the beneficial effects of aerobic exercise training (ET) in HF, the aim of this study was to determine if the ET performed during the transition from cardiac dysfunction to HF would alter the expression of anabolic and catabolic factors, thus preventing skeletal muscle wasting. Methods and Results We employed ascending aortic stenosis (AS) inducing HF in Wistar male rats. Controls were sham-operated animals. At 18 weeks after surgery, rats with cardiac dysfunction were randomized to 10 weeks of aerobic ET (AS-ET) or to an untrained group (AS-UN). At 28 weeks, the AS-UN group presented HF signs in conjunction with high TNF-α serum levels; soleus and plantaris muscle atrophy; and an increase in the expression of TNF-α, NFκB (p65), MAFbx, MuRF1, FoxO1, and myostatin catabolic factors. However, in the AS-ET group, the deterioration of cardiac function was prevented, as well as muscle wasting, and the atrophy promoters were decreased. Interestingly, changes in anabolic factor expression (IGF-I, AKT, and mTOR) were not observed. Nevertheless, in the plantaris muscle, ET maintained high PGC1α levels. Conclusions Thus, the ET capability to attenuate cardiac function during the transition from cardiac dysfunction to HF was accompanied by a prevention of skeletal muscle atrophy that did not occur via an increase in anabolic factors, but through anti-catabolic activity, presumably caused by PGC1α action. These findings indicate the therapeutic potential of aerobic ET to block HF-induced muscle atrophy by counteracting the increased catabolic state. PMID:25330387

  6. Orthotopic Patient-Derived Pancreatic Cancer Xenografts Engraft Into the Pancreatic Parenchyma, Metastasize, and Induce Muscle Wasting to Recapitulate the Human Disease.

    PubMed

    Go, Kristina L; Delitto, Daniel; Judge, Sarah M; Gerber, Michael H; George, Thomas J; Behrns, Kevin E; Hughes, Steven J; Judge, Andrew R; Trevino, Jose G

    2017-07-01

    Limitations associated with current animal models serve as a major obstacle to reliable preclinical evaluation of therapies in pancreatic cancer (PC). In an effort to develop more reliable preclinical models, we have recently established a subcutaneous patient-derived xenograft (PDX) model. However, critical aspects of PC responsible for its highly lethal nature, such as the development of distant metastasis and cancer cachexia, remain underrepresented in the flank PDX model. The purpose of this study was to evaluate the degree to which an orthotopic PDX model of PC recapitulates these aspects of the human disease. Human PDX-derived PC tumors were implanted directly into the pancreas of NOD.Cg-Prkdc Il2rg/SzJ mice. Tumor growth, metastasis, and muscle wasting were then evaluated. Orthotopically implanted PDX-derived tumors consistently incorporated into the murine pancreatic parenchyma, metastasized to both the liver and lungs and induced muscle wasting directly proportional to the size of the tumor, consistent of the cancer cachexia syndrome. Through the orthotopic implantation technique described, we demonstrate a highly reproducible model that recapitulates both local and systemic aspects of human PC.

  7. Evaluation of follistatin as a therapeutic in models of skeletal muscle atrophy associated with denervation and tenotomy

    PubMed Central

    Sepulveda, Patricio V.; Lamon, Séverine; Hagg, Adam; Thomson, Rachel E.; Winbanks, Catherine E.; Qian, Hongwei; Bruce, Clinton R.; Russell, Aaron P.; Gregorevic, Paul

    2015-01-01

    Follistatin is an inhibitor of TGF-β superfamily ligands that repress skeletal muscle growth and promote muscle wasting. Accordingly, follistatin has emerged as a potential therapeutic to ameliorate the deleterious effects of muscle atrophy. However, it remains unclear whether the anabolic effects of follistatin are conserved across different modes of non-degenerative muscle wasting. In this study, the delivery of a recombinant adeno-associated viral vector expressing follistatin (rAAV:Fst) to the hind-limb musculature of mice two weeks prior to denervation or tenotomy promoted muscle hypertrophy that was sufficient to preserve muscle mass comparable to that of untreated sham-operated muscles. However, administration of rAAV:Fst to muscles at the time of denervation or tenotomy did not prevent subsequent muscle wasting. Administration of rAAV:Fst to innervated or denervated muscles increased protein synthesis, but markedly reduced protein degradation only in innervated muscles. Phosphorylation of the signalling proteins mTOR and S6RP, which are associated with protein synthesis, was increased in innervated muscles administered rAAV:Fst, but not in treated denervated muscles. These results demonstrate that the anabolic effects of follistatin are influenced by the interaction between muscle fibres and motor nerves. These findings have important implications for understanding the potential efficacy of follistatin-based therapies for non-degenerative muscle wasting. PMID:26657343

  8. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving

    DTIC Science & Technology

    2013-09-30

    Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving...Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-hold Diving 5a...two day period in September, 2012. The first major huddle to the study was to determine the effect of the overnight shipping of the viability of

  9. Proof of Concept to Isolate and Culture Primary Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving

    DTIC Science & Technology

    2014-09-30

    that are too small have less effective results with mechanical trituration that follows digestion). 5. Move dish and sample into the cell culture...Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving...Muscle Cells from Northern Elephant Seals to Study the Mechanisms that Maintain Aerobic Metabolism Under the Hypoxic Conditions of Breath-Hold Diving 5a

  10. Mitofusin-2 prevents skeletal muscle wasting in cancer cachexia.

    PubMed

    Xi, Qiu-Lei; Zhang, Bo; Jiang, Yi; Zhang, Hai-Sheng; Meng, Qing-Yang; Chen, Ying; Han, Yu-Song; Zhuang, Qiu-Lin; Han, Jun; Wang, Hai-Yu; Fang, Jing; Wu, Guo-Hao

    2016-11-01

    Cancer cachexia remains a leading cause of morbidity and mortality worldwide, despite extensive research and clinical trials. The prominent clinical feature of cancer cachexia is the continuous loss of skeletal muscle that cannot be fully reversed by conventional nutritional support, and that leads to progressive functional impairment. The mechanism underlying muscle loss in patients with cachexia is poorly understood. The present study analyzed 21 cancer patients with or without cachexia, and demonstrated that mitofusin-2 (Mfn2) was downregulated in the rectus abdominis of patients with cachexia, which was associated with body weight loss. In vitro cell experiments indicated that loss of Mfn2 was associated with atrophy of the C2C12 mouse myoblast cell line. Furthermore, in vivo animal experiments demonstrated that cachexia decreased gastrocnemius muscle mass and Mfn2 expression, and overexpression of Mfn2 in gastrocnemius muscle was able to partially attenuate cachexia-induced gastrocnemius muscle loss. The results of the present study suggested that Mfn2 is involved in cachexia-induced muscle loss and may serve as a potential target for therapy of cachexia.

  11. Molecular events in skeletal muscle during disuse atrophy

    NASA Technical Reports Server (NTRS)

    Kandarian, Susan C.; Stevenson, Eric J.

    2002-01-01

    This review summarizes the current knowledge of the molecular processes underlying skeletal muscle atrophy due to disuse. Because the processes involved with muscle wasting due to illness are similar to disuse, this literature is used for comparison. Areas that are ripe for further study and that will advance our understanding of muscle atrophy are suggested.

  12. Morphological and molecular comparisons between tibialis anterior muscle and levator veli palatini muscle: A preliminary study on their augmentation potential.

    PubMed

    Cheng, Xu; Song, Lei; Lan, Min; Shi, Bing; Li, Jingtao

    2018-01-01

    Tibialis anterior (TA) muscle and other somite-derived limb muscles remain the prototype in skeletal muscle study. The majority of head muscles, however, develop from branchial arches and maintain a number of heterogeneities in comparison with their limb counterparts. Levator veli palatini (LVP) muscle is a deep-located head muscle responsible for breathing, swallowing and speech, and is central to cleft palate surgery, yet lacks morphological and molecular investigation. In the present study, multiscale in vivo analyses were performed to compare TA and LVP muscle in terms of their myofiber composition, in-situ stem cell population and augmentation potential. TA muscle was identified to be primarily composed of type 2B myofibers while LVP muscle primarily consisted of type 2A and 2X myofibers. In addition, LVP muscle maintained a higher percentage of centrally-nucleated myofibers and a greater population of satellite cells. Notably, TA and LVP muscle responded to exogenous Wnt7a stimulus in different ways. Three weeks after Wnt7a administration, TA muscle exhibited an increase in myofiber number and a decrease in myofiber size, while LVP muscle demonstrated no significant changes in myofiber number or myofiber size. These results suggested that LVP muscle exhibits obvious differences in comparison with TA muscle. Therefore, knowledge acquired from TA muscle studies requires further testing before being applied to LVP muscle.

  13. Does Skeletal Muscle Mass Influence Breast Cancer? Evaluating Mammary Tumorigenesis and Progression in Genetically Hyper-Muscular Mice

    DTIC Science & Technology

    2007-07-01

    preserve muscle in the end-stages of cancer, cancer cachexia . Up to 25% of breast cancer deaths may be attributed to muscle wasting from the complex... cachexia . 15. SUBJECT TERMS Breast cancer, skeletal muscle, myostatin, MPA, DMBA, Activin receptor, cachexia . 16. SECURITY CLASSIFICATION OF: 17...progress, we turned to another question relating skeletal muscle and cancer—pathological muscle wasting in cancer cachexia . (6) (7) (8) Cancer cachexia

  14. Muscle Structure Influences Utrophin Expression in mdx Mice

    PubMed Central

    Banks, Glen B.; Combs, Ariana C.; Odom, Guy L.; Bloch, Robert J.; Chamberlain, Jeffrey S.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin−/− mice. An ∼2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin−/−, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD. PMID:24922526

  15. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity

    PubMed Central

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S.; Soya, Hideaki

    2017-01-01

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry–based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain. PMID:28515312

  16. Astrocytic glycogen-derived lactate fuels the brain during exhaustive exercise to maintain endurance capacity.

    PubMed

    Matsui, Takashi; Omuro, Hideki; Liu, Yu-Fan; Soya, Mariko; Shima, Takeru; McEwen, Bruce S; Soya, Hideaki

    2017-06-13

    Brain glycogen stored in astrocytes provides lactate as an energy source to neurons through monocarboxylate transporters (MCTs) to maintain neuronal functions such as hippocampus-regulated memory formation. Although prolonged exhaustive exercise decreases brain glycogen, the role of this decrease and lactate transport in the exercising brain remains less clear. Because muscle glycogen fuels exercising muscles, we hypothesized that astrocytic glycogen plays an energetic role in the prolonged-exercising brain to maintain endurance capacity through lactate transport. To test this hypothesis, we used a rat model of exhaustive exercise and capillary electrophoresis-mass spectrometry-based metabolomics to observe comprehensive energetics of the brain (cortex and hippocampus) and muscle (plantaris). At exhaustion, muscle glycogen was depleted but brain glycogen was only decreased. The levels of MCT2, which takes up lactate in neurons, increased in the brain, as did muscle MCTs. Metabolomics revealed that brain, but not muscle, ATP was maintained with lactate and other glycogenolytic/glycolytic sources. Intracerebroventricular injection of the glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-d-arabinitol did not affect peripheral glycemic conditions but suppressed brain lactate production and decreased hippocampal ATP levels at exhaustion. An MCT2 inhibitor, α-cyano-4-hydroxy-cinnamate, triggered a similar response that resulted in lower endurance capacity. These findings provide direct evidence for the energetic role of astrocytic glycogen-derived lactate in the exhaustive-exercising brain, implicating the significance of brain glycogen level in endurance capacity. Glycogen-maintained ATP in the brain is a possible defense mechanism for neurons in the exhausted brain.

  17. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study.

    PubMed

    Ebhardt, H Alexander; Degen, Simone; Tadini, Valentina; Schilb, Alain; Johns, Neil; Greig, Carolyn A; Fearon, Kenneth C H; Aebersold, Ruedi; Jacobi, Carsten

    2017-08-01

    Cancer cachexia (cancer-induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age-related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early. We used a range of omics approaches: (i) undepleted proteome was quantified using advanced high mass accuracy mass spectrometers in SWATH-MS acquisition mode; (ii) phospho epitopes were quantified using protein arrays; and (iii) morphology was assessed using fluorescent microscopy. We quantified the soluble proteome of muscle biopsies from cancer cachexia patients and compared them with cohorts of cancer patients and healthy individuals with and without age-related muscle loss (aka age-related sarcopenia). Comparing the proteomes of these cohorts, we quantified changes in muscle contractile myosins and energy metabolism allowing for a clear identification of cachexia patients. In an in vitro time lapse experiment, we mimicked cancer cachexia and identified signal transduction pathways governing cell fusion to play a pivotal role in preventing muscle regeneration. The work presented here lays the foundation for further understanding of muscle wasting diseases and holds the promise of overcoming ambiguous weight loss as a measure for defining cachexia to be replaced by a precise protein signature. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on

  18. Muscle wasting and resistance of muscle anabolism: the "anabolic threshold concept" for adapted nutritional strategies during sarcopenia.

    PubMed

    Dardevet, Dominique; Rémond, Didier; Peyron, Marie-Agnès; Papet, Isabelle; Savary-Auzeloux, Isabelle; Mosoni, Laurent

    2012-01-01

    Skeletal muscle loss is observed in several physiopathological situations. Strategies to prevent, slow down, or increase recovery of muscle have already been tested. Besides exercise, nutrition, and more particularly protein nutrition based on increased amino acid, leucine or the quality of protein intake has generated positive acute postprandial effect on muscle protein anabolism. However, on the long term, these nutritional strategies have often failed in improving muscle mass even if given for long periods of time in both humans and rodent models. Muscle mass loss situations have been often correlated to a resistance of muscle protein anabolism to food intake which may be explained by an increase of the anabolic threshold toward the stimulatory effect of amino acids. In this paper, we will emphasize how this anabolic resistance may affect the intensity and the duration of the muscle anabolic response at the postprandial state and how it may explain the negative results obtained on the long term in the prevention of muscle mass. Sarcopenia, the muscle mass loss observed during aging, has been chosen to illustrate this concept but it may be kept in mind that it could be extended to any other catabolic states or recovery situations.

  19. Muscle tension line concept in nasolabial muscle complex--based on 3-dimensional reconstruction of nasolabial muscle fibers.

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Song, Tao; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di

    2015-03-01

    Plastic surgeons have attempted various ways to rebuild the aesthetic subunits of the upper lip in patients with cleft lip with less than perfect results in most cases. We propose that repairing the 3 muscle tension line groups in the nasolabial complex will have improved aesthetic results. Micro-computed tomographic scans were performed on the nasolabial tissues of 5 normal aborted fetuses and used to construct a 3-dimensional model to study the nasolabial muscle complex structure. The micro-computed tomographic (CT) scans showed the close relationship and interaction between the muscle fibers of nasalis, pars peripheralis, levator labii superioris, and pars marginalis. Based on the 2-dimensional images obtained from the micro-computed tomographic scans, we suggest the concept of nasolabial muscle complex and muscle tension line group theory: there is a close relationship among the alar part of the nasalis, depressor septi muscle, orbicularis oris muscle, and levator labii superioris alaeque nasi. The tension line groups are 3 tension line structures in the nasolabial muscle complex that interlock with each other at the intersections and maintain the specific shape and aesthetics of the lip and nose.

  20. Angiotensin II Infusion Induces Marked Diaphragmatic Skeletal Muscle Atrophy

    PubMed Central

    Rezk, Bashir M.; Yoshida, Tadashi; Semprun-Prieto, Laura; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2012-01-01

    Advanced congestive heart failure (CHF) and chronic kidney disease (CKD) are characterized by increased angiotensin II (Ang II) levels and are often accompanied by significant skeletal muscle wasting that negatively impacts mortality and morbidity. Both CHF and CKD patients have respiratory muscle dysfunction, however the potential effects of Ang II on respiratory muscles are unknown. We investigated the effects of Ang II on diaphragm muscle in FVB mice. Ang II induced significant diaphragm muscle wasting (18.7±1.6% decrease in weight at one week) and reduction in fiber cross-sectional area. Expression of the E3 ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) and of the pro-apoptotic factor BAX was increased after 24 h of Ang II infusion (4.4±0.3 fold, 3.1±0.5 fold and 1.6±0.2 fold, respectively, compared to sham infused control) suggesting increased muscle protein degradation and apoptosis. In Ang II infused animals, there was significant regeneration of injured diaphragm muscles at 7 days as indicated by an increase in the number of myofibers with centralized nuclei and high expression of embryonic myosin heavy chain (E-MyHC, 11.2±3.3 fold increase) and of the satellite cell marker M-cadherin (59.2±22.2% increase). Furthermore, there was an increase in expression of insulin-like growth factor-1 (IGF-1, 1.8±0.3 fold increase) in Ang II infused diaphragm, suggesting the involvement of IGF-1 in diaphragm muscle regeneration. Bone-marrow transplantation experiments indicated that although there was recruitment of bone-marrow derived cells to the injured diaphragm in Ang II infused mice (267.0±74.6% increase), those cells did not express markers of muscle stem cells or regenerating myofibers. In conclusion, Ang II causes marked diaphragm muscle wasting, which may be important for the pathophysiology of respiratory muscle dysfunction and cachexia in conditions such as CHF and CKD. PMID:22276172

  1. High-Density Lipoprotein Maintains Skeletal Muscle Function by Modulating Cellular Respiration in Mice

    PubMed Central

    Lehti, Maarit; Donelan, Elizabeth; Abplanalp, William; Al-Massadi, Omar; Habegger, Kirk; Weber, Jon; Ress, Chandler; Mansfeld, Johannes; Somvanshi, Sonal; Trivedi, Chitrang; Keuper, Michaela; Ograjsek, Teja; Striese, Cynthia; Cucuruz, Sebastian; Pfluger, Paul T.; Krishna, Radhakrishna; Gordon, Scott M.; Silva, R. A. Gangani D.; Luquet, Serge; Castel, Julien; Martinez, Sarah; D'Alessio, David; Davidson, W. Sean; Hofmann, Susanna M.

    2014-01-01

    Background Abnormal glucose metabolism is a central feature of disorders with increased rates of cardio-vascular disease (CVD). Low levels of high density lipoprotein (HDL) are a key predictor for CVD. We used genetic mouse models with increased HDL levels (apoA-I tg) and reduced HDL levels (apoA-I ko) to investigate whether HDL modulates mitochondrial bioenergetics in skeletal muscle. Methods and Results ApoA-I ko mice exhibited fasting hyperglycemia and impaired glucose tolerance test (GTT) compared to wild type (wt) mice. Mitochondria isolated from gastrocnemius muscle of apoA-I ko mice displayed markedly blunted ATP synthesis. Endurance capacity (EC) during exercise exhaustion test was impaired in apoA-I ko mice. HDL directly enhanced glucose oxidation by increasing glycolysis and mitochondrial respiration rate (OCR) in C2C12 muscle cells. ApoA-I tg mice exhibited lower fasting glucose levels, improved GTT, increased lactate levels, reduced fat mass, associated with protection against age-induced decline of EC compared to wt mice. Circulating levels of fibroblast growth factor 21 (FGF21), a novel biomarker for mitochondrial respiratory chain deficiencies and inhibitor of white adipose lipolysis, were significantly reduced in apoA-I tg mice. Consistent with an increase in glucose utilization of skeletal muscle, genetically increased HDL and apoA-I levels in mice prevented high fat diet-induced impairment of glucose homeostasis. Conclusions In view of impaired mitochondrial function and decreased HDL levels in T2D, our findings indicate that HDL-raising therapies may preserve muscle mitochondrial function and address key aspects of T2D beyond CVD. PMID:24170386

  2. Skeletal muscle wasting: new role of nonclassical renin-angiotensin system.

    PubMed

    Cabello-Verrugio, Claudio; Rivera, Juan C; Garcia, Dominga

    2017-05-01

    Skeletal muscle can be affected by many physiological and pathological conditions that contribute to the development of muscle weakness, including skeletal muscle loss, inflammatory processes, or fibrosis. Therefore, research into therapeutic treatment alternatives or alleviation of these effects on skeletal muscle is of great importance. Recent studies have shown that angiotensin (1-7) [Ang-(1-7)] - a vasoactive peptide of the nonclassical axis in the renin-angiotensin system (RAS) - and its Mas receptor are expressed in skeletal muscle. Ang-(1-7), through its Mas receptor, prevents or diminishes deleterious effects induced by skeletal muscle disease or injury. Specifically, the Ang-(1-7)-Mas receptor axis modulates molecular mechanisms involved in muscle mass regulation, such as the ubiquitin proteasome pathway, the insulin-like growth factor type 1/Akt (protein kinase B) pathway, or myonuclear apoptosis, and also inflammation and fibrosis pathways. Although further research into this topic and the possible side effects of Ang-(1-7) is necessary, these findings are promising, and suggest that the Ang-(1-7)-Mas axis can be considered a possible therapeutic target for treating patients with muscular disorders.

  3. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anestheticsmore » have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.« less

  4. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  5. miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4.

    PubMed

    Winbanks, Catherine E; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  6. miR-206 Represses Hypertrophy of Myogenic Cells but Not Muscle Fibers via Inhibition of HDAC4

    PubMed Central

    Winbanks, Catherine E.; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V.; Gregorevic, Paul

    2013-01-01

    microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 “sponge,” featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype

  7. Influence of spaceflight on rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Martin, Thomas P.; Edgerton, V. Reggie; Grindeland, Richard E.

    1988-01-01

    The effect of a 7-day spaceflight (aboard NASA's SL-3) on the size and the metabolism of single fibers from several rat muscles was investigated along with the specificity of these responses as related to the muscle type and the size of fibers. It was found that the loss of mass after flight was varied from 36 percent in the soleus to 15 percent in the extensor digitorum longus. Results of histochemical analyses showed that the succinate dehydrogenase (SDH) activity in muscles of flight-exposed rats was maintained at the control levels, whereas the alpha-glycerol phosphate dehydrogenase (GPD) activity was either maintained or increased. The analyses of the metabolic profiles of ATPase, SDH, and GPD indicated that, in some muscles, there was an increase in the poportion of fast oxidative-glycolytic fibers.

  8. Respiratory Muscle Plasticity

    PubMed Central

    Gransee, Heather M.; Mantilla, Carlos B.; Sieck, Gary C.

    2014-01-01

    Muscle plasticity is defined as the ability of a given muscle to alter its structural and functional properties in accordance with the environmental conditions imposed on it. As such, respiratory muscle is in a constant state of remodeling, and the basis of muscle’s plasticity is its ability to change protein expression and resultant protein balance in response to varying environmental conditions. Here, we will describe the changes of respiratory muscle imposed by extrinsic changes in mechanical load, activity, and innervation. Although there is a large body of literature on the structural and functional plasticity of respiratory muscles, we are only beginning to understand the molecular-scale protein changes that contribute to protein balance. We will give an overview of key mechanisms regulating protein synthesis and protein degradation, as well as the complex interactions between them. We suggest future application of a systems biology approach that would develop a mathematical model of protein balance and greatly improve treatments in a variety of clinical settings related to maintaining both muscle mass and optimal contractile function of respiratory muscles. PMID:23798306

  9. Ligand-induced rapid skeletal muscle atrophy in HSA-Fv2E-PERK transgenic mice.

    PubMed

    Miyake, Masato; Kuroda, Masashi; Kiyonari, Hiroshi; Takehana, Kenji; Hisanaga, Satoshi; Morimoto, Masatoshi; Zhang, Jun; Oyadomari, Miho; Sakaue, Hiroshi; Oyadomari, Seiichi

    2017-01-01

    Formation of 43S and 48S preinitiation complexes plays an important role in muscle protein synthesis. There is no muscle-wasting mouse model caused by a repressed 43S preinitiation complex assembly. The aim of the present study was to develop a convenient mouse model of skeletal muscle wasting with repressed 43S preinitiation complex assembly. A ligand-activatable PERK derivative Fv2E-PERK causes the phosphorylation of eukaryotic initiation factor 2α (eIF2α), which inhibits 43S preinitiation complex assembly. Thus, muscle atrophic phenotypes, intracellular signaling pathways, and intracellular free amino acid profiles were investigated in human skeletal muscle α-actin (HSA) promoter-driven Fv2E-PERK transgenic (Tg) mice. HSA-Fv2E-PERK Tg mice treated with the artificial dimerizer AP20187 phosphorylates eIF2α in skeletal muscles and leads to severe muscle atrophy within a few days of ligand injection. Muscle atrophy was accompanied by a counter regulatory activation of mTORC1 signaling. Moreover, intracellular free amino acid levels were distinctively altered in the skeletal muscles of HSA-Fv2E-PERK Tg mice. As a novel model of muscle wasting, HSA-Fv2E-PERK Tg mice provide a convenient tool for studying the pathogenesis of muscle loss and for assessing putative therapeutics.

  10. TAK1 regulates skeletal muscle mass and mitochondrial function

    PubMed Central

    Hindi, Sajedah M.; Sato, Shuichi; Xiong, Guangyan; Bohnert, Kyle R.; Gibb, Andrew A.; Gallot, Yann S.; McMillan, Joseph D.; Hill, Bradford G.

    2018-01-01

    Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β–activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism. PMID:29415881

  11. Laryngeal Muscles Are Spared in the Dystrophin Deficient "mdx" Mouse

    ERIC Educational Resources Information Center

    Thomas, Lisa B.; Joseph, Gayle L.; Adkins, Tracey D.; Andrade, Francisco H.; Stemple, Joseph C.

    2008-01-01

    Purpose: "Duchenne muscular dystrophy (DMD)" is caused by the loss of the cytoskeletal protein, dystrophin. The disease leads to severe and progressive skeletal muscle wasting. Interestingly, the disease spares some muscles. The purpose of the study was to determine the effects of dystrophin deficiency on 2 intrinsic laryngeal muscles, the…

  12. NF-κB–mediated Pax7 dysregulation in the muscle microenvironment promotes cancer cachexia

    PubMed Central

    He, Wei A.; Berardi, Emanuele; Cardillo, Veronica M.; Acharyya, Swarnali; Aulino, Paola; Thomas-Ahner, Jennifer; Wang, Jingxin; Bloomston, Mark; Muscarella, Peter; Nau, Peter; Shah, Nilay; Butchbach, Matthew E.R.; Ladner, Katherine; Adamo, Sergio; Rudnicki, Michael A.; Keller, Charles; Coletti, Dario; Montanaro, Federica; Guttridge, Denis C.

    2013-01-01

    Cachexia is a debilitating condition characterized by extreme skeletal muscle wasting that contributes significantly to morbidity and mortality. Efforts to elucidate the underlying mechanisms of muscle loss have predominantly focused on events intrinsic to the myofiber. In contrast, less regard has been given to potential contributory factors outside the fiber within the muscle microenvironment. In tumor-bearing mice and patients with pancreatic cancer, we found that cachexia was associated with a type of muscle damage resulting in activation of both satellite and nonsatellite muscle progenitor cells. These muscle progenitors committed to a myogenic program, but were inhibited from completing differentiation by an event linked with persistent expression of the self-renewing factor Pax7. Overexpression of Pax7 was sufficient to induce atrophy in normal muscle, while under tumor conditions, the reduction of Pax7 or exogenous addition of its downstream target, MyoD, reversed wasting by restoring cell differentiation and fusion with injured fibers. Furthermore, Pax7 was induced by serum factors from cachectic mice and patients, in an NF-κB–dependent manner, both in vitro and in vivo. Together, these results suggest that Pax7 responds to NF-κB by impairing the regenerative capacity of myogenic cells in the muscle microenvironment to drive muscle wasting in cancer. PMID:24084740

  13. Effects of the beta2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia.

    PubMed

    Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M; Bargalló-Gispert, Núria; López-Soriano, Francisco J; Barreiro, Esther

    2018-06-01

    Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Beta-adrenoceptors attenuate muscle wasting. We hypothesized that specific muscle atrophy signaling pathways and altered metabolism may be attenuated in cancer cachectic animals receiving treatment with the beta 2 agonist formoterol. In diaphragm and gastrocnemius of tumor-bearing rats (intraperitoneal inoculum, 10 8 AH-130 Yoshida ascites hepatoma cells, 7-day study period) with and without treatment with formoterol (0.3 mg/kg body weight/day/7days, subcutaneous), atrophy signaling pathways (NF-κB, MAPK, FoxO), proteolytic markers (ligases, proteasome, ubiquitination), autophagy markers (p62, beclin-1, LC3), myostatin, apoptosis, muscle metabolism markers, and muscle structure features were analyzed (immunoblotting, immunohistochemistry). In diaphragm and gastrocnemius of cancer cachectic rats, fiber sizes were reduced, levels of structural alterations, atrophy signaling pathways, proteasome content, protein ubiquitination, autophagy, and myostatin were increased, while those of regenerative and metabolic markers (myoD, mTOR, AKT, and PGC-1alpha) were decreased. Formoterol treatment attenuated such alterations in both muscles. Muscle wasting in this rat model of cancer-induced cachexia was characterized by induction of significant structural alterations, atrophy signaling pathways, proteasome activity, apoptotic and autophagy markers, and myostatin, along with a significant decline in the expression of muscle regenerative and metabolic markers. Treatment of the cachectic rats with formoterol partly attenuated the structural alterations and atrophy signaling, while improving other molecular perturbations similarly in both respiratory and limb muscles. The results reported in this study have relevant therapeutic implications as they showed beneficial effects of the beta 2 agonist formoterol in the cachectic muscles through several key biological pathways

  14. Integrated expression analysis of muscle hypertrophy identifies Asb2 as a negative regulator of muscle mass

    PubMed Central

    Davey, Jonathan R.; Watt, Kevin I.; Parker, Benjamin L.; Chaudhuri, Rima; Ryall, James G.; Cunningham, Louise; Qian, Hongwei; Sartorelli, Vittorio; Chamberlain, Jeffrey; James, David E.

    2016-01-01

    The transforming growth factor-β (TGF-β) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-β network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-β network–responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles. PMID:27182554

  15. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats

    PubMed Central

    Bennett, Brian T.; Wilson, Joseph C.; Sperringer, Justin; Mohamed, Junaith S.; Edens, Neile K.; Pereira, Suzette L.

    2014-01-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (−24.8% vs. −10.7%, P < 0.05) and tetanic force (−43.7% vs. −25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (−25.2% vs. −16.0%, P < 0.05) and force (−45.7 vs. −34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (−39.9% vs. −23.9%, P < 0.05) and soleus (−37.2% vs. −17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (−45.6% vs. −21.5%, P <0.05) and soleus muscle fiber cross-sectional area (−38.7% vs. −10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is

  16. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Sperringer, Justin; Mohamed, Junaith S; Edens, Neile K; Pereira, Suzette L

    2015-02-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to

  17. IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression

    PubMed Central

    Yoshida, Tadashi; Semprun-Prieto, Laura; Sukhanov, Sergiy

    2010-01-01

    Congestive heart failure is associated with activation of the renin-angiotensin system and skeletal muscle wasting. Angiotensin II (ANG II) has been shown to increase muscle proteolysis and decrease circulating and skeletal muscle IGF-1. We have shown previously that skeletal muscle-specific overexpression of IGF-1 prevents proteolysis and apoptosis induced by ANG II. These findings indicated that downregulation of IGF-1 signaling in skeletal muscle played an important role in the wasting effect of ANG II. However, the signaling pathways and mechanisms whereby IGF-1 prevents ANG II-induced skeletal muscle atrophy are unknown. Here we show ANG II-induced transcriptional regulation of two ubiquitin ligases atrogin-1 and muscle ring finger-1 (MuRF-1) that precedes the reduction of skeletal muscle IGF-1 expression, suggesting that activation of atrogin-1 and MuRF-1 is an initial mechanism leading to skeletal muscle atrophy in response to ANG II. IGF-1 overexpression in skeletal muscle prevented ANG II-induced skeletal muscle wasting and the expression of atrogin-1, but not MuRF-1. Dominant-negative Akt and constitutively active Foxo-1 blocked the ability of IGF-1 to prevent ANG II-mediated upregulation of atrogin-1 and skeletal muscle wasting. Our findings demonstrate that the ability of IGF-1 to prevent ANG II-induced skeletal muscle wasting is mediated via an Akt- and Foxo-1-dependent signaling pathway that results in inhibition of atrogin-1 but not MuRF-1 expression. These data suggest strongly that atrogin-1 plays a critical role in mechanisms of ANG II-induced wasting in vivo. PMID:20228261

  18. High Performance Artificial Muscles Using Nanofiber and Hybrid Yarns

    DTIC Science & Technology

    2015-07-14

    provide 3.2% energy conversion efficiency (twice that of our CNT fiber muscles and 10X that of conducting polymer muscles ). They maintain stroke without...rubber dielectric muscle layer in twisted fiber drives torsional actuation. (2) One hundred times higher torsional stroke per muscle length...artificial muscles that provide giant stroke, fast response, high force generation, and long cycle life while optimizing energy conversion efficiencies

  19. Muscle satellite cells adopt divergent fates

    PubMed Central

    Zammit, Peter S.; Golding, Jon P.; Nagata, Yosuke; Hudon, Valérie; Partridge, Terence A.; Beauchamp, Jonathan R.

    2004-01-01

    Growth, repair, and regeneration of adult skeletal muscle depends on the persistence of satellite cells: muscle stem cells resident beneath the basal lamina that surrounds each myofiber. However, how the satellite cell compartment is maintained is unclear. Here, we use cultured myofibers to model muscle regeneration and show that satellite cells adopt divergent fates. Quiescent satellite cells are synchronously activated to coexpress the transcription factors Pax7 and MyoD. Most then proliferate, down-regulate Pax7, and differentiate. In contrast, other proliferating cells maintain Pax7 but lose MyoD and withdraw from immediate differentiation. These cells are typically located in clusters, together with Pax7−ve progeny destined for differentiation. Some of the Pax7+ve/MyoD−ve cells then leave the cell cycle, thus regaining the quiescent satellite cell phenotype. Significantly, noncycling cells contained within a cluster can be stimulated to proliferate again. These observations suggest that satellite cells either differentiate or switch from terminal myogenesis to maintain the satellite cell pool. PMID:15277541

  20. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy

    NASA Technical Reports Server (NTRS)

    Gomes, M. D.; Lecker, S. H.; Jagoe, R. T.; Navon, A.; Goldberg, A. L.

    2001-01-01

    Muscle wasting is a debilitating consequence of fasting, inactivity, cancer, and other systemic diseases that results primarily from accelerated protein degradation by the ubiquitin-proteasome pathway. To identify key factors in this process, we have used cDNA microarrays to compare normal and atrophying muscles and found a unique gene fragment that is induced more than ninefold in muscles of fasted mice. We cloned this gene, which is expressed specifically in striated muscles. Because this mRNA also markedly increases in muscles atrophying because of diabetes, cancer, and renal failure, we named it atrogin-1. It contains a functional F-box domain that binds to Skp1 and thereby to Roc1 and Cul1, the other components of SCF-type Ub-protein ligases (E3s), as well as a nuclear localization sequence and PDZ-binding domain. On fasting, atrogin-1 mRNA levels increase specifically in skeletal muscle and before atrophy occurs. Atrogin-1 is one of the few examples of an F-box protein or Ub-protein ligase (E3) expressed in a tissue-specific manner and appears to be a critical component in the enhanced proteolysis leading to muscle atrophy in diverse diseases.

  1. Maintained peak leg and pulmonary VO2 despite substantial reduction in muscle mitochondrial capacity.

    PubMed

    Boushel, R; Gnaiger, E; Larsen, F J; Helge, J W; González-Alonso, J; Ara, I; Munch-Andersen, T; van Hall, G; Søndergaard, H; Saltin, B; Calbet, J A L

    2015-12-01

    We recently reported the circulatory and muscle oxidative capacities of the arm after prolonged low-intensity skiing in the arctic (Boushel et al., 2014). In the present study, leg VO2 was measured by the Fick method during leg cycling while muscle mitochondrial capacity was examined on a biopsy of the vastus lateralis in healthy volunteers (7 male, 2 female) before and after 42 days of skiing at 60% HR max. Peak pulmonary VO2 (3.52 ± 0.18 L.min(-1) pre vs 3.52 ± 0.19 post) and VO2 across the leg (2.8 ± 0.4L.min(-1) pre vs 3.0 ± 0.2 post) were unchanged after the ski journey. Peak leg O2 delivery (3.6 ± 0.2 L.min(-1) pre vs 3.8 ± 0.4 post), O2 extraction (82 ± 1% pre vs 83 ± 1 post), and muscle capillaries per mm(2) (576 ± 17 pre vs 612 ± 28 post) were also unchanged; however, leg muscle mitochondrial OXPHOS capacity was reduced (90 ± 3 pmol.sec(-1) .mg(-1) pre vs 70 ± 2 post, P < 0.05) as was citrate synthase activity (40 ± 3 μmol.min(-1) .g(-1) pre vs 34 ± 3 vs P < 0.05). These findings indicate that peak muscle VO2 can be sustained with a substantial reduction in mitochondrial OXPHOS capacity. This is achieved at a similar O2 delivery and a higher relative ADP-stimulated mitochondrial respiration at a higher mitochondrial p50. These findings support the concept that muscle mitochondrial respiration is submaximal at VO2max , and that mitochondrial volume can be downregulated by chronic energy demand. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. 10 CFR 1304.104 - Privacy Act records maintained by the Board.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...

  3. 10 CFR 1304.104 - Privacy Act records maintained by the Board.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...

  4. 10 CFR 1304.104 - Privacy Act records maintained by the Board.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...

  5. 10 CFR 1304.104 - Privacy Act records maintained by the Board.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...

  6. 10 CFR 1304.104 - Privacy Act records maintained by the Board.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Privacy Act records maintained by the Board. 1304.104 Section 1304.104 Energy NUCLEAR WASTE TECHNICAL REVIEW BOARD PRIVACY ACT OF 1974 § 1304.104 Privacy Act records maintained by the Board. (a) The Board shall maintain only such information about an individual as...

  7. Sites of Failure in Muscle Fatigue

    DTIC Science & Technology

    2001-10-25

    anticipate to the taps. At the beginning of the experiment, tapping force was gradually increased until significant triceps muscle contraction was elicited...367-374, 1986. [11] J. A. Stephens and A. Taylor, "Fatigue of maintained voluntary muscle contraction in man," J. Physiol. (London), vol. 220, pp. 1-18, 1972.

  8. Wasting and stunting--similarities and differences: policy and programmatic implications.

    PubMed

    Briend, André; Khara, Tanya; Dolan, Carmel

    2015-03-01

    Wasting and stunting are often presented as two separate forms of malnutrition requiring different interventions for prevention and/or treatment. These two forms of malnutrition, however, are closely related and often occur together in the same populations and often in the same children. Wasting and stunting are both associated with increased mortality, especially when both are present in the same child. A better understanding of the pathophysiology of these two different forms of malnutrition is needed to design efficient programs. A greatly reduced muscle mass is characteristic of severe wasting, but there is indirect evidence that it also occurs in stunting. A reduced muscle mass increases the risk of death during infections and also in many other different pathological situations. Reduced muscle mass may represent a common mechanism linking wasting and stunting with increased mortality. This suggests that to decrease malnutrition-related mortality, interventions should aim at preventing both wasting and stunting, which often share common causes. Also, this suggests that treatment interventions should focus on children who are both wasted and stunted and therefore have the greatest deficits in muscle mass, instead of focusing on one or the other form of malnutrition. Interventions should also focus on young infants and children, who have a low muscle mass in relation to body weight to start with. Using mid-upper-arm circumference (MUAC) to select children in need of treatment may represent a simple way to target young wasted and stunted children efficiently in situations where these two conditions are present. Wasting is also associated with decreased fat mass. A decreased fat mass is frequent but inconsistent in stunting. Fat secretes multiple hormones, including leptin, which may have a stimulating effect on the immune system. Depressed immunity resulting from low fat stores may also contribute to the increased mortality observed in wasting. This may represent

  9. IGF-I treatment improves the functional properties of fast- and slow-twitch skeletal muscles from dystrophic mice.

    PubMed

    Lynch, G S; Cuffe, S A; Plant, D R; Gregorevic, P

    2001-04-01

    Although insulin-like growth factor-I (IGF-I) has been proposed for use by patients suffering from muscle wasting conditions, few studies have investigated the functional properties of dystrophic skeletal muscle following IGF-I treatment. 129P1 ReJ-Lama2(dy) (129 ReJ dy/dy) dystrophic mice suffer from a deficiency in the structural protein, laminin, and exhibit severe muscle wasting and weakness. We tested the hypothesis that 4 weeks of IGF-I treatment ( approximately 2 mg/kg body mass, 50 g/h via mini-osmotic pump, subcutaneously) would increase the mass and force producing capacity of skeletal muscles from dystrophic mice. IGF-I treatment increased the mass of the extensor digitorum longus (EDL) and soleus muscles of dystrophic mice by 20 and 29%, respectively, compared with untreated dystrophic mice (administered saline-vehicle only). Absolute maximum force (P(o)) of the EDL and soleus muscle was increased by 40 and 32%, respectively, following IGF-I treatment. Specific P(o) (sP(o)) was increased by 23% in the EDL muscles of treated compared with untreated mice, but in the soleus muscle sP(o) was unchanged. IGF-I treatment increased the proportion of type IIB and type IIA fibres and decreased the proportion of type I fibres in the EDL muscles of dystrophic mice. In the soleus muscles of dystrophic mice, IGF-I treatment increased the proportion of type IIA fibres and decreased the proportion of type I fibres. Average fibre cross-sectional area was increased in the EDL and soleus muscles of treated compared with untreated mice. We conclude that IGF-I treatment ameliorates muscle wasting and improves the functional properties of skeletal muscles of dystrophic mice. The findings have important implications for the role of IGF-I in ameliorating muscle wasting associated with the muscular dystrophies.

  10. Role of non-coding RNAs in maintaining primary airway smooth muscle cells

    PubMed Central

    2014-01-01

    Background The airway smooth muscle (ASM) cell maintains its own proliferative rate and contributes to the inflammatory response in the airways, effects that are inhibited by corticosteroids, used in the treatment of airways diseases. Objective We determined the differential expression of mRNAs, microRNAs (miRNAs) and long noncoding RNA species (lncRNAs) in primary ASM cells following treatment with a corticosteroid, dexamethasone, and fetal calf serum (FCS). Methods mRNA, miRNA and lncRNA expression was measured by microarray and quantitative real-time PCR. Results A small number of miRNAs (including miR-150, −371-5p, −718, −940, −1181, −1207-5p, −1915, and −3663-3p) were decreased following exposure to dexamethasone and FCS. The mRNA targets of these miRNAs were increased in expression. The changes in mRNA expression were associated with regulation of ASM actin cytoskeleton. We also observed changes in expression of lncRNAs, including natural antisense, pseudogenes, intronic lncRNAs, and intergenic lncRNAs following dexamethasone and FCS. We confirmed the change in expression of three of these, LINC00882, LINC00883, PVT1, and its transcriptional activator, c-MYC. We propose that four of these lincRNAs (RP11-46A10.4, LINC00883, BCYRN1, and LINC00882) act as miRNA ‘sponges’ for 4 miRNAs (miR-150, −371-5p, −940, −1207-5p). Conclusion This in-vitro model of primary ASM cell phenotype was associated with the regulation of several ncRNAs. Their identification allows for in-vitro functional experimentation to establish causality with the primary ASM phenotype, and in airway diseases such as asthma and chronic obstructive pulmonary disease (COPD). PMID:24886442

  11. Isoflavin-β modifies muscle oxidative stress and prevents a thyrotoxicosis-induced loss of muscle mass in rats.

    PubMed

    Marinello, Poliana C; Bernardes, Sara S; Guarnier, Flávia A; Da Silva, Thamara N X; Borges, Fernando H; Lopes, Natália M D; Simão, Andréa N C; Armani, André; Cecchini, Rubens; Cecchini, Alessandra L

    2017-11-01

    We sought to verify whether isoflavin-beta (Iso-β), a mixture of isoflavones with antioxidant properties, could prevent thyrotoxicosis-induced loss of muscle mass and the participation of oxidative stress (OS) in the mechanisms of this prevention. Two experimental periods of thyrotoxicosis induction were used in Wistar rats: 3 and 5 days to assess Iso-β effects before and after thyrotoxicosis-induced muscle wasting. After euthanasia, peritoneal fat and gastrocnemius muscle were collected, weighed, and muscle OS was assessed. Iso-β prevented the loss of gastrocnemius mass in thyrotoxic rats through the prevention of muscle OS generation during thyrotoxicosis, increasing muscle total antioxidant capacity and decreasing mitochondrial cytochrome c oxidase activity, lipid peroxidation, and protein carbonyl content. Iso-β decreased oxidative modification of proteins, which is known to exert a major role during proteolysis induction and is present in thyrotoxic myopathy, highlighting the potential action of Iso-β in this complication of the disease. Muscle Nerve 56: 975-981, 2017. © 2016 Wiley Periodicals, Inc.

  12. Nuclear waste solidification

    DOEpatents

    Bjorklund, William J.

    1977-01-01

    High level liquid waste solidification is achieved on a continuous basis by atomizing the liquid waste and introducing the atomized liquid waste into a reaction chamber including a fluidized, heated inert bed to effect calcination of the atomized waste and removal of the calcined waste by overflow removal and by attrition and elutriation from the reaction chamber, and feeding additional inert bed particles to the fluidized bed to maintain the inert bed composition.

  13. Comprehensive proteome analysis of human skeletal muscle in cachexia and sarcopenia: a pilot study

    PubMed Central

    Ebhardt, H. Alexander; Degen, Simone; Tadini, Valentina; Schilb, Alain; Johns, Neil; Greig, Carolyn A.; Fearon, Kenneth C.H.; Aebersold, Ruedi

    2017-01-01

    Abstract Background Cancer cachexia (cancer‐induced muscle wasting) is found in a subgroup of cancer patients leaving the patients with a poor prognosis for survival due to a lower tolerance of the chemotherapeutic drug. The cause of the muscle wasting in these patients is not fully understood, and no predictive biomarker exists to identify these patients early on. Skeletal muscle loss is an inevitable consequence of advancing age. As cancer frequently occurs in old age, identifying and differentiating the molecular mechanisms mediating muscle wasting in cancer cachexia vs. age‐related sarcopenia are a challenge. However, the ability to distinguish between them is critical for early intervention, and simple measures of body weight may not be sufficiently sensitive to detect cachexia early. Methods We used a range of omics approaches: (i) undepleted proteome was quantified using advanced high mass accuracy mass spectrometers in SWATH‐MS acquisition mode; (ii) phospho epitopes were quantified using protein arrays; and (iii) morphology was assessed using fluorescent microscopy. Results We quantified the soluble proteome of muscle biopsies from cancer cachexia patients and compared them with cohorts of cancer patients and healthy individuals with and without age‐related muscle loss (aka age‐related sarcopenia). Comparing the proteomes of these cohorts, we quantified changes in muscle contractile myosins and energy metabolism allowing for a clear identification of cachexia patients. In an in vitro time lapse experiment, we mimicked cancer cachexia and identified signal transduction pathways governing cell fusion to play a pivotal role in preventing muscle regeneration. Conclusions The work presented here lays the foundation for further understanding of muscle wasting diseases and holds the promise of overcoming ambiguous weight loss as a measure for defining cachexia to be replaced by a precise protein signature. PMID:28296247

  14. [Autocontrol of muscle relaxation with vecuronium].

    PubMed

    Sibilla, C; Zatelli, R; Marchi, M; Zago, M

    1990-01-01

    The optimal conditions for maintaining desired levels of muscle relaxation with vecuronium are obtained by means of the continuous infusion (I.V.) technique. A frequent correction of the infusion flow is required, since it is impossible to predict the exact amount for the muscle relaxant in single case. In order to overcome such limits the authors propose a very feasible infusion system for the self-control of muscle relaxation; furthermore they positively consider its possible daily clinical application.

  15. Skeletal muscle atrophy in bioengineered skeletal muscle: a new model system.

    PubMed

    Lee, Peter H U; Vandenburgh, Herman H

    2013-10-01

    Skeletal muscle atrophy has been well characterized in various animal models, and while certain pathways that lead to disuse atrophy and its associated functional deficits have been well studied, available drugs to counteract these deficiencies are limited. An ex vivo tissue-engineered skeletal muscle offers a unique opportunity to study skeletal muscle physiology in a controlled in vitro setting. Primary mouse myoblasts isolated from adult muscle were tissue engineered into bioartificial muscles (BAMs) containing hundreds of aligned postmitotic muscle fibers expressing sarcomeric proteins. When electrically stimulated, BAMs generated measureable active forces within 2-3 days of formation. The maximum isometric tetanic force (Po) increased for ∼3 weeks to 2587±502 μN/BAM and was maintained at this level for greater than 80 days. When BAMs were reduced in length by 25% to 50%, muscle atrophy occurred in as little as 6 days. Length reduction resulted in significant decreases in Po (50.4%), mean myofiber cross-sectional area (21.7%), total protein synthesis rate (22.0%), and noncollagenous protein content (6.9%). No significant changes occurred in either the total metabolic activity or protein degradation rates. This study is the first in vitro demonstration that length reduction alone can induce skeletal muscle atrophy, and establishes a novel in vitro model for the study of skeletal muscle atrophy.

