Sample records for water allocation model

  1. Optimal water resource allocation modelling in the Lowveld of Zimbabwe

    NASA Astrophysics Data System (ADS)

    Mhiribidi, Delight; Nobert, Joel; Gumindoga, Webster; Rwasoka, Donald T.

    2018-05-01

    The management and allocation of water from multi-reservoir systems is complex and thus requires dynamic modelling systems to achieve optimality. A multi-reservoir system in the Southern Lowveld of Zimbabwe is used for irrigation of sugarcane estates that produce sugar for both local and export consumption. The system is burdened with water allocation problems, made worse by decommissioning of dams. Thus the aim of this research was to develop an operating policy model for the Lowveld multi-reservoir system.The Mann Kendall Trend and Wilcoxon Signed-Rank tests were used to assess the variability of historic monthly rainfall and dam inflows for the period 1899-2015. The WEAP model was set up to evaluate the water allocation system of the catchment and come-up with a reference scenario for the 2015/2016 hydrologic year. Stochastic Dynamic Programming approach was used for optimisation of the multi-reservoirs releases.Results showed no significant trend in the rainfall but a significantly decreasing trend in inflows (p < 0.05). The water allocation model (WEAP) showed significant deficits ( ˜ 40 %) in irrigation water allocation in the reference scenario. The optimal rule curves for all the twelve months for each reservoir were obtained and considered to be a proper guideline for solving multi- reservoir management problems within the catchment. The rule curves are effective tools in guiding decision makers in the release of water without emptying the reservoirs but at the same time satisfying the demands based on the inflow, initial storage and end of month storage.

  2. Game Theoretic Modeling of Water Resources Allocation Under Hydro-Climatic Uncertainty

    NASA Astrophysics Data System (ADS)

    Brown, C.; Lall, U.; Siegfried, T.

    2005-12-01

    Typical hydrologic and economic modeling approaches rely on assumptions of climate stationarity and economic conditions of ideal markets and rational decision-makers. In this study, we incorporate hydroclimatic variability with a game theoretic approach to simulate and evaluate common water allocation paradigms. Game Theory may be particularly appropriate for modeling water allocation decisions. First, a game theoretic approach allows economic analysis in situations where price theory doesn't apply, which is typically the case in water resources where markets are thin, players are few, and rules of exchange are highly constrained by legal or cultural traditions. Previous studies confirm that game theory is applicable to water resources decision problems, yet applications and modeling based on these principles is only rarely observed in the literature. Second, there are numerous existing theoretical and empirical studies of specific games and human behavior that may be applied in the development of predictive water allocation models. With this framework, one can evaluate alternative orderings and rules regarding the fraction of available water that one is allowed to appropriate. Specific attributes of the players involved in water resources management complicate the determination of solutions to game theory models. While an analytical approach will be useful for providing general insights, the variety of preference structures of individual players in a realistic water scenario will likely require a simulation approach. We propose a simulation approach incorporating the rationality, self-interest and equilibrium concepts of game theory with an agent-based modeling framework that allows the distinct properties of each player to be expressed and allows the performance of the system to manifest the integrative effect of these factors. Underlying this framework, we apply a realistic representation of spatio-temporal hydrologic variability and incorporate the impact of

  3. Optimization Model for cooperative water allocation and valuation in large river basins regarding environmental constraints

    NASA Astrophysics Data System (ADS)

    Pournazeri, S.

    2011-12-01

    A comprehensive optimization model named Cooperative Water Allocation Model (CWAM) is developed for equitable and efficient water allocation and valuation of Zab river basin in order to solve the draught problems of Orumieh Lake in North West of Iran. The model's methodology consists of three phases. The first represents an initial water rights allocation among competing users. The second comprises the water reallocation process for complete usage by consumers. The third phase performs an allocation of the net benefit of the stakeholders participating in a coalition by applying cooperative game theory. The environmental constraints are accounted for in the water allocation model by entering probable environmental damage in a target function, and inputting the minimum water requirement of users. The potential of underground water usage is evaluated in order to compensate for the variation in the amount of surface water. This is conducted by applying an integrated economic- hydrologic river basin model. A node-link river basin network is utilized in CWAM which consists of two major blocks. The first indicates the internal water rights allocation and the second is associated to water and net benefit reallocation. System control, loss in links by evaporation or seepage, modification of inflow into the node, loss in nodes and loss in outflow are considered in this model. Water valuation is calculated for environmental, industrial, municipal and agricultural usage by net benefit function. It can be seen that the water rights are allocated efficiently and incomes are distributed appropriately based on quality and quantity limitations.

  4. Development of water allocation Model Based on ET-Control and Its Application in Haihe River Basin

    NASA Astrophysics Data System (ADS)

    You, Jinjun; Gan, Hong; Gan, Zhiguo; Wang, Lin

    2010-05-01

    Traditionally, water allocation is to distribute water to different regions and sectors, without enough consideration on amount of water consumed after water distribution. Water allocation based on ET (evaporation and Transpiration) control changes this idea and emphasizes the absolute amount of evaporation and transpiration in specific area. With this ideology, the amount of ET involved the water allocation includes not only water consumed from the sectors, but the natural ET. Therefore, the water allocation consist of two steps, the first step is to estimate reasonable ET quantum in regions, then allocate water to more detailed regions and various sectors with the ET quantum according with the operational rules. To make qualified ET distribution and water allocation in various regions, a framework is put forward in this paper, in which two models are applied to analyze the different scenarios with predefined economic growth and ecological objective. The first model figures out rational ET objective with multi-objective analysis for compromised solution in economic growth and ecological maintenance. Food security and environmental protection are also taken as constraints in the optimization in the first model. The second one provides hydraulic simulation and water balance to allocate the ET objective to corresponding regions under operational rules. These two models are combined into an integrated ET-Control water allocation. Scenario analysis through the ET-Control Model could discover the relations between economy and ecology, farther to give suggestion on measures to control water use with condition of changing socio-economic growth and ecological objectives. To confirm the methodology, Haihe River is taken as a case to study. Rational water allocation is important branch of decision making on water planning and management in Haihe River Basin since water scarcity and deteriorating environment fights for water in this basin dramatically and reasonable water

  5. Basin Economic Allocation Model (BEAM): An economic model of water use developed for the Aral Sea Basin

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Kromann, Mikkel; Karup Pedersen, Jesper; Lindgaard-Jørgensen, Palle; Sokolov, Vadim; Sorokin, Anatoly

    2013-04-01

    The water resources of the Aral Sea basin are under increasing pressure, particularly from the conflict over whether hydropower or irrigation water use should take priority. The purpose of the BEAM model is to explore the impact of changes to water allocation and investments in water management infrastructure on the overall welfare of the Aral Sea basin. The BEAM model estimates welfare changes associated with changes to how water is allocated between the five countries in the basin (Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan and Uzbekistan; water use in Afghanistan is assumed to be fixed). Water is allocated according to economic optimization criteria; in other words, the BEAM model allocates water across time and space so that the economic welfare associated with water use is maximized. The model is programmed in GAMS. The model addresses the Aral Sea Basin as a whole - that is, the rivers Syr Darya, Amu Darya, Kashkadarya, and Zarafshan, as well as the Aral Sea. The model representation includes water resources, including 14 river sections, 6 terminal lakes, 28 reservoirs and 19 catchment runoff nodes, as well as land resources (i.e., irrigated croplands). The model covers 5 sectors: agriculture (crops: wheat, cotton, alfalfa, rice, fruit, vegetables and others), hydropower, nature, households and industry. The focus of the model is on welfare impacts associated with changes to water use in the agriculture and hydropower sectors. The model aims at addressing the following issues of relevance for economic management of water resources: • Physical efficiency (estimating how investments in irrigation efficiency affect economic welfare). • Economic efficiency (estimating how changes in how water is allocated affect welfare). • Equity (who will gain from changes in allocation of water from one sector to another and who will lose?). Stakeholders in the region have been involved in the development of the model, and about 10 national experts, including

  6. Stochastic Optimization For Water Resources Allocation

    NASA Astrophysics Data System (ADS)

    Yamout, G.; Hatfield, K.

    2003-12-01

    For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.

  7. An integrated model of water resources optimization allocation based on projection pursuit model - Grey wolf optimization method in a transboundary river basin

    NASA Astrophysics Data System (ADS)

    Yu, Sen; Lu, Hongwei

    2018-04-01

    Under the effects of global change, water crisis ranks as the top global risk in the future decade, and water conflict in transboundary river basins as well as the geostrategic competition led by it is most concerned. This study presents an innovative integrated PPMGWO model of water resources optimization allocation in a transboundary river basin, which is integrated through the projection pursuit model (PPM) and Grey wolf optimization (GWO) method. This study uses the Songhua River basin and 25 control units as examples, adopting the PPMGWO model proposed in this study to allocate the water quantity. Using water consumption in all control units in the Songhua River basin in 2015 as reference to compare with optimization allocation results of firefly algorithm (FA) and Particle Swarm Optimization (PSO) algorithms as well as the PPMGWO model, results indicate that the average difference between corresponding allocation results and reference values are 0.195 bil m3, 0.151 bil m3, and 0.085 bil m3, respectively. Obviously, the average difference of the PPMGWO model is the lowest and its optimization allocation result is closer to reality, which further confirms the reasonability, feasibility, and accuracy of the PPMGWO model. And then the PPMGWO model is adopted to simulate allocation of available water quantity in Songhua River basin in 2018, 2020, and 2030. The simulation results show water quantity which could be allocated in all controls demonstrates an overall increasing trend with reasonable and equal exploitation and utilization of water resources in the Songhua River basin in future. In addition, this study has a certain reference value and application meaning to comprehensive management and water resources allocation in other transboundary river basins.

  8. Evaluation of model-based seasonal streamflow and water allocation forecasts for the Elqui Valley, Chile

    NASA Astrophysics Data System (ADS)

    Delorit, Justin; Cristian Gonzalez Ortuya, Edmundo; Block, Paul

    2017-09-01

    In many semi-arid regions, multisectoral demands often stress available water supplies. Such is the case in the Elqui River valley of northern Chile, which draws on a limited-capacity reservoir to allocate 25 000 water rights. Delayed infrastructure investment forces water managers to address demand-based allocation strategies, particularly in dry years, which are realized through reductions in the volume associated with each water right. Skillful season-ahead streamflow forecasts have the potential to inform managers with an indication of future conditions to guide reservoir allocations. This work evaluates season-ahead statistical prediction models of October-January (growing season) streamflow at multiple lead times associated with manager and user decision points, and links predictions with a reservoir allocation tool. Skillful results (streamflow forecasts outperform climatology) are produced for short lead times (1 September: ranked probability skill score (RPSS) of 0.31, categorical hit skill score of 61 %). At longer lead times, climatological skill exceeds forecast skill due to fewer observations of precipitation. However, coupling the 1 September statistical forecast model with a sea surface temperature phase and strength statistical model allows for equally skillful categorical streamflow forecasts to be produced for a 1 May lead, triggered for 60 % of years (1950-2015), suggesting forecasts need not be strictly deterministic to be useful for water rights holders. An early (1 May) categorical indication of expected conditions is reinforced with a deterministic forecast (1 September) as more observations of local variables become available. The reservoir allocation model is skillful at the 1 September lead (categorical hit skill score of 53 %); skill improves to 79 % when categorical allocation prediction certainty exceeds 80 %. This result implies that allocation efficiency may improve when forecasts are integrated into reservoir decision frameworks. The

  9. Analysis and Research on the Optimal Allocation of Regional Water Resources

    NASA Astrophysics Data System (ADS)

    rui-chao, Xi; yu-jie, Gu

    2018-06-01

    Starting from the basic concept of optimal allocation of water resources, taking the allocation of water resources in Tianjin as an example, the present situation of water resources in Tianjin is analyzed, and the multi-objective optimal allocation model of water resources is used to optimize the allocation of water resources. We use LINGO to solve the model, get the optimal allocation plan that meets the economic and social benefits, and put forward relevant policies and regulations, so as to provide theoretical which is basis for alleviating and solving the problem of water shortage.

  10. Comparing administered and market-based water allocation systems through a consistent agent-based modeling framework.

    PubMed

    Zhao, Jianshi; Cai, Ximing; Wang, Zhongjing

    2013-07-15

    Water allocation can be undertaken through administered systems (AS), market-based systems (MS), or a combination of the two. The debate on the performance of the two systems has lasted for decades but still calls for attention in both research and practice. This paper compares water users' behavior under AS and MS through a consistent agent-based modeling framework for water allocation analysis that incorporates variables particular to both MS (e.g., water trade and trading prices) and AS (water use violations and penalties/subsidies). Analogous to the economic theory of water markets under MS, the theory of rational violation justifies the exchange of entitled water under AS through the use of cross-subsidies. Under water stress conditions, a unique water allocation equilibrium can be achieved by following a simple bargaining rule that does not depend upon initial market prices under MS, or initial economic incentives under AS. The modeling analysis shows that the behavior of water users (agents) depends on transaction, or administrative, costs, as well as their autonomy. Reducing transaction costs under MS or administrative costs under AS will mitigate the effect that equity constraints (originating with primary water allocation) have on the system's total net economic benefits. Moreover, hydrologic uncertainty is shown to increase market prices under MS and penalties/subsidies under AS and, in most cases, also increases transaction, or administrative, costs. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Stochastic optimisation of water allocation on a global scale

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Straatsma, Menno; Karssenberg, Derek; Bierkens, Marc F. P.

    2014-05-01

    Climate change, increasing population and further economic developments are expected to increase water scarcity for many regions of the world. Optimal water management strategies are required to minimise the water gap between water supply and domestic, industrial and agricultural water demand. A crucial aspect of water allocation is the spatial scale of optimisation. Blue water supply peaks at the upstream parts of large catchments, whereas demands are often largest at the industrialised downstream parts. Two extremes exist in water allocation: (i) 'First come, first serve,' which allows the upstream water demands to be fulfilled without considerations of downstream demands, and (ii) 'All for one, one for all' that satisfies water allocation over the whole catchment. In practice, water treaties govern intermediate solutions. The objective of this study is to determine the effect of these two end members on water allocation optimisation with respect to water scarcity. We conduct this study on a global scale with the year 2100 as temporal horizon. Water supply is calculated using the hydrological model PCR-GLOBWB, operating at a 5 arcminutes resolution and a daily time step. PCR-GLOBWB is forced with temperature and precipitation fields from the Hadgem2-ES global circulation model that participated in the latest coupled model intercomparison project (CMIP5). Water demands are calculated for representative concentration pathway 6.0 (RCP 6.0) and shared socio-economic pathway scenario 2 (SSP2). To enable the fast computation of the optimisation, we developed a hydrologically correct network of 1800 basin segments with an average size of 100 000 square kilometres. The maximum number of nodes in a network was 140 for the Amazon Basin. Water demands and supplies are aggregated to cubic kilometres per month per segment. A new open source implementation of the water allocation is developed for the stochastic optimisation of the water allocation. We apply a Genetic Algorithm

  12. Computer software tool REALM for sustainable water allocation and management.

    PubMed

    Perera, B J C; James, B; Kularathna, M D U

    2005-12-01

    REALM (REsource ALlocation Model) is a generalised computer simulation package that models harvesting and bulk distribution of water resources within a water supply system. It is a modeling tool, which can be applied to develop specific water allocation models. Like other water resource simulation software tools, REALM uses mass-balance accounting at nodes, while the movement of water within carriers is subject to capacity constraints. It uses a fast network linear programming algorithm to optimise the water allocation within the network during each simulation time step, in accordance with user-defined operating rules. This paper describes the main features of REALM and provides potential users with an appreciation of its capabilities. In particular, it describes two case studies covering major urban and rural water supply systems. These case studies illustrate REALM's capabilities in the use of stochastically generated data in water supply planning and management, modelling of environmental flows, and assessing security of supply issues.

  13. Climate change effects on water allocations with season dependent water rights.

    PubMed

    Null, Sarah E; Prudencio, Liana

    2016-11-15

    Appropriative water rights allocate surface water to competing users based on seniority. Often water rights vary seasonally with spring runoff, irrigation schedules, or other non-uniform supply and demand. Downscaled monthly Coupled Model Intercomparison Project multi-model, multi-emissions scenario hydroclimate data evaluate water allocation reliability and variability with anticipated hydroclimate change. California's Tuolumne watershed is a study basin, chosen because water rights are well-defined, simple, and include competing environmental, agricultural, and urban water uses representative of most basins. We assume that dedicated environmental flows receive first priority when mandated by federal law like the Endangered Species Act or hydropower relicensing, followed by senior agricultural water rights, and finally junior urban water rights. Environmental flows vary by water year and include April pulse flows, and senior agricultural water rights are 68% larger during historical spring runoff from April through June. Results show that senior water right holders receive the largest climate-driven reductions in allocated water when peak streamflow shifts from snowmelt-dominated spring runoff to mixed snowmelt- and rainfall-dominated winter runoff. Junior water right holders have higher uncertainty from inter-annual variability. These findings challenge conventional wisdom that water shortages are absorbed by junior water users and suggest that aquatic ecosystems may be disproportionally impaired by hydroclimate change, even when environmental flows receive priority. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Many-objective robust decision making for water allocation under climate change.

    PubMed

    Yan, Dan; Ludwig, Fulco; Huang, He Qing; Werners, Saskia E

    2017-12-31

    Water allocation is facing profound challenges due to climate change uncertainties. To identify adaptive water allocation strategies that are robust to climate change uncertainties, a model framework combining many-objective robust decision making and biophysical modeling is developed for large rivers. The framework was applied to the Pearl River basin (PRB), China where sufficient flow to the delta is required to reduce saltwater intrusion in the dry season. Before identifying and assessing robust water allocation plans for the future, the performance of ten state-of-the-art MOEAs (multi-objective evolutionary algorithms) is evaluated for the water allocation problem in the PRB. The Borg multi-objective evolutionary algorithm (Borg MOEA), which is a self-adaptive optimization algorithm, has the best performance during the historical periods. Therefore it is selected to generate new water allocation plans for the future (2079-2099). This study shows that robust decision making using carefully selected MOEAs can help limit saltwater intrusion in the Pearl River Delta. However, the framework could perform poorly due to larger than expected climate change impacts on water availability. Results also show that subjective design choices from the researchers and/or water managers could potentially affect the ability of the model framework, and cause the most robust water allocation plans to fail under future climate change. Developing robust allocation plans in a river basin suffering from increasing water shortage requires the researchers and water managers to well characterize future climate change of the study regions and vulnerabilities of their tools. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F. P.

    2013-02-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs) have been developed over the recent decades. However, few models consider the feedback between water availability and water demand, and even fewer models explicitly incorporate water allocation from surface water and groundwater resources. Here, we integrate a global water demand model into a global water balance model, and simulate water withdrawal and consumptive water use over the period 1979-2010, considering water allocation from surface water and groundwater resources and explicitly taking into account feedbacks between supply and demand, using two re-analysis products: ERA-Interim and MERRA. We implement an irrigation water scheme, which works dynamically with daily surface and soil water balance, and include a newly available extensive reservoir data set. Simulated surface water and groundwater withdrawal show generally good agreement with available reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, but groundwater use has been increasing more rapidly than surface water use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. The alteration is particularly large over the heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  16. Integrating a distributed hydrological model and SEEA-Water for improving water account and water allocation management under a climate change context.

    NASA Astrophysics Data System (ADS)

    Jauch, Eduardo; Almeida, Carina; Simionesei, Lucian; Ramos, Tiago; Neves, Ramiro

    2015-04-01

    The crescent demand and situations of water scarcity and droughts are a difficult problem to solve by water managers, with big repercussions in the entire society. The complexity of this question is increased by trans-boundary river issues and the environmental impacts of the usual adopted solutions to store water, like reservoirs. To be able to answer to the society requirements regarding water allocation in a sustainable way, the managers must have a complete and clear picture of the present situation, as well as being able to understand the changes in the water dynamics both in the short and long time period. One of the available tools for the managers is the System of Environmental-Economic Accounts for Water (SEEA-Water), a subsystem of SEEA with focus on water accounts, developed by the United Nations Statistical Division (UNSD) in collaboration with the London Group on Environmental Accounting, This system provides, between other things, with a set of tables and accounts for water and water related emissions, organizing statistical data making possible the derivation of indicators that can be used to assess the relations between economy and environment. One of the main issues with the SEEA-Water framework seems to be the requirement of large amounts of data, including field measurements of water availability in rivers/lakes/reservoirs, soil and groundwater, as also precipitation, irrigation and other water sources and uses. While this is an incentive to collecting and using data, it diminishes the usefulness of the system on countries where this data is not yet available or is incomplete, as it can lead to a poor understanding of the water availability and uses. Distributed hydrological models can be used to fill missing data required by the SEEA-Water framework. They also make it easier to assess different scenarios (usually soil use, water demand and climate changes) for a better planning of water allocation. In the context of the DURERO project (www

  17. Comparing administered and market-based water allocation systems using an agent-based modeling approach

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Cai, X.; Wang, Z.

    2009-12-01

    It also has been well recognized that market-based systems can have significant advantages over administered systems for water allocation. However there are not many successful water markets around the world yet and administered systems exist commonly in water allocation management practice. This paradox has been under discussion for decades and still calls for attention for both research and practice. This paper explores some insights for the paradox and tries to address why market systems have not been widely implemented for water allocation. Adopting the theory of agent-based system we develop a consistent analytical model to interpret both systems. First we derive some theorems based on the analytical model, with respect to the necessary conditions for economic efficiency of water allocation. Following that the agent-based model is used to illustrate the coherence and difference between administered and market-based systems. The two systems are compared from three aspects: 1) the driving forces acting on the system state, 2) system efficiency, and 3) equity. Regarding economic efficiency, penalty on the violation of water use permits (or rights) under an administered system can lead to system-wide economic efficiency, as well as being acceptable by some agents, which follows the theory of the so-call rational violation. Ideal equity will be realized if penalty equals incentive with an administered system and if transaction costs are zero with a market system. The performances of both agents and the over system are explained with an administered system and market system, respectively. The performances of agents are subject to different mechanisms of interactions between agents under the two systems. The system emergency (i.e., system benefit, equilibrium market price, etc), resulting from the performance at the agent level, reflects the different mechanism of the two systems, the “invisible hand” with the market system and administrative measures (penalty

  18. Research on Coupling Method of Watershed Initial Water Rights Allocation in Daling River

    NASA Astrophysics Data System (ADS)

    Liu, J.; Fengping, W.

    2016-12-01

    Water scarcity is now a common occurrence in many countries. The situation of watershed initial water rights allocation has caused many benefit conflicts among regions and regional water sectors of domestic and ecology environment and industries in China. This study aims to investigate the method of watershed initial water rights allocation in the perspective of coupling in Daling River Watershed taking provincial initial water rights and watershed-level governmental reserved water as objects. First of all, regarding the allocation subsystem of initial water rights among provinces, this research calculates initial water rights of different provinces by establishing the coupling model of water quantity and quality on the principle of "rewarding efficiency and penalizing inefficiency" based on the two control objectives of water quantity and quality. Secondly, regarding the allocation subsystem of watershed-level governmental reserved water rights, the study forecasts the demand of watershed-level governmental reserved water rights by the combination of case-based reasoning and water supply quotas. Then, the bilaterally coupled allocation model on water supply and demand is designed after supply analysis to get watershed-level governmental reserved water rights. The results of research method applied to Daling River Watershed reveal the recommended scheme of watershed initial water rights allocation based on coordinated degree criterion. It's found that the feasibility of the iteration coupling model and put forward related policies and suggestions. This study owns the advantages of complying with watershed initial water rights allocation mechanism and meeting the control requirements of water quantity, water quality and water utilization efficiency, which help to achieve the effective allocation of water resources.

  19. Improved water allocation utilizing probabilistic climate forecasts: Short-term water contracts in a risk management framework

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, A.; Lall, Upmanu; Souza Filho, Francisco Assis; Sharma, Ashish

    2009-11-01

    Probabilistic, seasonal to interannual streamflow forecasts are becoming increasingly available as the ability to model climate teleconnections is improving. However, water managers and practitioners have been slow to adopt such products, citing concerns with forecast skill. Essentially, a management risk is perceived in "gambling" with operations using a probabilistic forecast, while a system failure upon following existing operating policies is "protected" by the official rules or guidebook. In the presence of a prescribed system of prior allocation of releases under different storage or water availability conditions, the manager has little incentive to change. Innovation in allocation and operation is hence key to improved risk management using such forecasts. A participatory water allocation process that can effectively use probabilistic forecasts as part of an adaptive management strategy is introduced here. Users can express their demand for water through statements that cover the quantity needed at a particular reliability, the temporal distribution of the "allocation," the associated willingness to pay, and compensation in the event of contract nonperformance. The water manager then assesses feasible allocations using the probabilistic forecast that try to meet these criteria across all users. An iterative process between users and water manager could be used to formalize a set of short-term contracts that represent the resulting prioritized water allocation strategy over the operating period for which the forecast was issued. These contracts can be used to allocate water each year/season beyond long-term contracts that may have precedence. Thus, integrated supply and demand management can be achieved. In this paper, a single period multiuser optimization model that can support such an allocation process is presented. The application of this conceptual model is explored using data for the Jaguaribe Metropolitan Hydro System in Ceara, Brazil. The performance

  20. An intuitionistic fuzzy multi-objective non-linear programming model for sustainable irrigation water allocation under the combination of dry and wet conditions

    NASA Astrophysics Data System (ADS)

    Li, Mo; Fu, Qiang; Singh, Vijay P.; Ma, Mingwei; Liu, Xiao

    2017-12-01

    Water scarcity causes conflicts among natural resources, society and economy and reinforces the need for optimal allocation of irrigation water resources in a sustainable way. Uncertainties caused by natural conditions and human activities make optimal allocation more complex. An intuitionistic fuzzy multi-objective non-linear programming (IFMONLP) model for irrigation water allocation under the combination of dry and wet conditions is developed to help decision makers mitigate water scarcity. The model is capable of quantitatively solving multiple problems including crop yield increase, blue water saving, and water supply cost reduction to obtain a balanced water allocation scheme using a multi-objective non-linear programming technique. Moreover, it can deal with uncertainty as well as hesitation based on the introduction of intuitionistic fuzzy numbers. Consideration of the combination of dry and wet conditions for water availability and precipitation makes it possible to gain insights into the various irrigation water allocations, and joint probabilities based on copula functions provide decision makers an average standard for irrigation. A case study on optimally allocating both surface water and groundwater to different growth periods of rice in different subareas in Heping irrigation area, Qing'an County, northeast China shows the potential and applicability of the developed model. Results show that the crop yield increase target especially in tillering and elongation stages is a prevailing concern when more water is available, and trading schemes can mitigate water supply cost and save water with an increased grain output. Results also reveal that the water allocation schemes are sensitive to the variation of water availability and precipitation with uncertain characteristics. The IFMONLP model is applicable for most irrigation areas with limited water supplies to determine irrigation water strategies under a fuzzy environment.

  1. A Multi-layer Dynamic Model for Coordination Based Group Decision Making in Water Resource Allocation and Scheduling

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Zhang, Xingnan; Li, Chenming; Wang, Jianying

    Management of group decision-making is an important issue in water source management development. In order to overcome the defects in lacking of effective communication and cooperation in the existing decision-making models, this paper proposes a multi-layer dynamic model for coordination in water resource allocation and scheduling based group decision making. By introducing the scheme-recognized cooperative satisfaction index and scheme-adjusted rationality index, the proposed model can solve the problem of poor convergence of multi-round decision-making process in water resource allocation and scheduling. Furthermore, the problem about coordination of limited resources-based group decision-making process can be solved based on the effectiveness of distance-based group of conflict resolution. The simulation results show that the proposed model has better convergence than the existing models.

  2. Water allocation for agriculture in southwestern Iran using a programming model

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdoulkarim; Shahsavari, Zahra

    2015-09-01

    Water pricing can play a major role in improving water allocation, encouraging users to conserve scarce water resources, and promoting improvements in productivity. In this study, the economic values of water in farms under Dorodzan Dam in southwestern Iran were calculated using linear programming models. The method was applied to three samples of farms that drew irrigation water from a canal, a well, and both a well and a canal. The results of this study revealed that the shadow prices of water in farms varied based on the water sources and time of year. Additionally, the estimated price for water is obviously higher than the price that farmers currently pay for water in the study area. Due to the different economic values of water calculated for different months, it is recommended that the price of irrigation water be adjusted accordingly during various seasons in a fashion similar to that of electrical energy.

  3. Payments for Ecosystem Services for watershed water resource allocations

    NASA Astrophysics Data System (ADS)

    Fu, Yicheng; Zhang, Jian; Zhang, Chunling; Zang, Wenbin; Guo, Wenxian; Qian, Zhan; Liu, Laisheng; Zhao, Jinyong; Feng, Jian

    2018-01-01

    Watershed water resource allocation focuses on concrete aspects of the sustainable management of Ecosystem Services (ES) that are related to water and examines the possibility of implementing Payment for Ecosystem Services (PES) for water ES. PES can be executed to satisfy both economic and environmental objectives and demands. Considering the importance of calculating PES schemes at the social equity and cooperative game (CG) levels, to quantitatively solve multi-objective problems, a water resources allocation model and multi-objective optimization are provided. The model consists of three modules that address the following processes: ① social equity mechanisms used to study water consumer associations, ② an optimal decision-making process based on variable intervals and CG theory, and ③ the use of Shapley values of CGs for profit maximization. The effectiveness of the proposed methodology for realizing sustainable development was examined. First, an optimization model with water allocation objective was developed based on sustainable water resources allocation framework that maximizes the net benefit of water use. Then, to meet water quality requirements, PES cost was estimated using trade-off curves among different pollution emission concentration permissions. Finally, to achieve equity and supply sufficient incentives for water resources protection, CG theory approaches were utilized to reallocate PES benefits. The potential of the developed model was examined by its application to a case study in the Yongding River watershed of China. Approximately 128 Mm3 of water flowed from the upper reach (Shanxi and Hebei Provinces) sections of the Yongding River to the lower reach (Beijing) in 2013. According to the calculated results, Beijing should pay USD6.31 M (¥39.03 M) for water-related ES to Shanxi and Hebei Provinces. The results reveal that the proposed methodology is an available tool that can be used for sustainable development with resolving PES

  4. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    NASA Astrophysics Data System (ADS)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  5. Exploring the Influence of Smallholders' Perceptions Regarding Water Availability on Crop Choice and Water Allocation Through Socio-Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Kuil, L.; Evans, T.; McCord, P. F.; Salinas, J. L.; Blöschl, G.

    2018-04-01

    While it is known that farmers adopt different decision-making behaviors to cope with stresses, it remains challenging to capture this diversity in formal model frameworks that are used to advance theory and inform policy. Guided by cognitive theory and the theory of bounded rationality, this research develops a novel, socio-hydrological model framework that can explore how a farmer's perception of water availability impacts crop choice and water allocation. The model is informed by a rich empirical data set at the household level collected during 2013 in Kenya's Upper Ewaso Ng'iro basin that shows that the crop type cultivated is correlated with water availability. The model is able to simulate this pattern and shows that near-optimal or "satisficing" crop patterns can emerge also when farmers were to make use of simple decision rules and have diverse perceptions on water availability. By focusing on farmer decision making it also captures the rebound effect, i.e., as additional water becomes available through the improvement of crop efficiencies it will be reallocated on the farm instead of flowing downstream, as a farmer will adjust his (her) water allocation and crop pattern to the new water conditions. This study is valuable as it is consistent with the theory of bounded rationality, and thus offers an alternative, descriptive model in addition to normative models. The framework can be used to understand the potential impact of climate change on the socio-hydrological system, to simulate and test various assumptions regarding farmer behavior and to evaluate policy interventions.

  6. Artificial intelligent techniques for optimizing water allocation in a reservoir watershed

    NASA Astrophysics Data System (ADS)

    Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung

    2014-05-01

    This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.

  7. Optimizing Irrigation Water Allocation under Multiple Sources of Uncertainty in an Arid River Basin

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Tang, D.; Gao, H.; Ding, Y.

    2015-12-01

    Population growth and climate change add additional pressures affecting water resources management strategies for meeting demands from different economic sectors. It is especially challenging in arid regions where fresh water is limited. For instance, in the Tailanhe River Basin (Xinjiang, China), a compromise must be made between water suppliers and users during drought years. This study presents a multi-objective irrigation water allocation model to cope with water scarcity in arid river basins. To deal with the uncertainties from multiple sources in the water allocation system (e.g., variations of available water amount, crop yield, crop prices, and water price), the model employs a interval linear programming approach. The multi-objective optimization model developed from this study is characterized by integrating eco-system service theory into water-saving measures. For evaluation purposes, the model is used to construct an optimal allocation system for irrigation areas fed by the Tailan River (Xinjiang Province, China). The objective functions to be optimized are formulated based on these irrigation areas' economic, social, and ecological benefits. The optimal irrigation water allocation plans are made under different hydroclimate conditions (wet year, normal year, and dry year), with multiple sources of uncertainty represented. The modeling tool and results are valuable for advising decision making by the local water authority—and the agricultural community—especially on measures for coping with water scarcity (by incorporating uncertain factors associated with crop production planning).

  8. How much water flows? Examining water allocations using a mobile decision lab

    NASA Astrophysics Data System (ADS)

    Strickert, G. E.; Gober, P.; Bradford, L. E.; Phillips, P.; Ross, J.

    2016-12-01

    Management of freshwater resources is a complex and multifaceted issues. Big challenges like scarcity, conflicts over water use and access, and ecosystem degradation are widespread around the world. These issues reflects ineffective past practices and signals the need for a fundamental change. Previous actions to mitigate these problems have been incremental rather than innovative, in part because of inherent conservatism in the water management community and an inability to experiment with water allocations in a safe environment. The influence of transboundary water policies was tested using a mobile decision lab which examined three theory areas: limited territorial sovereignty, absolute territorial sovereignty, and shared risk. The experiment allowed people engaged in the water sector to allocate incoming flows to different sectors: agriculture, municipal, industrial and environmental flows in two flow scenarios; slight shortage and extreme water shortage, and to pass on the remaining water to downstream regions. Mandatory sharing 50% of the natural flows between provinces (i.e. limited territorial sovereignty) achieved the most equitable allocation based on water units and points across the three regions. When there were no allocation rules (i.e. absolute territorial sovereignty) the downstream region received significantly less water (e.g. 8-11%. p < 0.001) less water to fulfill its demand. Allowing communication between up and down stream regions (i.e. shared risk) had a negligible affect on the amount of water flowing through the region. It is also notable that most participants sought a trade-off of water allocations, minimizing the allocations to agriculture and industry and prioritizing the municipal sector particularity under the severe drought scenario.

  9. A System Dynamics Model to Improve Water Resources Allocation in the Conchos River

    NASA Astrophysics Data System (ADS)

    Gastelum, J. R.; Valdes, J. B.; Stewart, S.

    2005-12-01

    The Conchos river located in Chihuahua state on a semiarid region is the most important Mexican river contributing water deliveries to USA as established by the Water treaty of 1944 signed between Mexico and USA. Historically, Mexico has delivered to UNITED STATES 550 Hm3 (445,549.5 ACF) per year of water since the treaty was established, which is 25% above the yearly water volume Mexico is required to deliver. The Conchos river has contributed with 54% of the historic Mexican water treaty deliveries to the UNITED STATES, which represents the highest percentage of the 6 Mexican rivers considered on the water treaty. However, during drought situations the basin has proven to be vulnerable, for instance, because of the severe drought of the 90's, several cities in 1992 on Chihuahua state where declared disaster areas, and from 1992 to 2001 Mexico had accumulated a water treaty deficit of 2111.6 Hm3 (1,710,586 ACF). This has conduced to economic, social, and political difficulties in both countries. Because of the cited problematic and considering the poor understanding of the relationship between water supply and demand factors on the basin, a decision support system (DSS) has been developed aimed to improve the decision making process related with the water resources allocation process. This DSS has been created using System Dynamics (SD). It is a semi-distributed model and is running on monthly time step basis. For both the short and long term, three important water resources management strategies have been evaluated: several water allocation policies from reservoirs to water users; bulk water rights transfers inside and outside Irrigation Districts; and improvement of water distribution efficiencies. The model results have provided very useful regard to gain more quantitative understanding of the different strategies being implemented. They have also indicated that the different water resources alternatives change its degree of importance according to the

  10. Water Development, Allocation, and Institutions: A Role for Integrated Tools

    NASA Astrophysics Data System (ADS)

    Ward, F. A.

    2008-12-01

    Many parts of the world suffer from inadequate water infrastructure, inefficient water allocation, and weak water institutions. Each of these three challenges compounds the burdens imposed by inadequacies associated with the other two. Weak water infrastructure makes it hard to allocate water efficiently and undermines tracking of water rights and use, which blocks effective functioning of water institutions. Inefficient water allocation makes it harder to secure resources to develop new water infrastructure. Poorly developed water institutions undermine the security of water rights, which damages incentives to develop water infrastructure or use water efficiently. This paper reports on the development of a prototype basin scale economic optimization, in which existing water supplies are allocated more efficiently in the short run to provide resources for more efficient long-run water infrastructure development. Preliminary results provide the basis for designing water administrative proposals, building effective water infrastructure, increasing farm income, and meeting transboundary delivery commitments. The application is to the Kabul River Basin in Afghanistan, where food security has been compromised by a history of drought, war, damaged irrigation infrastructure, lack of reservoir storage, inefficient water allocation, and weak water institutions. Results illustrate increases in economic efficiency achievable when development programs simultaneously address interdependencies in water allocation, development, and institutions.

  11. Dealing with equality and benefit for water allocation in a lake watershed: A Gini-coefficient based stochastic optimization approach

    NASA Astrophysics Data System (ADS)

    Dai, C.; Qin, X. S.; Chen, Y.; Guo, H. C.

    2018-06-01

    A Gini-coefficient based stochastic optimization (GBSO) model was developed by integrating the hydrological model, water balance model, Gini coefficient and chance-constrained programming (CCP) into a general multi-objective optimization modeling framework for supporting water resources allocation at a watershed scale. The framework was advantageous in reflecting the conflicting equity and benefit objectives for water allocation, maintaining the water balance of watershed, and dealing with system uncertainties. GBSO was solved by the non-dominated sorting Genetic Algorithms-II (NSGA-II), after the parameter uncertainties of the hydrological model have been quantified into the probability distribution of runoff as the inputs of CCP model, and the chance constraints were converted to the corresponding deterministic versions. The proposed model was applied to identify the Pareto optimal water allocation schemes in the Lake Dianchi watershed, China. The optimal Pareto-front results reflected the tradeoff between system benefit (αSB) and Gini coefficient (αG) under different significance levels (i.e. q) and different drought scenarios, which reveals the conflicting nature of equity and efficiency in water allocation problems. A lower q generally implies a lower risk of violating the system constraints and a worse drought intensity scenario corresponds to less available water resources, both of which would lead to a decreased system benefit and a less equitable water allocation scheme. Thus, the proposed modeling framework could help obtain the Pareto optimal schemes under complexity and ensure that the proposed water allocation solutions are effective for coping with drought conditions, with a proper tradeoff between system benefit and water allocation equity.