  16. Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat

    NASA Technical Reports Server (NTRS)

    Loughna, Paul T.; Goldspink, David F.; Goldspink, Geoffrey

    1987-01-01

    Hypokinesia/hypodynamia was induced in the hindlimb muscles of the rat, using a suspension technique. This caused differing degrees of atrophy in different muscles. However, this atrophy was reduced in muscles held in a lenghthened position. The greatest degree of wasting was observed in the unstretched soleus, a slow postural muscle, where both Type 1 and Type 2a fibers atrophied to the same degree. However, wasting of the gastrocnemius muscle was associated with a reduction in the size of the Type 2b fibers. In both slow-postural and fast-phasic hindlimb muscles, atrophy was brought about by a reduction in the rate of protein synthesis in conjunction with an elevation in the rate of protein degradation. When inactive muscles were passively stretched, both protein synthesis and degradation were dramatically elevated. Even periods of stretch of as little as 0.5 h/d were found to significantly decrease atrophy in inactive muscles.

  17. Pharmacological Inhibition of PKCθ Counteracts Muscle Disease in a Mouse Model of Duchenne Muscular Dystrophy.

    PubMed

    Marrocco, V; Fiore, P; Benedetti, A; Pisu, S; Rizzuto, E; Musarò, A; Madaro, L; Lozanoska-Ochser, B; Bouché, M

    2017-02-01

    Inflammation plays a considerable role in the progression of Duchenne Muscular Dystrophy (DMD), a severe muscle disease caused by a mutation in the dystrophin gene. We previously showed that genetic ablation of Protein Kinase C θ (PKCθ) in mdx, the mouse model of DMD, improves muscle healing and regeneration, preventing massive inflammation. To establish whether pharmacological targeting of PKCθ in DMD can be proposed as a therapeutic option, in this study we treated young mdx mice with the PKCθ inhibitor Compound 20 (C20). We show that C20 treatment led to a significant reduction in muscle damage associated with reduced immune cells infiltration, reduced inflammatory pathways activation, and maintained muscle regeneration. Importantly, C20 treatment is efficient in recovering muscle performance in mdx mice, by preserving muscle integrity. Together, these results provide proof of principle that pharmacological inhibition of PKCθ in DMD can be considered an attractive strategy to modulate immune response and prevent the progression of the disease. Duchenne muscular dystrophy (DMD) is a severe muscle disease affecting 1:3500 male births. DMD is caused by a mutation in dystrophin gene, coding for a protein required for skeletal and cardiac muscle integrity. Lack of a functional dystrophin is primarily responsible for the muscle eccentric contraction-induced muscle damage, observed in dystrophic muscle. However, inflammation plays a considerable role in the progression of DMD. Glucocorticoids, which have anti-inflammatory properties, are being used to treat DMD with some success; however, long term treatment with these drugs induces muscle atrophy and wasting, outweighing their benefit. The identification of specific targets for anti-inflammatory therapies is one of the ongoing therapeutic options. Although blunting inflammation would not be a "cure" for the disease, the emerging clue is that multiple strategies, addressing different aspects of the pathology

  18. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    NASA Technical Reports Server (NTRS)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  19. Device induces lungs to maintain known constant pressure

    NASA Technical Reports Server (NTRS)

    Lippitt, M. W.; Reed, J. H.

    1964-01-01

    This device requires the use of thoracic muscles to maintain prescribed air pressure in the lungs for brief periods. It consists of a clear plastic hollow cylinder fitted with a mouthpiece, a spring-loaded piston, and a small vent for escaping air when exhalation into the mouthpiece displaces the piston.

  20. Counteracting Muscle Atrophy using Galvanic Stimulation of the Vestibular System

    NASA Technical Reports Server (NTRS)

    Fox, Robert A.; Polyakov, Igor

    1999-01-01

    The unloading of weight bearing from antigravity muscles during space flight produces significant muscle atrophy and is one of the most serious health problems facing the space program. Various exercise regimens have been developed and used either alone or in combination with pharmacological techniques to ameliorate this atrophy, but no effective countermeasure exists for this problem. The research in this project was conducted to evaluate the potential use of vestibular galvanic stimulation (VGS) to prevent muscle atrophy resulting from unloading of weight bearing from antigravity muscles. This approach was developed based on two concepts related to the process of maintaining the status of the anti-gravity neuromuscular system. These two premises are: (1) The "tone," or bias on spinal motorneurons is affected by vestibular projections that contribute importantly to maintaining muscle health and status. (2) VGS can be used to modify the excitability, or 'tone' of motorneuron of antigravity muscles. Thus, the strategy is to use VGS to modify the gain of vestibular projections to antigravity muscles and thereby change the general status of these muscles.

  1. Space travel directly induces skeletal muscle atrophy

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H.; Chromiak, J.; Shansky, J.; Del Tatto, M.; Lemaire, J.

    1999-01-01

    Space travel causes rapid and pronounced skeletal muscle wasting in humans that reduces their long-term flight capabilities. To develop effective countermeasures, the basis of this atrophy needs to be better understood. Space travel may cause muscle atrophy indirectly by altering circulating levels of factors such as growth hormone, glucocorticoids, and anabolic steroids and/or by a direct effect on the muscle fibers themselves. To determine whether skeletal muscle cells are directly affected by space travel, tissue-cultured avian skeletal muscle cells were tissue engineered into bioartificial muscles and flown in perfusion bioreactors for 9 to 10 days aboard the Space Transportation System (STS, i.e., Space Shuttle). Significant muscle fiber atrophy occurred due to a decrease in protein synthesis rates without alterations in protein degradation. Return of the muscle cells to Earth stimulated protein synthesis rates of both muscle-specific and extracellular matrix proteins relative to ground controls. These results show for the first time that skeletal muscle fibers are directly responsive to space travel and should be a target for countermeasure development.

  2. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy.

    PubMed

    Cerquone Perpetuini, Andrea; Re Cecconi, Andrea David; Chiappa, Michela; Martinelli, Giulia Benedetta; Fuoco, Claudia; Desiderio, Giovanni; Castagnoli, Luisa; Gargioli, Cesare; Piccirillo, Rosanna; Cesareni, Gianni

    2018-05-21

    Skeletal muscle is characterized by an efficient regeneration potential that is often impaired during myopathies. Understanding the molecular players involved in muscle homeostasis and regeneration could help to find new therapies against muscle degenerative disorders. Previous studies revealed that the Ser/Thr kinase p21 protein-activated kinase 1 (Pak1) was specifically down-regulated in the atrophying gastrocnemius of Yoshida hepatoma-bearing rats. In this study, we evaluated the role of group I Paks during cancer-related atrophy and muscle regeneration. We examined Pak1 expression levels in the mouse Tibialis Anterior muscles during cancer cachexia induced by grafting colon adenocarcinoma C26 cells and in vitro by dexamethasone treatment. We investigated whether the overexpression of Pak1 counteracts muscle wasting in C26-bearing mice and in vitro also during interleukin-6 (IL6)-induced or dexamethasone-induced C2C12 atrophy. Moreover, we analysed the involvement of group I Paks on myogenic differentiation in vivo and in vitro using the group I chemical inhibitor IPA-3. We found that Pak1 expression levels are reduced during cancer-induced cachexia in the Tibialis Anterior muscles of colon adenocarcinoma C26-bearing mice and in vitro during dexamethasone-induced myotube atrophy. Electroporation of muscles of C26-bearing mice with plasmids directing the synthesis of PAK1 preserves fiber size in cachectic muscles by restraining the expression of atrogin-1 and MuRF1 and possibly by inducing myogenin expression. Consistently, the overexpression of PAK1 reduces the dexamethasone-induced expression of MuRF1 in myotubes and increases the phospho-FOXO3/FOXO3 ratio. Interestingly, the ectopic expression of PAK1 counteracts atrophy in vitro by restraining the IL6-Stat3 signalling pathway measured in luciferase-based assays and by reducing rates of protein degradation in atrophying myotubes exposed to IL6. On the other hand, we observed that the inhibition of group I Paks

  3. Fatigue-related firing of distal muscle nociceptors reduces voluntary activation of proximal muscles of the same limb.

    PubMed

    Kennedy, David S; McNeil, Chris J; Gandevia, Simon C; Taylor, Janet L

    2014-02-15

    With fatiguing exercise, firing of group III/IV muscle afferents reduces voluntary activation and force of the exercised muscles. These afferents can also act across agonist/antagonist pairs, reducing voluntary activation and force in nonfatigued muscles. We hypothesized that maintained firing of group III/IV muscle afferents after a fatiguing adductor pollicis (AP) contraction would decrease voluntary activation and force of AP and ipsilateral elbow flexors. In two experiments (n = 10) we examined voluntary activation of AP and elbow flexors by measuring changes in superimposed twitches evoked by ulnar nerve stimulation and transcranial magnetic stimulation of the motor cortex, respectively. Inflation of a sphygmomanometer cuff after a 2-min AP maximal voluntary contraction (MVC) blocked circulation of the hand for 2 min and maintained firing of group III/IV muscle afferents. After a 2-min AP MVC, maximal AP voluntary activation was lower with than without ischemia (56.2 ± 17.7% vs. 76.3 ± 14.6%; mean ± SD; P < 0.05) as was force (40.3 ± 12.8% vs. 57.1 ± 13.8% peak MVC; P < 0.05). Likewise, after a 2-min AP MVC, elbow flexion voluntary activation was lower with than without ischemia (88.3 ± 7.5% vs. 93.6 ± 3.9%; P < 0.05) as was torque (80.2 ± 4.6% vs. 86.6 ± 1.0% peak MVC; P < 0.05). Pain during ischemia was reported as Moderate to Very Strong. Postfatigue firing of group III/IV muscle afferents from the hand decreased voluntary drive and force of AP. Moreover, this effect decreased voluntary drive and torque of proximal unfatigued muscles, the elbow flexors. Fatigue-sensitive group III/IV muscle nociceptors act to limit voluntary drive not only to fatigued muscles but also to unfatigued muscles within the same limb.

  4. Bioenergetics mechanisms regulating muscle stem cell self-renewal commitment and function.

    PubMed

    Abreu, Phablo

    2018-04-16

    Muscle stem cells or satellite cells are crucial for muscle maintenance and repair. These cells are mitotically quiescent and uniformly express the transcription factor Pax7, intermittently entering the cell cycle to give rise to daughter myogenic precursors cells and fuse with neighboring myofibers or self-renew, replenishing the stem cell pool in adult skeletal muscle. Pivotal roles of muscle stem cells in muscle repair have been uncovered, but it still remains unclear how muscle stem cell self-renewal is molecularly regulated and how muscle stem cells maintain muscle tissue homeostasis. Defects in muscle stem cell regulation to maintain/return to quiescence and self-renew are observed in degenerative conditions such as aging and neuromuscular disease. Recent works has suggested the existence of metabolic regulation and mitochondrial alterations in muscle stem cells, influencing the self-renewal commitment and function. Here I present a brief overview of recent understanding of how metabolic reprogramming governs self-renewal commitment, which is essential for conservation of muscle satellite cell pools throughout life, as well as the implications for regenerative medicine. Copyright © 2018. Published by Elsevier Masson SAS.

  5. [Role of myostatin in wasting syndrome associated with chronic diseases].

    PubMed

    Zamora, Elisabet; Galán, Amparo; Simó, Rafael

    2008-11-01

    Muscle wasting is a common process of numerous chronic diseases. Sarcopenia is associated with poor prognosis independently of the outcome of the disease. To date, the mechanisms by which sarcopenia induces these alterations are unknown, but the complexity of muscular metabolism anticipates that many factors can be involved. Myostatin, a new family member of transforming growth factor beta, was initially described from the observation of significant muscular growing in knock out mice for myostatin. Numerous experimental and clinical studies have provided insights in the physiologic knowledge of this protein and its implication in muscle wasting conditions. In recent years different substances have been described that counteract myostatin through numerous physiopathological mecanisms and, therefore, they might be novel therapeutic strategies against the wasting syndrome associated with chronic diseases. In spite of that, more studies are needed to improve the knowledge of all processes involved in muscle wasting in order to prevent its devastating consequences.

  6. Effects of ambient temperature on mechanomyography of resting quadriceps muscle.

    PubMed

    McKay, William P; Vargo, Michael; Chilibeck, Philip D; Daku, Brian L

    2013-03-01

    It has been speculated that resting muscle mechanical activity, also known as minor tremor, microvibration, and thermoregulatory tonus, has evolved to maintain core temperature in homeotherms, and may play a role in nonshivering thermogenesis. This experiment was done to determine whether resting muscle mechanical activity increases with decreasing ambient temperature. We cooled 20 healthy, human, resting, supine subjects from an ambient temperature of 40° to 12 °C over 65 min. Core temperature, midquadriceps mechanomyography, surface electromyography, and oxygen consumption (VO2) were recorded. Resting muscle mechanical and electrical activity in the absence of shivering increased significantly at temperatures below 21.5 °C. Women defended core temperature more effectively than men, and showed increased resting muscle activity earlier than men. Metabolism measured by VO2 correlated with resting muscle mechanical activity (R = 0.65; p = 0.01). Resting muscle mechanical activity may have evolved, in part, to maintain core temperature in the face of mild cooling.

  7. [Clinical profile of persistent generalized muscle contraction following the insult of developing brain].

    PubMed

    Maruyama, Koichi; Iai, Mizue; Arai, Hiroshi; Yokochi, Kenji

    2014-01-01

    Persons with severe motor and intellectual disabilities (SMID) caused by injury to the developing brain sometimes present generalized hypertonia in a specific position with extreme muscle overactivity persisting for most of the time during wakefulness. This "persistent generalized muscle contraction" is often associated with bad humor, sleep disturbance, hyperhidrosis, wasting, elevation of serum creatine kinase levels, regular daytime use of hypnotic or sedative medication, and the necessity to maintain the neck or hip in a flexed position manually. The aim of this study is to elucidate the clinical profile of this condition. We retrospectively examined the medical records and brain imaging data of 66 SMID patients in the state of persistent generalized muscle contraction. Most patients could be classified into 2 major categories on the basis of clinical presentation and brain imaging: (A) those with premature birth and bilateral lesion of globus pallidus interna (kernicterus) (n = 16), and (B) those with various widespread bilateral basal ganglia/thalamic and/or cerebral lesions such as hypoxia-ischemia, acute encephalopathy, malformation, etc (n = 50). Group A assumed an asymmetrical tonic-neck-reflex-like position, torsion of the trunk, fluctuation of hypertonia, and better mental development. Three of them exhibited extreme hypertonia resembling status dystonicus. Group B often exhibited persistent and fixed retroflexion of the neck and trunk or opisthotonus. Drugs such as oral muscular relaxants were ineffective in both groups. Injection of botulinum toxin into the cervical and paravertebral muscles partially alleviated symptoms. Persistent generalized muscle contraction in SMID has at least two different types. Group A has characteristics of severe dystonic hypertonia that could lead to status dystonicus. Group B might have peculiar characteristics of muscle overactivity triggered by wakefulness or discomfort, which probably results from inability to achieve

  8. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  9. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease.

    PubMed

    Fouque, D; Kalantar-Zadeh, K; Kopple, J; Cano, N; Chauveau, P; Cuppari, L; Franch, H; Guarnieri, G; Ikizler, T A; Kaysen, G; Lindholm, B; Massy, Z; Mitch, W; Pineda, E; Stenvinkel, P; Treviño-Becerra, A; Trevinho-Becerra, A; Wanner, C

    2008-02-01

    The recent research findings concerning syndromes of muscle wasting, malnutrition, and inflammation in individuals with chronic kidney disease (CKD) or acute kidney injury (AKI) have led to a need for new terminology. To address this need, the International Society of Renal Nutrition and Metabolism (ISRNM) convened an expert panel to review and develop standard terminologies and definitions related to wasting, cachexia, malnutrition, and inflammation in CKD and AKI. The ISRNM expert panel recommends the term 'protein-energy wasting' for loss of body protein mass and fuel reserves. 'Kidney disease wasting' refers to the occurrence of protein-energy wasting in CKD or AKI regardless of the cause. Cachexia is a severe form of protein-energy wasting that occurs infrequently in kidney disease. Protein-energy wasting is diagnosed if three characteristics are present (low serum levels of albumin, transthyretin, or cholesterol), reduced body mass (low or reduced body or fat mass or weight loss with reduced intake of protein and energy), and reduced muscle mass (muscle wasting or sarcopenia, reduced mid-arm muscle circumference). The kidney disease wasting is divided into two main categories of CKD- and AKI-associated protein-energy wasting. Measures of chronic inflammation or other developing tests can be useful clues for the existence of protein-energy wasting but do not define protein-energy wasting. Clinical staging and potential treatment strategies for protein-energy wasting are to be developed in the future.

  10. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program.

    PubMed

    Hindi, Sajedah M; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M; Ogura, Yuji; Yan, Zhen; Burkly, Linda C; Zheng, Timothy S; Kumar, Ashok

    2014-03-01

    Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.

  11. Wasting Mechanisms in Muscular Dystrophy

    PubMed Central

    Shin, Jonghyun; Tajrishi, Marjan M.; Ogura, Yuji; Kumar, Ashok

    2013-01-01

    Muscular dystrophy is a group of more than 30 different clinical genetic disorders that are characterized by progressive skeletal muscle wasting and degeneration. Primary deficiency of specific extracellular matrix, sarcoplasmic, cytoskeletal, or nuclear membrane protein results in several secondary changes such as sarcolemmal instability, calcium influx, fiber necrosis, oxidative stress, inflammatory response, breakdown of extracellular matrix, and eventually fibrosis which leads to loss of ambulance and cardiac and respiratory failure. A number of molecular processes have now been identified which hasten disease progression in human patients and animal models of muscular dystrophy. Accumulating evidence further suggests that aberrant activation of several signaling pathways aggravate pathological cascades in dystrophic muscle. Although replacement of defective gene with wild-type is paramount to cure, management of secondary pathological changes has enormous potential to improving the quality of life and extending lifespan of muscular dystrophy patients. In this article, we have reviewed major cellular and molecular mechanisms leading to muscle wasting in muscular dystrophy. PMID:23669245

  12. Artificial muscles on heat

    NASA Astrophysics Data System (ADS)

    McKay, Thomas G.; Shin, Dong Ki; Percy, Steven; Knight, Chris; McGarry, Scott; Anderson, Iain A.

    2014-03-01

    Many devices and processes produce low grade waste heat. Some of these include combustion engines, electrical circuits, biological processes and industrial processes. To harvest this heat energy thermoelectric devices, using the Seebeck effect, are commonly used. However, these devices have limitations in efficiency, and usable voltage. This paper investigates the viability of a Stirling engine coupled to an artificial muscle energy harvester to efficiently convert heat energy into electrical energy. The results present the testing of the prototype generator which produced 200 μW when operating at 75°C. Pathways for improved performance are discussed which include optimising the electronic control of the artificial muscle, adjusting the mechanical properties of the artificial muscle to work optimally with the remainder of the system, good sealing, and tuning the resonance of the displacer to minimise the power required to drive it.

  13. Muscle oxygenation and fascicle length during passive muscle stretching in ballet-trained subjects.

    PubMed

    Otsuki, A; Fujita, E; Ikegawa, S; Kuno-Mizumura, M

    2011-07-01

    Muscle stretching transiently decreases muscle-blood flow corresponding to a muscle extension. It may disturb a balance between muscular oxygen demand and oxygen supply to muscles and reduce muscle oxygenation. However, muscle-stretching training may improve blood circulatory condition, resulting in the maintained muscle oxygenation during muscle stretching. The aim of this study was to investigate changes in muscle-blood volume (tHb) and tissue oxygenation index (TOI) during muscle stretching determined by using near-infrared spectroscopy (NIRS) in ballet-trained (BT) and untrained (C) subjects. 11 BT women who regularly perform muscle stretching and 11 C women participated in this study. Fascicle lengths, tHb and TOI in the tibialis anterior muscle were measured during passive plantar flexion from ankle joint angles of 120° (baseline) to 140°, 160°, the maximal comfortable position without pain (CP), and the maximal position (MP). At 160°, the % fascicle-length change from baseline was significantly lower in the BT than the C group, however, for the changes in tHb and TOI the significant interaction effect between the 2 groups was not detected. On the other hand, although the increases in the fascicle length from baseline to CP and MP were greater in BT than C, the tHb and TOI reductions were comparable between groups. We concluded that it appears that BT can extend their muscles without excessive reduction in muscle-blood volume and muscle oxygenation at relatively same but absolutely greater muscle-stretching levels than C. The attenuation in these indices during high-level muscle stretching may be associated with the repetitive muscle stretching of long-term ballet training. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Regulation of skeletal muscle capillary growth in exercise and disease.

    PubMed

    Haas, Tara L; Nwadozi, Emmanuel

    2015-12-01

    Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.

  15. Effect of experimental hyperthyroidism on skeletal-muscle proteolysis.

    PubMed

    Carter, W J; van der Weijden Benjamin, W S; Faas, F H

    1981-03-15

    It is not clear whether the muscle wasting commonly observed in hyperthyroidism is due to alteration in the rate of protein synthesis or degradation. The effect of experimental hyperthyroidism on skeletal-muscle proteolysis in the rat was studied by measuring alanine and tyrosine release from isolated skeletal muscles in vitro and 3-methyl-histidine excretion in vivo. Alanine release from the isolated epitrochlaris-muscle preparation was increased as soon as 24h after a 25 microgram dose of L-tri-iodothyronine in vivo. Conversely, alanine release from muscles of hypothyroid rats was decreased, but restored by L-tri-iodothyronine supplementation before death. Furthermore, 3-methylhistidine excretion was increased in hyperthyroid rats throughout an 18-day treatment period. The increased amino acid release from isolated muscles and the increased 3-methylhistidine excretion in vivo strongly suggests that hyperthyroidism increases skeletal-muscle proteolysis. Furthermore, the thyroid-hormone concentration may be an important factor in regulating muscle proteolysis.

  16. Effect of experimental hyperthyroidism on skeletal-muscle proteolysis.

    PubMed Central

    Carter, W J; van der Weijden Benjamin, W S; Faas, F H

    1981-01-01

    It is not clear whether the muscle wasting commonly observed in hyperthyroidism is due to alteration in the rate of protein synthesis or degradation. The effect of experimental hyperthyroidism on skeletal-muscle proteolysis in the rat was studied by measuring alanine and tyrosine release from isolated skeletal muscles in vitro and 3-methyl-histidine excretion in vivo. Alanine release from the isolated epitrochlaris-muscle preparation was increased as soon as 24h after a 25 microgram dose of L-tri-iodothyronine in vivo. Conversely, alanine release from muscles of hypothyroid rats was decreased, but restored by L-tri-iodothyronine supplementation before death. Furthermore, 3-methylhistidine excretion was increased in hyperthyroid rats throughout an 18-day treatment period. The increased amino acid release from isolated muscles and the increased 3-methylhistidine excretion in vivo strongly suggests that hyperthyroidism increases skeletal-muscle proteolysis. Furthermore, the thyroid-hormone concentration may be an important factor in regulating muscle proteolysis. PMID:7306017

  17. An analysis of the activity and muscle fatigue of the muscles around the neck under the three most frequent postures while using a smartphone

    PubMed Central

    Choi, Jung-Hyun; Jung, Min-Ho; Yoo, Kyung-Tae

    2016-01-01

    [Purpose] The purpose of this study was to identify changes in the activity and fatigue of the splenius capitis and upper trapezius muscles, which are agonists to the muscles supporting the head, under the three postures most frequently adopted while using a smartphone. [Subjects and Methods] The subjects were 15 college students in their 20s. They formed a single group and had to adopt three different postures (maximum bending, middle bending, and neutral). While the 15 subjects maintained the postures, muscle activity and fatigue were measured using surface electromyography. [Results] Comparison of the muscle fatigue caused by each posture showed statistically significant differences for the right splenius capitis, left splenius capitis, and left upper trapezius muscles. In addition, maintaining the maximum bending posture while using a smartphone resulted in higher levels of fatigue in the right splenius capitis, left splenius capitis, and left upper trapezius muscles compared with those for the middle bending posture. [Conclusion] Therefore, this study suggests that individuals should bend their neck slightly when using a smartphone, rather than bending it too much, or keep their neck straight to reduce fatigue of the cervical erector muscles. PMID:27313393

  18. An analysis of the activity and muscle fatigue of the muscles around the neck under the three most frequent postures while using a smartphone.

    PubMed

    Choi, Jung-Hyun; Jung, Min-Ho; Yoo, Kyung-Tae

    2016-05-01

    [Purpose] The purpose of this study was to identify changes in the activity and fatigue of the splenius capitis and upper trapezius muscles, which are agonists to the muscles supporting the head, under the three postures most frequently adopted while using a smartphone. [Subjects and Methods] The subjects were 15 college students in their 20s. They formed a single group and had to adopt three different postures (maximum bending, middle bending, and neutral). While the 15 subjects maintained the postures, muscle activity and fatigue were measured using surface electromyography. [Results] Comparison of the muscle fatigue caused by each posture showed statistically significant differences for the right splenius capitis, left splenius capitis, and left upper trapezius muscles. In addition, maintaining the maximum bending posture while using a smartphone resulted in higher levels of fatigue in the right splenius capitis, left splenius capitis, and left upper trapezius muscles compared with those for the middle bending posture. [Conclusion] Therefore, this study suggests that individuals should bend their neck slightly when using a smartphone, rather than bending it too much, or keep their neck straight to reduce fatigue of the cervical erector muscles.

  19. 11β-Hydroxysteroid dehydrogenase type 1 within muscle protects against the adverse effects of local inflammation.

    PubMed

    Hardy, Rowan S; Doig, Craig L; Hussain, Zahrah; O'Leary, Mary; Morgan, Stuart A; Pearson, Mark J; Naylor, Amy; Jones, Simon W; Filer, Andrew; Stewart, Paul M; Buckley, Christopher D; Lavery, Gareth G; Cooper, Mark S; Raza, Karim

    2016-12-01

    Muscle wasting is a common feature of inflammatory myopathies. Glucocorticoids (GCs), although effective at suppressing inflammation and inflammatory muscle loss, also cause myopathy with prolonged administration. 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bidirectional GC-activating enzyme that is potently upregulated by inflammation within mesenchymal-derived tissues. We assessed the regulation of this enzyme with inflammation in muscle, and examined its functional impact on muscle. The expression of 11β-HSD1 in response to proinflammatory stimuli was determined in a transgenic murine model of chronic inflammation (TNF-Tg) driven by overexpression of tumour necrosis factor (TNF)-α within tissues, including muscle. The inflammatory regulation and functional consequences of 11β-HSD1 expression were examined in primary cultures of human and murine myotubes and human and murine muscle biopsies ex vivo. The contributions of 11β-HSD1 to muscle inflammation and wasting were assessed in vivo with the TNF-Tg mouse on an 11β-HSD1 null background. 11β-HSD1 was significantly upregulated within the tibialis anterior and quadriceps muscles from TNF-Tg mice. In human and murine primary myotubes, 11β-HSD1 expression and activity were significantly increased in response to the proinflammatory cytokine TNF-α (mRNA, 7.6-fold, p < 0.005; activity, 4.1-fold, p < 0.005). Physiologically relevant levels of endogenous GCs activated by 11β-HSD1 suppressed proinflammatory cytokine output (interkeukin-6, TNF-α, and interferon-γ), but had little impact on markers of muscle wasting in human myotube cultures. TNF-Tg mice on an 11β-11β-HSD1 knockout background developed greater muscle wasting than their TNF-Tg counterparts (27.4% less; p < 0.005), with smaller compacted muscle fibres and increased proinflammatory gene expression relative to TNF-Tg mice with normal 11β-HSD1 activity. This study demonstrates that inflammatory stimuli upregulate 11β-HSD1 expression

  20. Brain and muscle Arnt-like 1 promotes skeletal muscle regeneration through satellite cell expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Somik; Yin, Hongshan; Department of Cardiovascular Medicine, Third Affiliated Hospital, Hebei Medical University, Shijiazhuang 050051, Hebei

    Circadian clock is an evolutionarily conserved timing mechanism governing diverse biological processes and the skeletal muscle possesses intrinsic functional clocks. Interestingly, although the essential clock transcription activator, Brain and muscle Arnt-like 1 (Bmal1), participates in maintenance of muscle mass, little is known regarding its role in muscle growth and repair. In this report, we investigate the in vivo function of Bmal1 in skeletal muscle regeneration using two muscle injury models. Bmal1 is highly up-regulated by cardiotoxin injury, and its genetic ablation significantly impairs regeneration with markedly suppressed new myofiber formation and attenuated myogenic induction. A similarly defective regenerative response ismore » observed in Bmal1-null mice as compared to wild-type controls upon freeze injury. Lack of satellite cell expansion accounts for the regeneration defect, as Bmal1{sup −/−} mice display significantly lower satellite cell number with nearly abolished induction of the satellite cell marker, Pax7. Furthermore, satellite cell-derived primary myoblasts devoid of Bmal1 display reduced growth and proliferation ex vivo. Collectively, our results demonstrate, for the first time, that Bmal1 is an integral component of the pro-myogenic response that is required for muscle repair. This mechanism may underlie its role in preserving adult muscle mass and could be targeted therapeutically to prevent muscle-wasting diseases. - Highlights: • Bmal1 is highly inducible by muscle injury and myogenic stimuli. • Genetic ablation of Bmal1 significantly impairs muscle regeneration. • Bmal1 promotes satellite cell expansion during muscle regeneration. • Bmal1-deficient primary myoblasts display attenuated growth and proliferation.« less

  1. Stable expression of calpain 3 from a muscle transgene in vivo: Immature muscle in transgenic mice suggests a role for calpain 3 in muscle maturation

    PubMed Central

    Spencer, M. J.; Guyon, J. R.; Sorimachi, H.; Potts, A.; Richard, I.; Herasse, M.; Chamberlain, J.; Dalkilic, I.; Kunkel, L. M.; Beckmann, J. S.

    2002-01-01

    Limb-girdle muscular dystrophy, type 2A (LGMD 2A), is an autosomal recessive disorder that causes late-onset muscle-wasting, and is due to mutations in the muscle-specific protease calpain 3 (C3). Although LGMD 2A would be a feasible candidate for gene therapy, the reported instability of C3 in vitro raised questions about the potential of obtaining a stable, high-level expression of C3 from a transgene in vivo. We have generated transgenic (Tg) mice with muscle-specific overexpression of full-length C3 or C3 isoforms, which arise from alternative splicing, to test whether stable expression of C3 transgenes could occur in vivo. Unexpectedly, we found that full-length C3 can be overexpressed at high levels in vivo, without toxicity. In addition, we found that Tg expressing C3 lacking exon 6, an isoform expressed embryonically, have muscles that resemble regenerating or developing muscle. Tg expressing C3 lacking exon 15 shared this morphology in the soleus, but not other muscles. Assays of inflammation or muscle membrane damage indicated that the Tg muscles were not degenerative, suggesting that the immature muscle resulted from a developmental block rather than degeneration and regeneration. These studies show that C3 can be expressed stably in vivo from a transgene, and indicate that alternatively spliced C3 isoforms should not be used in gene-therapy applications because they impair proper muscle development. PMID:12084932

  2. Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles

    PubMed Central

    Grumati, Paolo; Coletto, Luisa; Schiavinato, Alvise; Castagnaro, Silvia; Bertaggia, Enrico

    2011-01-01

    Autophagy is a catabolic process that provides the degradation of altered/damaged organelles through the fusion between autophagosomes and lysosomes. Proper regulation of the autophagic flux is fundamental for the homeostasis of skeletal muscles in physiological conditions and in response to stress. Defective as well as excessive autophagy is detrimental for muscle health and has a pathogenic role in several forms of muscle diseases. Recently, we found that defective activation of the autophagic machinery plays a key role in the pathogenesis of muscular dystrophies linked to collagen VI. Impairment of the autophagic flux in collagen VI null (Col6a1–/–) mice causes accumulation of dysfunctional mitochondria and altered sarcoplasmic reticulum, leading to apoptosis and degeneration of muscle fibers. Here we show that physical exercise activates autophagy in skeletal muscles. Notably, physical training exacerbated the dystrophic phenotype of Col6a1–/– mice, where autophagy flux is compromised. Autophagy was not induced in Col6a1–/– muscles after either acute or prolonged exercise, and this led to a marked increase of muscle wasting and apoptosis. These findings indicate that proper activation of autophagy is important for muscle homeostasis during physical activity. PMID:22024752

  3. Higher skeletal muscle protein synthesis and lower breakdown after chemotherapy in cachectic mice.

    PubMed

    Samuels, S E; Knowles, A L; Tilignac, T; Debiton, E; Madelmont, J C; Attaix, D

    2001-07-01

    The influence of cancer cachexia and chemotherapy and subsequent recovery of skeletal muscle protein mass and turnover was investigated in mice. Cancer cachexia was induced using colon 26 adenocarcinoma, which is characteristic of the human condition, and can be cured with 100% efficacy using an experimental nitrosourea, cystemustine (C(6)H(12)CIN(3)O(4)S). Reduced food intake was not a factor in these studies. Three days after cachexia began, healthy and tumor-bearing mice were given a single intraperitoneal injection of cystemustine (20 mg/kg). Skeletal muscle mass in tumor-bearing mice was 41% lower (P < 0.05) than in healthy mice 2 wk after cachexia began. Skeletal muscle wasting was mediated initially by decreased protein synthesis (-38%; P < 0.05) and increased degradation (+131%; P < 0.05); later wasting resulted solely from decreased synthesis (~-54 to -69%; P < 0.05). Acute cytotoxicity of chemotherapy did not appear to have an important effect on skeletal muscle protein metabolism in either healthy or tumor-bearing mice. Recovery began 2 days after treatment; skeletal muscle mass was only 11% lower than in healthy mice 11 days after chemotherapy. Recovery of skeletal muscle mass was affected initially by decreased protein degradation (-80%; P < 0.05) and later by increased protein synthesis (+46 to +73%; P < 0.05) in cured compared with healthy mice. This study showed that skeletal muscle wasted from cancer cachexia and after chemotherapeutic treatment is able to generate a strong anabolic response by making powerful changes to protein synthesis and degradation.

  4. Selective Expansion of Skeletal Muscle Stem Cells from Bulk Muscle Cells in Soft Three‐Dimensional Fibrin Gel

    PubMed Central

    Zhu, Pei; Zhou, Yalu; Wu, Furen; Hong, Yuanfan; Wang, Xin; Shekhawat, Gajendra; Mosenson, Jeffrey

    2017-01-01

    Abstract Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine 2017;6:1412–1423 PMID:28244269

  5. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.

    PubMed

    Al-Shanti, Nasser; Stewart, Claire E

    2009-11-01

    The loss of muscle mass with age and disuse has a significant impact on the physiological and social well-being of the aged; this is an increasingly important problem as the population becomes skewed towards older age. Exercise has psychological benefits but it also impacts on muscle protein synthesis and degradation, increasing muscle tissue volume in both young and older individuals. Skeletal muscle hypertrophy involves an increase in muscle mass and cross-sectional area and associated increased myofibrillar protein content. Attempts to understand the molecular mechanisms that underlie muscle growth, development and maintenance, have focused on characterising the molecular pathways that initiate, maintain and regenerate skeletal muscle. Such understanding may aid in improving targeted interventional therapies for age-related muscle loss and muscle wasting associated with diseases. Two major routes through which skeletal muscle development and growth are regulated are insulin-like growth factor I (IGF-I) and Ca(2+)/calmodulin-dependent transcriptional pathways. Many reviews have focused on understanding the signalling pathways of IGF-I and its receptor, which govern skeletal muscle hypertrophy. However, alternative molecular signalling pathways such as the Ca(2+)/calmodulin-dependent transcriptional pathways should also be considered as potential mediators of muscle growth. These latter pathways have received relatively little attention and the purpose herein is to highlight the progress being made in the understanding of these pathways and associated molecules: calmodulin, calmodulin kinases (CaMKs), calcineurin and nuclear factor of activated T-cell (NFAT), which are involved in skeletal muscle regulation. We describe: (1) how conformational changes in the Ca(2+) sensor calmodulin result in the exposure of binding pockets for the target proteins (CaMKs and calcineurin). (2) How Calmodulin consequently activates either the Ca(2+)/calmodulin-dependent kinases

  6. The relationship between exercise-induced muscle fatigue, arterial blood flow and muscle perfusion after 56 days local muscle unloading.

    PubMed

    Weber, Tobias; Ducos, Michel; Mulder, Edwin; Beijer, Åsa; Herrera, Frankyn; Zange, Jochen; Degens, Hans; Bloch, Wilhelm; Rittweger, Jörn

    2014-05-01

    In the light of the dynamic nature of habitual plantar flexor activity, we utilized an incremental isokinetic exercise test (IIET) to assess the work-related power deficit (WoRPD) as a measure for exercise-induced muscle fatigue before and after prolonged calf muscle unloading and in relation to arterial blood flow and muscle perfusion. Eleven male subjects (31 ± 6 years) wore the HEPHAISTOS unloading orthosis unilaterally for 56 days. It allows habitual ambulation while greatly reducing plantar flexor activity and torque production. Endpoint measurements encompassed arterial blood flow, measured in the femoral artery using Doppler ultrasound, oxygenation of the soleus muscle assessed by near-infrared spectroscopy, lactate concentrations determined in capillary blood and muscle activity using soleus muscle surface electromyography. Furthermore, soleus muscle biopsies were taken to investigate morphological muscle changes. After the intervention, maximal isokinetic torque was reduced by 23·4 ± 8·2% (P<0·001) and soleus fibre size was reduced by 8·5 ± 13% (P = 0·016). However, WoRPD remained unaffected as indicated by an unchanged loss of relative plantar flexor power between pre- and postexperiments (P = 0·88). Blood flow, tissue oxygenation, lactate concentrations and EMG median frequency kinematics during the exercise test were comparable before and after the intervention, whereas the increase of RMS in response to IIET was less following the intervention (P = 0·03). In conclusion, following submaximal isokinetic muscle work exercise-induced muscle fatigue is unaffected after prolonged local muscle unloading. The observation that arterial blood flow was maintained may underlie the unchanged fatigability. © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  7. Building Muscles, Keeping Muscles: Protein Turnover During Space Flight

    NASA Technical Reports Server (NTRS)

    Ferrando, Arny; Bloomberg, Jacob; Lee, Angie (Technical Monitor)

    2002-01-01

    As we age we lose muscle mass and strength. The problem is a matter of use it or lose it and more - a fact to which any active senior can attest. An imbalance in the natural cycle of protein turnover may be a contributing factor to decreased muscle mass. But the answer is not so simple, since aging is associated with changes in hormones, activity levels, nutrition, and often, disease. The human body constantly uses amino acids to build muscle protein, which then breaks down and must be replaced. When protein turnover gets out of balance, so that more protein breaks down than the body can replace, the result is muscle loss. This is not just the bane of aging, however. Severely burned people may have difficulty building new muscle long after the burned skin has been repaired. Answers to why we lose muscle mass and strength - and how doctors can fix it - may come from space. Astronauts usually eat a well-balanced diet and maintain an exercise routine to stay in top health. During long-duration flight, they exercise regularly to reduce the muscle loss that results from being in a near-weightless environment. Despite these precautions, astronauts lose muscle mass and strength during most missions. They quickly recover after returning to Earth - this is a temporary condition in an otherwise healthy population. Members of the STS-107 crew are participating in a study of the effects of space flight, hormone levels, and stress on protein turnover. When we are under stress, the body responds with a change in hormone levels. Researchers hypothesize that this stress-induced change in hormones along with the near-weightlessness might result in the body synthesizing less muscle protein, causing muscles to lose their strength and size. Astronauts, who must perform numerous duties in a confined and unusual environment, experience some stress during their flight, making them excellent candidates for testing the researchers' hypothesis.

  8. Gene expression changes controlling distinct adaptations in the heart and skeletal muscle of a hibernating mammal

    PubMed Central

    Vermillion, Katie L.; Anderson, Kyle J.; Hampton, Marshall

    2015-01-01

    Throughout the hibernation season, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) experiences extreme fluctuations in heart rate, metabolism, oxygen consumption, and body temperature, along with prolonged fasting and immobility. These conditions necessitate different functional requirements for the heart, which maintains contractile function throughout hibernation, and the skeletal muscle, which remains largely inactive. The adaptations used to maintain these contractile organs under such variable conditions serves as a natural model to study a variety of medically relevant conditions including heart failure and disuse atrophy. To better understand how two different muscle tissues maintain function throughout the extreme fluctuations of hibernation we performed Illumina HiSeq 2000 sequencing of cDNAs to compare the transcriptome of heart and skeletal muscle across the circannual cycle. This analysis resulted in the identification of 1,076 and 1,466 differentially expressed genes in heart and skeletal muscle, respectively. In both heart and skeletal muscle we identified a distinct cold-tolerant mechanism utilizing peroxisomal metabolism to make use of elevated levels of unsaturated depot fats. The skeletal muscle transcriptome also shows an early increase in oxidative capacity necessary for the altered fuel utilization and increased oxygen demand of shivering. Expression of the fetal gene expression profile is used to maintain cardiac tissue, either through increasing myocyte size or proliferation of resident cardiomyocytes, while skeletal muscle function and mass are protected through transcriptional regulation of pathways involved in protein turnover. This study provides insight into how two functionally distinct muscles maintain function under the extreme conditions of mammalian hibernation. PMID:25572546

  9. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program

    PubMed Central

    Hindi, Sajedah M.; Mishra, Vivek; Bhatnagar, Shephali; Tajrishi, Marjan M.; Ogura, Yuji; Yan, Zhen; Burkly, Linda C.; Zheng, Timothy S.; Kumar, Ashok

    2014-01-01

    Skeletal muscle wasting attributed to inactivity has significant adverse functional consequences. Accumulating evidence suggests that peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and TNF-like weak inducer of apoptosis (TWEAK)-Fn14 system are key regulators of skeletal muscle mass in various catabolic states. While the activation of TWEAK-Fn14 signaling causes muscle wasting, PGC-1α preserves muscle mass in several conditions, including functional denervation and aging. However, it remains unknown whether there is any regulatory interaction between PGC-1α and TWEAK-Fn14 system during muscle atrophy. Here we demonstrate that TWEAK significantly reduces the levels of PGC-1α and mitochondrial content (∼50%) in skeletal muscle. Levels of PGC-1α are significantly increased in skeletal muscle of TWEAK-knockout (KO) and Fn14-KO mice compared to wild-type mice on denervation. Transgenic (Tg) overexpression of PGC-1α inhibited progressive muscle wasting in TWEAK-Tg mice. PGC-1α inhibited the TWEAK-induced activation of NF-κB (∼50%) and dramatically reduced (∼90%) the expression of atrogenes such as MAFbx and MuRF1. Intriguingly, muscle-specific overexpression of PGC-1α also prevented the inducible expression of Fn14 in denervated skeletal muscle. Collectively, our study demonstrates that TWEAK induces muscle atrophy through repressing the levels of PGC-1α. Overexpression of PGC-1α not only blocks the TWEAK-induced atrophy program but also diminishes the expression of Fn14 in denervated skeletal muscle.—Hindi, S. M., Mishra, V., Bhatnagar, S., Tajrishi, M. M., Ogura, Y., Yan, Z., Burkly, L. C., Zheng, T. S., Kumar, A. Regulatory circuitry of TWEAK-Fn14 system and PGC-1α in skeletal muscle atrophy program. PMID:24327607

  10. Alterations in muscle mass and contractile phenotype in response to unloading models: role of transcriptional/pretranslational mechanisms

    PubMed Central

    Baldwin, Kenneth M.; Haddad, Fadia; Pandorf, Clay E.; Roy, Roland R.; Edgerton, V. Reggie

    2013-01-01

    Skeletal muscle is the largest organ system in mammalian organisms providing postural control and movement patterns of varying intensity. Through evolution, skeletal muscle fibers have evolved into three phenotype clusters defined as a motor unit which consists of all muscle fibers innervated by a single motoneuron linking varying numbers of fibers of similar phenotype. This fundamental organization of the motor unit reflects the fact that there is a remarkable interdependence of gene regulation between the motoneurons and the muscle mainly via activity-dependent mechanisms. These fiber types can be classified via the primary type of myosin heavy chain (MHC) gene expressed in the motor unit. Four MHC gene encoded proteins have been identified in striated muscle: slow type I MHC and three fast MHC types, IIa, IIx, and IIb. These MHCs dictate the intrinsic contraction speed of the myofiber with the type I generating the slowest and IIb the fastest contractile speed. Over the last ~35 years, a large body of knowledge suggests that altered loading state cause both fiber atrophy/wasting and a slow to fast shift in the contractile phenotype in the target muscle(s). Hence, this review will examine findings from three different animal models of unloading: (1) space flight (SF), i.e., microgravity; (2) hindlimb suspension (HS), a procedure that chronically eliminates weight bearing of the lower limbs; and (3) spinal cord isolation (SI), a surgical procedure that eliminates neural activation of the motoneurons and associated muscles while maintaining neurotrophic motoneuron-muscle connectivity. The collective findings demonstrate: (1) all three models show a similar pattern of fiber atrophy with differences mainly in the magnitude and kinetics of alteration; (2) transcriptional/pretranslational processes play a major role in both the atrophy process and phenotype shifts; and (3) signaling pathways impacting these alterations appear to be similar in each of the models

  11. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins.

    PubMed

    Lokireddy, Sudarsanareddy; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi; McFarlane, Craig

    2011-12-01

    Myostatin is a negative regulator of skeletal muscle growth and in fact acts as a potent inducer of "cachectic-like" muscle wasting in mice. The mechanism of action of myostatin in promoting muscle wasting has been predominantly studied in murine models. Despite numerous reports linking elevated levels of myostatin to human skeletal muscle wasting conditions, little is currently known about the signaling mechanism(s) through which myostatin promotes human skeletal muscle wasting. Therefore, in this present study we describe in further detail the mechanisms behind myostatin regulation of human skeletal muscle wasting using an in vitro human primary myotube atrophy model. Treatment of human myotube populations with myostatin promoted dramatic myotubular atrophy. Mechanistically, myostatin-induced myotube atrophy resulted in reduced p-AKT concomitant with the accumulation of active dephosphorylated Forkhead Box-O (FOXO1) and FOXO3. We further show that addition of myostatin results in enhanced activation of atrogin-1 and muscle-specific RING finger protein 1 (MURF1) and reduced expression of both myosin light chain (MYL) and myosin heavy chain (MYH). In addition, we found that myostatin-induced loss of MYL and MYH proteins is dependent on the activity of the proteasome and mediated via SMAD3-dependent regulation of FOXO1 and atrogin-1. Therefore, these data suggest that the mechanism through which myostatin promotes muscle wasting is very well conserved between species, and that myostatin-induced human myotube atrophy is mediated through inhibition of insulin-like growth factor (IGF)/phosphoinositide 3-kinase (PI3-K)/AKT signaling and enhanced activation of the ubiquitin-proteasome pathway and elevated protein degradation.

  12. Histone Deacetylase 6 Is a FoxO Transcription Factor-dependent Effector in Skeletal Muscle Atrophy*

    PubMed Central

    Ratti, Francesca; Ramond, Francis; Moncollin, Vincent; Simonet, Thomas; Milan, Giulia; Méjat, Alexandre; Thomas, Jean-Luc; Streichenberger, Nathalie; Gilquin, Benoit; Matthias, Patrick; Khochbin, Saadi; Sandri, Marco; Schaeffer, Laurent

    2015-01-01

    Skeletal muscle atrophy is a severe condition of muscle mass loss. Muscle atrophy is caused by a down-regulation of protein synthesis and by an increase of protein breakdown due to the ubiquitin-proteasome system and autophagy activation. Up-regulation of specific genes, such as the muscle-specific E3 ubiquitin ligase MAFbx, by FoxO transcription factors is essential to initiate muscle protein ubiquitination and degradation during atrophy. HDAC6 is a particular HDAC, which is functionally related to the ubiquitin proteasome system via its ubiquitin binding domain. We show that HDAC6 is up-regulated during muscle atrophy. HDAC6 activation is dependent on the transcription factor FoxO3a, and the inactivation of HDAC6 in mice protects against muscle wasting. HDAC6 is able to interact with MAFbx, a key ubiquitin ligase involved in muscle atrophy. Our findings demonstrate the implication of HDAC6 in skeletal muscle wasting and identify HDAC6 as a new downstream target of FoxO3a in stress response. This work provides new insights in skeletal muscle atrophy development and opens interesting perspectives on HDAC6 as a valuable marker of muscle atrophy and a potential target for pharmacological treatments. PMID:25516595

  13. Muscle interleukin-6 and fasting-induced PDH regulation in mouse skeletal muscle.

    PubMed

    Gudiksen, Anders; Bertholdt, Laerke; Vingborg, Mikkel Birkkjaer; Hansen, Henriette Watson; Ringholm, Stine; Pilegaard, Henriette

    2017-03-01

    Fasting prompts a metabolic shift in substrate utilization from carbohydrate to predominant fat oxidation in skeletal muscle, and pyruvate dehydrogenase (PDH) is seen as a controlling link between the competitive oxidation of carbohydrate and fat during metabolic challenges like fasting. Interleukin (IL)-6 has been proposed to be released from muscle with concomitant effects on both glucose and fat utilization. The aim was to test the hypothesis that muscle IL-6 has a regulatory impact on fasting-induced suppression of skeletal muscle PDH. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) were either fed or fasted for 6 or 18 h. Lack of muscle IL-6 elevated the respiratory exchange ratio in the fed and early fasting state, but not with prolonged fasting. Activity of PDH in the active form (PDHa) was higher in fed and fasted IL-6 MKO than in control mice at 18 h, but not at 6 h, whereas lack of muscle IL-6 did not prevent downregulation of PDHa activity in skeletal muscle or changes in plasma and muscle substrate levels in response to 18 h of fasting. Phosphorylation of three of four sites on PDH-E1α increased with 18 h of fasting, but was lower in IL-6 MKO mice than in control. In addition, both PDK4 mRNA and protein increased with 6 and 18 h of fasting in both genotypes, but PDK4 protein was lower in IL-6 MKO than in control. In conclusion, skeletal muscle IL-6 seems to regulate whole body substrate utilization in the fed, but not fasted, state and influence skeletal muscle PDHa activity in a circadian manner. However, skeletal muscle IL-6 is not required for maintaining metabolic flexibility in response to fasting. Copyright © 2017 the American Physiological Society.

  14. Drosophila small heat shock protein CryAB ensures structural integrity of developing muscles, and proper muscle and heart performance.

    PubMed

    Wójtowicz, Inga; Jabłońska, Jadwiga; Zmojdzian, Monika; Taghli-Lamallem, Ouarda; Renaud, Yoan; Junion, Guillaume; Daczewska, Malgorzata; Huelsmann, Sven; Jagla, Krzysztof; Jagla, Teresa

    2015-03-01

    Molecular chaperones, such as the small heat shock proteins (sHsps), maintain normal cellular function by controlling protein homeostasis in stress conditions. However, sHsps are not only activated in response to environmental insults, but also exert developmental and tissue-specific functions that are much less known. Here, we show that during normal development the Drosophila sHsp CryAB [L(2)efl] is specifically expressed in larval body wall muscles and accumulates at the level of Z-bands and around myonuclei. CryAB features a conserved actin-binding domain and, when attenuated, leads to clustering of myonuclei and an altered pattern of sarcomeric actin and the Z-band-associated actin crosslinker Cheerio (filamin). Our data suggest that CryAB and Cheerio form a complex essential for muscle integrity: CryAB colocalizes with Cheerio and, as revealed by mass spectrometry and co-immunoprecipitation experiments, binds to Cheerio, and the muscle-specific attenuation of cheerio leads to CryAB-like sarcomeric phenotypes. Furthermore, muscle-targeted expression of CryAB(R120G), which carries a mutation associated with desmin-related myopathy (DRM), results in an altered sarcomeric actin pattern, in affected myofibrillar integrity and in Z-band breaks, leading to reduced muscle performance and to marked cardiac arrhythmia. Taken together, we demonstrate that CryAB ensures myofibrillar integrity in Drosophila muscles during development and propose that it does so by interacting with the actin crosslinker Cheerio. The evidence that a DRM-causing mutation affects CryAB muscle function and leads to DRM-like phenotypes in the fly reveals a conserved stress-independent role of CryAB in maintaining muscle cell cytoarchitecture. © 2015. Published by The Company of Biologists Ltd.

  15. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    DTIC Science & Technology

    2009-04-01

    broader scientific community . Investigator: Johnny Huard - 9 - Project # 1 Progress Report The use of suramin to improve muscle healing after...black arrow ) in grey matter indicated small neuron and axon communication . Project # 5 Final Report Inhibiting cell death and promoting muscle...potential to treat muscle wasting induced by cancer. We anticipate that these results can be generalized to the treatment of other genetic and acquired

  16. Mechanical ventilation induces myokine expression and catabolism in peripheral skeletal muscle in pigs

    USDA-ARS?s Scientific Manuscript database

    Endotoxin (LPS)-induced sepsis increases circulating cytokines which have been associated with skeletal muscle catabolism. During critical illness, it has been postulated that muscle wasting associated with mechanical ventilation (MV) occurs due to inactivity. We hypothesize that MV and sepsis promo...

  17. Overview of the Muscle Cytoskeleton

    PubMed Central

    Henderson, Christine A.; Gomez, Christopher G.; Novak, Stefanie M.; Mi-Mi, Lei; Gregorio, Carol C.

    2018-01-01

    Cardiac and skeletal striated muscles are intricately designed machines responsible for muscle contraction. Coordination of the basic contractile unit, the sarcomere, and the complex cytoskeletal networks are critical for contractile activity. The sarcomere is comprised of precisely organized individual filament systems that include thin (actin), thick (myosin), titin, and nebulin. Connecting the sarcomere to other organelles (e.g., mitochondria and nucleus) and serving as the scaffold to maintain cellular integrity are the intermediate filaments. The costamere, on the other hand, tethers the sarcomere to the cell membrane. Unique structures like the intercalated disc in cardiac muscle and the myotendinous junction in skeletal muscle help synchronize and transmit force. Intense investigation has been done on many of the proteins that make up these cytoskeletal assemblies. Yet the details of their function and how they interconnect have just started to be elucidated. A vast number of human myopathies are contributed to mutations in muscle proteins; thus understanding their basic function provides a mechanistic understanding of muscle disorders. In this review, we highlight the components of striated muscle with respect to their interactions, signaling pathways, functions, and connections to disease. PMID:28640448

  18. Putting the Brakes on Muscle Breakdown

    NASA Image and Video Library

    2018-01-15

    Rodent Research-6 is a two-fold investigation aboard the International Space Station into the treatment of muscle loss in spaceflight, which may have implications for patients on Earth with muscle-wasting diseases. The experiment will study the effectiveness of a drug compound as well as the nano-channel drug delivery implant, a device implanted beneath the skin of the patient allowing for a constant, steady delivery of the drug. Rodent Research: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7423 HD Download: https://archive.org/details/jsc2018m000072_Putting_the_Brakes_on_Muscle_Breakdown_MXF _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  19. Can we reduce the effort of maintaining a neutral sitting posture? A pilot study.

    PubMed

    O'Sullivan, Kieran; McCarthy, Raymond; White, Alison; O'Sullivan, Leonard; Dankaerts, Wim

    2012-12-01

    Neutral sitting postures encouraging lumbar lordosis have been recommended in the management of sitting-related low back pain (LBP). However, prolonged lordotic sitting postures can be associated with increased fatigue and discomfort. This pilot study investigated whether changing the type of chair used in sitting can reduce the effort of maintaining a neutral sitting posture. The muscle activation of six trunk muscles was recorded using surface electromyography in 12 painfree participants. Participants were facilitated into a neutral sitting posture for 1 min on both a standard backless office chair and a dynamic, forward-inclined chair (Back App). Lumbar multifidus activity was significantly lower on the Back App chair (p=0.013). None of the other five trunk muscles measured demonstrated a significant difference in activity between the chairs. There was no significant difference (p=0.108) in the perceived effort of maintaining the neutral sitting posture on the two chairs. This study suggests that the lumbar multifidus activation required to maintain a neutral sitting posture can be reduced by considering the type of chair used. The mechanism through which the Back App chair reduces lumbar multifidus activation is unclear, but the greatest difference between chairs is the degree of hip flexion. The ability to maintain a neutral lumbar posture with less lumbar multifidus activation is potentially advantageous during prolonged sitting. Further investigations of the effects of chair design on longer duration sitting, and among LBP subjects, are warranted. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Suppression of Tumor Growth and Muscle Wasting in a Transgenic Mouse Model of Pancreatic Cancer by the Novel Histone Deacetylase Inhibitor AR-42.

    PubMed

    Henderson, Sally E; Ding, Li-Yun; Mo, Xiaokui; Bekaii-Saab, Tanios; Kulp, Samuel K; Chen, Ching-Shih; Huang, Po-Hsien

    2016-12-01

    Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. This study was aimed at evaluating the efficacy of AR-42 (formerly OSU-HDAC42), a novel histone deacetylase (HDAC) inhibitor currently in clinical trials, in suppressing tumor growth and/or cancer-induced muscle wasting in murine models of PDAC. The in vitro antiproliferative activity of AR-42 was evaluated in six human pancreatic cancer cell lines (AsPC-1, COLO-357, PANC-1, MiaPaCa-2, BxPC-3, SW1990). AsPC-1 subcutaneous xenograft and transgenic KP fl/fl C (LSL-Kras G12D ;Trp53 flox/flox ;Pdx-1-Cre) mouse models of pancreatic cancer were used to evaluate the in vivo efficacy of AR-42 in suppressing tumor growth and/or muscle wasting. Growth suppression in AR-42-treated cells was observed in all six human pancreatic cancer cell lines with dose-dependent modulation of proliferation and apoptotic markers, which was associated with the hallmark features of HDAC inhibition, including p21 upregulation and histone H3 hyperacetylation. Oral administration of AR-42 at 50 mg/kg every other day resulted in suppression of tumor burden in the AsPC-1 xenograft and KP fl/fl C models by 78% and 55%, respectively, at the end of treatment. Tumor suppression was associated with HDAC inhibition, increased apoptosis, and inhibition of proliferation. Additionally, AR-42 as a single agent preserved muscle size and increased grip strength in KP fl/fl C mice. Finally, the combination of AR-42 and gemcitabine in transgenic mice demonstrated a significant increase in survival than either agent alone. These results suggest that AR-42 represents a therapeutically promising strategy for the treatment of pancreatic cancer. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Prostaglandins, oxygen tension and smooth muscle tone

    PubMed Central

    Eckenfels, A.; Vane, J. R.

    1972-01-01

    1. By using indomethacin to inhibit their intramural synthesis, we have investigated the contribution of prostaglandins to the maintenance of (a) the intrinsic tone of isolated smooth muscle preparations and (b) contractions produced by drugs or high oxygen concentration. 2. When treated with indomethacin, the rat stomach strip and chick rectum preparation slowly relaxed, whether they were bathed in Krebs solution or blood. Although their sensitivity to added prostaglandin was somewhat enhanced, they became insensitive to changes in oxygen or glucose concentration. However, another smooth muscle preparation, the rat colon, was neither relaxed by indomethacin nor contracted by high oxygen concentration. 3. These results support the hypothesis that intramural generation of prostaglandin maintains the tone of some smooth muscle preparations. 4. Contractions of the guinea-pig isolated colon were induced by histamine. These contractions were normally well maintained but in Krebs solution lacking either oxygen or glucose, only the initial spike contraction remained. In the presence of indomethacin the histamine contraction was also poorly sustained, but maintenance was restored by a low concentration of prostaglandin E2. 5. Thus, the effects on smooth muscle of oxygen or glucose lack may also be mediated by reduction in the synthesis or effects of an intramural prostaglandin. Extension of this hypothesis to intestinal and vascular smooth muscle in vivo is discussed. PMID:5072227

  2. Single muscle fiber adaptations with marathon training.

    PubMed

    Trappe, Scott; Harber, Matthew; Creer, Andrew; Gallagher, Philip; Slivka, Dustin; Minchev, Kiril; Whitsett, David

    2006-09-01

    The purpose of this investigation was to characterize the effects of marathon training on single muscle fiber contractile function in a group of recreational runners. Muscle biopsies were obtained from the gastrocnemius muscle of seven individuals (22 +/- 1 yr, 177 +/- 3 cm, and 68 +/- 2 kg) before, after 13 wk of run training, and after 3 wk of taper. Slow-twitch myosin heavy chain [(MHC) I] and fast-twitch (MHC IIa) muscle fibers were analyzed for size, strength (P(o)), speed (V(o)), and power. The run training program led to the successful completion of a marathon (range 3 h 56 min to 5 h 35 min). Oxygen uptake during submaximal running and citrate synthase activity were improved (P < 0.05) with the training program. Muscle fiber size declined (P < 0.05) by approximately 20% in both fiber types after training. P(o) was maintained in both fiber types with training and increased (P < 0.05) by 18% in the MHC IIa fibers after taper. This resulted in >60% increase (P < 0.05) in force per cross-sectional area in both fiber types. Fiber V(o) increased (P < 0.05) by 28% in MHC I fibers with training and was unchanged in MHC IIa fibers. Peak power increased (P < 0.05) in MHC I and IIa fibers after training with a further increase (P < 0.05) in MHC IIa fiber power after taper. These data show that marathon training decreased slow-twitch and fast-twitch muscle fiber size but that it maintained or improved the functional profile of these fibers. A taper period before the marathon further improved the functional profile of the muscle, which was targeted to the fast-twitch muscle fibers.

  3. Recruitment order of motor units in human vastus lateralis muscle is maintained during fatiguing contractions.

    PubMed

    Adam, Alexander; De Luca, Carlo J

    2003-11-01

    Motor-unit firing patterns were studied in the vastus lateralis muscle of five healthy young men [21.4 +/- 0.9 (SD) yr] during a series of isometric knee extensions performed to exhaustion. Each contraction was held at a constant torque level, set to 20% of the maximal voluntary contraction at the beginning of the experiment. Electromyographic signals, recorded via a quadrifilar fine wire electrode, were processed with the precision decomposition technique to identify the firing times of individual motor units. In repeat experiments, whole-muscle mechanical properties were measured during the fatigue protocol using electrical stimulation. The main findings were a monotonic decrease in the recruitment threshold of all motor units and the progressive recruitment of new units, all without a change of the recruitment order. Motor units from the same subject showed a similar time course of threshold decline, but this decline varied among subjects (mean threshold decrease ranged from 23 to 73%). The mean threshold decline was linearly correlated (R2 >or= 0.96) with a decline in the elicited peak tetanic torque. In summary, the maintenance of recruitment order during fatigue strongly supports the notion that the observed common recruitment adaptations were a direct consequence of an increased excitatory drive to the motor unit pool. It is suggested that the increased central drive was necessary to compensate for the loss in force output from motor units whose muscle fibers were actively contracting. We therefore conclude that the control scheme of motor-unit recruitment remains invariant during fatigue at least in relatively large muscles performing submaximal isometric contractions.

  4. Muscle wasting and sarcopenia in heart failure and beyond: update 2017

    PubMed Central

    Springer, Joshua‐I.; Anker, Stefan D.

    2017-01-01

    Abstract Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF‐1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one. PMID:29154428

  5. Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia.

    PubMed

    Ábrigo, Johanna; Elorza, Alvaro A; Riedel, Claudia A; Vilos, Cristian; Simon, Felipe; Cabrera, Daniel; Estrada, Lisbell; Cabello-Verrugio, Claudio

    2018-01-01

    Skeletal muscle atrophy is a pathological condition mainly characterized by a loss of muscular mass and the contractile capacity of the skeletal muscle as a consequence of muscular weakness and decreased force generation. Cachexia is defined as a pathological condition secondary to illness characterized by the progressive loss of muscle mass with or without loss of fat mass and with concomitant diminution of muscle strength. The molecular mechanisms involved in cachexia include oxidative stress, protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction. Oxidative stress is one of the most common mechanisms of cachexia caused by different factors. It results in increased ROS levels, increased oxidation-dependent protein modification, and decreased antioxidant system functions. In this review, we will describe the importance of oxidative stress in skeletal muscles, its sources, and how it can regulate protein synthesis/degradation imbalance, autophagy deregulation, increased myonuclear apoptosis, and mitochondrial dysfunction involved in cachexia.

  6. Vegetarians have a reduced skeletal muscle carnitine transport capacity.

    PubMed

    Stephens, Francis B; Marimuthu, Kanagaraj; Cheng, Yi; Patel, Nitin; Constantin, Despina; Simpson, Elizabeth J; Greenhaff, Paul L

    2011-09-01

    Ninety-five percent of the body carnitine pool resides in skeletal muscle where it plays a vital role in fuel metabolism. However, vegetarians obtain negligible amounts of carnitine from their diet. We tested the hypothesis that muscle carnitine uptake is elevated in vegetarians compared with that in nonvegetarians to maintain a normal tissue carnitine content. Forty-one young (aged ≈22 y) vegetarian and nonvegetarian volunteers participated in 2 studies. The first study consisted of a 5-h intravenous infusion of l-carnitine while circulating insulin was maintained at a physiologically high concentration (≈170 mU/L; to stimulate muscle carnitine uptake) or at a fasting concentration (≈6 mU/L). The second study consisted of oral ingestion of 3 g l-carnitine. Basal plasma total carnitine (TC) concentration, 24-h urinary TC excretion, muscle TC content, and muscle carnitine transporter [organic cation transporter 2 (OCTN2)] messenger RNA and protein expressions were 16% (P < 0.01), 58% (P < 0.01), 17% (P < 0.05), 33% (P < 0.05), and 37% (P = 0.09) lower, respectively, in vegetarian volunteers. However, although nonvegetarians showed a 15% increase (P < 0.05) in muscle TC during l-carnitine infusion with hyperinsulinemia, l-carnitine infusion in the presence or absence of hyperinsulinemia had no effect on muscle TC content in vegetarians. Nevertheless, 24-h urinary TC excretion was 55% less in vegetarians after l-carnitine ingestion. Vegetarians have a lower muscle TC and reduced capacity to transport carnitine into muscle than do nonvegetarians, possibly because of reduced muscle OCTN2 content. Thus, the greater whole-body carnitine retention observed after a single dose of l-carnitine in vegetarians was not attributable to increased muscle carnitine storage.

  7. Ischemia causes muscle fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D. M.

    2001-01-01

    The purpose of this investigation was to determine whether ischemia, which reduces oxygenation in the extensor carpi radialis (ECR) muscle, causes a reduction in muscle force production. In eight subjects, muscle oxygenation (TO2) of the right ECR was measured noninvasively and continuously using near infrared spectroscopy (NIRS) while muscle twitch force was elicited by transcutaneous electrical stimulation (1 Hz, 0.1 ms). Baseline measurements of blood volume, muscle oxygenation and twitch force were recorded continuously, then a tourniquet on the upper arm was inflated to one of five different pressure levels: 20, 40, 60 mm Hg (randomized order) and diastolic (69 +/- 9.8 mm Hg) and systolic (106 +/- 12.8 mm Hg) blood pressures. Each pressure level was maintained for 3-5 min, and was followed by a recovery period sufficient to allow measurements to return to baseline. For each respective tourniquet pressure level, mean TO2 decreased from resting baseline (100% TO2) to 99 +/- 1.2% (SEM), 96 +/- 1.9%, 93 +/- 2.8%, 90 +/- 2.5%, and 86 +/- 2.7%, and mean twitch force decreased from resting baseline (100% force) to 99 +/- 0.7% (SEM), 96 +/- 2.7%, 93 +/- 3.1%, 88 +/- 3.2%, and 86 +/- 2.6%. Muscle oxygenation and twitch force at 60 mm Hg tourniquet compression and above were significantly lower (P < 0.05) than baseline value. Reduced twitch force was correlated in a dose-dependent manner with reduced muscle oxygenation (r = 0.78, P < 0.001). Although the correlation does not prove causation, the results indicate that ischemia leading to a 7% or greater reduction in muscle oxygenation causes decreased muscle force production in the forearm extensor muscle. Thus, ischemia associated with a modest decline in TO2 causes muscle fatigue.

  8. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  9. Current and maintained health-enhancing physical activity in rheumatoid arthritis: a cross-sectional study.

    PubMed

    Demmelmaier, Ingrid; Bergman, Patrick; Nordgren, Birgitta; Jensen, Irene; Opava, Christina H

    2013-07-01

    To describe and identify the explanatory factors of variation in current and maintained health-enhancing physical activity (HEPA) in persons with rheumatoid arthritis (RA). In this cross-sectional study, current HEPA was assessed with the International Physical Activity Questionnaire and maintained HEPA with the Exercise Stage Assessment Instrument, the latter explicitly focusing on both aerobic physical activity and muscle strength training. Sociodemographic, disease-related, and psychosocial data were retrieved from the Swedish Rheumatology Quality (SRQ) registers and a postal questionnaire. The explained variations in the respective HEPA behaviors were analyzed with logistic regression. In all, 3,152 (58.5%) of 5,391 persons identified as eligible from the SRQ registers responded to the questionnaire. Current HEPA was reported by 69%, and maintained HEPA by 11% of the respondents. The most salient and consistent factors explaining variation in both current and maintained HEPA were self-efficacy, social support, and outcome expectations related to physical activity. To our knowledge, this is the first study exploring maintained physical activity in a large well-defined sample of persons with RA. Our results indicate that a minority perform maintained HEPA, including both aerobic physical activity and muscle strength training, and that psychosocial factors are the most salient and consistent in the explanation of HEPA variation. Copyright © 2013 by the American College of Rheumatology.

  10. Loss of oxidative defense and potential blockade of satellite cell maturation in the skeletal muscle of patients with cancer but not in the healthy elderly.

    PubMed

    Brzeszczyńska, Joanna; Johns, Neil; Schilb, Alain; Degen, Simone; Degen, Martin; Langen, Ramon; Schols, Annemie; Glass, David J; Roubenoff, Ronenn; Greig, Carolyn A; Jacobi, Carsten; Fearon, Kenneth Ch; Ross, James A

    2016-08-01

    Muscle wasting in old age or cancer may result from failed myofiber regeneration and/or accelerated atrophy. This study aimed to determine from transcriptomic analysis of human muscle the integrity of the cellular stress response system in relation to satellite cell differentiation or apoptosis in patients with cancer (weight-stable (CWS) or weight-losing (CWL)) or healthy elderly (HE) when compared with healthy middle-aged controls (HMA). 28 patients with cancer (CWS: 18 and CWL: 10), HE: 21 and HMA: 20 underwent biopsy of quadriceps muscle. The expression of transcription factors for muscle regeneration (Pax3, Pax7 and MyoD) was increased in CWS and HE compared with HMA (p≤0.001). In contrast, the expression of the late myogenic differentiation marker MyoG was reduced in CWS and CWL but increased in HE (p≤0.0001). Bax was significantly increased in CWS, CWL and HE (p≤0.0001). Expression of the oxidative defense genes SOD2, GCLM, and Nrf2 was decreased in CWS and CWL but increased in HE (p≤0.0001). There is evidence for blockade of satellite cell maturation, upregulation of apoptosis and reduced oxidative defense in the muscle of cancer patients. In the healthy elderly the potential for differentiation and oxidative defense is maintained.

  11. Muscle wasting and sarcopenia in heart failure and beyond: update 2017.

    PubMed

    Springer, Jochen; Springer, Joshua-I; Anker, Stefan D

    2017-11-01

    Sarcopenia (loss of muscle mass and muscle function) is a strong predictor of frailty, disability and mortality in older persons and may also occur in obese subjects. The prevalence of sarcopenia is increased in patients suffering from chronic heart failure. However, there are currently few therapy options. The main intervention is resistance exercise, either alone or in combination with nutritional support, which seems to enhance the beneficial effects of training. Also, testosterone has been shown to increased muscle power and function; however, a possible limitation is the side effects of testosterone. Other investigational drugs include selective androgen receptor modulators, growth hormone, IGF-1, compounds targeting myostatin signaling, which have their own set of side effects. There are abundant prospective targets for improving muscle function in the elderly with or without chronic heart failure, and the continuing development of new treatment strategies and compounds for sarcopenia and cardiac cachexia makes this field an exciting one. © 2017 The Authors. ESC Heart Failure published by John Wiley & Sons Ltd on behalf of the European Society of Cardiology.

  12. 30 CFR 56.20013 - Waste receptacles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Waste receptacles. 56.20013 Section 56.20013... Waste receptacles. Receptacles with covers shall be provided at suitable locations and used for the disposal of waste food and associated materials. They shall be emptied frequently and shall be maintained...

  13. Mechanical Properties of Respiratory Muscles

    PubMed Central

    Sieck, Gary C.; Ferreira, Leonardo F.; Reid, Michael B.; Mantilla, Carlos B.

    2014-01-01

    Striated respiratory muscles are necessary for lung ventilation and to maintain the patency of the upper airway. The basic structural and functional properties of respiratory muscles are similar to those of other striated muscles (both skeletal and cardiac). The sarcomere is the fundamental organizational unit of striated muscles and sarcomeric proteins underlie the passive and active mechanical properties of muscle fibers. In this respect, the functional categorization of different fiber types provides a conceptual framework to understand the physiological properties of respiratory muscles. Within the sarcomere, the interaction between the thick and thin filaments at the level of cross-bridges provides the elementary unit of force generation and contraction. Key to an understanding of the unique functional differences across muscle fiber types are differences in cross-bridge recruitment and cycling that relate to the expression of different myosin heavy chain isoforms in the thick filament. The active mechanical properties of muscle fibers are characterized by the relationship between myoplasmic Ca2+ and cross-bridge recruitment, force generation and sarcomere length (also cross-bridge recruitment), external load and shortening velocity (cross-bridge cycling rate), and cross-bridge cycling rate and ATP consumption. Passive mechanical properties are also important reflecting viscoelastic elements within sarcomeres as well as the extracellular matrix. Conditions that affect respiratory muscle performance may have a range of underlying pathophysiological causes, but their manifestations will depend on their impact on these basic elemental structures. PMID:24265238

  14. Serum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes.

    PubMed

    Passey, Samantha L; Bozinovski, Steven; Vlahos, Ross; Anderson, Gary P; Hansen, Michelle J

    2016-01-01

    Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase protein Serum Amyloid A (SAA) can rise more than 1000-fold in AECOPD and are predictively correlated with exacerbation severity. The direct effects of SAA on skeletal muscle are poorly understood. Here we have examined SAA effects on pro-inflammatory cachectic cytokine expression (IL-6 and TNFα) and atrophy in C2C12 myotubes. SAA increased IL-6 (31-fold) and TNFα (6.5-fold) mRNA levels compared to control untreated cells after 3h of SAA treatment, and increased secreted IL-6 protein at 24h. OxPAPC, a dual TLR2 and TLR4 inhibitor, reduced the response to SAA by approximately 84% compared to SAA alone, and the TLR2 neutralising antibody T2.5 abolished SAA-induced expression of IL-6, indicating that SAA signalling in C2C12 myotubes is primarily via TLR2. SAA also reduced myotube width by 10-13% and induced a 2.5-fold increase in the expression of the muscle atrophy gene Atrogin-1, suggesting direct effects of SAA on muscle wasting. Blocking of TLR2 inhibited the SAA-induced decrease in myotube width and Atrogin-1 gene expression, indicating that SAA induces atrophy through TLR2. These data demonstrate that SAA stimulates a robust pro-inflammatory response in skeletal muscle myotubes via the TLR2-dependent release of IL-6 and TNFα. Furthermore, the observed atrophy effects indicate that SAA could also be directly contributing to the wasting and poor recovery of muscle mass. Therapeutic strategies targeting this SAA-TLR2 axis may therefore ameliorate muscle wasting in AECOPD and a range of other inflammatory conditions associated with loss of muscle mass.

  15. The effect of bridge exercise method on the strength of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels.

    PubMed

    Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook

    2017-04-01

    [Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.

  16. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization.

    PubMed

    Joanisse, Sophie; Nederveen, Joshua P; Snijders, Tim; McKay, Bryon R; Parise, Gianni

    2017-01-01

    Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults. © 2016 S. Karger AG, Basel.

  17. Dicer maintains the identity and function of proprioceptive sensory neurons

    PubMed Central

    O’Toole, Sean M.; Ferrer, Monica M.; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R.

    2017-01-01

    Neuronal cell identity is established during development and must be maintained throughout an animal’s life (Fishell G, Heintz N. Neuron 80: 602–612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899–907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359–373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension

  18. Dicer maintains the identity and function of proprioceptive sensory neurons.

    PubMed

    O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B

    2017-03-01

    Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, micro

  19. Muscle atrophy in cachexia: can dietary protein tip the balance?

    PubMed

    Op den Kamp, Céline M; Langen, Ramon C; Haegens, Astrid; Schols, Annemie M

    2009-11-01

    To review the efficacy of dietary protein supplementation in attenuating muscle atrophy in cachexia. Only very few recent randomized controlled trials have studied the effects of protein supplementation in clinical cachexia. It appears that supplementation of dietary protein (>1.5 g/kg per day) alone or in combination with other anabolic stimuli such as exercise training maintains or even improves muscle mass, but results on muscle function are controversial and no clinical studies have yet directly linked alterations in cellular signaling or metabolic signatures of protein intake-induced muscle anabolism to muscle weight gain. To elucidate the role of dietary protein supplementation in attenuating muscle atrophy in cachectic patients, randomized clinical trials are needed in adequately phenotyped patients using sensitive measures of muscle mass and function.

  20. A neuro-mechanical model of a single leg joint highlighting the basic physiological role of fast and slow muscle fibres of an insect muscle system.

    PubMed

    Toth, Tibor Istvan; Schmidt, Joachim; Büschges, Ansgar; Daun-Gruhn, Silvia

    2013-01-01

    In legged animals, the muscle system has a dual function: to produce forces and torques necessary to move the limbs in a systematic way, and to maintain the body in a static position. These two functions are performed by the contribution of specialized motor units, i.e. motoneurons driving sets of specialized muscle fibres. With reference to their overall contraction and metabolic properties they are called fast and slow muscle fibres and can be found ubiquitously in skeletal muscles. Both fibre types are active during stepping, but only the slow ones maintain the posture of the body. From these findings, the general hypothesis on a functional segregation between both fibre types and their neuronal control has arisen. Earlier muscle models did not fully take this aspect into account. They either focused on certain aspects of muscular function or were developed to describe specific behaviours only. By contrast, our neuro-mechanical model is more general as it allows functionally to differentiate between static and dynamic aspects of movement control. It does so by including both muscle fibre types and separate motoneuron drives. Our model helps to gain a deeper insight into how the nervous system might combine neuronal control of locomotion and posture. It predicts that (1) positioning the leg at a specific retraction angle in steady state is most likely due to the extent of recruitment of slow muscle fibres and not to the force developed in the individual fibres of the antagonistic muscles; (2) the fast muscle fibres of antagonistic muscles contract alternately during stepping, while co-contraction of the slow muscle fibres takes place during steady state; (3) there are several possible ways of transition between movement and steady state of the leg achieved by varying the time course of recruitment of the fibres in the participating muscles.

  1. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  2. [Skeletal muscles, physical activity and health].

    PubMed

    Saltin, B; Helge, J W

    2000-11-01

    The metabolic capacity of skeletal muscle plays a significant role for insulin sensitivity and the blood lipid profile. The metabolic capacity of the muscle is a function of the individual's physical activity level. This is also true for the content of type IIa muscle fibres, which is reduced, and the number of capillaries, which is elevated with muscle usage. Several of these skeletal muscle features are risk factors for or linked with life-style induced diseases such as type II diabetes, hypertension, hyperlipemia and obesity. The central role of the skeletal muscle and its functional metabolic capacity for life style diseases highlights the importance of people maintaining daily physical activity. This article focuses on the link between the metabolic capacity of skeletal muscle and the metabolic syndrome and briefly discusses the explanations for this relationship. As one important aspect if skeletal muscle has a high capacity for lipid oxidation, then more saturated fatty acids are oxidised and more unsaturated fatty acids are built in the phospholipid fraction of the plasma membrane, giving it more fluidity and improved insulin sensitivity. Moreover, the article points at the role of these fatty acids in activating genes via the PPAR-receptor system essential for enzyme and transport proteins in the lipid metabolism.

  3. Casting the net broader to confirm our imaginations: the long road to treating wasting disorders

    PubMed Central

    2017-01-01

    Abstract Wasting embraces muscle and tissue wasting in sarcopenia and cachexia. This article describes recent advances in the field published in the Journal of Cachexia, Sarcopenia and Muscle concerning diagnostic tools, biomarker development, pathophysiology, and treatment. Studies discussed herein embrace those on sarcopenia and cachexia in heart failure, chronic obstructive pulmonary disease, and cancer including also animal models. PMID:29168628

  4. Role of ATF4 in skeletal muscle atrophy.

    PubMed

    Adams, Christopher M; Ebert, Scott M; Dyle, Michael C

    2017-05-01

    Here, we discuss recent work focused on the role of activating transcription factor 4 (ATF4) in skeletal muscle atrophy. Muscle atrophy involves and requires widespread changes in skeletal muscle gene expression; however, the transcriptional regulatory proteins responsible for those changes are not yet well defined. Recent work indicates that some forms of muscle atrophy require ATF4, a stress-inducible bZIP transcription factor subunit that helps to mediate a broad range of stress responses in mammalian cells. ATF4 expression in skeletal muscle fibers is sufficient to induce muscle fiber atrophy and required for muscle atrophy during several stress conditions, including aging, fasting, and limb immobilization. By helping to activate specific genes in muscle fibers, ATF4 contributes to the expression of numerous mRNAs, including at least two mRNAs (Gadd45a and p21) that encode mediators of muscle fiber atrophy. Gadd45a promotes muscle fiber atrophy by activating the protein kinase MEKK4. p21 promotes atrophy by reducing expression of spermine oxidase, a metabolic enzyme that helps to maintain muscle fiber size under nonstressed conditions. In skeletal muscle fibers, ATF4 is critical component of a complex and incompletely understood molecular signaling network that causes muscle atrophy during aging, fasting, and immobilization.

  5. Muscle assembly: a titanic achievement?

    PubMed

    Gregorio, C C; Granzier, H; Sorimachi, H; Labeit, S

    1999-02-01

    The formation of perfectly aligned myofibrils in striated muscle represents a dramatic example of supramolecular assembly in eukaryotic cells. Recently, considerable progress has been made in deciphering the roles that titin, the third most abundant protein in muscle, has in this process. An increasing number of sarcomeric proteins (ligands) are being identified that bind to specific titin domains. Titin may serve as a molecular blueprint for sarcomere assembly and turnover by specifying the precise position of its ligands within each half-sarcomere in addition to functioning as a molecular spring that maintains the structural integrity of the contracting myofibrils.

  6. Drosophila melanogaster muscle LIM protein and alpha-actinin function together to stabilize muscle cytoarchitecture: a potential role for Mlp84B in actin-crosslinking.

    PubMed

    Clark, Kathleen A; Kadrmas, Julie L

    2013-06-01

    Stabilization of tissue architecture during development and growth is essential to maintain structural integrity. Because of its contractile nature, muscle is especially susceptible to physiological stresses, and has multiple mechanisms to maintain structural integrity. The Drosophila melanogaster Muscle LIM Protein (MLP), Mlp84B, participates in muscle maintenance, yet its precise mechanism of action is still controversial. Through a candidate approach, we identified α-actinin as a protein that functions with Mlp84B to ensure muscle integrity. α-actinin RNAi animals die primarily as pupae, and Mlp84B RNAi animals are adult viable. RNAi knockdown of Mlp84B and α-actinin together produces synergistic early larval lethality and destabilization of Z-line structures. We recapitulated these phenotypes using combinations of traditional loss-of-function alleles and single-gene RNAi. We observe that Mlp84B induces the formation of actin loops in muscle cell nuclei in the absence of nuclear α-actinin, suggesting Mlp84B has intrinsic actin cross-linking activity, which may complement α-actinin cross-linking activity at sites of actin filament anchorage. These results reveal a molecular mechanism for MLP stabilization of muscle and implicate reduced actin crosslinking as the primary destabilizing defect in MLP-associated cardiomyopathies. Our data support a model in which α-actinin and Mlp84B have important and overlapping functions at sites of actin filament anchorage to preserve muscle structure and function. Copyright © 2013 Wiley Periodicals, Inc.

  7. Growth factors, muscle function, and doping.

    PubMed

    Goldspink, Geoffrey; Wessner, Barbara; Tschan, Harald; Bachl, Norbert

    2010-03-01

    This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed. Copyright 2010. Published by Elsevier Inc.

  8. Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice.

    PubMed

    Murphy, Kate T; Cobani, Vera; Ryall, James G; Ibebunjo, Chikwendu; Lynch, Gordon S

    2011-04-01

    Counteracting the atrophy of skeletal muscle associated with disuse has significant implications for minimizing the wasting and weakness in plaster casting, joint immobilization, and other forms of limb unloading, with relevance to orthopedics, sports medicine, and plastic and reconstructive surgery. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the loss of muscle mass and functional capacity in mice during 14 or 21 days of unilateral hindlimb casting. Twelve-week-old C57BL/10 mice were subjected to unilateral hindlimb plaster casting or served as controls. Mice received subcutaneous injections of saline or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n = 6-9) on days 0 and 7 and were tested for muscle function on day 14, or were treated on days 0, 7, and 14 and tested for muscle function on day 21. Hindlimb casting reduced muscle mass, fiber size, and function of isolated soleus and extensor digitorum longus (EDL) muscles (P < 0.05). PF-354 attenuated the loss of muscle mass, fiber size, and function with greater effects after 14 days than after 21 days of casting, when wasting and weakness had plateaued (P < 0.05). Antibody-directed myostatin inhibition therefore attenuated the atrophy and loss of functional capacity in muscles from mice subjected to unilateral hindlimb casting with reductions in muscle size and strength being most apparent during the first 14 days of disuse. These findings highlight the therapeutic potential of antibody-directed myostatin inhibition for disuse atrophy especially within the first 2 wk of disuse.

  9. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  10. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration

    PubMed Central

    Pasteuning-Vuhman, Svitlana; Boertje-van der Meulen, Johanna W.; van Putten, Maaike; Overzier, Maurice; ten Dijke, Peter; Kiełbasa, Szymon M.; Arindrarto, Wibowo; Wolterbeek, Ron; Lezhnina, Ksenia V.; Ozerov, Ivan V.; Aliper, Aleksandr M.; Hoogaars, Willem M.; Aartsma-Rus, Annemieke; Loomans, Cindy J. M.

    2017-01-01

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. PMID:27733450

  11. Loss of muscle mass: Current developments in cachexia and sarcopenia focused on biomarkers and treatment.

    PubMed

    Drescher, Cathleen; Konishi, Masaaki; Ebner, Nicole; Springer, Jochen

    2016-01-01

    Loss of muscle mass arises from an imbalance of protein synthesis and protein degradation. Potential triggers of muscle wasting and function are immobilization, loss of appetite, dystrophies and chronic diseases as well as aging. All these conditions lead to increased morbidity and mortality in patients, which makes it a timely matter to find new biomarkers to get a fast clinical diagnosis and to develop new therapies. This mini-review covers current developments in the field of biomarkers and drugs on cachexia and sarcopenia. Here, we reported about promising markers, e.g. tartrate-resistant acid phosphatase 5a (TRACP5a), and novel substances like Epigallocatechin-3-gallate (EGCg). In summary, the progress to combat muscle wasting is in full swing and perhaps diagnosis of muscle atrophy and of course patient treatments could be soon supported by improved and more helpful strategies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Muscles within muscles: a tensiomyographic and histochemical analysis of the normal human vastus medialis longus and vastus medialis obliquus muscles

    PubMed Central

    Travnik, Ludvik; Djordjevič, Srdjan; Rozman, Sergej; Hribernik, Marija; Dahmane, Raja

    2013-01-01

    The aim of this study was to show the connection between structure (anatomical and histochemical) and function (muscle contraction properties) of vastus medialis obliquus (VMO) and vastus medialis longus (VML). The non-invasive tensiomyography (TMG) method was used to determine the contractile properties (contraction time; Tc) of VML and VMO muscle, as a reflection of the ratio between the slow and fast fibers in two groups of nine young men. VML and VMO significantly (P < 0.01) differ in the proportion of type 1 (59.6: 44%) and type 2b (6.3: 15%) fibers. The VML muscle is almost entirely composed of type 1 and type 2a fibers. In many samples of this muscle no type 2b fibers were found. The proportion of slow-twitch type 1 fibers is nearly twice as high as the proportion of fast-twitch type 2a fibers. These observations indicate that VML is a slower and more fatigue-resistant muscle than VMO muscle. These characteristics correspond to the different functions of the VML, which is an extensor of the knee, and to the VMO, which maintains the stable position of the patella in the femoral groove. Our results obtained by TMG provided additional evidence that muscle fibers within the segments of VM muscle were not homogenous with regard to their contractile properties, thereby confirming the histochemical results. Tc can be attributed to the higher percentage of slow-twitch fibers – type 1. The statistically shorter Tc (P ≤ 0.001) of VMO (22.8 ± 4.0 ms) compared with VML (26.7 ± 4.0 ms) in our study is consistent with previously found differences in histochemical, morphological and electrophysiological data. In conclusion, the results of this study provide evidence that the VML and VMO muscles are not only anatomically and histochemically different muscles, but also functionally different biological structures. PMID:23586984

  13. Skeletal muscle performance and ageing.

    PubMed

    Tieland, Michael; Trouwborst, Inez; Clark, Brian C

    2018-02-01

    The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  14. The Development of a Contextual Information Framework Model as a Potential IAEA Strategy to Maintain Radioactive Waste Knowledge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upshall, I.R.; McCarthy, G.J.

    A contextual framework comprises 'entities' that exhibit one or more definable relationships with a particular 'event'. People, organisations, concepts, ideas, places, natural phenomena, events themselves, cultural artefacts including records, books, works of art can all be conceptualised as entities. If these entities are registered in an information management system where the relationships between them can be defined and systematically managed then it is possible to create a contextual information framework that represents a particular view of what occurs in real life. The careful identifying and mapping of the relationships between these entities and the selected event can lead rapidly tomore » the creation of an information network that closely reflects the human approach to knowledge acquisition and application. The 'event' referred to in this paper is the safe management of radioactive waste. It is widely accepted that society will expect that knowledge about the waste will be maintained for many decades, if not centuries. Delivering on this expectation will demand the application of management approaches that are both innovative and sustainable. Effective inter-generational transfer of information using many 'conventional' techniques will be highly dependent on societal stability - something that cannot be guaranteed over such long periods of time. Consequently, alternative approaches should be explored and, where appropriate, implemented to give reasonable assurance that future generations of waste custodians will not be unduly burdened by the need to recreate information about the waste long after its disposal. In actual fact, the contextual information framework model is not 'new technology' but simply a means for rationalising and representing the way humans naturally tend to use information in the pursuit of knowledge enhancement. By making use of multiple information entities and their relationships, it is often possible to convert otherwise

  15. Effect of experimental hyperthyroidism on protein turnover in skeletal and cardiac muscle.

    PubMed

    Carter, W J; Van Der Weijden Benjamin, W S; Faas, F H

    1980-10-01

    Since experimental hyperthyroidism reduces skeletal muscle mass while simultaneously increasing cardiac muscle mass, the effect of hyperthyroidism on muscle protein degradation was compared in skeletal and cardiac muscle. Pulse-labeling studies using (3H) leucine and (14C) carboxyl labeled aspartate and glutamate were carried out. Hyperthyroidism caused a 25%-29% increase in protein breakdown in both sarcoplasmic and myofibrillar fractions of skeletal muscle. Increased muscle protein degradation may be a major factor in the development of skeletal muscle wasting and weakness in hyperthyroidism. In contrast, protein breakdown appeared to be reduced 22% in the sarcoplasmic fraction of hyperthyroid heart muscle and was unchanged in the myofibrillar fraction. Possible reasons for the contrasting effects of hyperthyroidism on skeletal and cardiac muscle include increased sensitivity of the hyperthyroid heart to catecholamines, increased cardiac work caused by the hemodynamic effects of hyperthyroidism, and a different direct effect of thyroid hormone at the nuclear level in cardiac as opposed to skeletal muscle.

  16. Change detection technique for muscle tone during static stretching by continuous muscle viscoelasticity monitoring using wearable indentation tester.

    PubMed

    Okamura, Naomi; Kobayashi, Yo; Sugano, Shigeki; Fujie, Masakatsu G

    2017-07-01

    Static stretching is widely performed to decrease muscle tone as a part of rehabilitation protocols. Finding out the optimal duration of static stretching is important to minimize the time required for rehabilitation therapy and it would be helpful for maintaining the patient's motivation towards daily rehabilitation tasks. Several studies have been conducted for the evaluation of static stretching; however, the recommended duration of static stretching varies widely between 15-30 s in general, because the traditional methods for the assessment of muscle tone do not monitor the continuous change in the target muscle's state. We have developed a method to monitor the viscoelasticity of one muscle continuously during static stretching, using a wearable indentation tester. In this study, we investigated a suitable signal processing method to detect the time required to change the muscle tone, utilizing the data collected using a wearable indentation tester. By calculating a viscoelastic index with a certain time window, we confirmed that the stretching duration required to bring about a decrease in muscle tone could be obtained with an accuracy in the order of 1 s.

  17. Hypertrophy Stimulation at the Onset of Type I Diabetes Maintains the Soleus but Not the EDL Muscle Mass in Wistar Rats

    PubMed Central

    Fortes, Marco A. S.; Scervino, Maria V. M.; Marzuca-Nassr, Gabriel N.; Vitzel, Kaio F.; da Justa Pinheiro, Carlos H.; Curi, Rui

    2017-01-01

    Diabetes mellitus induces a reduction in skeletal muscle mass and strength. Strength training is prescribed as part of treatment since it improves glycemic control and promotes increase of skeletal muscle mass. The mechanisms involved in overload-induced muscle hypertrophy elicited at the establishment of the type I diabetic state was investigated in Wistar rats. The purpose was to examine whether the overload-induced hypertrophy can counteract the hypotrophy associated to the diabetic state. The experiments were performed in oxidative (soleus) or glycolytic (EDL) muscles. PI3K/Akt/mTOR protein synthesis pathway was evaluated 7 days after overload-induced hypertrophy of soleus and of EDL muscles. The mRNA expression of genes associated with different signaling pathways that control muscle hypertrophy was also evaluated: mechanotransduction (FAK), Wnt/β-catenin, myostatin, and follistatin. The soleus and EDL muscles when submitted to overload had similar hypertrophic responses in control and diabetic animals. The increase of absolute and specific twitch and tetanic forces had the same magnitude as muscle hypertrophic response. Hypertrophy of the EDL muscle from diabetic animals mostly involved mechanical loading-stimulated PI3K/Akt/mTOR pathway besides the reduced activation of AMP-activated protein kinase (AMPK) and decrease of myostatin expression. Hypertrophy was more pronounced in the soleus muscle of diabetic animals due to a more potent activation of rpS6 and increased mRNA expression of insulin-like growth factor-1 (IGF-1), mechano-growth factor (MGF) and follistatin, and decrease of myostatin, MuRF-1 and atrogin-1 contents. The signaling changes enabled the soleus muscle mass and force of the diabetic rats to reach the values of the control group. PMID:29123487

  18. Sericin and swimming on histomorphometric parameters of denervated plantar muscle in Wistar rats.

    PubMed

    Santana, André Junior; Debastiani, Jean Carlos; Buratti, Pâmela; Peretti, Ana Luiza; Kunz, Regina Inês; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Torrejais, Márcia Miranda; Bertolini, Gladson Ricardo Flor

    2018-01-01

    Objective To analyze the combined effects of the silk protein sericin and swimming exercise on histomorphometry of the plantar muscle in Wistar rats. Methods Forty adult rats were randomly allocated into 5 groups comprising 8 animals each, as follows: Control, Injury, Sericin, Swim, and Swim plus Sericin. Three days after crushing of the sciatic nerve the rats in the Swim and Swim plus Sericin Groups were submitted to swimming exercise for 21 days. Rats were then euthanized and the plantar muscle harvested and processed. Results Cross-sectional area, peripheral nuclei and muscle fiber counts, nucleus/fiber ratio and smallest muscle fiber width did not differ significantly between groups. Morphological analysis revealed hypertrophic fibers in the Swim Group and evident muscle damage in the Swim plus Sericin and Injury Groups. The percentage of intramuscular collagen was apparently maintained in the Swim Group compared to remaining groups. Conclusion Combined treatment with sericin and swimming exercise did not improve muscle properties. However, physical exercise alone was effective in maintaining intramuscular connective tissue and preventing progression of deleterious effects of peripheral nerve injury.

  19. S6K1 Is Required for Increasing Skeletal Muscle Force during Hypertrophy.

    PubMed

    Marabita, Manuela; Baraldo, Martina; Solagna, Francesca; Ceelen, Judith Johanna Maria; Sartori, Roberta; Nolte, Hendrik; Nemazanyy, Ivan; Pyronnet, Stéphane; Kruger, Marcus; Pende, Mario; Blaauw, Bert

    2016-10-04

    Loss of skeletal muscle mass and force aggravates age-related sarcopenia and numerous pathologies, such as cancer and diabetes. The AKT-mTORC1 pathway plays a major role in stimulating adult muscle growth; however, the functional role of its downstream mediators in vivo is unknown. Here, we show that simultaneous inhibition of mTOR signaling to both S6K1 and 4E-BP1 is sufficient to reduce AKT-induced muscle growth and render it insensitive to the mTORC1-inhibitor rapamycin. Surprisingly, lack of mTOR signaling to 4E-BP1 only, or deletion of S6K1 alone, is not sufficient to reduce muscle hypertrophy or alter its sensitivity to rapamycin. However, we report that, while not required for muscle growth, S6K1 is essential for maintaining muscle structure and force production. Hypertrophy in the absence of S6K1 is characterized by compromised ribosome biogenesis and the formation of p62-positive protein aggregates. These findings identify S6K1 as a crucial player for maintaining muscle function during hypertrophy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Muscle Contractile Properties in Severely Burned Rats

    PubMed Central

    Wu, Xiaowu; Wolf, Steven E.; Walters, Thomas J.