  12. Optimum Allocation of Water to the Cultivation Farms Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Saeidian, B.; Saadi Mesgari, M.; Ghodousi, M.

    2015-12-01

    The water scarcity crises in the world and specifically in Iran, requires the proper management of this valuable resource. According to the official reports, around 90 percent of the water in Iran is used for agriculture. Therefore, the adequate management and usage of water in this section can help significantly to overcome the above crises. The most important aspect of agricultural water management is related to the irrigation planning, which is basically an allocation problem. The proper allocation of water to the farms is not a simple and trivial problem, because of the limited amount of available water, the effect of different parameters, nonlinear characteristics of the objective function, and the wideness of the solution space. Usually To solve such complex problems, a meta-heuristic method such as genetic algorithm could be a good candidate. In this paper, Genetic Algorithm (GA) is used for the allocation of different amount of water to a number of farms. In this model, the amount of water transferable using canals of level one, in one period of irrigation is specified. In addition, the amount of water required by each farm is calculated using crop type, stage of crop development, and other parameters. Using these, the water production function of each farm is determined. Then, using the water production function, farm areas, and the revenue and cost of each crop type, the objective function is calculated. This objective function is used by GA for the allocation of water to the farms. The objective function is defined such that the economical profit extracted from all farms is maximized. Moreover, the limitation related to the amount of available water is considered as a constraint. In general, the total amount of allocated water should be less than the finally available water (the water transferred trough the level one canals). Because of the intensive scarcity of water, the deficit irrigation method are considered. In this method, the planning is on the

  13. Optimal dynamic water allocation: Irrigation extractions and environmental tradeoffs in the Murray River, Australia

    NASA Astrophysics Data System (ADS)

    Grafton, R. Quentin; Chu, Hoang Long; Stewardson, Michael; Kompas, Tom

    2011-12-01

    A key challenge in managing semiarid basins, such as in the Murray-Darling in Australia, is to balance the trade-offs between the net benefits of allocating water for irrigated agriculture, and other uses, versus the costs of reduced surface flows for the environment. Typically, water planners do not have the tools to optimally and dynamically allocate water among competing uses. We address this problem by developing a general stochastic, dynamic programming model with four state variables (the drought status, the current weather, weather correlation, and current storage) and two controls (environmental release and irrigation allocation) to optimally allocate water between extractions and in situ uses. The model is calibrated to Australia's Murray River that generates: (1) a robust qualitative result that "pulse" or artificial flood events are an optimal way to deliver environmental flows over and above conveyance of base flows; (2) from 2001 to 2009 a water reallocation that would have given less to irrigated agriculture and more to environmental flows would have generated between half a billion and over 3 billion U.S. dollars in overall economic benefits; and (3) water markets increase optimal environmental releases by reducing the losses associated with reduced water diversions.

  14. Dynamic equilibrium strategy for drought emergency temporary water transfer and allocation management

    NASA Astrophysics Data System (ADS)

    Xu, Jiuping; Ma, Ning; Lv, Chengwei

    2016-08-01

    Efficient water transfer and allocation are critical for disaster mitigation in drought emergencies. This is especially important when the different interests of the multiple decision makers and the fluctuating water resource supply and demand simultaneously cause space and time conflicts. To achieve more effective and efficient water transfers and allocations, this paper proposes a novel optimization method with an integrated bi-level structure and a dynamic strategy, in which the bi-level structure works to deal with space dimension conflicts in drought emergencies, and the dynamic strategy is used to deal with time dimension conflicts. Combining these two optimization methods, however, makes calculation complex, so an integrated interactive fuzzy program and a PSO-POA are combined to develop a hybrid-heuristic algorithm. The successful application of the proposed model in a real world case region demonstrates its practicality and efficiency. Dynamic cooperation between multiple reservoirs under the coordination of a global regulator reflects the model's efficiency and effectiveness in drought emergency water transfer and allocation, especially in a fluctuating environment. On this basis, some corresponding management recommendations are proposed to improve practical operations.

  15. Optimization model for the allocation of water resources based on the maximization of employment in the agriculture and industry sectors

    NASA Astrophysics Data System (ADS)

    Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.

    2016-02-01

    In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.

  16. Development of Regional Supply Functions and a Least-Cost Model for Allocating Water Resources in Utah: A Parametric Linear Programming Approach.

    DTIC Science & Technology

    SYSTEMS ANALYSIS, * WATER SUPPLIES, MATHEMATICAL MODELS, OPTIMIZATION, ECONOMICS, LINEAR PROGRAMMING, HYDROLOGY, REGIONS, ALLOCATIONS, RESTRAINT, RIVERS, EVAPORATION, LAKES, UTAH, SALVAGE, MINES(EXCAVATIONS).

  17. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F. P.

    2014-01-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  18. Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Wisser, D.; Bierkens, M. F.

    2014-12-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.

  19. Optimality versus stability in water resource allocation.

    PubMed

    Read, Laura; Madani, Kaveh; Inanloo, Bahareh

    2014-01-15

    Water allocation is a growing concern in a developing world where limited resources like fresh water are in greater demand by more parties. Negotiations over allocations often involve multiple groups with disparate social, economic, and political status and needs, who are seeking a management solution for a wide range of demands. Optimization techniques for identifying the Pareto-optimal (social planner solution) to multi-criteria multi-participant problems are commonly implemented, although often reaching agreement for this solution is difficult. In negotiations with multiple-decision makers, parties who base decisions on individual rationality may find the social planner solution to be unfair, thus creating a need to evaluate the willingness to cooperate and practicality of a cooperative allocation solution, i.e., the solution's stability. This paper suggests seeking solutions for multi-participant resource allocation problems through an economics-based power index allocation method. This method can inform on allocation schemes that quantify a party's willingness to participate in a negotiation rather than opt for no agreement. Through comparison of the suggested method with a range of distance-based multi-criteria decision making rules, namely, least squares, MAXIMIN, MINIMAX, and compromise programming, this paper shows that optimality and stability can produce different allocation solutions. The mismatch between the socially-optimal alternative and the most stable alternative can potentially result in parties leaving the negotiation as they may be too dissatisfied with their resource share. This finding has important policy implications as it justifies why stakeholders may not accept the socially optimal solution in practice, and underlies the necessity of considering stability where it may be more appropriate to give up an unstable Pareto-optimal solution for an inferior stable one. Authors suggest assessing the stability of an allocation solution as an

  20. Impact of water allocation strategies to manage groundwater resources in Western Australia: Equity and efficiency considerations

    NASA Astrophysics Data System (ADS)

    Iftekhar, Md Sayed; Fogarty, James

    2017-05-01

    In many parts of the world groundwater is being depleting at an alarming rate. Where groundwater extraction is licenced, regulators often respond to resource depletion by reducing all individual licences by a fixed proportion. This approach can be effective in achieving a reduction in the volume of water extracted, but the approach is not efficient. In water resource management the issue of the equity-efficiency trade-off has been explored in a number of contexts, but not in the context of allocation from a groundwater system. To contribute to this knowledge gap we conduct an empirical case study for Western Australia's most important groundwater system: the Gnangara Groundwater System (GGS). Resource depletion is a serious issue for the GGS, and substantial reductions in groundwater extraction are required to stabilise the system. Using an individual-based farm optimization model we study both the overall impact and the distributional impact of a fixed percentage water allocation cut to horticulture sector licence holders. The model is parameterised using water licence specific data on farm area and water allocation. The modelling shows that much of the impact of water allocation reductions can be mitigated through changing the cropping mix and the irrigation technology used. The modelling also shows that the scope for gains through the aggregation of holdings into larger farms is much greater than the potential losses due to water allocation reductions. The impact of water allocation cuts is also shown to impact large farms more than small farms. For example, the expected loss in net revenue per ha for a 10-ha farm is around three times the expected loss per ha for a 1-ha farm; and the expected loss per ha for a 25-ha farm is around five times the expected loss per ha for a 1-ha farm.

  1. Optimal allocation of land and water resources to achieve Water, Energy and Food Security in the upper Blue Nile basin

    NASA Astrophysics Data System (ADS)

    Allam, M.; Eltahir, E. A. B.

    2017-12-01

    Rapid population growth, hunger problems, increasing energy demands, persistent conflicts between the Nile basin riparian countries and the potential impacts of climate change highlight the urgent need for the conscious stewardship of the upper Blue Nile (UBN) basin resources. This study develops a framework for the optimal allocation of land and water resources to agriculture and hydropower production in the UBN basin. The framework consists of three optimization models that aim to: (a) provide accurate estimates of the basin water budget, (b) allocate land and water resources optimally to agriculture, and (c) allocate water to agriculture and hydropower production, and investigate trade-offs between them. First, a data assimilation procedure for data-scarce basins is proposed to deal with data limitations and produce estimates of the hydrologic components that are consistent with the principles of mass and energy conservation. Second, the most representative topography and soil properties datasets are objectively identified and used to delineate the agricultural potential in the basin. The agricultural potential is incorporated into a land-water allocation model that maximizes the net economic benefits from rain-fed agriculture while allowing for enhancing the soils from one suitability class to another to increase agricultural productivity in return for an investment in soil inputs. The optimal agricultural expansion is expected to reduce the basin flow by 7.6 cubic kilometres, impacting downstream countries. The optimization framework is expanded to include hydropower production. This study finds that allocating water to grow rain-fed teff in the basin is more profitable than allocating water for hydropower production. Optimal operation rules for the Grand Ethiopian Renaissance dam (GERD) are identified to maximize annual hydropower generation while achieving a relatively uniform monthly production rate. Trade-offs between agricultural expansion and hydropower

  2. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  3. Impact assessments of water allocation on water environment of river network: Method and application

    NASA Astrophysics Data System (ADS)

    Wang, Qinggai; Wang, Yaping; Lu, Xuchuan; Jia, Peng; Zhang, Beibei; Li, Chen; Li, Sa; Li, Shibei

    2018-02-01

    Two types of water allocation scenarios were proposed for reasonably utilizing water resources and improving water quality in a two-river network in Tongzhou District. Water circulation and quality were selected as two important indexes to evaluate the two scenario. Meanwhile, one-dimensional water amount and quality model was set up on the basis of the MIKE11 model to compare the two scenarios in terms of improving water environment. The results showed that both scenarios changed the hydrodynamic conditions, and consequently the river flow reached 0.05 m/s or higher in the central part of river stream. In addition, we also found that the two plans have similar effects on water quality, with first scenario producing larger area of water class III and IV than the second scenario.

  4. Developing new scenarios for water allocation negotiations: a case study of the Euphrates River Basin

    NASA Astrophysics Data System (ADS)

    Jarkeh, Mohammad Reza; Mianabadi, Ameneh; Mianabadi, Hojjat

    2016-10-01

    Mismanagement and uneven distribution of water may lead to or increase conflict among countries. Allocation of water among trans-boundary river neighbours is a key issue in utilization of shared water resources. The bankruptcy theory is a cooperative Game Theory method which is used when the amount of demand of riparian states is larger than total available water. In this study, we survey the application of seven methods of Classical Bankruptcy Rules (CBRs) including Proportional (CBR-PRO), Adjusted Proportional (CBR-AP), Constrained Equal Awards (CBR-CEA), Constrained Equal Losses (CBR-CEL), Piniles (CBR-Piniles), Minimal Overlap (CBR-MO), Talmud (CBR-Talmud) and four Sequential Sharing Rules (SSRs) including Proportional (SSR-PRO), Constrained Equal Awards (SSR-CEA), Constrained Equal Losses (SSR-CEL) and Talmud (SSR-Talmud) methods in allocation of the Euphrates River among three riparian countries: Turkey, Syria and Iraq. However, there is not a certain documented method to find more equitable allocation rule. Therefore, in this paper, a new method is established for choosing the most appropriate allocating rule which seems to be more equitable than other allocation rules to satisfy the stakeholders. The results reveal that, based on the new propose model, the CBR-AP seems to be more equitable to allocate the Euphrates River water among Turkey, Syria and Iraq.

  5. Planning attitudes, lay philosophies, and water allocation: A preliminary analysis and research agenda

    NASA Astrophysics Data System (ADS)

    Syme, Geoffrey J.; Nancarrow, Blair E.

    Despite the important societal consequences of water policy, community attitudes toward planning, ethics, and equity for allocation of water have received little research attention. This preliminary research was conducted to assess the range and structure of planning attitudes and equity and ethical considerations which might be relevant to the general public's evaluation of water allocation systems. The relationship of these to priorities for water allocation were also examined. The results showed a complex structure for planning attitudes. There were also generalized but clearly defined community approaches to water allocation. A number of significant relationships between planning attitudes and philosophies of allocation were shown. Planning attitudes also related to priorities for water allocation. In practical terms the research provides some preliminary, ethically based evaluative criteria which could be applied to allocation decision-making systems. Theoretical research possibilities are also outlined.

  6. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    PubMed

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption

  7. A stream-scale model to optimize the water allocation for Small Hydropower Plants and the application to traditional systems

    NASA Astrophysics Data System (ADS)

    Razurel, Pierre; Niayifar, Amin; Perona, Paolo

    2017-04-01

    Hydropower plays an important role in supplying worldwide energy demand where it contributes to approximately 16% of global electricity production. Although hydropower, as an emission-free renewable energy, is a reliable source of energy to mitigate climate change, its development will increase river exploitation. The environmental impacts associated with both small hydropower plants (SHP) and traditional dammed systems have been found to the consequence of changing natural flow regime with other release policies, e.g. the minimal flow. Nowadays, in some countries, proportional allocation rules are also applied aiming to mimic the natural flow variability. For example, these dynamic rules are part of the environmental guidance in the United Kingdom and constitute an improvement in comparison to static rules. In a context in which the full hydropower potential might be reached in a close future, a solution to optimize the water allocation seems essential. In this work, we present a model that enables to simulate a wide range of water allocation rules (static and dynamic) for a specific hydropower plant and to evaluate their associated economic and ecological benefits. It is developed in the form of a graphical user interface (GUI) where, depending on the specific type of hydropower plant (i.e., SHP or traditional dammed system), the user is able to specify the different characteristics (e.g., hydrological data and turbine characteristics) of the studied system. As an alternative to commonly used policies, a new class of dynamic allocation functions (non-proportional repartition rules) is introduced (e.g., Razurel et al., 2016). The efficiency plot resulting from the simulations shows the environmental indicator and the energy produced for each allocation policies. The optimal water distribution rules can be identified on the Pareto's frontier, which is obtained by stochastic optimization in the case of storage systems (e.g., Niayifar and Perona, submitted) and by

  8. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  9. Two-stage seasonal streamflow forecasts to guide water resources decisions and water rights allocation

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Gonzalez, E.; Bonnafous, L.

    2011-12-01

    Decision-making in water resources is inherently uncertain producing copious risks, ranging from operational (present) to planning (season-ahead) to design/adaptation (decadal) time-scales. These risks include human activity and climate variability/change. As the risks in designing and operating water systems and allocating available supplies vary systematically in time, prospects for predicting and managing such risks become increasingly attractive. Considerable effort has been undertaken to improve seasonal forecast skill and advocate for integration to reduce risk, however only minimal adoption is evident. Impediments are well defined, yet tailoring forecast products and allowing for flexible adoption assist in overcoming some obstacles. The semi-arid Elqui River basin in Chile is contending with increasing levels of water stress and demand coupled with insufficient investment in infrastructure, taxing its ability to meet agriculture, hydropower, and environmental requirements. The basin is fed from a retreating glacier, with allocation principles founded on a system of water rights and markets. A two-stage seasonal streamflow forecast at leads of one and two seasons prescribes the probability of reductions in the value of each water right, allowing water managers to inform their constituents in advance. A tool linking the streamflow forecast to a simple reservoir decision model also allows water managers to select a level of confidence in the forecast information.

  10. How Green Water Flows structure be a decision indicator for ecological water allocation in arid Ejina Delta, China.

    NASA Astrophysics Data System (ADS)

    Yu, J.; Du, C.; Zhang, Y.; Liu, X.

    2014-12-01

    Green water flows, a key ecohydrological process, dominates the hydrological cycle in arid region. The structure of green water flows reflects the landscape water consumption characteristics and can be easily obtained by means of remote sensing approach. In arid region, limited fresh water and fragile environment resulted in sharp contradictions between economy and natural ecosystem concerning water demands. To rationally allocate economic and ecological water use, to maximize the regional freshwater use efficiency, is the route one must take for sustainable development in arid area. The pursuit of the most necessary ecological protection function and the maximum ecological water use efficiency is the key to ecological water allocation. However, we are short of simple and quick detectable variables or indexes to assess ecological water allocation decision. This paper introduced the green water flows structure as a decision variable, chose Heihe river flow allocation to downstream Ejina Delta for ecological protection as an example, put forward why and how green water flows structure could be used for ecological water allocation decision. The authors expect to provide reference for integrated fresh water resources management practice in arid region.

  11. Optimal allocation of bulk water supplies to competing use sectors based on economic criterion - An application to the Chao Phraya River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Divakar, L.; Babel, M. S.; Perret, S. R.; Gupta, A. Das

    2011-04-01

    SummaryThe study develops a model for optimal bulk allocations of limited available water based on an economic criterion to competing use sectors such as agriculture, domestic, industry and hydropower. The model comprises a reservoir operation module (ROM) and a water allocation module (WAM). ROM determines the amount of water available for allocation, which is used as an input to WAM with an objective function to maximize the net economic benefits of bulk allocations to different use sectors. The total net benefit functions for agriculture and hydropower sectors and the marginal net benefit from domestic and industrial sectors are established and are categorically taken as fixed in the present study. The developed model is applied to the Chao Phraya basin in Thailand. The case study results indicate that the WAM can improve net economic returns compared to the current water allocation practices.

  12. Application of the environmental Gini coefficient in allocating water governance responsibilities: a case study in Taihu Lake Basin, China.

    PubMed

    Zhou, Shenbei; Du, Amin; Bai, Minghao

    2015-01-01

    The equitable allocation of water governance responsibilities is very important yet difficult to achieve, particularly for a basin which involves many stakeholders and policymakers. In this study, the environmental Gini coefficient model was applied to evaluate the inequality of water governance responsibility allocation, and an environmental Gini coefficient optimisation model was built to achieve an optimal adjustment. To illustrate the application of the environmental Gini coefficient, the heavily polluted transboundary Taihu Lake Basin in China, was chosen as a case study. The results show that the original environmental Gini coefficient of the chemical oxygen demand (COD) was greater than 0.2, indicating that the allocation of water governance responsibilities in Taihu Lake Basin was unequal. Of seven decision-making units, three were found to be inequality factors and were adjusted to reduce the water pollutant emissions and to increase the water governance inputs. After the adjustment, the environmental Gini coefficient of the COD was less than 0.2 and the reduction rate was 27.63%. The adjustment process provides clear guidance for policymakers to develop appropriate policies and improve the equality of water governance responsibility allocation.

  13. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  14. Implementing seasonal carbon allocation into a dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Vermeulen, Marleen; Kruijt, Bart; Hickler, Thomas; Forrest, Matthew; Kabat, Pavel

    2014-05-01

    Long-term measurements of terrestrial fluxes through the FLUXNET Eddy Covariance network have revealed that carbon and water fluxes can be highly variable from year-to-year. This so-called interannual variability (IAV) of ecosystems is not fully understood because a direct relation with environmental drivers cannot always be found. Many dynamic vegetation models allocate NPP to leaves, stems, and root compartments on an annual basis, and thus do not account for seasonal changes in productivity in response to changes in environmental stressors. We introduce this vegetation seasonality into dynamic vegetation model LPJ-GUESS by implementing a new carbon allocation scheme on a daily basis. We focus in particular on modelling the observed flux seasonality of the Amazon basin, and validate our new model against fluxdata and MODIS GPP products. We expect that introducing seasonal variability into the model improves estimates of annual productivity and IAV, and therefore the model's representation of ecosystem carbon budgets as a whole.

  15. Irrigation water allocation optimization using multi-objective evolutionary algorithm (MOEA) - a review

    NASA Astrophysics Data System (ADS)

    Fanuel, Ibrahim Mwita; Mushi, Allen; Kajunguri, Damian

    2018-03-01

    This paper analyzes more than 40 papers with a restricted area of application of Multi-Objective Genetic Algorithm, Non-Dominated Sorting Genetic Algorithm-II and Multi-Objective Differential Evolution (MODE) to solve the multi-objective problem in agricultural water management. The paper focused on different application aspects which include water allocation, irrigation planning, crop pattern and allocation of available land. The performance and results of these techniques are discussed. The review finds that there is a potential to use MODE to analyzed the multi-objective problem, the application is more significance due to its advantage of being simple and powerful technique than any Evolutionary Algorithm. The paper concludes with the hopeful new trend of research that demand effective use of MODE; inclusion of benefits derived from farm byproducts and production costs into the model.

  16. Mapping Water Resources, Allocation and Consumption in the Mills River Basin

    NASA Astrophysics Data System (ADS)

    Hodes, J.; Jeuland, M. A.; Barros, A. P.

    2014-12-01

    Mountain basins and the headwaters of river basins along the foothills of major mountain ranges are undergoing rapid environmental change due to urban development, land acquisition by investors, population increase, and climate change. Classical water infrastructure in these regions is primarily designed to meet human water demand associated with agriculture, tourism, and economic development. Often overlooked and ignored is the fundamental interdependence of human water demand, ecosystem water demand, water rights and allocation, and water supply. A truly sustainable system for water resources takes into account ecosystem demand along with human infrastructure and economic demand, as well as the feedbacks that exist between them. Allocation policies need to take into account basin resilience that is the amount of stress the system can handle under varying future scenarios. Changes in stress on the system can be anthropogenic in the form of population increase, land use change, economic development, or may be natural in the form of climate change and decrease in water supply due to changes in precipitation. Mapping the water rights, supply, and demands within the basin can help determine the resiliency and sustainability of the basin. Here, we present a coupled natural human system project based in the French Broad River Basin, in the Southern Appalachians. In the first phase of the project, we are developing and implementing a coupled hydro-economics modeling framework in the Mills River Basin (MRB), a tributary of the French Broad. The Mills River Basin was selected as the core basin for implementing a sustainable system of water allocation that is adaptive and reflects the interdependence of water dependent sectors. The headwaters of the Mills River are in the foothills of the Appalachians, and are currently under substantial land use land cover (LULC) change pressure for agricultural purposes. In this regard, the MRB is representative of similar headwater

  17. Constraints and potential for efficient inter-sectoral water allocations in Tanzania

    NASA Astrophysics Data System (ADS)

    Kashaigili, Japhet J.; Kadigi, Reuben M. J.; Sokile, Charles S.; Mahoo, Henry F.

    In many sub-Saharan African countries, there are conflicts over water uses in most river basins. In Tanzania, conflicts are becoming alarming and are exacerbated by increasing water demands due to rapid population growth and expanding economic activities. This paper reviews the major constraints and potential for achieving efficient systems of allocating water resources to different uses and users in Tanzania. The following constraints are identified: (a) the lack of active community involvement in management of water resources, (b) conflicting institutions and weak institutional capacities both in terms of regulations and protection of interests of the poor, (c) the lack of data and information to inform policy and strategies for balanced water allocation, and (d) inadequate funds for operation, maintenance and expansion of water supply systems. Despite these constraints, there are also opportunities for improving water allocation and management systems in the country. These include: the available reserve of both surface and groundwater resources, which remain unexploited; high demand for water services; a high potential for investing in the water sector; and availability of basic infrastructure and elements of institutional framework that can be improved. The paper recommends the use of combined variants of water allocation devices which (a) meet different water requirements and ensure desirable multiple-use outcomes, (b) facilitate the classification of water resources in terms of desired environmental protection levels, (c) allow reforms in water utilization to achieve equity and meet changing social and economic priorities, (d) facilitate the development of effective local institutions, (e) put in place the legal system that assigns rights to water resources and describes how those rights may be transferred, (f) enforce the rights and punish infringements on those rights, and (g) use cost-effective pricing systems to ensure that payment for water uses cover

  18. Economic Impact of Water Allocation on Agriculture in the Lower Chattahoochee River Basin

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Paudel, Krishna P.; Musleh, Fuad; Cruise, James F.; Hatch, L. Upton

    2004-01-01

    The relative value of irrigation water was assessed for three important crops (corn, cotton, and peanuts) grown in the southeastern United States. A decision tool was developed with the objective of allocating limited available water among competing crops in a manner that would maximize the economic returns to the producers. The methodology was developed and tested for a hypothetical farm located in Henry County, Alabama in the Chattahoochee river basin. Crop yield - soil moisture response functions were developed using Monte Carlo simulated data for cotton, corn, and peanuts. A hydrologic model was employed to simulate runoff over the period of observed rainfall the county to provide inflows to storage facilities that could be used as constraints for the optimal allocation of the available water in the face of the uncertainty of future rainfall and runoff. Irrigation decisions were made on a weekly basis during the critical water deficit period in the region. An economic optimization model was employed with the crop responses, and soil moisture functions to determine the optimum amount of water place on each crop subject to the amount of irrigation water availability and climatic uncertainty. The results indicated even small amounts of irrigation could significantly benefit farmers in the region if applied judiciously. A weekly irrigation sequence was developed that maintained the available water on the crops that exhibited the most significant combination of water sensitivity and cash value.

  19. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    PubMed

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Drought allocations using the Systems Impact Assessment Model: Klamath River

    USGS Publications Warehouse

    Flug, M.; Campbell, S.G.

    2005-01-01

    Water supply and allocation scenarios for the Klamath River, Ore. and Calif., were evaluated using the Systems Impact Assessment Model (SIAM), a decision support system developed by the U.S. Geological Survey. SIAM is a set of models with a graphical user interface that simulates water supply and delivery in a managed river system, water quality, and fish production. Simulation results are presented for drought conditions, one aspect of Klamath River water operations. The Klamath River Basin has experienced critically dry conditions in 1992, 1994, and 2001. Drought simulations are useful to estimate the impacts of specific legal or institutional flow constraints. In addition, simulations help to identify potential adverse water quality consequences including evaluating the potential for reducing adverse temperature impacts on anadromous fish. In all drought simulations, water supply was insufficient to fully meet upstream and downstream targets for endangered species.

  1. Multi-objective models of waste load allocation toward a sustainable reuse of drainage water in irrigation.

    PubMed

    Allam, Ayman; Tawfik, Ahmed; Yoshimura, Chihiro; Fleifle, Amr

    2016-06-01

    The present study proposes a waste load allocation (WLA) framework for a sustainable quality management of agricultural drainage water (ADW). Two multi-objective models, namely, abatement-performance and abatement-equity-performance, were developed through the integration of a water quality model (QAUL2Kw) and a genetic algorithm, by considering (1) the total waste load abatement, and (2) the inequity among waste dischargers. For successfully accomplishing modeling tasks, we developed a comprehensive overall performance measure (E wla ) reflecting possible violations of Egyptian standards for ADW reuse in irrigation. This methodology was applied to the Gharbia drain in the Nile Delta, Egypt, during both summer and winter seasons of 2012. Abatement-performance modeling results for a target of E wla = 100 % corresponded to the abatement ratio of the dischargers ranging from 20.7 to 75.6 % and 29.5 to 78.5 % in summer and in winter, respectively, alongside highly shifting inequity values. Abatement-equity-performance modeling results for a target of E wla = 90 % unraveled the necessity of increasing treatment efforts in three out of five dischargers during summer, and four out of five in winter. The trade-off curves obtained from WLA models proved their reliability in selecting appropriate WLA procedures as a function of budget constraints, principles of social equity, and desired overall performance level. Hence, the proposed framework of methodologies is of great importance to decision makers working toward a sustainable reuse of the ADW in irrigation.

  2. Modeling crop water productivity using a coupled SWAT-MODSIM model

    USDA-ARS?s Scientific Manuscript database

    This study examines the water productivity of irrigated wheat and maize yields in Karkheh River Basin (KRB) in the semi-arid region of Iran using a coupled modeling approach consisting of the hydrological model (SWAT) and the river basin water allocation model (MODSIM). Dynamic irrigation requireme...

  3. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    NASA Astrophysics Data System (ADS)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  4. Assessing Climate Change Impacts on Water Allocation in Karkheh River Basin

    NASA Astrophysics Data System (ADS)

    Davtalabsabet, R.; Madani, K.; Massah, A.; Farajzadeh, M.

    2013-12-01

    Rahman Davtalab1, 2, Kaveh Madani2, Alireza Massah3, Manouchehr Farajzadeh1 1Department of Geography, Tarbiat Modares University, Tehran, Iran 2Department of Civil, Environmental and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA 3Department of Irrigation and Drainage Engineering, College of Abureyhan , University of Tehran, Iran Abstract Karkheh river basin, with an area of 50,000 km2 is located, in southwest Iran. This basin supplies water for major agricultural activities and large hydropower production in five Iranian provinces with the total population of four million people. Due to development and population growth, this large trans-boundary basin is incapable of meeting the water demands of the five riparian provinces, causing water allocation conflicts in the region. The situation has been exacerbated by the frequent droughts and is expected to worsen further by climate change. This study evaluates the impacts of climate change on water supply reliability and allocation in this basin. First, outputs of several General Circulation Models (GCMs) under different emission scenarios for different future time horizons are statistically downscaled. Then multiple river flow time series (RFTS) are generated by feeding GCM outputs into a HEC-HMS model, using the Soil Moisture Accounting (SMA). Given a wide range of variations in GCM outputs and the resulting RFTS, the Ward's method is used to identity different RFTS clusters. Clustering helps with increasing the ability of the modeler to test a range of possible future conditions while reducing the redundancies in input data. Karkheh river basin's ability to meet the growing demand under decreasing flows is evaluated for each RFTS cluster representative. Results indicate that Karkheh river flow might decrease by 50% toward the end of the century. This would decrease the reliability of agricultural water deliveries from 78-95% to less than 50%. While currently hydropower dams can only

  5. Investigation and incorporation of water inflow uncertainties through stochastic modelling in a combined optimisation methodology for water allocation in Alfeios River (Greece)

    NASA Astrophysics Data System (ADS)

    Bekri, Eleni; Yannopoulos, Panayotis; Disse, Markus

    2014-05-01

    The Alfeios River plays a vital role for Western Peloponnisos in Greece from natural, ecological, social and economic aspect. The main river and its six tributaries, forming the longest watercourse and the highest streamflow rate of Peloponnisose, represent a significant source of water supply for the region, aiming at delivering and satisfying the expected demands from a variety of water users, including irrigation, drinking water supply, hydropower production and recreation. In the previous EGU General Assembly, a fuzzy-boundary-interval linear programming methodology, based on Li et al. (2010) and Bekri et al. (2012), has been presented for optimal water allocation under uncertain and vague system conditions in the Alfeios River Basin. Uncertainties associated with the benefit and cost coefficient in the objective function of the main water uses (hydropower production and irrigation) were expressed as probability distributions and fuzzy boundary intervals derived by associated α-cut levels. The uncertainty of the monthly water inflows was not incorporated in the previous initial application and the analysis of all other sources of uncertainty has been applied to two extreme hydrologic years represented by a selected wet and dry year. To manage and operate the river system, decision makers should be able to analyze and evaluate the impact of various hydrologic scenarios. In the present work, the critical uncertain parameter of water inflows is analyzed and its incorporation as an additional type of uncertainty in the suggested methodology is investigated, in order to enable the assessment of optimal water allocation for hydrologic and socio-economic scenarios based both on historical data and projected climate change conditions. For this purpose, stochastic simulation analysis for a part of the Alfeios river system is undertaken, testing various stochastic models from simple stationary ones (AR and ARMA), Thomas-Fiering, ARIMA as well as more sophisticated and

  6. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  7. Investigating the Capacity of Hydrological Models to Project Impacts of Climate Change in the Context of Water Allocation

    NASA Astrophysics Data System (ADS)

    Velez, Carlos; Maroy, Edith; Rocabado, Ivan; Pereira, Fernando

    2017-04-01

    To analyse the impacts of climate changes, hydrological models are used to project the hydrology responds under future conditions that normally differ from those for which they were calibrated. The challenge is to assess the validity of the projected effects when there is not data to validate it. A framework for testing the ability of models to project climate change was proposed by Refsgaard et al., (2014). The authors recommend the use of the differential-split sample test (DSST) in order to build confidence in the model projections. The method follow three steps: 1. A small number of sub-periods are selected according to one climate characteristics, 2. The calibration - validation test is applied on these periods, 3. The validation performances are compered to evaluate whether they vary significantly when climatic characteristics differ between calibration and validation. DSST rely on the existing records of climate and hydrological variables; and performances are estimated based on indicators of error between observed and simulated variables. Other authors suggest that, since climate models are not able to reproduce single events but rather statistical properties describing the climate, this should be reflected when testing hydrological models. Thus, performance criteria such as RMSE should be replaced by for instance flow duration curves or other distribution functions. Using this type of performance criteria, Van Steenbergen and Willems, (2012) proposed a method to test the validity of hydrological models in a climate changing context. The method is based on the evaluation of peak flow increases due to different levels of rainfall increases. In contrast to DSST, this method use the projected climate variability and it is especially useful to compare different modelling tools. In the framework of a water allocation project for the region of Flanders (Belgium) we calibrated three hydrological models: NAM, PDM and VHM; for 67 gauged sub-catchments with approx

  8. Updates to the Demographic and Spatial Allocation Models to ...

    EPA Pesticide Factsheets

    EPA's announced the availability of the final report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2). This update furthered land change modeling by providing nationwide housing development scenarios up to 2100. This newest version includes updated population and land use data sets and addresses limitations identified in ICLUS v1 in both the migration and spatial allocation models. The companion user guide (Final Report) describes the development of ICLUS v2 and the updates that were made to the original data sets and the demographic and spatial allocation models. The GIS tool enables users to run SERGoM with the population projections developed for the ICLUS project and allows users to modify the spatial allocation housing density across the landscape.

  9. Modelling the effect of environmental factors on resource allocation in mixed plants systems

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Priesack, Eckart

    2010-05-01

    In most cases, growth of plants is determined by competition against neighbours for the local resources light, water and nutrients and by defending against herbivores and pathogens. Consequently, it is important for a plant to grow fast without neglecting defence. However, plant internal substrates and energy required to support maintenance, growth and defence are limited and the total demand for these processes cannot be met in most cases. Therefore, allocation of carbohydrates to growth related primary metabolism or to defence related secondary metabolism can be seen as a trade-off between the demand of plants for being competitive against neighbours and for being more resistant against pathogens. A modelling approach is presented which can be used to simulate competition for light, water and nutrients between plant individuals in mixed canopies. The balance of resource allocation between growth processes and synthesis of secondary compounds is modelled by a concept originating from different plant defence hypothesis. The model is used to analyse the impact of environmental factors such as soil water and nitrogen availability, planting density and atmospheric concentration of CO2 on growth of plant individuals within mixed canopies and variations in concentration of carbon-based secondary metabolites in plant tissues.

  10. Allocating responsibility for environmental risks: A comparative analysis of examples from water governance.

    PubMed

    Doorn, Neelke

    2017-03-01

    The focus of the present study is on the allocation of responsibilities for addressing environmental risks in transboundary water governance. Effective environmental management in transboundary situations requires coordinated and cooperative action among diverse individuals and organizations. Currently, little insight exists on how to foster collective action such that individuals and organizations take the responsibility to address transboundary environmental risks. On the basis of 4 cases of transboundary water governance, it will be shown how certain allocation principles are more likely to encourage cooperative action. The main lesson from these case studies is that the allocation of responsibilities should be seen as a risk distribution problem, including considerations of effectiveness, efficiency, and fairness. Integr Environ Assess Manag 2017;13:371-375. © 2016 SETAC. © 2016 SETAC.

  11. EPA-SUPPORTED (ENVIRONMENTAL PROTECTION AGENCY-SUPPORTED) WASTELOAD ALLOCATION MODELS

    EPA Science Inventory

    Modeling is increasingly becoming part of the Wasteload Allocation Process. The U.S. EPA provides guidance, technical training and computer software in support of this program. This paper reviews the support available to modelers through the Wasteload Allocation Section of EPA's ...

  12. Updates to the Demographic and Spatial Allocation Models to ...

    EPA Pesticide Factsheets

    EPA announced the availability of the draft report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) for a 30-day public comment period. The ICLUS version 2 (v2) modeling tool furthered land change modeling by providing nationwide housing development scenarios up to 2100. ICLUS V2 includes updated population and land use data sets and addressing limitations identified in ICLUS v1 in both the migration and spatial allocation models. The companion user guide describes the development of ICLUS v2 and the updates that were made to the original data sets and the demographic and spatial allocation models. [2017 UPDATE] Get the latest version of ICLUS and stay up-to-date by signing up to the ICLUS mailing list. The GIS tool enables users to run SERGoM with the population projections developed for the ICLUS project and allows users to modify the spatial allocation housing density across the landscape.

  13. The Role of Integrated Modelling and Assessment for Decision-Making: Lessons from Water Allocation Issues in Australia

    NASA Astrophysics Data System (ADS)

    Jakeman, A. J.; Guillaume, J. H. A.; El Sawah, S.; Hamilton, S.

    2014-12-01

    Integrated modelling and assessment (IMA) is best regarded as a process that can support environmental decision-making when issues are strongly contested and uncertainties pervasive. To be most useful, the process must be multi-dimensional and phased. Principally, it must be tailored to the problem context to encompass diverse issues of concern, management settings and stakeholders. This in turn requires the integration of multiple processes and components of natural and human systems and their corresponding spatial and temporal scales. Modellers therefore need to be able to integrate multiple disciplines, methods, models, tools and data, and many sources and types of uncertainty. These dimensions are incorporated into iteration between the various phases of the IMA process, including scoping, problem framing and formulation, assessing options and communicating findings. Two case studies in Australia are employed to share the lessons of how integration can be achieved in these IMA phases using a mix of stakeholder participation processes and modelling tools. One case study aims to improve the relevance of modelling by incorporating stakeholder's views of irrigated viticulture and water management decision making. It used a novel methodology with the acronym ICTAM, consisting of Interviews to elicit mental models, Cognitive maps to represent and analyse individual and group mental models, Time-sequence diagrams to chronologically structure the decision making process, an All-encompassing conceptual model, and computational Models of stakeholder decision making. The second case uses a hydro-economic river network model to examine basin-wide impacts of water allocation cuts and adoption of farm innovations. The knowledge exchange approach used in each case was designed to integrate data and knowledge bearing in mind the contextual dimensions of the problem at hand, and the specific contributions that environmental modelling was thought to be able to make.

  14. A Decision Support System For The Real-Time Allocation Of The Water Resource Of The Tarim River Basin, China

    NASA Astrophysics Data System (ADS)

    Wei, J.; Wang, G.; Liu, R.