    2010-01-01

    Burn induces a sustained catabolic response which causes massive loss of muscle mass after injury. A better understanding of the dynamics of muscle wasting and its impact on muscle function is necessary for the development of effective treatments. Male Sprague-Dawley rats underwent either a 40% total body surface area (TBSA) scald burn or sham burn, and were further assigned to subgroups at four time points after injury (days 3, 7, 14 and 21). In situ isometric contractile properties were measured including twitch tension (Pt), tetanic tension (Po) and fatigue properties. Body weight decreased in burn and sham groups through day 3, however, body weight in the sham groups recovered and increased over time compared to burned groups, which progressively decreased until day 21 after injury. Significant differences in muscle wet weight and protein weight were found between sham and burn. Significant differences in muscle contractile properties were found at day 14 with lower absolute Po as well as specific Po in burned rats compared to sham. After burn, the muscle twitch tension was significantly higher than the sham at day 21. No significant difference in fatigue properties was found between the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the development of approaches designed to reduce the rate and extent of burn induced muscle loss and function. PMID:20381255

  1. Analysis of muscle activation in lower extremity for static balance.

    PubMed

    Chakravarty, Kingshuk; Chatterjee, Debatri; Das, Rajat Kumar; Tripathy, Soumya Ranjan; Sinha, Aniruddha

    2017-07-01

    Balance plays an important role for human bipedal locomotion. Degeneration of balance control is prominent in stroke patients, elderly adults and even for majority of obese people. Design of personalized balance training program, in order to strengthen muscles, requires the analysis of muscle activation during an activity. In this paper we have proposed an affordable and portable approach to analyze the relationship between the static balance strategy and activation of various lower extremity muscles. To do that we have considered Microsoft Kinect XBox 360 as a motion sensing device and Wii balance board for measuring external force information. For analyzing the muscle activation pattern related to static balance, participants are asked to do the single limb stance (SLS) exercise on the balance board and in front of the Kinect. Static optimization to minimize the overall muscle activation pattern is carried out using OpenSim, which is an open-source musculoskeletal simulation software. The study is done on ten normal and ten obese people, grouped according to body mass index (BMI). Results suggest that the lower extremity muscles like biceps femoris, psoas major, sartorius, iliacus play the major role for both maintaining the balance using one limb as well as maintaining the flexion of the other limb during SLS. Further investigations reveal that the higher muscle activations of the flexed leg for normal group demonstrate higher strength. Moreover, the lower muscle activation of the standing leg for normal group demonstrate more headroom for the biceps femoris-short-head and psoas major to withstand the load and hence have better static balance control.

  2. Muscle Contributions to Frontal Plane Angular Momentum during Walking

    PubMed Central

    Neptune, Richard R.; McGowan, Craig P.

    2016-01-01

    The regulation of whole-body angular momentum is important for maintaining dynamic balance during human walking, which is particularly challenging in the frontal plane. Whole-body angular momentum is actively regulated by individual muscle forces. Thus, understanding which muscles contribute to frontal plane angular momentum will further our understanding of mediolateral balance control and has the potential to help diagnose and treat balance disorders. The purpose of this study was to identify how individual muscles and gravity contribute to whole-body angular momentum in the frontal plane using a muscle-actuated forward dynamics simulation analysis. A three-dimensional simulation was developed that emulated the average walking mechanics of a group of young healthy adults (n=10). The results showed that a finite set of muscles are the primary contributors to frontal plane balance and that these contributions vary throughout the gait cycle. In early stance, the vasti, adductor magnus and gravity acted to rotate the body towards the contralateral leg while the gluteus medius acted to rotate the body towards the ipsilateral leg. In late stance, the gluteus medius continued to rotate the body towards the ipsilateral leg while the soleus and gastrocnemius acted to rotate the body towards the contralateral leg. These results highlight those muscles that are critical to maintaining dynamic balance in the frontal plane during walking and may provide targets for locomotor therapies aimed at treating balance disorders. PMID:27522538

  3. Development of the ultrastructure of sonic muscles: a kind of neoteny?

    PubMed Central

    2014-01-01

    Background Drumming muscles of some sound-producing fish are ‘champions’ of contraction speed, their rate setting the fundamental frequency. In the piranha, contraction of these muscles at 150 Hz drives a sound at the same frequency. Drumming muscles of different not closely related species show evolutionary convergences. Interestingly, some characters of sonic muscles can also be found in the trunk muscles of newly hatched larvae that are able to maintain tail beat frequencies up to 100 Hz. The aim of this work was to study the development of sound production and sonic and epaxial muscles simultaneously in the red bellied piranhas (Pygocentrus nattereri) to seek for possible common characteristics. Results Call, pulse and period durations increased significantly with the fish size, but the call dominant frequencies decreased, and the number of pulses and the call amplitude formed a bell curve. In epaxial muscles, the fibre diameters of younger fish are first positioned in the graphical slope corresponding to sonic muscles, before diverging. The fibre diameter of older fish trunk muscles was bigger, and the area of the myofibrils was larger than in sonic muscles. Moreover, in two of the biggest fish, the sonic muscles were invaded by fat cells and the sonic muscle ultrastructure was similar to the epaxial one. These two fish were also unable to produce any sound, meaning they lost their ability to contract quickly. Conclusions The volume occupied by myofibrils determines the force of contraction, the volume of sarcoplasmic reticulum sets the contraction frequency, and the volume of mitochondria sets the level of sustained performance. The functional outcomes in muscles are all attributable to shifts in the proportions of those structures. A single delay in the development restricts the quantity of myofibrils, maintains a high proportion of space in the sarcoplasm and develops sarcoplasmic reticulum. High-speed sonic muscles could thus be skeletal muscles with

  4. Chemical Waste Management for the Conditionally Exempt Small Quantity Generator

    NASA Astrophysics Data System (ADS)

    Zimmer, Steven W.

    1999-06-01

    Management of hazardous chemical wastes generated as a part of the curriculum poses a significant task for the individual responsible for maintaining compliance with all rules and regulations from the Environmental Protection Agency and the Department of Transportation while maintaining the principles of OSHA's Lab Standard and the Hazard Communication Standard. For schools that generate relatively small quantities of waste, an individual can effectively manage the waste program without becoming overly burdened by the EPA regulations required for those generating large quantities of waste, if given the necessary support from the institution.

  5. New Advances in Molecular Therapy for Muscle Repair After Diseases and Injuries

    DTIC Science & Technology

    2010-04-01

    in grey matter indicated small neuron and axon communication . Project # 5 Final Report** Inhibiting cell death and promoting muscle growth for...the treatment of other genetic and acquired causes of muscle wasting. We produced multiple AAV8 vectors with expression cassettes designed to... communication between the various investigators and institutions. The Administrative Core holds weekly/biweekly seminar series for SCRC

  6. Effects of exercise on obesity-induced mitochondrial dysfunction in skeletal muscle

    PubMed Central

    Heo, Jun-Won; No, Mi-Hyun; Park, Dong-Ho; Kang, Ju-Hee; Seo, Dae Yun; Han, Jin; Neufer, P. Darrell

    2017-01-01

    Obesity is known to induce inhibition of glucose uptake, reduction of lipid metabolism, and progressive loss of skeletal muscle function, which are all associated with mitochondrial dysfunction in skeletal muscle. Mitochondria are dynamic organelles that regulate cellular metabolism and bioenergetics, including ATP production via oxidative phosphorylation. Due to these critical roles of mitochondria, mitochondrial dysfunction results in various diseases such as obesity and type 2 diabetes. Obesity is associated with impairment of mitochondrial function (e.g., decrease in O2 respiration and increase in oxidative stress) in skeletal muscle. The balance between mitochondrial fusion and fission is critical to maintain mitochondrial homeostasis in skeletal muscle. Obesity impairs mitochondrial dynamics, leading to an unbalance between fusion and fission by favorably shifting fission or reducing fusion proteins. Mitophagy is the catabolic process of damaged or unnecessary mitochondria. Obesity reduces mitochondrial biogenesis in skeletal muscle and increases accumulation of dysfunctional cellular organelles, suggesting that mitophagy does not work properly in obesity. Mitochondrial dysfunction and oxidative stress are reported to trigger apoptosis, and mitochondrial apoptosis is induced by obesity in skeletal muscle. It is well known that exercise is the most effective intervention to protect against obesity. Although the cellular and molecular mechanisms by which exercise protects against obesity-induced mitochondrial dysfunction in skeletal muscle are not clearly elucidated, exercise training attenuates mitochondrial dysfunction, allows mitochondria to maintain the balance between mitochondrial dynamics and mitophagy, and reduces apoptotic signaling in obese skeletal muscle. PMID:29200899

  7. Dense-body aggregates as plastic structures supporting tension in smooth muscle cells.

    PubMed

    Zhang, Jie; Herrera, Ana M; Paré, Peter D; Seow, Chun Y

    2010-11-01

    The wall of hollow organs of vertebrates is a unique structure able to generate active tension and maintain a nearly constant passive stiffness over a large volume range. These properties are predominantly attributable to the smooth muscle cells that line the organ wall. Although smooth muscle is known to possess plasticity (i.e., the ability to adapt to large changes in cell length through structural remodeling of contractile apparatus and cytoskeleton), the detailed structural basis for the plasticity is largely unknown. Dense bodies, one of the most prominent structures in smooth muscle cells, have been regarded as the anchoring sites for actin filaments, similar to the Z-disks in striated muscle. Here, we show that the dense bodies and intermediate filaments formed cable-like structures inside airway smooth muscle cells and were able to adjust the cable length according to cell length and tension. Stretching the muscle cell bundle in the relaxed state caused the cables to straighten, indicating that these intracellular structures were connected to the extracellular matrix and could support passive tension. These plastic structures may be responsible for the ability of smooth muscle to maintain a nearly constant tensile stiffness over a large length range. The finding suggests that the structural plasticity of hollow organs may originate from the dense-body cables within the smooth muscle cells.

  8. Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer.

    PubMed

    Rutten, Iris J G; Ubachs, Jorne; Kruitwagen, Roy F P M; Beets-Tan, Regina G H; Olde Damink, Steven W M; Van Gorp, Toon

    2017-08-01

    Computed tomography measurements of total skeletal muscle area can detect changes and predict overall survival (OS) in patients with advanced ovarian cancer. This study investigates whether assessment of psoas muscle area reflects total muscle area and can be used to assess sarcopenia in ovarian cancer patients. Ovarian cancer patients (n = 150) treated with induction chemotherapy and interval debulking were enrolled retrospectively in this longitudinal study. Muscle was measured cross sectionally with computed tomography in three ways: (i) software quantification of total skeletal muscle area (SMA); (ii) software quantification of psoas muscle area (PA); and (iii) manual measurement of length and width of the psoas muscle to derive the psoas surface area (PLW). Pearson correlation between the different methods was studied. Patients were divided into two groups based on the extent of change in muscle area, and agreement was measured with kappa coefficients. Cox-regression was used to test predictors for OS. Correlation between SMA and both psoas muscle area measurements was poor (r = 0.52 and 0.39 for PA and PLW, respectively). After categorizing patients into muscle loss or gain, kappa agreement was also poor for all comparisons (all κ < 0.40). In regression analysis, SMA loss was predictive of poor OS (hazard ratio 1.698 (95%CI 1.038-2.778), P = 0.035). No relationship with OS was seen for PA or PLW loss. Change in psoas muscle area is not representative of total muscle area change and should not be used to substitute total skeletal muscle to predict survival in patients with ovarian cancer. © 2017 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  9. Control of muscle relaxation during anesthesia: a novel approach for clinical routine.

    PubMed

    Stadler, Konrad S; Schumacher, Peter M; Hirter, Sibylle; Leibundgut, Daniel; Bouillon, Thomas W; Glattfelder, Adolf H; Zbinden, Alex M

    2006-03-01

    During general anesthesia drugs are administered to provide hypnosis, ensure analgesia, and skeletal muscle relaxation. In this paper, the main components of a newly developed controller for skeletal muscle relaxation are described. Muscle relaxation is controlled by administration of neuromuscular blocking agents. The degree of relaxation is assessed by supramaximal train-of-four stimulation of the ulnar nerve and measuring the electromyogram response of the adductor pollicis muscle. For closed-loop control purposes, a physiologically based pharmacokinetic and pharmacodynamic model of the neuromuscular blocking agent mivacurium is derived. The model is used to design an observer-based state feedback controller. Contrary to similar automatic systems described in the literature this controller makes use of two different measures obtained in the train-of-four measurement to maintain the desired level of relaxation. The controller is validated in a clinical study comparing the performance of the controller to the performance of the anesthesiologist. As presented, the controller was able to maintain a preselected degree of muscle relaxation with excellent precision while minimizing drug administration. The controller performed at least equally well as the anesthesiologist.

  10. The quasi-parallel lives of satellite cells and atrophying muscle

    PubMed Central

    Biressi, Stefano; Gopinath, Suchitra D.

    2015-01-01

    Skeletal muscle atrophy or wasting accompanies various chronic illnesses and the aging process, thereby reducing muscle function. One of the most important components contributing to effective muscle repair in postnatal organisms, the satellite cells (SCs), have recently become the focus of several studies examining factors participating in the atrophic process. We critically examine here the experimental evidence linking SC function with muscle loss in connection with various diseases as well as aging, and in the subsequent recovery process. Several recent reports have investigated the changes in SCs in terms of their differentiation and proliferative capacity in response to various atrophic stimuli. In this regard, we review the molecular changes within SCs that contribute to their dysfunctional status in atrophy, with the intention of shedding light on novel potential pharmacological targets to counteract the loss of muscle mass. PMID:26257645

  11. Muscle coordination changes during intermittent cycling sprints.

    PubMed

    Billaut, François; Basset, Fabien A; Falgairette, Guy

    2005-06-03

    Maximal muscle power is reported to decrease during explosive cyclical exercises owing to metabolic disturbances, muscle damage, and adjustments in the efferent neural command. The aim of the present study was to analyze the influence of inter-muscle coordination in fatigue occurrence during 10 intermittent 6-s cycling sprints, with 30-s recovery through electromyographic activity (EMG). Results showed a decrease in peak power output with sprint repetitions (sprint 1 versus sprint 10: -11%, P<0.01) without any significant modifications in the integrated EMG. The timing between the knee extensor and the flexor EMG activation onsets was reduced in sprint 10 (sprint 1 versus sprint 10: -90.2 ms, P<0.05), owing to an earlier antagonist activation with fatigue occurrence. In conclusion, the maximal power output, developed during intermittent cycling sprints of short duration, decreased possibly due to the inability of muscles to maintain maximal force. This reduction in maximal power output occurred in parallel to changes in the muscle coordination pattern after fatigue.

  12. Sustained NFκB inhibition improves insulin sensitivity but is detrimental to muscle health.

    PubMed

    Zhang, Ning; Valentine, Joseph M; Zhou, You; Li, Mengyao E; Zhang, Yiqiang; Bhattacharya, Arunabh; Walsh, Michael E; Fischer, Katherine E; Austad, Steven N; Osmulski, Pawel; Gaczynska, Maria; Shoelson, Steven E; Van Remmen, Holly; Chen, Hung I; Chen, Yidong; Liang, Hanyu; Musi, Nicolas

    2017-08-01

    Older adults universally suffer from sarcopenia and approximately 60-70% are diabetic or prediabetic. Nonetheless, the mechanisms underlying these aging-related metabolic disorders are unknown. NFκB has been implicated in the pathogenesis of several aging-related pathologies including sarcopenia and type 2 diabetes and has been proposed as a target against them. NFκB also is thought to mediate muscle wasting seen with disuse, denervation, and some systemic diseases (e.g., cancer, sepsis). We tested the hypothesis that lifelong inhibition of the classical NFκB pathway would protect against aging-related sarcopenia and insulin resistance. Aged mice with muscle-specific overexpression of a super-repressor IκBα mutant (MISR) were protected from insulin resistance. However, MISR mice were not protected from sarcopenia; to the contrary, these mice had decreases in muscle mass and strength compared to wild-type mice. In MISR mice, NFκB suppression also led to an increase in proteasome activity and alterations in several genes and pathways involved in muscle growth and atrophy (e.g., myostatin). We conclude that the mechanism behind aging-induced sarcopenia is NFκB independent and differs from muscle wasting due to pathologic conditions. Our findings also indicate that, while suppressing NFκB improves insulin sensitivity in aged mice, this transcription factor is important for normal muscle mass maintenance and its sustained inhibition is detrimental to muscle function. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  13. Bioreactors for guiding muscle tissue growth and development.

    PubMed

    Dennis, R G; Smith, B; Philp, A; Donnelly, K; Baar, K

    2009-01-01

    Muscle tissue bioreactors are devices which are employed to guide and monitor the development of engineered muscle tissue. These devices have a modern history that can be traced back more than a century, because the key elements of muscle tissue bioreactors have been studied for a very long time. These include barrier isolation and culture of cells, tissues and organs after isolation from a host organism; the provision of various stimuli intended to promote growth and maintain the muscle, such as electrical and mechanical stimulation; and the provision of a perfusate such as culture media or blood derived substances. An accurate appraisal of our current progress in the development of muscle bioreactors can only be made in the context of the history of this endeavor. Modern efforts tend to focus more upon the use of computer control and the application of mechanical strain as a stimulus, as well as substrate surface modifications to induce cellular organization at the early stages of culture of isolated muscle cells.

  14. Perimysial fibroblasts of extraocular muscle, as unique as the muscle fibers.

    PubMed

    Kusner, Linda L; Young, Andrew; Tjoe, Steven; Leahy, Patrick; Kaminski, Henry J

    2010-01-01

    Extraocular muscle (EOM) has a distinct skeletal muscle phenotype. The hypothesis for the study was that fibroblasts support the unique EOM phenotype and that perimysial fibroblasts derived from EOM have properties that distinguish them from fibroblasts derived from other skeletal muscle. Perimysial fibroblasts from leg muscle (LM-Fibro) and EOM (EOM-Fibro) of mice were derived and maintained in culture. EOM- and LM-Fibro were assessed morphologically and for vimentin, smooth muscle actin, and Thy-1 immunoreactivity. DNA microarray analysis was performed on LM- and EOM-Fibro grown in conditions that support myoblast differentiation. To assess trophic interactions, co-cultures of myoblasts from established cell lines, CL-EOM and CL-LM with, EOM- or LM-Fibro were performed in direct contact and in a permeable filter support culture. The degree of myotube maturation was assessed by the percentage of myotubes with more than three myonuclei per myotube. EOM- and LM-Fibro cells exhibited distinct morphologies. Both cell types proliferated as a monolayer and expressed vimentin. Fifty-five percent (SD 4.4%) of EOM-Fibro were Thy-1 positive compared with only 24% (SD 4.4%) of LM-Fibro. DNA microarray analysis demonstrated differential expression of structural, immune response, and metabolism-related genes between EOM- and LM-Fibro. Co-cultures demonstrated that mature myotube formation in EOM-derived cell lines was supported to a greater extent by EOM-Fibro than by LM-Fibro, compared with CL-EOM grown with LM-Fibro. Fibroblasts from EOM demonstrate distinct properties that distinguish them from leg muscle-derived fibroblasts. The distinct properties of EOM-Fibro may support the unique EOM phenotype and contribute to their differential involvement in disease.

  15. β–Hydroxy β–Methylbutyrate Improves Dexamethasone-Induced Muscle Atrophy by Modulating the Muscle Degradation Pathway in SD Rat

    PubMed Central

    Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β–hydroxy β–methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  16. Satellite Cells and the Muscle Stem Cell Niche

    PubMed Central

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  17. Specific muscle EMG biofeedback for hand dystonia.

    PubMed

    Deepak, K K; Behari, M

    1999-12-01

    Currently available therapies have only limited success in patients having hand dystonia (writer's cramp). We employed specific muscle EMG biofeedback (audio feedback of the EMG from proximal large muscles of the limb that show abnormally high activity during writing) in 10 of 13 consecutive patients (age, 19-62 years; all males) with a duration of illness from 6 months to 8 years. In three patients, biofeedback was not applicable due to lack of abnormal EMG values. Nine patients showed dystonic posture during writing and had hypertrophy of one or more large muscles of the dominant hand. The remaining four patients showed either involvement of small muscles or muscle wasting. Ten patients were given four or more sessions of EMG audio biofeedback from the proximal large limb muscles, which showed maximum EMG activity. They also practiced writing daily with the relaxed limb for 5 to 10 min. Nine patients showed improvement from 37 to 93% in handwriting, alleviation of discomfort, and pain (assessed on a visual analogue scale). One patient did not show any improvement. Thus EMG biofeedback improved the clinical and electromyographic picture in those patients with hand dystonia who showed EMG overactivity of proximal limb muscles during writing. This specific type of EMG biofeedback appears to be a promising tool for hand dystonia and might also be applied to other types of dystonias.

  18. Skeletal muscle disorders of glycogenolysis and glycolysis.

    PubMed

    Godfrey, Richard; Quinlivan, Ros

    2016-07-01

    Skeletal muscle disorders of glycogenolysis and glycolysis account for most of the conditions collectively termed glycogen storage diseases (GSDs). These disorders are rare (incidence 1 in 20,000-43,000 live births), and are caused by autosomal or X-linked recessive mutations that result in a specific enzyme deficiency, leading to the inability to utilize muscle glycogen as an energy substrate. McArdle disease (GSD V) is the most common of these disorders, and is caused by mutations in the gene encoding muscle glycogen phosphorylase. Symptoms of McArdle disease and most other related GSDs include exercise intolerance, muscle contracture, acute rhabdomyolysis, and risk of acute renal failure. Older patients may exhibit muscle wasting and weakness involving the paraspinal muscles and shoulder girdle. For patients with these conditions, engaging with exercise is likely to be beneficial. Diagnosis is frequently delayed owing to the rarity of the conditions and lack of access to appropriate investigations. A few randomized clinical trials have been conducted, some focusing on dietary modification, although the quality of the evidence is low and no specific recommendations can yet be made. The development of EUROMAC, an international registry for these disorders, should improve our knowledge of their natural histories and provide a platform for future clinical trials.

  19. Preserving Healthy Muscle during Weight Loss123

    PubMed Central

    Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina

    2017-01-01

    Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015

  20. Capillarization in skeletal muscle of rats with cardiac hypertrophy.

    PubMed

    Degens, Hans; Anderson, Rebecca K; Alway, Stephen E

    2002-02-01

    Exercise intolerance during chronic heart failure (CHF) is localized mainly in skeletal muscle. A decreased capillarization may impair exchange of oxygen between capillaries and muscle tissue and in this way contribute to exercise intolerance. We assessed changes in capillary supply in plantaris and diaphragm muscles of a rat aorta-caval fistula (ACF) preparation, a volume overload model for CHF. An ACF was created under equithesin anesthesia. Plantaris and diaphragm muscles were removed 6 wk postsurgery and examined for myosin heavy chain (MyHC) content and capillary supply. Cardiac hypertrophy was 96% (P < 0.002) after ACF. The Type IIb MyHC content of the plantaris muscles increased (33.9 +/- 3.3 vs 49.8 +/- 3.8%; mean +/- SEM) at the expense of Type IIa MyHC (17.6 +/- 1.8 vs 11.2 +/- 1.7%) in ACF rats (P < 0.05). In the diaphragm, the number of Type I (32.1 +/- 2.3 vs 40.6 +/- 2.7%) and IIb fibers (40.6 +/- 1.9 vs 49.6 +/- 3.6%) increased at the expense of Type IIa fibers (26.8 +/- 2.5 vs 9.4 +/- 0.9%) (P < 0.05). The capillary number per fiber did not change, and this indicated that no capillary loss occurred with ACF. Also, the capillary density was maintained in the diaphragm and plantaris muscles of ACF rats. Furthermore, the coupling between fiber type, size, and metabolic type of surrounding fibers, with the capillary supply to a fiber, was maintained in rats with an ACF. The cardiac hypertrophy induced by volume overload seems adequate to prevent atrophy and changes in the microcirculation of limb and diaphragm muscles.

  1. Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse.

    PubMed

    Reilly, Beau D; Hickey, Anthony J R; Cramp, Rebecca L; Franklin, Craig E

    2014-04-01

    Suppression of disuse-induced muscle atrophy has been associated with altered mitochondrial reactive oxygen species (ROS) production in mammals. However, despite extended hindlimb immobility, aestivating animals exhibit little skeletal muscle atrophy compared with artificially immobilised mammalian models. Therefore, we studied mitochondrial respiration and ROS (H2O2) production in permeabilised muscle fibres of the green-striped burrowing frog, Cyclorana alboguttata. Mitochondrial respiration within saponin-permeabilised skeletal and cardiac muscle fibres was measured concurrently with ROS production using high-resolution respirometry coupled to custom-made fluorometers. After 4 months of aestivation, C. alboguttata had significantly depressed whole-body metabolism by ~70% relative to control (active) frogs, and mitochondrial respiration in saponin-permeabilised skeletal muscle fibres decreased by almost 50% both in the absence of ADP and during oxidative phosphorylation. Mitochondrial ROS production showed up to an 88% depression in aestivating skeletal muscle when malate, succinate and pyruvate were present at concentrations likely to reflect those in vivo. The percentage ROS released per O2 molecule consumed was also ~94% less at these concentrations, indicating an intrinsic difference in ROS production capacities during aestivation. We also examined mitochondrial respiration and ROS production in permeabilised cardiac muscle fibres and found that aestivating frogs maintained respiratory flux and ROS production at control levels. These results show that aestivating C. alboguttata has the capacity to independently regulate mitochondrial function in skeletal and cardiac muscles. Furthermore, this work indicates that ROS production can be suppressed in the disused skeletal muscle of aestivating frogs, which may in turn protect against potential oxidative damage and preserve skeletal muscle structure during aestivation and following arousal.

  2. Dietary resveratrol supplementation prevents transport-stress-impaired meat quality of broilers through maintaining muscle energy metabolism and antioxidant status

    PubMed Central

    Zhang, C.; Wang, L.; Zhao, X. H.; Chen, X. Y.; Yang, L.; Geng, Z. Y.

    2017-01-01

    Abstract This experiment was to evaluate the effect of dietary resveratrol (Res) supplementation (0, 400 mg/kg) on growth performance, meat quality, and muscle anaerobic glycolysis and antioxidant capacity of transported broilers. A total of 360 21-day-old male Cobb broilers was randomly allotted to 2 dietary treatments (Res-free group and Res group) with 12 replicates of 15 birds each. On the morning of d 42, after a 9-hour fast, 24 birds (2 birds of each replicate) were selected from the Res-free group and then equally placed into 2 crates, and the other 12 birds (one bird of each replicate) were selected from the Res group and then placed into the other crate. All birds in the 3 crates were transported according to the following protocols: 0-hour transport of birds in the Res-free group (control group), 3-hour transport of birds in the Res-free group (T group), and 3-hour transport of birds in the Res group (T + Res group). The results showed that Res not only improved feed conversion ratio (P < 0.05) but also tended to improve birds’ final body weight (P < 0.10). In the Res-free group, a 3-hour transport increased serum corticosterone concentration, muscle malondialdehyde (MDA) and lactate contents, and muscle lactate dehydrogenase (LDH) activity, while it decreased muscle glycogen content, total superoxide dismutase (T-SOD), and glutathione peroxidase (GSH-PX) activities (P < 0.05), which induced decreased breast meat quality (lower pH24h and higher drip loss and L*24 h, P < 0.05). Nevertheless, compared with the T group, Res increased muscle glycogen content and T-SOD and GSH-PX activities (P < 0.05 or P < 0.10), while it decreased muscle MDA content and LDH activity (P < 0.05), which is beneficial to the meat quality maintenance of transported broilers (lower drip loss, L*24 h, and higher pH24h, P < 0.05 or P < 0.10). This study provides the first evidence that dietary resveratrol supplementation prevents transport-stress-impaired meat quality

  3. Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.

    PubMed

    Kuleesha; Feng, Lin; Wasser, Martin

    2017-07-10

    Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle

  4. Modulation of Muscle Fiber Compositions in Response to Hypoxia via Pyruvate Dehydrogenase Kinase-1

    PubMed Central

    Nguyen, Daniel D.; Kim, Gyuyoup; Pae, Eung-Kwon

    2016-01-01

    Muscle fiber-type changes in hypoxic conditions in accordance with pyruvate dehydrogenase kinase (Pdk)-1 and hypoxia inducible factor (Hif)-1α were investigated in rats. Hif-1α and its down-stream molecule Pdk-1 are well known for readily response to hypoxia. We questioned their roles in relation to changes in myosin heavy chain (MyHC) composition in skeletal muscles. We hypothesize that the level of Pdk-1 with respect to the level of Hif-1α determines MyHC composition of the muscle in rats in hypoxia. Young male rats were housed in a chamber maintained at 11.5% (for sustained hypoxia) or fluctuating between 11.5 and 20.8% (for intermittent hypoxia or IH) oxygen levels. Then, muscle tissues from the geniohyoid (GH), soleus, and anterior tibialis (TA) were obtained at the end of hypoxic conditionings. After both hypoxic conditionings, protein levels of Pdk-1 and Hif-1 increased in GH muscles. GH muscles in acute sustained hypoxia favor an anaerobic glycolytic pathway, resulting in an increase in glycolytic MyHC IIb protein-rich fibers while maintain original fatigue-resistant MyHC IIa protein in the fibers; thus, the numbers of IIa- and IIb MyHC co-expressing fibers increased. Exogenous Pdk-1 over-expression using plasmid vectors elevated not only the glycolytic MyHC IIb, but also IIx as well as IIa expressions in C2C12 myotubes in ambient air significantly. The increase of dual expression of IIa- and IIb MyHC proteins in fibers harvested from the geniohyoid muscle has a potential to improve endurance as shown in our fatigability tests. By increasing the Pdk-1/Hif-1 ratio, a mixed-type muscle could alter endurance within the innate characteristics of the muscle toward more fatigue resistant. We conclude that an increased Pdk-1 level in skeletal muscle helps maintain MyHC compositions to be a fatigue resistant mixed-type muscle. PMID:28018235

  5. Skeletal muscle and hepatic insulin signaling is maintained in heat-stressed lactating Holstein cows.

    PubMed

    Xie, G; Cole, L C; Zhao, L D; Skrzypek, M V; Sanders, S R; Rhoads, M L; Baumgard, L H; Rhoads, R P

    2016-05-01

    Multiparous cows (n=12; parity=2; 136±8 d in milk, 560±32kg of body weight) housed in climate-controlled chambers were fed a total mixed ration (TMR) consisting primarily of alfalfa hay and steam-flaked corn. During the first experimental period (P1), all 12 cows were housed in thermoneutral conditions (18°C, 20% humidity) with ad libitum intake for 9 d. During the second experimental period (P2), half of the cows were fed for ad libitum intake and subjected to heat-stress conditions [WFHS, n=6; cyclical temperature 31.1 to 38.9°C, 20% humidity: minimum temperature humidity index (THI)=73, maximum THI=80.5], and half of the cows were pair-fed to match the intake of WFHS cows in thermal neutral conditions (TNPF, n=6) for 9 d. Rectal temperature and respiration rate were measured thrice daily at 0430, 1200, and 1630 h. To evaluate muscle and liver insulin responsiveness, biopsies were obtained immediately before and after an insulin tolerance test on the last day of each period. Insulin receptor (IR), insulin receptor substrate 1 (IRS-1), AKT/protein kinase B (AKT), and phosphorylated AKT (p-AKT) were measured by Western blot analyses for both tissues. During P2, WFHS increased rectal temperature and respiration rate by 1.48°C and 2.4-fold, respectively. Heat stress reduced dry matter intake by 8kg/d and, by design, TNPF cows had similar intake reductions. Milk yield was decreased similarly (30%) in WFHS and TNPF cows, and both groups entered into a similar (-4.5 Mcal/d) calculated negative energy balance during P2. Insulin infusion caused a less rapid glucose disposal in P2 compared with P1, but glucose clearance did not differ between environments in P2. In liver, insulin increased p-AKT protein content in each period. Phosphorylation ratio of AKT increased 120% in each period after insulin infusion. In skeletal muscle, protein abundance of the IR, IRS, and AKT remained stable between periods and environment. Insulin increased skeletal muscle p-AKT in each

  6. Integrated Resistance and Aerobic Training Maintains Cardiovascular and Skeletal Muscle Fitness During 14 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori; Goetchius, Elizabeth; Crowell, Brent; Hackney, Kyle; Wickwire, Jason; Ploutz-Snyder, Robert; Snyder, Scott

    2012-01-01

    Background: Known incompatibilities exist between resistance and aerobic training. Of particular importance are findings that concurrent resistance and aerobic training reduces the effectiveness of the resistance training and limits skeletal muscle adaptations (example: Dudley & Djamil, 1985). Numerous unloading studies have documented the effectiveness of resistance training alone for the maintenance of skeletal muscle size and strength. However the practical applications of those studies are limited because long ]duration crew members perform both aerobic and resistance exercise throughout missions/spaceflight. To date, such integrated training on the International Space Station (ISS) has not been fully effective in the maintenance of skeletal muscle function. Purpose: The purpose of this study was to evaluate the efficacy of high intensity concurrent resistance and aerobic training for the maintenance of cardiovascular fitness and skeletal muscle strength, power and endurance over 14 days of strict bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest with concurrent training. Resistance and aerobic training were integrated as shown in table 1. Days that included 2 exercise sessions had a 4-8 hour rest between exercise bouts. The resistance training consisted of 3 sets of 12 repetitions of squat, heel raise, leg press and hamstring curl exercise. Aerobic exercise consisted of periodized interval training that included 30 sec, 2 min and 4 min intervals alternating by day with continuous aerobic exercise.

  7. Aerobic exercise and respiratory muscle strength in patients with cystic fibrosis.

    PubMed

    Dassios, Theodore; Katelari, Anna; Doudounakis, Stavros; Dimitriou, Gabriel

    2013-05-01

    The beneficial role of exercise in maintaining health in patients with cystic fibrosis (CF) is well described. Few data exist on the effect of exercise on respiratory muscle function in patients with CF. Our objective was to compare respiratory muscle function indices in CF patients that regularly exercise with those CF patients that do not. This cross-sectional study assessed nutrition, pulmonary function and respiratory muscle function in 37 CF patients that undertook regular aerobic exercise and in a control group matched for age and gender which consisted of 44 CF patients that did not undertake regular exercise. Respiratory muscle function in CF was assessed by maximal inspiratory pressure (Pimax), maximal expiratory pressure (Pemax) and pressure-time index of the respiratory muscles (PTImus). Median Pimax and Pemax were significantly higher in the exercise group compared to the control group (92 vs. 63 cm H2O and 94 vs. 64 cm H2O respectively). PTImus was significantly lower in the exercise group compared to the control group (0.089 vs. 0.121). Upper arm muscle area (UAMA) and mid-arm muscle circumference were significantly increased in the exercise group compared to the control group (2608 vs. 2178 mm2 and 23 vs. 21 cm respectively). UAMA was significantly related to Pimax in the exercising group. These results suggest that CF patients that undertake regular aerobic exercise maintain higher indices of respiratory muscle strength and lower PTImus values, while increased UAMA values in exercising patients highlight the importance of muscular competence in respiratory muscle function in this population. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Proportions of myosin heavy chain mRNAs, protein isoforms and fiber types in the slow and fast skeletal muscles are maintained after alterations of thyroid status in rats.

    PubMed

    Soukup, T; Diallo, M

    2015-01-01

    Recently, we have established that slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles of euthyroid (EU) Lewis rats posses the same proportions between their four myosin heavy chain (MyHC) mRNAs, protein isoforms and fiber types as determined by real time RT-PCR, SDS-PAGE and 2-D stereological fiber type analysis, respectively. In the present paper we investigated if these proportions are maintained in adult Lewis rats with hyperthyroid (HT) and hypothyroid (HY) status. Although HT and HY states change MyHC isoform expression, results from all three methods showed that proportion between MyHC mRNA-1, 2a, -2x/d, -2b, protein isoforms MyHC-1, -2a, -2x/d, -2b and to lesser extent also fiber types 1, 2A, 2X/D, 2B were preserved in both SOL and EDL muscles. Furthermore, in the SOL muscle mRNA expression of slow MyHC-1 remained up to three orders higher compared to fast MyHC transcripts, which explains the predominance of MyHC-1 isoform and fiber type 1 even in HT rats. Although HT status led in the SOL to increased expression of MyHC-2a mRNA, MyHC-2a isoform and 2A fibers, it preserved extremely low expression of MyHC-2x and -2b mRNA and protein isoforms, which explains the absence of pure 2X/D and 2B fibers. HY status, on the other hand, almost completely abolished expression of all three fast MyHC mRNAs, MyHC protein isoforms and fast fiber types in the SOL muscle. Our data present evidence that a correlation between mRNA, protein content and fiber type composition found in EU status is also preserved in HT and HY rats.

  9. Dynamic rectus abdominis muscle sphincter for stoma continence: an acute functional study in a dog model.

    PubMed

    Bardoel, J W; Stadelmann, W K; Perez-Abadia, G A; Galandiuk, S; Zonnevijlle, E D; Maldonado, C; Stremel, R W; Tobin, G R; Kon, M; Barker, J H

    2001-02-01

    Fecal stomal incontinence is a problem that continues to defy surgical treatment. Previous attempts to create continent stomas using dynamic myoplasty have had limited success due to denervation atrophy of the muscle flap used in the creation of the sphincter and because of muscle fatigue resulting from continuous electrical stimulation. To address the problem of denervation atrophy, a stomal sphincter was designed using the most caudal segment of the rectus abdominis muscle, preserving its intercostal innervation as well as its vascular supply. The purpose of the present study was to determine whether this rectus abdominis muscle island flap sphincter design could maintain stomal continence acutely. In this experiment, six dogs were used to create eight rectus abdominis island flap stoma sphincters around a segment of distal ileum. Initially, the intraluminal stomal pressures generated by the sphincter using different stimulation frequencies were determined. The ability of this stomal sphincter to generate continence at different intraluminal bowel pressures was then assessed. In all cases, the rectus abdominis muscle sphincter generated peak pressures well above those needed to maintain stomal continence (60 mmHg). In addition, each sphincter was able to maintain stomal continence at all intraluminal bowel pressures tested.

  10. Skeletal Muscle Ultrasonography in Nutrition and Functional Outcome Assessment of Critically Ill Children: Experience and Insights From Pediatric Disease and Adult Critical Care Studies [Formula: see text].

    PubMed

    Ong, Chengsi; Lee, Jan Hau; Leow, Melvin K S; Puthucheary, Zudin A

    2017-09-01

    Evidence suggests that critically ill children develop muscle wasting, which could affect outcomes. Muscle ultrasound has been used to track muscle wasting and association with outcomes in critically ill adults but not children. This review aims to summarize methodological considerations of muscle ultrasound, structural findings, and possibilities for its application in the assessment of nutrition and functional outcomes in critically ill children. Medline, Embase, and CINAHL databases were searched up until April 2016. Articles describing skeletal muscle ultrasound in children and critically ill adults were analyzed qualitatively for details on techniques and findings. Thickness and cross-sectional area of various upper and lower body muscles have been studied to quantify muscle mass and detect muscle changes. The quadriceps femoris muscle is one of the most commonly measured muscles due to its relation to mobility and is sensitive to changes over time. However, the margin of error for quadriceps thickness is too wide to reliably detect muscle changes in critically ill children. Muscle size and its correlation with strength and function also have not yet been studied in critically ill children. Echogenicity, used to detect compromised muscle structure in neuromuscular disease, may be another property worth studying in critically ill children. Muscle ultrasound may be useful in detecting muscle wasting in critically ill children but has not been shown to be sufficiently reliable in this population. Further study of the reliability and correlation with functional outcomes and nutrition intake is required before muscle ultrasound is routinely employed in critically ill children.

  11. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  12. MEAT SCIENCE AND MUSCLE BIOLOGY SYMPOSIUM

    PubMed Central

    Bi, P.; Kuang, S.

    2012-01-01

    Stem cell niche plays a critical role in regulating the behavior and function of adult stem cells that underlie tissue growth, maintenance, and regeneration. In the skeletal muscle, stem cells, called satellite cells, contribute to postnatal muscle growth and hypertrophy, and thus, meat production in agricultural animals. Satellite cells are located adjacent to mature muscle fibers underneath a sheath of basal lamina. Microenvironmental signals from extracellular matrix mediated by the basal lamina and from the host myofiber both impinge on satellite cells to regulate their activity. Furthermore, several types of muscle interstitial cells, including intramuscular preadipocytes and connective tissue fibroblasts, have recently been shown to interact with satellite cells and actively regulate the growth and regeneration of postnatal skeletal muscles. From this regard, interstitial adipogenic cells are not only important for marbling and meat quality, but also represent an additional cellular component of the satellite cell niche. At the molecular level, these interstitial cells may interact with satellite cells through cell surface ligands, such as delta-like 1 homolog (Dlk1) protein whose overexpression is thought to be responsible for muscle hypertrophy in callipyge sheep. In fact, extracellular Dlk1 protein has been shown to promote the myogenic differentiation of satellite cells. Understanding the cellular and molecular mechanisms within the stem cell niche that regulate satellite cell differentiation and maintain muscle homeostasis may lead to promising approaches to optimizing muscle growth and composition, thus improving meat production and quality. PMID:22100594

  13. Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle

    PubMed Central

    Birbrair, Alexander; Zhang, Tan; Wang, Zhong-Min; Messi, Maria L.; Mintz, Akiva; Delbono, Osvaldo

    2014-01-01

    Pericytes are perivascular cells that envelop and make intimate connections with adjacent capillary endothelial cells. Recent studies show that they may have a profound impact in skeletal muscle regeneration, innervation, vessel formation, fibrosis, fat accumulation, and ectopic bone formation throughout life. In this review, we summarize and evaluate recent advances in our understanding of pericytes' influence on adult skeletal muscle pathophysiology. We also discuss how further elucidating their biology may offer new approaches to the treatment of conditions characterized by muscle wasting. PMID:25278877

  14. The muscle protein synthetic response to food ingestion.

    PubMed

    Gorissen, Stefan H M; Rémond, Didier; van Loon, Luc J C

    2015-11-01

    Preservation of skeletal muscle mass is of great importance for maintaining both metabolic health and functional capacity. Muscle mass maintenance is regulated by the balance between muscle protein breakdown and synthesis rates. Both muscle protein breakdown and synthesis rates have been shown to be highly responsive to physical activity and food intake. Food intake, and protein ingestion in particular, directly stimulates muscle protein synthesis rates. The postprandial muscle protein synthetic response to feeding is regulated on a number of levels, including dietary protein digestion and amino acid absorption, splanchnic amino acid retention, postprandial insulin release, skeletal muscle tissue perfusion, amino acid uptake by muscle, and intramyocellular signaling. The postprandial muscle protein synthetic response to feeding is blunted in many conditions characterized by skeletal muscle loss, such as aging and muscle disuse. Therefore, it is important to define food characteristics that modulate postprandial muscle protein synthesis. Previous work has shown that the muscle protein synthetic response to feeding can be modulated by changing the amount of protein ingested, the source of dietary protein, as well as the timing of protein consumption. Most of this work has studied the postprandial response to the ingestion of isolated protein sources. Only few studies have investigated the postprandial muscle protein synthetic response to the ingestion of protein dense foods, such as dairy and meat. The current review will focus on the capacity of proteins and protein dense food products to stimulate postprandial muscle protein synthesis and identifies food characteristics that may modulate the anabolic properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Mammal-like muscles power swimming in a cold-water shark.

    PubMed

    Bernal, Diego; Donley, Jeanine M; Shadwick, Robert E; Syme, Douglas A

    2005-10-27

    Effects of temperature on muscle contraction and powering movement are profound, outwardly obvious, and of great consequence to survival. To cope with the effects of environmental temperature fluctuations, endothermic birds and mammals maintain a relatively warm and constant body temperature, whereas most fishes and other vertebrates are ectothermic and conform to their thermal niche, compromising performance at colder temperatures. However, within the fishes the tunas and lamnid sharks deviate from the ectothermic strategy, maintaining elevated core body temperatures that presumably confer physiological advantages for their roles as fast and continuously swimming pelagic predators. Here we show that the salmon shark, a lamnid inhabiting cold, north Pacific waters, has become so specialized for endothermy that its red, aerobic, locomotor muscles, which power continuous swimming, seem mammal-like, functioning only within a markedly elevated temperature range (20-30 degrees C). These muscles are ineffectual if exposed to the cool water temperatures, and when warmed even 10 degrees C above ambient they still produce only 25-50% of the power produced at 26 degrees C. In contrast, the white muscles, powering burst swimming, do not show such a marked thermal dependence and work well across a wide range of temperatures.

  16. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely.more » The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.« less

  17. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy

    PubMed Central

    Reed, Sarah A.; Sandesara, Pooja B.; Senf, Sarah M.; Judge, Andrew R.

    2012-01-01

    Cachexia is characterized by inexorable muscle wasting that significantly affects patient prognosis and increases mortality. Therefore, understanding the molecular basis of this muscle wasting is of significant importance. Recent work showed that components of the forkhead box O (FoxO) pathway are increased in skeletal muscle during cachexia. In the current study, we tested the physiological significance of FoxO activation in the progression of muscle atrophy associated with cachexia. FoxO-DNA binding dependent transcription was blocked in the muscles of mice through injection of a dominant negative (DN) FoxO expression plasmid prior to inoculation with Lewis lung carcinoma cells or the induction of sepsis. Expression of DN FoxO inhibited the increased mRNA levels of atrogin-1, MuRF1, cathepsin L, and/or Bnip3 and inhibited muscle fiber atrophy during cancer cachexia and sepsis. Interestingly, during control conditions, expression of DN FoxO decreased myostatin expression, increased MyoD expression and satellite cell proliferation, and induced fiber hypertrophy, which required de novo protein synthesis. Collectively, these data show that FoxO-DNA binding-dependent transcription is necessary for normal muscle fiber atrophy during cancer cachexia and sepsis, and further suggest that basal levels of FoxO play an important role during normal conditions to depress satellite cell activation and limit muscle growth.—Reed, S. A., Sandesara, P. B., Senf, S. F., Judge, A. R. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. PMID:22102632

  18. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia.

    PubMed

    Benny Klimek, Margaret E; Aydogdu, Tufan; Link, Majik J; Pons, Marianne; Koniaris, Leonidas G; Zimmers, Teresa A

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Mechanical properties and fiber type composition of chronically inactive muscles

    NASA Technical Reports Server (NTRS)

    Roy, R. R.; Zhong, H.; Monti, R. J.; Vallance, K. A.; Kim, J. A.; Edgerton, V. R.

    2000-01-01

    A role for neuromuscular activity in the maintenance of skeletal muscle properties has been well established. However, the role of activity-independent factors is more difficult to evaluate. We have used the spinal cord isolation model to study the effects of chronic inactivity on the mechanical properties of the hindlimb musculature in cats and rats. This model maintains the connectivity between the motoneurons and the muscle fibers they innervate, but the muscle unit is electrically "silent". Consequently, the measured muscle properties are activity-independent and thus the advantage of using this model is that it provides a baseline level (zero activity) from which regulatory factors that affect muscle cell homeostasis can be defined. In the present paper, we will present a brief review of our findings using the spinal cord isolation model related to muscle mechanical and fiber type properties.

  20. Designing a Maintainable and Sustainable Coast Guard Icebreaker for Arctic and Antarctic Operations

    DTIC Science & Technology

    2014-03-21

    03-2014 Technical June 2013-August 2013 Designing a Maintainable and Sustainable Coast Guard Icebreaker for Arctic and Antarctic Operations...of Engineering Designing a Maintainable and Sustainable Coast Guard Icebreaker for Arctic and Antarctic Operations Abstract The U.S. Coast Guard is...Pollution (MARPOL) of which Annex V prohibits the discharge of solid waste other than food refuge less than 25mm in diameter into the Antarctic Region [6

  1. New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries

    DTIC Science & Technology

    2012-01-01

    cell–based therapies by members of the broader scientific community . MicroCT Core Dr. A. Usas operates vivaCT 40 (Scanco Medical) imaging system that... communication . Project # 5 Final Report** Inhibiting cell death and promoting muscle growth for congenital muscular dystrophy (Xiao Xiao) **Note that...anticipate that these results can be generalized to the treatment of other genetic and acquired causes of muscle wasting. We produced multiple AAV8

  2. Mercury and other metals in muscle and ovaries of goldeye (Hiodon alosoides).

    PubMed

    Donald, David B; Sardella, Gino D

    2010-02-01

    Concentrations of 24 trace metals were assessed in gravid ovaries and in muscle of female juvenile and adult female goldeye (Hiodon alosoides), a fish with both low annual growth (16 g/year as adults) and a long life span (maximum longevity of 30 years). It was hypothesized that adult fish with these life-history characteristics would maintain stable concentrations of metals in their tissues with higher levels of essential elements compared with those that are potentially toxic. As hypothesized, the concentration of most metals in muscle of adult female goldeye was similar at all ages, suggesting that uptake and excretion of metals was equal. Mercury was a notable exception. Total Hg concentrations in muscle of adults increased throughout life from a mean of 206 ng/g wet weight at age 8 to 809 ng/g at age 28, or by 26.2 ng/g/year. Concentrations of Hg were low in ovaries (mean 21.1 ng/g wet wt) compared to the mean for muscle, only 7% of the concentration in muscle. This was the lowest percent of muscle concentration of all 24 metals. Concentrations of Al, Ba, La, V, and Mn were significantly greater in muscle of juveniles and in ovaries than in muscle of adults. Concentrations of 13 metals were higher in ovaries relative to muscle, seven were similar, and four were depleted. Silver was enriched by over 50-fold in ovaries. Overall, the present study suggests that low concentrations of some metals in muscle of adult female goldeye, relative to concentrations in female juveniles and ovaries, may be maintained in part by transfer of metals to the external environment in eggs at spawning. Copyright 2009 SETAC.

  3. Process Waste Assessment, Mechanics Shop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, N.M.

    1993-05-01

    This Process Waste Assessment was conducted to evaluate hazardous wastes generated in the Mechanics Shop. The Mechanics Shop maintains and repairs motorized vehicles and equipment on the SNL/California site, to include motorized carts, backhoes, street sweepers, trash truck, portable emergency generators, trencher, portable crane, and man lifts. The major hazardous waste streams routinely generated by the Mechanics Shop are used oil, spent off filters, oily rags, and spent batteries. The used off and spent off filters make up a significant portion of the overall hazardous waste stream. Waste oil and spent batteries are sent off-site for recycling. The rags andmore » spent on filters are not recycled. They are disposed of as hazardous waste. Mechanics Shop personnel continuously look for opportunities to minimize hazardous wastes.« less

  4. AMPK in skeletal muscle function and metabolism

    PubMed Central

    Kjøbsted, Rasmus; Hingst, Janne R.; Fentz, Joachim; Foretz, Marc; Sanz, Maria-Nieves; Pehmøller, Christian; Shum, Michael; Marette, André; Mounier, Remi; Treebak, Jonas T.; Wojtaszewski, Jørgen F. P.; Viollet, Benoit; Lantier, Louise

    2018-01-01

    Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism. PMID:29242278

  5. Role of TRPC1 channel in skeletal muscle function

    PubMed Central

    Zanou, Nadège; Shapovalov, Georges; Louis, Magali; Tajeddine, Nicolas; Gallo, Chiara; Van Schoor, Monique; Anguish, Isabelle; Cao, My Linh; Schakman, Olivier; Dietrich, Alexander; Lebacq, Jean; Ruegg, Urs; Roulet, Emmanuelle; Birnbaumer, Lutz

    2010-01-01

    Skeletal muscle contraction is reputed not to depend on extracellular Ca2+. Indeed, stricto sensu, excitation-contraction coupling does not necessitate entry of Ca2+. However, we previously observed that, during sustained activity (repeated contractions), entry of Ca2+ is needed to maintain force production. In the present study, we evaluated the possible involvement of the canonical transient receptor potential (TRPC)1 ion channel in this entry of Ca2+ and investigated its possible role in muscle function. Patch-clamp experiments reveal the presence of a small-conductance channel (13 pS) that is completely lost in adult fibers from TRPC1−/− mice. The influx of Ca2+ through TRPC1 channels represents a minor part of the entry of Ca2+ into muscle fibers at rest, and the activity of the channel is not store dependent. The lack of TRPC1 does not affect intracellular Ca2+ concentration ([Ca2+]i) transients reached during a single isometric contraction. However, the involvement of TRPC1-related Ca2+ entry is clearly emphasized in muscle fatigue. Indeed, muscles from TRPC1−/− mice stimulated repeatedly progressively display lower [Ca2+]i transients than those observed in TRPC1+/+ fibers, and they also present an accentuated progressive loss of force. Interestingly, muscles from TRPC1−/− mice display a smaller fiber cross-sectional area, generate less force per cross-sectional area, and contain less myofibrillar proteins than their controls. They do not present other signs of myopathy. In agreement with in vitro experiments, TRPC1−/− mice present an important decrease of endurance of physical activity. We conclude that TRPC1 ion channels modulate the entry of Ca2+ during repeated contractions and help muscles to maintain their force during sustained repeated contractions. PMID:19846750

  6. Protein turnover and cellular stress in mildly and severely affected muscles from patients with limb girdle muscular dystrophy type 2I.

    PubMed

    Hauerslev, Simon; Sveen, Marie L; Vissing, John; Krag, Thomas O

    2013-01-01

    Patients with Limb girdle muscular dystrophy type 2I (LGMD2I) are characterized by progressive muscle weakness and wasting primarily in the proximal muscles, while distal muscles often are spared. Our aim was to investigate if wasting could be caused by impaired regeneration in the proximal compared to distal muscles. Biopsies were simultaneously obtained from proximal and distal muscles of the same patients with LGMD2I (n = 4) and healthy subjects (n = 4). The level of past muscle regeneration was evaluated by counting internally nucleated fibers and determining actively regenerating fibers by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were highly increased in severely affected muscles compared to mildly affected muscles. Our results indicate that alterations in the protein turnover and myostatin levels could progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.

  7. Baicalin supplementation reduces serum biomarkers of skeletal muscle wasting and may protect against lean body mass reduction in cancer patients: Results from a pilot open-label study.

    PubMed

    Emanuele, Enzo; Bertona, Marco; Pareja-Galeano, Helios; Fiuza-Luces, Carmen; Morales, Javier Salvador; Sanchis-Gomar, Fabian; Lucia, Alejandro

    2016-07-01

    Muscle wasting in patients with cancer has been linked to an increased activity of nuclear factor κB (NF-κB) and higher circulating levels of activin-A (ActA), a negative growth factor for muscle mass. Baicalin is a natural flavonoid that can reduce skeletal muscle atrophy in animal models of cancer cachexia by inhibiting NF-κB. This pilot open-label study assessed the effects of baicalin supplementation (50 mg daily for 3 months) in cancer patients who showed involuntary weight loss >5% over the past 6 months. A total of 20 patients were investigated. Participants were evaluated at baseline and at the end of the 3-month study period for the following endpoints: 1) changes from baseline in serum NF-κB and ActA levels; and 2) change from baseline in lean body mass (LBM). We observed significant reduction in both NF-κB (p<0.05) and ActA (p<0.05) serum levels from baseline to 3 months. At 3 months, patients also showed a significant mean increase in LBM (+0.8 kg, p<0.05 compared with baseline). Our pilot open-label data suggest that baicalin supplementation is potentially useful for contrasting lean body mass reduction in cancer patients with involuntary weight loss, an effect which is likely mediated by the inhibition of negative growth factors for muscle mass.

  8. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle.

    PubMed

    Kaneguchi, Akinori; Ozawa, Junya; Kawamata, Seiichi; Kurose, Tomoyuki; Yamaoka, Kaoru

    2014-09-26

    Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD

  9. Live imaging of muscle histolysis in Drosophila metamorphosis.

    PubMed

    Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin

    2016-05-04

    The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of

  10. Muscle dependency of corticomuscular coherence in upper and lower limb muscles and training-related alterations in ballet dancers and weightlifters.

    PubMed

    Ushiyama, Junichi; Takahashi, Yuji; Ushiba, Junichi

    2010-10-01

    It has been well documented that the 15- to 35-Hz oscillatory activity of the sensorimotor cortex shows coherence with the muscle activity during weak to moderate steady contraction. To investigate the muscle dependency of the corticomuscular coherence and its training-related alterations, we quantified the coherence between electroencephalogram (EEG) from the sensorimotor cortex and rectified electromyogram (EMG) from five upper limb (first dorsal interosseous, flexor carpi radialis, extensor carpi radialis, biceps brachii, triceps brachii) and four lower limb muscles (soleus, tibialis anterior, biceps femoris, rectus femoris), while maintaining a constant force level at 30% of maximal voluntary contraction of each muscle, in 24 untrained, 12 skill-trained (ballet dancers), and 10 strength-trained (weightlifters) individuals. Data from untrained subjects demonstrated the muscle dependency of corticomuscular coherence. The magnitude of the EEG-EMG coherence was significantly greater in the distally located lower limb muscles, such as the soleus and tibialis anterior, than in the upper or other lower limb muscles in untrained subjects (P < 0.05). These results imply that oscillatory coupling between the sensorimotor cortex and spinal motoneurons during steady contraction differs among muscles, according to the functional role of each muscle. In addition, the ballet dancers and weightlifters showed smaller EEG-EMG coherences than the untrained subjects, especially in the lower limb muscles (P < 0.05). These results indicate that oscillatory interaction between the sensorimotor cortex and spinal motoneurons can be changed by long-term specialized use of the muscles and that this neural adaptation may lead to finer control of muscle force during steady contraction.

  11. Insights into skeletal muscle development and applications in regenerative medicine.

    PubMed

    Tran, T; Andersen, R; Sherman, S P; Pyle, A D

    2013-01-01

    Embryonic and postnatal development of skeletal muscle entails highly regulated processes whose complexity continues to be deconstructed. One key stage of development is the satellite cell, whose niche is composed of multiple cell types that eventually contribute to terminally differentiated myotubes. Understanding these developmental processes will ultimately facilitate treatments of myopathies such as Duchenne muscular dystrophy (DMD), a disease characterized by compromised cell membrane structure, resulting in severe muscle wasting. One theoretical approach is to use pluripotent stem cells in a therapeutic setting to help replace degenerated muscle tissue. This chapter discusses key myogenic developmental stages and their regulatory pathways; artificial myogenic induction in pluripotent stem cells; advantages and disadvantages of DMD animal models; and therapeutic approaches targeting DMD. Furthermore, skeletal muscle serves as an excellent paradigm for understanding general cell fate decisions throughout development. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Association Between Muscle Wasting and Muscle Strength in Patients WHO Developed Severe Sepsis and Septic Shock.

    PubMed

    Borges, Rodrigo Cerqueira; Soriano, Francisco Garcia

    2018-05-11

    To evaluate the association between the rectus femoris cross-sectional area (RFCSA) and the muscular strength obtained at the bedside in patients forwarded to the intensive care unit (ICU) for severe sepsis and septic shock. A prospective cohort study. RFCSA was assessed by ultrasound on the following day of the ICU admission and monitored during hospitalization. The patients performed clinical tests of muscle strength (Medical Research Council (MRC) scale and handgrip dynamometry), when they could understand the verbal commands of the examiners. In 37 patients hospitalized for sepsis there was a significant decline in RFCSA of 5.18 (4.49-5.96)cm on the 2nd day of ICU for 4.37 (3.71-5.02)cm at hospital discharge. Differently, the handgrip strength showed an increase from the awakening of 12.00 (7.00-20.00)Kgf to 19.00 (14.00-26.00)Kgf until hospital discharge. Patients in mechanical ventilation had a greater tendency to decline in the RFCSA compared to patients who did not receive mechanical ventilation, however without being significant (p = 0.08). There was a negative association between RFCSA delta (2nd day of ICU - ICU discharge) and handgrip strength (r = 0.51, p < 0.05), and a male and SOFA score positive association with the RFCSA delta. There was an association of RFCSA with clinical muscle strength tests. In addition, it has been shown that sepsis can lead to short-term muscle degradation, regardless of whether they are submitted to mechanical ventilation or not.

  13. Extracellular matrix components direct porcine muscle stem cell behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilschut, Karlijn J.; Haagsman, Henk P.; Roelen, Bernard A.J., E-mail: b.a.j.roelen@uu.nl

    2010-02-01

    In muscle tissue, extracellular matrix proteins, together with the vasculature system, muscle-residence cells and muscle fibers, create the niche for muscle stem cells. The niche is important in controlling proliferation and directing differentiation of muscle stem cells to sustain muscle tissue. Mimicking the extracellular muscle environment improves tools exploring the behavior of primary muscle cells. Optimizing cell culture conditions to maintain muscle commitment is important in stem cell-based studies concerning toxicology screening, ex vivo skeletal muscle tissue engineering and in the enhancement of clinical efficiency. We used the muscle extracellular matrix proteins collagen type I, fibronectin, laminin, and also gelatinmore » and Matrigel as surface coatings of tissue culture plastic to resemble the muscle extracellular matrix. Several important factors that determine myogenic commitment of the primary muscle cells were characterized by quantitative real-time RT-PCR and immunofluorescence. Adhesion of high PAX7 expressing satellite cells was improved if the cells were cultured on fibronectin or laminin coatings. Cells cultured on Matrigel and laminin coatings showed dominant integrin expression levels and exhibited an activated Wnt pathway. Under these conditions both stem cell proliferation and myogenic differentiation capacity were superior if compared to cells cultured on collagen type I, fibronectin and gelatin. In conclusion, Matrigel and laminin are the preferred coatings to sustain the proliferation and myogenic differentiation capacity of the primary porcine muscle stem cells, when cells are removed from their natural environment for in vitro culture.« less

  14. Mechanism and novel therapeutic approaches to wasting in chronic disease.

    PubMed

    Ebner, Nicole; Springer, Jochen; Kalantar-Zadeh, Kamyar; Lainscak, Mitja; Doehner, Wolfram; Anker, Stefan D; von Haehling, Stephan

    2013-07-01

    Cachexia is a multifactorial syndrome defined by continuous loss of skeletal muscle mass - with or without loss of fat mass - which cannot be fully reversed by conventional nutritional support and which may lead to progressive functional impairment and increased death risk. Its pathophysiology is characterized by negative protein and energy balance driven by a variable combination of reduced food intake and abnormal metabolism. Muscle wasting is encountered in virtually all chronic disease states in particular during advanced stages of the respective illness. Several pre-clinical and clinical studies are ongoing to ameliorate this clinical problem. The mechanisms of muscle wasting and cachexia in chronic diseases such as cancer, chronic heart failure, chronic obstructive pulmonary disease and chronic kidney disease are described. We discuss therapeutic targets and such potential modulators as appetite stimulants, selective androgen receptor modulators, amino acids and naturally occurring peptide hormones. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. The Pringle maneuver reduces the infusion rate of rocuronium required to maintain surgical muscle relaxation during hepatectomy.

    PubMed

    Kajiura, Akira; Nagata, Osamu; Sanui, Masamitsu

    2018-04-27

    We investigated the continuous infusion rates of rocuronium necessary to obtain the surgical muscle relaxation before, during, and after the Pringle maneuver on patients who underwent hepatectomy. Fifteen patients were induced by total intravenous anesthesia with propofol. After obtaining the calibration of acceleromyography, the patient was intubated with rocuronium 0.6 mg/kg. Fifteen minutes after initial rocuronium injection, the continuous infusion was started at 7.5 µg/kg/min. The infusion rate was adjusted every 15 min so that the first twitch height (% T1) might become from 3 to 10% of control. The infusion rates at the time when the state of surgical muscle relaxation was achieved for more than 15 min were recorded before, during and after the Pringle maneuver. The 25% recovery time was measured after discontinuing the continuous infusion. The infusion rate of rocuronium before, during, and after the Pringle maneuver was 7.2 ± 1.8, 4.2 ± 1.4, and 4.7 ± 1.5 µg/kg/min (mean ± SD), respectively. The rocuronium infusion rate during the Pringle maneuver was decreased about 40% compared to that before this maneuver, and that after completion of the Pringle maneuver was not recovered to that before the Pringle maneuver. The 25% recovery time was 20 ± 7 min. In case of continuous administration of rocuronium during surgery performing the Pringle maneuver, it was considered necessary to regulate the administration of rocuronium using muscle relaxant monitoring in order to deal with the decrease in muscle relaxant requirement by the Pringle maneuver.

  16. The effect of caloric restriction on the forelimb skeletal muscle fibers of the hypertrophic myostatin null mice.

    PubMed

    Elashry, Mohamed I; Matsakas, Antonios; Wenisch, Sabine; Arnhold, Stefan; Patel, Ketan

    2017-06-01

    Skeletal muscle mass loss has a broad impact on body performance and physical activity. Muscle wasting occurs due to genetic mutation as in muscular dystrophy, age-related muscle loss (sarcopenia) as well as in chronic wasting disorders as in cancer cachexia. Food restriction reduces muscle mass underpinned by increased muscle protein break down. However the influence of dietary restriction on the morphometry and phenotype of forelimb muscles in a genetically modified myostatin null mice are not fully characterized. The effect of a five week dietary limitation on five anatomically and structurally different forelimb muscles was examined. C57/BL6 wild type (Mstn +/+ ) and myostatin null (Mstn -/- ) mice were either given a standard rodent normal daily diet ad libitum (ND) or 60% food restriction (FR) for a 5 week period. M. triceps brachii Caput laterale (T.lateral), M. triceps brachii Caput longum (T.long), M. triceps brachii Caput mediale (T.medial), M. extensor carpi ulnaris (ECU) and M. flexor carpi ulnaris (FCU) were dissected, weighted and processed for immunohistochemistry. Muscle mass, fibers cross sectional areas (CSA) and myosin heavy chain types IIB, IIX, IIA and type I were analyzed. We provide evidence that caloric restriction results in muscle specific weight reduction with the fast myofibers being more prone to atrophy. We show that slow fibers are less liable to dietary restriction induced muscle atrophy. The effect of dietary restriction was more pronounced in Mstn -/- muscles to implicate the oxidative fibers compared to Mstn +/+ . Furthermore, peripherally located myofibers are more susceptible to dietary induced reduction compared to deep fibers. We additionally report that dietary restriction alters the glycolytic phenotype of the Mstn -/- into the oxidative form in a muscle dependent manner. In summary our study shows that calorie restriction alters muscle fiber profile of forelimb muscles of Myostatin null mice. Copyright © 2017 Elsevier Gmb

  17. Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering

    PubMed Central

    Zakhem, Elie; Raghavan, Shreya; Gilmont, Robert R; Bitar, Khalil N

    2012-01-01

    Intestinal tissue engineering is an emerging field due to a growing demand for intestinal lengthening and replacement procedures secondary to massive resections of the bowel. Here, we demonstrate the potential use of a chitosan/collagen scaffold as a 3D matrix to support the bioengineered circular muscle constructs maintain their physiological functionality. We investigated the biocompatibility of chitosan by growing rabbit colonic circular smooth muscle cells (RCSMCs) on chitosan-coated plates. The cells maintained their spindle-like morphology and preserved their smooth muscle phenotypic markers. We manufactured tubular scaffolds with central openings composed of chitosan and collagen in a 1:1 ratio. Concentrically-aligned 3D circular muscle constructs were bioengineered using fibrin-based hydrogel seeded with RCSMCs. The constructs were placed around the scaffold for 2 weeks, after which they were taken off and tested for their physiological functionality. The muscle constructs contracted in response to Acetylcholine (Ach) and potassium chloride (KCl) and they relaxed in response to vasoactive intestinal peptide (VIP). These results demonstrate that chitosan is a biomaterial possibly suitable for intestinal tissue engineering applications. PMID:22483012

  18. A population of adult satellite-like cells in Drosophila is maintained through a switch in RNA-isoforms

    PubMed Central

    Boukhatmi, Hadi

    2018-01-01

    Adult stem cells are important for tissue maintenance and repair. One key question is how such cells are specified and then protected from differentiation for a prolonged period. Investigating the maintenance of Drosophila muscle progenitors (MPs) we demonstrate that it involves a switch in zfh1/ZEB1 RNA-isoforms. Differentiation into functional muscles is accompanied by expression of miR-8/miR-200, which targets the major zfh1-long RNA isoform and decreases Zfh1 protein. Through activity of the Notch pathway, a subset of MPs produce an alternate zfh1-short isoform, which lacks the miR-8 seed site. Zfh1 protein is thus maintained in these cells, enabling them to escape differentiation and persist as MPs in the adult. There, like mammalian satellite cells, they contribute to muscle homeostasis. Such preferential regulation of a specific RNA isoform, with differential sensitivity to miRs, is a powerful mechanism for maintaining a population of poised progenitors and may be of widespread significance. PMID:29629869

  19. Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice

    USDA-ARS?s Scientific Manuscript database

    Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghreli...

  20. The Role of Skeletal Muscle in Amyotrophic Lateral Sclerosis.

    PubMed

    Loeffler, Jean-Philippe; Picchiarelli, Gina; Dupuis, Luc; Gonzalez De Aguilar, Jose-Luis

    2016-03-01

    Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset disease primarily characterized by upper and lower motor neuron degeneration, muscle wasting and paralysis. It is increasingly accepted that the pathological process leading to ALS is the result of multiple disease mechanisms that operate within motor neurons and other cell types both inside and outside the central nervous system. The implication of skeletal muscle has been the subject of a number of studies conducted on patients and related animal models. In this review, we describe the features of ALS muscle pathology and discuss on the contribution of muscle to the pathological process. We also give an overview of the therapeutic strategies proposed to alleviate muscle pathology or to deliver curative agents to motor neurons. ALS muscle mainly suffers from oxidative stress, mitochondrial dysfunction and bioenergetic disturbances. However, the way by which the disease affects different types of myofibers depends on their contractile and metabolic features. Although the implication of muscle in nourishing the degenerative process is still debated, there is compelling evidence suggesting that it may play a critical role. Detailed understanding of the muscle pathology in ALS could, therefore, lead to the identification of new therapeutic targets. © 2016 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.

  1. Even-Skipped(+) Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude.

    PubMed

    Heckscher, Ellie S; Zarin, Aref Arzan; Faumont, Serge; Clark, Matthew Q; Manning, Laurina; Fushiki, Akira; Schneider-Mizell, Casey M; Fetter, Richard D; Truman, James W; Zwart, Maarten F; Landgraf, Matthias; Cardona, Albert; Lockery, Shawn R; Doe, Chris Q

    2015-10-21

    Bilaterally symmetric motor patterns--those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, and locomotion)--are widespread throughout the animal kingdom. Yet, surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae and identified the evolutionarily conserved Even-skipped(+) interneurons (Eve/Evx). Activation or ablation of Eve(+) interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve(+) interneurons are not rhythmically active and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve(+) interneurons in freely moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve(+) interneuron inputs and outputs showed that the Eve(+) interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Even-skipped+ interneurons are core components of a sensorimotor circuit that maintains left-right symmetric muscle contraction amplitude

    PubMed Central

    Heckscher, Ellie S.; Zarin, Aref Arzan; Faumont, Serge; Clark, Matthew Q.; Manning, Laurina; Fushiki, Akira; Schneider-Mizel, Casey M.; Fetter, Richard D.; Truman, James W.; Zwart, Maarten F.; Landgraf, Matthias; Cardona, Albert; Lockery, Shawn R.; Doe, Chris Q.

    2015-01-01

    Summary Bilaterally symmetric motor patterns—those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, locomotion)—are widespread throughout the animal kingdom. Yet surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae, and identified the evolutionarily-conserved Even-skipped+ interneurons (Eve/Evx). Activation or ablation of Eve+ interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve+ interneurons are not rhythmically active, and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve+ interneurons in freely-moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve+ interneuron inputs and outputs showed that the Eve+ interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction. PMID:26439528

  3. Relationship between masseter muscle form and occlusal supports of remaining teeth.

    PubMed

    Tetsuka, Makoto; Saga, Tsuyoshi; Nakamura, Moriyoshi; Tabira, Yoko; Kusukawa, Jingo; Yamaki, Koh-Ichi

    2012-01-01

    To chew, it is necessary to maintain harmony between the masseter muscle and other organs. Various studies have been conducted on the masseter muscle, but none has examined the relationships among masseter muscle form, occlusal support of remaining teeth, and maxillofacial morphology. Thus, we conducted the present study using cadavers donated to anatomy practice. After the masseter muscle was extracted, its length, width, thickness, and volume were measured; histological observations were conducted; and the muscle fiber cross-sectional area and muscle density were calculated. In addition, denture use and non-use were examined. The results showed that when regional support loss occurs, muscle fiber thickness and density decrease. This in turn causes masseter muscle thickness and volume to decrease, resulting in muscle atrophy. Furthermore, excluding Eichner class A cases (all regions intact), the thickness of the masseter muscle is greatest when the premolar support region remains. The premolar support region was shown to have the most impact on masseter muscle morphology. These results suggest that atrophy of the masseter muscle can be arrested or improved with the use of dentures in the case of tooth loss.

  4. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    PubMed

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before

  5. A differential pattern of gene expression in skeletal muscle of tumor-bearing rats reveals dysregulation of excitation–contraction coupling together with additional muscle alterations.

    PubMed

    Fontes-Oliveira, Cibely Cristine; Busquets, Sílvia; Fuster, Gemma; Ametller, Elisabet; Figueras, Maite; Olivan, Mireia; Toledo, Míriam; López-Soriano, Francisco J; Qu, Xiaoyan; Demuth, Jeffrey; Stevens, Paula; Varbanov, Alex; Wang, Feng; Isfort, Robert J; Argilés, Josep M

    2014-02-01

    Cachexia is a wasting condition that manifests in several types of cancer. The main characteristic of this condition is a profound loss of muscle mass. By using a microarray system, expression of several hundred genes was screened in skeletal muscle of rats bearing a cachexia-inducing tumor, the AH-130 Yoshida ascites hepatoma. This model induced a strong decrease in muscle mass in the tumor-bearing animals, as compared with their healthy counterparts. The results show important differences in gene expression in EDL skeletal muscle between tumor-bearing animals with cachexia and control animals. The differences observed pertain to genes related to intracellular calcium homeostasis and genes involved in the control of mitochondrial oxidative phosphorylation and protein turnover, both at the level of protein synthesis and proteolysis. Assessment of these differences may be a useful tool for the design of novel therapeutic strategies to fight this devastating syndrome.

  6. Cancer cachexia causes skeletal muscle damage via transient receptor potential vanilloid 2‐independent mechanisms, unlike muscular dystrophy

    PubMed Central

    Suzuki, Nobuyuki; Ohtake, Hitomi; Kamauchi, Shinya; Hashimoto, Naohiro; Kiyono, Tohru; Wakabayashi, Shigeo

    2015-01-01

    Abstract Background Muscle wasting during cancer cachexia contributes to patient morbidity. Cachexia‐induced muscle damage may be understood by comparing its symptoms with those of other skeletal muscle diseases, but currently available data are limited. Methods We modelled cancer cachexia in mice bearing Lewis lung carcinoma/colon adenocarcinoma and compared the associated muscle damage with that in a murine muscular dystrophy model (mdx mice). We measured biochemical and immunochemical parameters: amounts/localization of cytoskeletal proteins and/or Ca2+ signalling proteins related to muscle function and abnormality. We analysed intracellular Ca2+ mobilization and compared results between the two models. Involvement of Ca2+‐permeable channel transient receptor potential vanilloid 2 (TRPV2) was examined by inoculating Lewis lung carcinoma cells into transgenic mice expressing dominant‐negative TRPV2. Results Tumourigenesis caused loss of body and skeletal muscle weight and reduced muscle force and locomotor activity. Similar to mdx mice, cachexia muscles exhibited myolysis, reduced sarcolemmal sialic acid content, and enhanced lysosomal exocytosis and sarcolemmal localization of phosphorylated Ca2+/CaMKII. Abnormal autophagy and degradation of dystrophin also occurred. Unlike mdx muscles, cachexia muscles did not exhibit regeneration markers (centrally nucleated fibres), and levels of autophagic proteolytic pathway markers increased. While a slight accumulation of TRPV2 was observed in cachexia muscles, Ca2+ influx via TRPV2 was not elevated in cachexia‐associated myotubes, and the course of cachexia pathology was not ameliorated by dominant‐negative inhibition of TRPV2. Conclusions Thus, cancer cachexia may induce muscle damage through TRPV2‐independent mechanisms distinct from those in muscular dystrophy; this may help treat patients with tumour‐induced muscle wasting. PMID:27239414

  7. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential

    PubMed Central

    Murray, Iain R.; Baily, James E.; Chen, William C.W.; Dar, Ayelet; Gonzalez, Zaniah N.; Jensen, Andrew R.; Petrigliano, Frank A.; Deb, Arjun; Henderson, Neil C.

    2017-01-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. In skeletal muscle, pericytes also directly enhance tissue healing by differentiating into myofibers. Conversely, pericytes have also been implicated in the development of disease states, including fibrosis, heterotopic ossication and calcification, atherosclerosis, and tumor angiogenesis. Despite increased recognition of pericyte heterogeneity, it is not yet clear whether specific subsets of pericytes are responsible for individual functions in skeletal and cardiac muscle homeostasis and disease. PMID:27595928

  8. Elevated PGC-1α activity sustains mitochondrial biogenesis and muscle function without extending survival in a mouse model of inherited ALS.

    PubMed

    Da Cruz, Sandrine; Parone, Philippe A; Lopes, Vanda S; Lillo, Concepción; McAlonis-Downes, Melissa; Lee, Sandra K; Vetto, Anne P; Petrosyan, Susanna; Marsala, Martin; Murphy, Anne N; Williams, David S; Spiegelman, Bruce M; Cleveland, Don W

    2012-05-02

    The transcriptional coactivator PGC-1α induces multiple effects on muscle, including increased mitochondrial mass and activity. Amyotrophic lateral sclerosis (ALS) is a progressive, fatal, adult-onset neurodegenerative disorder characterized by selective loss of motor neurons and skeletal muscle degeneration. An early event is thought to be denervation-induced muscle atrophy accompanied by alterations in mitochondrial activity and morphology within muscle. We now report that elevation of PGC-1α levels in muscles of mice that develop fatal paralysis from an ALS-causing SOD1 mutant elevates PGC-1α-dependent pathways throughout disease course. Mitochondrial biogenesis and activity are maintained through end-stage disease, accompanied by retention of muscle function, delayed muscle atrophy, and significantly improved muscle endurance even at late disease stages. However, survival was not extended. Therefore, muscle is not a primary target of mutant SOD1-mediated toxicity, but drugs increasing PGC-1α activity in muscle represent an attractive therapy for maintaining muscle function during progression of ALS. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Muscle fibre capillarization is a critical factor in muscle fibre hypertrophy during resistance exercise training in older men.

    PubMed

    Snijders, Tim; Nederveen, Joshua P; Joanisse, Sophie; Leenders, Marika; Verdijk, Lex B; van Loon, Luc J C; Parise, Gianni

    2017-04-01

    were observed in response to 12 and 24 weeks of resistance exercise training in both the LOW and HIGH group. Type II muscle fibre capillarization at baseline may be a critical factor for allowing muscle fibre hypertrophy to occur during prolonged resistance exercise training in older men. © 2016 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  10. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  11. Prevention of metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Fagan, J. M.

    1983-01-01

    Rats were subjected to tail-cast suspension hypokinesia for 6 days with one leg immobilized in dorsal flexion by casting. Control animals were also tail-casted. The soleus, gastrocnemius and plantaris muscles of uncasted hypokinetic legs were smaller than control muscles. Dorsal flexion prevented atrophy of these muscles and caused the soleus to hypertrophy. The anterior muscles were unaffected by hypokinesia. The smaller size of the soleus of the uncasted leg relative to the dorsal flexed and weight bearing limbs correlated with slower protein synthesis and faster proteolysis. The capacity of this muscle to synthesize glutamine (gln), which carries nitrogenous waste from muscle was also measured. Although tissue homogenates showed higher activities of gln synthetase, the rate of de novo synthesis was not altered in intact muscle but the tissue ratio of gln/glutamate was decreased. Glutamate and ATP were not limiting for gln synthesis, but availability of ammonia may be a limiting factor for this process in hypokinesia.

  12. Effects of Resveratrol on the Recovery of Muscle Mass Following Disuse in the Plantaris Muscle of Aged Rats

    PubMed Central

    Bennett, Brian T.; Mohamed, Junaith S.; Alway, Stephen E.

    2013-01-01

    Aging is associated with poor skeletal muscle regenerative ability following extended periods of hospitalization and other forms of muscular disuse. Resveratrol (3,5,4’-trihydroxystilbene) is a natural phytoalexin which has been shown in skeletal muscle to improve oxidative stress levels in muscles of aged rats. As muscle disuse and reloading after disuse increases oxidative stress, we hypothesized that resveratrol supplementation would improve muscle regeneration after disuse. A total of thirty-six male Fisher 344 × Brown Norway rats (32 mo.) were treated with either a water vehicle or resveratrol via oral gavage. The animals received hindlimb suspension for 14 days. Thereafter, they were either sacrificed or allowed an additional 14 day period of cage ambulation during reloading. A total of six rats from the vehicle and the resveratrol treated groups were used for the hindlimb suspension and recovery protocols. Furthermore, two groups of 6 vehicle treated animals maintained normal ambulation throughout the experiment, and were used as control animals for the hindlimb suspension and reloading groups. The data show that resveratrol supplementation was unable to attenuate the decreases in plantaris muscle wet weight during hindlimb suspension but it improved muscle mass during reloading after hindlimb suspension. Although resveratrol did not prevent fiber atrophy during the period of disuse, it increased the fiber cross sectional area of type IIA and IIB fibers in response to reloading after hindlimb suspension. There was a modest enhancement of myogenic precursor cell proliferation in resveratrol-treated muscles after reloading, but this failed to reach statistical significance. The resveratrol-associated improvement in type II fiber size and muscle mass recovery after disuse may have been due to decreases in the abundance of pro-apoptotic proteins Bax, cleaved caspase 3 and cleaved caspase 9 in reloaded muscles. Resveratrol appears to have modest therapeutic

  13. Nesprin provides elastic properties to muscle nuclei by cooperating with spectraplakin and EB1

    PubMed Central

    Wang, Shuoshuo; Reuveny, Adriana

    2015-01-01

    Muscle nuclei are exposed to variable cytoplasmic strain produced by muscle contraction and relaxation, but their morphology remains stable. Still, the mechanism responsible for maintaining myonuclear architecture, and its importance, is currently elusive. Herein, we uncovered a unique myonuclear scaffold in Drosophila melanogaster larval muscles, exhibiting both elastic features contributed by the stretching capacity of MSP300 (nesprin) and rigidity provided by a perinuclear network of microtubules stabilized by Shot (spectraplakin) and EB1. Together, they form a flexible perinuclear shield that protects myonuclei from intrinsic or extrinsic forces. The loss of this scaffold resulted in significantly aberrant nuclear morphology and subsequently reduced levels of essential nuclear factors such as lamin A/C, lamin B, and HP1. Overall, we propose a novel mechanism for maintaining myonuclear morphology and reveal its critical link to correct levels of nuclear factors in differentiated muscle fibers. These findings may shed light on the underlying mechanism of various muscular dystrophies. PMID:26008743

  14. Lack of myostatin results in excessive muscle growth but impaired force generation.

    PubMed

    Amthor, Helge; Macharia, Raymond; Navarrete, Roberto; Schuelke, Markus; Brown, Susan C; Otto, Anthony; Voit, Thomas; Muntoni, Francesco; Vrbóva, Gerta; Partridge, Terence; Zammit, Peter; Bunger, Lutz; Patel, Ketan

    2007-02-06

    The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.

  15. Refinements in pectus carinatum correction: the pectoralis muscle split technique.

    PubMed

    Schwabegger, Anton H; Jeschke, Johannes; Schuetz, Tanja; Del Frari, Barbara

    2008-04-01

    The standard approach for correction of pectus carinatum deformity includes elevation of the pectoralis major and rectus abdominis muscle from the sternum and adjacent ribs. A postoperative restriction of shoulder activity for several weeks is necessary to allow stable healing of the elevated muscles. To reduce postoperative immobilization, we present a modified approach to the parasternal ribs using a pectoralis muscle split technique. At each level of rib cartilage resection, the pectoralis muscle is split along the direction of its fibers instead of elevating the entire muscle as performed with the standard technique. From July 2000 to May 2007, we successfully used this technique in 33 patients with pectus carinatum deformity. After the muscle split approach, patients returned to full unrestricted shoulder activity as early as 3 weeks postoperatively, compared to 6 weeks in patients treated with muscle flap elevation. Postoperative pain was reduced and the patients were discharged earlier from the hospital than following the conventional approach. The muscle split technique is a modified surgical approach to the parasternal ribs in patients with pectus carinatum deformity. It helps to maintain pectoralis muscle vascularization and function and can reduce postoperative pain, hospitalization, and rehabilitation period.

  16. U.S. Space Station Freedom waste fluid disposal system with consideration of hydrazine waste gas injection thrusters

    NASA Technical Reports Server (NTRS)

    Winters, Brian A.

    1990-01-01

    The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.

  17. FGFR1 inhibits skeletal muscle atrophy associated with hindlimb suspension

    PubMed Central

    Eash, John; Olsen, Aaron; Breur, Gert; Gerrard, Dave; Hannon, Kevin

    2007-01-01

    Background Skeletal muscle atrophy can occur under many different conditions, including prolonged disuse or immobilization, cachexia, cushingoid conditions, secondary to surgery, or with advanced age. The mechanisms by which unloading of muscle is sensed and translated into signals controlling tissue reduction remains a major question in the field of musculoskeletal research. While the fibroblast growth factors (FGFs) and their receptors are synthesized by, and intimately involved in, embryonic skeletal muscle growth and repair, their role maintaining adult muscle status has not been examined. Methods We examined the effects of ectopic expression of FGFR1 during disuse-mediated skeletal muscle atrophy, utilizing hindlimb suspension and DNA electroporation in mice. Results We found skeletal muscle FGF4 and FGFR1 mRNA expression to be modified by hind limb suspension,. In addition, we found FGFR1 protein localized in muscle fibers within atrophying mouse muscle which appeared to be resistant to atrophy. Electroporation and ectopic expression of FGFR1 significantly inhibited the decrease in muscle fiber area within skeletal muscles of mice undergoing suspension induced muscle atrophy. Ectopic FGFR1 expression in muscle also significantly stimulated protein synthesis in muscle fibers, and increased protein degradation in weight bearing muscle fibers. Conclusion These results support the theory that FGF signaling can play a role in regulation of postnatal skeletal muscle maintenance, and could offer potentially novel and efficient therapeutic options for attenuating muscle atrophy during aging, illness and spaceflight. PMID:17425786

  18. The physiopathologic interplay between stem cells and tissue niche in muscle regeneration and the role of IL-6 on muscle homeostasis and diseases.

    PubMed

    Forcina, Laura; Miano, Carmen; Musarò, Antonio

    2018-06-01

    Skeletal muscle is a complex, dynamic tissue characterized by an elevated plasticity. Although the adult muscle is mainly composed of multinucleated fibers with post mitotic nuclei, it retains a remarkable ability to regenerate in response to traumatic events. The regenerative potential of the adult skeletal muscle relies in the activity of satellite cells, mononucleated cells residing within the muscle in intimate association with myofibers. Satellite cells normally remain quiescent in their sublaminar position, sporadically entering the cell cycle to guarantee an efficient cellular turnover, by fusing with pre-existing myofibers, and to maintain the stem cell pool. However, after muscle injury satellite cells undergo an extensive increase of their activity in response to environmental stimuli, thereby participating to the regeneration of a functional muscle tissue. Nevertheless, regeneration is affected in several pathologic conditions and by a wide range of environmental signals that are highly variable, not only through time, but also depending on the physiological or pathological conditions of the musculature. Among these factors, the interleukin-6 (IL-6) plays a critical physiopathologic role on muscle homeostasis and diseases. The basis of muscle regeneration and the impact of IL-6 on the physiopathology of skeletal muscle will be discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Measuring the interactions between different locations in a muscle to monitor localized muscle fatigue.

    PubMed

    Bingham, Adrian; Arjunan, Sridhar P; Kumar, Dinesh K

    2017-07-01

    In this study we investigated a technique for estimating the progression of localized muscle fatigue. This technique measures the dependence between motor units using high density surface electromyogram (HD-sEMG) and is based on the Normalized Mutual Information (NMI) measure. The NMI between every pair combination of the electrode array is computed to measure the interactions between electrodes. Participants in the experiment had an array of 64 electrodes (16 by 4) placed over the TA of their dominate leg such that the columns of the array ran parallel with the muscle fibers. The HD-sEMG was recorded whilst the participants maintained an isometric dorsiflexion with their dominate foot until task failure at 40% and 80% of their maximum voluntary contraction (MVC). The interactions between different locations over the muscle were computed using the recorded HD-sEMG signals. The results show that the average interactions between various locations over the TA significantly increased during fatigue at both levels of contraction. This can be attributed to the dependence in the motor units.

  20. Muscle activity patterns altered during pedaling at different body orientations.

    PubMed

    Brown, D A; Kautz, S A; Dairaghi, C A

    1996-10-01

    Gravity is a contributing force that is believed to influence strongly the control of limb movements since it affects sensory input and also contributes to task mechanics. By altering the relative contribution of gravitational force to the overall forces used to control pedaling at different body orientations, we tested the hypothesis that joint torque and muscle activation patterns would be modified to generate steady-state pedaling at altered body orientations. Eleven healthy subjects pedaled a modified ergometer at different body orientations (from horizontal to vertical), maintaining the same workload (80 J), cadence (60 rpm), and hip and knee kinematics. Pedal reaction forces and crank and pedal kinematics were measured and used to calculate joint torques and angles. EMG was recorded from four muscles (tibialis anterior, triceps surae, rectus femoris, biceps femoris). Measures of muscle activation (joint torque and EMG activity) showed strong dependence on body orientation, indicating that muscle activity is not fixed and is modified in response to altered body orientation. Simulations confirmed that, while joint torque changes were not necessary to pedal at different body orientations, observed changes were necessary to maintain consistent crank angular velocity profiles. Dependence of muscle activity on body orientation may be due to neural integration of sensory information with an internal model that includes characteristics of the endpoint, to produce consistent pedaling trajectories. Thus, both sensory consequences and mechanical aspects of gravitational forces are important determinants of locomotor tasks such as pedaling.

  1. Changes in lower limb muscle function and muscle mass following exercise-based interventions in patients with chronic obstructive pulmonary disease: A review of the English-language literature.

    PubMed

    De Brandt, Jana; Spruit, Martijn A; Hansen, Dominique; Franssen, Frits Me; Derave, Wim; Sillen, Maurice Jh; Burtin, Chris

    2018-05-01

    Chronic obstructive pulmonary disease (COPD) patients often experience lower limb muscle dysfunction and wasting. Exercise-based training has potential to improve muscle function and mass, but literature on this topic is extensive and heterogeneous including numerous interventions and outcome measures. This review uses a detailed systematic approach to investigate the effect of this wide range of exercise-based interventions on muscle function and mass. PUBMED and PEDro databases were searched. In all, 70 studies ( n = 2504 COPD patients) that implemented an exercise-based intervention and reported muscle strength, endurance, or mass in clinically stable COPD patients were critically appraised. Aerobic and/or resistance training, high-intensity interval training, electrical or magnetic muscle stimulation, whole-body vibration, and water-based training were investigated. Muscle strength increased in 78%, muscle endurance in 92%, and muscle mass in 88% of the cases where that specific outcome was measured. Despite large heterogeneity in exercise-based interventions and outcome measures used, most exercise-based trials showed improvements in muscle strength, endurance, and mass in COPD patients. Which intervention(s) is (are) best for which subgroup of patients remains currently unknown. Furthermore, this literature review identifies gaps in the current knowledge and generates recommendations for future research to enhance our knowledge on exercise-based interventions in COPD patients.

  2. Changes in lower limb muscle function and muscle mass following exercise-based interventions in patients with chronic obstructive pulmonary disease: A review of the English-language literature

    PubMed Central

    De Brandt, Jana; Spruit, Martijn A; Hansen, Dominique; Franssen, Frits ME; Derave, Wim; Sillen, Maurice JH; Burtin, Chris

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) patients often experience lower limb muscle dysfunction and wasting. Exercise-based training has potential to improve muscle function and mass, but literature on this topic is extensive and heterogeneous including numerous interventions and outcome measures. This review uses a detailed systematic approach to investigate the effect of this wide range of exercise-based interventions on muscle function and mass. PUBMED and PEDro databases were searched. In all, 70 studies (n = 2504 COPD patients) that implemented an exercise-based intervention and reported muscle strength, endurance, or mass in clinically stable COPD patients were critically appraised. Aerobic and/or resistance training, high-intensity interval training, electrical or magnetic muscle stimulation, whole-body vibration, and water-based training were investigated. Muscle strength increased in 78%, muscle endurance in 92%, and muscle mass in 88% of the cases where that specific outcome was measured. Despite large heterogeneity in exercise-based interventions and outcome measures used, most exercise-based trials showed improvements in muscle strength, endurance, and mass in COPD patients. Which intervention(s) is (are) best for which subgroup of patients remains currently unknown. Furthermore, this literature review identifies gaps in the current knowledge and generates recommendations for future research to enhance our knowledge on exercise-based interventions in COPD patients. PMID:28580854

  3. Effects of respiratory muscle training (RMT) in children with infantile-onset Pompe disease and respiratory muscle weakness.

    PubMed

    Jones, Harrison N; Crisp, Kelly D; Moss, Tronda; Strollo, Katherine; Robey, Randy; Sank, Jeffrey; Canfield, Michelle; Case, Laura E; Mahler, Leslie; Kravitz, Richard M; Kishnani, Priya S

    2014-01-01

    Respiratory muscle weakness is a primary therapeutic challenge for patients with infantile Pompe disease. We previously described the clinical implementation of a respiratory muscle training (RMT) regimen in two adults with late-onset Pompe disease; both demonstrated marked increases in inspiratory and expiratory muscle strength in response to RMT. However, the use of RMT in pediatric survivors of infantile Pompe disease has not been previously reported. We report the effects of an intensive RMT program on maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) using A-B-A (baseline-treatment-posttest) single subject experimental design in two pediatric survivors of infantile Pompe disease. Both subjects had persistent respiratory muscle weakness despite long-term treatment with alglucosidase alfa. Subject 1 demonstrated negligible to modest increases in MIP/MEP (6% increase in MIP, d=0.25; 19% increase in MEP, d=0.87), while Subject 2 demonstrated very large increases in MIP/MEP (45% increase in MIP, d=2.38; 81% increase in MEP, d=4.31). Following three-month RMT withdrawal, both subjects maintained these strength increases and demonstrated maximal MIP and MEP values at follow-up. Intensive RMT may be a beneficial treatment for respiratory muscle weakness in pediatric survivors of infantile Pompe disease.

  4. Extracellular Superoxide Dismutase Ameliorates Skeletal Muscle Abnormalities, Cachexia and Exercise Intolerance in Mice with Congestive Heart Failure

    PubMed Central

    Okutsu, Mitsuharu; Call, Jarrod A.; Lira, Vitor A.; Zhang, Mei; Donet, Jean A.; French, Brent A.; Martin, Kyle S.; Peirce-Cottler, Shayn M.; Rembold, Christopher M.; Annex, Brian H.; Yan, Zhen

    2014-01-01

    Background Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide (NO)-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of the NO-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. Methods and Results We demonstrated that systemic administration of endogenous nitric oxide donor S-Nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis [muscle creatine kinase (MCK)-EcSOD] in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF [α-myosin heavy chain (MHC)-calsequestrin] MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced heart failure. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria and vascular rarefaction in skeletal muscle. Conclusions EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF. PMID:24523418

  5. Analysis of Possibility of Yeast Production Increase at Maintained Carbon Dioxide Emission Level

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Barbara; Włodarczyk, Paweł P.

    2016-12-01

    Main parameters polluting of technological wastewater (dregs from decantation and thicken of the wort) from yeast industry are: nitrogen, potassium and COD. Such wastewater are utilized mostly on agricultural fields. Unfortunately, these fields can only accept a limited amount of wastes. The basic parameter limiting there the amount of wastewater is nitrogen. When capacity of the production is large sewages are often pretreated at an evaporator station. However, due to the fairly high running costs of the evaporator station currently such a solution is applied only to a small amount of wastes (just to meet legal requirements). Replacement of the earth gas with a biomass being supplied to the evaporator station from the agricultural fields will both allow to maintain the carbon dioxide emission level and enable the production growth. Moreover, the biomass growing on the agricultural fields being fertilized with the wastewater coming from the yeast production allows consequently to utilize the greater volume of wastewater. Theoretically, the possible increase in the yeasts production, with maintaining the carbon dioxide emission level, can reach even 70%. Therefore, the solution presented in this paper combines both intensification of the yeasts production and maintaining the carbon dioxide emission level.