    2008-12-01

    The Tarim River Basin is the longest inland river in China. Due to water scarcity, ecologically-fragile is becoming a significant constraint to sustainable development in this region. To effectively manage the limited water resources for ecological purposes and for conventional water utilization purposes, a real-time water resources allocation Decision Support System (DSS) has been developed. Based on workflows of the water resources regulations and comprehensive analysis of the efficiency and feasibility of water management strategies, the DSS includes information systems that perform data acquisition, management and visualization, and model systems that perform hydrological forecast, water demand prediction, flow routing simulation and water resources optimization of the hydrological and water utilization process. An optimization and process control strategy is employed to dynamically allocate the water resources among the different stakeholders. The competitive targets and constraints are taken into considered by multi-objective optimization and with different priorities. The DSS of the Tarim River Basin has been developed and been successfully utilized to support the water resources management of the Tarim River Basin since 2005.

  15. A coupled agronomic-economic model to consider allocation of brackish irrigation water

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon; Weikard, Hans-Peter; Shah, Syed Hamid Hussain; van der Zee, Sjoerd E. A. T. M.

    2013-05-01

    In arid and semiarid regions, irrigation water is scarce and often contains high concentrations of salts. To reduce negative effects on crop yields, the irrigated amounts must include water for leaching and therefore exceed evapotranspiration. The leachate (drainage) water returns to water sources such as rivers or groundwater aquifers and increases their level of salinity and the leaching requirement for irrigation water of any sequential user. We develop a conceptual sequential (upstream-downstream) model of irrigation that predicts crop yields and water consumption and tracks the water flow and level of salinity along a river dependent on irrigation management decisions. The model incorporates an agro-physical model of plant response to environmental conditions including feedbacks. For a system with limited water resources, the model examines the impacts of water scarcity, salinity and technically inefficient application on yields for specific crop, soil, and climate conditions. Moving beyond the formulation of a conceptual frame, we apply the model to the irrigation of Capsicum annum on Arava Sandy Loam soil. We show for this case how water application could be distributed between upstream and downstream plots or farms. We identify those situations where it is beneficial to trade water from upstream to downstream farms (assuming that the upstream farm holds the water rights). We find that water trade will improve efficiency except when loss levels are low. We compute the marginal value of water, i.e., the price water would command on a market, for different levels of water scarcity, salinity and levels of water loss.

  16. Assessing the Impact of Model Parameter Uncertainty in Simulating Grass Biomass Using a Hybrid Carbon Allocation Strategy

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Adam, J. C.; Tague, C.

    2016-12-01

    Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in

  17. Improved framework model to allocate optimal rainwater harvesting sites in small watersheds for agro-forestry uses

    NASA Astrophysics Data System (ADS)

    Terêncio, D. P. S.; Sanches Fernandes, L. F.; Cortes, R. M. V.; Pacheco, F. A. L.

    2017-07-01

    This study introduces an improved rainwater harvesting (RWH) suitability model to help the implementation of agro-forestry projects (irrigation, wildfire combat) in catchments. The model combines a planning workflow to define suitability of catchments based on physical, socio-economic and ecologic variables, with an allocation workflow to constrain suitable RWH sites as function of project specific features (e.g., distance from rainfall collection to application area). The planning workflow comprises a Multi Criteria Analysis (MCA) implemented on a Geographic Information System (GIS), whereas the allocation workflow is based on a multiple-parameter ranking analysis. When compared to other similar models, improvement comes with the flexible weights of MCA and the entire allocation workflow. The method is tested in a contaminated watershed (the Ave River basin) located in Portugal. The pilot project encompasses the irrigation of a 400 ha crop land that consumes 2.69 Mm3 of water per year. The application of harvested water in the irrigation replaces the use of stream water with excessive anthropogenic nutrients that may raise nitrosamines in the food and accumulation in the food chain, with severe consequences to human health (cancer). The selected rainfall collection catchment is capable to harvest 12 Mm3·yr-1 (≈ 4.5 × the requirement) and is roughly 3 km far from the application area assuring crop irrigation by gravity flow with modest transport costs. The RWH system is an 8-meter high that can be built in earth with reduced costs.

  18. Quantification and Multi-purpose Allocation of Water Resources in a Dual-reservoir System

    NASA Astrophysics Data System (ADS)

    Salami, Y. D.

    2017-12-01

    Transboundary rivers that run through separate water management jurisdictions sometimes experience competitive water usage. Where the river has multiple existing or planned dams along its course, quantification and efficient allocation of water for such purposes as hydropower generation, irrigation for agriculture, and water supply can be a challenge. This problem is even more pronounced when large parts of the river basin are located in semi-arid regions known for water insecurity, poor crop yields from irrigation scheme failures, and human population displacement arising from water-related conflict. This study seeks to mitigate the impacts of such factors on the Kainji-Jebba dual-reservoir system located along the Niger River in Africa by seasonally quantifying and efficiently apportioning water to all stipulated uses of both dams thereby improving operational policy and long-term water security. Historical storage fluctuations (18 km3 to 5 km3) and flows into and out of both reservoirs were analyzed for relationships to such things as surrounding catchment contribution, dam operational policies, irrigation and hydropower requirements, etc. Optimum values of the aforementioned parameters were then determined by simulations based upon hydrological contributions and withdrawals and worst case scenarios of natural and anthropogenic conditions (like annual probability of reservoir depletion) affecting water availability and allocation. Finally, quantification and optimized allocation of water was done based on needs for hydropower, irrigation for agriculture, water supply, and storage evacuation for flood control. Results revealed that water supply potential increased by 69%, average agricultural yield improved by 36%, and hydropower generation increased by 54% and 66% at the upstream and downstream dams respectively. Lessons learned from this study may help provide a robust and practical means of water resources management in similar river basins and multi

  19. The benefit of using additional hydrological information from earth observations and reanalysis data on water allocation decisions in irrigation districts

    NASA Astrophysics Data System (ADS)

    Kaune, Alexander; López, Patricia; Werner, Micha; de Fraiture, Charlotte

    2017-04-01

    Hydrological information on water availability and demand is vital for sound water allocation decisions in irrigation districts, particularly in times of water scarcity. However, sub-optimal water allocation decisions are often taken with incomplete hydrological information, which may lead to agricultural production loss. In this study we evaluate the benefit of additional hydrological information from earth observations and reanalysis data in supporting decisions in irrigation districts. Current water allocation decisions were emulated through heuristic operational rules for water scarce and water abundant conditions in the selected irrigation districts. The Dynamic Water Balance Model based on the Budyko framework was forced with precipitation datasets from interpolated ground measurements, remote sensing and reanalysis data, to determine the water availability for irrigation. Irrigation demands were estimated based on estimates of potential evapotranspiration and coefficient for crops grown, adjusted with the interpolated precipitation data. Decisions made using both current and additional hydrological information were evaluated through the rate at which sub-optimal decisions were made. The decisions made using an amended set of decision rules that benefit from additional information on demand in the districts were also evaluated. Results show that sub-optimal decisions can be reduced in the planning phase through improved estimates of water availability. Where there are reliable observations of water availability through gauging stations, the benefit of the improved precipitation data is found in the improved estimates of demand, equally leading to a reduction of sub-optimal decisions.

  20. Water exchanges versus water works: Insights from a computable general equilibrium model for the Balearic Islands

    NASA Astrophysics Data System (ADS)

    Gómez, Carlos M.; Tirado, Dolores; Rey-Maquieira, Javier

    2004-10-01

    We present a computable general equilibrium model (CGE) for the Balearic Islands, specifically performed to analyze the welfare gains associated with an improvement in the allocation of water rights through voluntary water exchanges (mainly between the agriculture and urban sectors). For the implementation of the empirical model we built the social accounting matrix (SAM) from the last available input-output table of the islands (for the year 1997). Water exchanges provide an important alternative to make the allocation of water flexible enough to cope with the cyclical droughts that characterize the natural water regime on the islands. The main conclusion is that the increased efficiency provided by ``water markets'' makes this option more advantageous than the popular alternative of building new desalinization plants. Contrary to common opinion, a ``water market'' can also have positive and significant impacts on the agricultural income.

  1. Cost Allocation of Multiagency Water Resource Projects: Game Theoretic Approaches and Case Study

    NASA Astrophysics Data System (ADS)

    Lejano, Raul P.; Davos, Climis A.

    1995-05-01

    Water resource projects are often jointly carried out by a number of communities and agencies. Participation in a joint project depends on how costs are allocated among the participants and how cost shares compare with the cost of independent projects. Cooperative N-person game theory offers approaches which yield cost allocations that satisfy rationality conditions favoring participation. A new solution concept, the normalized nucleolus, is discussed and applied to a water reuse project in southern California. Results obtained with the normalized nucleolus are compared with those derived with more traditional solution concepts, namely, the nucleolus and the Shapley value.

  2. Resource Allocation Models and Accountability: A Jamaican Case Study

    ERIC Educational Resources Information Center

    Nkrumah-Young, Kofi K.; Powell, Philip

    2008-01-01

    Higher education institutions (HEIs) may be funded privately, by the state or by a mixture of the two. Nevertheless, any state financing of HE necessitates a mechanism to determine the level of support and the channels through which it is to be directed; that is, a resource allocation model. Public funding, through resource allocation models,…

  3. Spatial Allocator for air quality modeling

    EPA Pesticide Factsheets

    The Spatial Allocator is a set of tools that helps users manipulate and generate data files related to emissions and air quality modeling without requiring the use of a commercial Geographic Information System.

  4. Model-based metrics of human-automation function allocation in complex work environments

    NASA Astrophysics Data System (ADS)

    Kim, So Young

    Function allocation is the design decision which assigns work functions to all agents in a team, both human and automated. Efforts to guide function allocation systematically has been studied in many fields such as engineering, human factors, team and organization design, management science, and cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary issues with function allocation. Four distinctive perspectives emerged from a review of these fields: technology-centered, human-centered, team-oriented, and work-oriented. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), team structure and processes, and work structure and the work environment. Together, these perspectives identify the following eight issues with function allocation: 1) Workload, 2) Incoherency in function allocations, 3) Mismatches between responsibility and authority, 4) Interruptive automation, 5) Automation boundary conditions, 6) Function allocation preventing human adaptation to context, 7) Function allocation destabilizing the humans' work environment, and 8) Mission Performance. Addressing these issues systematically requires formal models and simulations that include all necessary aspects of human-automation function allocation: the work environment, the dynamics inherent to the work, agents, and relationships among them. Also, addressing these issues requires not only a (static) model, but also a (dynamic) simulation that captures temporal aspects of work such as the timing of actions and their impact on the agent's work. Therefore, with properly modeled work as described by the work environment, the dynamics inherent to the work, agents, and relationships among them, a modeling framework developed by this thesis, which includes static work models and dynamic simulation, can capture the

  5. Drought planning and water allocation: an assessment of local capacity in Minnesota.

    PubMed

    Pirie, Rebecca L; de Loë, Rob C; Kreutzwiser, Reid

    2004-10-01

    Water allocation systems are challenged by hydrologic droughts, which reduce available water supplies and can adversely affect human and environmental systems. To address this problem, drought management mechanisms have been instituted in jurisdictions around the world. Historically, these mechanisms have involved a crisis management or reactive approach. An important trend during the past decade in places such as the United States has been a shift to a more proactive approach, emphasizing drought preparedness and local involvement. Unfortunately, local capacity for drought planning is highly variable, with some local governments and organizations proving to be more capable than others of taking on new responsibilities. This paper reports on a study of drought planning and water allocation in the State of Minnesota. Factors facilitating and constraining local capacity for drought planning were identified using in-depth key informant interviews with state officials and members of two small Minnesota cities, combined with an analysis of pertinent documentation. A key factor contributing to the effectiveness of Minnesota's system is a water allocation system with explicit priorities during shortages, and provisions for restrictions. At the same time, the requirement that water suppliers create Public Water Supply Emergency Conservation Plans (PWSECP) clarifies the roles and responsibilities of key local actors. Unfortunately, the research revealed that mandated PWSECP are not always implemented, and that awareness of drought and drought planning measures in general may be poor at the local level. From the perspective of the two cities evaluated, factors that contributed to local capacity included sound financial and human resources, and (in some cases) effective vertical and horizontal linkages. This analysis of experiences in Minnesota highlights problems that can occur when senior governments establish policy frameworks that increase responsibilities at the local

  6. MoGIRE: A Model for Integrated Water Management

    NASA Astrophysics Data System (ADS)

    Reynaud, A.; Leenhardt, D.

    2008-12-01

    Climate change and growing water needs have resulted in many parts of the world in water scarcity problems that must by managed by public authorities. Hence, policy-makers are more and more often asked to define and to implement water allocation rules between competitive users. This requires to develop new tools aiming at designing those rules for various scenarios of context (climatic, agronomic, economic). If models have been developed for each type of water use however, very few integrated frameworks link these different uses, while such an integrated approach is a relevant stake for designing regional water and land policies. The lack of such integrated models can be explained by the difficulty of integrating models developed by very different disciplines and by the problem of scale change (collecting data on large area, arbitrate between the computational tractability of models and their level of aggregation). However, modelers are more and more asked to deal with large basin scales while analyzing some policy impacts at very high detailed levels. These contradicting objectives require to develop new modeling tools. The CALVIN economically-driven optimization model developed for managing water in California is a good example of this type of framework, Draper et al. (2003). Recent reviews of the literature on integrated water management at the basin level include Letcher et al. (2007) or Cai (2008). We present here an original framework for integrated water management at the river basin scale called MoGIRE ("Modèle pour la Gestion Intégrée de la Ressource en Eau"). It is intended to optimize water use at the river basin level and to evaluate scenarios (agronomic, climatic or economic) for a better planning of agricultural and non-agricultural water use. MoGIRE includes a nodal representation of the water network. Agricultural, urban and environmental water uses are also represented using mathematical programming and econometric approaches. The model then

  7. Effects of spatially distributed sectoral water management on the redistribution of water resources in an integrated water model

    NASA Astrophysics Data System (ADS)

    Voisin, Nathalie; Hejazi, Mohamad I.; Leung, L. Ruby; Liu, Lu; Huang, Maoyi; Li, Hong-Yi; Tesfa, Teklu

    2017-05-01

    Realistic representations of sectoral water withdrawals and consumptive demands and their allocation to surface and groundwater sources are important for improving modeling of the integrated water cycle. To inform future model development, we enhance the representation of water management in a regional Earth system (ES) model with a spatially distributed allocation of sectoral water demands simulated by a regional integrated assessment (IA) model to surface and groundwater systems. The integrated modeling framework (IA-ES) is evaluated by analyzing the simulated regulated flow and sectoral supply deficit in major hydrologic regions of the conterminous U.S, which differ from ES studies looking at water storage variations. Decreases in historical supply deficit are used as metrics to evaluate IA-ES model improvement in representating the complex sectoral human activities for assessing future adaptation and mitigation strategies. We also assess the spatial changes in both regulated flow and unmet demands, for irrigation and nonirrigation sectors, resulting from the individual and combined additions of groundwater and return flow modules. Results show that groundwater use has a pronounced regional and sectoral effect by reducing water supply deficit. The effects of sectoral return flow exhibit a clear east-west contrast in the hydrologic patterns, so the return flow component combined with the IA sectoral demands is a major driver for spatial redistribution of water resources and water deficits in the US. Our analysis highlights the need for spatially distributed sectoral representation of water management to capture the regional differences in interbasin redistribution of water resources and deficits.

  8. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.).

    PubMed

    Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François

    2015-10-01

    Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the

  9. Effects of parceling on model selection: Parcel-allocation variability in model ranking.

    PubMed

    Sterba, Sonya K; Rights, Jason D

    2017-03-01

    Research interest often lies in comparing structural model specifications implying different relationships among latent factors. In this context parceling is commonly accepted, assuming the item-level measurement structure is well known and, conservatively, assuming items are unidimensional in the population. Under these assumptions, researchers compare competing structural models, each specified using the same parcel-level measurement model. However, little is known about consequences of parceling for model selection in this context-including whether and when model ranking could vary across alternative item-to-parcel allocations within-sample. This article first provides a theoretical framework that predicts the occurrence of parcel-allocation variability (PAV) in model selection index values and its consequences for PAV in ranking of competing structural models. These predictions are then investigated via simulation. We show that conditions known to manifest PAV in absolute fit of a single model may or may not manifest PAV in model ranking. Thus, one cannot assume that low PAV in absolute fit implies a lack of PAV in ranking, and vice versa. PAV in ranking is shown to occur under a variety of conditions, including large samples. To provide an empirically supported strategy for selecting a model when PAV in ranking exists, we draw on relationships between structural model rankings in parcel- versus item-solutions. This strategy employs the across-allocation modal ranking. We developed software tools for implementing this strategy in practice, and illustrate them with an example. Even if a researcher has substantive reason to prefer one particular allocation, investigating PAV in ranking within-sample still provides an informative sensitivity analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Error rate information in attention allocation pilot models

    NASA Technical Reports Server (NTRS)

    Faulkner, W. H.; Onstott, E. D.

    1977-01-01

    The Northrop urgency decision pilot model was used in a command tracking task to compare the optimized performance of multiaxis attention allocation pilot models whose urgency functions were (1) based on tracking error alone, and (2) based on both tracking error and error rate. A matrix of system dynamics and command inputs was employed, to create both symmetric and asymmetric two axis compensatory tracking tasks. All tasks were single loop on each axis. Analysis showed that a model that allocates control attention through nonlinear urgency functions using only error information could not achieve performance of the full model whose attention shifting algorithm included both error and error rate terms. Subsequent to this analysis, tracking performance predictions for the full model were verified by piloted flight simulation. Complete model and simulation data are presented.

  11. Modeling The Hydrology And Water Allocation Under Climate Change In Rural River Basins: A Case Study From Nam Ngum River Basin, Laos

    NASA Astrophysics Data System (ADS)

    Jayasekera, D. L.; Kaluarachchi, J.; Kim, U.

    2011-12-01

    estimated using the corrected GCM and baseline scenarios for future time periods of 2011-2050 and 2051-2090. A network based hydrologic and water resources model, WEAP, was used to simulate the current water allocation and management practices to identify the impacts of climate change in the 20th century. The results of this work are used to identify the multiple challenges faced by stakeholders and planners in water allocation for competing demands in the presence of climate change impacts.

  12. Drought Water Right Curtailment

    NASA Astrophysics Data System (ADS)

    Walker, W.; Tweet, A.; Magnuson-Skeels, B.; Whittington, C.; Arnold, B.; Lund, J. R.

    2016-12-01

    California's water rights system allocates water based on priority, where lower priority, "junior" rights are curtailed first in a drought. The Drought Water Rights Allocation Tool (DWRAT) was developed to integrate water right allocation models with legal objectives to suggest water rights curtailments during drought. DWRAT incorporates water right use and priorities with a flow-forecasting model to mathematically represent water law and hydrology and suggest water allocations among water rights holders. DWRAT is compiled within an Excel workbook, with an interface and an open-source solver. By implementing California water rights law as an algorithm, DWRAT provides a precise and transparent framework for the complicated and often controversial technical aspects of curtailing water rights use during drought. DWRAT models have been developed for use in the Eel, Russian, and Sacramento river basins. In this study, an initial DWRAT model has been developed for the San Joaquin watershed, which incorporates all water rights holders in the basin and reference gage flows for major tributaries. The San Joaquin DWRAT can assess water allocation reliability by determining probability of rights holders' curtailment for a range of hydrologic conditions. Forecasted flow values can be input to the model to provide decision makers with the ability to make curtailment and water supply strategy decisions. Environmental flow allocations will be further integrated into the model to protect and improve ecosystem water reliability.

  13. Location-allocation models and new solution methodologies in telecommunication networks

    NASA Astrophysics Data System (ADS)

    Dinu, S.; Ciucur, V.

    2016-08-01

    When designing a telecommunications network topology, three types of interdependent decisions are combined: location, allocation and routing, which are expressed by the following design considerations: how many interconnection devices - consolidation points/concentrators should be used and where should they be located; how to allocate terminal nodes to concentrators; how should the voice, video or data traffic be routed and what transmission links (capacitated or not) should be built into the network. Including these three components of the decision into a single model generates a problem whose complexity makes it difficult to solve. A first method to address the overall problem is the sequential one, whereby the first step deals with the location-allocation problem and based on this solution the subsequent sub-problem (routing the network traffic) shall be solved. The issue of location and allocation in a telecommunications network, called "The capacitated concentrator location- allocation - CCLA problem" is based on one of the general location models on a network in which clients/demand nodes are the terminals and facilities are the concentrators. Like in a location model, each client node has a demand traffic, which must be served, and the facilities can serve these demands within their capacity limit. In this study, the CCLA problem is modeled as a single-source capacitated location-allocation model whose optimization objective is to determine the minimum network cost consisting of fixed costs for establishing the locations of concentrators, costs for operating concentrators and costs for allocating terminals to concentrators. The problem is known as a difficult combinatorial optimization problem for which powerful algorithms are required. Our approach proposes a Fuzzy Genetic Algorithm combined with a local search procedure to calculate the optimal values of the location and allocation variables. To confirm the efficiency of the proposed algorithm with respect

  14. Influence of vegetation dynamic modeling on the allocation of green and blue waters

    NASA Astrophysics Data System (ADS)

    Ruiz-Pérez, Guiomar; Francés, Félix

    2015-04-01

    The long history of the Mediterranean region is dominated by the interactions and co-evolution between man and its natural environment. It is important to consider that the Mediterranean region is recurrently or permanently confronted with the scarcity of the water. The issue of climate change is (and will be) aggravating this situation. This raises the question of a loss of services that ecosystems provide to human and also the amount of available water to be used by vegetation. The question of the water cycle, therefore, should be considered in an integrated manner by taking into account both blue water (water in liquid form used for the human needs or which flows into the oceans) and green water (water having the vapor for resulting from evaporation and transpiration processes). In spite of this, traditionally, very few hydrological models have incorporated the vegetation dynamic as a state variable. In fact, most of them are able to represent fairly well the observed discharge, but usually including the vegetation as a static parameter. However, in the last decade, the number of hydrological models which explicitly take into account the vegetation development as a state variable has increased substantially. In this work, we want to analyze if it is really necessary to use a dynamic vegetation model to quantify adequately the distribution of water into blue and green water. The study site is located in the Public Forest Monte de la Hunde y Palomeras (Spain). The vegetation in the study area is dominated by Aleppo pine of high tree density with scant presence of other species. Two different daily models were applied (with static and dynamic vegetation representation respectively) in three different scenarios: dry year (2005), normal year (2008) and wet year (2010). The static vegetation model simulates the evapotranspiration considering the vegetation as a stationary parameter. Contrarily, the dynamic vegetation model connects the hydrological model with a

  15. Land use allocation model considering climate change impact

    NASA Astrophysics Data System (ADS)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  16. Legal institutions for the allocation of water and their impact on coal conversion operations in Kentucky. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ausness, R.C.; Callahan, G.W.; Dills, S.W.

    1976-08-01

    Coal conversion plants require large quantities of water for cooling purposes and for use as a raw material. Three types of water allocation are presently used in the United States: riparianism, prior appropriation, and administrative permit systems. Kentucky presently has such a system of administrative allocation and this is described in the report. (GRA)

  17. Dynamic versus static allocation policies in multipurpose multireservoir systems

    NASA Astrophysics Data System (ADS)

    Tilmant, A.; Goor, Q.; Pinte, D.; van der Zaag, P.

    2007-12-01

    As the competition for water is likely to increase in the near future due to socioeconomic development and population growth, water resources managers will face hard choices when allocating water between competing users. Because water is a vital resource used in multiple sectors, including the environment, the allocation is inherently a political and social process, which is likely to become increasingly scrutinized as the competition grows between the different sectors. Since markets are usually absent or ineffective, the allocation of water between competing demands is achieved administratively taking into account key objectives such as economic efficiency, equity and maintaining the ecological integrity. When crop irrigation is involved, water is usually allocated by a system of annual rights to use a fixed, static, volume of water. In a fully-allocated basin, moving from a static to a dynamic allocation process, whereby the policies are regularly updated according to the hydrologic status of the river basin, is the first step towards the development of river basin management strategies that increase the productivity of water. More specifically, in a multipurpose multireservoir system, continuously adjusting release and withdrawal decisions based on the latest hydrologic information will increase the benefits derived from the system. However, the extent to which such an adjustment can be achieved results from complex spatial and temporal interactions between the physical characteristics of the water resources system (storage, natural flows), the economic and social consequences of rationing and the impacts on natural ecosystems. The complexity of the decision-making process, which requires the continuous evaluation of numerous trade-offs, calls for the use of integrated hydrologic-economic models. This paper compares static and dynamic management approaches for a cascade of hydropower-irrigation reservoirs using stochastic dual dynamic programming (SDDP

  18. Allocation model for air tanker initial attack in firefighting

    Treesearch

    Francis E. Greulich; William G. O' Regan

    1975-01-01

    Timely and appropriate use of air tankers in firefighting can bring high returns, but their misuse can be expensive when measured in operating and other costs. An allocation model has been developed for identifying superior strategies-for air tanker initial attack, and for choosing an optimum set of allocations among airbases. Data are presented for a representative...

  19. A framework model for water-sharing among co-basin states of a river basin

    NASA Astrophysics Data System (ADS)

    Garg, N. K.; Azad, Shambhu

    2018-05-01

    A new framework model is presented in this study for sharing of water in a river basin using certain governing variables, in an effort to enhance the objectivity for a reasonable and equitable allocation of water among co-basin states. The governing variables were normalised to reduce the governing variables of different co-basin states of a river basin on same scale. In the absence of objective methods for evaluating the weights to be assigned to co-basin states for water allocation, a framework was conceptualised and formulated to determine the normalised weighting factors of different co-basin states as a function of the governing variables. The water allocation to any co-basin state had been assumed to be proportional to its struggle for equity, which in turn was assumed to be a function of the normalised discontent, satisfaction, and weighting factors of each co-basin state. System dynamics was used effectively to represent and solve the proposed model formulation. The proposed model was successfully applied to the Vamsadhara river basin located in the South-Eastern part of India, and a sensitivity analysis of the proposed model parameters was carried out to prove its robustness in terms of the proposed model convergence and validity over the broad spectrum values of the proposed model parameters. The solution converged quickly to a final allocation of 1444 million cubic metre (MCM) in the case of the Odisha co-basin state, and to 1067 MCM for the Andhra Pradesh co-basin state. The sensitivity analysis showed that the proposed model's allocation varied from 1584 MCM to 1336 MCM for Odisha state and from 927 to 1175 MCM for Andhra, depending upon the importance weights given to the governing variables for the calculation of the weighting factors. Thus, the proposed model was found to be very flexible to explore various policy options to arrive at a decision in a water sharing problem. It can therefore be effectively applied to any trans-boundary problem where

  20. A Protocol for Generating and Exchanging (Genome-Scale) Metabolic Resource Allocation Models.

    PubMed

    Reimers, Alexandra-M; Lindhorst, Henning; Waldherr, Steffen

    2017-09-06

    In this article, we present a protocol for generating a complete (genome-scale) metabolic resource allocation model, as well as a proposal for how to represent such models in the systems biology markup language (SBML). Such models are used to investigate enzyme levels and achievable growth rates in large-scale metabolic networks. Although the idea of metabolic resource allocation studies has been present in the field of systems biology for some years, no guidelines for generating such a model have been published up to now. This paper presents step-by-step instructions for building a (dynamic) resource allocation model, starting with prerequisites such as a genome-scale metabolic reconstruction, through building protein and noncatalytic biomass synthesis reactions and assigning turnover rates for each reaction. In addition, we explain how one can use SBML level 3 in combination with the flux balance constraints and our resource allocation modeling annotation to represent such models.

  1. A decision support system to find the best water allocation strategies in a Mediterranean river basin in future scenarios of global change

    NASA Astrophysics Data System (ADS)

    Del Vasto-Terrientes, L.; Kumar, V.; Chao, T.-C.; Valls, A.

    2016-03-01

    Global change refers to climate changes, but also demographic, technological and economic changes. Predicted water scarcity will be critical in the coastal Mediterranean region, especially for provision to mid-sized and large-sized cities. This paper studies the case of the city of Tarragona, located at the Mediterranean area of north-eastern Spain (Catalonia). Several scenarios have been constructed to evaluate different sectorial water allocation policies to mitigate the water scarcity induced by global change. Future water supply and demand predictions have been made for three time spans. The decision support system presented is based on the outranking model, which constructs a partial pre-order based on pairwise preference relations among all the possible actions. The system analyses a hierarchical structure of criteria, including environmental and economic criteria. We compare several adaptation measures including alternative water sources, inter-basin water transfer and sectorial demand management coming from industry, agriculture and domestic sectors. Results indicate that the most appropriate water allocation strategies depend on the severity of the global change effects.

  2. Interactive Online Real-time Groundwater Model for Irrigation Water Allocation in the Heihe Mid-reaches, China

    NASA Astrophysics Data System (ADS)

    Pedrazzini, G.; Kinzelbach, W.

    2016-12-01

    In the Heihe Basin and many other semi-arid regions in the world the ongoing introduction of smart meter IC-card systems on farmers' pumping wells will soon allow monitoring and control of abstractions with the goal of preventing further depletion of the resource. In this regard, a major interest of policy makers concerns the development of new and the improvement of existing legislation on pricing schemes and groundwater/surface water quotas. Predictive knowledge on the development of groundwater levels for different allocation schemes or climatic change scenarios is required to support decision-makers in this task. In the past groundwater models have been a static component of investigations and their results delivered in the form of reports. We set up and integrated a groundwater model into a user-friendly web-based environment, allowing direct and easy access to the novice user. Through operating sliders the user can select an irrigation district, change irrigation patterns such as partitioning of surface- and groundwater, size of irrigation area, irrigation efficiency, as well as a number of climate related parameters. Reactive handles allow to display the results in real-time. The implemented software is all license free. The tool is currently being introduced to irrigation district managers in the project area. Findings will be available after some practical experience to be expected in a given time. The accessibility via a web-interface is a novelty in the context of groundwater models. It allows delivering a product accessible from everywhere and from any device. The maintenance and if necessary updating of model or software can occur remotely. Feedback mechanisms between reality and prediction will be introduced and the model periodically updated through data assimilation as new data becomes available. This will render the model a dynamic tool steadily available and evolving over time.

  3. A management and optimisation model for water supply planning in water deficit areas

    NASA Astrophysics Data System (ADS)

    Molinos-Senante, María; Hernández-Sancho, Francesc; Mocholí-Arce, Manuel; Sala-Garrido, Ramón

    2014-07-01

    The integrated water resources management approach has proven to be a suitable option for efficient, equitable and sustainable water management. In water-poor regions experiencing acute and/or chronic shortages, optimisation techniques are a useful tool for supporting the decision process of water allocation. In order to maximise the value of water use, an optimisation model was developed which involves multiple supply sources (conventional and non-conventional) and multiple users. Penalties, representing monetary losses in the event of an unfulfilled water demand, have been incorporated into the objective function. This model represents a novel approach which considers water distribution efficiency and the physical connections between water supply and demand points. Subsequent empirical testing using data from a Spanish Mediterranean river basin demonstrated the usefulness of the global optimisation model to solve existing water imbalances at the river basin level.

  4. Ethical models in bioethics: theory and application in organ allocation policies.

    PubMed

    Petrini, C

    2010-12-01

    Policies for allocating organs to people awaiting a transplant constitute a major ethical challenge. First and foremost, they demand balance between the principles of beneficence and justice, but many other ethically relevant principles are also involved: autonomy, responsibility, equity, efficiency, utility, therapeutic outcome, medical urgency, and so forth. Various organ allocation models can be developed based on the hierarchical importance assigned to a given principle over the others, but none of the principles should be completely disregarded. An ethically acceptable organ allocation policy must therefore be in conformity, to a certain extent, with the requirements of all the principles. Many models for organ allocation can be derived. The utilitarian model aims to maximize benefits, which can be of various types on a social or individual level, such as the number of lives saved, prognosis, and so forth. The prioritarian model favours the neediest or those who suffer most. The egalitarian model privileges equity and justice, suggesting that all people should have an equal opportunity (casual allocation) or priority should be given to those who have been waiting longer. The personalist model focuses on each individual patient, attempting to mesh together all the various aspects affecting the person: therapeutic needs (urgency), fairness, clinical outcomes, respect for persons. In the individualistic model the main element is free choice and the system of opting-in is privileged. Contrary to the individualistic model, the communitarian model identities in the community the fundamental elements for the legitimacy of choices: therefore, the system of opting-out is privileged. This article does not aim at suggesting practical solutions. Rather, it furnishes to decision makers an overview on the possible ethical approach to this matter.

  5. The role of price and enforcement in water allocation: insights from Game Theory

    NASA Astrophysics Data System (ADS)

    Souza Filho, F.; Lall, U.; Porto, R.

    2007-12-01

    As many countries are moving towards water sector reforms, practical issues of how water management institutions can better effect allocation, regulation and enforcement of water rights have emerged. The uncertainty associated with water that is available at a particular diversion point becomes a parameter that is likely to influence the behavior of water users as to their application for water licenses, as well as their willingness to pay for licensed use. The ability of a water agency to reduce this uncertainty through effective water rights enforcement is related to the fiscal ability of the agency to sustain the enforcement effort. In this paper, this interplay across the users and the agency is explored, considering the hydraulic structure or sequence of water use, and parameters that define the users and the agency's economics. The potential for free rider behavior by the users, as well as their proposals for licensed use are derived conditional on this setting. The analyses presented are developed in the framework of the theory of "Law and Economics", with user interactions modeled as a game theoretic enterprise. The state of Ceara, Brazil is used loosely as an example setting, with parameter values for the experiments indexed to be approximately those relevant for current decisions. The potential for using the ideas in participatory decision making is discussed.

  6. An open source hydroeconomic model for California's water supply system: PyVIN

    NASA Astrophysics Data System (ADS)

    Dogan, M. S.; White, E.; Herman, J. D.; Hart, Q.; Merz, J.; Medellin-Azuara, J.; Lund, J. R.

    2016-12-01

    Models help operators and decision makers explore and compare different management and policy alternatives, better allocate scarce resources, and predict the future behavior of existing or proposed water systems. Hydroeconomic models are useful tools to increase benefits or decrease costs of managing water. Bringing hydrology and economics together, these models provide a framework for different disciplines that share similar objectives. This work proposes a new model to evaluate operation and adaptation strategies under existing and future hydrologic conditions for California's interconnected water system. This model combines the network structure of CALVIN, a statewide optimization model for California's water infrastructure, along with an open source solver written in the Python programming language. With the flexibilities of the model, reservoir operations, including water supply and hydropower, groundwater pumping, and the Delta water operations and requirements can now be better represented. Given time series of hydrologic inputs to the model, typical outputs include urban, agricultural and wildlife refuge water deliveries and shortage costs, conjunctive use of surface and groundwater systems, and insights into policy and management decisions, such as capacity expansion and groundwater management policies. Water market operations also represented in the model, allocating water from lower-valued users to higher-valued users. PyVIN serves as a cross-platform, extensible model to evaluate systemwide water operations. PyVIN separates data from the model structure, enabling model to be easily applied to other parts of the world where water is a scarce resource.

  7. Optimum Landscape Allocation of Conservation Practices for Water Quality and Ecosystem Service Valuation

    NASA Astrophysics Data System (ADS)

    Dalzell, B. J.; Pennington, D.; Nelson, E.; Mulla, D.; Polasky, S.; Taff, S.

    2012-12-01

    This study links a spatially-explicit biophysical model (SWAT) with an economic model (InVEST) to identify the economically optimum allocation of conservation practices on the landscape. Combining biophysical and economic analysis allows assessment of the benefits and costs of alternative policy choices through consideration of direct costs and benefits as measured by market transactions as well as non-market benefits and costs from changes in environmental conditions that lead to changes in the provision of ecosystem services. When applied to an agricultural watershed located in South-Central Minnesota, this approach showed that: (1) some modest gains (20% improvement, relative to baseline conditions) in water quality can be achieved without diminishing current economic returns, but that (2) more dramatic reductions in sediment and phosphorus required to meet water quality goals (50% reductions in loadings) will require transitioning land from row crops into perennial vegetation. This shift in land cover will result in a reduction in economic returns unless non-market ecosystem services are also valued. Further results showed that traditional best management practices such as conservation tillage and reduced fertilizer application rates are not sufficient to achieve water quality goals by themselves. Finally, if crop prices drop to pre-2007 levels or valuation of ecosystem services increases, then achieving water quality goals can occur with less of an economic impact to the watershed.

  8. On inclusion of water resource management in Earth system models - Part 1: Problem definition and representation of water demand

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Wheater, H. S.

    2015-01-01

    Human activities have caused various changes to the Earth system, and hence the interconnections between human activities and the Earth system should be recognized and reflected in models that simulate Earth system processes. One key anthropogenic activity is water resource management, which determines the dynamics of human-water interactions in time and space and controls human livelihoods and economy, including energy and food production. There are immediate needs to include water resource management in Earth system models. First, the extent of human water requirements is increasing rapidly at the global scale and it is crucial to analyze the possible imbalance between water demands and supply under various scenarios of climate change and across various temporal and spatial scales. Second, recent observations show that human-water interactions, manifested through water resource management, can substantially alter the terrestrial water cycle, affect land-atmospheric feedbacks and may further interact with climate and contribute to sea-level change. Due to the importance of water resource management in determining the future of the global water and climate cycles, the World Climate Research Program's Global Energy and Water Exchanges project (WRCP-GEWEX) has recently identified gaps in describing human-water interactions as one of the grand challenges in Earth system modeling (GEWEX, 2012). Here, we divide water resource management into two interdependent elements, related firstly to water demand and secondly to water supply and allocation. In this paper, we survey the current literature on how various components of water demand have been included in large-scale models, in particular land surface and global hydrological models. Issues of water supply and allocation are addressed in a companion paper. The available algorithms to represent the dominant demands are classified based on the demand type, mode of simulation and underlying modeling assumptions. We discuss

  9. Optimizing multiple reliable forward contracts for reservoir allocation using multitime scale streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Lu, Mengqian; Lall, Upmanu; Robertson, Andrew W.; Cook, Edward

    2017-03-01

    Streamflow forecasts at multiple time scales provide a new opportunity for reservoir management to address competing objectives. Market instruments such as forward contracts with specified reliability are considered as a tool that may help address the perceived risk associated with the use of such forecasts in lieu of traditional operation and allocation strategies. A water allocation process that enables multiple contracts for water supply and hydropower production with different durations, while maintaining a prescribed level of flood risk reduction, is presented. The allocation process is supported by an optimization model that considers multitime scale ensemble forecasts of monthly streamflow and flood volume over the upcoming season and year, the desired reliability and pricing of proposed contracts for hydropower and water supply. It solves for the size of contracts at each reliability level that can be allocated for each future period, while meeting target end of period reservoir storage with a prescribed reliability. The contracts may be insurable, given that their reliability is verified through retrospective modeling. The process can allow reservoir operators to overcome their concerns as to the appropriate skill of probabilistic forecasts, while providing water users with short-term and long-term guarantees as to how much water or energy they may be allocated. An application of the optimization model to the Bhakra Dam, India, provides an illustration of the process. The issues of forecast skill and contract performance are examined. A field engagement of the idea is useful to develop a real-world perspective and needs a suitable institutional environment.

  10. SECURITY MODELING FOR MARITIME PORT DEFENSE RESOURCE ALLOCATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.; Dunn, D.

    2010-09-07

    Redeployment of existing law enforcement resources and optimal use of geographic terrain are examined for countering the threat of a maritime based small-vessel radiological or nuclear attack. The evaluation was based on modeling conducted by the Savannah River National Laboratory that involved the development of options for defensive resource allocation that can reduce the risk of a maritime based radiological or nuclear threat. A diverse range of potential attack scenarios has been assessed. As a result of identifying vulnerable pathways, effective countermeasures can be deployed using current resources. The modeling involved the use of the Automated Vulnerability Evaluation for Risksmore » of Terrorism (AVERT{reg_sign}) software to conduct computer based simulation modeling. The models provided estimates for the probability of encountering an adversary based on allocated resources including response boats, patrol boats and helicopters over various environmental conditions including day, night, rough seas and various traffic flow rates.« less

  11. An Allocation Model for Teaching and Nonteaching Staff in a Decentralized Institution.

    ERIC Educational Resources Information Center

    Dijkman, Frank G

    1985-01-01

    An allocation model for teaching and nonteaching staff developed at the University of Utrecht is characterized as highly normative, leading to lump sums to be allocated to academic departments. Details are given regarding the reasons for designing the new model and the process of implementation. (Author/MLW)

  12. Bringing the Budget Back into Academic Work Allocation Models: A Management Perspective

    ERIC Educational Resources Information Center

    Robertson, Michael; Germov, John

    2015-01-01

    Issues surrounding increasingly constrained resources and reducing levels of sector-based funding require consideration of a different Academic Work Allocation Model (AWAM) approach. Evidence from the literature indicates that an effective work allocation model is founded on the principles of equity and transparency in the distribution and…

  13. Sustainable Irrigation Allocation Model for Dry and Wet Periods using Reservoir Storage and Inflow

    NASA Astrophysics Data System (ADS)

    Surianarayanan, S.; Suribabu, C. R.; Ramakrishnan, K.

    2017-07-01

    The dry period agriculture is inevitable both for the farmers for their earning, and for the soil for its fertility by crop-rotation. In tropical countries like INDIA, dry period agriculture becomes difficult because of less (or) no rain fall. Hence a simple water balancing model for irrigation scheduling, using the measure “Volumetric Reliability” is prepared in this paper, with the storage and inflow of a reservoir both for the dry and wet periods. The case-study is done for a reservoir in INDIA with thirty one years of hydrological data(from 1982 to 2012). The objective of this paper is to prepare a simple water balance model taking 10 days periods of demand and supply for ID crop(Irrigated Dry crop, ground nut) with usage of volumetric reliability concept for the periods of deficiency and adoption of less water requirement crops to reduce the water-stress during critical periods of crop growth, and finally arrive at a feasible allocation schedule for the success of agriculture and the yield throughout the year both for wet and dry crops with the available storage on the start of irrigation for a particular year. The reservoir is divided for storages such as full, deficient and critical storages. The starting storage for the dry period from January is used after adequate allocation for wet crops, the quantity for riparian rights and for drinking water, for the sustainability. By the water-balancing, the time-series for thirty one years, it is found that for twenty two years the demand for the ID crops is satisfied with the storage in the reservoir, and in the remaining years of deficient inflows, for three years (1986,1996,2004)the demand is managed by using the safe reliability factor for demand which can nullify the deficit in demand for the whole supply period. But it is genuine to assure that the reduction in the amount of water for each 10 days periods should not exceed the survival limit of the crop. Necessary soil-moisture must be ensured in the crop

  14. Role of price and enforcement in water allocation: Insights from Game Theory

    NASA Astrophysics Data System (ADS)

    Souza Filho, Francisco Assis; Lall, Upmanu; Porto, Rubem La Laina

    2008-12-01

    As many countries are moving toward water sector reforms, practical issues of how water management institutions can better effect allocation, regulation, and enforcement of water rights have emerged. The problem of nonavailability of water to tailenders on an irrigation system in developing countries, due to unlicensed upstream diversions is well documented. The reliability of access or equivalently the uncertainty associated with water availability at their diversion point becomes a parameter that is likely to influence the application by users for water licenses, as well as their willingness to pay for licensed use. The ability of a water agency to reduce this uncertainty through effective water rights enforcement is related to the fiscal ability of the agency to monitor and enforce licensed use. In this paper, this interplay across the users and the agency is explored, considering the hydraulic structure or sequence of water use and parameters that define the users and the agency's economics. The potential for free rider behavior by the users, as well as their proposals for licensed use are derived conditional on this setting. The analyses presented are developed in the framework of the theory of "Law and Economics," with user interactions modeled as a game theoretic enterprise. The state of Ceara, Brazil, is used loosely as an example setting, with parameter values for the experiments indexed to be approximately those relevant for current decisions. The potential for using the ideas in participatory decision making is discussed. This paper is an initial attempt to develop a conceptual framework for analyzing such situations but with a focus on the reservoir-canal system water rights enforcement.

  15. Optimality Based Dynamic Plant Allocation Model: Predicting Acclimation Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Drewry, D.; Kumar, P.; Sivapalan, M.

    2009-12-01

    Allocation of assimilated carbon to different plant parts determines the future plant status and is important to predict long term (months to years) vegetated land surface fluxes. Plants have the ability to modify their allometry and exhibit plasticity by varying the relative proportions of the structural biomass contained in each of its tissue. The ability of plants to be plastic provides them with the potential to acclimate to changing environmental conditions in order to enhance their probability of survival. Allometry based allocation models and other empirical allocation models do not account for plant plasticity cause by acclimation due to environmental changes. In the absence of a detailed understanding of the various biophysical processes involved in plant growth and development an optimality approach is adopted here to predict carbon allocation in plants. Existing optimality based models of plant growth are either static or involve considerable empiricism. In this work, we adopt an optimality based approach (coupled with limitations on plant plasticity) to predict the dynamic allocation of assimilated carbon to different plant parts. We explore the applicability of this approach using several optimization variables such as net primary productivity, net transpiration, realized growth rate, total end of growing season reproductive biomass etc. We use this approach to predict the dynamic nature of plant acclimation in its allocation of carbon to different plant parts under current and future climate scenarios. This approach is designed as a growth sub-model in the multi-layer canopy plant model (MLCPM) and is used to obtain land surface fluxes and plant properties over the growing season. The framework of this model is such that it retains the generality and can be applied to different types of ecosystems. We test this approach using the data from free air carbon dioxide enrichment (FACE) experiments using soybean crop at the Soy-FACE research site. Our

  16. Optimal allocation model of construction land based on two-level system optimization theory

    NASA Astrophysics Data System (ADS)

    Liu, Min; Liu, Yanfang; Xia, Yuping; Lei, Qihong

    2007-06-01

    The allocation of construction land is an important task in land-use planning. Whether implementation of planning decisions is a success or not, usually depends on a reasonable and scientific distribution method. Considering the constitution of land-use planning system and planning process in China, multiple levels and multiple objective decision problems is its essence. Also, planning quantity decomposition is a two-level system optimization problem and an optimal resource allocation decision problem between a decision-maker in the topper and a number of parallel decision-makers in the lower. According the characteristics of the decision-making process of two-level decision-making system, this paper develops an optimal allocation model of construction land based on two-level linear planning. In order to verify the rationality and the validity of our model, Baoan district of Shenzhen City has been taken as a test case. Under the assistance of the allocation model, construction land is allocated to ten townships of Baoan district. The result obtained from our model is compared to that of traditional method, and results show that our model is reasonable and usable. In the end, the paper points out the shortcomings of the model and further research directions.

  17. Development and Application of a Taiwan Domestic Generalized Water Supply Model

    NASA Astrophysics Data System (ADS)

    Ho, C. C.; Chang, L. C.

    2016-12-01

    Water allocation in Taiwan is more complicated than other countries because high river turbidity caused by rainstorm, reservoir management governed by different organization and conjunctive use of inter-basin reservoirs and dams. Those properties cause water resource planners need make extra effort on developing customized model to simulate the impact of water supply strategies on water resources. Hence, the study develops a Generalized Water Supply Model (GWSM) to analysis Multi-reservoirs water allocation in Taiwan for advancing the planning process. The model has following functions: (1) considering reservoirs operating rule curve. (2) considering the rule of multi-reservoir operation. Such as setting supply priority of different reservoirs or using "index balance" rule. (3) considering optimal hydroelectric power operation. (4) estimating the impact of high river turbidity on water supply. (5) considering the supply priority of different water use. (6) considering irrigation supply under special constraint. Such as the maximum irrigation supply is subject to natural inflow without reservoir storage. (7) considering two-way conduit transport. (8) considering environmental flow reservation. Conjunctive use Taan and Dajia Rivers was selected to demonstrate the ability of GWSM. The results also can be provided to different authorities to realize the impact of different strategies and that is good for negotiation and reaching a consensus.

  18. Allocation model for firefighting resources ... a progress report

    Treesearch

    Frederick W. Bratten

    1970-01-01

    A study is underway at the Pacific Southwest Forest and Range Experiment Station to develop computer techniques for planning suppression efforts in large wildfires. A mathematical model for allocation of firefighting resources in a going fire has been developed. Explicit definitions are given for strategic and tactical planning functions. How the model might be used is...

  19. Marrying Hydrological Modelling and Integrated Assessment for the needs of Water Resource Management

    NASA Astrophysics Data System (ADS)

    Croke, B. F. W.; Blakers, R. S.; El Sawah, S.; Fu, B.; Guillaume, J. H. A.; Kelly, R. A.; Patrick, M. J.; Ross, A.; Ticehurst, J.; Barthel, R.; Jakeman, A. J.

    2014-09-01

    This paper discusses the integration of hydrology with other disciplines using an Integrated Assessment (IA) and modelling approach to the management and allocation of water resources. Recent developments in the field of socio-hydrology aim to develop stronger relationships between hydrology and the human dimensions of Water Resource Management (WRM). This should build on an existing wealth of knowledge and experience of coupled human-water systems. To further strengthen this relationship and contribute to this broad body of knowledge, we propose a strong and durable "marriage" between IA and hydrology. The foundation of this marriage requires engagement with appropriate concepts, model structures, scales of analyses, performance evaluation and communication - and the associated tools and models that are needed for pragmatic deployment or operation. To gain insight into how this can be achieved, an IA case study in water allocation in the Lower Namoi catchment, NSW, Australia is presented.

  20. Modelling water use in global hydrological models: review, challenges and directions

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.

    2017-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.

  1. Traffic Behavior Recognition Using the Pachinko Allocation Model

    PubMed Central

    Huynh-The, Thien; Banos, Oresti; Le, Ba-Vui; Bui, Dinh-Mao; Yoon, Yongik; Lee, Sungyoung

    2015-01-01

    CCTV-based behavior recognition systems have gained considerable attention in recent years in the transportation surveillance domain for identifying unusual patterns, such as traffic jams, accidents, dangerous driving and other abnormal behaviors. In this paper, a novel approach for traffic behavior modeling is presented for video-based road surveillance. The proposed system combines the pachinko allocation model (PAM) and support vector machine (SVM) for a hierarchical representation and identification of traffic behavior. A background subtraction technique using Gaussian mixture models (GMMs) and an object tracking mechanism based on Kalman filters are utilized to firstly construct the object trajectories. Then, the sparse features comprising the locations and directions of the moving objects are modeled by PAM into traffic topics, namely activities and behaviors. As a key innovation, PAM captures not only the correlation among the activities, but also among the behaviors based on the arbitrary directed acyclic graph (DAG). The SVM classifier is then utilized on top to train and recognize the traffic activity and behavior. The proposed model shows more flexibility and greater expressive power than the commonly-used latent Dirichlet allocation (LDA) approach, leading to a higher recognition accuracy in the behavior classification. PMID:26151213

  2. HIV epidemic control-a model for optimal allocation of prevention and treatment resources.

    PubMed

    Alistar, Sabina S; Long, Elisa F; Brandeau, Margaret L; Beck, Eduard J

    2014-06-01

    With 33 million people living with human immunodeficiency virus (HIV) worldwide and 2.7 million new infections occurring annually, additional HIV prevention and treatment efforts are urgently needed. However, available resources for HIV control are limited and must be used efficiently to minimize the future spread of the epidemic. We develop a model to determine the appropriate resource allocation between expanded HIV prevention and treatment services. We create an epidemic model that incorporates multiple key populations with different transmission modes, as well as production functions that relate investment in prevention and treatment programs to changes in transmission and treatment rates. The goal is to allocate resources to minimize R 0, the reproductive rate of infection. We first develop a single-population model and determine the optimal resource allocation between HIV prevention and treatment. We extend the analysis to multiple independent populations, with resource allocation among interventions and populations. We then include the effects of HIV transmission between key populations. We apply our model to examine HIV epidemic control in two different settings, Uganda and Russia. As part of these applications, we develop a novel approach for estimating empirical HIV program production functions. Our study provides insights into the important question of resource allocation for a country's optimal response to its HIV epidemic and provides a practical approach for decision makers. Better decisions about allocating limited HIV resources can improve response to the epidemic and increase access to HIV prevention and treatment services for millions of people worldwide.

  3. Modeling forest C and N allocation responses to free-air CO2 enrichment

    NASA Astrophysics Data System (ADS)

    Luus, Kristina; De Kauwe, Martin; Walker, Anthony; Werner, Christian; Iversen, Colleen; McCarthy, Heather; Medlyn, Belinda; Norby, Richard; Oren, Ram; Zak, Donald; Zaehle, Sönke

    2015-04-01

    Vegetation allocation patterns and soil-vegetation partitioning of C and N are predicted to change in response to rising atmospheric concentrations of CO2. These allocation responses to rising CO2 have been examined at the ecosystem level through through free-air CO2 enrichment (FACE) experiments, and their global implications for the timing of progressive N limitation (PNL) and C sequestration have been predicted for ~100 years using a variety of ecosystem models. However, recent FACE model-data syntheses studies [1,2,3] have indicated that ecosystem models do not capture the 5-10 year site-level ecosystem allocation responses to elevated CO2. This may be due in part to the missing representation of the rhizosphere interactions between plants and soil biota in models. Ecosystem allocation of C and N is altered by interactions between soil and vegetation through the priming effect: as plant N availability diminishes, plants respond physiologically by altering their tissue allocation strategies so as to increase rates of root growth and rhizodeposition. In response, either soil organic material begins to accumulate, which hastens the onset of PNL, or soil microbes start to decompose C more rapidly, resulting in increased N availability for plant uptake, which delays PNL. In this study, a straightforward approach for representing rhizosphere interactions in ecosystem models was developed through which C and N allocation to roots and rhizodeposition responds dynamically to elevated CO2 conditions, modifying soil decomposition rates without pre-specification of the direction in which soil C and N accumulation should shift in response to elevated CO2. This approach was implemented in a variety of ecosystem models ranging from stand (G'DAY), to land surface (CLM 4.5, O-CN), to dynamic global vegetation (LPJ-GUESS) models. Comparisons against data from three forest FACE sites (Duke, Oak Ridge & Rhinelander) indicated that representing rhizosphere interactions allowed

  4. Asymmetric abstraction and allocation: the Israeli-Palestinian water pumping record.

    PubMed

    Zeitoun, Mark; Messerschmid, Clemens; Attili, Shaddad

    2009-01-01

    The increased attention given to international transboundary aquifers may be nowhere more pressing than on the western bank of the Jordan River. Hydropolitical analysis of six decades of Israeli and Palestinian pumping records reveals how ground water abstraction rates are as asymmetrical as are water allocations. The particular hydrogeology of the region, notably the variability in depth to ground water, variations in ground water quality, and the vulnerability of the aquifer, also affect the outcome. The records confirm previously drawn conclusions of the influence of the agricultural lobby in maintaining a supply-side water management paradigm. Comparison of water consumption rates divulges that water consumed by all sectors of the farming-based Palestinian economy is less than half of Israeli domestic consumption. The overwhelming majority of "reserve" flows from wet years are sold at subsidized rates to the Israeli agricultural sector, while very minor amounts are sold at normal rates to the Palestinian side for drinking water. An apparent coevolution of water resource variability and politics serves to explain increased Israeli pumping prior to negotiations in the early 1990s. The abstraction record from the Western Aquifer Basin discloses that the effective limit set by the terms of the 1995 Oslo II Agreement is regularly violated by the Israeli side, thereby putting the aquifer at risk. The picture that emerges is one of a transboundary water regime that is much more exploitative than cooperative and that risks spoiling the resource as it poisons international relations.

  5. An Agent-based Model for Groundwater Allocation and Management at the Bakken Shale in Western North Dakota

    NASA Astrophysics Data System (ADS)

    Lin, T.; Lin, Z.; Lim, S.

    2017-12-01

    We present an integrated modeling framework to simulate groundwater level change under the dramatic increase of hydraulic fracturing water use in the Bakken Shale oil production area. The framework combines the agent-based model (ABM) with the Fox Hills-Hell Creek (FH-HC) groundwater model. In development of the ABM, institution theory is used to model the regulation policies from the North Dakota State Water Commission, while evolutionary programming and cognitive maps are used to model the social structure that emerges from the behavior of competing individual water businesses. Evolutionary programming allows individuals to select an appropriate strategy when annually applying for potential water use permits; whereas cognitive maps endow agent's ability and willingness to compete for more water sales. All agents have their own influence boundaries that inhibit their competitive behavior toward their neighbors but not to non-neighbors. The decision-making process is constructed and parameterized with both quantitative and qualitative information, i.e., empirical water use data and knowledge gained from surveys with stakeholders. By linking institution theory, evolutionary programming, and cognitive maps, our approach addresses a higher complexity of the real decision making process. Furthermore, this approach is a new exploration for modeling the dynamics of Coupled Human and Natural System. After integrating ABM with the FH-HC model, drought and limited water accessibility scenarios are simulated to predict FH-HC ground water level changes in the future. The integrated modeling framework of ABM and FH-HC model can be used to support making scientifically sound policies in water allocation and management.

  6. A two-phase model of resource allocation in visual working memory.

    PubMed

    Ye, Chaoxiong; Hu, Zhonghua; Li, Hong; Ristaniemi, Tapani; Liu, Qiang; Liu, Taosheng

    2017-10-01

    Two broad theories of visual working memory (VWM) storage have emerged from current research, a discrete slot-based theory and a continuous resource theory. However, neither the discrete slot-based theory or continuous resource theory clearly stipulates how the mental commodity for VWM (discrete slot or continuous resource) is allocated. Allocation may be based on the number of items via stimulus-driven factors, or it may be based on task demands via voluntary control. Previous studies have obtained conflicting results regarding the automaticity versus controllability of such allocation. In the current study, we propose a two-phase allocation model, in which the mental commodity could be allocated only by stimulus-driven factors in the early consolidation phase. However, when there is sufficient time to complete the early phase, allocation can enter the late consolidation phase, where it can be flexibly and voluntarily controlled according to task demands. In an orientation recall task, we instructed participants to store either fewer items at high-precision or more items at low-precision. In 3 experiments, we systematically manipulated memory set size and exposure duration. We did not find an effect of task demands when the set size was high and exposure duration was short. However, when we either decreased the set size or increased the exposure duration, we found a trade-off between the number and precision of VWM representations. These results can be explained by a two-phase model, which can also account for previous conflicting findings in the literature. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Generalized DSS shell for developing simulation and optimization hydro-economic models of complex water resources systems

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, Manuel; Lopez-Nicolas, Antonio; Harou, Julien J.; Andreu, Joaquin

    2013-04-01

    Hydrologic-economic models allow integrated analysis of water supply, demand and infrastructure management at the river basin scale. These models simultaneously analyze engineering, hydrology and economic aspects of water resources management. Two new tools have been designed to develop models within this approach: a simulation tool (SIM_GAMS), for models in which water is allocated each month based on supply priorities to competing uses and system operating rules, and an optimization tool (OPT_GAMS), in which water resources are allocated optimally following economic criteria. The characterization of the water resource network system requires a connectivity matrix representing the topology of the elements, generated using HydroPlatform. HydroPlatform, an open-source software platform for network (node-link) models, allows to store, display and export all information needed to characterize the system. Two generic non-linear models have been programmed in GAMS to use the inputs from HydroPlatform in simulation and optimization models. The simulation model allocates water resources on a monthly basis, according to different targets (demands, storage, environmental flows, hydropower production, etc.), priorities and other system operating rules (such as reservoir operating rules). The optimization model's objective function is designed so that the system meets operational targets (ranked according to priorities) each month while following system operating rules. This function is analogous to the one used in the simulation module of the DSS AQUATOOL. Each element of the system has its own contribution to the objective function through unit cost coefficients that preserve the relative priority rank and the system operating rules. The model incorporates groundwater and stream-aquifer interaction (allowing conjunctive use simulation) with a wide range of modeling options, from lumped and analytical approaches to parameter-distributed models (eigenvalue approach). Such

  8. A Model for Resource Allocation Using Operational Knowledge Assets

    ERIC Educational Resources Information Center

    Andreou, Andreas N.; Bontis, Nick

    2007-01-01

    Purpose: The paper seeks to develop a business model that shows the impact of operational knowledge assets on intellectual capital (IC) components and business performance and use the model to show how knowledge assets can be prioritized in driving resource allocation decisions. Design/methodology/approach: Quantitative data were collected from 84…

  9. The Health Resources Allocation Model (HRAM) for the 21st century.

    PubMed

    Maire, Nicolas; Hegnauer, Michael; Nguyen, Dana; Godelmann, Lucas; Hoffmann, Axel; de Savigny, Don; Tanner, Marcel

    2012-05-01

    The Health Resources Allocation Model (HRAM) is an eLearning tool for health cadres and scientists introducing basic concepts of sub-national, rational district-based health planning and systems thinking under resources constraint. HRAM allows the evaluation of resource allocation strategies in relation to key outcome measures such as coverage, equity of services achieved and number of deaths and disability-adjusted life years (DALYs) prevented. In addition, the model takes into account geographical and demographic characteristics and populations' health seeking behaviour. It can be adapted to different socio-ecological and health system settings.

  10. Water Market-scale Agricultural Planning: Promoting Competing Water Resource Use Efficiency Through Agro-Economics

    NASA Astrophysics Data System (ADS)

    Delorit, J. D.; Block, P. J.

    2017-12-01

    Where strong water rights law and corresponding markets exist as a coupled econo-legal mechanism, water rights holders are permitted to trade allocations to promote economic water resource use efficiency. In locations where hydrologic uncertainty drives the assignment of annual per-water right allocation values by water resource managers, collaborative water resource decision making by water rights holders, specifically those involved in agricultural production, can result in both resource and economic Pareto efficiency. Such is the case in semi-arid North Chile, where interactions between representative farmer groups, treated as competitive bilateral monopolies, and modeled at water market-scale, can provide both price and water right allocation distribution signals for unregulated, temporary water right leasing markets. For the range of feasible per-water right allocation values, a coupled agricultural-economic model is developed to describe the equilibrium distribution of water, the corresponding market price of water rights and the net surplus generated by collaboration between competing agricultural uses. Further, this research describes a per-water right inflection point for allocations where economic efficiency is not possible, and where price negotiation among competing agricultural uses is required. An investigation of the effects of water right supply and demand inequality at the market-scale is completed to characterize optimal market performance under existing water rights law. The broader insights of this research suggest that water rights holders engaged in agriculture can achieve economic benefits from forming crop-type cooperatives and by accurately assessing the economic value of allocation.

  11. Water-use efficiency of willow: Variation with season, humidity and biomass allocation

    NASA Astrophysics Data System (ADS)

    Lindroth, Anders; Verwijst, Theo; Halldin, Sven

    1994-04-01

    Information on the water-use efficiency (WUE) of a vegetation cover improves understanding of the interrelationship between the water and carbon cycles, and enables hydrological practices to be related to agricultural and silvicultural planning and management. This study determined seasonal and climatic variations of the WUE of a fertilized and irrigated short-rotation stand of Salix viminalis L. on a clay soil. The WUE was determined as the ratio of above-ground production to transpiration or, alternatively, to transpiration divided by the saturation vapour pressure deficit. Growth was estimated from a combination of destructive and non-destructive measurements for 10 day periods during the growing seasons of 1986 and 1988. Daily transpiration was estimated using a physically based evaporation model, tuned against energy-balance/Bowen-ratio measurements of total stand evaporation. Nutrients were adequate and climate conditions were similar in both years. In spite of irrigation soil-water deficits developed during midsummer and affected growth rates in different ways: in 1986, both stem and leaf growth decreased, while in 1988 only stem growth decreased. Exceptionally high stem growth rates, twice the total potential growth rates, were recorded after the drought of 1988. They were probably caused by root-allocated assimilates that were sent above-ground after the drought. In both years, stem growth ceased 2-3 weeks after the leaf area had reached its maximum. Since light and temperature were still sufficient to maintain assimilation, all growth presumably took place below ground towards the end of the season. Changes in root-shoot allocation caused large variations in the WUE in 1988. The WUE, weighted by the saturation vapour pressure deficit, was fairly constant in 1986. In both years, the WUE was correlated with the vapour pressure deficit. Towards the end of both growing seasons, when all assimilates were sent below ground, the WUE decreased rapidly to zero

  12. Studying the effect on system preference by varying coproduct allocation in creating life-cycle inventory.

    PubMed

    Curran, Mary Ann

    2007-10-15

    How one models the input and output data for a life-cycle assessment (LCA) can greatly affect the results. Although much attention has been paid to allocation methodology by researchers in the field, specific guidance is still lacking: Earlier research focused on the effects of applying various allocation schemes to industrial processes when creating life-cycle inventories. To determine the impact of different allocation approaches upon product choice, this study evaluated the gas- and water-phase emissions during the production, distribution, and use of three hypothetical fuel systems (data that represent conventional gasoline and gasoline with 8.7 and 85% ethanol were used as the basis for modeling). This paper presents an explanation of the allocation issue and the results from testing various allocation schemes (weight, volume, market value, energy, and demand-based) when viewed across the entire system. Impact indicators for global warming, ozone depletion, and human health noncancer (water impact) were lower for the ethanol-containing fuels, while impact indicators for acidification, ecotoxicity, eutrophication, human health criteria, and photochemical smog were lower for conventional gasoline (impacts for the water-related human health cancer category showed mixed results). The relative ranking of conventional gasoline in relation to the ethanol-containing fuels was consistent in all instances, suggesting that, in this case study, the choice of allocation methodology had no impact on indicating which fuel has lower environmental impacts.

  13. Incorporating human-water dynamics in a hyper-resolution land surface model

    NASA Astrophysics Data System (ADS)

    Vergopolan, N.; Chaney, N.; Wanders, N.; Sheffield, J.; Wood, E. F.

    2017-12-01

    The increasing demand for water, energy, and food is leading to unsustainable groundwater and surface water exploitation. As a result, the human interactions with the environment, through alteration of land and water resources dynamics, need to be reflected in hydrologic and land surface models (LSMs). Advancements in representing human-water dynamics still leave challenges related to the lack of water use data, water allocation algorithms, and modeling scales. This leads to an over-simplistic representation of human water use in large-scale models; this is in turn leads to an inability to capture extreme events signatures and to provide reliable information at stakeholder-level spatial scales. The emergence of hyper-resolution models allows one to address these challenges by simulating the hydrological processes and interactions with the human impacts at field scales. We integrated human-water dynamics into HydroBlocks - a hyper-resolution, field-scale resolving LSM. HydroBlocks explicitly solves the field-scale spatial heterogeneity of land surface processes through interacting hydrologic response units (HRUs); and its HRU-based model parallelization allows computationally efficient long-term simulations as well as ensemble predictions. The implemented human-water dynamics include groundwater and surface water abstraction to meet agricultural, domestic and industrial water demands. Furthermore, a supply-demand water allocation scheme based on relative costs helps to determine sectoral water use requirements and tradeoffs. A set of HydroBlocks simulations over the Midwest United States (daily, at 30-m spatial resolution for 30 years) are used to quantify the irrigation impacts on water availability. The model captures large reductions in total soil moisture and water table levels, as well as spatiotemporal changes in evapotranspiration and runoff peaks, with their intensity related to the adopted water management strategy. By incorporating human-water dynamics in

  14. Allocating HIV prevention funds in the United States: recommendations from an optimization model.

    PubMed

    Lasry, Arielle; Sansom, Stephanie L; Hicks, Katherine A; Uzunangelov, Vladislav

    2012-01-01

    The Centers for Disease Control and Prevention (CDC) had an annual budget of approximately $327 million to fund health departments and community-based organizations for core HIV testing and prevention programs domestically between 2001 and 2006. Annual HIV incidence has been relatively stable since the year 2000 and was estimated at 48,600 cases in 2006 and 48,100 in 2009. Using estimates on HIV incidence, prevalence, prevention program costs and benefits, and current spending, we created an HIV resource allocation model that can generate a mathematically optimal allocation of the Division of HIV/AIDS Prevention's extramural budget for HIV testing, and counseling and education programs. The model's data inputs and methods were reviewed by subject matter experts internal and external to the CDC via an extensive validation process. The model projects the HIV epidemic for the United States under different allocation strategies under a fixed budget. Our objective is to support national HIV prevention planning efforts and inform the decision-making process for HIV resource allocation. Model results can be summarized into three main recommendations. First, more funds should be allocated to testing and these should further target men who have sex with men and injecting drug users. Second, counseling and education interventions ought to provide a greater focus on HIV positive persons who are aware of their status. And lastly, interventions should target those at high risk for transmitting or acquiring HIV, rather than lower-risk members of the general population. The main conclusions of the HIV resource allocation model have played a role in the introduction of new programs and provide valuable guidance to target resources and improve the impact of HIV prevention efforts in the United States.

  15. Task allocation model for minimization of completion time in distributed computer systems

    NASA Astrophysics Data System (ADS)

    Wang, Jai-Ping; Steidley, Carl W.

    1993-08-01

    A task in a distributed computing system consists of a set of related modules. Each of the modules will execute on one of the processors of the system and communicate with some other modules. In addition, precedence relationships may exist among the modules. Task allocation is an essential activity in distributed-software design. This activity is of importance to all phases of the development of a distributed system. This paper establishes task completion-time models and task allocation models for minimizing task completion time. Current work in this area is either at the experimental level or without the consideration of precedence relationships among modules. The development of mathematical models for the computation of task completion time and task allocation will benefit many real-time computer applications such as radar systems, navigation systems, industrial process control systems, image processing systems, and artificial intelligence oriented systems.

  16. A mathematical modeling approach to resource allocation for railroad-highway crossing safety upgrades.

    PubMed

    Konur, Dinçer; Golias, Mihalis M; Darks, Brandon

    2013-03-01

    State Departments of Transportation (S-DOT's) periodically allocate budget for safety upgrades at railroad-highway crossings. Efficient resource allocation is crucial for reducing accidents at railroad-highway crossings and increasing railroad as well as highway transportation safety. While a specific method is not restricted to S-DOT's, sorting type of procedures are recommended by the Federal Railroad Administration (FRA), United States Department of Transportation for the resource allocation problem. In this study, a generic mathematical model is proposed for the resource allocation problem for railroad-highway crossing safety upgrades. The proposed approach is compared to sorting based methods for safety upgrades of public at-grade railroad-highway crossings in Tennessee. The comparison shows that the proposed mathematical modeling approach is more efficient than sorting methods in reducing accidents and severity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Recovery of Ground-Water Levels from 1988 to 2003 and Analysis of Effects of 2003 and Full-Allocation Withdrawals in Critical Area 2, Southern New Jersey

    USGS Publications Warehouse

    Spitz, Frederick J.; dePaul, Vincent T.

    2008-01-01

    Water levels in the Potomac-Raritan-Magothy aquifer system within Water Supply Critical Area 2 in the southern New Jersey Coastal Plain have recovered as a result of reductions in ground-water withdrawals initiated in the early 1990s. The Critical Area consists of the depleted zone and the threatened margin. The Potomac-Raritan-Magothy aquifer system consists of the Upper, Middle, and Lower aquifers. Generally, ground-water withdrawals from these aquifers declined 5 to 10 Mgal/d (million gallons per day) and water levels recovered 0 to 40 ft (foot) from 1988 to 2003. In order to reevaluate water-allocation restrictions in Critical Area 2 in response to changes in the ground-water-flow system and demands for additional water supply due to increased development, the New Jersey Department of Environmental Protection (NJDEP) needs information about the effects of changes in those allocations. Therefore, the U.S. Geological Survey (USGS), in cooperation with the NJDEP, used an existing ground-water-flow model of the New Jersey Coastal Plain to evaluate the effects of withdrawal alternatives on hydraulic heads in the Potomac-Raritan-Magothy aquifer system in Critical Area 2. The U.S. Geological Survey Regional Aquifer System Analysis model was used to simulate steady-state ground-water flow. Two withdrawal conditions were tested by using the model to evaluate hydraulic heads and differences in heads in these aquifers: 2003 withdrawals and full-allocation withdrawals (17.4 Mgal/d greater than 2003 withdrawals). Model results are presented using head maps and head-difference maps that compare 2003 to full-allocation withdrawals. Mandated hydrologic conditions for Critical Area protection are that the simulated -30-ft head contour not extend beyond the boundary of the depleted zone and (or) be at least 5 mi (miles) updip from the 250-mg/L (milligram per liter) isochlor in all three aquifers. Simulation results indicate that, for 2003 withdrawals, the simulated -30-ft head

  18. Relative source allocation of TDI to drinking water for derivation of a criterion for chloroform: a Monte-Carlo and multi-exposure assessment.

    PubMed

    Niizuma, Shun; Matsui, Yoshihiko; Ohno, Koichi; Itoh, Sadahiko; Matsushita, Taku; Shirasaki, Nobutaka

    2013-10-01

    Drinking water quality standard (DWQS) criteria for chemicals for which there is a threshold for toxicity are derived by allocating a fraction of tolerable daily intake (TDI) to exposure from drinking water. We conducted physiologically based pharmacokinetic model simulations for chloroform and have proposed an equation for total oral-equivalent potential intake via three routes (oral ingestion, inhalation, and dermal exposures), the biologically effective doses of which were converted to oral-equivalent potential intakes. The probability distributions of total oral-equivalent potential intake in Japanese people were estimated by Monte Carlo simulations. Even when the chloroform concentration in drinking water equaled the current DWQS criterion, there was sufficient margin between the intake and the TDI: the probability that the intake exceeded TDI was below 0.1%. If a criterion that the 95th percentile estimate equals the TDI is regarded as both providing protection to highly exposed persons and leaving a reasonable margin of exposure relative to the TDI, then the chloroform drinking water criterion could be a concentration of 0.11mg/L. This implies a daily intake equal to 34% of the TDI allocated to the oral intake (2L/d) of drinking water for typical adults. For the highly exposed persons, inhalation exposure via evaporation from water contributed 53% of the total intake, whereas dermal absorption contributed only 3%. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. A Model of Resource Allocation in Public School Districts: A Theoretical and Empirical Analysis.

    ERIC Educational Resources Information Center

    Chambers, Jay G.

    This paper formulates a comprehensive model of resource allocation in a local public school district. The theoretical framework specified could be applied equally well to any number of local public social service agencies. Section 1 develops the theoretical model describing the process of resource allocation. This involves the determination of the…

  20. Sensitivities in a game theoretic approach to analyze allocation of water resources in the Nagobo basin, Ghana

    NASA Astrophysics Data System (ADS)

    Hossler, T. H. H. H.; Caers, J.; Lakshmi, V.; Harris, J. M.

    2016-12-01

    Changing weather patterns, such as shorter duration of rainfall have made water sourcesunreliable for local farmers in the Nagbo basin located in Northern Ghana. Farmers are thereforestarting to use groundwater as a secondary source (and sometimes primary source) of water fortheir needs. Groundwater will therefore be most likely subject to considerable stress in the nearfuture with longer dry spells and increasing water demand from users with different interests.Strategies must be adopted to optimally allocate water between the various stakeholders in anuncertain environment. Game Theory (GT) provides a framework for analyzing watermanagement in the Nagobo Basin. GT has recently gained attention in analyzing the impact androle of stakeholders in water resources management but the hydrological and hydrogeologicalmodels fail to account for the numerous data sources and leading uncertainties of thehydrogeological cycle. In this work, we describe by means of a synthetic model a situation in theNagobo basin with a 2-players game, considering both cooperation and non-cooperation. Ahydrological model of the basin is built using the different data available (surface and subsurface).We are interested in quantifying the impact of the uncertainty of the model parameters on thegame, affecting both player's strategies and the equilibrium. In particular, the stochastic nature insupply (recharge of the aquifer) and the uncertain nature of the subsurface (externalities) are areaof focus. A sensitivity analysis has been carried out and these results will be presented as well asthe outcome of the different games.

  1. Improved ant colony optimization for optimal crop and irrigation water allocation by incorporating domain knowledge

    USDA-ARS?s Scientific Manuscript database

    An improved ant colony optimization (ACO) formulation for the allocation of crops and water to different irrigation areas is developed. The formulation enables dynamic adjustment of decision variable options and makes use of visibility factors (VFs, the domain knowledge that can be used to identify ...

  2. 18 CFR 367.28 - Methods of allocation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Methods of allocation... Instructions § 367.28 Methods of allocation. Indirect costs and compensation for use of capital must be allocated to projects in accordance with the service company's applicable and currently effective methods of...

  3. 18 CFR 367.28 - Methods of allocation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Methods of allocation... Instructions § 367.28 Methods of allocation. Indirect costs and compensation for use of capital must be allocated to projects in accordance with the service company's applicable and currently effective methods of...

  4. Neural Network Based Modeling and Analysis of LP Control Surface Allocation

    NASA Technical Reports Server (NTRS)

    Langari, Reza; Krishnakumar, Kalmanje; Gundy-Burlet, Karen

    2003-01-01

    This paper presents an approach to interpretive modeling of LP based control allocation in intelligent flight control. The emphasis is placed on a nonlinear interpretation of the LP allocation process as a static map to support analytical study of the resulting closed loop system, albeit in approximate form. The approach makes use of a bi-layer neural network to capture the essential functioning of the LP allocation process. It is further shown via Lyapunov based analysis that under certain relatively mild conditions the resulting closed loop system is stable. Some preliminary conclusions from a study at Ames are stated and directions for further research are given at the conclusion of the paper.

  5. Zinc allocation and re-allocation in rice.

    PubMed

    Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E L; Struik, Paul C

    2014-01-01

    Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Two solution culture experiments using (70)Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg(-1) dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement.

  6. Zinc allocation and re-allocation in rice

    PubMed Central

    Stomph, Tjeerd Jan; Jiang, Wen; Van Der Putten, Peter E. L.; Struik, Paul C.