  6. The Correlation of Skeletal and Cardiac Muscle Dysfunction in Duchenne Muscular Dystrophy.

    PubMed

    Posner, Andrew D; Soslow, Jonathan H; Burnette, W Bryan; Bian, Aihua; Shintani, Ayumi; Sawyer, Douglas B; Markham, Larry W

    2016-01-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle and cardiac dysfunction. While skeletal muscle dysfunction precedes cardiomyopathy, the relationship between the progressive decline in skeletal and cardiac muscle function is unclear. This relationship is especially important given that the myocardial effects of many developing DMD therapies are largely unknown. Our objective was to assess the relationship between progression of skeletal muscle weakness and onset of cardiac dysfunction in DMD. A total of 77 DMD subjects treated at a single referral center were included. Demographic information, quantitative muscle testing (QMT), subjective muscle strength, cardiac function, and current and retrospective medications were collected. A Spearman rank correlation was used to evaluate for an association between subjective strength and fractional shortening. The effects of total QMT and arm QMT on fractional shortening were examined in generalized least square with and without adjustments for age, ambulatory status, and duration of corticosteroids and cardiac specific medications. We found a significant correlation between maintained subjective skeletal muscle arm and leg strength and maintained cardiac function as defined by fractional shortening (rho=0.47, p=0.004 and rho=0.48, p=0.003, respectively). We also found a significant association between QMT and fractional shortening among non-ambulatory DMD subjects (p=0.03), while this association was not significant in ambulatory subjects. Our findings allow us to conclude that in this population, there exists a significant relationship between skeletal muscle and cardiac function in non-ambulatory DMD patients. While this does not imply a causal relationship, a possible association between skeletal and cardiac muscle function suggests that researchers should carefully monitor cardiac function, even when the primary outcome measures are not cardiac in nature.

  7. In-situ vitrification of waste materials

    DOEpatents

    Powell, James R.; Reich, Morris; Barletta, Robert

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  8. Extrinsic versus intrinsic hand muscle dominance in finger flexion.

    PubMed

    Al-Sukaini, A; Singh, H P; Dias, J J

    2016-05-01

    This study aims to identify the patterns of dominance of extrinsic or intrinsic muscles in finger flexion during initiation of finger curl and mid-finger flexion. We recorded 82 hands of healthy individuals (18-74 years) while flexing their fingers and tracked the finger joint angles of the little finger using video motion tracking. A total of 57 hands (69.5%) were classified as extrinsic dominant, where the finger flexion was initiated and maintained at proximal interphalangeal and distal interphalangeal joints. A total of 25 (30.5%) were classified as intrinsic dominant, where the finger flexion was initiated and maintained at the metacarpophalangeal joint. The distribution of age, sex, dominance, handedness and body mass index was similar in the two groups. This knowledge may allow clinicians to develop more efficient rehabilitation regimes, since intrinsic dominant individuals would not initiate extrinsic muscle contraction till later in finger flexion, and might therefore be allowed limited early active motion. For extrinsic dominant individuals, by contrast, initial contraction of extrinsic muscles would place increased stress on the tendon repair site if early motion were permitted. © The Author(s) 2016.

  9. Molecular and cell-based therapies for muscle degenerations: a road under construction.

    PubMed

    Berardi, Emanuele; Annibali, Daniela; Cassano, Marco; Crippa, Stefania; Sampaolesi, Maurilio

    2014-01-01

    Despite the advances achieved in understanding the molecular biology of muscle cells in the past decades, there is still need for effective treatments of muscular degeneration caused by muscular dystrophies and for counteracting the muscle wasting caused by cachexia or sarcopenia. The corticosteroid medications currently in use for dystrophic patients merely help to control the inflammatory state and only slightly delay the progression of the disease. Unfortunately, walkers and wheel chairs are the only options for such patients to maintain independence and walking capabilities until the respiratory muscles become weak and the mechanical ventilation is needed. On the other hand, myostatin inhibition, IL-6 antagonism and synthetic ghrelin administration are examples of promising treatments in cachexia animal models. In both dystrophies and cachectic syndrome the muscular degeneration is extremely relevant and the translational therapeutic attempts to find a possible cure are well defined. In particular, molecular-based therapies are common options to be explored in order to exploit beneficial treatments for cachexia, while gene/cell therapies are mostly used in the attempt to induce a substantial improvement of the dystrophic muscular phenotype. This review focuses on the description of the use of molecular administrations and gene/stem cell therapy to treat muscular degenerations. It reviews previous trials using cell delivery protocols in mice and patients starting with the use of donor myoblasts, outlining the likely causes for their poor results and briefly focusing on satellite cell studies that raise new hope. Then it proceeds to describe recently identified stem/progenitor cells, including pluripotent stem cells and in relationship to their ability to home within a dystrophic muscle and to differentiate into skeletal muscle cells. Different known features of various stem cells are compared in this perspective, and the few available examples of their use in

  10. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    PubMed

    Jagoe, R T; Goldberg, A L

    2001-05-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  11. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?

    NASA Technical Reports Server (NTRS)

    Jagoe, R. T.; Goldberg, A. L.

    2001-01-01

    Studies of many different rodent models of muscle wasting have indicated that accelerated proteolysis via the ubiquitin-proteasome pathway is the principal cause of muscle atrophy induced by fasting, cancer cachexia, metabolic acidosis, denervation, disuse, diabetes, sepsis, burns, hyperthyroidism and excess glucocorticoids. However, our understanding about how muscle proteins are degraded, and how the ubiquitin-proteasome pathway is activated in muscle under these conditions, is still very limited. The identities of the important ubiquitin-protein ligases in skeletal muscle, and the ways in which they recognize substrates are still largely unknown. Recent in-vitro studies have suggested that one set of ubquitination enzymes, E2(14K) and E3(alpha), which are responsible for the 'N-end rule' system of ubiquitination, plays an important role in muscle, especially in catabolic states. However, their functional significance in degrading different muscle proteins is still unclear. This review focuses on the many gaps in our understanding of the functioning of the ubiquitin-proteasome pathway in muscle atrophy, and highlights the strengths and limitations of the different experimental approaches used in such studies.

  12. WASTE HANDLING BUILDING VENTILATION SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.A. Kumar

    2000-06-21

    The Waste Handling Building Ventilation System provides heating, ventilation, and air conditioning (HVAC) for the contaminated, potentially contaminated, and uncontaminated areas of the Monitored Geologic Repository's (MGR) Waste Handling Building (WHB). In the uncontaminated areas, the non-confinement area ventilation system maintains the proper environmental conditions for equipment operation and personnel comfort. In the contaminated and potentially contaminated areas, in addition to maintaining the proper environmental conditions for equipment operation and personnel comfort, the contamination confinement area ventilation system directs potentially contaminated air away from personnel in the WHB and confines the contamination within high-efficiency particulate air (HEPA) filtration units. Themore » contamination confinement areas ventilation system creates airflow paths and pressure zones to minimize the potential for spreading contamination within the building. The contamination confinement ventilation system also protects the environment and the public by limiting airborne releases of radioactive or other hazardous contaminants from the WHB. The Waste Handling Building Ventilation System is designed to perform its safety functions under accident conditions and other Design Basis Events (DBEs) (such as earthquakes, tornadoes, fires, and loss of the primary electric power). Additional system design features (such as compartmentalization with independent subsystems) limit the potential for cross-contamination within the WHB. The system provides status of important system parameters and equipment operation, and provides audible and/or visual indication of off-normal conditions and equipment failures. The Waste Handling Building Ventilation System confines the radioactive and hazardous material within the building such that the release rates comply with regulatory limits. The system design, operations, and maintenance activities incorporate ALARA (as low as is

  13. Rules of tissue packing involving different cell types: human muscle organization

    PubMed Central

    Sánchez-Gutiérrez, Daniel; Sáez, Aurora; Gómez-Gálvez, Pedro; Paradas, Carmen; Escudero, Luis M.

    2017-01-01

    Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the “slow” and “fast” fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist. PMID:28071729

  14. Rules of tissue packing involving different cell types: human muscle organization.

    PubMed

    Sánchez-Gutiérrez, Daniel; Sáez, Aurora; Gómez-Gálvez, Pedro; Paradas, Carmen; Escudero, Luis M

    2017-01-10

    Natural packed tissues are assembled as tessellations of polygonal cells. These include skeletal muscles and epithelial sheets. Skeletal muscles appear as a mosaic composed of two different types of cells: the "slow" and "fast" fibres. Their relative distribution is important for the muscle function but little is known about how the fibre arrangement is established and maintained. In this work we capture the organizational pattern in two different healthy muscles: biceps brachii and quadriceps. Here we show that the biceps brachii muscle presents a particular arrangement, based on the different sizes of slow and fast fibres. By contrast, in the quadriceps muscle an unbiased distribution exists. Our results indicate that the relative size of each cellular type imposes an intrinsic organization into natural tessellations. These findings establish a new framework for the analysis of any packed tissue where two or more cell types exist.

  15. Rotator cuff muscle degeneration and tear severity related to myogenic, adipogenic, and atrophy genes in human muscle.

    PubMed

    Shah, Shivam A; Kormpakis, Ioannis; Cavinatto, Leonardo; Killian, Megan L; Thomopoulos, Stavros; Galatz, Leesa M

    2017-12-01

    Large rotator cuff tear size and advanced muscle degeneration can affect reparability of tears and compromise tendon healing. Clinicians often rely on direct measures of rotator cuff tear size and muscle degeneration from magnetic resonance imaging (MRI) to determine whether the rotator cuff tear is repairable. The objective of this study was to identify the relationship between gene expression changes in rotator cuff muscle degeneration to standard data available to clinicians. Radiographic assessment of preoperative rotator cuff tear severity was completed for 25 patients with varying magnitudes of rotator cuff tears. Tear width and retraction were measured using MRI, and Goutallier grade, tangent (tan) sign, and Thomazeau grade were determined. Expression of myogenic-, adipogenic-, atrophy-, and metabolism-related genes in biopsied muscles were correlated with tear width, tear retraction, Goutallier grade, tan sign, and Thomazeau grade. Tear width positively correlated with Goutallier grade in both the supraspinatus (r = 0.73) and infraspinatus (r = 0.77), along with tan sign (r = 0.71) and Thomazeau grade (r = 0.68). Decreased myogenesis (Myf5), increased adipogenesis (CEBPα, Lep, Wnt10b), and decreased metabolism (PPARα) correlated with radiographic assessments. Gene expression changes suggest that rotator cuff tears lead to a dramatic molecular response in an attempt to maintain normal muscle tissue, increase adipogenesis, and decrease metabolism. Fat accumulation and muscle atrophy appear to stem from endogenous changes rather than from changes mediated by infiltrating cells. Results suggest that chronic unloading of muscle, induced by rotator cuff tear, disrupts muscle homeostasis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2808-2814, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Growth hormone/IGF-I and/or resistive exercise maintains myonuclear number in hindlimb unweighted muscles

    NASA Technical Reports Server (NTRS)

    Allen, D. L.; Linderman, J. K.; Roy, R. R.; Grindeland, R. E.; Mukku, V.; Edgerton, V. R.

    1997-01-01

    In the present study of rats, we examined the role, during 2 wk of hindlimb suspension, of growth hormone/insulin-like growth factor I (GH/IGF-I) administration and/or brief bouts of resistance exercise in ameliorating the loss of myonuclei in fibers of the soleus muscle that express type I myosin heavy chain. Hindlimb suspension resulted in a significant decrease in mean soleus wet weight that was attenuated either by exercise alone or by exercise plus GH/IGF-I treatment but was not attenuated by hormonal treatment alone. Both mean myonuclear number and mean fiber cross-sectional area (CSA) of fibers expressing type I myosin heavy chain decreased after 2 wk of suspension compared with control (134 vs. 162 myonuclei/mm and 917 vs. 2,076 micron2, respectively). Neither GH/IGF-I treatment nor exercise alone affected myonuclear number or fiber CSA, but the combination of exercise and growth-factor treatment attenuated the decrease in both variables. A significant correlation was found between mean myonuclear number and mean CSA across all groups. Thus GH/IGF-I administration and brief bouts of muscle loading had an interactive effect in attenuating the loss of myonuclei induced by chronic unloading.

  17. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    PubMed

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  18. Insulin modulates energy and substrate sensing and protein catabolism induced by chronic peritonitis in skeletal muscle of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Acute infection promotes skeletal muscle wasting and insulin resistance, but the effect of insulin on energy and substrate sensing in skeletal muscle of chronically infected neonates has not been studied. Eighteen 2-d-old pigs underwent cecal ligation and puncture (CLP) or sham surgery (CON) to ind...

  19. Radioactive waste management complex low-level waste radiological composite analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consistsmore » of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.« less

  20. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia.

  1. Anatomy and histochemistry of spread-wing posture in birds. 3. Immunohistochemistry of flight muscles and the "shoulder lock" in albatrosses.

    PubMed

    Meyers, Ron A; Stakebake, Eric F

    2005-01-01

    As a postural behavior, gliding and soaring flight in birds requires less energy than flapping flight. Slow tonic and slow twitch muscle fibers are specialized for sustained contraction with high fatigue resistance and are typically found in muscles associated with posture. Albatrosses are the elite of avian gliders; as such, we wanted to learn how their musculoskeletal system enables them to maintain spread-wing posture for prolonged gliding bouts. We used dissection and immunohistochemistry to evaluate muscle function for gliding flight in Laysan and Black-footed albatrosses. Albatrosses possess a locking mechanism at the shoulder composed of a tendinous sheet that extends from origin to insertion throughout the length of the deep layer of the pectoralis muscle. This fascial "strut" passively maintains horizontal wing orientation during gliding and soaring flight. A number of muscles, which likely facilitate gliding posture, are composed exclusively of slow fibers. These include Mm. coracobrachialis cranialis, extensor metacarpi radialis dorsalis, and deep pectoralis. In addition, a number of other muscles, including triceps scapularis, triceps humeralis, supracoracoideus, and extensor metacarpi radialis ventralis, were found to have populations of slow fibers. We believe that this extensive suite of uniformly slow muscles is associated with sustained gliding and is unique to birds that glide and soar for extended periods. These findings suggest that albatrosses utilize a combination of slow muscle fibers and a rigid limiting tendon for maintaining a prolonged, gliding posture.

  2. Trunk muscle activity increases with unstable squat movements.

    PubMed

    Anderson, Kenneth; Behm, David G

    2005-02-01

    The objective of this study was to determine differences in electromyographic (EMG) activity of the soleus (SOL), vastus lateralis (VL), biceps femoris (BF), abdominal stabilizers (AS), upper lumbar erector spinae (ULES), and lumbo-sacral erector spinae (LSES) muscles while performing squats of varied stability and resistance. Stability was altered by doing the squat movement on a Smith machine, a free squat, and while standing on two balance discs. Fourteen male subjects performed the movements. Activities of the SOL, AS, ULES, and LSES were highest during the unstable squat and lowest with the Smith machine protocol (p < 0.05). Increased EMG activity of these muscles may be attributed to their postural and stabilization role. Furthermore, EMG activity was higher during concentric contractions compared to eccentric contractions. Performing squats on unstable surfaces may permit a training adaptation of the trunk muscles responsible for supporting the spinal column (i.e., erector spinae) as well as the muscles most responsible for maintaining posture (i.e., SOL).

  3. Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle

    PubMed Central

    Kim, Yuho; Triolo, Matthew

    2017-01-01

    Mitochondria are characterized by its pivotal roles in managing energy production, reactive oxygen species, and calcium, whose aging-related structural and functional deteriorations are observed in aging muscle. Although it is still unclear how aging alters mitochondrial quality and quantity in skeletal muscle, dysregulation of mitochondrial biogenesis and dynamic controls has been suggested as key players for that. In this paper, we summarize current understandings on how aging regulates muscle mitochondrial biogenesis, while focusing on transcriptional regulations including PGC-1α, AMPK, p53, mtDNA, and Tfam. Further, we review current findings on the muscle mitochondrial dynamic systems in aging muscle: fusion/fission, autophagy/mitophagy, and protein import. Next, we also discuss how endurance and resistance exercises impact on the mitochondrial quality controls in aging muscle, suggesting possible effective exercise strategies to improve/maintain mitochondrial health. PMID:28656072

  4. Muscle Deoxygenation Causes Muscle Fatigue

    NASA Technical Reports Server (NTRS)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  5. Myoblast replication is reduced in the IUGR fetus despite maintained proliferative capacity in vitro.

    PubMed

    Soto, Susan M; Blake, Amy C; Wesolowski, Stephanie R; Rozance, Paul J; Barthel, Kristen B; Gao, Bifeng; Hetrick, Byron; McCurdy, Carrie E; Garza, Natalia G; Hay, William W; Leinwand, Leslie A; Friedman, Jacob E; Brown, Laura D

    2017-03-01

    Adults who were affected by intrauterine growth restriction (IUGR) suffer from reductions in muscle mass and insulin resistance, suggesting muscle growth may be restricted by molecular events that occur during fetal development. To explore the basis of restricted fetal muscle growth, we used a sheep model of progressive placental insufficiency-induced IUGR to assess myoblast proliferation within intact skeletal muscle in vivo and isolated myoblasts stimulated with insulin in vitro Gastrocnemius and soleus muscle weights were reduced by 25% in IUGR fetuses compared to those in controls (CON). The ratio of PAX7+ nuclei (a marker of myoblasts) to total nuclei was maintained in IUGR muscle compared to CON, but the fraction of PAX7+ myoblasts that also expressed Ki-67 (a marker of cellular proliferation) was reduced by 23%. Despite reduced proliferation in vivo, fetal myoblasts isolated from IUGR biceps femoris and cultured in enriched media in vitro responded robustly to insulin in a dose- and time-dependent manner to increase proliferation. Similarly, insulin stimulation of IUGR myoblasts upregulated key cell cycle genes and DNA replication. There were no differences in the expression of myogenic regulatory transcription factors that drive commitment to muscle differentiation between CON and IUGR groups. These results demonstrate that the molecular machinery necessary for transcriptional control of proliferation remains intact in IUGR fetal myoblasts, indicating that in vivo factors such as reduced insulin and IGF1, hypoxia and/or elevated counter-regulatory hormones may be inhibiting muscle growth in IUGR fetuses. © 2017 Society for Endocrinology.

  6. Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-14-2-0190 TITLE: Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone PRINCIPAL...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...2015 - 29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Testosterone Combined with Electrical Stimulation and Standing: Effect on Muscle and Bone

  7. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.

    PubMed

    Rodriguez, J; Vernus, B; Chelh, I; Cassar-Malek, I; Gabillard, J C; Hadj Sassi, A; Seiliez, I; Picard, B; Bonnieu, A

    2014-11-01

    Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.

  8. Sternohyoid and diaphragm muscle form and function during postnatal development in the rat.

    PubMed

    O'Connell, R A; Carberry, J; O'Halloran, K D

    2013-09-01

    What is the central question of this study? Co-ordinated activity of the thoracic pump and pharyngeal dilator muscles is critical for maintaining airway calibre and respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in the airway dilator muscles. What is the main finding and its importance? Developmental increases in force-generating capacity and fatigue in the sternohyoid and diaphragm muscles are attributed to a maturational shift in muscle myosin heavy chain phenotype. This maturation is accelerated in the sternohyoid muscle relative to the diaphragm and may have implications for the control of airway calibre in vivo. The striated muscles of breathing, including the thoracic pump and pharyngeal dilator muscles, play a critical role in maintaining respiratory homeostasis. Whilst postnatal maturation of the diaphragm has been well characterized, surprisingly little is known about the developmental programme in airway dilator muscles given that co-ordinated activity of both sets of muscles is needed for the maintenance of airway calibre and effective pulmonary ventilation. The form and function of sternohyoid and diaphragm muscles from Wistar rat pups [postnatal day (PD) 10, 20 and 30] was determined. Isometric contractile and endurance properties were examined in tissue baths containing Krebs solution at 35°C. Myosin heavy chain (MHC) isoform composition was determined using immunofluorescence. Muscle oxidative and glycolytic capacity was assessed by measuring the activities of succinate dehydrogenase and glycerol-3-phosphate dehydrogenase using semi-quantitative histochemistry. Sternohyoid and diaphragm peak isometric force and fatigue increased significantly with postnatal maturation. Developmental myosin disappeared by PD20, whereas MHC2B areal density increased significantly from PD10 to PD30, emerging earlier and to a much greater extent in the

  9. Environmental control and waste management system design concept

    NASA Technical Reports Server (NTRS)

    Gandy, A. R.

    1974-01-01

    Passive device contains both solid and liquid animal waste matter for extended period without being cleaned and without contaminating animal. Constant airflow dries solid waste and evaporates liquid matter. Technique will maintain controlled atmospheric conditions and cage cleanliness during periods of 6 months to 1 year.

  10. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  11. Upper airway muscles awake and asleep.

    PubMed

    Sériès, Frédéric

    2002-06-01

    Upper airway (UA) structures are involved in different respiratory and non-respiratory tasks. The coordination of agonist and antagonist UA dilators is responsible for their mechanical function and their ability to maintain UA patency throughout the respiratory cycle. The activity of these muscles is linked with central respiratory activity but also depends on UA pressure changes and is greatly influenced by sleep. UA muscles are involved in determining UA resistance and stability (i.e. closing pressure), and the effect of sleep on these variables may be accounted for by its effect on tonic and phasic skeletal muscle activities. The mechanical effects of UA dilator contraction also depend on their physiological properties (capacity to generate tension in vitro, activity of the anaerobic enzymatic pathway, histo-chemical characteristics that may differ between subjects who may or may not have sleep-related obstructive breathing disorders). These characteristics may represent an adaptive process to an increased resistive loading of these muscles. The apparent discrepancy between the occurrence of UA closure and an increased capacity to generate tension in sleep apnea patients may be due to a reduction in the effectiveness of UA muscle contraction in these patients; such an increase in tissue stiffness could be accounted for by peri-muscular tissue characteristics. Therefore, understanding of UA muscle physiological characteristics should take into account its capacity for force production and its mechanical coupling with other UA tissues. Important research goals for the future will be to integrate these issues with other physiological features of the disease, such as UA size and dimension, histological characteristics of UA tissues and the effect of sleep on muscle function. Such integration will better inform understanding of the role of pharyngeal UA muscles in the pathophysiology of the sleep apnea/hypopnea syndrome.

  12. In-situ vitrification of waste materials

    DOEpatents

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  13. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration.

    PubMed

    Bi, Pengpeng; McAnally, John R; Shelton, John M; Sánchez-Ortiz, Efrain; Bassel-Duby, Rhonda; Olson, Eric N

    2018-04-10

    Regeneration of skeletal muscle in response to injury occurs through fusion of a population of stem cells, known as satellite cells, with injured myofibers. Myomixer, a muscle-specific membrane micropeptide, cooperates with the transmembrane protein Myomaker to regulate embryonic myoblast fusion and muscle formation. To investigate the role of Myomixer in muscle regeneration, we used CRISPR/Cas9-mediated genome editing to generate conditional knockout Myomixer alleles in mice. We show that genetic deletion of Myomixer in satellite cells using a tamoxifen-regulated Cre recombinase transgene under control of the Pax7 promoter abolishes satellite cell fusion and prevents muscle regeneration, resulting in severe muscle degeneration after injury. Satellite cells devoid of Myomixer maintain expression of Myomaker, demonstrating that Myomaker alone is insufficient to drive myoblast fusion. These findings, together with prior studies demonstrating the essentiality of Myomaker for muscle regeneration, highlight the obligatory partnership of Myomixer and Myomaker for myofiber formation throughout embryogenesis and adulthood.

  14. A gravity exercise system. [for muscle conditioning during manned space flight

    NASA Technical Reports Server (NTRS)

    Brandt, W. E.; Clark, A. L.

    1973-01-01

    An effective method for muscle conditioning during weightlessness flight is derived from isometric exercise. The basic principle of gravity exercise is to periodically displace the human body upon reactionless rollers so that spacial equilibrium can only be maintained by the proper tension and relaxation of the body's muscles. A rotating platform mounted upon two degrees of freedom rollers provides such a condition of gravitational reaction stress throughout each of its 360 deg rotation.

  15. The metabolic and temporal basis of muscle hypertrophy in response to resistance exercise.

    PubMed

    Brook, Matthew S; Wilkinson, Daniel J; Smith, Kenneth; Atherton, Philip J

    2016-09-01

    Constituting ∼40% of body mass, skeletal muscle has essential locomotory and metabolic functions. As such, an insight into the control of muscle mass is of great importance for maintaining health and quality-of-life into older age, under conditions of cachectic disease and with rehabilitation. In healthy weight-bearing individuals, muscle mass is maintained by the equilibrium between muscle protein synthesis (MPS) and muscle protein breakdown; when this balance tips in favour of MPS hypertrophy occurs. Despite considerable research into pharmacological/nutraceutical interventions, resistance exercise training (RE-T) remains the most potent stimulator of MPS and hypertrophy (in the majority of individuals). However, the mechanism(s) and time course of hypertrophic responses to RE-T remain poorly understood. We would suggest that available data are very much in favour of the notion that the majority of hypertrophy occurs in the early phases of RE-T (though still controversial to some) and that, for the most part, continued gains are hard to come by. Whilst the mechanisms of muscle hypertrophy represent the culmination of mechanical, auto/paracrine and endocrine events, the measurement of MPS remains a cornerstone for understanding the control of hypertrophy - mainly because it is the underlying driving force behind skeletal muscle hypertrophy. Development of sophisticated isotopic techniques (i.e. deuterium oxide) that lend to longer term insight into the control of hypertrophy by sustained RE-T will be paramount in providing insights into the metabolic and temporal regulation of hypertrophy. Such technologies will have broad application in muscle mass intervention for both athletes and for mitigating disease/age-related cachexia and sarcopenia, alike.

  16. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation

    PubMed Central

    Pizzamiglio, Sara; De Lillo, Martina; Naeem, Usman; Abdalla, Hassan; Turner, Duncan L.

    2017-01-01

    Adaptation of arm reaching in a novel force field involves co-contraction of upper limb muscles, but it is not known how the co-ordination of multiple muscle activation is orchestrated. We have used intermuscular coherence (IMC) to test whether a coherent intermuscular coupling between muscle pairs is responsible for novel patterns of activation during adaptation of reaching in a force field. Subjects (N = 16) performed reaching trials during a null force field, then during a velocity-dependent force field and then again during a null force field. Reaching trajectory error increased during early adaptation to the force-field and subsequently decreased during later adaptation. Co-contraction in the majority of all possible muscle pairs also increased during early adaptation and decreased during later adaptation. In contrast, IMC increased during later adaptation and only in a subset of muscle pairs. IMC consistently occurred in frequencies between ~40–100 Hz and during the period of arm movement, suggesting that a coherent intermuscular coupling between those muscles contributing to adaptation enable a reduction in wasteful co-contraction and energetic cost during reaching. PMID:28119620

  17. Latest consensus and update on protein-energy wasting in chronic kidney disease.

    PubMed

    Obi, Yoshitsugu; Qader, Hemn; Kovesdy, Csaba P; Kalantar-Zadeh, Kamyar

    2015-05-01

    Protein-energy wasting (PEW) is a state of metabolic and nutritional derangements in chronic disease states including chronic kidney disease (CKD). Cumulative evidence suggests that PEW, muscle wasting and cachexia are common and strongly associated with mortality in CKD, which is reviewed here. The malnutrition-inflammation score (KALANTAR Score) is among the comprehensive and outcome-predicting nutritional scoring tools. The association of obesity with poor outcomes is attenuated across more advanced CKD stages and eventually reverses in the form of obesity paradox. Frailty is closely associated with PEW, muscle wasting and cachexia. Muscle loss shows stronger associations with unfavorable outcomes than fat loss. Adequate energy supplementation combined with low-protein diet for the management of CKD may prevent the development of PEW and can improve adherence to low-protein diet, but dietary protein requirement may increase with aging and is higher under dialysis therapy. Phosphorus burden may lead to poor outcomes. The target serum bicarbonate concentration is normal range and at least 23 mEq/l for nondialysis-dependent and dialysis-dependent CKD patients, respectively. A benefit of exercise is suggested but not yet conclusively proven. Prevention and treatment of PEW should involve individualized and integrated approaches to modulate identified risk factors and contributing comorbidities.

  18. Role of IGF-I Signaling in Muscle Bone Interactions

    PubMed Central

    Bikle, Daniel D; Tahimic, Candice; Chang, Wenhan; Wang, Yongmei; Philippou, Anastassios; Barton, Elisabeth R.

    2015-01-01

    Skeletal muscle and bone rely on a number of growth factors to undergo development, modulate growth, and maintain physiological strength. A major player in these actions is insulin-like growth factor I (IGF-I). However, because this growth factor can directly enhance muscle mass and bone density, it alters the state of the musculoskeletal system indirectly through mechanical crosstalk between these two organ systems. Thus, there are clearly synergistic actions of IGF-I that extend beyond the direct activity through its receptor. This review will cover the production and signaling of IGF-I as it pertains to muscle and bone, the chemical and mechanical influences that arise from IGF-I activity, and the potential for therapeutic strategies based on IGF-I. PMID:26453498

  19. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  20. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  1. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  2. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  3. 10 CFR 20.2108 - Records of waste disposal.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of waste disposal. 20.2108 Section 20.2108 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2108 Records of waste disposal. (a) Each licensee shall maintain records of the disposal of licensed materials made...

  4. Charge movements and transverse tubular ultrastructure in organ cultured skeletal muscle.

    PubMed

    Cullen, M J; Hollingworth, S; Marshall, M W; Robson, E

    1990-04-01

    A study was made of charge movements and the transverse tubular systems in rat EDL and soleus muscle fibres maintained for up to five days in organ culture. In the cultured EDL muscle the maximum amount of charge moved was about one third of that in innervated muscle. Charge movements in innervated soleus fibres are small, less than 10 nC/microF, and difficult to resolve. They remain small following organ culturing. The ultrastructural study examined the concentration of junctional feet because of their proposed key role in excitation-contraction coupling. The general architecture of the triads and the spacing of the feet in both muscle types was largely unchanged by culturing. In cultured EDL muscles the small changes in feet concentration did not parallel the large fall in charge movement. The results reported here support a previous conclusion that, in mammalian muscle, there is not a simple relation between charge and feet. The stimulation of cultured soleus muscles with a fast twitch pattern of electrical activity produced no observable changes in morphology.

  5. Optimisation of isolation of richly pure and homogeneous primary human colonic smooth muscle cells.

    PubMed

    Tattoli, I; Corleto, V D; Taffuri, M; Campanini, N; Rindi, G; Caprilli, R; Delle Fave, G; Severi, C

    2004-11-01

    Inherent properties of gastrointestinal smooth muscle can be assessed using isolated cell suspensions. Currently available isolation techniques, based on short 2-h enzymatic digestion, however, present the disadvantage of low cellular yield with brief viability. These features are an important limiting factor especially in studies in humans in which tissue may not be available daily and mixing of samples is not recommended. To optimise the isolation procedure of cells from human colon to obtain a richly pure primary smooth muscle cell preparation. Slices of circular muscle layer, obtained from surgical specimens of human colon, were incubated overnight in Dulbecco's modified eagle's medium supplemented with antibiotics, foetal bovine serum, an ATP-regenerating system and collagenase. On the following day, digested muscle strips were suspended in HEPES buffer, and spontaneously dissociated smooth muscle cells were harvested and used either immediately or maintained in suspension for up to 72 h. Cell yield, purity, viability, contractile responses, associated intracellular calcium signals and RNA and protein extraction were evaluated and compared to cell suspensions obtained with the current short digestion protocol. The overnight isolation protocol offers the advantage of obtaining a pure, homogeneous, long-life viable cell suspension that maintains a fully differentiated smooth muscle phenotype unchanged for at least 72 h and that allows multiple functional/biochemical studies and efficient RNA extraction from a single human specimen.

  6. Understanding Muscle Dysfunction in Chronic Fatigue Syndrome

    PubMed Central

    Rutherford, Gina; Manning, Philip; Newton, Julia L.

    2016-01-01

    Introduction. Chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) is a debilitating disorder of unknown aetiology, characterised by severe disabling fatigue in the absence of alternative diagnosis. Historically, there has been a tendency to draw psychological explanations for the origin of fatigue; however, this model is at odds with findings that fatigue and accompanying symptoms may be explained by central and peripheral pathophysiological mechanisms, including effects of the immune, oxidative, mitochondrial, and neuronal pathways. For example, patient descriptions of their fatigue regularly cite difficulty in maintaining muscle activity due to perceived lack of energy. This narrative review examined the literature for evidence of biochemical dysfunction in CFS/ME at the skeletal muscle level. Methods. Literature was examined following searches of PUB MED, MEDLINE, and Google Scholar, using key words such as CFS/ME, immune, autoimmune, mitochondria, muscle, and acidosis. Results. Studies show evidence for skeletal muscle biochemical abnormality in CFS/ME patients, particularly in relation to bioenergetic dysfunction. Discussion. Bioenergetic muscle dysfunction is evident in CFS/ME, with a tendency towards an overutilisation of the lactate dehydrogenase pathway following low-level exercise, in addition to slowed acid clearance after exercise. Potentially, these abnormalities may lead to the perception of severe fatigue in CFS/ME. PMID:26998359

  7. Hydrogel biomaterials and their therapeutic potential for muscle injuries and muscular dystrophies

    PubMed Central

    Lev, Rachel

    2018-01-01

    Muscular diseases such as muscular dystrophies and muscle injuries constitute a large group of ailments that manifest as muscle weakness, atrophy or fibrosis. Although cell therapy is a promising treatment option, the delivery and retention of cells in the muscle is difficult and prevents sustained regeneration needed for adequate functional improvements. Various types of biomaterials with different physical and chemical properties have been developed to improve the delivery of cells and/or growth factors for treating muscle injuries. Hydrogels are a family of materials with distinct advantages for use as cell delivery systems in muscle injuries and ailments, including their mild processing conditions, their similarities to natural tissue extracellular matrix, and their ability to be delivered with less invasive approaches. Moreover, hydrogels can be made to completely degrade in the body, leaving behind their biological payload in a process that can enhance the therapeutic process. For these reasons, hydrogels have shown great potential as cell delivery matrices. This paper reviews a few of the hydrogel systems currently being applied together with cell therapy and/or growth factor delivery to promote the therapeutic repair of muscle injuries and muscle wasting diseases such as muscular dystrophies. PMID:29343633

  8. Becker muscular dystrophy with widespread muscle hypertrophy and a non-sense mutation of exon 2.

    PubMed

    Witting, N; Duno, M; Vissing, J

    2013-01-01

    Becker muscular dystrophy features progressive proximal weakness, wasting and often focal hypertrophy. We present a patient with pain and cramps from adolescence. Widespread muscle hypertrophy, preserved muscle strength and a 10-20-fold raised CPK were noted. Muscle biopsy was dystrophic, and Western blot showed a 95% reduction of dystrophin levels. Genetic analyses revealed a non-sense mutation in exon 2 of the dystrophin gene. This mutation is predicted to result in a Duchenne phenotype, but resulted in a mild Becker muscular dystrophy with widespread muscle hypertrophy. We suggest that this unusual phenotype is caused by translation re-initiation downstream from the mutation site. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Treatment of organic waste

    DOEpatents

    Grantham, LeRoy F.

    1979-01-01

    An organic waste containing at least one element selected from the group consisting of strontium, cesium, iodine and ruthenium is treated to achieve a substantial reduction in the volume of the waste and provide for fixation of the selected element in an inert salt. The method of treatment comprises introducing the organic waste and a source of oxygen into a molten salt bath maintained at an elevated temperature to produce solid and gaseous reaction products. The gaseous reaction products comprise carbon dioxide and water vapor, and the solid reaction products comprise the inorganic ash constituents of the organic waste and the selected element which is retained in the molten salt. The molten salt bath comprises one or more alkali metal carbonates, and may optionally include from 1 to about 25 wt.% of an alkali metal sulfate.

  10. Parvalbumin Gene Transfer Impairs Skeletal Muscle Contractility in Old Mice

    PubMed Central

    Murphy, Kate T.; Ham, Daniel J.; Church, Jarrod E.; Naim, Timur; Trieu, Jennifer; Williams, David A.

    2012-01-01

    Abstract Sarcopenia is the progressive age-related loss of skeletal muscle mass associated with functional impairments that reduce mobility and quality of life. Overt muscle wasting with sarcopenia is usually preceded by a slowing of the rate of relaxation and a reduction in maximum force production. Parvalbumin (PV) is a cytosolic Ca2+ buffer thought to facilitate relaxation in muscle. We tested the hypothesis that restoration of PV levels in muscles of old mice would increase the magnitude and hasten relaxation of submaximal and maximal force responses. The tibialis anterior (TA) muscles of young (6 month), adult (13 month), and old (26 month) C57BL/6 mice received electroporation-assisted gene transfer of plasmid encoding PV or empty plasmid (pcDNA3.1). Contractile properties of TA muscles were assessed in situ 14 days after transfer. In old mice, muscles with increased PV expression had a 40% slower rate of tetanic force development (p<0.01), and maximum twitch and tetanic force were 22% and 16% lower than control values, respectively (p<0.05). Muscles with increased PV expression from old mice had an 18% lower maximum specific (normalized) force than controls, and absolute force was ∼26% lower at higher stimulation frequencies (150–300 Hz, p<0.05). In contrast, there was no effect of increased PV expression on TA muscle contractile properties in young and adult mice. The impairments in skeletal muscle function in old mice argue against PV overexpression as a therapeutic strategy for ameliorating aspects of contractile dysfunction with sarcopenia and help clarify directions for therapeutic interventions for age-related changes in skeletal muscle structure and function. PMID:22455364

  11. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development.

    PubMed

    Chen, P R; Lee, K

    2016-08-01

    With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.

  12. Protein alterations in women with chronic widespread pain--An explorative proteomic study of the trapezius muscle.

    PubMed

    Olausson, Patrik; Gerdle, Björn; Ghafouri, Nazdar; Sjöström, Dick; Blixt, Emelie; Ghafouri, Bijar

    2015-07-07

    Chronic widespread pain (CWP) has a high prevalence in the population and is associated with prominent negative individual and societal consequences. There is no clear consensus concerning the etiology behind CWP although alterations in the central processing of nociception maintained by peripheral nociceptive input has been suggested. Here, we use proteomics to study protein changes in trapezius muscle from 18 female patients diagnosed with CWP compared to 19 healthy female subjects. The 2-dimensional gel electrophoresis (2-DE) in combination with multivariate statistical analyses revealed 17 proteins to be differently expressed between the two groups. Proteins were identified by mass spectrometry. Many of the proteins are important enzymes in metabolic pathways like the glycolysis and gluconeogenesis. Other proteins are associated with muscle damage, muscle recovery, stress and inflammation. The altered expressed levels of these proteins suggest abnormalities and metabolic changes in the myalgic trapezius muscle in CWP. Taken together, this study gives further support that peripheral factors may be of importance in maintaining CWP.

  13. Changes in muscle protein composition induced by disuse atrophy - Analysis by two-dimensional electrophoresis

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Giometti, C. S.; Riley, D. A.

    1985-01-01

    Using 320 g rats, a two-dimensional electrophoretic analysis of muscle proteins in the soleus and EDL muscles from hindlimbs maintained load-free for 10 days is performed. Statistical analysis of the two-dimensional patterns of control and suspended groups reveals more protein alteration in the soleus muscle, with 25 protein differences, than the EDL muscle, with 9 protein differences, as a result of atrophy. Most of the soleus differences reside in minor components. It is suggested that the EDL may also show alteration in its two-dimensional protein map, even though no significant atrophy occurred in muscle wet weight. It is cautioned that strict interpretation of data must take into account possible endocrine perturbations.

  14. Fat-Free Mass and Skeletal Muscle Mass Five Years After Bariatric Surgery.

    PubMed

    Davidson, Lance E; Yu, Wen; Goodpaster, Bret H; DeLany, James P; Widen, Elizabeth; Lemos, Thaisa; Strain, Gladys W; Pomp, Alfons; Courcoulas, Anita P; Lin, Susan; Janumala, Isaiah; Thornton, John C; Gallagher, Dympna

    2018-07-01

    This study investigated changes in fat-free mass (FFM) and skeletal muscle 5 years after surgery in participants from the Longitudinal Assessment of Bariatric Surgery-2 trial. A three-compartment model assessed FFM, and whole-body magnetic resonance imaging (MRI) quantified skeletal muscle mass prior to surgery (T0) and 1 year (T1), 2 years (T2), and 5 years (T5) postoperatively in 93 patients (85% female; 68% Caucasian; age 44.2 ± 11.6 years) who underwent gastric bypass (RYGB), sleeve gastrectomy, or adjustable gastric band. Repeated-measures mixed models were used to analyze the data. Significant weight loss occurred across all surgical groups in females from T0 to T1. FFM loss from T0 to T1 was greater after RYGB (mean ± SE: -6.9 ± 0.6 kg) than adjustable gastric band (-3.5 ± 1.4 kg; P < 0.05). Females with RYGB continued to lose FFM (-3.3 ± 0.7 kg; P < 0.001) from T1 to T5. A subset of males and females with RYGB and MRI-measured skeletal muscle showed similar initial FFM loss while maintaining FFM and skeletal muscle from T1 to T5. Between 1 and 5 years following common bariatric procedures, FFM and skeletal muscle are maintained or decrease minimally. The changes observed in FFM and muscle during the follow-up phase may be consistent with aging. © 2018 The Obesity Society.

  15. Different doses of supplemental vitamin D maintain interleukin-5 without altering skeletal muscle strength: a randomized, double-blind, placebo-controlled study in vitamin D sufficient adults

    PubMed Central

    2012-01-01

    Background Supplemental vitamin D modulates inflammatory cytokines and skeletal muscle function, but results are inconsistent. It is unknown if these inconsistencies are dependent on the supplemental dose of vitamin D. Therefore, the purpose of this study was to identify the influence of different doses of supplemental vitamin D on inflammatory cytokines and muscular strength in young adults. Methods Men (n = 15) and women (n = 15) received a daily placebo or vitamin D supplement (200 or 4000 IU) for 28-d during the winter. Serum 25-hydroxyvitamin D (25(OH)D), cytokine concentrations and muscular (leg) strength measurements were performed prior to and during supplementation. Statistical significance of data were assessed with a two-way (time, treatment) analysis of variance (ANOVA) with repeated measures, followed by a Tukey's Honestly Significant Difference to test multiple pairwise comparisons. Results Upon enrollment, 63% of the subjects were vitamin D sufficient (serum 25(OH)D ≥ 30 ng/ml). Serum 25(OH)D and interleukin (IL)-5 decreased (P < 0.05) across time in the placebo group. Supplemental vitamin D at 200 IU maintained serum 25(OH)D concentrations and increased IL-5 (P < 0.05). Supplemental vitamin D at 4000 IU increased (P < 0.05) serum 25(OH)D without altering IL-5 concentrations. Although serum 25(OH)D concentrations correlated (P < 0.05) with muscle strength, muscle strength was not changed by supplemental vitamin D. Conclusion In young adults who were vitamin D sufficient prior to supplementation, we conclude that a low-daily dose of supplemental vitamin D prevents serum 25(OH)D and IL-5 concentration decreases, and that muscular strength does not parallel the 25(OH)D increase induced by a high-daily dose of supplemental vitamin D. Considering that IL-5 protects against viruses and bacterial infections, these findings could have a broad physiological importance regarding the ability of vitamin D sufficiency to mediate the immune systems protection

  16. Muscle wasting induced by HTLV-1 tax-1 protein: an in vitro and in vivo study.

    PubMed

    Ozden, Simona; Mouly, Vincent; Prevost, Marie-Christine; Gessain, Antoine; Butler-Browne, Gillian; Ceccaldi, Pierre-Emmanuel

    2005-12-01

    Besides tropical spastic paraparesis/human T-cell leukemia virus type-1 (HTLV-1)-associated myelopathy, the human retrovirus HTLV-1 causes inflammatory disorders such as myositis. Although the pathogenesis of HTLV-1-associated myositis is primarily unknown, a direct effect of cytokines or viral proteins in myocytotoxicity is suspected. We have developed an in vitro cell culture model to study the interactions between primary human muscle cells and HTLV-1 chronically infected cells. When HTLV-1-infected cell lines were added to differentiated muscle cultures, cytopathic changes such as fiber shrinking were observed as early as 1 day after contact. This was accompanied by alterations in desmin and vimentin organization, occurring in the absence of muscle cell infection but with Tax-1 present in myotubes. Cytopathic changes were also observed when infected culture supernatants were added to the muscle cells. Fiber atrophy and cytoskeletal disorganization were confirmed in muscle biopsies from two HTLV-1-infected patients with myositis. Transduction of cultured muscle cells with a lentiviral vector containing the HTLV-1 Tax gene reproduced such effects in vitro. The present data indicate that the myocytotoxicity that is observed in HTLV-1-associated myopathies can be due to a direct effect of the Tax-1 protein expressed in infected inflammatory cells, in the absence of muscle cell infection.

  17. Muscle atrophy and recovery of individual thigh muscles as measured by magnetic resonance imaging scan during treatment with cast for ankle or foot fracture.

    PubMed

    Yamauchi, Koun; Yoshiko, Akito; Suzuki, Shigetoshi; Kato, Chisato; Akima, Hiroshi; Kato, Takayuki; Ishida, Koji

    2017-01-01

    We aimed to longitudinally investigate individual thigh muscle changes using magnetic resonance imaging (MRI) during treatment with cast of ankle or foot fracture. Moreover, we aimed to demonstrate whether measurements of muscle cross-sectional area (CSA) are sensitive to muscle changes, contributing to simpler methods in clinical application . Ten patients undergoing treatment with cast of acute ankle or foot fractures were studied. Axial MRI (1.5 T) was conducted around the affected mid-thigh region after the injury (Pre), after maintaining a nonweight-bearing (NWB) period (approximately 28 days), and after finishing rehabilitation (recovery). Regarding individual thigh muscles, the total CSAs corresponding to 40% of the femoral length (FL) and the CSAs at 5% interval of the FL were longitudinally measured. Standardized response means (SRMs) were accessed for sensitivity in the muscle changes. The total CSAs at NWB were significantly lower than those at Pre in vastus lateralis (10.9% ± 5.4%), vastus intermedius (8.4% ± 6.7%), and vastus medialis (11.2% ± 6.9%) ( p < 0.01 for all). In contrast, at recovery, the only significant muscle atrophy relative to that at Pre was observed in the semitendinosus of the proximal 15% and 10% CSAs ( p < 0.01 and p = 0.01, respectively). In all muscles, SRM using a single-slice CSA at or near the muscle belly was high. Thigh muscle changes differ according to the variations in individual muscles. CSA measurements at or near the muscle belly are simple methods and sensitive indicators of these muscle changes.

  18. Tumor Necrosis Factor-α Regulates Distinct Molecular Pathways and Gene Networks in Cultured Skeletal Muscle Cells

    PubMed Central

    Gupta, Sanjay K.; Dahiya, Saurabh; Lundy, Robert F.; Kumar, Ashok

    2010-01-01

    Background Skeletal muscle wasting is a debilitating consequence of large number of disease states and conditions. Tumor necrosis factor-α (TNF-α) is one of the most important muscle-wasting cytokine, elevated levels of which cause significant muscular abnormalities. However, the underpinning molecular mechanisms by which TNF-α causes skeletal muscle wasting are less well-understood. Methodology/Principal Findings We have used microarray, quantitative real-time PCR (QRT-PCR), Western blot, and bioinformatics tools to study the effects of TNF-α on various molecular pathways and gene networks in C2C12 cells (a mouse myoblastic cell line). Microarray analyses of C2C12 myotubes treated with TNF-α (10 ng/ml) for 18h showed differential expression of a number of genes involved in distinct molecular pathways. The genes involved in nuclear factor-kappa B (NF-kappaB) signaling, 26s proteasome pathway, Notch1 signaling, and chemokine networks are the most important ones affected by TNF-α. The expression of some of the genes in microarray dataset showed good correlation in independent QRT-PCR and Western blot assays. Analysis of TNF-treated myotubes showed that TNF-α augments the activity of both canonical and alternative NF-κB signaling pathways in myotubes. Bioinformatics analyses of microarray dataset revealed that TNF-α affects the activity of several important pathways including those involved in oxidative stress, hepatic fibrosis, mitochondrial dysfunction, cholesterol biosynthesis, and TGF-β signaling. Furthermore, TNF-α was found to affect the gene networks related to drug metabolism, cell cycle, cancer, neurological disease, organismal injury, and abnormalities in myotubes. Conclusions TNF-α regulates the expression of multiple genes involved in various toxic pathways which may be responsible for TNF-induced muscle loss in catabolic conditions. Our study suggests that TNF-α activates both canonical and alternative NF-κB signaling pathways in a time

  19. Masticatory muscles of mouse do not undergo atrophy in space.

    PubMed

    Philippou, Anastassios; Minozzo, Fabio C; Spinazzola, Janelle M; Smith, Lucas R; Lei, Hanqin; Rassier, Dilson E; Barton, Elisabeth R

    2015-07-01

    Muscle loading is important for maintaining muscle mass; when load is removed, atrophy is inevitable. However, in clinical situations such as critical care myopathy, masticatory muscles do not lose mass. Thus, their properties may be harnessed to preserve mass. We compared masticatory and appendicular muscles responses to microgravity, using mice aboard the space shuttle Space Transportation System-135. Age- and sex-matched controls remained on the ground. After 13 days of space flight, 1 masseter (MA) and tibialis anterior (TA) were frozen rapidly for biochemical and functional measurements, and the contralateral MA was processed for morphologic measurements. Flight TA muscles exhibited 20 ± 3% decreased muscle mass, 2-fold decreased phosphorylated (P)-Akt, and 4- to 12-fold increased atrogene expression. In contrast, MAs had no significant change in mass but a 3-fold increase in P-focal adhesion kinase, 1.5-fold increase in P-Akt, and 50-90% lower atrogene expression compared with limb muscles, which were unaltered in microgravity. Myofibril force measurements revealed that microgravity caused a 3-fold decrease in specific force and maximal shortening velocity in TA muscles. It is surprising that myofibril-specific force from both control and flight MAs were similar to flight TA muscles, yet power was compromised by 40% following flight. Continued loading in microgravity prevents atrophy, but masticatory muscles have a different set point that mimics disuse atrophy in the appendicular muscle. © FASEB.