    2014-01-01

    Aims: Agronomy and breeding actively search for options to enhance cereal grain Zn density. Quantifying internal (re-)allocation of Zn as affected by soil and crop management or genotype is crucial. We present experiments supporting the development of a conceptual model of whole plant Zn allocation and re-allocation in rice. Methods: Two solution culture experiments using 70Zn applications at different times during crop development and an experiment on within-grain distribution of Zn are reported. In addition, results from two earlier published experiments are re-analyzed and re-interpreted. Results: A budget analysis showed that plant zinc accumulation during grain filling was larger than zinc allocation to the grains. Isotope data showed that zinc taken up during grain filling was only partly transported directly to the grains and partly allocated to the leaves. Zinc taken up during grain filling and allocated to the leaves replaced zinc re-allocated from leaves to grains. Within the grains, no major transport barrier was observed between vascular tissue and endosperm. At low tissue Zn concentrations, rice plants maintained concentrations of about 20 mg Zn kg−1 dry matter in leaf blades and reproductive tissues, but let Zn concentrations in stems, sheath, and roots drop below this level. When plant zinc concentrations increased, Zn levels in leaf blades and reproductive tissues only showed a moderate increase while Zn levels in stems, roots, and sheaths increased much more and in that order. Conclusions: In rice, the major barrier to enhanced zinc allocation towards grains is between stem and reproductive tissues. Enhancing root to shoot transfer will not contribute proportionally to grain zinc enhancement. PMID:24478788

  7. Market Model for Resource Allocation in Emerging Sensor Networks with Reinforcement Learning

    PubMed Central

    Zhang, Yue; Song, Bin; Zhang, Ying; Du, Xiaojiang; Guizani, Mohsen

    2016-01-01

    Emerging sensor networks (ESNs) are an inevitable trend with the development of the Internet of Things (IoT), and intend to connect almost every intelligent device. Therefore, it is critical to study resource allocation in such an environment, due to the concern of efficiency, especially when resources are limited. By viewing ESNs as multi-agent environments, we model them with an agent-based modelling (ABM) method and deal with resource allocation problems with market models, after describing users’ patterns. Reinforcement learning methods are introduced to estimate users’ patterns and verify the outcomes in our market models. Experimental results show the efficiency of our methods, which are also capable of guiding topology management. PMID:27916841

  8. Users Manual for FAA Cost Allocation Model.

    DTIC Science & Technology

    1986-12-01

    29 2.10 Ramsey Files................29 2.11 Allocation Tables.............33 2.12 MINSYS....................34 2.13 TAXRAM1...Budget V p. ARTRFUT1~TOWRFUTI " ’T RA RF UT 1 FSSRFUT1 Ramsey Pricing Allocations to User Groups i OPSRFUTI OPS RFUIA V 08RFUTI MINSYS GA Minimum...Splits Aviation Standards--O&M Budget V ARTRFUT 2 TOWRFUT2 TRARFUT2 FSSRFUT2 Ramsey Pricing Allocations to User Groups OPSRFU2 OPSVRFU 2A OPSVFUT2

  9. Modeling Limited Foresight in Water Management Systems

    NASA Astrophysics Data System (ADS)

    Howitt, R.

    2005-12-01

    The inability to forecast future water supplies means that their management inevitably occurs under situations of limited foresight. Three modeling problems arise, first what type of objective function is a manager with limited foresight optimizing? Second how can we measure these objectives? Third can objective functions that incorporate uncertainty be integrated within the structure of optimizing water management models? The paper reviews the concepts of relative risk aversion and intertemporal substitution that underlie stochastic dynamic preference functions. Some initial results from the estimation of such functions for four different dam operations in northern California are presented and discussed. It appears that the path of previous water decisions and states influences the decision-makers willingness to trade off water supplies between periods. A compromise modeling approach that incorporates carry-over value functions under limited foresight within a broader net work optimal water management model is developed. The approach uses annual carry-over value functions derived from small dimension stochastic dynamic programs embedded within a larger dimension water allocation network. The disaggregation of the carry-over value functions to the broader network is extended using the space rule concept. Initial results suggest that the solution of such annual nonlinear network optimizations is comparable to, or faster than, the solution of linear network problems over long time series.

  10. Modeling the allocation system: principles for robust design before restructuring.

    PubMed

    Mehrotra, Sanjay; Kilambi, Vikram; Gilroy, Richard; Ladner, Daniela P; Klintmalm, Goran B; Kaplan, Bruce

    2015-02-01

    The United Network for Organ Sharing is poised to resolve geographic disparity in liver transplantation and promote allocation based on medical urgency. At the time of writing, United Network for Organ Sharing is considering redistricting the organ procurement and transplantation network so that patient model for end-stage liver disease scores at transplant is more uniform across regions.We review the proposal with a systems-engineering focus and find that although the proposal is promising, it currently lacks evidence that it would perform effectively under realistic departures from its underlying data and assumptions. Moreover, we caution against prematurely focusing on redistricting as the only method to mitigate disparity. We describe system modeling principles which, if followed, will ensure that the redesigned allocation system is effective and efficient in achieving the intended goals.

  11. Multi-scale, multi-model assessment of projected land allocation

    NASA Astrophysics Data System (ADS)

    Vernon, C. R.; Huang, M.; Chen, M.; Calvin, K. V.; Le Page, Y.; Kraucunas, I.

    2017-12-01

    Effects of land use and land cover change (LULCC) on climate are generally classified into two scale-dependent processes: biophysical and biogeochemical. An extensive amount of research has been conducted related to the impact of each process under alternative climate change futures. However, these studies are generally focused on the impacts of a single process and fail to bridge the gap between sector-driven scale dependencies and any associated dynamics. Studies have been conducted to better understand the relationship of these processes but their respective scale has not adequately captured overall interdependencies between land surface changes and changes in other human-earth systems (e.g., energy, water, economic, etc.). There has also been considerable uncertainty surrounding land use land cover downscaling approaches due to scale dependencies. Demeter, a land use land cover downscaling and change detection model, was created to address this science gap. Demeter is an open-source model written in Python that downscales zonal land allocation projections to the gridded resolution of a user-selected spatial base layer (e.g., MODIS, NLCD, EIA CCI, etc.). Demeter was designed to be fully extensible to allow for module inheritance and replacement for custom research needs, such as flexible IO design to facilitate the coupling of Earth system models (e.g., the Accelerated Climate Modeling for Energy (ACME) and the Community Earth System Model (CESM)) to integrated assessment models (e.g., the Global Change Assessment Model (GCAM)). In this study, we first assessed the sensitivity of downscaled LULCC scenarios at multiple resolutions from Demeter to its parameters by comparing them to historical LULC change data. "Optimal" values of key parameters for each region were identified and used to downscale GCAM-based future scenarios consistent with those in the Land Use Model Intercomparison Project (LUMIP). Demeter-downscaled land use scenarios were then compared to the

  12. A Goal Programming Optimization Model for The Allocation of Liquid Steel Production

    NASA Astrophysics Data System (ADS)

    Hapsari, S. N.; Rosyidi, C. N.

    2018-03-01

    This research was conducted in one of the largest steel companies in Indonesia which has several production units and produces a wide range of steel products. One of the important products in the company is billet steel. The company has four Electric Arc Furnace (EAF) which produces liquid steel which must be procesed further to be billet steel. The billet steel plant needs to make their production process more efficient to increase the productvity. The management has four goals to be achieved and hence the optimal allocation of the liquid steel production is needed to achieve those goals. In this paper, a goal programming optimization model is developed to determine optimal allocation of liquid steel production in each EAF, to satisfy demand in 3 periods and the company goals, namely maximizing the volume of production, minimizing the cost of raw materials, minimizing maintenance costs, maximizing sales revenues, and maximizing production capacity. From the results of optimization, only maximizing production capacity goal can not achieve the target. However, the model developed in this papare can optimally allocate liquid steel so the allocation of production does not exceed the maximum capacity of the machine work hours and maximum production capacity.

  13. An improved risk-explicit interval linear programming model for pollution load allocation for watershed management.

    PubMed

    Xia, Bisheng; Qian, Xin; Yao, Hong

    2017-11-01

    Although the risk-explicit interval linear programming (REILP) model has solved the problem of having interval solutions, it has an equity problem, which can lead to unbalanced allocation between different decision variables. Therefore, an improved REILP model is proposed. This model adds an equity objective function and three constraint conditions to overcome this equity problem. In this case, pollution reduction is in proportion to pollutant load, which supports balanced development between different regional economies. The model is used to solve the problem of pollution load allocation in a small transboundary watershed. Compared with the REILP original model result, our model achieves equity between the upstream and downstream pollutant loads; it also overcomes the problem of greatest pollution reduction, where sources are nearest to the control section. The model provides a better solution to the problem of pollution load allocation than previous versions.

  14. Distributed Multi-Cell Resource Allocation with Price Based ICI Coordination in Downlink OFDMA Networks

    NASA Astrophysics Data System (ADS)

    Lv, Gangming; Zhu, Shihua; Hui, Hui

    Multi-cell resource allocation under minimum rate request for each user in OFDMA networks is addressed in this paper. Based on Lagrange dual decomposition theory, the joint multi-cell resource allocation problem is decomposed and modeled as a limited-cooperative game, and a distributed multi-cell resource allocation algorithm is thus proposed. Analysis and simulation results show that, compared with non-cooperative iterative water-filling algorithm, the proposed algorithm can remarkably reduce the ICI level and improve overall system performances.

  15. Evaluating Water Conservation and Reuse Policies Using a Dynamic Water Balance Model

    NASA Astrophysics Data System (ADS)

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R.

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  16. Evaluating water conservation and reuse policies using a dynamic water balance model.

    PubMed

    Qaiser, Kamal; Ahmad, Sajjad; Johnson, Walter; Batista, Jacimaria R

    2013-02-01

    A dynamic water balance model is created to examine the effects of different water conservation policies and recycled water use on water demand and supply in a region faced with water shortages and significant population growth, the Las Vegas Valley (LVV). The model, developed using system dynamics approach, includes an unusual component of the water system, return flow credits, where credits are accrued for returning treated wastewater to the water supply source. In LVV, Lake Mead serves as, both the drinking water source and the receiving body for treated wastewater. LVV has a consumptive use allocation from Lake Mead but return flow credits allow the water agency to pull out additional water equal to the amount returned as treated wastewater. This backdrop results in a scenario in which conservation may cause a decline in the available water supply. Current water use in LVV is 945 lpcd (250 gpcd), which the water agency aims to reduce to 752 lpcd (199 gpcd) by 2035, mainly through water conservation. Different conservation policies focused on indoor and outdoor water use, along with different population growth scenarios, are modeled for their effects on the water demand and supply. Major contribution of this study is in highlighting the importance of outdoor water conservation and the effectiveness of reducing population growth rate in addressing the future water shortages. The water agency target to decrease consumption, if met completely through outdoor conservation, coupled with lower population growth rate, can potentially satisfy the Valley's water demands through 2035.

  17. Three-level global resource allocation model for hiv control: A hierarchical decision system approach.

    PubMed

    Kassa, Semu Mitiku

    2018-02-01

    Funds from various global organizations, such as, The Global Fund, The World Bank, etc. are not directly distributed to the targeted risk groups. Especially in the so-called third-world-countries, the major part of the fund in HIV prevention programs comes from these global funding organizations. The allocations of these funds usually pass through several levels of decision making bodies that have their own specific parameters to control and specific objectives to achieve. However, these decisions are made mostly in a heuristic manner and this may lead to a non-optimal allocation of the scarce resources. In this paper, a hierarchical mathematical optimization model is proposed to solve such a problem. Combining existing epidemiological models with the kind of interventions being on practice, a 3-level hierarchical decision making model in optimally allocating such resources has been developed and analyzed. When the impact of antiretroviral therapy (ART) is included in the model, it has been shown that the objective function of the lower level decision making structure is a non-convex minimization problem in the allocation variables even if all the production functions for the intervention programs are assumed to be linear.

  18. Resource Allocation in Healthcare: Implications of Models of Medicine as a Profession

    PubMed Central

    Kluge, Eike-Henner W.

    2007-01-01

    For decades, the problem of how to allocate healthcare resources in a just and equitable fashion has been the subject of concerted discussion and analysis, yet the issue has stubbornly resisted resolution. This article suggests that a major reason for this is that the discussion has focused exclusively on the nature and status of the material resources, and that the nature and role of the medical profession have been entirely ignored. Because physicians are gatekeepers to healthcare resources, their role in allocation is central from a process perspective. This article identifies 3 distinct interpretations of the nature of medicine, shows how each mandates a different method of allocation, and argues that unless an appropriate model of medicine is developed that acknowledges the valid points contained in each of the 3 approaches, the allocation problem will remain unsolvable. PMID:17435657

  19. Time for a new budget allocation model for hospital care in Stockholm?

    PubMed

    Andersson, Per-Åke; Bruce, Daniel; Walander, Anders; Viberg, Inga

    2011-03-01

    In Stockholm County Council (SLL), budgets for hospital care have been allocated to geographically responsible authorities for a long time. This hospital care includes all publicly financed specialist care, also privately owned hospitals, except private practitioner care. The old needs-index model, a 6D capitation matrix based on demography and socio-economy, was generated on linked individual data for 1994-96. In this paper the power of the old allocation model is evaluated by the use of new data for 2006. The analysis shows that most of the socioeconomic variables have lost their descriptive power in 10 years. Using a methodical search we also find an improved need-based allocation model for hospital care using the new data for 2006. By focusing on costly diagnoses, where the descriptive power has increased between 1996 and 2006, and by using some new socioeconomic variables, and by relying on birth and death prognoses, we are able to generate a matrix model with much higher coefficients-of-determinations in 1 year predictions. In addition, a more careful modelling of multi-morbidity, part-of-the-year inhabitants, episode definition and cost transformation is developed. The area-level cost residuals of registered versus predicted costs show stable signs over the years, indicating unexplained systematics. For the reduction of the residuals, accepting proven inpatient diagnoses but not the full costs, a mixed capitation/fee-for-service strategy is discussed. Once equivalent (e.g. full-year) observations are determined, the link between background and consumption is not on individual-level but on cell-level, as in current resource allocation studies in the United Kingdom.

  20. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    PubMed Central

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; Ebrahim, Ali; Saunders, Michael A.; Palsson, Bernhard O.

    2016-01-01

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thus represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. This flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models. PMID:27857205

  1. Principles of proteome allocation are revealed using proteomic data and genome-scale models

    DOE PAGES

    Yang, Laurence; Yurkovich, James T.; Lloyd, Colton J.; ...

    2016-11-18

    Integrating omics data to refine or make context-specific models is an active field of constraint-based modeling. Proteomics now cover over 95% of the Escherichia coli proteome by mass. Genome-scale models of Metabolism and macromolecular Expression (ME) compute proteome allocation linked to metabolism and fitness. Using proteomics data, we formulated allocation constraints for key proteome sectors in the ME model. The resulting calibrated model effectively computed the “generalist” (wild-type) E. coli proteome and phenotype across diverse growth environments. Across 15 growth conditions, prediction errors for growth rate and metabolic fluxes were 69% and 14% lower, respectively. The sector-constrained ME model thusmore » represents a generalist ME model reflecting both growth rate maximization and “hedging” against uncertain environments and stresses, as indicated by significant enrichment of these sectors for the general stress response sigma factor σS. Finally, the sector constraints represent a general formalism for integrating omics data from any experimental condition into constraint-based ME models. The constraints can be fine-grained (individual proteins) or coarse-grained (functionally-related protein groups) as demonstrated here. Furthermore, this flexible formalism provides an accessible approach for narrowing the gap between the complexity captured by omics data and governing principles of proteome allocation described by systems-level models.« less

  2. Comparison of model microbial allocation parameters in soils of varying texture

    NASA Astrophysics Data System (ADS)

    Hagerty, S. B.; Slessarev, E.; Schimel, J.

    2017-12-01

    The soil microbial community decomposes the majority of carbon (C) inputs to the soil. However, not all of this C is respired—rather, a substantial portion of the carbon processed by microbes may remain stored in the soil. The balance between C storage and respiration is controlled by microbial turnover rates and C allocation strategies. These microbial community properties may depend on soil texture, which has the potential to influence both the nature and the fate of microbial necromass and extracellular products. To evaluate the role of texture on microbial turnover and C allocation, we sampled four soils from the University of California's Hastings Reserve that varied in texture (one silt loam, two sandy loam, and on clay soil), but support similar grassland plant communities. We added 14C- glucose to the soil and measured the concentration of the label in the carbon dioxide (CO2), microbial biomass, and extractable C pools over 7 weeks. The labeled biomass turned over the slowest in the clay soil; the concentration of labeled biomass was more than 1.5 times the concentration of the other soils after 8 weeks. The clay soil also had the lowest mineralization rate of the label, and mineralization slowed after two weeks. In contrast, in the sandier soils mineralization rates were higher and did not plateau until 5 weeks into the incubation period. We fit the 14C data to a microbial allocation model and estimated microbial parameters; assimilation efficiency, exudation, and biomass specific respiration and turnover for each soil. We compare these parameters across the soil texture gradient to assess the extent to which models may need to account for variability in microbial C allocation across soils of different texture. Our results suggest that microbial C turns over more slowly in high-clay soils than in sandy soils, and that C lost from microbial biomass is retained at higher rates in high-clay soils. Accounting for these differences in microbial allocation

  3. A Model-Data Intercomparison of Carbon Fluxes, Pools, and LAI in the Community Land Model (CLM) and Alternative Carbon Allocation Schemes

    NASA Astrophysics Data System (ADS)

    Montane, F.; Fox, A. M.; Arellano, A. F.; Alexander, M. R.; Moore, D. J.

    2016-12-01

    Carbon (C) allocation to different plant tissues (leaves, stem and roots) remains a central challenge for understanding the global C cycle, as it determines C residence time. We used a diverse set of observations (AmeriFlux eddy covariance towers, biomass estimates from tree-ring data, and Leaf Area Index measurements) to compare C fluxes, pools, and Leaf Area Index (LAI) data with the Community Land Model (CLM). We ran CLM for seven temperate forests in North America (including evergreen and deciduous sites) between 1980 and 2013 using different C allocation schemes: i) standard C allocation scheme in CLM, which allocates C to the stem and leaves as a dynamic function of annual net primary productivity (NPP); ii) two fixed C allocation schemes, one representative of evergreen and the other one of deciduous forests, based on Luyssaert et al. 2007; iii) an alternative C allocation scheme, which allocated C to stem and leaves, and to stem and coarse roots, as a dynamic function of annual NPP, based on Litton et al. 2007. At our sites CLM usually overestimated gross primary production and ecosystem respiration, and underestimated net ecosystem exchange. Initial aboveground biomass in 1980 was largely overestimated for deciduous forests, whereas aboveground biomass accumulation between 1980 and 2011 was highly underestimated for both evergreen and deciduous sites due to the lower turnover rate in the sites than the one used in the model. CLM overestimated LAI in both evergreen and deciduous sites because the Leaf C-LAI relationship in the model did not match the observed Leaf C-LAI relationship in our sites. Although the different C allocation schemes gave similar results for aggregated C fluxes, they translated to important differences in long-term aboveground biomass accumulation and aboveground NPP. For deciduous forests, one of the alternative C allocation schemes used (iii) gave more realistic stem C/leaf C ratios, and highly reduced the overestimation of initial

  4. Equitable fund allocation, an economical approach for sustainable waste load allocation.

    PubMed

    Ashtiani, Elham Feizi; Niksokhan, Mohammad Hossein; Jamshidi, Shervin

    2015-08-01

    This research aims to study a novel approach for waste load allocation (WLA) to meet environmental, economical, and equity objectives, simultaneously. For this purpose, based on a simulation-optimization model developed for Haraz River in north of Iran, the waste loads are allocated according to discharge permit market. The non-dominated solutions are initially achieved through multiobjective particle swarm optimization (MOPSO). Here, the violation of environmental standards based on dissolved oxygen (DO) versus biochemical oxidation demand (BOD) removal costs is minimized to find economical total maximum daily loads (TMDLs). This can save 41% in total abatement costs in comparison with the conventional command and control policy. The BOD discharge permit market then increases the revenues to 45%. This framework ensures that the environmental limits are fulfilled but the inequity index is rather high (about 4.65). For instance, the discharge permit buyer may not be satisfied about the equity of WLA. Consequently, it is recommended that a third party or institution should be in charge of reallocating the funds. It means that the polluters which gain benefits by unfair discharges should pay taxes (or funds) to compensate the losses of other polluters. This intends to reduce the costs below the required values of the lowest inequity index condition. These compensations of equitable fund allocation (EFA) may help to reduce the dissatisfactions and develop WLA policies. It is concluded that EFA in integration with water quality trading (WQT) is a promising approach to meet the objectives.

  5. Coproducts performances in biorefineries: Development of Claiming-based allocation models for environmental policy.

    PubMed

    Gnansounou, Edgard

    2018-04-01

    This study revisited the fundamentals of allocation to joint products and proposed new models for allocating common greenhouse gases emissions among coproducts of biorefineries. These emissions may account for more than 80% of the total emissions of greenhouse gases of the biorefineries. The proposed models optimize the reward of coproducts for their compliance to environmental requirements. They were illustrated by a case study of wheat straw biorefinery built on the literature. Several scenarios were considered with regard to the grain yield, field emissions of greenhouse gases, allocation between grain and straw and policy requirements. The results conform to the expectations and are sensitive to the policy targets and to the environmental performance of the counterpart system. Further research works are necessary to achieve a full application to complex processes. However, the proposed models are promising towards assessing the simultaneous compliance of coproducts of a biorefinery to environment policy requirements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation and biogeochemical fluxes.

    PubMed

    Averill, Colin

    2014-10-01

    Allocation trade-offs shape ecological and biogeochemical phenomena at local to global scale. Plant allocation strategies drive major changes in ecosystem carbon cycling. Microbial allocation to enzymes that decompose carbon vs. organic nutrients may similarly affect ecosystem carbon cycling. Current solutions to this allocation problem prioritise stoichiometric tradeoffs implemented in plant ecology. These solutions may not maximise microbial growth and fitness under all conditions, because organic nutrients are also a significant carbon resource for microbes. I created multiple allocation frameworks and simulated microbial growth using a microbial explicit biogeochemical model. I demonstrate that prioritising stoichiometric trade-offs does not optimise microbial allocation, while exploiting organic nutrients as carbon resources does. Analysis of continental-scale enzyme data supports the allocation patterns predicted by this framework, and modelling suggests large deviations in soil C loss based on which strategy is implemented. Therefore, understanding microbial allocation strategies will likely improve our understanding of carbon cycling and climate. © 2014 John Wiley & Sons Ltd/CNRS.

  7. Simple, efficient allocation of modelling runs on heterogeneous clusters with MPI

    USGS Publications Warehouse

    Donato, David I.

    2017-01-01

    In scientific modelling and computation, the choice of an appropriate method for allocating tasks for parallel processing depends on the computational setting and on the nature of the computation. The allocation of independent but similar computational tasks, such as modelling runs or Monte Carlo trials, among the nodes of a heterogeneous computational cluster is a special case that has not been specifically evaluated previously. A simulation study shows that a method of on-demand (that is, worker-initiated) pulling from a bag of tasks in this case leads to reliably short makespans for computational jobs despite heterogeneity both within and between cluster nodes. A simple reference implementation in the C programming language with the Message Passing Interface (MPI) is provided.

  8. How a new funding model will shift allocations from the Global Fund to Fight AIDS, tuberculosis, and malaria.

    PubMed

    Fan, Victoria Y; Glassman, Amanda; Silverman, Rachel L

    2014-12-01

    Policy makers deciding how to fund global health programs in low- and middle-income countries face important but difficult questions about how to allocate resources across countries. In this article we present a typology of three allocation methodologies to align allocations with priorities. We then apply our typology to the Global Fund to Fight AIDS, Tuberculosis, and Malaria. We examined the Global Fund's historical HIV allocations and its predicted allocations under a new funding model that creates an explicit allocation methodology. We found that under the new funding model, substantial shifts in the Global Fund's portfolio are likely to result from concentrating resources in countries with more HIV cases and lower per capita incomes. For example, South Africa, which had 15.8 percent of global HIV cases in 2009, could see its Global Fund HIV funding more than triple, from historic levels that averaged 3.0 percent to 9.7 percent of total Global Fund allocations. The new funding model methodology is expected, but not guaranteed, to improve the efficiency of Global Fund allocations in comparison to historical practice. We conclude with recommendations for the Global Fund and other global health donors to further develop their allocation methodologies and processes to improve efficiency and transparency. Project HOPE—The People-to-People Health Foundation, Inc.

  9. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    NASA Astrophysics Data System (ADS)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  10. Embedding an evolving agricultural system within a water resources planning model

    NASA Astrophysics Data System (ADS)

    Young, C.; Joyce, B.; Purkey, D.; Dale, L.; Mehta, V.

    2008-12-01

    The Water Evaluation and Planning (WEAP) system is a comprehensive, fully integrated water basin analysis tool. It is a simulation model that includes a robust and flexible representation of water demands from all sectors and flexible, programmable operating rules for infrastructure elements such as reservoirs, canals, and hydropower projects. Additionally, it has watershed rainfall-runoff modeling capabilities that allow all portions of the water infrastructure and demand to be dynamically nested within the underlying hydrological processes. WEAP also allows for linking with other models to provide feedback mechanisms whereby the management regime can be altered to respond to changing water supply conditions. This study presents an application wherein the year-to-year cropping decisions of farmers in California's Central Valley are reactive to changes in water supply conditions. To capture this dynamic, we have included in WEAP a link to an agricultural economics model (the Central Valley Production Model) that relates cropping decisions to water supply conditions (surface water allocations and depth to groundwater) and economic considerations (cost of electricity) at the time of planting. This linked model was used to evaluate changes in water supply and demand in the context of projected climate change over the next century.

  11. A Decision Model for Supporting Task Allocation Processes in Global Software Development

    NASA Astrophysics Data System (ADS)

    Lamersdorf, Ansgar; Münch, Jürgen; Rombach, Dieter

    Today, software-intensive systems are increasingly being developed in a globally distributed way. However, besides its benefit, global development also bears a set of risks and problems. One critical factor for successful project management of distributed software development is the allocation of tasks to sites, as this is assumed to have a major influence on the benefits and risks. We introduce a model that aims at improving management processes in globally distributed projects by giving decision support for task allocation that systematically regards multiple criteria. The criteria and causal relationships were identified in a literature study and refined in a qualitative interview study. The model uses existing approaches from distributed systems and statistical modeling. The article gives an overview of the problem and related work, introduces the empirical and theoretical foundations of the model, and shows the use of the model in an example scenario.

  12. PSOLA: A Heuristic Land-Use Allocation Model Using Patch-Level Operations and Knowledge-Informed Rules.

    PubMed

    Liu, Yaolin; Peng, Jinjin; Jiao, Limin; Liu, Yanfang

    2016-01-01

    Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA) using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders' preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning.

  13. PSOLA: A Heuristic Land-Use Allocation Model Using Patch-Level Operations and Knowledge-Informed Rules

    PubMed Central

    Liu, Yaolin; Peng, Jinjin; Jiao, Limin; Liu, Yanfang

    2016-01-01

    Optimizing land-use allocation is important to regional sustainable development, as it promotes the social equality of public services, increases the economic benefits of land-use activities, and reduces the ecological risk of land-use planning. Most land-use optimization models allocate land-use using cell-level operations that fragment land-use patches. These models do not cooperate well with land-use planning knowledge, leading to irrational land-use patterns. This study focuses on building a heuristic land-use allocation model (PSOLA) using particle swarm optimization. The model allocates land-use with patch-level operations to avoid fragmentation. The patch-level operations include a patch-edge operator, a patch-size operator, and a patch-compactness operator that constrain the size and shape of land-use patches. The model is also integrated with knowledge-informed rules to provide auxiliary knowledge of land-use planning during optimization. The knowledge-informed rules consist of suitability, accessibility, land use policy, and stakeholders’ preference. To validate the PSOLA model, a case study was performed in Gaoqiao Town in Zhejiang Province, China. The results demonstrate that the PSOLA model outperforms a basic PSO (Particle Swarm Optimization) in the terms of the social, economic, ecological, and overall benefits by 3.60%, 7.10%, 1.53% and 4.06%, respectively, which confirms the effectiveness of our improvements. Furthermore, the model has an open architecture, enabling its extension as a generic tool to support decision making in land-use planning. PMID:27322619

  14. Inexact nonlinear improved fuzzy chance-constrained programming model for irrigation water management under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Zhang, Fan; Guo, Shanshan; Liu, Xiao; Guo, Ping

    2018-01-01

    An inexact nonlinear mλ-measure fuzzy chance-constrained programming (INMFCCP) model is developed for irrigation water allocation under uncertainty. Techniques of inexact quadratic programming (IQP), mλ-measure, and fuzzy chance-constrained programming (FCCP) are integrated into a general optimization framework. The INMFCCP model can deal with not only nonlinearities in the objective function, but also uncertainties presented as discrete intervals in the objective function, variables and left-hand side constraints and fuzziness in the right-hand side constraints. Moreover, this model improves upon the conventional fuzzy chance-constrained programming by introducing a linear combination of possibility measure and necessity measure with varying preference parameters. To demonstrate its applicability, the model is then applied to a case study in the middle reaches of Heihe River Basin, northwest China. An interval regression analysis method is used to obtain interval crop water production functions in the whole growth period under uncertainty. Therefore, more flexible solutions can be generated for optimal irrigation water allocation. The variation of results can be examined by giving different confidence levels and preference parameters. Besides, it can reflect interrelationships among system benefits, preference parameters, confidence levels and the corresponding risk levels. Comparison between interval crop water production functions and deterministic ones based on the developed INMFCCP model indicates that the former is capable of reflecting more complexities and uncertainties in practical application. These results can provide more reliable scientific basis for supporting irrigation water management in arid areas.

  15. Allocation of control rights in the PPP Project: a cooperative game model

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhua; Feng, Jingchun; Yang, Shengtao

    2017-06-01

    Reasonable allocation of control rights is the key to the success of Public-Private Partnership (PPP) projects. PPP are services or ventures which are financed and operated through cooperation between governmental and private sector actors and which involve reasonable control rights sharing between these two partners. After professional firm with capital and technology as a shareholder participating in PPP project firms, the PPP project is diversified in participants and input resources. Meanwhile the allocation of control rights of PPP project tends to be complicated. According to the diversification of participants and input resources of PPP projects, the key participants are divided into professional firms and pure investors. Based on the cost of repurchase of different input resources in markets, the cooperative game relationship between these two parties is analyzed, on the basis of which the allocation model of the cooperative game for control rights is constructed to ensure optimum allocation ration of control rights and verify the share of control rights in proportion to the cost of repurchase.

  16. Organ allocation for chronic liver disease: model for end-stage liver disease and beyond.

    PubMed

    Asrani, Sumeet K; Kim, W Ray

    2010-05-01

    Implementation of the model for end-stage liver disease (MELD) score has led to a reduction in waiting list registration and waitlist mortality. Prognostic models have been proposed to either refine or improve the current MELD-based liver allocation. The model for end-stage liver disease - sodium (MELDNa) incorporates serum sodium and has been shown to improve the predictive accuracy of the MELD score. However, laboratory variation and manipulation of serum sodium is a concern. Organ allocation in the United Kingdom is now based on a model that includes serum sodium. An updated MELD score is associated with a lower relative weight for serum creatinine coefficient and a higher relative weight for bilirubin coefficient, although the contribution of reweighting coefficients as compared with addition of variables is unclear. The D-MELD, the arithmetic product of donor age and preoperative MELD, proposes donor-recipient matching; however, inappropriate transplantation of high-risk donors is a concern. Finally, the net benefit model ranks patients according to the net survival benefit that they would derive from the transplant. However, complex statistical models are required and unmeasured characteristics may unduly affect the model. Despite their limitations, efforts to improve the current MELD-based organ allocation are encouraging.

  17. Resource Allocation Procedure at Queensland University: A Dynamic Modelling Project.

    ERIC Educational Resources Information Center

    Galbraith, Peter L.; Carss, Brian W.

    A structural reorganization of the University of Queensland, Australia, was undertaken to promote efficient resource management, and a resource allocation model was developed to aid in policy evaluation and planning. The operation of the restructured system was based on creating five resource groups to manage the distribution of academic resources…

  18. Modeling and simulation of dynamic ant colony's labor division for task allocation of UAV swarm

    NASA Astrophysics Data System (ADS)

    Wu, Husheng; Li, Hao; Xiao, Renbin; Liu, Jie

    2018-02-01

    The problem of unmanned aerial vehicle (UAV) task allocation not only has the intrinsic attribute of complexity, such as highly nonlinear, dynamic, highly adversarial and multi-modal, but also has a better practicability in various multi-agent systems, which makes it more and more attractive recently. In this paper, based on the classic fixed response threshold model (FRTM), under the idea of "problem centered + evolutionary solution" and by a bottom-up way, the new dynamic environmental stimulus, response threshold and transition probability are designed, and a dynamic ant colony's labor division (DACLD) model is proposed. DACLD allows a swarm of agents with a relatively low-level of intelligence to perform complex tasks, and has the characteristic of distributed framework, multi-tasks with execution order, multi-state, adaptive response threshold and multi-individual response. With the proposed model, numerical simulations are performed to illustrate the effectiveness of the distributed task allocation scheme in two situations of UAV swarm combat (dynamic task allocation with a certain number of enemy targets and task re-allocation due to unexpected threats). Results show that our model can get both the heterogeneous UAVs' real-time positions and states at the same time, and has high degree of self-organization, flexibility and real-time response to dynamic environments.

  19. Role of Sectoral Transformation in the Evolution of Water Management Norms in Agricultural Catchments: A Sociohydrologic Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Roobavannan, M.; Kandasamy, J.; Pande, S.; Vigneswaran, S.; Sivapalan, M.

    2017-10-01

    This study is focused on the water-agriculture-environment nexus as it played out in the Murrumbidgee River Basin, eastern Australia, and how coevolution of society and water management actually transpired. Over 100 years of agricultural development the Murrumbidgee Basin experienced a "pendulum swing" in terms of water allocation, initially exclusively for agriculture production changing over to reallocation back to the environment. In this paper, we hypothesize that in the competition for water between economic livelihood and environmental wellbeing, economic diversification was the key to swinging community sentiment in favor of environmental protection, and triggering policy action that resulted in more water allocation to the environment. To test this hypothesis, we developed a sociohydrology model to link the dynamics of the whole economy (both agriculture and industry composed of manufacturing and services) to the community's sensitivity toward the environment. Changing community sensitivity influenced how water was allocated and governed and how the agricultural sector grew relative to the industrial sector (composed of manufacturing and services sectors). In this way, we show that economic diversification played a key role in influencing the community's values and preferences with respect to the environment and economic growth. Without diversification, model simulations show that the community would not have been sufficiently sensitive and willing enough to act to restore the environment, highlighting the key role of sectoral transformation in achieving the goal of sustainable agricultural development.

  20. A linear goal programming model for human resource allocation in a health-care organization.

    PubMed

    Kwak, N K; Lee, C

    1997-06-01

    This paper presents the development of a goal programming (GP) model as an aid to strategic planning and allocation for limited human resources in a health-care organization. The purpose of this study is to assign the personnel to the proper shift hours that enable management to meet the objective of minimizing the total payroll costs while patients are satisfied. A GP model is illustrated using the data provided by a health-care organization in the midwest area. The goals are identified and prioritized. The model result is examined and a sensitivity analysis is performed to improve the model applicability. The GP model application adds insight to the planning functions of resource allocation in the health-care organizations. The proposed model is easily applicable to other human resource planning process.

  1. Allocation to leaf area and sapwood area affects water relations of co-occurring savanna and forest trees.

    PubMed

    Gotsch, Sybil G; Geiger, Erika L; Franco, Augusto C; Goldstein, Guillermo; Meinzer, Frederick C; Hoffmann, William A

    2010-06-01

    Water availability is a principal factor limiting the distribution of closed-canopy forest in the seasonal tropics, suggesting that forest tree species may not be well adapted to cope with seasonal drought. We studied 11 congeneric species pairs, each containing one forest and one savanna species, to test the hypothesis that forest trees have a lower capacity to maintain seasonal homeostasis in water relations relative to savanna species. To quantify this, we measured sap flow, leaf water potential (Psi(L)), stomatal conductance (g (s)), wood density, and Huber value (sapwood area:leaf area) of the 22 study species. We found significant differences in the water relations of these two species types. Leaf area specific hydraulic conductance of the soil/root/leaf pathway (G (t)) was greater for savanna species than forest species. The lower G (t) of forest trees resulted in significantly lower Psi(L) and g (s) in the late dry season relative to savanna trees. The differences in G (t) can be explained by differences in biomass allocation of savanna and forest trees. Savanna species had higher Huber values relative to forest species, conferring greater transport capacity on a leaf area basis. Forest trees have a lower capacity to maintain homeostasis in Psi(L) due to greater allocation to leaf area relative to savanna species. Despite significant differences in water relations, relationships between traits such as wood density and minimum Psi(L) were indistinguishable for the two species groups, indicating that forest and savanna share a common axis of water-use strategies involving multiple traits.

  2. The use of an integrated variable fuzzy sets in water resources management

    NASA Astrophysics Data System (ADS)

    Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang

    2018-06-01

    Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.

  3. An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty.

    PubMed

    Li, W; Wang, B; Xie, Y L; Huang, G H; Liu, L

    2015-02-01

    Uncertainties exist in the water resources system, while traditional two-stage stochastic programming is risk-neutral and compares the random variables (e.g., total benefit) to identify the best decisions. To deal with the risk issues, a risk-aversion inexact two-stage stochastic programming model is developed for water resources management under uncertainty. The model was a hybrid methodology of interval-parameter programming, conditional value-at-risk measure, and a general two-stage stochastic programming framework. The method extends on the traditional two-stage stochastic programming method by enabling uncertainties presented as probability density functions and discrete intervals to be effectively incorporated within the optimization framework. It could not only provide information on the benefits of the allocation plan to the decision makers but also measure the extreme expected loss on the second-stage penalty cost. The developed model was applied to a hypothetical case of water resources management. Results showed that that could help managers generate feasible and balanced risk-aversion allocation plans, and analyze the trade-offs between system stability and economy.

  4. Improved regional water management utilizing climate forecasts: An interbasin transfer model with a risk management framework

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Sankarasubramanian, A.; Ranjithan, R. S.; Brill, E. D.

    2014-08-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study proposes a framework for regional water management by proposing an interbasin transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end-of-season target storage across the participating pools. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle Area. Results show that interbasin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no-transfer scenario as well as under transfers obtained with climatology; (b) spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting interbasin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating pools in the regional water supply system.

  5. Residential water demand model under block rate pricing: A case study of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Yang, Z. F.

    2009-05-01

    In many cities, the inconsistency between water supply and water demand has become a critical problem because of deteriorating water shortage and increasing water demand. Uniform price of residential water cannot promote the efficient water allocation. In China, block water price will be put into practice in the future, but the outcome of such regulation measure is unpredictable without theory support. In this paper, the residential water is classified by the volume of water usage based on economic rules and block water is considered as different kinds of goods. A model based on extended linear expenditure system (ELES) is constructed to simulate the relationship between block water price and water demand, which provide theoretical support for the decision-makers. Finally, the proposed model is used to simulate residential water demand under block rate pricing in Beijing.

  6. A model for dynamic allocation of human attention among multiple tasks

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.; Tulga, M. K.

    1978-01-01

    The problem of multi-task attention allocation with special reference to aircraft piloting is discussed with the experimental paradigm used to characterize this situation and the experimental results obtained in the first phase of the research. A qualitative description of an approach to mathematical modeling, and some results obtained with it are also presented to indicate what aspects of the model are most promising. Two appendices are given which (1) discuss the model in relation to graph theory and optimization and (2) specify the optimization algorithm of the model.

  7. An Allocation Model for Teaching and Non-Teaching Staff in a Decentralized Institution. AIR 1984 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Dijkman, Frank G.

    A new allocation model for teaching and nonteaching staff has been developed at the University of Utrecht, in the Netherlands. The model may be characterized as highly normative, leading to lump sums to be allocated to academic departments. These departments in turn are free, within constraints, to budget their activities differently than is…

  8. Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based on Those WLAs

    EPA Pesticide Factsheets

    The memoranda clarify existing EPA regulatory requirements for, and provide guidance on, establishing wasteload allocations (WLAs) for storm water discharges in total maximum daily loads (TMDLs) approved or established by EPA.

  9. An Agent-based Modeling of Water-Food Nexus towards Sustainable Management of Urban Water Resources

    NASA Astrophysics Data System (ADS)

    Esmaeili, N.; Kanta, L.

    2017-12-01

    Growing population, urbanization, and climate change have put tremendous stress on water systems in many regions. A shortage in water system not only affects water users of a municipality but also that of food system. About 70% of global water is withdrawn for agriculture; livestock and dairy productions are also dependent on water availability. Although researchers and policy makers have identified and emphasized the water-food (WF) nexus in recent decade, most existing WF models offer strategies to reduce trade-offs and to generate benefits without considering feedback loops and adaptations between those systems. Feedback loops between water and food system can help understand long-term behavioral trends between water users of the integrated WF system which, in turn, can help manage water resources sustainably. An Agent-based modeling approach is applied here to develop a conceptual framework of WF systems. All water users in this system are modeled as agents, who are capable of making decisions and can adapt new behavior based on inputs from other agents in a shared environment through a set of logical and mathematical rules. Residential and commercial/industrial consumers are represented as municipal agents; crop, livestock, and dairy farmers are represented as food agents; and water management officials are represented as policy agent. During the period of water shortage, policy agent will propose/impose various water conservation measures, such as adapting water-efficient technologies, banning outdoor irrigation, implementing supplemental irrigation, using recycled water for livestock/dairy production, among others. Municipal and food agents may adapt conservation strategies and will update their demand accordingly. Emergent properties of the WF nexus will arise through dynamic interactions between various actors of water and food system. This model will be implemented to a case study for resource allocation and future policy development.

  10. Total maximum allocated load calculation of nitrogen pollutants by linking a 3D biogeochemical-hydrodynamic model with a programming model in Bohai Sea

    NASA Astrophysics Data System (ADS)

    Dai, Aiquan; Li, Keqiang; Ding, Dongsheng; Li, Yan; Liang, Shengkang; Li, Yanbin; Su, Ying; Wang, Xiulin

    2015-12-01

    The equal percent removal (EPR) method, in which pollutant reduction ratio was set as the same in all administrative regions, failed to satisfy the requirement for water quality improvement in the Bohai Sea. Such requirement was imposed by the developed Coastal Pollution Total Load Control Management. The total maximum allocated load (TMAL) of nitrogen pollutants in the sea-sink source regions (SSRs) around the Bohai Rim, which is the maximum pollutant load of every outlet under the limitation of water quality criteria, was estimated by optimization-simulation method (OSM) combined with loop approximation calculation. In OSM, water quality is simulated using a water quality model and pollutant load is calculated with a programming model. The effect of changes in pollutant loads on TMAL was discussed. Results showed that the TMAL of nitrogen pollutants in 34 SSRs was 1.49×105 ton/year. The highest TMAL was observed in summer, whereas the lowest in winter. TMAL was also higher in the Bohai Strait and central Bohai Sea and lower in the inner area of the Liaodong Bay, Bohai Bay and Laizhou Bay. In loop approximation calculation, the TMAL obtained was considered satisfactory for water quality criteria as fluctuation of concentration response matrix with pollutant loads was eliminated. Results of numerical experiment further showed that water quality improved faster and were more evident under TMAL input than that when using the EPR method

  11. Improved Regional Water Management Utilizing Climate Forecasts: An Inter-basin Transfer Model with a Risk Management Framework

    NASA Astrophysics Data System (ADS)

    Li, W.; Arumugam, S.; Ranjithan, R. S.; Brill, E. D., Jr.

    2014-12-01

    Regional water supply systems undergo surplus and deficit conditions due to differences in inflow characteristics as well as due to their seasonal demand patterns. This study presents a framework for regional water management by proposing an Inter-Basin Transfer (IBT) model that uses climate-information-based inflow forecast for minimizing the deviations from the end- of-season target storage across the participating reservoirs. Using the ensemble streamflow forecast, the IBT water allocation model was applied for two reservoir systems in the North Carolina Triangle area. Results show that inter-basin transfers initiated by the ensemble streamflow forecast could potentially improve the overall water supply reliability as the demand continues to grow in the Triangle Area. To further understand the utility of climate forecasts in facilitating IBT under different spatial correlation structures between inflows and between the initial storages of the two systems, a synthetic experiment was designed to evaluate the framework under inflow forecast having different skills. Findings from the synthetic study can be summarized as follows: (a) Inflow forecasts combined with the proposed IBT optimization model provide improved allocation in comparison to the allocations obtained under the no- transfer scenario as well as under transfers obtained with climatology; (b) Spatial correlations between inflows and between initial storages among participating reservoirs could also influence the potential benefits that could be achieved through IBT; (c) IBT is particularly beneficial for systems that experience low correlations between inflows or between initial storages or on both attributes of the regional water supply system. Thus, if both infrastructure and permitting structures exist for promoting inter-basin transfers, season-ahead inflow forecasts could provide added benefits in forecasting surplus/deficit conditions among the participating reservoirs in the regional water supply

  12. GIS and Game Theory for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Ganjali, N.; Guney, C.

    2017-11-01

    In this study, aspects of Game theory and its application on water resources management combined with GIS techniques are detailed. First, each term is explained and the advantages and limitations of its aspect is discussed. Then, the nature of combinations between each pair and literature on the previous studies are given. Several cases were investigated and results were magnified in order to conclude with the applicability and combination of GIS- Game Theory- Water Resources Management. It is concluded that the game theory is used relatively in limited studies of water management fields such as cost/benefit allocation among users, water allocation among trans-boundary users in water resources, water quality management, groundwater management, analysis of water policies, fair allocation of water resources development cost and some other narrow fields. Also, Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Most of the literature on water allocation and conflict problems uses traditional optimization models to identify the most efficient scheme while the Game Theory, as an optimization method, combined GIS are beneficial platforms for agent based models to be used in solving Water Resources Management problems in the further studies.

  13. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  14. A System Dynamics Modeling of Water Supply and Demand in Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Parajuli, R.; Kalra, A.; Mastino, L.; Velotta, M.; Ahmad, S.

    2017-12-01

    The rise in population and change in climate have posed the uncertainties in the balance between supply and demand of water. The current study deals with the water management issues in Las Vegas Valley (LVV) using Stella, a system dynamics modeling software, to model the feedback based relationship between supply and demand parameters. Population parameters were obtained from Center for Business and Economic Research while historical water demand and conservation practices were modeled as per the information provided by local authorities. The water surface elevation of Lake Mead, which is the prime source of water supply to the region, was modeled as the supply side whereas the water demand in LVV was modeled as the demand side. The study was done from the period of 1989 to 2049 with 1989 to 2012 as the historical one and the period from 2013 to 2049 as the future period. This study utilizes Coupled Model Intercomparison Project data sets (2013-2049) (CMIP3&5) to model different future climatic scenarios. The model simulates the past dynamics of supply and demand, and then forecasts the future water budget for the forecasted future population and future climatic conditions. The results can be utilized by the water authorities in understanding the future water status and hence plan suitable conservation policies to allocate future water budget and achieve sustainable water management.

  15. Redefining the Australian Army Officer Corps Allocation Process

    DTIC Science & Technology

    2010-03-01

    Allocation Numbers (Model 2) ......................................60 Table 28. 2009 Revised Corps Allocation Overage and Underage (Model 2...characteristics: age, sex , marital status, and length of service. b. organizational characteristics: size of work group, visibility of organization...with minimal alteration to the planned corps allocation numbers. A full list of the corps overages and underages is contained in Table 23. Table

  16. Rail-Highway Crossing Resource Allocation Model

    DOT National Transportation Integrated Search

    1981-04-01

    This report describes a methodology developed at the Transportation Systems Center for the Federal Railroad Administration and the Federal Highway Administration to aid in determining the most effective allocation of funds to improve safety at rail-h...

  17. Improving representation of nitrogen uptake, allocation, and carbon assimilation in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Ghimire, B.; Riley, W. J.; Koven, C.

    2013-12-01

    Nitrogen is the most important nutrient limiting plant carbon assimilation and growth, and is required for production of photosynthetic enzymes, growth and maintenance respiration, and maintaining cell structure. The forecasted rise in plant available nitrogen through atmospheric nitrogen deposition and the release of locked soil nitrogen by permafrost thaw in high latitude ecosystems is likely to result in an increase in plant productivity. However a mechanistic representation of plant nitrogen dynamics is lacking in earth system models. Most earth system models ignore the dynamic nature of plant nutrient uptake and allocation, and further lack tight coupling of below- and above-ground processes. In these models, the increase in nitrogen uptake does not translate to a corresponding increase in photosynthesis parameters, such as maximum Rubisco capacity and electron transfer rate. We present an improved modeling framework implemented in the Community Land Model version 4.5 (CLM4.5) for dynamic plant nutrient uptake, and allocation to different plant parts, including leaf enzymes. This modeling framework relies on imposing a more realistic flexible carbon to nitrogen stoichiometric ratio for different plant parts. The model mechanistically responds to plant nitrogen uptake and leaf allocation though changes in photosynthesis parameters. We produce global simulations, and examine the impacts of the improved nitrogen cycling. The improved model is evaluated against multiple observations including TRY database of global plant traits, nitrogen fertilization observations and 15N tracer studies. Global simulations with this new version of CLM4.5 showed better agreement with the observations than the default CLM4.5-CN model, and captured the underlying mechanisms associated with plant nitrogen cycle.

  18. Community-aware task allocation for social networked multiagent systems.

    PubMed

    Wang, Wanyuan; Jiang, Yichuan

    2014-09-01

    In this paper, we propose a novel community-aware task allocation model for social networked multiagent systems (SN-MASs), where the agent' cooperation domain is constrained in community and each agent can negotiate only with its intracommunity member agents. Under such community-aware scenarios, we prove that it remains NP-hard to maximize system overall profit. To solve this problem effectively, we present a heuristic algorithm that is composed of three phases: 1) task selection: select the desirable task to be allocated preferentially; 2) allocation to community: allocate the selected task to communities based on a significant task-first heuristics; and 3) allocation to agent: negotiate resources for the selected task based on a nonoverlap agent-first and breadth-first resource negotiation mechanism. Through the theoretical analyses and experiments, the advantages of our presented heuristic algorithm and community-aware task allocation model are validated. 1) Our presented heuristic algorithm performs very closely to the benchmark exponential brute-force optimal algorithm and the network flow-based greedy algorithm in terms of system overall profit in small-scale applications. Moreover, in the large-scale applications, the presented heuristic algorithm achieves approximately the same overall system profit, but significantly reduces the computational load compared with the greedy algorithm. 2) Our presented community-aware task allocation model reduces the system communication cost compared with the previous global-aware task allocation model and improves the system overall profit greatly compared with the previous local neighbor-aware task allocation model.

  19. Moving on from rigid plant stoichiometry: Optimal canopy nitrogen allocation within a novel land surface model

    NASA Astrophysics Data System (ADS)

    Caldararu, S.; Kern, M.; Engel, J.; Zaehle, S.

    2016-12-01

    Despite recent advances in global vegetation models, we still lack the capacity to predict observed vegetation responses to experimental environmental changes such as elevated CO2, increased temperature or nutrient additions. In particular for elevated CO2 (FACE) experiments, studies have shown that this is related in part to the models' inability to represent plastic changes in nutrient use and biomass allocation. We present a newly developed vegetation model which aims to overcome these problems by including optimality processes to describe nitrogen (N) and carbon allocation within the plant. We represent nitrogen allocation to the canopy and within the canopy between photosynthetic components as an optimal processes which aims to maximize net primary production (NPP) of the plant. We also represent biomass investment into aboveground and belowground components (root nitrogen uptake , biological N fixation) as an optimal process that maximizes plant growth by considering plant carbon and nutrient demands as well as acquisition costs. The model can now represent plastic changes in canopy N content and chlorophyll and Rubisco concentrations as well as in belowground allocation both on seasonal and inter-annual time scales. Specifically, we show that under elevated CO2 conditions, the model predicts a lower optimal leaf N concentration, which, combined with a redistribution of leaf N between the Rubisco and chlorophyll components, leads to a continued NPP response under high CO2, where models with a fixed canopy stoichiometry would predicts a quick onset of N limitation. In general, our model aims to include physiologically-based plant processes and avoid arbitrarily imposed parameters and thresholds in order to improve our predictive capability of vegetation responses under changing environmental conditions.

  20. Storing and sharing water in sand rivers: a water balance modelling approach

    NASA Astrophysics Data System (ADS)

    Love, D.; van der Zaag, P.; Uhlenbrook, S.

    2009-04-01

    Sand rivers and sand dams offer an alternative to conventional surface water reservoirs for storage. The alluvial aquifers that make up the beds of sand rivers can store water with minimal evaporation (extinction depth is 0.9 m) and natural filtration. The alluvial aquifers of the Mzingwane Catchment are the most extensive of any tributaries in the Limpopo Basin. The lower Mzingwane aquifer, which is currently underutilised, is recharged by managed releases from Zhovhe Dam (capacity 133 Mm3). The volume of water released annually is only twice the size of evaporation losses from the dam; the latter representing nearly one third of the dam's storage capacity. The Lower Mzingwane valley currently support commercial agro-businesses (1,750 ha irrigation) and four smallholder irrigation schemes (400 ha with provision for a further 1,200 ha). In order to support planning for optimising water use and storage over evaporation and to provide for more equitable water allocation, the spreadsheet-based balance model WAFLEX was used. It is a simple and userfriendly model, ideal for use by institutions such as the water management authorities in Zimbabwe which are challenged by capacity shortfalls and inadequate data. In this study, WAFLEX, which is normally used for accounting the surface water balance, is adapted to incorporate alluvial aquifers into the water balance, including recharge, baseflow and groundwater flows. Results of the WAFLEX modelling suggest that there is surplus water in the lower Mzingwane system, and thus there should not be any water conflicts. Through more frequent timing of releases from the dam and maintaining the alluvial aquifers permanently saturated, less evaporation losses will occur in the system and the water resources can be better shared to provide more irrigation water for smallholder farmers in the highly resource-poor communal lands along the river. Sand dams are needed to augment the aquifer storage system and improve access to water. An

  1. Modified allocation capacitated planning model in blood supply chain management

    NASA Astrophysics Data System (ADS)

    Mansur, A.; Vanany, I.; Arvitrida, N. I.

    2018-04-01

    Blood supply chain management (BSCM) is a complex process management that involves many cooperating stakeholders. BSCM involves four echelon processes, which are blood collection or procurement, production, inventory, and distribution. This research develops an optimization model of blood distribution planning. The efficiency of decentralization and centralization policies in a blood distribution chain are compared, by optimizing the amount of blood delivered from a blood center to a blood bank. This model is developed based on allocation problem of capacitated planning model. At the first stage, the capacity and the cost of transportation are considered to create an initial capacitated planning model. Then, the inventory holding and shortage costs are added to the model. These additional parameters of inventory costs lead the model to be more realistic and accurate.

  2. Models of resource allocation optimization when solving the control problems in organizational systems

    NASA Astrophysics Data System (ADS)

    Menshikh, V.; Samorokovskiy, A.; Avsentev, O.

    2018-03-01

    The mathematical model of optimizing the allocation of resources to reduce the time for management decisions and algorithms to solve the general problem of resource allocation. The optimization problem of choice of resources in organizational systems in order to reduce the total execution time of a job is solved. This problem is a complex three-level combinatorial problem, for the solving of which it is necessary to implement the solution to several specific problems: to estimate the duration of performing each action, depending on the number of performers within the group that performs this action; to estimate the total execution time of all actions depending on the quantitative composition of groups of performers; to find such a distribution of the existing resource of performers in groups to minimize the total execution time of all actions. In addition, algorithms to solve the general problem of resource allocation are proposed.

  3. Allocation of resources for ambulatory care -a staffing model for outpatient clinics.

    PubMed Central

    Mansdorf, B D

    1975-01-01

    The enormous commitment of resources to ambulatory health care services requires that flexible and easily implementable management techniques be developed to improve the allocation of health manpower and funds. This article develops a feasible model for staffing outpatient clinics and thereby potentially provides an important analytical tool for allocating and monitoring the utilization of the most critical and expensive of ambulatory care resources-professional and nonprofessional clinic personnel. The model is simplistic, extremely flexible, and can be applied to many modes of delivering ambulatory care-from HMOs to traditional hospital outpatient clinics. To employ the model, certain decision variables must be specified so that the model can produce a least-cost staffing configuration to meet the demand for service in accordance with the desired mode and intensity of care. The key decision varables that require input from administrators and medical personnel include standards for physician-patient contact time, a desired ratio of staff time actually spent treating patients to total paid staff time, and the desired mix of various staff categories to achieve program objectives. Specific benefits of using the model include determining staffing for new, expanded, or existing outpatient clinics, determining budget requirements for such staffing needs, and providing quantitative productivity and utilization objectives and measurements. PMID:809787

  4. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption.

    PubMed

    Wu, Hua'an; Zeng, Bo; Zhou, Meng

    2017-11-15

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy.

  5. Forecasting the Water Demand in Chongqing, China Using a Grey Prediction Model and Recommendations for the Sustainable Development of Urban Water Consumption

    PubMed Central

    Wu, Hua’an; Zhou, Meng

    2017-01-01

    High accuracy in water demand predictions is an important basis for the rational allocation of city water resources and forms the basis for sustainable urban development. The shortage of water resources in Chongqing, the youngest central municipality in Southwest China, has significantly increased with the population growth and rapid economic development. In this paper, a new grey water-forecasting model (GWFM) was built based on the data characteristics of water consumption. The parameter estimation and error checking methods of the GWFM model were investigated. Then, the GWFM model was employed to simulate the water demands of Chongqing from 2009 to 2015 and forecast it in 2016. The simulation and prediction errors of the GWFM model was checked, and the results show the GWFM model exhibits better simulation and prediction precisions than those of the classical Grey Model with one variable and single order equation GM(1,1) for short and the frequently-used Discrete Grey Model with one variable and single order equation, DGM(1,1) for short. Finally, the water demand in Chongqing from 2017 to 2022 was forecasted, and some corresponding control measures and recommendations were provided based on the prediction results to ensure a viable water supply and promote the sustainable development of the Chongqing economy. PMID:29140266

  6. Analysing streamflow variability and water allocation for sustainable management of water resources in the semi-arid Karkheh river basin, Iran

    NASA Astrophysics Data System (ADS)

    Masih, Ilyas; Ahmad, Mobin-ud-Din; Uhlenbrook, Stefan; Turral, Hugh; Karimi, Poolad

    This study provides a comprehensive spatio-temporal assessment of the surface water resources of the semi-arid Karkheh basin, Iran, and consequently enables decision makers to work towards a sustainable water development in that region. The analysis is based on the examination of statistical parameters, flow duration characteristics, base flow separation and trend analysis for which data of seven key gauging stations were used for the period of 1961-2001. Additionally, basin level water accounting was carried out for the water year 1993-94. The study shows that observed daily, monthly and annual streamflows are highly variable in space and time within the basin. The streamflows have not been changed significantly at annual scale, but few months have shown significant trends, most notably a decline during May and June and an increase during December and March. The major causes were related to changes in climate, land use and reservoir operations. The study concludes that the water allocations to different sectors were lower than the totally available resources during the study period. However, looking at the high variability of streamflows, changes in climate and land use and ongoing water resources development planning, it will be extremely difficult to meet the demands of all sectors in the future, particularly during dry years.

  7. Task Allocation of Wasps Governed by Common Stomach: A Model Based on Electric Circuits

    PubMed Central

    2016-01-01

    Simple regulatory mechanisms based on the idea of the saturable ‘common stomach’ can control the regulation of construction behavior and colony-level responses to environmental perturbations in Metapolybia wasp societies. We mapped the different task groups to mutual inductance electrical circuits and used Kirchoff’s basic voltage laws to build a model that uses master equations from physics, yet is able to provide strong predictions for this complex biological phenomenon. Similar to real colonies, independently of the initial conditions, the system shortly sets into an equilibrium, which provides optimal task allocation for a steady construction, depending on the influx of accessible water. The system is very flexible and in the case of perturbations, it reallocates its workforce and adapts to the new situation with different equilibrium levels. Similar to the finding of field studies, decreasing any task groups caused decrease of construction; increasing or decreasing water inflow stimulated or reduced the work of other task groups while triggering compensatory behavior in water foragers. We also showed that only well connected circuits are able to produce adequate construction and this agrees with the finding that this type of task partitioning only exists in larger colonies. Studying the buffer properties of the common stomach and its effect on the foragers revealed that it provides stronger negative feedback to the water foragers, while the connection between the pulp foragers and the common stomach has a strong fixed-point attractor, as evidenced by the dissipative trajectory. PMID:27861633

  8. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    NASA Astrophysics Data System (ADS)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  9. A Water-Withdrawal Input-Output Model of the Indian Economy.

    PubMed

    Bogra, Shelly; Bakshi, Bhavik R; Mathur, Ritu

    2016-02-02

    Managing freshwater allocation for a highly populated and growing economy like India can benefit from knowledge about the effect of economic activities. This study transforms the 2003-2004 economic input-output (IO) table of India into a water withdrawal input-output model to quantify direct and indirect flows. This unique model is based on a comprehensive database compiled from diverse public sources, and estimates direct and indirect water withdrawal of all economic sectors. It distinguishes between green (rainfall), blue (surface and ground), and scarce groundwater. Results indicate that the total direct water withdrawal is nearly 3052 billion cubic meter (BCM) and 96% of this is used in agriculture sectors with the contribution of direct green water being about 1145 BCM, excluding forestry. Apart from 727 BCM direct blue water withdrawal for agricultural, other significant users include "Electricity" with 64 BCM, "Water supply" with 44 BCM and other industrial sectors with nearly 14 BCM. "Construction", "miscellaneous food products"; "Hotels and restaurants"; "Paper, paper products, and newsprint" are other significant indirect withdrawers. The net virtual water import is found to be insignificant compared to direct water used in agriculture nationally, while scarce ground water associated with crops is largely contributed by northern states.

  10. Dynamic water allocation policies improve the global efficiency of storage systems

    NASA Astrophysics Data System (ADS)

    Niayifar, Amin; Perona, Paolo

    2017-06-01

    Water impoundment by dams strongly affects the river natural flow regime, its attributes and the related ecosystem biodiversity. Fostering the sustainability of water uses e.g., hydropower systems thus implies searching for innovative operational policies able to generate Dynamic Environmental Flows (DEF) that mimic natural flow variability. The objective of this study is to propose a Direct Policy Search (DPS) framework based on defining dynamic flow release rules to improve the global efficiency of storage systems. The water allocation policies proposed for dammed systems are an extension of previously developed flow redistribution rules for small hydropower plants by Razurel et al. (2016).The mathematical form of the Fermi-Dirac statistical distribution applied to lake equations for the stored water in the dam is used to formulate non-proportional redistribution rules that partition the flow for energy production and environmental use. While energy production is computed from technical data, riverine ecological benefits associated with DEF are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, multiobjective evolutionary algorithms (MOEAs) are applied to build ecological versus economic efficiency plot and locate its (Pareto) frontier. This study benchmarks two MOEAs (NSGA II and Borg MOEA) and compares their efficiency in terms of the quality of Pareto's frontier and computational cost. A detailed analysis of dam characteristics is performed to examine their impact on the global system efficiency and choice of the best redistribution rule. Finally, it is found that non-proportional flow releases can statistically improve the global efficiency, specifically the ecological one, of the hydropower system when compared to constant minimal flows.

  11. Local Fiscal Allocation for Public Health Departments.

    PubMed

    McCullough, J Mac; Leider, Jonathon P; Riley, William J

    2015-12-01

    We examined the percentage of local government taxes ("fiscal allocation") dedicated to local health departments on a national level, as well as correlates of local investment in public health. Using the most recent data available--the 2008 National Association of City and County Health Officials Profile survey and the 2007 U.S. Census Bureau Census of Local Governments-generalized linear regression models examined associations between fiscal allocation and local health department setting, governance, finance, and service provision. Models were stratified by the extent of long-term debt for the jurisdiction. Analyses were performed in 2014. Average fiscal allocation for public health was 3.31% of total local taxes. In multivariate regressions, per capita expenditures, having a local board of health and public health service provision were associated with higher fiscal allocation. Stratified models showed that local board of health and local health department taxing authority were associated with fiscal allocation in low and high long-term debt areas, respectively. The proportion of all local taxes allocated to local public health is related to local health department expenditures, service provision, and governance. These relationships depend upon the extent of long-term debt in the jurisdiction. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Scale Issues in Modeling the Water Resources Sector in National Economic Models: A Case study of China

    NASA Astrophysics Data System (ADS)

    Strzepek, K. M.; Kirshen, P.; Yohe, G.

    2001-05-01

    unable to find any global or regional datasets of groundwater.. Combining Surface and Groundwater Supply Functions Water Demand Curves. Water Use data is reported on political regions. Water Supply is reported and modeled on river basin regions. It is necessary to allocate water demands to river basins. To accomplish this China's 9 major river basins were divided into 36 hydroeconomic regions. The counties were then allocated to one of the 36-hydroeconomic zones. The county-level water use data was aggregated to 5 major water use sectors: 1)industry; 2)urban municipal and vegetable gardens: 3) major irrigation; 4) Energy and 5)Other agriculture (forestry, pasture; fishery). Sectoral Demand functions that include price and income elasticity were developed for the 5 sectors for each of the 9 major river basin. The supply and demand curves were aggregated at a variety of geographical scales as well as levels of economic sectoral aggregation. Implications for investment and sustainable development policies were examined for the various aggregation using partial and general equilibrium modeling of the Chinese economy. These results and policy implications for China as well as insights and recommendation for other developing countries will be presented.

  13. Environmental performances of coproducts. Application of Claiming-Based Allocation models to straw and vetiver biorefineries in an Indian context.

    PubMed

    Gnansounou, Edgard; Raman, Jegannathan Kenthorai

    2018-04-24

    Among the renewables, non-food and wastelands based biofuels are essential for the transport sector to achieve country's climate mitigation targets. With the growing interest in biorefineries, setting policy requirements for other coproducts along with biofuels is necessary to improve the products portfolio of biorefinery, increase the bioproducts perception by the consumers and push the technology forward. Towards this context, Claiming-Based allocation models were used in comparative life cycle assessment of multiple products from wheat straw biorefinery and vetiver biorefinery. Vetiver biorefinery shows promising Greenhouse gas emission savings (181-213%) compared to the common crop based lignocellulose (wheat straw) biorefinery. Assistance of Claiming-Based Allocation models favors to find out the affordable allocation limit (0-80%) among the coproducts in order to achieve the individual prospective policy targets. Such models show promising application in multiproduct life cycle assessment studies where appropriate allocation is challenging to achieve the individual products emission subject to policy targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Resource Allocation Based on Evaluation of Research.

    ERIC Educational Resources Information Center

    Fransson, Rune

    1985-01-01

    At Sweden's Karolinska Institute, a resource allocation model for medical research in use since 1970 allows the research activity of the different departments to affect resource allocation direclty. (MSE)

  15. Sperm competition games: the risk model can generate higher sperm allocation to virgin females.

    PubMed

    Ball, M A; Parker, G A

    2007-03-01

    We examine the risk model in sperm competition games for cases where female fertility increases significantly with sperm numbers (sperm limitation). Without sperm competition, sperm allocation increases with sperm limitation. We define 'average risk' as the probability q that females in the population mate twice, and 'perceived risk' as the information males gain about the sperm competition probability with individual females. If males obtain no information from individual females, sperm numbers increase with q unless sperm limitation is high and one of the two competing ejaculates is strongly disfavoured. If males can distinguish between virgin and mated females, greater sperm allocation to virgins is favoured by high sperm limitation, high q, and by the second male's ejaculate being disfavoured. With high sperm limitation, sperm allocation to virgins increases and to mated females decreases with q at high q levels. With perfect information about female mating pattern, sperm allocation (i) to virgins that will mate again exceeds that to mated females and to virgins that will mate only once, (ii) to virgins that mate only once exceeds that for mated females if q is high and there is high second male disadvantage and (iii) to each type of female can decrease with q if sperm limitation is high, although the average allocation increases at least across low q levels. In general, higher sperm allocation to virgins is favoured by: strong disadvantage to the second ejaculate, high sperm limitation, high average risk and increased information (perceived risk). These conditions may apply in a few species, especially spiders.

  16. Integrating water data, models and forecasts - the Australian Water Resources Information System (Invited)

    NASA Astrophysics Data System (ADS)

    Argent, R.; Sheahan, P.; Plummer, N.

    2010-12-01

    Under the Commonwealth Water Act 2007 the Bureau of Meteorology was given a new national role in water information, encompassing standards, water accounts and assessments, hydrological forecasting, and collecting, enhancing and making freely available Australia’s water information. The Australian Water Resources Information System (AWRIS) is being developed to fulfil part of this role, by providing foundational data, information and model structures and services. Over 250 organisations across Australia are required to provide water data and metadata to the Bureau, including federal, state and local governments, water storage management and hydroelectricity companies, rural and urban water utilities, and catchment management bodies. The data coverage includes the categories needed to assess and account for water resources at a range of scales. These categories are surface, groundwater and meteorological observations, water in storages, water restrictions, urban and irrigation water use and flows, information on rights, allocations and trades, and a limited suite of water quality parameters. These data are currently supplied to the Bureau via a file-based delivery system at various frequencies from annual to daily or finer, and contain observations taken at periods from minutes to monthly or coarser. One of the primary keys to better data access and utilisation is better data organisation, including content and markup standards. As a significant step on the path to standards for water data description, the Bureau has developed a Water Data Transfer Format (WDTF) for transmission of a variety of water data categories, including site metadata. WDTF is adapted from the OGC’s observation and sampling-features standard. The WDTF XML schema is compatible with the OGC's Web Feature Service (WFS) interchange standard, and conforms to GML Simple Features profile (GML-SF) level 1, emphasising the importance of standards in data exchange. In the longer term we are also

  17. A Method for Optimal Allocation between Instream and Offstream Uses in the Maipo River in Central Chile

    NASA Astrophysics Data System (ADS)

    Génova, P. P.; Olivares, M. A.

    2016-12-01

    Minimum instream flows (MIF) have been established in Chile with the aim of protecting aquatic ecosystems. In practice, since current water law only allocates water rights to offstream water uses, MIF becomes the only instrument for instream water allocation. However, MIF do not necessarily maintain an adequate flow for instream uses. Moreover, an efficient allocation of water for instream uses requires the quantification of the benefits obtained from those uses, so that tradeoffs between instream and offstream water uses are properly considered. A model of optimal allocation between instream and offstream uses is elaborated. The proposed method combines two pieces of information. On one hand, benefits of instream use are represented by qualitative recreational benefit curves as a function of instream flow. On the other hand, the opportunity cost given by lost benefits of offstream uses is employed to develop a supply curve for instream flows. We applied this method to the case of the Maipo River, where the main water uses are recreation, hydropower production and drinking water. Based on available information we obtained the qualitative benefits of various recreational activities as a function of flow attributes. Then we developed flow attributes curves as a function of instream flow for a representative number of sections in the river. As a result we obtained the qualitative recreational benefit curve for each section. The marginal cost curve for instream flows was developed from the benefit functions of hydropower production interfering with recreation in the Maipo River. The purpose of this supply curve is to find a range of instream flow that will provide a better quality condition for recreation experience at a lower opportunity cost. Results indicate that offstream uses adversely influence recreational activities in the Maipo River in certain months of the year, significantly decreasing the quality of these in instream uses. As expected, the impact depends

  18. 18 CFR 367.17 - Comprehensive inter-period income tax allocation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Comprehensive inter... NATURAL GAS ACT General Instructions § 367.17 Comprehensive inter-period income tax allocation. (a) Where... tax method. In general, comprehensive inter-period tax allocation should be followed whenever...

  19. The allocation of ecosystem net primary productivity in tropical forests

    PubMed Central

    Malhi, Yadvinder; Doughty, Christopher; Galbraith, David

    2011-01-01

    The allocation of the net primary productivity (NPP) of an ecosystem between canopy, woody tissue and fine roots is an important descriptor of the functioning of that ecosystem, and an important feature to correctly represent in terrestrial ecosystem models. Here, we collate and analyse a global dataset of NPP allocation in tropical forests, and compare this with the representation of NPP allocation in 13 terrestrial ecosystem models. On average, the data suggest an equal partitioning of allocation between all three main components (mean 34 ± 6% canopy, 39 ± 10% wood, 27 ± 11% fine roots), but there is substantial site-to-site variation in allocation to woody tissue versus allocation to fine roots. Allocation to canopy (leaves, flowers and fruit) shows much less variance. The mean allocation of the ecosystem models is close to the mean of the data, but the spread is much greater, with several models reporting allocation partitioning outside of the spread of the data. Where all main components of NPP cannot be measured, litterfall is a good predictor of overall NPP (r2 = 0.83 for linear fit forced through origin), stem growth is a moderate predictor and fine root production a poor predictor. Across sites the major component of variation of allocation is a shifting allocation between wood and fine roots, with allocation to the canopy being a relatively invariant component of total NPP. This suggests the dominant allocation trade-off is a ‘fine root versus wood’ trade-off, as opposed to the expected ‘root–shoot’ trade-off; such a trade-off has recently been posited on theoretical grounds for old-growth forest stands. We conclude by discussing the systematic biases in estimates of allocation introduced by missing NPP components, including herbivory, large leaf litter and root exudates production. These biases have a moderate effect on overall carbon allocation estimates, but are smaller than the observed range in allocation values across sites. PMID

  20. Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

    Treesearch

    Denis Valle; Benjamin Baiser; Christopher W. Woodall; Robin Chazdon; Jerome Chave

    2014-01-01

    We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates...

  1. A sub-canopy structure for simulating oil palm in the Community Land Model: phenology, allocation and yield

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.

    2015-06-01

    Land surface modelling has been widely used to characterize the two-way interactions between climate and human activities in terrestrial ecosystems such as deforestation, agricultural expansion, and urbanization. Towards an effort to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we introduce a new perennial crop plant functional type (PFT) for oil palm. Due to the modular and sequential nature of oil palm growth (around 40 stacked phytomers) and yield (fruit bunches axillated on each phytomer), we developed a specific sub-canopy structure for simulating palm's growth and yield within the framework of the Community Land Model (CLM4.5). In this structure each phytomer has its own prognostic leaf growth and fruit yield capacity like a PFT but with shared stem and root components among all phytomers. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, so that multiple fruit yields per annum are enabled in terms of carbon and nitrogen outputs. An important phenological phase is identified for the palm PFT - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization, and leaf pruning are represented. Parameters introduced for the new PFT were calibrated and validated with field measurements of leaf area index (LAI) and yield from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched perfectly between simulation and observation (mean percentage error = 4 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites but also indicates that

  2. A Two-stage Approach for Water Demand Prediction under Constrained total water use and Water Environmental Capacity

    NASA Astrophysics Data System (ADS)

    He, Y.; Xiaohong, C.; Lin, K.; Wang, Z.

    2016-12-01

    Water demand (WD) is the basis for water allocation (WA) because it can fully reflect the pressure on water resources from population and socioeconomic development. To deal with the great uncertainties and the absence of consideration of water environmental capacity (WEC) in traditional water demand prediction methods, e.g. Statistical models, System Dynamics and quota method, this study develops a two-stage approach to predict WD under constrained total water use from the perspective of ecological restraint. Regional total water demand (RTWD) is constrained by WEC, available water resources amount and total water use quota. Based on RTWD, WD is allocated in two stages according to the game theory, including predicting sub regional total water demand (SRWD) by calculating the sub region weights based on the selected indicators of socioeconomic development and predicting industrial water demand (IWD) according to the game theory. Taking the Dongjiang river basin, South China as an example of WD prediction, according to its constrained total water use quota and WEC, RTWD in 2020 is 9.83 billion m3, and IWD for agriculture, industry, service, ecology (off-stream), and domesticity are 2.32 billion m3, 3.79 billion m3, 0.75 billion m3 , 0.18 billion m3and 1.79 billion m3 respectively. The results from this study provide useful insights for effective water allocation under climate change and the strict policy of water resources management.

  3. S4HARA: System for HIV/AIDS resource allocation.

    PubMed

    Lasry, Arielle; Carter, Michael W; Zaric, Gregory S

    2008-03-26

    HIV/AIDS resource allocation decisions are influenced by political, social, ethical and other factors that are difficult to quantify. Consequently, quantitative models of HIV/AIDS resource allocation have had limited impact on actual spending decisions. We propose a decision-support System for HIV/AIDS Resource Allocation (S4HARA) that takes into consideration both principles of efficient resource allocation and the role of non-quantifiable influences on the decision-making process for resource allocation. S4HARA is a four-step spreadsheet-based model. The first step serves to identify the factors currently influencing HIV/AIDS allocation decisions. The second step consists of prioritizing HIV/AIDS interventions. The third step involves allocating the budget to the HIV/AIDS interventions using a rational approach. Decision-makers can select from several rational models of resource allocation depending on availability of data and level of complexity. The last step combines the results of the first and third steps to highlight the influencing factors that act as barriers or facilitators to the results suggested by the rational resource allocation approach. Actionable recommendations are then made to improve the allocation. We illustrate S4HARA in the context of a primary healthcare clinic in South Africa. The clinic offers six types of HIV/AIDS interventions and spends US$750,000 annually on these programs. Current allocation decisions are influenced by donors, NGOs and the government as well as by ethical and religious factors. Without additional funding, an optimal allocation of the total budget suggests that the portion allotted to condom distribution be increased from 1% to 15% and the portion allotted to prevention and treatment of opportunistic infections be increased from 43% to 71%, while allocation to other interventions should decrease. Condom uptake at the clinic should be increased by changing the condom distribution policy from a pull system to a push

  4. A novel profit-allocation strategy for SDN enterprises

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Hou, Ye; Tian, Longwei; Li, Yuan

    2017-01-01

    Aiming to solve the problem of profit allocation for supply and demand network (SDN) enterprises that ignores risk factors and generates low satisfaction, a novel profit-allocation model based on cooperative game theory and TOPSIS is proposed. This new model avoids the defect of the single-profit allocation model by introducing risk factors, compromise coefficients and high negotiation points. By measuring the Euclidean distance between the ideal solution vector and the negative ideal solution vector, every node's satisfaction problem for the SDN was resolved, and the mess phenomenon was avoided. Finally, the rationality and effectiveness of the proposed model was verified using a numerical example.