  20. Exercise countermeasures for long-duration spaceflight: muscle- and intensity-specific considerations

    NASA Astrophysics Data System (ADS)

    Trappe, Todd

    2012-07-01

    On-orbit and ground-based microgravity simulation studies have provided a wealth of information regarding the efficacy of exercise countermeasures for protecting skeletal muscle and cardiovascular function during long-duration spaceflights. While it appears that exercise will be the central component to maintaining skeletal muscle and cardiovascular health of astronauts, the current exercise prescription is not completely effective and is time consuming. This lecture will focus on recent exercise physiology studies examining high intensity, low volume exercise in relation to muscle specific and cardiovascular health. These studies provide the basis of the next generation exercise prescription currently being implemented during long-duration space missions on the International Space Station.

  1. 25-hydroxycholecalciferol stimulation of muscle metabolism.

    PubMed Central

    Birge, S J; Haddad, J G

    1975-01-01

    Intact diaphragms from vitamin D-deficient rats were incubated in vitro with [3H]leucine. Oral administration of 10 mug (400 U) of cholecalciferol 7 h before incubation increased leucine incorporation into diaphragm muscle protein by 136% (P less than 0.001) of the preparation from untreated animals. Nephrectomy did not obliterate this response. ATP content of the diaphragm muscle was also enhanced 7 h after administration of the vitamin. At 4 h after administration of cholecalciferol, serum phosphorus concentration was reduced by 0.7 mg/100 ml (P less than 0.025) and the rate of inorganic 32PO4 accumulation by diaphragm muscle was increased by 18% (P less than 0.025) over the untreated animals. Increasing serum phosphate concentration of the vitamin D-deficient animals by dietary supplementation with phosphate for 3 days failed to significantly enhance leucine incorporation into protein. However, supplementation of the rachitogenic, vitamin D-deficient diet with phosphorus for 3 wk stimulated the growth of the animal and muscle ATP levels. This increase in growth and muscle ATP content attributed to the addition of phosphorus to the diet was less than the increase in growth and muscle ATP levels achieved by the addition of both phosphorus and vitamin D to the diet. To eliminate systemic effects of the vitamin, the epitrochlear muscle of the rat foreleg of vitamin D-depleted rats was maintained in tissue culture. Addition of 20 ng/ml of 25-hydroxycholecalciferol (25-OHD3) to the medium enhanced ATP content of the muscle and increased leucine incorporation into protein. Vitamin D3 at a concentration of 20 mug/ml and 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) at a concentration of 500 pg/ml were without effect. Analysis of muscle cytosol in sucrose density gradients revealed a protein fraction which specifically bound 25-OHD3 and which demonstrated a lesser affinity for 1,25-(OH)2D3. These studies suggest that 25-OHD3 may influence directly the intracellular

  2. MST1, a key player, in enhancing fast skeletal muscle atrophy

    PubMed Central

    2013-01-01

    Background Skeletal muscle undergoes rapid atrophy upon denervation and the underlying mechanisms are complicated. FOXO3a has been implicated as a major mediator of muscle atrophy, but how its subcellular location and activity is controlled during the pathogenesis of muscle atrophy remains largely unknown. MST1 (Mammalian Sterile 20-like kinase 1) is identified as a central component of the Hippo signaling pathway. MST1 has been shown to mediate phosphorylation of FOXO3a at Ser207. Whether this MST1-FOXO signaling cascade exerts any functional consequence on cellular homeostasis remains to be investigated. Result We identified that MST1 kinase was expressed widely in skeletal muscles and was dramatically up-regulated in fast- but not slow-dominant skeletal muscles immediately following denervation. The results of our histological and biochemical studies demonstrated that deletion of MST1 significantly attenuated denervation-induced skeletal muscle wasting and decreased expression of Atrogin-1 and LC3 genes in fast-dominant skeletal muscles from three- to five-month-old adult mice. Further studies indicated that MST1, but not MST2, remarkably increased FOXO3a phosphorylation level at Ser207 and promoted its nuclear translocation in atrophic fast-dominant muscles. Conclusions We have established that MST1 kinase plays an important role in regulating denervation-induced skeletal muscle atrophy. During the early stage of muscle atrophy, the up-regulated MST1 kinase promoted progression of neurogenic atrophy in fast-dominant skeletal muscles through activation of FOXO3a transcription factors. PMID:23374633

  3. Protective effect of caspase inhibition on compression-induced muscle damage

    PubMed Central

    Teng, Bee T; Tam, Eric W; Benzie, Iris F; Siu, Parco M

    2011-01-01

    Abstract There are currently no effective therapies for treating pressure-induced deep tissue injury. This study tested the efficacy of pharmacological inhibition of caspase in preventing muscle damage following sustained moderate compression. Adult Sprague–Dawley rats were subjected to prolonged moderate compression. Static pressure of 100 mmHg compression was applied to an area of 1.5 cm2 in the tibialis region of the right limb of the rats for 6 h each day for two consecutive days. The left uncompressed limb served as intra-animal control. Rats were randomized to receive either vehicle (DMSO) as control treatment (n = 8) or 6 mg kg−1 of caspase inhibitor (z-VAD-fmk; n = 8) prior to the 6 h compression on the two consecutive days. Muscle tissues directly underneath the compression region of the compressed limb and the same region of control limb were harvested after the compression procedure. Histological examination and biochemical/molecular measurement of apoptosis and autophagy were performed. Caspase inhibition was effective in alleviating the compression-induced pathohistology of muscle. The increases in caspase-3 protease activity, TUNEL index, apoptotic DNA fragmentation and pro-apoptotic factors (Bax, p53 and EndoG) and the decreases in anti-apoptotic factors (XIAP and HSP70) observed in compressed muscle of DMSO-treated animals were not found in animals treated with caspase inhibitor. The mRNA content of autophagic factors (Beclin-1, Atg5 and Atg12) and the protein content of LC3, FoxO3 and phospho-FoxO3 that were down-regulated in compressed muscle of DMSO-treated animals were all maintained at their basal level in the caspase inhibitor treated animals. Our data provide evidence that caspase inhibition attenuates compression-induced muscle apoptosis and maintains the basal autophagy level. These findings demonstrate that pharmacological inhibition of caspase/apoptosis is effective in alleviating muscle damage as induced by prolonged compression

  4. Different Muscle-Recruitment Strategies Among Elite Breaststrokers.

    PubMed

    Guignard, Brice; Olstad, Bjørn H; Simbaña Escobar, David; Lauer, Jessy; Kjendlie, Per-Ludvik; Rouard, Annie H

    2015-11-01

    To investigate electromyographical (EMG) profiles characterizing the lower-limb flexion-extension in an aquatic environment in high-level breaststrokers. The 2-dimensional breaststroke kick of 1 international- and 2 national-level female swimmers was analyzed during 2 maximal 25-m swims. The activities of biceps femoris, rectus femoris, gastrocnemius, and tibialis anterior were recorded. The breaststroke kick was divided in 3 phases, according to the movements performed in the sagittal plane: push phase (PP) covering 27% of the total kick duration, glide phase (GP) 41%, and recovery phase (RP) 32%. Intrasubject reproducibility of the EMG and kinematics was observed from 1 stroke cycle to another. In addition, important intersubject kinematic reproducibility was noted, whereas muscle activities discriminated the subjects: The explosive PP was characterized by important muscle-activation peaks. During the recovery, muscles were likewise solicited for swimmers 1 (S1) and 2 (S2), while the lowest activities were observed during GP for S2 and swimmer 3 (S3), but not for S1, who maintained major muscle solicitations. The main muscle activities were observed during PP to perform powerful lower-limb extension. The most-skilled swimmer (S1) was the only 1 to solicit her muscles during GP to actively reach better streamlining. Important activation peaks during RP correspond to the limbs acting against water drag. Such differences in EMG strategies among an elite group highlight the importance of considering the muscle parameters used to effectively control the intensity of activation among the phases for a more efficient breaststroke kick.

  5. Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles.

    PubMed

    Baati, Narjes; Feillet-Coudray, Christine; Fouret, Gilles; Vernus, Barbara; Goustard, Bénédicte; Coudray, Charles; Lecomte, Jérome; Blanquet, Véronique; Magnol, Laetitia; Bonnieu, Anne; Koechlin-Ramonatxo, Christelle

    2017-10-01

    Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and β-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Regeneration and Maintenance of Intestinal Smooth Muscle Phenotypes

    NASA Astrophysics Data System (ADS)

    Walthers, Christopher M.

    Tissue engineering is an emerging field of biomedical engineering that involves growing artificial organs to replace those lost to disease or injury. Within tissue engineering, there is a demand for artificial smooth muscle to repair tissues of the digestive tract, bladder, and vascular systems. Attempts to develop engineered smooth muscle tissues capable of contracting with sufficient strength to be clinically relevant have so far proven unsatisfactory. The goal of this research was to develop and sustain mature, contractile smooth muscle. Survival of implanted SMCs is critical to sustain the benefits of engineered smooth muscle. Survival of implanted smooth muscle cells was studied with layered, electrospun polycaprolactone implants with lasercut holes ranging from 0--25% porosity. It was found that greater angiogenesis was associated with increased survival of implanted cells, with a large increase at a threshold between 20% and 25% porosity. Heparan sulfate coatings improved the speed of blood vessel infiltration after 14 days of implantation. With these considerations, thicker engineered tissues may be possible. An improved smooth muscle tissue culture technique was utilized. Contracting smooth muscle was produced in culture by maintaining the native smooth muscle tissue organization, specifically by sustaining intact smooth muscle strips rather than dissociating tissue in to isolated smooth muscle cells. Isolated cells showed a decrease in maturity and contained fewer enteric neural and glial cells. Muscle strips also exhibited periodic contraction and regular fluctuation of intracellular calclium. The muscle strip maturity persisted after implantation in omentum for 14 days on polycaprolactone scaffolds. A low-cost, disposable bioreactor was developed to further improve maturity of cultured smooth muscle cells in an environment of controlled cyclical stress.The bioreactor consistently applied repeated mechanical strain with controllable inputs for strain

  7. Load Bearing Equipment for Bone and Muscle

    NASA Technical Reports Server (NTRS)

    Shackelford, Linda; Griffith, Bryan

    2015-01-01

    Resistance exercise on ISS has proven effective in maintaining bone mineral density and muscle mass. Exploration missions require exercise with similar high loads using equipment with less mass and volume and greater safety and reliability than resistance exercise equipment used on ISS (iRED, ARED, FWED). Load Bearing Equipment (LBE) uses each exercising person to create and control the load to the partner.

  8. TIME COURSE FOR THE DEVELOPMENT OF MUSCLE HISTORY IN LUMBAR PARASPINAL MUSCLE SPINDLES ARISING FROM CHANGES IN VERTEBRAL POSITION

    PubMed Central

    Pickar, Joel G.; Ge, Weiqing

    2008-01-01

    segment’s position that might be passively maintained due to fixation, external load, a prolonged posture, or structural change. Following conditioning positions that stretched (hold-long) and shortened (hold-short) the spindle, the vertebra was repositioned identically and muscle spindle discharge at rest and to movement was compared with conditioning at the intermediate position. Results Lumbar vertebral positions maintained for less than 2 seconds were capable of evoking different discharge rates from lumbar paraspinal muscle spindles despite the vertebra having been returned to identical locations. Both resting spindle discharge and their responsiveness to movement were altered. Conditioning vertebral positions that stretched the spindles decreased spindle activity and positions that unloaded the spindles increased spindle activity upon returning the vertebra to identical original (intermediate) positions. The magnitude of these effects increased as conditioning duration increased to 2 seconds. These effects developed with a time course following a first order exponential reaching a maximal value after approximately 4 seconds of history. The time constant for a hold-short history was 2.6 seconds and for a hold-long history was approximately half of that at 1.1 seconds. Conclusions Thixotropic contributions to the responsiveness of muscles spindles in the low back are caused by the rapid, spontaneous formation of stable crossbridges. These sensory alterations due to vertebral history would represent a proprioceptive input not necessarily representative of the current state of intersegmental positioning. As such, they would constitute a source of inaccurate sensory feedback. Examples are presented suggesting ways in which this novel finding may affect spinal physiology. PMID:17938002

  9. The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis.

    PubMed

    Seebacher, Frank; Tallis, Jason A; James, Rob S

    2014-06-01

    Metabolic energy (ATP) supply to muscle is essential to support activity and behaviour. It is expected, therefore, that there is strong selection to maximise muscle power output for a given rate of ATP use. However, the viscosity and stiffness of muscle increases with a decrease in temperature, which means that more ATP may be required to achieve a given work output. Here, we tested the hypothesis that ATP use increases at lower temperatures for a given power output in Xenopus laevis. To account for temperature variation at different time scales, we considered the interaction between acclimation for 4 weeks (to 15 or 25°C) and acute exposure to these temperatures. Cold-acclimated frogs had greater sprint speed at 15°C than warm-acclimated animals. However, acclimation temperature did not affect isolated gastrocnemius muscle biomechanics. Isolated muscle produced greater tetanus force, and faster isometric force generation and relaxation, and generated more work loop power at 25°C than at 15°C acute test temperature. Oxygen consumption of isolated muscle at rest did not change with test temperature, but oxygen consumption while muscle was performing work was significantly higher at 15°C than at 25°C, regardless of acclimation conditions. Muscle therefore consumed significantly more oxygen at 15°C for a given work output than at 25°C, and plastic responses did not modify this thermodynamic effect. The metabolic cost of muscle performance and activity therefore increased with a decrease in temperature. To maintain activity across a range of temperature, animals must increase ATP production or face an allocation trade-off at lower temperatures. Our data demonstrate the potential energetic benefits of warming up muscle before activity, which is seen in diverse groups of animals such as bees, which warm flight muscle before take-off, and humans performing warm ups before exercise. © 2014. Published by The Company of Biologists Ltd.

  10. Systemic SMAD7 Gene Therapy Increases Striated Muscle Mass and Enhances Exercise Capacity in a Dose-Dependent Manner.

    PubMed

    Maricelli, Joseph W; Bishaw, Yemeserach M; Wang, Bo; Du, Min; Rodgers, Buel D

    2018-03-01

    Striated muscle wasting occurs with a variety of disease indications, contributing to mortality and compromising life quality. Recent studies indicate that the recombinant adeno-associated virus (serotype 6) Smad7 gene therapeutic, AVGN7, enhances skeletal and cardiac muscle mass and prevents cancer-induced wasting of both tissues. This is accomplished by attenuating ActRIIb intracellular signaling and, as a result, the physiological actions of myostatin and other ActRIIb ligands. AVGN7 also enhances isolated skeletal muscle twitch force, but is unknown to improve systemic muscle function similarly, especially exercise capacity. A 2-month-long dose-escalation study was therefore conducted using 5 × 10 11 , 1 × 10 12 , and 5 × 10 12 vg/mouse and different tests of systemic muscle function. Body mass, skeletal muscle mass, heart mass, and forelimb grip strength were all increased in a dose-dependent manner, as was the fiber cross-sectional area of tibialis anterior muscles. Maximal oxygen consumption (VO 2 max), a measure of metabolic rate, was similarly enhanced during forced treadmill running, and although the total distance traveled was only elevated by the highest dose, all doses reduced the energy expenditure rate compared to control mice injected with an empty vector. Such improvements in VO 2 max are consistent with physiological cardiac hypertrophy, which is highly beneficial and a normal adaptive response to exercise. This was particularly evident at the lowest dose tested, which had minimal significant effects on skeletal muscle mass and/or function, but increased heart weight and exercise capacity. These results together suggest that AVGN7 enhances striated muscle mass and systemic muscle function. They also define minimally effective and optimal doses for future preclinical trials and toxicology studies and in turn will aid in establishing dose ranges for clinical trials.

  11. Long-term high-fat-diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent and muscle-type specific manner

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction is thought to play a crucial role in the etiology of insulin resistance, in which skeletal muscle is the main tissue contributor. Sex differences in skeletal muscle insulin and antioxidant responses to high-fat-diet (HFD) feeding have been described. The aim of this study was to elucidate whether there is a sex dimorphism in the effects of HFD feeding on skeletal muscle mitochondrial biogenesis and on the adiponectin signaling pathway, as well as the influence of the muscle type (oxidative or glycolytic). Methods Gastrocnemius and soleus muscles of male and female Wistar rats of 2 months of age fed with a high-fat-diet (HFD) or a low fat diet for 26 weeks were used. Mitochondrial biogenesis and oxidative damage markers, oxidative capacity and antioxidant defences were analyzed. Serum insulin sensitivity parameters and the levels of proteins involved in adiponectin signaling pathway were also determined. Results HFD feeding induced mitochondrial biogenesis in both sexes, but to a higher degree in male rats. Although HFD female rats showed greater antioxidant protection and maintained a better insulin sensitivity profile than their male counterparts, both sexes showed an impaired response to adiponectin, which was more evident in gastrocnemius muscle. Conclusions We conclude that HFD rats may induce skeletal muscle mitochondrial biogenesis as an attempt to compensate the deleterious consequences of adiponectin and insulin resistance on oxidative metabolism, and that the effects of HFD feeding are sex-dependent and muscle-type specific. PMID:22353542

  12. Exercise quantity-dependent muscle hypertrophy in adult zebrafish (Danio rerio).

    PubMed

    Hasumura, Takahiro; Meguro, Shinichi

    2016-07-01

    Exercise is very important for maintaining and increasing skeletal muscle mass, and is particularly important to prevent and care for sarcopenia and muscle disuse atrophy. However, the dose-response relationship between exercise quantity, duration/day, and overall duration and muscle mass is poorly understood. Therefore, we investigated the effect of exercise duration on skeletal muscle to reveal the relationship between exercise quantity and muscle hypertrophy in zebrafish forced to exercise. Adult male zebrafish were exercised 6 h/day for 4 weeks, 6 h/day for 2 weeks, or 3 h/day for 2 weeks. Flow velocity was adjusted to maximum velocity during continual swimming (initial 43 cm/s). High-speed consecutive photographs revealed that zebrafish mainly drove the caudal part. Additionally, X-ray micro computed tomography measurements indicated muscle hypertrophy of the mid-caudal half compared with the mid-cranial half part. The cross-sectional analysis of the mid-caudal half muscle revealed that skeletal muscle (red, white, or total) mass increased with increasing exercise quantity, whereas that of white muscle and total muscle increased only under the maximum exercise load condition of 6 h/day for 4 weeks. Additionally, the muscle fiver size distributions of exercised fish were larger than those from non-exercised fish. We revealed that exercise quantity, duration/day, and overall duration were correlated with skeletal muscle hypertrophy. The forced exercise model enabled us to investigate the relationship between exercise quantity and skeletal muscle mass. These results open up the possibility for further investigations on the effects of exercise on skeletal muscle in adult zebrafish.

  13. Studies on the possible role of thyroid hormone in altered muscle protein turnover during sepsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasselgren, P.O.; Chen, I.W.; James, J.H.

    Five days after thyroidectomy (Tx) or sham-Tx in young male Sprague-Dawley rats, sepsis was induced by cecal ligation and puncture (CLP). Control animals underwent laparotomy and manipulation of the cecum without ligation or puncture. Sixteen hours after CLP or laparotomy, protein synthesis and degradation were measured in incubated extensor digitorum longus (EDL) and soleus (SOL) muscles by determining rate of /sup 14/C-phenylalanine incorporation into protein and tyrosine release into incubation medium, respectively. Triiodothyronine (T3) was measured in serum and muscle tissue. Protein synthesis was reduced by 39% and 22% in EDL and SOL, respectively, 16 hours after CLP in sham-Txmore » rats. The response to sepsis of protein synthesis was abolished in Tx rats. Protein breakdown was increased by 113% and 68% in EDL and SOL, respectively, 16 hours after CLP in sham-Tx animals. The increase in muscle proteolysis during sepsis was blunted in hypothyroid animals and was 42% and 49% in EDL and SOL, respectively. T3 in serum was reduced by sepsis, both in Tx and sham-Tx rats. T3 in muscle, however, was maintained or increased during sepsis. Abolished or blunted response of muscle protein turnover after CLP in hypothyroid animals may reflect a role of thyroid hormones in altered muscle protein metabolism during sepsis. Reduced serum levels of T3, but maintained or increased muscle concentrations of the hormone, suggests that increased T3 uptake by muscle may be one mechanism of low T3 syndrome in sepsis, further supporting the concept of a role for thyroid hormone in metabolic alterations in muscle during sepsis.« less

  14. The homeobox gene Msx in development and transdifferentiation of jellyfish striated muscle.

    PubMed

    Galle, Sabina; Yanze, Nathalie; Seipel, Katja

    2005-01-01

    Bilaterian Msx homeobox genes are generally expressed in areas of cell proliferation and in association with multipotent progenitor cells. Likewise, jellyfish Msx is expressed in progenitor cells of the developing entocodon, a cell layer giving rise to the striated and smooth muscles of the medusa. However, in contrast to the bilaterian homologs, Msx gene expression is maintained at high levels in the differentiated striated muscle of the medusa in vivo and in vitro. This tissue exhibits reprogramming competence. Upon induction, the Msx gene is immediately switched off in the isolated striated muscle undergoing transdifferentiation, to be upregulated again in the emerging smooth muscle cells which, in a stem cell like manner, undergo quantal cell divisions producing two cell types, a proliferating smooth muscle cell and a differentiating nerve cell. This study indicates that the Msx protein may be a key component of the reprogramming machinery responsible for the extraordinary transdifferentation and regeneration potential of striated muscle in the hydrozoan jellyfish.

  15. Continuous Release of Tumor-Derived Factors Improves the Modeling of Cachexia in Muscle Cell Culture.

    PubMed

    Jackman, Robert W; Floro, Jess; Yoshimine, Rei; Zitin, Brian; Eiampikul, Maythita; El-Jack, Kahlid; Seto, Danielle N; Kandarian, Susan C

    2017-01-01

    Cachexia is strongly associated with a poor prognosis in cancer patients but the biological trigger is unknown and therefore no therapeutics exist. The loss of skeletal muscle is the most deleterious aspect of cachexia and it appears to depend on secretions from tumor cells. Models for studying wasting in cell culture consist of experiments where skeletal muscle cells are incubated with medium conditioned by tumor cells. This has led to candidates for cachectic factors but some of the features of cachexia in vivo are not yet well-modeled in cell culture experiments. Mouse myotube atrophy measured by myotube diameter in response to medium conditioned by mouse colon carcinoma cells (C26) is consistently less than what is seen in muscles of mice bearing C26 tumors with moderate to severe cachexia. One possible reason for this discrepancy is that in vivo the C26 tumor and skeletal muscle share a circulatory system exposing the muscle to tumor factors in a constant and increasing way. We have applied Transwell®-adapted cell culture conditions to more closely simulate conditions found in vivo where muscle is exposed to the ongoing kinetics of constant tumor secretion of active factors. C26 cells were incubated on a microporous membrane (a Transwell® insert) that constitutes the upper compartment of wells containing plated myotubes. In this model, myotubes are exposed to a constant supply of cancer cell secretions in the medium but without direct contact with the cancer cells, analogous to a shared circulation of muscle and cancer cells in tumor-bearing animals. The results for myotube diameter support the idea that the use of Transwell® inserts serves as a more physiological model of the muscle wasting associated with cancer cachexia than the bolus addition of cancer cell conditioned medium. The Transwell® model supports the notion that the dose and kinetics of cachectic factor delivery to muscle play a significant role in the extent of pathology.

  16. Mechanisms of protein balance in skeletal muscle.

    PubMed

    Anthony, T G

    2016-07-01

    Increased global demand for adequate protein nutrition against a backdrop of climate change and concern for animal agriculture sustainability necessitates new and more efficient approaches to livestock growth and production. Anabolic growth is achieved when rates of new synthesis exceed turnover, producing a positive net protein balance. Conversely, deterioration or atrophy of lean mass is a consequence of a net negative protein balance. During early life and periods of growth, muscle mass is driven by increases in protein synthesis at the level of mRNA translation. Throughout life, muscle mass is further influenced by degradative processes such as autophagy and the ubiquitin proteasome pathway. Multiple signal transduction networks guide and coordinate these processes alongside quality control mechanisms to maintain protein homeostasis (proteostasis). Genetics, hormones, and environmental stimuli each influence proteostasis control, altering capacity and/or efficiency of muscle growth. An overview of recent findings and current methods to assess muscle protein balance and proteostasis is presented. Current efforts to identify novel control points have the potential through selective breeding design or development of hormetic strategies to better promote growth and health span during environmental stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24-month follow-up.

    PubMed

    Hooijmans, M T; Doorenweerd, N; Baligand, C; Verschuuren, J J G M; Ronen, I; Niks, E H; Webb, A G; Kan, H E

    2017-01-01

    To assess the changes in phosphodiester (PDE)-levels, detected by 31P magnetic resonance spectroscopy (MRS), over 24-months to determine the potential of PDE as marker for muscle tissue changes in Duchenne Muscular Dystrophy (DMD) patients. Spatially resolved phosphorous datasets were acquired in the right lower leg of 18 DMD patients (range: 5-15.4 years) and 12 age-matched healthy controls (range: 5-14 years) at three time-points (baseline, 12-months, and 24-months) using a 7T MR-System (Philips Achieva). 3-point Dixon images were acquired at 3T (Philips Ingenia) to determine muscle fat fraction. Analyses were done for six muscles that represent different stages of muscle wasting. Differences between groups and time-points were assessed with non-parametric tests with correction for multiple comparisons. Coefficient of variance (CV) were determined for PDE in four healthy adult volunteers in high and low signal-to-noise ratio (SNR) datasets. PDE-levels were significantly higher (two-fold) in DMD patients compared to controls in all analyzed muscles at almost every time point and did not change over the study period. Fat fraction was significantly elevated in all muscles at all time points compared to healthy controls, and increased significantly over time, except in the tibialis posterior muscle. The mean within subject CV for PDE-levels was 4.3% in datasets with high SNR (>10:1) and 5.7% in datasets with low SNR. The stable two-fold increase in PDE-levels found in DMD patients in muscles with different levels of muscle wasting over 2-year time, including DMD patients as young as 5.5 years-old, suggests that PDE-levels may increase very rapidly early in the disease process and remain elevated thereafter. The low CV values in high and low SNR datasets show that PDE-levels can be accurately and reproducibly quantified in all conditions. Our data confirms the great potential of PDE as a marker for muscle tissue changes in DMD patients.

  18. Increasing dietary protein requirements in elderly people for optimal muscle and bone health.

    PubMed

    Gaffney-Stomberg, Erin; Insogna, Karl L; Rodriguez, Nancy R; Kerstetter, Jane E

    2009-06-01

    Osteoporosis and sarcopenia are degenerative diseases frequently associated with aging. The loss of bone and muscle results in significant morbidity, so preventing or attenuating osteoporosis and sarcopenia is an important public health goal. Dietary protein is crucial for development of bone and muscle, and recent evidence suggests that increasing dietary protein above the current Recommended Dietary Allowance (RDA) may help maintain bone and muscle mass in older individuals. Several epidemiological and clinical studies point to a salutary effect of protein intakes above the current RDA (0.8 g/kg per day) for adults aged 19 and older. There is evidence that the anabolic response of muscle to dietary protein is attenuated in elderly people, and as a result, the amount of protein needed to achieve anabolism is greater. Dietary protein also increases circulating insulin-like growth factor, which has anabolic effects on muscle and bone. Furthermore, increasing dietary protein increases calcium absorption, which could be anabolic for bone. Available evidence supports a beneficial effect of short-term protein intakes up to 1.6 to 1.8 g/kg per day, although long-term studies are needed to show safety and efficacy. Future studies should employ functional measures indicative of protein adequacy, as well as measures of muscle protein synthesis and maintenance of muscle and bone tissue, to determine the optimal level of dietary protein. Given the available data, increasing the RDA for older individuals to 1.0 to 1.2 g/kg per day would maintain normal calcium metabolism and nitrogen balance without affecting renal function and may represent a compromise while longer-term protein supplement trials are pending.

  19. Experiment K-6-07. Metabolic and morphologic properties of muscle fibers after spaceflight

    NASA Technical Reports Server (NTRS)

    Edgerton, R.; Miu, B.; Martin, Thomas P.; Roy, R.; Marini, J.; Leger, J. J.; Oganov, V.; Ilyina-Kakueva, E.

    1990-01-01

    The present study demonstrates that the general capability of skeletal muscle to maintain its proteins decreases rapidly in response to space flight. The present findings suggest further that the magnitude of enzymatic and cell volumes changes in response to space flight depend on several factors including the muscle and its fiber type composition. It appears that in order to associate physiological relevance to the observed enzymatic changes, cell volume should be considered also. Although it remains unclear as to the stimulus, or lack of stimulus, that triggers the rapid changes in muscle proteins in response to space flight, ground-based models of muscle atrophy suggest that the reduction in mechanical loading of muscle may be more important than the total amount of activation over a 24-hr period.

  20. The giant protein titin regulates the length of the striated muscle thick filament.

    PubMed

    Tonino, Paola; Kiss, Balazs; Strom, Josh; Methawasin, Mei; Smith, John E; Kolb, Justin; Labeit, Siegfried; Granzier, Henk

    2017-10-19

    The contractile machinery of heart and skeletal muscles has as an essential component the thick filament, comprised of the molecular motor myosin. The thick filament is of a precisely controlled length, defining thereby the force level that muscles generate and how this force varies with muscle length. It has been speculated that the mechanism by which thick filament length is controlled involves the giant protein titin, but no conclusive support for this hypothesis exists. Here we show that in a mouse model in which we deleted two of titin's C-zone super-repeats, thick filament length is reduced in cardiac and skeletal muscles. In addition, functional studies reveal reduced force generation and a dilated cardiomyopathy (DCM) phenotype. Thus, regulation of thick filament length depends on titin and is critical for maintaining muscle health.

  1. The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy

    PubMed Central

    Proserpio, Valentina; Fittipaldi, Raffaella; Ryall, James G.; Sartorelli, Vittorio; Caretti, Giuseppina

    2013-01-01

    Elucidating the epigenetic mechanisms underlying muscle mass determination and skeletal muscle wasting holds the potential of identifying molecular pathways that constitute possible drug targets. Here, we report that the methyltransferase SMYD3 modulates myostatin and c-Met transcription in primary skeletal muscle cells and C2C12 myogenic cells. SMYD3 targets the myostatin and c-Met genes and participates in the recruitment of the bromodomain protein BRD4 to their regulatory regions through protein–protein interaction. By recruiting BRD4, SMYD3 favors chromatin engagement of the pause–release factor p-TEFb (positive transcription elongation factor) and elongation of Ser2-phosphorylated RNA polymerase II (PolIISer2P). Reducing SMYD3 decreases myostatin and c-Met transcription, thus protecting from glucocorticoid-induced myotube atrophy. Supporting functional relevance of the SMYD3/BRD4 interaction, BRD4 pharmacological blockade by the small molecule JQ1 prevents dexamethasone-induced myostatin and atrogene up-regulation and spares myotube atrophy. Importantly, in a mouse model of dexamethasone-induced skeletal muscle atrophy, SMYD3 depletion prevents muscle loss and fiber size decrease. These findings reveal a mechanistic link between SMYD3/BRD4-dependent transcriptional regulation, muscle mass determination, and skeletal muscle atrophy and further encourage testing of small molecules targeting specific epigenetic regulators in animal models of muscle wasting. PMID:23752591

  2. Skeletal Muscle Satellite Cells Are Committed to Myogenesis and Do Not Spontaneously Adopt Nonmyogenic Fates

    PubMed Central

    Starkey, Jessica D.; Yamamoto, Masakazu; Yamamoto, Shoko; Goldhamer, David J.

    2011-01-01

    The developmental potential of skeletal muscle stem cells (satellite cells) remains controversial. The authors investigated satellite cell developmental potential in single fiber and clonal cultures derived from MyoDiCre/+;R26REYFP/+ muscle, in which essentially all satellite cells are permanently labeled. Approximately 60% of the clones derived from cells that co-purified with muscle fibers spontaneously underwent adipogenic differentiation. These adipocytes stained with Oil-Red-O and expressed the terminal differentiation markers, adipsin and fatty acid binding protein 4, but did not express EYFP and were therefore not of satellite cell origin. Satellite cells mutant for either MyoD or Myf-5 also maintained myogenic programming in culture and did not adopt an adipogenic fate. Incorporation of additional wash steps prior to muscle fiber plating virtually eliminated the non-myogenic cells but did not reduce the number of adherent Pax7+ satellite cells. More than half of the adipocytes observed in cultures from Tie2-Cre mice were recombined, further demonstrating a non-satellite cell origin. Under adipogenesis-inducing conditions, satellite cells accumulated cytoplasmic lipid but maintained myogenic protein expression and did not fully execute the adipogenic differentiation program, distinguishing them from adipocytes observed in muscle fiber cultures. The authors conclude that skeletal muscle satellite cells are committed to myogenesis and do not spontaneously adopt an adipogenic fate. PMID:21339173

  3. Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3.

    PubMed

    Pérez-Schindler, Joaquín; Esparza, Mary C; McKendry, James; Breen, Leigh; Philp, Andrew; Schenk, Simon

    2017-09-01

    Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. Copyright © 2017 the American Physiological Society.

  4. Protein alterations in women with chronic widespread pain – An explorative proteomic study of the trapezius muscle

    PubMed Central

    Olausson, Patrik; Gerdle, Björn; Ghafouri, Nazdar; Sjöström, Dick; Blixt, Emelie; Ghafouri, Bijar

    2015-01-01

    Chronic widespread pain (CWP) has a high prevalence in the population and is associated with prominent negative individual and societal consequences. There is no clear consensus concerning the etiology behind CWP although alterations in the central processing of nociception maintained by peripheral nociceptive input has been suggested. Here, we use proteomics to study protein changes in trapezius muscle from 18 female patients diagnosed with CWP compared to 19 healthy female subjects. The 2-dimensional gel electrophoresis (2-DE) in combination with multivariate statistical analyses revealed 17 proteins to be differently expressed between the two groups. Proteins were identified by mass spectrometry. Many of the proteins are important enzymes in metabolic pathways like the glycolysis and gluconeogenesis. Other proteins are associated with muscle damage, muscle recovery, stress and inflammation. The altered expressed levels of these proteins suggest abnormalities and metabolic changes in the myalgic trapezius muscle in CWP. Taken together, this study gives further support that peripheral factors may be of importance in maintaining CWP. PMID:26150212

  5. Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    PubMed Central

    Safdar, Adeel; Hamadeh, Mazen J.; Kaczor, Jan J.; Raha, Sandeep; deBeer, Justin; Tarnopolsky, Mark A.

    2010-01-01

    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀  =  ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging. PMID:20520725

  6. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy.

    PubMed

    Martin, Elizabeth A; Barresi, Rita; Byrne, Barry J; Tsimerinov, Evgeny I; Scott, Bryan L; Walker, Ashley E; Gurudevan, Swaminatha V; Anene, Francine; Elashoff, Robert M; Thomas, Gail D; Victor, Ronald G

    2012-11-28

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin's rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived NO attenuates local α-adrenergic vasoconstriction, thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective-causing functional muscle ischemia-in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. We report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled crossover trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation is fully restored in the muscles of men with BMD by boosting NO-cGMP (guanosine 3',5'-monophosphate) signaling with a single dose of the drug tadalafil, a phosphodiesterase 5A inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD.

  7. Tadalafil alleviates muscle ischemia in patients with Becker muscular dystrophy

    PubMed Central

    Martin, Elizabeth A.; Barresi, Rita; Byrne, Barry J.; Tsimerinov, Evgeny I.; Scott, Bryan L.; Walker, Ashley E.; Gurudevan, Swaminatha V.; Anene, Francine; Elashoff, Robert M.; Thomas, Gail D.; Victor, Ronald G.

    2013-01-01

    Becker muscular dystrophy (BMD) is a progressive X-linked muscle wasting disease for which there is no treatment. Like Duchenne muscular dystrophy (DMD), BMD is caused by mutations in the gene encoding dystrophin, a structural cytoskeletal protein that also targets other proteins to the muscle sarcolemma. Among these is neuronal nitric oxide synthase (nNOSμ), which requires certain spectrin-like repeats in dystrophin’s rod domain and the adaptor protein α-syntrophin to be targeted to the sarcolemma. When healthy skeletal muscle is subjected to exercise, sarcolemmal nNOSμ-derived nitric oxide (NO) attenuates local α-adrenergic vasoconstriction thereby optimizing perfusion of muscle. We found previously that this protective mechanism is defective—causing functional muscle ischemia—in dystrophin-deficient muscles of the mdx mouse (a model of DMD) and of children with DMD, in whom nNOSμ is mislocalized to the cytosol instead of the sarcolemma. Here, we report that this protective mechanism also is defective in men with BMD in whom the most common dystrophin mutations disrupt sarcolemmal targeting of nNOSμ. In these men, the vasoconstrictor response, measured as a decrease in muscle oxygenation, to reflex sympathetic activation is not appropriately attenuated during exercise of the dystrophic muscles. In a randomized placebo-controlled cross-over trial, we show that functional muscle ischemia is alleviated and normal blood flow regulation fully restored in the muscles of men with BMD by boosting NO-cGMP signaling with a single dose of the drug tadalafil, a phosphodiesterase (PDE5A) inhibitor. These results further support an essential role for sarcolemmal nNOSμ in the normal modulation of sympathetic vasoconstriction in exercising human skeletal muscle and implicate the NO-cGMP pathway as a putative new target for treating BMD. PMID:23197572

  8. Delivery system for molten salt oxidation of solid waste

    DOEpatents

    Brummond, William A.; Squire, Dwight V.; Robinson, Jeffrey A.; House, Palmer A.

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  9. Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats

    PubMed Central

    Lee, Youngjeon; Kim, Joo-Heon; Hong, Yunkyung; Lee, Sang-Rae; Chang, Kyu-Tae

    2012-01-01

    Diabetes decreases skeletal muscle mass and induces atrophy. However, the mechanisms by which hyperglycemia and insulin deficiency modify muscle mass are not well defined. In this study, we evaluated the effects of swimming exercise on muscle mass and intracellular protein degradation in diabetic rats, and proposed that autophagy inhibition induced by swimming exercise serves as a hypercatabolic mechanism in the skeletal muscles of diabetic rats, supporting a notion that swimming exercise could efficiently reverse the reduced skeletal muscle mass caused by diabetes. Adult male Sprague-Dawley rats were injected intraperitoneally with streptozotocin (60 mg/kg body weight) to induce diabetes and then submitted to 1 hr per day of forced swimming exercise, 5 days per week for 4 weeks. We conducted an intraperitoneal glucose tolerance test on the animals and measured body weight, skeletal muscle mass, and protein degradation and examined the level of autophagy in the isolated extensor digitorum longus, plantaris, and soleus muscles. Body weight and muscle tissue mass were higher in the exercising diabetic rats than in control diabetic rats that remained sedentary. Compared to control rats, exercising diabetic rats had lower blood glucose levels, increased intracellular contractile protein expression, and decreased autophagic protein expression. We conclude that swimming exercise improves muscle mass in diabetes-induced skeletal muscle atrophy, suggesting the activation of autophagy in diabetes contributes to muscle atrophy through hypercatabolic metabolism and that aerobic exercise, by suppressing autophagy, may modify or reverse skeletal muscle wasting in diabetic patients. PMID:23091517

  10. Comparing trapezius muscle activity in the different planes of shoulder elevation.

    PubMed

    Ishigaki, Tomonobu; Ishida, Tomoya; Samukawa, Mina; Saito, Hiroshi; Hirokawa, Motoki; Ezawa, Yuya; Sugawara, Makoto; Tohyama, Harukazu; Yamanaka, Masanori

    2015-05-01

    [Purpose] The purpose of this study was to compare the upper, middle, and lower trapezius muscles' activity in the different planes of shoulder elevation. [Subjects] Twenty male subjects volunteered for this study. [Methods] Surface electromyographic (EMG) activity for each of the three regions of the trapezius muscles in the three different planes of elevation were collected while the participants maintained 30, 60, and 90 degrees of elevation in each plane. The EMG data were normalized with maximum voluntary isometric contraction (%MVIC), and compared among the planes at each angle of elevation. [Results] There were significantly different muscle activities among the elevation planes at each angle. [Conclusion] This study found that the three regions of the trapezius muscles changed their activity depending on the planes of shoulder elevation. These changes in the trapezius muscles could induce appropriate scapular motion to face the glenoid cavity in the correct directions in different planes of shoulder elevation.

  11. Secreted Protein Acidic and Rich in Cysteine (SPARC) in Human Skeletal Muscle

    PubMed Central

    Jørgensen, Louise H.; Petersson, Stine J.; Sellathurai, Jeeva; Andersen, Ditte C.; Thayssen, Susanne; Sant, Dorte J.; Jensen, Charlotte H.; Schrøder, Henrik D.

    2009-01-01

    Secreted protein acidic and rich in cysteine (SPARC)/osteonectin is expressed in different tissues during remodeling and repair, suggesting a function in regeneration. Several gene expression studies indicated that SPARC was expressed in response to muscle damage. Studies on myoblasts further indicated a function of SPARC in skeletal muscle. We therefore found it of interest to study SPARC expression in human skeletal muscle during development and in biopsies from Duchenne and Becker muscular dystrophy and congenital muscular dystrophy, congenital myopathy, inclusion body myositis, and polymyositis patients to analyze SPARC expression in a selected range of inherited and idiopathic muscle wasting diseases. SPARC-positive cells were observed both in fetal and neonatal muscle, and in addition, fetal myofibers were observed to express SPARC at the age of 15–16 weeks. SPARC protein was detected in the majority of analyzed muscle biopsies (23 of 24), mainly in mononuclear cells of which few were pax7 positive. Myotubes and regenerating myofibers also expressed SPARC. The expression-degree seemed to reflect the severity of the lesion. In accordance with these in vivo findings, primary human-derived satellite cells were found to express SPARC both during proliferation and differentiation in vitro. In conclusion, this study shows SPARC expression both during muscle development and in regenerating muscle. The expression is detected both in satellite cells/myoblasts and in myotubes and muscle fibers, indicating a role for SPARC in the skeletal muscle compartment. (J Histochem Cytochem 57:29–39, 2009) PMID:18796407

  12. Effect of higher muscle coactivation on standing postural response to perturbation in older adults.

    PubMed

    Nagai, Koutatsu; Okita, Yusuke; Ogaya, Shinya; Tsuboyama, Tadao

    2017-04-01

    Although several studies have reported that muscle coactivation during postural control increases with age, the effect of higher muscle coactivation on standing postural response to perturbation is unknown. To investigate whether higher muscle coactivation affects standing postural response to perturbation in older adults. Thirty-four community-dwelling older participants were randomly assigned either to the coactivation group (CG), where muscle coactivation was increased intentionally, or to the non-coactivation group (NCG). The participants were instructed to stand on a force plate that moved forward or backward. Electromyography data were collected from the lower leg muscles. We requested the participants in the CG to increase the activity of their tibialis anterior, and to maintain this posture during the tasks. We moved the force plate with a constant amplitude and velocity, and measured kinematic data with a camera during the tasks. During forward transfer, the knee extension and hip flexion decreased in the CG after perturbation compared to NCG, and the trunk extension angle increased. The center of pressure (COP) displacement decreased around the peak of the movement in the CG compared to NCG. During backward transfer, ankle dorsal and knee flexion changed after perturbation in the CG compared to NCG. Our study found that higher muscle coactivation inhibits lower limb and COP movement as well as increases trunk tilt and the risk for falls during forward perturbations. Postural control with higher coactivation appears to be inefficient for maintaining balance during the backward sway of posture.

  13. Resolving Shifting Patterns of Muscle Energy Use in Swimming Fish

    PubMed Central

    Gerry, Shannon P.; Ellerby, David J.

    2014-01-01

    Muscle metabolism dominates the energy costs of locomotion. Although in vivo measures of muscle strain, activity and force can indicate mechanical function, similar muscle-level measures of energy use are challenging to obtain. Without this information locomotor systems are essentially a black box in terms of the distribution of metabolic energy. Although in situ measurements of muscle metabolism are not practical in multiple muscles, the rate of blood flow to skeletal muscle tissue can be used as a proxy for aerobic metabolism, allowing the cost of particular muscle functions to be estimated. Axial, undulatory swimming is one of the most common modes of vertebrate locomotion. In fish, segmented myotomal muscles are the primary power source, driving undulations of the body axis that transfer momentum to the water. Multiple fins and the associated fin muscles also contribute to thrust production, and stabilization and control of the swimming trajectory. We have used blood flow tracers in swimming rainbow trout (Oncorhynchus mykiss) to estimate the regional distribution of energy use across the myotomal and fin muscle groups to reveal the functional distribution of metabolic energy use within a swimming animal for the first time. Energy use by the myotomal muscle increased with speed to meet thrust requirements, particularly in posterior myotomes where muscle power outputs are greatest. At low speeds, there was high fin muscle energy use, consistent with active stability control. As speed increased, and fins were adducted, overall fin muscle energy use declined, except in the caudal fin muscles where active fin stiffening is required to maintain power transfer to the wake. The present data were obtained under steady-state conditions which rarely apply in natural, physical environments. This approach also has potential to reveal the mechanical factors that underlie changes in locomotor cost associated with movement through unsteady flow regimes. PMID:25165858

  14. Optimizing the Distribution of Leg Muscles for Vertical Jumping

    PubMed Central

    Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.

    2016-01-01

    A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal

  15. Kinematic MRI study of upper-airway biomechanics using electrical muscle stimulation

    NASA Astrophysics Data System (ADS)

    Brennick, Michael J.; Margulies, Susan S.; Ford, John C.; Gefter, Warren B.; Pack, Allan I.

    1997-05-01

    We have developed a new and powerful method to study the movement and function of upper airway muscles. Our method is to use direct electrical stimulation of individual upper airway muscles, while performing state of the art high resolution magnetic resonance imaging (MRI). We have adapted a paralyzed isolated UA cat model so that positive or negative static pressure in the UA can be controlled at specific levels while electrical muscle stimulation is applied during MRI. With these techniques we can assess the effect of muscle stimulation on airway cross-sectional area compliance and soft tissue motion. We are reporting the preliminary results and MRI techniques which have enabled us to examine changes in airway dimensions which result form electrical stimulation of specific upper airway dilator muscles. The results of this study will be relevant to the development of new clinical treatments for obstructive sleep apnea by providing new information as to exactly how upper airway muscles function to dilate the upper airway and the strength of stimulation required to prevent the airway obstruction when overall muscle tone may not be sufficient to maintain regular breathing.

  16. Size and metabolic properties of fibers in rat fast-twitch muscles after hindlimb suspension

    NASA Technical Reports Server (NTRS)

    Roy, Roland R.; Bello, Maureen A.; Bouissou, Phillip; Edgerton, V. Reggie

    1987-01-01

    The effect of hind-limb suspension (HS) on single fibers of the medial gastrocnemius (MG) and the tibialis anterior (TA) muscles were studied in rats. Fiber area and the activities of succinate dehydrogenase (SDH) and alpha-glycerophosphate dehydrogenase (GPD) were determined in tissue sections using an image analysis system. After 28 days of HS, the MG atrophied 28 percent, whereas the TA weight was maintained. Both dark- and light-ATPase fibers in the deep region of the MG had decreased cross-sectional areas following HS, with the atrophic response being twice as great in the light-ATPase fibers than in the dark-ATPase fibers. Following HS, mean SDH activities of both fiber types were significantly lower in the MG and TA than in the CON; by contrast, mean GPD activities were either maintained at the CON level or were higher in both MG and TA muscles. The data suggest an independence of the mechanisms determining the muscle fiber size and the metabolic adaptations associated with HS.