  5. Prospect theory reflects selective allocation of attention.

    PubMed

    Pachur, Thorsten; Schulte-Mecklenbeck, Michael; Murphy, Ryan O; Hertwig, Ralph

    2018-02-01

    There is a disconnect in the literature between analyses of risky choice based on cumulative prospect theory (CPT) and work on predecisional information processing. One likely reason is that for expectation models (e.g., CPT), it is often assumed that people behaved only as if they conducted the computations leading to the predicted choice and that the models are thus mute regarding information processing. We suggest that key psychological constructs in CPT, such as loss aversion and outcome and probability sensitivity, can be interpreted in terms of attention allocation. In two experiments, we tested hypotheses about specific links between CPT parameters and attentional regularities. Experiment 1 used process tracing to monitor participants' predecisional attention allocation to outcome and probability information. As hypothesized, individual differences in CPT's loss-aversion, outcome-sensitivity, and probability-sensitivity parameters (estimated from participants' choices) were systematically associated with individual differences in attention allocation to outcome and probability information. For instance, loss aversion was associated with the relative attention allocated to loss and gain outcomes, and a more strongly curved weighting function was associated with less attention allocated to probabilities. Experiment 2 manipulated participants' attention to losses or gains, causing systematic differences in CPT's loss-aversion parameter. This result indicates that attention allocation can to some extent cause choice regularities that are captured by CPT. Our findings demonstrate an as-if model's capacity to reflect characteristics of information processing. We suggest that the observed CPT-attention links can be harnessed to inform the development of process models of risky choice. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Visual Attention Allocation Between Robotic Arm and Environmental Process Control: Validating the STOM Task Switching Model

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher; Vieanne, Alex; Clegg, Benjamin; Sebok, Angelia; Janes, Jessica

    2015-01-01

    Fifty six participants time shared a spacecraft environmental control system task with a realistic space robotic arm control task in either a manual or highly automated version. The former could suffer minor failures, whose diagnosis and repair were supported by a decision aid. At the end of the experiment this decision aid unexpectedly failed. We measured visual attention allocation and switching between the two tasks, in each of the eight conditions formed by manual-automated arm X expected-unexpected failure X monitoring- failure management. We also used our multi-attribute task switching model, based on task attributes of priority interest, difficulty and salience that were self-rated by participants, to predict allocation. An un-weighted model based on attributes of difficulty, interest and salience accounted for 96 percent of the task allocation variance across the 8 different conditions. Task difficulty served as an attractor, with more difficult tasks increasing the tendency to stay on task.

  7. Accounting for Parcel-Allocation Variability in Practice: Combining Sources of Uncertainty and Choosing the Number of Allocations.

    PubMed

    Sterba, Sonya K; Rights, Jason D

    2016-01-01

    Item parceling remains widely used under conditions that can lead to parcel-allocation variability in results. Hence, researchers may be interested in quantifying and accounting for parcel-allocation variability within sample. To do so in practice, three key issues need to be addressed. First, how can we combine sources of uncertainty arising from sampling variability and parcel-allocation variability when drawing inferences about parameters in structural equation models? Second, on what basis can we choose the number of repeated item-to-parcel allocations within sample? Third, how can we diagnose and report proportions of total variability per estimate arising due to parcel-allocation variability versus sampling variability? This article addresses these three methodological issues. Developments are illustrated using simulated and empirical examples, and software for implementing them is provided.

  8. Allocating resources to large wildland fires: a model with stochastic production rates

    Treesearch

    Romain Mees; David Strauss

    1992-01-01

    Wildland fires that grow out of the initial attack phase are responsible for most of the damage and burned area. We model the allocation of fire suppression resources (ground crews, engines, bulldozers, and airdrops) to these large fires. The fireline at a given future time is partitioned into homogeneous segments on the basis of fuel type, available resources, risk,...

  9. Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes.

    NASA Astrophysics Data System (ADS)

    Pietsch, S.

    2016-12-01

    DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong. Any given ecosystem never is at steady state! Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.

  10. Linking Strategic Planning, Institutional Assessment, and Resource Allocation: Paradise Valley Community College's Model.

    ERIC Educational Resources Information Center

    Kranitz, Gina; Hart, Kenneth R.

    As an institution having undergone many changes over the past 13 years in the Maricopa Community College District, Paradise Valley Community College (PVCC) in Arizona has developed and implemented its strategic planning process, institutional effectiveness and student outcomes assessment model, and resource allocation (budget) process over the…

  11. Optimal crop selection and water allocation under limited water supply in irrigation

    NASA Astrophysics Data System (ADS)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  12. Where does the carbon go? A model–data intercomparison of vegetation carbon allocation and turnover processes at two temperate forest free-air CO2 enrichment sites

    PubMed Central

    De Kauwe, Martin G; Medlyn, Belinda E; Zaehle, Sönke; Walker, Anthony P; Dietze, Michael C; Wang, Ying-Ping; Luo, Yiqi; Jain, Atul K; El-Masri, Bassil; Hickler, Thomas; Wårlind, David; Weng, Ensheng; Parton, William J; Thornton, Peter E; Wang, Shusen; Prentice, I Colin; Asao, Shinichi; Smith, Benjamin; McCarthy, Heather R; Iversen, Colleen M; Hanson, Paul J; Warren, Jeffrey M; Oren, Ram; Norby, Richard J

    2014-01-01

    Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets. PMID:24844873

  13. Water resources planning and management : A stochastic dual dynamic programming approach

    NASA Astrophysics Data System (ADS)

    Goor, Q.; Pinte, D.; Tilmant, A.

    2008-12-01

    Allocating water between different users and uses, including the environment, is one of the most challenging task facing water resources managers and has always been at the heart of Integrated Water Resources Management (IWRM). As water scarcity is expected to increase over time, allocation decisions among the different uses will have to be found taking into account the complex interactions between water and the economy. Hydro-economic optimization models can capture those interactions while prescribing efficient allocation policies. Many hydro-economic models found in the literature are formulated as large-scale non linear optimization problems (NLP), seeking to maximize net benefits from the system operation while meeting operational and/or institutional constraints, and describing the main hydrological processes. However, those models rarely incorporate the uncertainty inherent to the availability of water, essentially because of the computational difficulties associated stochastic formulations. The purpose of this presentation is to present a stochastic programming model that can identify economically efficient allocation policies in large-scale multipurpose multireservoir systems. The model is based on stochastic dual dynamic programming (SDDP), an extension of traditional SDP that is not affected by the curse of dimensionality. SDDP identify efficient allocation policies while considering the hydrologic uncertainty. The objective function includes the net benefits from the hydropower and irrigation sectors, as well as penalties for not meeting operational and/or institutional constraints. To be able to implement the efficient decomposition scheme that remove the computational burden, the one-stage SDDP problem has to be a linear program. Recent developments improve the representation of the non-linear and mildly non- convex hydropower function through a convex hull approximation of the true hydropower function. This model is illustrated on a cascade of 14

  14. Comprehensive School Reform: Allocating Federal Funds.

    ERIC Educational Resources Information Center

    Education Commission of the States, Denver, CO.

    This booklet is designed to assist state leaders as they develop their process for allocating funds to schools. It suggests components of a state-allocation process that are based on research and field experience with successfully implemented comprehensive school-reform (CSR) models. The document provides guidelines for defining the eligibility of…

  15. From Hydroclimatic Prediction to Negotiated and Risk Managed Water Allocation and Reservoir Operation (Invited)

    NASA Astrophysics Data System (ADS)

    Lall, U.

    2013-12-01

    The availability of long lead climate forecasts that can in turn inform streamflow, agricultural, ecological and municipal/industrial and energy demands provides an opportunity for innovations in water resources management that go beyond the current practices and paradigms. In a practical setting, managers seek to meet registered demands as well as they can. Pricing mechanisms to manage demand are rarely invoked. Drought restrictions and operations are implemented as needed, and pressures from special interest groups are sometimes accommodated through a variety of processes. In the academic literature, there is a notion that demand curves for different sectors could be established and used for "optimal management". However, the few attempts to implement such ideas have invariably failed as elicitation of demand elasticity and socio-political factors is imperfect at best. In this talk, I will focus on what is worth predicting and for whom and how operational risks for the water system can be securitized while providing a platform for priced and negotiated allocation of the resources in the presence of imperfect forecasts. The possibility of a national or regional market for water contracts as part of the framework is explored, and its potential benefits and pitfalls identified.

  16. Ages and transit times as important diagnostics of model performance for predicting C allocation in ecosystem models

    NASA Astrophysics Data System (ADS)

    Ceballos-Núñez, Verónika; Richardson, Andrew; Sierra, Carlos

    2017-04-01

    The global carbon cycle is strongly controlled by the source/sink strength of vegetation as well as the capacity of terrestrial ecosystems to retain this carbon. However, it is uncertain how some vegetation dynamics such as the allocation of carbon to different ecosystem compartments should be represented in models. The assumptions behind model structures may result in highly divergent model predictions. Here, we asses model performance by calculating the age of the carbon in the system and in each compartment, and the overall transit time of C in the system. We used these diagnostics to assess the influence of three different carbon allocation schemes on the rates of C cycling in vegetation. First, we used published measurements of ecosystem C compartments from the Harvard Forest Environmental Measurement Site to find the best set of parameters for the different model structures. Second, we calculated C stocks, respiration fluxes, radiocarbon values, ages, and transit times. We found a good fit of the three model structures to the available data, but the time series of C in foliage and wood need to be complemented with other ecosystem compartments in order to reduce the high parameter collinearity that we observed and reduce model equifinality. Differences in model structures had a small impact on predicting ecosystem C compartments, but overall they resulted in very different predictions of age and transit time distributions. In particular, the inclusion of a storage compartment had an important impact on predicting system ages and transit times. In the case of the models with 1 or 2 storage compartments, the age of carbon in the system and in each of the compartments was distributed more towards younger ages than in the model that had no storage; the mean system age of these two models with storage was 80 years younger than in the model without storage. As expected from these age distributions, the mean transit time for the two models with storage compartments

  17. Soil-Water Balance (SWB) model estimates of soil-moisture variability and groundwater recharge in the South Platte watershed, Colorado

    NASA Astrophysics Data System (ADS)

    Anderson, A. M.; Walker, E. L.; Hogue, T. S.; Ruybal, C. J.

    2015-12-01

    Unconventional energy production in semi-arid regions places additional stress on already over-allocated water systems. Production of shale gas and oil resources in northern Colorado has rapidly increased since 2010, and is expected to continue growing due to advances in horizontal drilling and hydraulic fracturing. This unconventional energy production has implications for the availability of water in the South Platte watershed, where water demand for hydraulic fracturing of unconventional shale resources reached ~16,000 acre-feet in 2014. Groundwater resources are often exploited to meet water demands for unconventional energy production in regions like the South Platte basin, where surface water supply is limited and allocated across multiple uses. Since groundwater is often a supplement to surface water in times of drought and peak demand, variability in modeled recharge estimates can significantly impact projected availability. In the current work we used the Soil-Water Balance Model (SWB) to assess the variability in model estimates of actual evapotranspiration (ET) and soil-moisture conditions utilized to derive estimates of groundwater recharge. Using both point source and spatially distributed data, we compared modeled actual ET and soil-moisture derived from several potential ET methods, such as Thornthwaite-Mather, Jense-Haise, Turc, and Hargreaves-Samani, to historic soil moisture conditions obtained through sources including the Gravity Recovery and Climate Experiment (GRACE). In addition to a basin-scale analysis, we divided the South Platte watershed into sub-basins according to land cover to evaluate model capabilities of estimating soil-moisture parameters with variations in land cover and topography. Results ultimately allow improved prediction of groundwater recharge under future scenarios of climate and land cover change. This work also contributes to complementary subsurface groundwater modeling and decision support modeling in the South Platte.

  18. Advances in liver transplantation allocation systems.

    PubMed

    Schilsky, Michael L; Moini, Maryam

    2016-03-14

    With the growing number of patients in need of liver transplantation, there is a need for adopting new and modifying existing allocation policies that prioritize patients for liver transplantation. Policy should ensure fair allocation that is reproducible and strongly predictive of best pre and post transplant outcomes while taking into account the natural history of the potential recipients liver disease and its complications. There is wide acceptance for allocation policies based on urgency in which the sickest patients on the waiting list with the highest risk of mortality receive priority. Model for end-stage liver disease and Child-Turcotte-Pugh scoring system, the two most universally applicable systems are used in urgency-based prioritization. However, other factors must be considered to achieve optimal allocation. Factors affecting pre-transplant patient survival and the quality of the donor organ also affect outcome. The optimal system should have allocation prioritization that accounts for both urgency and transplant outcome. We reviewed past and current liver allocation systems with the aim of generating further discussion about improvement of current policies.

  19. PID feedback controller used as a tactical asset allocation technique: The G.A.M. model

    NASA Astrophysics Data System (ADS)

    Gandolfi, G.; Sabatini, A.; Rossolini, M.

    2007-09-01

    The objective of this paper is to illustrate a tactical asset allocation technique utilizing the PID controller. The proportional-integral-derivative (PID) controller is widely applied in most industrial processes; it has been successfully used for over 50 years and it is used by more than 95% of the plants processes. It is a robust and easily understood algorithm that can provide excellent control performance in spite of the diverse dynamic characteristics of the process plant. In finance, the process plant, controlled by the PID controller, can be represented by financial market assets forming a portfolio. More specifically, in the present work, the plant is represented by a risk-adjusted return variable. Money and portfolio managers’ main target is to achieve a relevant risk-adjusted return in their managing activities. In literature and in the financial industry business, numerous kinds of return/risk ratios are commonly studied and used. The aim of this work is to perform a tactical asset allocation technique consisting in the optimization of risk adjusted return by means of asset allocation methodologies based on the PID model-free feedback control modeling procedure. The process plant does not need to be mathematically modeled: the PID control action lies in altering the portfolio asset weights, according to the PID algorithm and its parameters, Ziegler-and-Nichols-tuned, in order to approach the desired portfolio risk-adjusted return efficiently.

  20. METHODS OF ANALYSIS FOR WASTE LOAD ALLOCATION

    EPA Science Inventory

    This research has addressed several unresolved questions concerning the allocation of allowable waste loads among multiple wastewater dischargers within a water quality limited stream segment. First, the traditional assumptions about critical design conditions for waste load allo...

  1. An Integrated Model for a Water Leasing System on the Middle Rio Grand, New Mexico

    NASA Astrophysics Data System (ADS)

    Brookshire, D. S.; Coursey, D. L.; Tidwell, V. C.; Broadbent, C. D.

    2006-12-01

    Since 1950 demand for water has more than doubled in the United States. Virtually all water supplies are allocated, leading to the question, where will water come from? The concept of water leasing has gained considerable attention as a volunteer, market-mediated system for transferring water between competing uses. For a water leasing system to be truly effective, detailed knowledge of the available water supply and the factors that affect water demand is critical. Improving understating of the factors that determine residential, industrial, and agricultural demand for water using experimental economics and then integrating with a hydrological model will allow for better understanding of market-based mechanisms potential to allocate water resources effectively. Currently we have three case studies underway, a generalized water leasing system on the Middle Rio Grande, a sophisticated farmer decision process and a study in the Mimbres basin in southern New Mexico. The developed market model utilizes an open market trading system known as a double auction, where buyers and sellers declare their bids and offers to the market. The developed hydrological model utilizes the Upper Rio Grande Water Operations Model (URGWOM) system structure and data for the generalized water leasing system and the farmer decision process, with a different hydrological model being developed for the Mimbres basin. A key coupling between the hydrologic and market models involves tracking the difference in river losses for trades that move water up or down the river. In the experiments the hydrological model runs before the market-trading period to establish water rights, the trading period occurs and the hydrological model then runs a second time to report flows to each reach of the river. Participants in the experiment represent the interests of specific users, including farmers, Native American interests, urban interests and environmental interests. Participants in the experiments are

  2. Analysis of Effects of 2003 and Full-Allocation Withdrawals in Critical Area 1, East-Central New Jersey

    USGS Publications Warehouse

    Spitz, Frederick J.

    2009-01-01

    Critical Area 1 in east-central New Jersey was mandated in the early 1980s to address large drawdowns caused by increases in groundwater withdrawals. The aquifers involved include the Englishtown aquifer system, Wenonah-Mount Laurel aquifer, and the Upper and Middle Potomac-Raritan-Magothy aquifers. Groundwater levels recovered as a result of mandated cutbacks in withdrawals that began in the late 1980s. Subsequent increased demand for water has necessitated an analysis to determine the effects of full-allocation withdrawals, which supplements an optimization analysis done previously. A steady-state regional groundwater flow model is used to evaluate the effects of 2003 withdrawals and full-allocation withdrawals (7.3 million gallons per day greater than for 2003) on simulated water-levels. Simulation results indicate that the range of available withdrawals greater than full-allocation withdrawals is likely between 0 and 12 million gallons per day. The estimated range of available withdrawals is based on: (1) an examination of hydraulic-heads resulting from each of the two simulations, (2) an examination of differences in heads between these two simulations, (3) a comparison of simulated heads from each of the two simulations with the estimated location of salty groundwater, and (4) a comparison of simulated 2003 water levels to observed 2003 water levels. The results of the simulations also indicate that obtaining most of the available water would require varying the distribution of withdrawals and (or) relaxing the mandated hydrologic constraints used to protect the water supply.

  3. GENERATING SOPHISTICATED SPATIAL SURROGATES USING THE MIMS SPATIAL ALLOCATOR

    EPA Science Inventory

    The Multimedia Integrated Modeling System (MIMS) Spatial Allocator is open-source software for generating spatial surrogates for emissions modeling, changing the map projection of Shapefiles, and performing other types of spatial allocation that does not require the use of a comm...

  4. Scientific Allocation of Water Resources.

    ERIC Educational Resources Information Center

    Buras, Nathan

    Oriented for higher education students, researchers, practicing engineers and planners, this book surveys the state of the art of water resources engineering. A broad spectrum of issues is embraced in the treatment of water resources: quantity aspects as well as quality aspects within a systems approach. Using a rational mode for water resources…

  5. Perceptions and Attitudes of Health Professionals in Kenya on National Health Care Resource Allocation Mechanisms: A Structural Equation Modeling

    PubMed Central

    Owili, Patrick Opiyo; Hsu, Yi-Hsin Elsa; Chern, Jin-Yuan; Chiu, Chiung-Hsuan Megan; Wang, Bill; Huang, Kuo-Cherh; Muga, Miriam Adoyo

    2015-01-01

    Background Health care resource allocation is key towards attaining equity in the health system. However, health professionals’ perceived impact and attitude towards health care resource allocation in Sub-Saharan Africa is unknown; furthermore, they occupy a position which makes them notice the impact of different policies in their health system. This study explored perceptions and attitudes of health professionals in Kenya on health care resource allocation mechanism. Method We conducted a survey of a representative sample of 341 health professionals in Moi Teaching and Referral Hospital from February to April 2012, consisting of over 3000 employees. We assessed health professionals’ perceived impact and attitudes on health care resource allocation mechanism in Kenya. We used structural equation modeling and applied a Confirmatory Factor Analysis using Robust Maximum Likelihood estimation procedure to test the hypothesized model. Results We found that the allocation mechanism was negatively associated with their perceived positive impact (-1.04, p < .001), health professionals’ satisfaction (-0.24, p < .01), and professionals’ attitudes (-1.55, p < .001) while it was positively associated with perceived negative impact (1.14, p < .001). Perceived positive impact of the allocation mechanism was negatively associated with their overall satisfaction (-0.08) and attitude (-0.98) at p < .001, respectively. Furthermore, overall satisfaction was negatively associated with attitude (-1.10, p <.001). On the other hand, perceived negative impact of the allocation was positively associated with overall satisfaction (0.29, p <.001) but was not associated with attitude. Conclusion The result suggests that health care resource allocation mechanism has a negative effect towards perceptions, attitudes and overall satisfaction of health professionals who are at the frontline in health care. These findings can serve as a crucial reference for policymakers as the Kenyan

  6. Statistical mechanics of competitive resource allocation using agent-based models

    NASA Astrophysics Data System (ADS)

    Chakraborti, Anirban; Challet, Damien; Chatterjee, Arnab; Marsili, Matteo; Zhang, Yi-Cheng; Chakrabarti, Bikas K.

    2015-01-01

    Demand outstrips available resources in most situations, which gives rise to competition, interaction and learning. In this article, we review a broad spectrum of multi-agent models of competition (El Farol Bar problem, Minority Game, Kolkata Paise Restaurant problem, Stable marriage problem, Parking space problem and others) and the methods used to understand them analytically. We emphasize the power of concepts and tools from statistical mechanics to understand and explain fully collective phenomena such as phase transitions and long memory, and the mapping between agent heterogeneity and physical disorder. As these methods can be applied to any large-scale model of competitive resource allocation made up of heterogeneous adaptive agent with non-linear interaction, they provide a prospective unifying paradigm for many scientific disciplines.

  7. Adressing optimality principles in DGVMs: Dynamics of Carbon allocation changes

    NASA Astrophysics Data System (ADS)

    Pietsch, Stephan

    2017-04-01

    DGVMs are designed to reproduce and quantify ecosystem processes. Based on plant functions or species specific parameter sets, the energy, carbon, nitrogen and water cycles of different ecosystems are assessed. These models have been proven to be important tools to investigate ecosystem fluxes as they are derived by plant, site and environmental factors. The general model approach assumes steady state conditions and constant model parameters. Both assumptions, however, are wrong, since: (i) No given ecosystem ever is at steady state! (ii) Ecosystems have the capability to adapt to changes in growth conditions, e.g. via changes in allocation patterns! This presentation will give examples how these general failures within current DGVMs may be addressed.

  8. Optimizing basin-scale coupled water quantity and water quality man-agement with stochastic dynamic programming

    NASA Astrophysics Data System (ADS)

    Davidsen, Claus; Liu, Suxia; Mo, Xingguo; Engelund Holm, Peter; Trapp, Stefan; Rosbjerg, Dan; Bauer-Gottwein, Peter

    2015-04-01

    Few studies address water quality in hydro-economic models, which often focus primarily on optimal allocation of water quantities. Water quality and water quantity are closely coupled, and optimal management with focus solely on either quantity or quality may cause large costs in terms of the oth-er component. In this study, we couple water quality and water quantity in a joint hydro-economic catchment-scale optimization problem. Stochastic dynamic programming (SDP) is used to minimize the basin-wide total costs arising from water allocation, water curtailment and water treatment. The simple water quality module can handle conservative pollutants, first order depletion and non-linear reactions. For demonstration purposes, we model pollutant releases as biochemical oxygen demand (BOD) and use the Streeter-Phelps equation for oxygen deficit to compute the resulting min-imum dissolved oxygen concentrations. Inelastic water demands, fixed water allocation curtailment costs and fixed wastewater treatment costs (before and after use) are estimated for the water users (agriculture, industry and domestic). If the BOD concentration exceeds a given user pollution thresh-old, the user will need to pay for pre-treatment of the water before use. Similarly, treatment of the return flow can reduce the BOD load to the river. A traditional SDP approach is used to solve one-step-ahead sub-problems for all combinations of discrete reservoir storage, Markov Chain inflow clas-ses and monthly time steps. Pollution concentration nodes are introduced for each user group and untreated return flow from the users contribute to increased BOD concentrations in the river. The pollutant concentrations in each node depend on multiple decision variables (allocation and wastewater treatment) rendering the objective function non-linear. Therefore, the pollution concen-tration decisions are outsourced to a genetic algorithm, which calls a linear program to determine the remainder of the decision

  9. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    NASA Astrophysics Data System (ADS)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  10. Research on allocation efficiency of the daisy chain allocation algorithm

    NASA Astrophysics Data System (ADS)

    Shi, Jingping; Zhang, Weiguo

    2013-03-01

    With the improvement of the aircraft performance in reliability, maneuverability and survivability, the number of the control effectors increases a lot. How to distribute the three-axis moments into the control surfaces reasonably becomes an important problem. Daisy chain method is simple and easy to be carried out in the design of the allocation system. But it can not solve the allocation problem for entire attainable moment subset. For the lateral-directional allocation problem, the allocation efficiency of the daisy chain can be directly measured by the area of its subset of attainable moments. Because of the non-linear allocation characteristic, the subset of attainable moments of daisy-chain method is a complex non-convex polygon, and it is difficult to solve directly. By analyzing the two-dimensional allocation problems with a "micro-element" idea, a numerical calculation algorithm is proposed to compute the area of the non-convex polygon. In order to improve the allocation efficiency of the algorithm, a genetic algorithm with the allocation efficiency chosen as the fitness function is proposed to find the best pseudo-inverse matrix.

  11. Scenario-based Water Resources Management Using the Water Value Concept

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  12. A water resources model to explore the implications of energy alternatives in the southwestern US

    NASA Astrophysics Data System (ADS)

    Yates, D.; Averyt, Kristen; Flores-Lopez, Francisco; Meldrum, J.; Sattler, S.; Sieber, J.; Young, C.

    2013-12-01

    This letter documents the development and validation of a climate-driven, southwestern-US-wide water resources planning model that is being used to explore the implications of extended drought and climate warming on the allocation of water among competing uses. These model uses include a separate accounting for irrigated agriculture; municipal indoor use based on local population and per-capita consumption; climate-driven municipal outdoor turf and amenity watering; and thermoelectric cooling. The model simulates the natural and managed flows of rivers throughout the southwest, including the South Platte, the Arkansas, the Colorado, the Green, the Salt, the Sacramento, the San Joaquin, the Owens, and more than 50 others. Calibration was performed on parameters of land cover, snow accumulation and melt, and water capacity and hydraulic conductivity of soil horizons. Goodness of fit statistics and other measures of performance are shown for a select number of locations and are used to summarize the model’s ability to represent monthly streamflow, reservoir storages, surface and ground water deliveries, etc, under 1980-2010 levels of sectoral water use.

  13. Biomass Resource Allocation among Competing End Uses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newes, E.; Bush, B.; Inman, D.

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports,more » bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.« less

  14. The response of belowground carbon allocation in forests to global change

    Treesearch

    Christian P. Giardina; Mark Coleman; Dan Binkley; Jessica Hancock; John S. King; Erik Lilleskov; Wendy M. Loya; Kurt S. Pregitzer; Michael G. Ryan; Carl Trettin

    2005-01-01

    Belowground carbon allocation (BCA) in forests regulates soil organic matter formation and influences biotic and abiotic properties of soil such as bulk density, cation exchange capacity, and water holding capacity. On a global scale, the total quantity of carbon allocated belowground by terrestrial plants is enormous, exceeding by an order of magnitude the quantity of...

  15. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    NASA Astrophysics Data System (ADS)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman

  16. Reproductive Allocation of Biomass and Nitrogen in Annual and Perennial Lesquerella Crops

    PubMed Central

    PLOSCHUK, E. L.; SLAFER, G. A.; RAVETTA, D. A.

    2005-01-01

    • Background and Aims The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. • Methods Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. • Key Results Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. • Conclusions It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy. PMID:15863469

  17. Joint optimization of regional water-power systems

    NASA Astrophysics Data System (ADS)

    Pereira-Cardenal, Silvio J.; Mo, Birger; Gjelsvik, Anders; Riegels, Niels D.; Arnbjerg-Nielsen, Karsten; Bauer-Gottwein, Peter

    2016-06-01

    Energy and water resources systems are tightly coupled; energy is needed to deliver water and water is needed to extract or produce energy. Growing pressure on these resources has raised concerns about their long-term management and highlights the need to develop integrated solutions. A method for joint optimization of water and electric power systems was developed in order to identify methodologies to assess the broader interactions between water and energy systems. The proposed method is to include water users and power producers into an economic optimization problem that minimizes the cost of power production and maximizes the benefits of water allocation, subject to constraints from the power and hydrological systems. The method was tested on the Iberian Peninsula using simplified models of the seven major river basins and the power market. The optimization problem was successfully solved using stochastic dual dynamic programming. The results showed that current water allocation to hydropower producers in basins with high irrigation productivity, and to irrigation users in basins with high hydropower productivity was sub-optimal. Optimal allocation was achieved by managing reservoirs in very distinct ways, according to the local inflow, storage capacity, hydropower productivity, and irrigation demand and productivity. This highlights the importance of appropriately representing the water users' spatial distribution and marginal benefits and costs when allocating water resources optimally. The method can handle further spatial disaggregation and can be extended to include other aspects of the water-energy nexus.

  18. Makalu: fast recoverable allocation of non-volatile memory

    DOE PAGES

    Bhandari, Kumud; Chakrabarti, Dhruva R.; Boehm, Hans-J.

    2016-10-19

    Byte addressable non-volatile memory (NVRAM) is likely to supplement, and perhaps eventually replace, DRAM. Applications can then persist data structures directly in memory instead of serializing them and storing them onto a durable block device. However, failures during execution can leave data structures in NVRAM unreachable or corrupt. In this paper, we present Makalu, a system that addresses non-volatile memory management. Makalu offers an integrated allocator and recovery-time garbage collector that maintains internal consistency, avoids NVRAM memory leaks, and is efficient, all in the face of failures. We show that a careful allocator design can support a less restrictive andmore » a much more familiar programming model than existing persistent memory allocators. Our allocator significantly reduces the per allocation persistence overhead by lazily persisting non-essential metadata and by employing a post-failure recovery-time garbage collector. Experimental results show that the resulting online speed and scalability of our allocator are comparable to well-known transient allocators, and significantly better than state-of-the-art persistent allocators.« less

  19. Makalu: fast recoverable allocation of non-volatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhandari, Kumud; Chakrabarti, Dhruva R.; Boehm, Hans-J.

    Byte addressable non-volatile memory (NVRAM) is likely to supplement, and perhaps eventually replace, DRAM. Applications can then persist data structures directly in memory instead of serializing them and storing them onto a durable block device. However, failures during execution can leave data structures in NVRAM unreachable or corrupt. In this paper, we present Makalu, a system that addresses non-volatile memory management. Makalu offers an integrated allocator and recovery-time garbage collector that maintains internal consistency, avoids NVRAM memory leaks, and is efficient, all in the face of failures. We show that a careful allocator design can support a less restrictive andmore » a much more familiar programming model than existing persistent memory allocators. Our allocator significantly reduces the per allocation persistence overhead by lazily persisting non-essential metadata and by employing a post-failure recovery-time garbage collector. Experimental results show that the resulting online speed and scalability of our allocator are comparable to well-known transient allocators, and significantly better than state-of-the-art persistent allocators.« less

  20. Twelve fundamental life histories evolving through allocation-dependent fecundity and survival.

    PubMed

    Johansson, Jacob; Brännström, Åke; Metz, Johan A J; Dieckmann, Ulf

    2018-03-01

    An organism's life history is closely interlinked with its allocation of energy between growth and reproduction at different life stages. Theoretical models have established that diminishing returns from reproductive investment promote strategies with simultaneous investment into growth and reproduction (indeterminate growth) over strategies with distinct phases of growth and reproduction (determinate growth). We extend this traditional, binary classification by showing that allocation-dependent fecundity and mortality rates allow for a large diversity of optimal allocation schedules. By analyzing a model of organisms that allocate energy between growth and reproduction, we find twelve types of optimal allocation schedules, differing qualitatively in how reproductive allocation increases with body mass. These twelve optimal allocation schedules include types with different combinations of continuous and discontinuous increase in reproduction allocation, in which phases of continuous increase can be decelerating or accelerating. We furthermore investigate how this variation influences growth curves and the expected maximum life span and body size. Our study thus reveals new links between eco-physiological constraints and life-history evolution and underscores how allocation-dependent fitness components may underlie biological diversity.

  1. A combined linear optimisation methodology for water resources allocation in Alfeios River Basin (Greece) under uncertain and vague system conditions

    NASA Astrophysics Data System (ADS)

    Bekri, Eleni; Yannopoulos, Panayotis; Disse, Markus

    2013-04-01

    In the present study, a combined linear programming methodology, based on Li et al. (2010) and Bekri et al. (2012), is employed for optimizing water allocation under uncertain system conditions in the Alfeios River Basin, in Greece. The Alfeios River is a water resources system of great natural, ecological, social and economic importance for Western Greece, since it has the longest and highest flow rate watercourse in the Peloponnisos region. Moreover, the river basin was exposed in the last decades to a plethora of environmental stresses (e.g. hydrogeological alterations, intensively irrigated agriculture, surface and groundwater overexploitation and infrastructure developments), resulting in the degradation of its quantitative and qualitative characteristics. As in most Mediterranean countries, water resource management in Alfeios River Basin has been focused up to now on an essentially supply-driven approach. It is still characterized by a lack of effective operational strategies. Authority responsibility relationships are fragmented, and law enforcement and policy implementation are weak. The present regulated water allocation puzzle entails a mixture of hydropower generation, irrigation, drinking water supply and recreational activities. Under these conditions its water resources management is characterised by high uncertainty and by vague and imprecise data. The considered methodology has been developed in order to deal with uncertainties expressed as either probability distributions, or/and fuzzy boundary intervals, derived by associated α-cut levels. In this framework a set of deterministic submodels is studied through linear programming. The ad hoc water resources management and alternative management patterns in an Alfeios subbasin are analyzed and evaluated under various scenarios, using the above mentioned methodology, aiming to promote a sustainable and equitable water management. Li, Y.P., Huang, G.H. and S.L., Nie, (2010), Planning water resources

  2. Generation of SEEAW asset accounts based on water resources management models

    NASA Astrophysics Data System (ADS)

    Pedro-Monzonís, María; Solera, Abel; Andreu, Joaquín

    2015-04-01

    One of the main challenges in the XXI century is related with the sustainable use of water. This is due to the fact that water is an essential element for the life of all who inhabit our planet. In many cases, the lack of economic valuation of water resources causes an inefficient water use. In this regard, society expects of policymakers and stakeholders maximise the profit produced per unit of natural resources. Water planning and the Integrated Water Resources Management (IWRM) represent the best way to achieve this goal. The System of Environmental-Economic Accounting for Water (SEEAW) is displayed as a tool for water allocation which enables the building of water balances in a river basin. The main concern of the SEEAW is to provide a standard approach which allows the policymakers to compare results between different territories. But building water accounts is a complex task due to the difficulty of the collection of the required data. Due to the difficulty of gauging the components of the hydrological cycle, the use of simulation models has become an essential tool extensively employed in last decades. The target of this paper is to present the building up of a database that enables the combined use of hydrological models and water resources models developed with AQUATOOL DSSS to fill in the SEEAW tables. This research is framed within the Water Accounting in a Multi-Catchment District (WAMCD) project, financed by the European Union. Its main goal is the development of water accounts in the Mediterranean Andalusian River Basin District, in Spain. This research pretends to contribute to the objectives of the "Blueprint to safeguard Europe's water resources". It is noteworthy that, in Spain, a large part of these methodological decisions are included in the Spanish Guideline of Water Planning with normative status guaranteeing consistency and comparability of the results.

  3. Equity weights in the allocation of health care: the rank-dependent QALY model.

    PubMed

    Bleichrodt, Han; Diecidue, Enrico; Quiggin, John

    2004-01-01

    This paper introduces the rank-dependent quality-adjusted life-years (QALY) model, a new method to aggregate QALYs in economic evaluations of health care. The rank-dependent QALY model permits the formalization of influential concepts of equity in the allocation of health care, such as the fair innings approach, and it includes as special cases many of the social welfare functions that have been proposed in the literature. An important advantage of the rank-dependent QALY model is that it offers a straightforward procedure to estimate equity weights for QALYs. We characterize the rank-dependent QALY model and argue that its central condition has normative appeal.

  4. An inventory-theory-based interval-parameter two-stage stochastic programming model for water resources management

    NASA Astrophysics Data System (ADS)

    Suo, M. Q.; Li, Y. P.; Huang, G. H.

    2011-09-01

    In this study, an inventory-theory-based interval-parameter two-stage stochastic programming (IB-ITSP) model is proposed through integrating inventory theory into an interval-parameter two-stage stochastic optimization framework. This method can not only address system uncertainties with complex presentation but also reflect transferring batch (the transferring quantity at once) and period (the corresponding cycle time) in decision making problems. A case of water allocation problems in water resources management planning is studied to demonstrate the applicability of this method. Under different flow levels, different transferring measures are generated by this method when the promised water cannot be met. Moreover, interval solutions associated with different transferring costs also have been provided. They can be used for generating decision alternatives and thus help water resources managers to identify desired policies. Compared with the ITSP method, the IB-ITSP model can provide a positive measure for solving water shortage problems and afford useful information for decision makers under uncertainty.

  5. A Spatial Decision Support System to incorporate hydro-economic modeling results in the management of water resources under decentralized institutional arrangements in a semiarid reservoir region in Brazil

    NASA Astrophysics Data System (ADS)

    Moraes, M. G. A.; Souza da Silva, G.; Siegmund-Schultze, M.