  17. Combined effect of aerobic interval training and selenium nanoparticles on expression of IL-15 and IL-10/TNF-α ratio in skeletal muscle of 4T1 breast cancer mice with cachexia.

    PubMed

    Molanouri Shamsi, M; Chekachak, S; Soudi, S; Quinn, L S; Ranjbar, K; Chenari, J; Yazdi, M H; Mahdavi, M

    2017-02-01

    Cancer cachexia is characterized by inflammation, loss of skeletal muscle and adipose tissue mass, and functional impairment. Oxidative stress and inflammation are believed to regulate pathways controlling skeletal muscle wasting. The aim of this study was to determine the effects of aerobic interval training and the purported antioxidant treatment, selenium nanoparticle supplementation, on expression of IL-15 and inflammatory cytokines in 4T1 breast cancer-bearing mice with cachexia. Selenium nanoparticle supplementation accelerated cachexia symptoms in tumor-bearing mice, while exercise training prevented muscle wasting in tumor-bearing mice. Also, aerobic interval training enhanced the anti-inflammatory indices IL-10/TNF-α ratio and IL-15 expression in skeletal muscle in tumor-bearing mice. However, combining exercise training and antioxidant supplementation prevented cachexia and muscle wasting and additionally decreased tumor volume in 4T1 breast cancer mice. These finding suggested that combining exercise training and antioxidant supplementation could be a strategy for managing tumor volume and preventing cachexia in breast cancer. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Pharmacological Inhibitors of the Proteosome in Atrophying Muscles

    NASA Technical Reports Server (NTRS)

    Goldberg, Alfred

    1999-01-01

    depth extracts from normal and atrophying muscles to compare the activities of the Ub-activating enzyme (El), the various LTh-carrier proteins (E2s), and Ub-protein ligases (E3s). Recent studies of other types of muscle wasting -suggest a very important role in muscle proteolysis of certain ubiquitination enzymes, E214k and E3-alpha(i.e. components of the "N-end pathway"). Future studies will focus in understanding their role and test whether they are in fact critical for muscle atrophy in vivo. Since weightlessness leads to a specific loss of contractile proteins and to a switching of myosin isotypes, Dr. Goldberg's group will attempt to identify the ubiquitination enzymes specifically involved in myosin degradation both in normal muscle and after hind-limb suspension.

  19. SEPARATIONS AND WASTE FORMS CAMPAIGN IMPLEMENTATION PLAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Todd, Terry A.; Peterson, Mary E.

    2012-11-26

    This Separations and Waste Forms Campaign Implementation Plan provides summary level detail describing how the Campaign will achieve the objectives set-forth by the Fuel Cycle Reasearch and Development (FCRD) Program. This implementation plan will be maintained as a living document and will be updated as needed in response to changes or progress in separations and waste forms research and the FCRD Program priorities.

  20. Hypercortisolemia alters muscle protein anabolism following ingestion of essential amino acids

    NASA Technical Reports Server (NTRS)

    Paddon-Jones, Douglas; Sheffield-Moore, Melinda; Creson, Daniel L.; Sanford, Arthur P.; Wolf, Steven E.; Wolfe, Robert R.; Ferrando, Arny A.

    2003-01-01

    Debilitating injury is accompanied by hypercortisolemia, muscle wasting, and disruption of the normal anabolic response to food. We sought to determine whether acute hypercortisolemia alters muscle protein metabolism following ingestion of a potent anabolic stimulus: essential amino acids (EAA). A 27-h infusion (80 microg. kg(-1). h(-1)) of hydrocortisone sodium succinate mimicked cortisol (C) levels accompanying severe injury (>30 microg/dl), (C + AA; n = 6). The control group (AA) received intravenous saline (n = 6). Femoral arteriovenous blood samples and muscle biopsies were obtained during a primed (2.0 micromol/kg) constant infusion (0.05 micromol. kg(-1). min(-1)) of l-[ring-(2)H(5)]phenylalanine before and after ingestion of 15 g of EAA. Hypercortisolemia [36.5 +/- 2.1 (C + AA) vs. 9.0 +/- 1.0 microg/dl (AA)] increased postabsorptive arterial, venous, and muscle intracellular phenylalanine concentrations. Hypercortisolemia also increased postabsorptive and post-EAA insulin concentrations. Net protein balance was blunted (40% lower) following EAA ingestion but remained positive for a greater period of time (60 vs. 180 min) in the C + AA group. Thus, although differences in protein metabolism were evident, EAA ingestion improved muscle protein anabolism during acute hypercortisolemia and may help minimize muscle loss following debilitating injury.

  1. Motor Unit Changes Seen With Skeletal Muscle Sarcopenia in Oldest Old Rats

    PubMed Central

    Kung, Theodore A.; van der Meulen, Jack H.; Urbanchek, Melanie G.; Kuzon, William M.; Faulkner, John A.

    2014-01-01

    Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11–13 months) and 12 oldest old (36–37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia. PMID:24077596

  2. Signalling and the control of skeletal muscle size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otto, Anthony; Patel, Ketan, E-mail: ketan.patel@reading.ac.uk

    2010-11-01

    Skeletal muscle is highly adaptive to environmental stimuli and can alter its mass accordingly. This tissue is almost unique in that it can increase its size through two distinct mechanisms. It can grow through a cellular process mediated by cell fusion, or it can increase its size simply by increasing its protein content. Understanding how these processes are regulated is crucial for the development of potential therapies against debilitating skeletal muscle wasting diseases. Two key signalling molecules, Insulin like Growth Factor (IGF) and GDF-8/myostatin, have emerged in recent years to be potent regulators of skeletal muscle size. In this reviewmore » we bring together recent data highlighting the important and novel aspects of both molecules and their signalling pathways, culminating in a discussion of the cellular and tissue phenotypic outcomes of their stimulation or antagonism. We emphasise the complex regulatory mechanisms and discuss the temporal and spatial differences that control their action, understanding of which is crucial to further their use as potential therapeutic targets.« less

  3. Atomoxetine Prevents Dexamethasone-Induced Skeletal Muscle Atrophy in Mice

    PubMed Central

    Jesinkey, Sean R.; Korrapati, Midhun C.; Rasbach, Kyle A.; Beeson, Craig C.

    2014-01-01

    Skeletal muscle atrophy remains a clinical problem in numerous pathologic conditions. β2-Adrenergic receptor agonists, such as formoterol, can induce mitochondrial biogenesis (MB) to prevent such atrophy. Additionally, atomoxetine, an FDA-approved norepinephrine reuptake inhibitor, was positive in a cellular assay for MB. We used a mouse model of dexamethasone-induced skeletal muscle atrophy to investigate the potential role of atomoxetine and formoterol to prevent muscle mass loss. Mice were administered dexamethasone once daily in the presence or absence of formoterol (0.3 mg/kg), atomoxetine (0.1 mg/kg), or sterile saline. Animals were euthanized at 8, 16, and 24 hours or 8 days later. Gastrocnemius muscle weights, changes in mRNA and protein expression of peroxisome proliferator–activated receptor-γ coactivator-1 α (PGC-1α) isoforms, ATP synthase β, cytochrome c oxidase subunit I, NADH dehydrogenase (ubiquinone) 1 β subcomplex, 8, ND1, insulin-like growth factor 1 (IGF-1), myostatin, muscle Ring-finger protein-1 (muscle atrophy), phosphorylated forkhead box protein O 3a (p-FoxO3a), Akt, mammalian target of rapamycin (mTOR), and ribosomal protein S6 (rp-S6; muscle hypertrophy) in naive and muscle-atrophied mice were measured. Atomoxetine increased p-mTOR 24 hours after treatment in naïve mice, but did not change any other biomarkers. Formoterol robustly activated the PGC-1α-4-IGF1–Akt-mTOR-rp-S6 pathway and increased p-FoxO3a as early as 8 hours and repressed myostatin at 16 hours. In contrast to what was observed with acute treatment, chronic treatment (7 days) with atomoxetine increased p-Akt and p-FoxO3a, and sustained PGC-1α expression and skeletal muscle mass in dexamethasone-treated mice, in a manner comparable to formoterol. In conclusion, chronic treatment with a low dose of atomoxetine prevented dexamethasone-induced skeletal muscle wasting and supports a potential role in preventing muscle atrophy. PMID:25292181

  4. Compromised genomic integrity impedes muscle growth after Atrx inactivation

    PubMed Central

    Huh, Michael S.; Price O’Dea, Tina; Ouazia, Dahmane; McKay, Bruce C.; Parise, Gianni; Parks, Robin J.; Rudnicki, Michael A.; Picketts, David J.

    2012-01-01

    ATR-X syndrome is a severe intellectual disability disorder caused by mutations in the ATRX gene. Many ancillary clinical features are attributed to CNS deficiencies, yet most patients have muscle hypotonia, delayed ambulation, or kyphosis, pointing to an underlying skeletal muscle defect. Here, we identified a cell-intrinsic requirement for Atrx in postnatal muscle growth and regeneration in mice. Mice with skeletal muscle–specific Atrx conditional knockout (Atrx cKO mice) were viable, but by 3 weeks of age presented hallmarks of underdeveloped musculature, including kyphosis, 20% reduction in body mass, and 34% reduction in muscle fiber caliber. Atrx cKO mice also demonstrated a marked regeneration deficit that was not due to fewer resident satellite cells or their inability to terminally differentiate. However, activation of Atrx-null satellite cells from isolated muscle fibers resulted in a 9-fold reduction in myoblast expansion, caused by delayed progression through mid to late S phase. While in S phase, Atrx colocalized specifically to late-replicating chromatin, and its loss resulted in rampant signs of genomic instability. These observations support a model in which Atrx maintains chromatin integrity during the rapid developmental growth of a tissue. PMID:23114596

  5. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  6. Oxygen Generating Biomaterials Preserve Skeletal Muscle Homeostasis under Hypoxic and Ischemic Conditions

    PubMed Central

    Ward, Catherine L.; Corona, Benjamin T.; Yoo, James J.; Harrison, Benjamin S.; Christ, George J.

    2013-01-01

    Provision of supplemental oxygen to maintain soft tissue viability acutely following trauma in which vascularization has been compromised would be beneficial for limb and tissue salvage. For this application, an oxygen generating biomaterial that may be injected directly into the soft tissue could provide an unprecedented treatment in the acute trauma setting. The purpose of the current investigation was to determine if sodium percarbonate (SPO), an oxygen generating biomaterial, is capable of maintaining resting skeletal muscle homeostasis under otherwise hypoxic conditions. In the current studies, a biologically and physiologically compatible range of SPO (1–2 mg/mL) was shown to: 1) improve the maintenance of contractility and attenuate the accumulation of HIF1α, depletion of intramuscular glycogen, and oxidative stress (lipid peroxidation) that occurred following ∼30 minutes of hypoxia in primarily resting (duty cycle = 0.2 s train/120 s contraction interval <0.002) rat extensor digitorum longus (EDL) muscles in vitro (95% N2–5% CO2, 37°C); 2) attenuate elevations of rat EDL muscle resting tension that occurred during contractile fatigue testing (3 bouts of 25 100 Hz tetanic contractions; duty cycle = 0.2 s/2 s = 0.1) under oxygenated conditions in vitro (95% O2–5% CO2, 37°C); and 3) improve the maintenance of contractility (in vivo) and prevent glycogen depletion in rat tibialis anterior (TA) muscle in a hindlimb ischemia model (i.e., ligation of the iliac artery). Additionally, injection of a commercially available lipid oxygen-carrying compound or the components (sodium bicarbonate and hydrogen peroxide) of 1 mg/mL SPO did not improve EDL muscle contractility under hypoxic conditions in vitro. Collectively, these findings demonstrate that a biological and physiological concentration of SPO (1–2 mg/mL) injected directly into rat skeletal muscle (EDL or TA muscles) can partially preserve resting skeletal muscle homeostasis under

  7. Masticatory muscles of mouse do not undergo atrophy in space

    PubMed Central

    Philippou, Anastassios; Minozzo, Fabio C.; Spinazzola, Janelle M.; Smith, Lucas R.; Lei, Hanqin; Rassier, Dilson E.; Barton, Elisabeth R.

    2015-01-01

    Muscle loading is important for maintaining muscle mass; when load is removed, atrophy is inevitable. However, in clinical situations such as critical care myopathy, masticatory muscles do not lose mass. Thus, their properties may be harnessed to preserve mass. We compared masticatory and appendicular muscles responses to microgravity, using mice aboard the space shuttle Space Transportation System-135. Age- and sex-matched controls remained on the ground. After 13 days of space flight, 1 masseter (MA) and tibialis anterior (TA) were frozen rapidly for biochemical and functional measurements, and the contralateral MA was processed for morphologic measurements. Flight TA muscles exhibited 20 ± 3% decreased muscle mass, 2-fold decreased phosphorylated (P)-Akt, and 4- to 12-fold increased atrogene expression. In contrast, MAs had no significant change in mass but a 3-fold increase in P-focal adhesion kinase, 1.5-fold increase in P-Akt, and 50–90% lower atrogene expression compared with limb muscles, which were unaltered in microgravity. Myofibril force measurements revealed that microgravity caused a 3-fold decrease in specific force and maximal shortening velocity in TA muscles. It is surprising that myofibril-specific force from both control and flight MAs were similar to flight TA muscles, yet power was compromised by 40% following flight. Continued loading in microgravity prevents atrophy, but masticatory muscles have a different set point that mimics disuse atrophy in the appendicular muscle.—Philippou, A., Minozzo, F. C., Spinazzola, J. M., Smith, L. R., Lei, H., Rassier, D. E., Barton, E. R. Masticatory muscles of mouse do not undergo atrophy in space. PMID:25795455

  8. Methods for the Organogenesis of Skeletal Muscle in Tissue Culture

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman; Shansky, Janet; DelTatto, Michael; Chromiak, Joseph

    1997-01-01

    Skeletal muscle structure is regulated by many factors, including nutrition, hormones, electrical activity, and tension. The muscle cells are subjected to both passive and active mechanical forces at all stages of development and these forces play important but poorly understood roles in regulating muscle organogenesis and growth. For example, during embryogenesis, the rapidly growing skeleton places large passive mechanical forces on the attached muscle tissue. These forces not only help to organize the proliferating mononucleated myoblasts into the oriented, multinucleated myofibers of a functional muscle but also tightly couple the growth rate of muscle to that of bone. Postnatally, the actively contracting, innervated muscle fibers are subjected to different patterns of active and passive tensions which regulate longitudinal and cross sectional myofiber growth. These mechanically-induced organogenic processes have been difficult to study under normal tissue culture conditions, resulting in the development of numerous methods and specialized equipment to simulate the in vivo mechanical environment.These techniques have led to the "engineering" of bioartificial muscles (organoids) which display many of the characteristics of in vivo muscle including parallel arrays of postmitotic fibers organized into fascicle-like structures with tendon-like ends. They are contractile, express adult isoforms of contractile proteins, perform directed work, and can be maintained in culture for long periods. The in vivo-like characteristics and durability of these muscle organoids make them useful for long term in vitro studies on mechanotransduction mechanisms and on muscle atrophy induced by decreased tension. In this report, we described a simple method for generating muscle organoids from either primary embrionic avain or neonatal rodent myoblasts.

  9. Determinants of skeletal muscle protein turnover following severe burn trauma in children.

    PubMed

    Malagaris, Ioannis; Herndon, David N; Polychronopoulou, Efstathia; Rontoyanni, Victoria G; Andersen, Clark R; Suman, Oscar E; Porter, Craig; Sidossis, Labros S

    2018-06-04

    Burns remain the fifth cause of non-fatal pediatric injuries globally, with muscle cachexia being a hallmark of the stress response to burns. Burn-induced muscle wasting is associated with morbidity, yet the determinants of muscle protein catabolism in response to burn trauma remains unclear. Our objective was to determine the effect of patient and injury characteristics on muscle protein kinetics in burn patients. This retrospective, observational study was performed using protein kinetic data from pediatric patients who had severe burns (>30% of the total body surface area burned) and underwent cross-limb stable isotope infusions between 1999 and 2008 as part of prospective clinical trials. Mixed multiple regression models were used to assess associations between patient/injury characteristics and muscle protein fractional synthesis rate (FSR), net balance (NB), and rates of phenylalanine appearance (Ra; index of protein breakdown) and disappearance (Rd; index of protein synthesis) across the leg. A total of 268 patients who underwent 499 studies were analyzed. Increasing time post injury was associated with greater FSR (p < 0.001) and NB (p = 0.01). Males were more catabolic than females (as indicated by lower NB, p = 0.04 and greater Ra, p = 0.008), a consequence of higher protein breakdown rather than lower synthesis. Increasing burn size was associated with higher protein synthesis rate (as indicated by higher FSR, p = 0.019) and higher protein breakdown rates (as indicated by greater Ra, p = 0.001). FSR was negatively associated with age (p < 0.001). Data from this large patient cohort show that injury severity, sex, and time post injury influence skeletal muscle wasting in burned children. These findings suggest that individual patient characteristics should be considered when devising therapies to improve the acute care and rehabilitation of burn survivors. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and

  10. Mapping of electrical muscle stimulation using MRI

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Harris, Robert T.; Woodard, Daniel; Dudley, Gary A.

    1993-01-01

    The pattern of muscle contractile activity elicited by electromyostimulation (EMS) was mapped and compared to the contractile-activity pattern produced by voluntary effort. This was done by examining the patterns and the extent of contrast shift, as indicated by T2 values, im magnetic resonance (MR) images after isometric activity of the left m. quadriceps of human subjects was elicited by EMS (1-sec train of 500-microsec sine wave pulses at 50 Hz) or voluntary effort. The results suggest that, whereas EMS stimulates the same fibers repeatedly, thereby increasing the metabolic demand and T2 values, the voluntary efforts are performed by more diffuse asynchronous activation of skeletal muscle even at forces up to 75 percent of maximal to maintain performance.

  11. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial.

    PubMed

    Filippi, Guido M; Brunetti, Orazio; Botti, Fabio M; Panichi, Roberto; Roscini, Mauro; Camerota, Filippo; Cesari, Matteo; Pettorossi, Vito E

    2009-12-01

    Filippi GM, Brunetti O, Botti FM, Panichi R, Roscini M, Camerota F, Cesari M, Pettorossi VE. Improvement of stance control and muscle performance induced by focal muscle vibration in young-elderly women: a randomized controlled trial. To determine the effect of a particular protocol of mechanical vibration, applied focally and repeatedly (repeated muscle vibration [rMV]) on the quadriceps muscles, on stance and lower-extremity muscle power of young-elderly women. Double-blind randomized controlled trial; 3-month follow-up after intervention. Human Physiology Laboratories, University of Perugia, Italy. Sedentary women volunteers (N=60), randomized in 3 groups (mean age +/- SD, 65.3+/-4.2y; range, 60-72). rMV (100Hz, 300-500microm, in three 10-minute sessions a day for 3 consecutive days) was applied to voluntary contracted quadriceps (vibrated and contracted group) and relaxed quadriceps (vibrated and relaxed group). A third group received placebo stimulation (nonvibrated group). Area of sway of the center of pressure, vertical jump height, and leg power. Twenty-four hours after the end of the complete series of applications, the area of sway of the center of pressure decreased significantly by approximately 20%, vertical jump increased by approximately 55%, and leg power increased by approximately 35%. These effects were maintained for at least 90 days after treatment. rMV is a short-lasting and noninvasive protocol that can significantly and persistently improve muscle performance in sedentary young-elderly women.

  12. A Mathematical Model of Oxygen Transport in Skeletal Muscle During Hindlimb Unloading

    NASA Technical Reports Server (NTRS)

    Causey, Laura; Lewandowski, Beth E.; Weinbaum, Sheldon

    2014-01-01

    During hindlimb unloading (HU) dramatic fluid shifts occur within minutes of the suspension, leading to a less precise matching of blood flow to O2 demands of skeletal muscle. Vascular resistance directs blood away from certain muscles, such as the soleus (SOL). The muscle volume gradually reduces in these muscles so that eventually the relative blood flow returns to normal. It is generally believed that muscle volume change is not due to O2 depletion, but a consequence of disuse. However, the volume of the unloaded rat muscle declines over the course of weeks, whereas the redistribution of blood flow occurs immediately. Using a Krogh Cylinder Model, the distribution of O2 was predicted in two skeletal muscles: SOL and gastrocnemius (GAS). Effects of the muscle blood flow, volume, capillary density, and O2 uptake, are included to calculate the pO2 at rest and after 10 min and 15 days of unloading. The model predicts that 32 percent of the SOL muscle tissue has a pO2 1.25 mm Hg within 10 min, whereas the GAS maintains normal O2 levels, and that equilibrium is reached only as the SOL muscle cells degenerate. The results provide evidence that there is an inadequate O2 supply to the mitochondria in the SOL muscle after 10 min HU.

  13. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys.

    PubMed

    St Andre, Michael; Johnson, Mark; Bansal, Prashant N; Wellen, Jeremy; Robertson, Andrew; Opsahl, Alan; Burch, Peter M; Bialek, Peter; Morris, Carl; Owens, Jane

    2017-11-09

    The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. We demonstrated that the potent anti-myostatin antibody mRK35 and

  14. Amino acids augment muscle protein synthesis in neonatal pigs during acute endotoxemia by stimulating mTOR-dependent translation initiation

    USDA-ARS?s Scientific Manuscript database

    In skeletal muscle of adults, sepsis reduces protein synthesis by depressing translation initiation and induces resistance to branched-chain amino acid stimulation. Normal neonates maintain a high basal muscle protein synthesis rate that is sensitive to amino acid stimulation. In the present study...

  15. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24–month follow-up

    PubMed Central

    Doorenweerd, N.; Baligand, C.; Verschuuren, J. J. G. M.; Ronen, I.; Niks, E. H.; Webb, A. G.; Kan, H. E.

    2017-01-01

    Objectives To assess the changes in phosphodiester (PDE)-levels, detected by 31P magnetic resonance spectroscopy (MRS), over 24-months to determine the potential of PDE as marker for muscle tissue changes in Duchenne Muscular Dystrophy (DMD) patients. Methods Spatially resolved phosphorous datasets were acquired in the right lower leg of 18 DMD patients (range: 5–15.4 years) and 12 age-matched healthy controls (range: 5–14 years) at three time-points (baseline, 12-months, and 24-months) using a 7T MR-System (Philips Achieva). 3-point Dixon images were acquired at 3T (Philips Ingenia) to determine muscle fat fraction. Analyses were done for six muscles that represent different stages of muscle wasting. Differences between groups and time-points were assessed with non-parametric tests with correction for multiple comparisons. Coefficient of variance (CV) were determined for PDE in four healthy adult volunteers in high and low signal-to-noise ratio (SNR) datasets. Results PDE-levels were significantly higher (two-fold) in DMD patients compared to controls in all analyzed muscles at almost every time point and did not change over the study period. Fat fraction was significantly elevated in all muscles at all time points compared to healthy controls, and increased significantly over time, except in the tibialis posterior muscle. The mean within subject CV for PDE-levels was 4.3% in datasets with high SNR (>10:1) and 5.7% in datasets with low SNR. Discussion and conclusion The stable two-fold increase in PDE-levels found in DMD patients in muscles with different levels of muscle wasting over 2-year time, including DMD patients as young as 5.5 years-old, suggests that PDE-levels may increase very rapidly early in the disease process and remain elevated thereafter. The low CV values in high and low SNR datasets show that PDE-levels can be accurately and reproducibly quantified in all conditions. Our data confirms the great potential of PDE as a marker for muscle tissue

  16. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.

    PubMed

    Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert T; Liu, Xuhui

    2014-01-01

    extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.

  17. Matrix metalloproteinase-2 plays a critical role in overload induced skeletal muscle hypertrophy.

    PubMed

    Zhang, Qia; Joshi, Sunil K; Lovett, David H; Zhang, Bryon; Bodine, Sue; Kim, Hubert; Liu, Xuhui

    2014-07-01

    extracellular matrix (ECM) components are instrumental in maintaining homeostasis and muscle fiber functional integrity. Skeletal muscle hypertrophy is associated with ECM remodeling. Specifically, recent studies have reported the involvement of matrix metalloproteinases (MMPs) in muscle ECM remodeling. However, the functional role of MMPs in muscle hypertrophy remains largely unknown. in this study, we examined the role of MMP-2 in skeletal muscle hypertrophy using a previously validated method where the plantaris muscle of mice were subjected to mechanical overload due to the surgical removal of synergist muscles (gastrocnemius and soleus). following two weeks of overload, we observed a significant increase in MMP-2 activity and up-regulation of ECM components and remodeling enzymes in the plantaris muscles of wild-type mice. However, MMP-2 knockout mice developed significantly less hypertrophy and ECM remodeling in response to overload compared to their wild-type littermates. Investigation of protein synthesis rate and Akt/mTOR signaling revealed no difference between wild-type and MMP-2 knockout mice, suggesting that a difference in hypertrophy was independent of protein synthesis. taken together, our results suggest that MMP-2 is a key mediator of ECM remodeling in the setting of skeletal muscle hypertrophy.

  18. Thermal investigation of nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.

    1981-01-01

    A thermal analysis has been conducted to determine the allowable size and response of bare and shielded nuclear waste forms in both low earth orbit and at 0.85 astronomical units. Contingency conditions of re-entry with a 45 deg and 60 deg aeroshell are examined as well as re-entry of a spherical shielded waste form. A variety of shielded schemes were examined and the waste form thermal response for each determined. Two optimum configurations were selected. The thermal response of these two shielded waste configurations to indefinite exposure to ground conditions following controlled and uncontrolled re-entry is determined. In all cases the prime criterion is that waste containment must be maintained.

  19. Investigation of the Expression of Myogenic Transcription Factors, microRNAs and Muscle-Specific E3 Ubiquitin Ligases in the Medial Gastrocnemius and Soleus Muscles following Peripheral Nerve Injury

    PubMed Central

    Wiberg, Rebecca; Jonsson, Samuel; Novikova, Liudmila N.; Kingham, Paul J.

    2015-01-01

    Despite surgical innovation, the sensory and motor outcome after a peripheral nerve injury remains incomplete. One contributing factor to the poor outcome is prolonged denervation of the target organ, leading to apoptosis of both mature myofibres and satellite cells with subsequent replacement of the muscle tissue with fibrotic scar and adipose tissue. In this study, we investigated the expression of myogenic transcription factors, muscle specific microRNAs and muscle-specific E3 ubiquitin ligases at several time points following denervation in two different muscles, the gastrocnemius (containing predominantly fast type fibres) and soleus (slow type) muscles, since these molecules may influence the degree of atrophy following denervation. Both muscles exhibited significant atrophy (compared with the contra-lateral sides) at 7 days following either a nerve transection or crush injury. In the crush model, the soleus muscle showed significantly increased muscle weights at days 14 and 28 which was not the case for the gastrocnemius muscle which continued to atrophy. There was a significantly more pronounced up-regulation of MyoD expression in the denervated soleus muscle compared with the gastrocnemius muscle. Conversely, myogenin was more markedly elevated in the gastrocnemius versus soleus muscles. The muscles also showed significantly contrasting transcriptional regulation of the microRNAs miR-1 and miR-206. MuRF1 and Atrogin-1 showed the highest levels of expression in the denervated gastrocnemius muscle. This study provides further insights regarding the intracellular regulatory molecules that generate and maintain distinct patterns of gene expression in different fibre types following peripheral nerve injury. PMID:26691660

  20. Prior history of FDI muscle contraction: different effect on MEP amplitude and muscle activity.

    PubMed

    Talis, V L; Kazennikov, O V; Castellote, J M; Grishin, A A; Ioffe, M E

    2014-03-01

    Motor evoked potentials (MEPs) in the right first dorsal interosseous (FDI) muscle elicited by transcranial magnetic stimulation of left motor cortex were assessed in ten healthy subjects during maintenance of a fixed FDI contraction level. Subjects maintained an integrated EMG (IEMG) level with visual feedback and reproduced this level by memory afterwards in the following tasks: stationary FDI muscle contraction at the level of 40 ± 5 % of its maximum voluntary contraction (MVC; 40 % task), at the level of 20 ± 5 % MVC (20 % task), and also when 20 % MVC was preceded by either no contraction (0-20 task), by stronger muscle contraction (40-20 task) or by no contraction with a previous strong contraction (40-0-20 task). The results show that the IEMG level was within the prescribed limits when 20 and 40 % stationary tasks were executed with and without visual feedback. In 0-20, 40-20, and 40-0-20 tasks, 20 % IEMG level was precisely controlled in the presence of visual feedback, but without visual feedback the IEMG and force during 20 % IEMG maintenance were significantly higher in the 40-0-20 task than those in 0-20 and 40-20 tasks. That is, without visual feedback, there were significant variations in muscle activity due to different prehistory of contraction. In stationary tasks, MEP amplitudes in 40 % task were higher than in 20 % task. MEPs did not differ significantly during maintenance of the 20 % level in tasks with different prehistory of muscle contraction with and without visual feedback. Thus, in spite of variations in muscle background activity due to different prehistory of contraction MEPs did not vary significantly. This dissociation suggests that the voluntary maintenance of IEMG level is determined not only by cortical mechanisms, as reflected by corticospinal excitability, but also by lower levels of CNS, where afferent signals and influences from other brain structures and spinal cord are convergent.

  1. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program.

    PubMed

    Morrison-Nozik, Alexander; Anand, Priti; Zhu, Han; Duan, Qiming; Sabeh, Mohamad; Prosdocimo, Domenick A; Lemieux, Madeleine E; Nordsborg, Nikolai; Russell, Aaron P; MacRae, Calum A; Gerber, Anthony N; Jain, Mukesh K; Haldar, Saptarsi M

    2015-12-08

    Classic physiology studies dating to the 1930s demonstrate that moderate or transient glucocorticoid (GC) exposure improves muscle performance. The ergogenic properties of GCs are further evidenced by their surreptitious use as doping agents by endurance athletes and poorly understood efficacy in Duchenne muscular dystrophy (DMD), a genetic muscle-wasting disease. A defined molecular basis underlying these performance-enhancing properties of GCs in skeletal muscle remains obscure. Here, we demonstrate that ergogenic effects of GCs are mediated by direct induction of the metabolic transcription factor KLF15, defining a downstream pathway distinct from that resulting in GC-related muscle atrophy. Furthermore, we establish that KLF15 deficiency exacerbates dystrophic severity and muscle GC-KLF15 signaling mediates salutary therapeutic effects in the mdx mouse model of DMD. Thus, although glucocorticoid receptor (GR)-mediated transactivation is often associated with muscle atrophy and other adverse effects of pharmacologic GC administration, our data define a distinct GR-induced gene regulatory pathway that contributes to therapeutic effects of GCs in DMD through proergogenic metabolic programming.

  2. Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload

    NASA Technical Reports Server (NTRS)

    Carlson, C. J.; Fan, Z.; Gordon, S. E.; Booth, F. W.

    2001-01-01

    Knowledge of the molecular mechanisms by which skeletal muscle hypertrophies in response to increased mechanical loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. To gain insight into potential early signaling mechanisms associated with skeletal muscle hypertrophy, the temporal pattern of mitogen-activated protein kinase (MAPK) phosphorylation and phosphatidylinositol 3-kinase (PI3-kinase) activity during the first 24 h of muscle overload was determined in the rat slow-twitch soleus and fast-twitch plantaris muscles after ablation of the gastrocnemius muscle. p38alpha MAPK phosphorylation was elevated for the entire 24-h overload period in both muscles. In contrast, Erk 2 and p54 JNK phosphorylation were transiently increased by overload, returning to the levels of sham-operated controls by 24 h. PI3-kinase activity was increased by muscle overload only at 12 h of overload and only in the plantaris muscle. In summary, sustained elevation of p38alpha MAPK phosphorylation occurred early in response to muscle overload, identifying this pathway as a potential candidate for mediating early hypertrophic signals in response to skeletal muscle overload.

  3. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    PubMed

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in

  4. Pharyngeal satellite cells undergo myogenesis under basal conditions and are required for pharyngeal muscle maintenance

    PubMed Central

    Randolph, Matthew E.; Phillips, Brittany L.; Choo, Hyo-Jung; Vest, Katherine E.; Vera, Yandery; Pavlath, Grace K.

    2015-01-01

    The pharyngeal muscles of the nasal, oral, and laryngeal pharynxes are required for swallowing. Pharyngeal muscles are preferentially affected in some muscular dystrophies yet spared in others. Muscle stem cells, called satellite cells, may be critical factors in the development of pharyngeal muscle disorders; however, very little is known about pharyngeal satellite cells (PSC) and their role in pharyngeal muscles. We show that PSC are distinct from the commonly studied hindlimb satellite cells both transcriptionally and biologically. Under basal conditions PSC proliferate, progress through myogenesis, and fuse with pharyngeal myofibers. Furthermore, PSC exhibit biologic differences dependent on anatomic location in the pharynx. Importantly, PSC are required to maintain myofiber size and myonuclear number in pharyngeal myofibers. Together, these results demonstrate that PSC are critical for pharyngeal muscle maintenance and suggest that satellite cell impairment could contribute to pharyngeal muscle pathology associated with various muscular dystrophies and aging. PMID:26178867

  5. Radioactive Waste Management in A Hospital

    PubMed Central

    Khan, Shoukat; Syed, AT; Ahmad, Reyaz; Rather, Tanveer A.; Ajaz, M; Jan, FA

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations. PMID:21475524

  6. Radioactive waste management in a hospital.

    PubMed

    Khan, Shoukat; Syed, At; Ahmad, Reyaz; Rather, Tanveer A; Ajaz, M; Jan, Fa

    2010-01-01

    Most of the tertiary care hospitals use radioisotopes for diagnostic and therapeutic applications. Safe disposal of the radioactive waste is a vital component of the overall management of the hospital waste. An important objective in radioactive waste management is to ensure that the radiation exposure to an individual (Public, Radiation worker, Patient) and the environment does not exceed the prescribed safe limits. Disposal of Radioactive waste in public domain is undertaken in accordance with the Atomic Energy (Safe disposal of radioactive waste) rules of 1987 promulgated by the Indian Central Government Atomic Energy Act 1962. Any prospective plan of a hospital that intends using radioisotopes for diagnostic and therapeutic procedures needs to have sufficient infrastructural and manpower resources to keep its ambient radiation levels within specified safe limits. Regular monitoring of hospital area and radiation workers is mandatory to assess the quality of radiation safety. Records should be maintained to identify the quality and quantity of radioactive waste generated and the mode of its disposal. Radiation Safety officer plays a key role in the waste disposal operations.

  7. Effects of co-administration of clenbuterol and testosterone propionate on skeletal muscle in paraplegic mice.

    PubMed

    Ung, Roth-Visal; Rouleau, Pascal; Guertin, Pierre A

    2010-06-01

    Spinal cord injury (SCI) is generally associated with a rapid and significant decrease in muscle mass and corresponding changes in skeletal muscle properties. Although beta(2)-adrenergic and androgen receptor agonists are anabolic substances clearly shown to prevent or reverse muscle wasting in some pathological conditions, their effects in SCI patients remain largely unknown. Here we studied the effects of clenbuterol and testosterone propionate administered separately or in combination on skeletal muscle properties and adipose tissue in adult CD1 mice spinal-cord-transected (Tx) at the low-thoracic level (i.e., induced complete paraplegia). Administered shortly post-Tx, these substances were found to differentially reduce loss in body weight, muscle mass, and muscle fiber cross-sectional area (CSA) values. Although all three treatments induced significant effects, testosterone-treated animals were generally less protected against Tx-related changes. However, none of the treatments prevented fat tissue loss or muscle fiber type conversion and functional loss generally found in Tx animals. These results provide evidence suggesting that clenbuterol alone or combined with testosterone may constitute better clinically-relevant treatments than testosterone alone to decrease muscle atrophy (mass and fiber CSA) in SCI subjects.

  8. Novel roles of FKBP5 in muscle alteration induced by gravity change in mice.

    PubMed

    Shimoide, Takeshi; Kawao, Naoyuki; Tamura, Yukinori; Morita, Hironobu; Kaji, Hiroshi

    2016-10-21

    Skeletal muscle hypertrophy and wasting are induced by hypergravity and microgravity, respectively. However, the mechanisms by which gravity change regulates muscle mass still remain unclear. We previously reported that hypergravity increases muscle mass via the vestibular system in mice. In this study, we performed comparative DNA microarray analysis of the soleus muscle from mice kept in 1 or 3 g environments with or without vestibular lesions. Mice were kept in 1 g or 3 g environment for 4 weeks by using a centrifuge 14 days after surgical bilateral vestibular lesions. FKBP5 was extracted as a gene whose expression was enhanced by hypergravity through the vestibular system. Stable FKBP5 overexpression increased the phosphorylations of Akt and p70 S6 kinase (muscle protein synthesis pathway) and myosin heavy chain, a myotube gene, mRNA level in mouse myoblastic C2C12 cells, although it reduced the mRNA levels of atrogin-1 and MuRF1, muscle protein degradation-related genes. In conclusion, we first showed that FKBP5 is induced by hypergravity through the vestibular system in anti-gravity muscle of mice. Our data suggest that FKBP5 might increase muscle mass through the enhancements of muscle protein synthesis and myotube differentiation as well as an inhibition of muscle protein degradation in mice. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Lipin-1 regulates Bnip3-mediated mitophagy in glycolytic muscle.

    PubMed

    Alshudukhi, Abdullah A; Zhu, Jing; Huang, Dengtong; Jama, Abdulrahman; Smith, Jeffrey D; Wang, Qing Jun; Esser, Karyn A; Ren, Hongmei

    2018-06-25

    Autophagy of mitochondria (mitophagy) is essential for maintaining muscle mass and healthy skeletal muscle. Patients with heritable phosphatidic acid phosphatase lipin-1-null mutations present with severe rhabdomyolysis and muscle atrophy in glycolytic muscle fibers, which are accompanied with mitochondrial aggregates and reduced mitochondrial cytochrome c oxidase activity. However, the underlying mechanisms leading to muscle atrophy as a result of lipin-1 deficiency are still not clear. In this study, we found that lipin-1 deficiency in mice is associated with a marked accumulation of abnormal mitochondria and autophagic vacuoles in glycolytic muscle fibers. Our studies using lipin-1-deficient myoblasts suggest that lipin-1 participates in B-cell leukemia (BCL)-2 adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3)-regulated mitophagy by interacting with microtubule-associated protein 1A/1B-light chain (LC)3, which is an important step in the recruitment of mitochondria to nascent autophagosomes. The requirement of lipin-1 for Bnip3-mediated mitophagy was further verified in vivo in lipin-1-deficient green fluorescent protein-LC3 transgenic mice (lipin-1 -/- -GFP-LC3). Finally, we showed that lipin-1 deficiency in mice resulted in defective mitochondrial adaptation to starvation-induced metabolic stress and impaired contractile muscle force in glycolytic muscle fibers. In summary, our study suggests that deregulated mitophagy arising from lipin-1 deficiency is associated with impaired muscle function and may contribute to muscle rhabdomyolysis in humans.-Alshudukhi, A. A., Zhu, J., Huang, D., Jama, A., Smith, J. D., Wang, Q. J., Esser, K. A., Ren, H. Lipin-1 regulates Bnip3-mediated mitophagy in glycolytic muscle.

  10. Skeletal Muscle Hypertrophy and Cardiometabolic Benefits after Spinal Cord Injury

    DTIC Science & Technology

    2016-10-01

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...COMPOSITION AND METABOLISM, FUNCTIONAL ELECTERICAL STIMULATION , IMMUNIOCHEMISTRY, SKELETAL MUSCLES, INFLAMMATORY BIOMARKERS, DUAL ENERGEY X-RAY...1. INTRODUCTION: Forty eight participants will be randomly assigned into neuromuscular electrical stimulation + functional electrical

  11. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    PubMed

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors.

    PubMed

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin'ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.

  13. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors

    PubMed Central

    Miyatake, Shouta; Shimizu-Motohashi, Yuko; Takeda, Shin’ichi; Aoki, Yoshitsugu

    2016-01-01

    Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD. PMID:27621596

  14. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle.

    PubMed

    Koning, Merel; Werker, Paul M N; van Luyn, Marja J A; Harmsen, Martin C

    2011-07-01

    Facial paralysis is a physically, psychologically, and socially disabling condition. Innovative treatment strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with facial paralysis. The natural source for tissue-engineered muscle would be muscle stem cells, that is, human satellite cells (SC). In vivo, SC respond to hypoxic, ischemic muscle damage by activation, proliferation, differentiation to myotubes, and maturation to muscle fibers, while maintaining their reserve pool of SC. Therefore, our hypothesis is that hypoxia improves proliferation and differentiation of SC. During tissue engineering, a three-dimensional construct, or implanting SC in vivo, SC will encounter hypoxic environments. Thus, we set out to test our hypothesis on SC in vitro. During the first five passages, hypoxically cultured SC proliferated faster than their counterparts under normoxia. Moreover, also at higher passages, a switch from normoxia to hypoxia enhanced proliferation of SC. Hypoxia did not affect the expression of SC markers desmin and NCAM. However, the average surface expression per cell of NCAM was downregulated by hypoxia, and it also downregulated the gene expression of NCAM. The gene expression of the myogenic transcription factors PAX7, MYF5, and MYOD was upregulated by hypoxia. Moreover, gene expression of structural proteins α-sarcomeric actin, and myosins MYL1 and MYL3 was upregulated by hypoxia during differentiation. This indicates that hypoxia promotes a promyogenic shift in SC. Finally, Pax7 expression was not influenced by hypoxia and maintained in a subset of mononucleated cells, whereas these cells were devoid of structural muscle proteins. This suggests that during myogenesis in vitro, at least part of the SC adopt a quiescent, that is, reserve cells, phenotype. In conclusion, tissue engineering under hypoxic conditions would seem favorable in terms of myogenic proliferation

  15. Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells

    PubMed Central

    Fontes-Oliveira, Cibely C.; Steinz, Maarten; Schneiderat, Peter; Mulder, Hindrik; Durbeej, Madeleine

    2017-01-01

    Skeletal muscle has high energy requirement and alterations in metabolism are associated with pathological conditions causing muscle wasting and impaired regeneration. Congenital muscular dystrophy type 1A (MDC1A) is a severe muscle disorder caused by mutations in the LAMA2 gene. Leigh syndrome (LS) is a neurometabolic disease caused by mutations in genes related to mitochondrial function. Skeletal muscle is severely affected in both diseases and a common feature is muscle weakness that leads to hypotonia and respiratory problems. Here, we have investigated the bioenergetic profile in myogenic cells from MDC1A and LS patients. We found dysregulated expression of genes related to energy production, apoptosis and proteasome in myoblasts and myotubes. Moreover, impaired mitochondrial function and a compensatory upregulation of glycolysis were observed when monitored in real-time. Also, alterations in cell cycle populations in myoblasts and enhanced caspase-3 activity in myotubes were observed. Thus, we have for the first time demonstrated an impairment of the bioenergetic status in human MDC1A and LS muscle cells, which could contribute to cell cycle disturbance and increased apoptosis. Our findings suggest that skeletal muscle metabolism might be a promising pharmacological target in order to improve muscle function, energy efficiency and tissue maintenance of MDC1A and LS patients. PMID:28367954

  16. Effects of Pharmacological Interventions on Muscle Protein Synthesis and Breakdown in Recovery from Burns

    PubMed Central

    Diaz, Eva C.; Herndon, David N.; Porter, Craig; Sidossis, Labros S.; Suman, Oscar E.; Børsheim, Elisabet

    2014-01-01

    Objective The pathophysiological response to burn injury disturbs the balance between skeletal muscle protein synthesis and breakdown, resulting in severe muscle wasting. Muscle loss after burn injury is related to increased mortality and morbidity. Consequently, mitigation of this catabolic response has become a focus in the management of these patients. The aim of this review is to discuss the literature pertaining to pharmacological interventions aimed at attenuating skeletal muscle catabolism in severely burned patients. Data selection Review of the literature related to skeletal muscle protein metabolism following burn injury was conducted. Emphasis was on studies utilizing stable isotope tracer kinetics to assess the impact of pharmacological interventions on muscle protein metabolism in severely burned patients. Conclusion Data support the efficacy of testosterone, oxandrolone, human recombinant growth hormone, insulin, metformin, and propranolol in improving skeletal muscle protein net balance in patients with severe burns. The mechanisms underlying the improvement of protein net balance differ between types and dosages of drugs, but their main effect is on protein synthesis. Finally, the majority of studies have been conducted during the acute hypermetabolic phase of the injury. Except for oxandrolone, the effects of drugs on muscle protein kinetics following discharge from the hospital are largely unknown. PMID:25468473

  17. Muscle atrophy associated with microgravity in rat: Basic data for countermeasures

    NASA Astrophysics Data System (ADS)

    Falempin, M.; Mounier, Y.

    Morphological, contractile properties and myosin heavy chain (MHC) composition of rat soleus muscles were studied after 2 weeks of unloading (HS) and after 2 weeks of HS associated with selective deafferentation (HS + DEAF) at the level L4 and L5. The same significant reductions in muscle mass and tetanic tension were found after HS and HS + DEAF. However, the transformation of the slow-twitch soleus muscle towards a faster type characterized by a decrease in twitch time parameters and an increase in fast-twitch type MHC isoforms in HS did not appear in HS + DEAF conditions. Our results also showed that a pattern similar to firing rate of motoneurones innervating slow-twitch muscles inhibited the slow to fast fiber changes observed during HS. Nevertheless, neither the loss of mass or force output in the HS muscles were prevented by electrostimulation. Immobilization in a stretched position during HS maintained the muscle wet weight, mechanical and electrophoretical characteristics close to control values. We concluded that the decrease in mechanical strains imposed on the muscle during unloading was the main factor for the development of atrophy, while the kinetic changes might be predominantly modulated by the nervous command. These basic data suggested that some experimental conditions such as electrostimulation or stretching, could participate in countermeasure programmes.

  18. Retention of Pax3 expression in satellite cells of muscle spindles.

    PubMed

    Kirkpatrick, Lisa J; Yablonka-Reuveni, Zipora; Rosser, Benjamin W C

    2010-04-01

    Intrafusal fibers within muscle spindles retain features characteristic of immaturity, unlike the larger and more numerous extrafusal fibers constituting the bulk of skeletal muscle. Satellite cells (SCs), myogenic progenitors, are detected on the surfaces of both intrafusal and extrafusal fibers, but little is known of spindle SCs. We have recently demonstrated that, like their extrafusal counterparts, SCs in muscle spindles of posthatch chickens express paired box transcription factor 7 (Pax7) protein. During vertebrate embryogenesis, myogenic progenitors express both Pax7 and Pax3 proteins. In postnatal mice, Pax3 appears in rare SC subsets, whereas Pax7 is expressed by all SCs within extrafusal fibers. Here we test the hypothesis that Pax3 protein maintains localized expression within SCs of muscle spindles. Immunohistochemical techniques were used to identify SCs by their Pax7 expression within anterior latissimus dorsi muscle excised from posthatch chickens of various ages. A greater percentage of SCs express Pax3 within intrafusal than extrafusal fibers at each age, and the proportion of SCs expressing Pax3 declines with aging. This is the first study to localize Pax3 expression in posthatch avian muscle and within SCs of muscle spindles. We suggest that Pax3-positive SCs are involved in fiber maintenance.

  19. Matching initial torque with different stimulation parameters influences skeletal muscle fatigue.

    PubMed

    Bickel, C Scott; Gregory, Chris M; Azuero, Andres

    2012-01-01

    A fundamental barrier to using electrical stimulation in the clinical setting is an inability to maintain torque production secondary to muscle fatigue. Electrical stimulation parameters are manipulated to influence muscle torque production, and they may also influence fatigability during repetitive stimulation. Our purpose was to determine the response of the quadriceps femoris to three different fatigue protocols using the same initial torque obtained by altering stimulator parameter settings. Participants underwent fatigue protocols in which either pulse frequency (lowHz), pulse duration (lowPD), or voltage (lowV) was manipulated to obtain an initial torque that equaled 25% of maximum voluntary isometric contraction. Muscle soreness was reported on a visual analog scale 48 h after each fatigue test. The lowHz protocol resulted in the least fatigue (25% +/- 14%); the lowPD (50% +/- 13%) and lowV (48% +/- 14%) protocols had similar levels of fatigue. The lowHz protocol resulted in significantly less muscle soreness than the higher frequency protocols. Stimulation protocols that use a lower frequency coupled with long pulse durations and high voltages result in lesser amounts of muscle fatigue and perceived soreness. The identification of optimal stimulation patterns to maximize muscle performance will reduce the effect of muscle fatigue and potentially improve clinical efficacy.

  20. Goodbye, Waste! What We Make. Science and Technology Education in Philippine Society.

    ERIC Educational Resources Information Center

    Philippines Univ., Quezon City. Science Education Center.

    This module: (1) discusses the need for disposing of waste safely; (2) provides information and activities on wet and dry wastes; and (3) shows how to prepare, maintain, and study a fertilizer basket (in which fertilizer is made from wet waste). Information on the biology of the basket (including role of bacteria and fungi in the decay process) is…