    2016-12-01

    The integration of economic and hydrological components in models, aimed to support evaluating alternatives of water allocation policies, is promising, though, challenging. Worldwide, these models have been used primarily in academia, and so far seldom by water managers for practical purposes. Ideally, the models should be available through a Decision Support System. The São Francisco River Basin in Northeast of Brazil has around 48% of its area in a semi-arid region. Irrigation and public water supply are the primary water use sectors, along with hydropower utilization. The water for electricity generation is stored in two large reservoirs, built 30 to 50 years ago under the premise of regulating flows for hydropower and controlling floods. Since 20 years, however, the law stipulates the multiple uses paradigm in a participatory and decentralized way. So far, only few rules laid down. Studies revealed that most of the respective institutions still needed to update their routines to the new paradigm.A hydro-economic model was developed and applied in order to determine the economically optimal water allocation of main users in that semiarid reservoir region. In order to make this model available to the decision makers, a minimum required is some form of manipulating data entry and output as well as some graphical interfaces. We propose a Spatial Decision Support System (SDSS) with dedicated hydro-economic modules in a web-based Geographic Information System (GIS) environment for integrated water resource management. The open model platform will include geoprocessing tasks and water user related data management. The hydro-economic geoprocessing will link to generic optimization modeling systems, such as EXCEL Solver, GAMS and MATLAB. The institutions that are deliberating or deciding over water allocation at different scales could use the generated information on potential economic benefits as a transparent basis for discussion. In addition, they can use the SDSS

  6. A Spatial Decision Support System to incorporate hydro-economic modeling results in the management of water resources under decentralized institutional arrangements in a semiarid reservoir region in Brazil

    NASA Astrophysics Data System (ADS)

    Alcoforado de Moraes, Márcia; Silva, Gerald; Siegmund-Schultze, Marianna

    2017-04-01

    The integration of economic and hydrological components in models, aimed to support evaluating alternatives of water allocation policies, is promising, though, challenging. Worldwide, these models have been used primarily in academia, and so far seldom by water managers for practical purposes. Ideally, the models should be available through a Decision Support System. The São Francisco River Basin in Northeast of Brazil has around 48% of its area in a semi-arid region. Irrigation and public water supply are the primary water use sectors, along with hydropower utilization. The water for electricity generation is stored in two large reservoirs, built 30 to 50 years ago under the premise of regulating flows for hydropower and controlling floods. Since 20 years, however, the law stipulates the multiple uses paradigm in a participatory and decentralized way. So far, only few rules laid down. Studies revealed that most of the respective institutions still needed to update their routines to the new paradigm. A hydro-economic model was developed and applied in order to determine the economically optimal water allocation of main users in that semiarid reservoir region. In order to make this model available to the decision makers, a minimum required is some form of manipulating data entry and output as well as some graphical interfaces. We propose and present the first features of a Spatial Decision Support System (SDSS) with dedicated hydro-economic modules in a web-based Geographic Information System (GIS) environment for integrated water resource management. The open model platform should include geoprocessing tasks and water user related data management. The hydro-economic geoprocessing will link to generic optimization modeling systems, such as EXCEL Solver, GAMS and MATLAB. The institutions are deliberating or deciding over water allocation at different scales could use the generated information on potential economic benefits as a transparent basis for discussion. In

  7. Establishing politically feasible water markets: a multi-criteria approach.

    PubMed

    Ballestero, Enrique; Alarcón, Silverio; García-Bernabeu, Ana

    2002-08-01

    A multiple criteria decision-making (MCDM) model to simulate the establishment of water markets is developed. The environment is an irrigated area governed by a non-profit agency, which is responsible for water production, allocation, and pricing. There is a traditional situation of historical rights, average-cost pricing for water allocation, large quantities of water used, and inefficiency. A market-oriented policy could be implemented by accounting for ecological and political objectives such as saving groundwater and safeguarding historical rights while promoting economic efficiency. In this paper, a problem is solved by compromise programming, a multi-criteria technique based on the principles of Simonian logic. The model is theoretically developed and applied to the Lorca region in Spain near the Mediterranean Sea.

  8. Irrigation, risk aversion, and water right priority under water supply uncertainty

    NASA Astrophysics Data System (ADS)

    Li, Man; Xu, Wenchao; Rosegrant, Mark W.

    2017-09-01

    This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk-bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to 141.4 acre-1 or 55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  9. Irrigation, risk aversion, and water right priority under water supply uncertainty.

    PubMed

    Li, Man; Xu, Wenchao; Rosegrant, Mark W

    2017-09-01

    This paper explores the impacts of a water right's allocative priority-as an indicator of farmers' risk-bearing ability-on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right-truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to $141.4 acre -1 or $55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority-based water sharing mechanism.

  10. Irrigation, risk aversion, and water right priority under water supply uncertainty

    PubMed Central

    Xu, Wenchao; Rosegrant, Mark W.

    2017-01-01

    Abstract This paper explores the impacts of a water right's allocative priority—as an indicator of farmers' risk‐bearing ability—on land irrigation under water supply uncertainty. We develop and use an economic model to simulate farmers' land irrigation decision and associated economic returns in eastern Idaho. Results indicate that the optimal acreage of land irrigated increases with water right priority when hydroclimate risk exhibits a negatively skewed or right‐truncated distribution. Simulation results suggest that prior appropriation enables senior water rights holders to allocate a higher proportion of their land to irrigation, 6 times as much as junior rights holders do, creating a gap in the annual expected net revenue reaching up to $141.4 acre−1 or $55,800 per farm between the two groups. The optimal irrigated acreage, expected net revenue, and shadow value of a water right's priority are subject to substantial changes under a changing climate in the future, where temporal variation in water supply risks significantly affects the profitability of agricultural land use under the priority‐based water sharing mechanism. PMID:29200529

  11. 40 CFR 35.910 - Allocation of funds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Allocation of funds. 35.910 Section 35.910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.910...

  12. 40 CFR 35.910 - Allocation of funds.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Allocation of funds. 35.910 Section 35.910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.910...

  13. 40 CFR 35.910 - Allocation of funds.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Allocation of funds. 35.910 Section 35.910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.910...

  14. 40 CFR 35.910 - Allocation of funds.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Allocation of funds. 35.910 Section 35.910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.910...

  15. 40 CFR 35.910 - Allocation of funds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Allocation of funds. 35.910 Section 35.910 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.910...

  16. Resource allocation decisions in low-income rural households.

    PubMed

    Franklin, D L; Harrell, M W

    1985-05-01

    This paper is based on the theory that a society's nutritional well-being is both a cause and a consequence of the developmental process within that society. An approach to the choices made by poor rural households regarding food acquisition and nurturing behavior is emerging from recent research based on the new economic theory of household production. The central thesis of this approach is that household decisions related to the fulfillment of basic needs are strongly determined by decisions on the allocation of time to household production activities. Summarized are the results of the estimation of a model of household production and consumption behavior with data from a cross-sectional survey of 30 rural communities in Veraguas Province, Panama. The struture of the model consists of allocation of resources to nurturing activities and to production activities. The resources to be allocated are time and market goods, and in theory, these are allocated according to relative prices. The empirical results of this study are generally consistent with the predictions of the neoclassical economic model of household resource allocation. The major conclusions that time allocations and market price conditions matter in the determination of well-being in low-income rural households and, importantly, that nurturing decisions significantly affect the product and factor market behavior of these households form the basis for a discussion on implucations for agricultural and rural development. Programs and policies that seek nutritional improvement should be determined with explicit recognition of the value of time and the importance of timing in the decisions of the poor.

  17. Hydro-economic modeling of integrated solutions for the water-energy-land nexus in Africa

    NASA Astrophysics Data System (ADS)

    Parkinson, S.; Kahil, M.; Wada, Y.; Krey, V.; Byers, E.; Johnson, N. A.; Burek, P.; Satoh, Y.; Willaarts, B.; Langan, S.; Riahi, K.

    2017-12-01

    This study focused on the development of the Extended Continental-scale Hydro-economic Optimization model (ECHO) and its application to the analysis of long-term water, energy and land use pathways for Africa. The framework is important because it integrates multi-decadal decisions surrounding investments into new water infrastructure, electric power generation and irrigation technologies. The improved linkages in ECHO reveal synergies between water allocation strategies across sectors and the greenhouse gas emissions resulting from electricity supply. The African case study features a reduced-form transboundary river network and associated environmental flow constraints covering surface and groundwater withdrawals. Interactions between local water constraints and the continental-scale economy are captured in the model through the combination of regional electricity markets. Spatially-explicit analysis of land availability is used to restrict future reservoir expansion. The analysis demonstrates the massive investments required to ensure rapidly expanding water, energy and food demands in Africa aligned with human development objectives are met in a sustainable way. Modeled constraints on environmental flows in line with presumptive ecological guidelines trigger diffusion of energy-intensive water supply technologies in water-stressed regions, with implications for the cost and speed of the electricity sector decarbonization required to achieve climate targets.

  18. Resource Allocation Modelling in Vocational Rehabilitation: A Prototype Developed with the Michigan and Rhode Island VR Agencies.

    ERIC Educational Resources Information Center

    Leff, H. Stephen; Turner, Ralph R.

    This report focuses on the use of linear programming models to address the issues of how vocational rehabilitation (VR) resources should be allocated in order to maximize program efficiency within given resource constraints. A general introduction to linear programming models is first presented that describes the major types of models available,…

  19. Production and carbon allocation in a clonal Eucalyptus plantation with water and nutrient manipulations

    Treesearch

    Jose Luiz Stape; Dan Binkley; Michael G. Ryan

    2008-01-01

    We examined resource limitations on growth and carbon allocation in a fast-growing, clonal plantation of Eucalyptus grandis urophylla in Brazil by characterizing responses to annual rainfall, and response to irrigation and fertililization for 2 years. Productivity measures included gross primary production (GPP), total belowground carbon allocation (...

  20. A multiprocessor computer simulation model employing a feedback scheduler/allocator for memory space and bandwidth matching and TMR processing

    NASA Technical Reports Server (NTRS)

    Bradley, D. B.; Irwin, J. D.

    1974-01-01

    A computer simulation model for a multiprocessor computer is developed that is useful for studying the problem of matching multiprocessor's memory space, memory bandwidth and numbers and speeds of processors with aggregate job set characteristics. The model assumes an input work load of a set of recurrent jobs. The model includes a feedback scheduler/allocator which attempts to improve system performance through higher memory bandwidth utilization by matching individual job requirements for space and bandwidth with space availability and estimates of bandwidth availability at the times of memory allocation. The simulation model includes provisions for specifying precedence relations among the jobs in a job set, and provisions for specifying precedence execution of TMR (Triple Modular Redundant and SIMPLEX (non redundant) jobs.

  1. Limited static and dynamic delivering capacity allocations in scale-free networks

    NASA Astrophysics Data System (ADS)

    Haddou, N. Ben; Ez-Zahraouy, H.; Rachadi, A.

    In traffic networks, it is quite important to assign proper packet delivering capacities to the routers with minimum cost. In this respect, many allocation models based on static and dynamic properties have been proposed. In this paper, we are interested in the impact of limiting the packet delivering capacities already allocated to the routers; each node is assigned a packet delivering capacity limited by the maximal capacity Cmax of the routers. To study the limitation effect, we use two basic delivering capacity allocation models; static delivering capacity allocation (SDCA) and dynamic delivering capacity allocation (DDCA). In the SDCA, the capacity allocated is proportional to the node degree, and for DDCA, it is proportional to its queue length. We have studied and compared the limitation of both allocation models under the shortest path (SP) routing strategy as well as the efficient path (EP) routing protocol. In the SP case, we noted a similarity in the results; the network capacity increases with increasing Cmax. For the EP scheme, the network capacity stops increasing for relatively small packet delivering capability limit Cmax for both allocation strategies. However, it reaches high values under the limited DDCA before the saturation. We also find that in the DDCA case, the network capacity remains constant when the traffic information available to each router was updated after long period times τ.

  2. 50 CFR 660.323 - Pacific whiting allocations, allocation attainment, and inseason allocation reapportionment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... whiting is allocated among three sectors, as follows:34 percent for the catcher/processor sector; 24 percent for the mothership sector; and 42 percent for the shore-based sector. No more than 5 percent of... primary whiting season north of 42° N. lat.Specific sector allocations for a given calendar year are found...

  3. Integrated Water Flow Model (IWFM), A Tool For Numerically Simulating Linked Groundwater, Surface Water And Land-Surface Hydrologic Processes

    NASA Astrophysics Data System (ADS)

    Dogrul, E. C.; Brush, C. F.; Kadir, T. N.

    2006-12-01

    The Integrated Water Flow Model (IWFM) is a comprehensive input-driven application for simulating groundwater flow, surface water flow and land-surface hydrologic processes, and interactions between these processes, developed by the California Department of Water Resources (DWR). IWFM couples a 3-D finite element groundwater flow process and 1-D land surface, lake, stream flow and vertical unsaturated-zone flow processes which are solved simultaneously at each time step. The groundwater flow system is simulated as a multilayer aquifer system with a mixture of confined and unconfined aquifers separated by semiconfining layers. The groundwater flow process can simulate changing aquifer conditions (confined to unconfined and vice versa), subsidence, tile drains, injection wells and pumping wells. The land surface process calculates elemental water budgets for agricultural, urban, riparian and native vegetation classes. Crop water demands are dynamically calculated using distributed soil properties, land use and crop data, and precipitation and evapotranspiration rates. The crop mix can also be automatically modified as a function of pumping lift using logit functions. Surface water diversions and groundwater pumping can each be specified, or can be automatically adjusted at run time to balance water supply with water demand. The land-surface process also routes runoff to streams and deep percolation to the unsaturated zone. Surface water networks are specified as a series of stream nodes (coincident with groundwater nodes) with specified bed elevation, conductance and stage-flow relationships. Stream nodes are linked to form stream reaches. Stream inflows at the model boundary, surface water diversion locations, and one or more surface water deliveries per location are specified. IWFM routes stream flows through the network, calculating groundwater-surface water interactions, accumulating inflows from runoff, and allocating available stream flows to meet specified or

  4. Resource Allocation in British Universities. SRHE Monograph 56.

    ERIC Educational Resources Information Center

    Shattock, Michael, Ed.; Rigby, Gwynneth, Ed.

    The ways that British universities allocate their resources are discussed, with attention to different styles, techniques, and decison-making structures. Since the purpose is to describe institutional models of resource allocation, specific universities are not identified by name. After identifying the sources of income and the breakdown of…

  5. Quantifying the economic importance of irrigation water reuse in a Chilean watershed using an integrated agent-based model

    NASA Astrophysics Data System (ADS)

    Arnold, R. T.; Troost, Christian; Berger, Thomas

    2015-01-01

    Irrigation with surface water enables Chilean agricultural producers to generate one of the country's most important economic exports. The Chilean water code established tradable water rights as a mechanism to allocate water amongst farmers and other water-use sectors. It remains contested whether this mechanism is effective and many authors have raised equity concerns regarding its impact on water users. For example, speculative hoarding of water rights in expectations of their increasing value has been described. This paper demonstrates how farmers can hoard water rights as a risk management strategy for variable water supply, for example, due to the cycles of El Niño or as consequence of climate change. While farmers with insufficient water rights can rely on unclaimed water during conditions of normal water availability, drought years overproportionally impact on their supply of irrigation water and thereby farm profitability. This study uses a simulation model that consists of a hydrological balance model component and a multiagent farm decision and production component. Both model components are parameterized with empirical data, while uncertain parameters are calibrated. The study demonstrates a thorough quantification of parameter uncertainty, using global sensitivity analysis and multiple behavioral parameter scenarios.

  6. 40 CFR 35.925-4 - State allocation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false State allocation. 35.925-4 Section 35.925-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-4 State...

  7. 40 CFR 35.925-4 - State allocation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false State allocation. 35.925-4 Section 35.925-4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-4 State...

  8. Adaptive Control Allocation in the Presence of Actuator Failures

    NASA Technical Reports Server (NTRS)

    Liu, Yu; Crespo, Luis G.

    2010-01-01

    In this paper, a novel adaptive control allocation framework is proposed. In the adaptive control allocation structure, cooperative actuators are grouped and treated as an equivalent control effector. A state feedback adaptive control signal is designed for the equivalent effector and allocated to the member actuators adaptively. Two adaptive control allocation algorithms are proposed, which guarantee closed-loop stability and asymptotic state tracking in the presence of uncertain loss of effectiveness and constant-magnitude actuator failures. The proposed algorithms can be shown to reduce the controller complexity with proper grouping of the actuators. The proposed adaptive control allocation schemes are applied to two linearized aircraft models, and the simulation results demonstrate the performance of the proposed algorithms.

  9. Partial Membership Latent Dirichlet Allocation for Soft Image Segmentation.

    PubMed

    Chen, Chao; Zare, Alina; Trinh, Huy N; Omotara, Gbenga O; Cobb, James Tory; Lagaunne, Timotius A

    2017-12-01

    Topic models [e.g., probabilistic latent semantic analysis, latent Dirichlet allocation (LDA), and supervised LDA] have been widely used for segmenting imagery. However, these models are confined to crisp segmentation, forcing a visual word (i.e., an image patch) to belong to one and only one topic. Yet, there are many images in which some regions cannot be assigned a crisp categorical label (e.g., transition regions between a foggy sky and the ground or between sand and water at a beach). In these cases, a visual word is best represented with partial memberships across multiple topics. To address this, we present a partial membership LDA (PM-LDA) model and an associated parameter estimation algorithm. This model can be useful for imagery, where a visual word may be a mixture of multiple topics. Experimental results on visual and sonar imagery show that PM-LDA can produce both crisp and soft semantic image segmentations; a capability previous topic modeling methods do not have.

  10. On the Allocation of Resources for Secondary Schools

    ERIC Educational Resources Information Center

    Haelermans, Carla; De Witte, Kristof; Blank, Jos L. T.

    2012-01-01

    This paper studies the optimal allocation of resources--in terms of school management, teachers, supporting employees and materials--in secondary schools. We use a flexible budget constrained output distance function model to estimate both technical and allocative efficiency scores for 448 Dutch secondary schools between 2002 and 2007. The results…

  11. Valuation of irrigation water in South-western Iran using a hedonic pricing model

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdoulkarim; Shahsavari, Zahra

    2011-12-01

    Population growth, improved socioeconomic conditions, increased demand for various types of water use, and a reduction in water supply has created more competition for scarce water supplies leveling many countries. Efficient allocation of water supplies between different economic sectors is therefore very important. Water valuation is a useful tool to determine water price. Water pricing can play a major part in improving water allocation by encouraging users to conserve scarce water resources, and promoting improvements in productivity. We used a hedonic pricing method to reveal the implicit value of irrigation water by analyzing agricultural land values in farms under the Doroodzan dam in South-western Iran. The method was applied to farms in which irrigation water came from wells and canals. The availability of irrigation water was one of the most important factors influencing land prices. The value of irrigation water in the farms investigated was estimated to be 0.046 per cubic meter. The estimated price for water was clearly higher than the price farmers currently pay for water in the area of study. Efficient water pricing could help the sustainability of the water resources. Farmers must therefore be informed of the real value of irrigation water used on their land.

  12. A Study on Cost Allocation in Nuclear Power Coupled with Desalination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, ManKi; Kim, SeungSu; Moon, KeeHwan

    As for a single-purpose desalination plant, there is no particular difficulty in computing the unit cost of the water, which is obtained by dividing the annual total costs by the output of fresh water. When it comes to a dual-purpose plant, cost allocation is needed between the two products. No cost allocation is needed in some cases where two alternatives producing the same water and electricity output are to be compared. In these cases, the consideration of the total cost is then sufficient. This study assumes MED (Multi-Effect Distillation) technology is adopted when nuclear power is coupled with desalination. Themore » total production cost of the two commodities in dual-purpose plant can easily be obtained by using costing methods, if the necessary raw data are available. However, it is not easy to calculate a separate cost for each product, because high-pressure steam plant costs cannot be allocated to one or the other without adopting arbitrary methods. Investigation on power credit method is carried out focusing on the cost allocation of combined benefits due to dual production, electricity and water. The illustrative calculation is taken from Preliminary Economic Feasibility Study of Nuclear Desalination in Madura Island, Indonesia. The study is being performed by BATAN (National Nuclear Energy Agency), KAERI (Korean Atomic Energy Research Institute) and under support of the IAEA (International Atomic Energy Agency) started in the year 2002 in order to perform a preliminary economic feasibility in providing the Madurese with sufficient power and potable water for the public and to support industrialization and tourism in Madura Region. The SMART reactor coupled with MED is considered to be an option to produce electricity and potable water. This study indicates that the correct recognition of combined benefits attributable to dual production is important in carrying out economics of desalination coupled with nuclear power. (authors)« less

  13. Methodology to Support Dynamic Function Allocation Policies Between Humans and Flight Deck Automation

    NASA Technical Reports Server (NTRS)

    Johnson, Eric N.

    2012-01-01

    Function allocation assigns work functions to all agents in a team, both human and automation. Efforts to guide function allocation systematically have been studied in many fields such as engineering, human factors, team and organization design, management science, cognitive systems engineering. Each field focuses on certain aspects of function allocation, but not all; thus, an independent discussion of each does not address all necessary aspects of function allocation. Four distinctive perspectives have emerged from this comprehensive review of literature on those fields: the technology-centered, human-centered, team-oriented, and work-oriented perspectives. Each perspective focuses on different aspects of function allocation: capabilities and characteristics of agents (automation or human), structure and strategy of a team, and work structure and environment. This report offers eight issues with function allocation that can be used to assess the extent to which each of issues exist on a given function allocation. A modeling framework using formal models and simulation was developed to model work as described by the environment, agents, their inherent dynamics, and relationships among them. Finally, to validate the framework and metrics, a case study modeled four different function allocations between a pilot and flight deck automation during the arrival and approach phases of flight.

  14. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    PubMed

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Sensitivity analysis of key components in large-scale hydroeconomic models

    NASA Astrophysics Data System (ADS)

    Medellin-Azuara, J.; Connell, C. R.; Lund, J. R.; Howitt, R. E.

    2008-12-01

    This paper explores the likely impact of different estimation methods in key components of hydro-economic models such as hydrology and economic costs or benefits, using the CALVIN hydro-economic optimization for water supply in California. In perform our analysis using two climate scenarios: historical and warm-dry. The components compared were perturbed hydrology using six versus eighteen basins, highly-elastic urban water demands, and different valuation of agricultural water scarcity. Results indicate that large scale hydroeconomic hydro-economic models are often rather robust to a variety of estimation methods of ancillary models and components. Increasing the level of detail in the hydrologic representation of this system might not greatly affect overall estimates of climate and its effects and adaptations for California's water supply. More price responsive urban water demands will have a limited role in allocating water optimally among competing uses. Different estimation methods for the economic value of water and scarcity in agriculture may influence economically optimal water allocation; however land conversion patterns may have a stronger influence in this allocation. Overall optimization results of large-scale hydro-economic models remain useful for a wide range of assumptions in eliciting promising water management alternatives.

  16. The Impacts of Different Types of Workload Allocation Models on Academic Satisfaction and Working Life

    ERIC Educational Resources Information Center

    Vardi, Iris

    2009-01-01

    Increasing demands on academic work have resulted in many academics working long hours and expressing dissatisfaction with their working life. These concerns have led to a number of faculties and universities adopting workload allocation models to improve satisfaction and better manage workloads. This paper reports on a study which examined the…

  17. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    NASA Astrophysics Data System (ADS)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  18. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  19. 1999 update of the Arizona highway cost allocation study

    DOT National Transportation Integrated Search

    1999-08-01

    The purpose of this report was to update the Arizona highway cost allocation study and to evaluate the alternative of using the new FHWA cost allocation model as a replacement The update revealed that the repeal of Arizona's weight-distance tas has l...

  20. A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield

    NASA Astrophysics Data System (ADS)

    Fan, Y.; Roupsard, O.; Bernoux, M.; Le Maire, G.; Panferov, O.; Kotowska, M. M.; Knohl, A.

    2015-11-01

    In order to quantify the effects of forests to oil palm conversion occurring in the tropics on land-atmosphere carbon, water and energy fluxes, we develop a new perennial crop sub-model CLM-Palm for simulating a palm plant functional type (PFT) within the framework of the Community Land Model (CLM4.5). CLM-Palm is tested here on oil palm only but is meant of generic interest for other palm crops (e.g., coconut). The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced so that each phytomer has its own prognostic leaf growth and fruit yield capacity but with shared stem and root components. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, separated by a thermal period. An important phenological phase is identified for the oil palm - the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization and leaf pruning are represented. Parameters introduced for the oil palm were calibrated and validated with field measurements of leaf area index (LAI), yield and net primary production (NPP) from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched notably well between simulation and observation (mean percentage error = 3 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites and sufficiently represent the significant nitrogen- and age-related site-to-site variability in NPP and yield. Results also indicate that seasonal dynamics

  1. Optimized maritime emergency resource allocation under dynamic demand.

    PubMed

    Zhang, Wenfen; Yan, Xinping; Yang, Jiaqi

    2017-01-01

    Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand.

  2. Optimized maritime emergency resource allocation under dynamic demand

    PubMed Central

    Yan, Xinping; Yang, Jiaqi

    2017-01-01

    Emergency resource is important for people evacuation and property rescue when accident occurs. The relief efforts could be promoted by a reasonable emergency resource allocation schedule in advance. As the marine environment is complicated and changeful, the place, type, severity of maritime accident is uncertain and stochastic, bringing about dynamic demand of emergency resource. Considering dynamic demand, how to make a reasonable emergency resource allocation schedule is challenging. The key problem is to determine the optimal stock of emergency resource for supplier centers to improve relief efforts. This paper studies the dynamic demand, and which is defined as a set. Then a maritime emergency resource allocation model with uncertain data is presented. Afterwards, a robust approach is developed and used to make sure that the resource allocation schedule performs well with dynamic demand. Finally, a case study shows that the proposed methodology is feasible in maritime emergency resource allocation. The findings could help emergency manager to schedule the emergency resource allocation more flexibly in terms of dynamic demand. PMID:29240792

  3. Approaches to Resource Allocation

    ERIC Educational Resources Information Center

    Dressel, Paul; Simon, Lou Anna Kimsey

    1976-01-01

    Various budgeting patterns and strategies are currently in use, each with its own particular strengths and weaknesses. Neither cost-benefit analysis nor cost-effectiveness analysis offers any better solution to the allocation problem than do the unsupported contentions of departments or the historical unit costs. An operable model that performs…

  4. Decision Support Modeling for Water-Use Planning With Sparse Data

    NASA Astrophysics Data System (ADS)

    Brainard, J. R.; Williams, A. A.; Tidwell, V. C.

    2006-12-01

    In the face of the combined impacts of drought and increased water demand in the arid southwest, water resource managers are more frequently being called upon to solve contentious water management issues. Such efforts are often confounded by sparse and inexact data. System dynamics provides a valuable modeling framework to explore pertinent uncertainties and test alternative system conceptualizations. In particular, the quickness of simulations and the object oriented modeling environment allows for efficient investigations into system uncertainty. Through sensitivity studies, the limits of uncertain variables can be determined and the accuracy of the underlying conceptual model can be tested. Here we apply system dynamic modeling to a New Mexico Office of the State Engineer Active Water Resource Management Priority Basin in southwest New Mexico where water managers are faced with developing water allocation plans under drought conditions. The Mimbres River Basin, one of several closed north-south trending structural basins in southwestern New Mexico, has a total drainage area of 13,300 km2 (5,140 mi2), most of which overlies an economically significant aquifer comprised of Tertiary and Quaternary alluvium. The Mimbres River heads in the Black and Los Pinos Mountain Ranges where elevations reach 3,051 m (10,011 ft) above sea level. The river is perennial in a segment of the upper reach where the basin is relatively narrow and where groundwater is limited. In this perennial reach, the Mimbres River is used extensively for agricultural irrigation in which those with senior rights are downstream of those with junior rights. Domestic wells, most of which have junior rights, impact river flow through pumping from the accompanying alluvial aquifer. This modeling effort concentrates on the upper reach of the Mimbres River where continued drought is expected to result in water shortages creating conflicts between water users. Objectives of this effort are 1) to develop a

  5. New Multi-objective Uncertainty-based Algorithm for Water Resource Models' Calibration

    NASA Astrophysics Data System (ADS)

    Keshavarz, Kasra; Alizadeh, Hossein

    2017-04-01

    Water resource models are powerful tools to support water management decision making process and are developed to deal with a broad range of issues including land use and climate change impacts analysis, water allocation, systems design and operation, waste load control and allocation, etc. These models are divided into two categories of simulation and optimization models whose calibration has been addressed in the literature where great relevant efforts in recent decades have led to two main categories of auto-calibration methods of uncertainty-based algorithms such as GLUE, MCMC and PEST and optimization-based algorithms including single-objective optimization such as SCE-UA and multi-objective optimization such as MOCOM-UA and MOSCEM-UA. Although algorithms which benefit from capabilities of both types, such as SUFI-2, were rather developed, this paper proposes a new auto-calibration algorithm which is capable of both finding optimal parameters values regarding multiple objectives like optimization-based algorithms and providing interval estimations of parameters like uncertainty-based algorithms. The algorithm is actually developed to improve quality of SUFI-2 results. Based on a single-objective, e.g. NSE and RMSE, SUFI-2 proposes a routine to find the best point and interval estimation of parameters and corresponding prediction intervals (95 PPU) of time series of interest. To assess the goodness of calibration, final results are presented using two uncertainty measures of p-factor quantifying percentage of observations covered by 95PPU and r-factor quantifying degree of uncertainty, and the analyst has to select the point and interval estimation of parameters which are actually non-dominated regarding both of the uncertainty measures. Based on the described properties of SUFI-2, two important questions are raised, answering of which are our research motivation: Given that in SUFI-2, final selection is based on the two measures or objectives and on the other

  6. Using WAS/MYWAS For Water Management And Conflict Resolution

    NASA Astrophysics Data System (ADS)

    Fisher, F. M.; Huber, A. T.

    2008-12-01

    Water is a special economic commodity that cannot be efficiently allocated in a free private market because of social values that are not private ones. The WAS (Water Allocation System) model and its multiyear extension (MYWAS) use demand curves as well as supply conditions to allocate water so as to optimize the total net benefits it brings. However, they permit the user to prescribe policies and constraints on the allocation process so as to take social values into account. These models can be used to perform cost- benefit analyses of projected infrastructure projects taking into account the system-wide effects such projects will bring about. MYWAS, in particular will choose from a menu of possible projects and provide guidance on which ones should be built, when, in what order, and to what capacity. It is a very powerful tool that can be used under varying assumed conditions of climatic conditions. WAS models have been built for Israel, Jordan, and Palestine, and MYWAS models are underway for all three. Aside from their value as domestic management tools, WAS and MYWAS also offer assistance in resolving water disputes, turning what appear to be zero-sum games into win-win situations. They do so by concentrating on water value rather than water quantity and monetizing the disputes in question. In so doing, they provide a method of guiding cooperation in water and separating the analysis of optimal water usage from the often unresolvable question of water ownership and water rights. We have shown in the case of the Middle East, that the gains from such cooperation are typically worth more than the value of fairly large changes in water ownership the size of which is greatly reduced by cooperation. Moreover, disputing parties need not wait for the resolution of the water ownership issue to begin a cooperation that benefits all and permits flexible readjustment of water usage as situations (climatic conditions, populations, etc.) change. They can agree to pay for

  7. Shallow Alluvial Aquifer Ground Water System and Surface Water/Ground Water Interaction, Boulder Creek, Boulder, Colorado

    NASA Astrophysics Data System (ADS)

    Babcock, K. P.; Ge, S.; Crifasi, R. R.

    2006-12-01

    model will quantitatively assess the interaction between surface water and ground water, particularly the amount of exchange between the creek and ground water and to what extent these systems influence each other. Model sensitivity study will help identify important system parameters. A comprehensive model of the study area will serve as a tool for efficiently allocating water throughout the study area (from Boulder Creek). Water allocation is needed to prevent the eutrophication of the ponds, improve fishery management, and efficiently meet the water rights obligations in the watershed.

  8. Does Distraction Reduce the Alcohol-Aggression Relation? A Cognitive and Behavioral Test of the Attention-Allocation Model

    ERIC Educational Resources Information Center

    Gallagher, Kathryn E.; Parrott, Dominic J.

    2011-01-01

    Objective: This study provided the first direct test of the cognitive underpinnings of the attention-allocation model and attempted to replicate and extend past behavioral findings for this model as an explanation for alcohol-related aggression. Method: A diverse community sample (55% African American) of men (N = 159) between 21 and 35 years of…

  9. Improved water resource management using three dimensional groundwater modelling for a highly complex environmental

    NASA Astrophysics Data System (ADS)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2017-04-01

    Proper allocation and management of groundwater is an important and critical challenge under rising water demands of various environmental sectors but good groundwater quality is often limited because of urbanization and contamination of aquifers. Given the predictive capability of groundwater models, they are often the only viable means of providing input to water management decisions. However, modelling flow and transport processes can be difficult due to their unknown subsurface heterogeneity and typically unknown distribution of contaminants. As a result water resource management tasks are based on uncertain assumption on contaminants patterns and this uncertainty is typically not incorporated into the assessment of risks associated with different proposed management scenarios. A three-dimensional groundwater model was used to improve water resource management for a study area, where drinking water production is close to different former landfills and industrial areas. To avoid drinking water contamination, artificial groundwater recharge with surface water into the gravel aquifer is used to create a hydraulic barrier between contaminated sites and drinking water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction and magnitude between existing observation points using a newly developed three point estimation method for a large amount of scenarios was carried out. Due to the numerous observation points 32 triangles (three-points) were created which cover the entire area around the Hardwald. We demonstrated that systematically applying our developed methodology helps to identify important locations which are sensitive to changing boundary conditions and where additional protection is required without highly computational demanding transport modelling. The presented integrated approach using the flow direction

  10. A generic hydroeconomic model to assess future water scarcity

    NASA Astrophysics Data System (ADS)

    Neverre, Noémie; Dumas, Patrice

    2015-04-01

    We developed a generic hydroeconomic model able to confront future water supply and demand on a large scale, taking into account man-made reservoirs. The assessment is done at the scale of river basins, using only globally available data; the methodology can thus be generalized. On the supply side, we evaluate the impacts of climate change on water resources. The available quantity of water at each site is computed using the following information: runoff is taken from the outputs of CNRM climate model (Dubois et al., 2010), reservoirs are located using Aquastat, and the sub-basin flow-accumulation area of each reservoir is determined based on a Digital Elevation Model (HYDRO1k). On the demand side, agricultural and domestic demands are projected in terms of both quantity and economic value. For the agricultural sector, globally available data on irrigated areas and crops are combined in order to determine irrigated crops localization. Then, crops irrigation requirements are computed for the different stages of the growing season using Allen (1998) method with Hargreaves potential evapotranspiration. Irrigation water economic value is based on a yield comparison approach between rainfed and irrigated crops. Potential irrigated and rainfed yields are taken from LPJmL (Blondeau et al., 2007), or from FAOSTAT by making simple assumptions on yield ratios. For the domestic sector, we project the combined effects of demographic growth, economic development and water cost evolution on future demands. The method consists in building three-blocks inverse demand functions where volume limits of the blocks evolve with the level of GDP per capita. The value of water along the demand curve is determined from price-elasticity, price and demand data from the literature, using the point-expansion method, and from water costs data. Then projected demands are confronted to future water availability. Operating rules of the reservoirs and water allocation between demands are based on

  11. Enabling Real-time Water Decision Support Services Using Model as a Service

    NASA Astrophysics Data System (ADS)

    Zhao, T.; Minsker, B. S.; Lee, J. S.; Salas, F. R.; Maidment, D. R.; David, C. H.

    2014-12-01

    Through application of computational methods and an integrated information system, data and river modeling services can help researchers and decision makers more rapidly understand river conditions under alternative scenarios. To enable this capability, workflows (i.e., analysis and model steps) are created and published as Web services delivered through an internet browser, including model inputs, a published workflow service, and visualized outputs. The RAPID model, which is a river routing model developed at University of Texas Austin for parallel computation of river discharge, has been implemented as a workflow and published as a Web application. This allows non-technical users to remotely execute the model and visualize results as a service through a simple Web interface. The model service and Web application has been prototyped in the San Antonio and Guadalupe River Basin in Texas, with input from university and agency partners. In the future, optimization model workflows will be developed to link with the RAPID model workflow to provide real-time water allocation decision support services.

  12. Allometric growth and allocation in forests: a perspective from FLUXNET.

    PubMed

    Wolf, Adam; Field, Christopher B; Berry, Joseph A

    2011-07-01

    To develop a scheme for partitioning the products of photosynthesis toward different biomass components in land-surface models, a database on component mass and net primary productivity (NPP), collected from FLUXNET sites, was examined to determine allometric patterns of allocation. We found that NPP per individual of foliage (Gfol), stem and branches (Gstem), coarse roots (Gcroot) and fine roots (Gfroot) in individual trees is largely explained (r2 = 67-91%) by the magnitude of total NPP per individual (G). Gfol scales with G isometrically, meaning it is a fixed fraction of G ( 25%). Root-shoot trade-offs were manifest as a slow decline in Gfroot, as a fraction of G, from 50% to 25% as stands increased in biomass, with Gstem and Gcroot increasing as a consequence. These results indicate that a functional trade-off between aboveground and belowground allocation is essentially captured by variations in G, which itself is largely governed by stand biomass and only secondarily by site-specific resource availability. We argue that forests are characterized by strong competition for light, observed as a race for individual trees to ascend by increasing partitioning toward wood, rather than by growing more leaves, and that this competition stronglyconstrains the allocational plasticity that trees may be capable of. The residual variation in partitioning was not related to climatic or edaphic factors, nor did plots with nutrient or water additions show a pattern of partitioning distinct from that predicted by G alone. These findings leverage short-term process studies of the terrestrial carbon cycle to improve decade-scale predictions of biomass accumulation in forests. An algorithm for calculating partitioning in land-surface models is presented.

  13. Variability in Parameter Estimates and Model Fit across Repeated Allocations of Items to Parcels

    ERIC Educational Resources Information Center

    Sterba, Sonya K.; MacCallum, Robert C.

    2010-01-01

    Different random or purposive allocations of items to parcels within a single sample are thought not to alter structural parameter estimates as long as items are unidimensional and congeneric. If, additionally, numbers of items per parcel and parcels per factor are held fixed across allocations, different allocations of items to parcels within a…

  14. Optimal manpower allocation in aircraft line maintenance (Case in GMF AeroAsia)

    NASA Astrophysics Data System (ADS)

    Puteri, V. E.; Yuniaristanto, Hisjam, M.

    2017-11-01

    This paper presents a mathematical modeling to find the optimal manpower allocation in an aircraft line maintenance. This research focuses on assigning the number and type of manpower that allocated to each service. This study considers the licenced worker or Aircraft Maintenance Engineer Licence (AMEL) and non licenced worker or Aircraft Maintenance Technician (AMT). In this paper, we also consider the relationship of each station in terms of the possibility to transfer the manpower among them. The optimization model considers the number of manpowers needed for each service and the requirement of AMEL worker. This paper aims to determine the optimal manpower allocation using the mathematical modeling. The objective function of the model is to find the minimum employee expenses. The model was solved using the ILOG CPLEX software. The results show that the manpower allocation can meet the manpower need and the all load can be served.

  15. Administrative Decision Making and Resource Allocation.

    ERIC Educational Resources Information Center

    Sardy, Susan; Sardy, Hyman

    This paper considers selected aspects of the systems analysis of administrative decisionmaking regarding resource allocations in an educational system. A model of the instructional materials purchase system is presented. The major components of this model are: environment, input, decision process, conversion structure, conversion process, output,…

  16. Does distraction reduce the alcohol-aggression relation? A cognitive and behavioral test of the attention-allocation model.

    PubMed

    Gallagher, Kathryn E; Parrott, Dominic J

    2011-06-01

    This study provided the first direct test of the cognitive underpinnings of the attention-allocation model and attempted to replicate and extend past behavioral findings for this model as an explanation for alcohol-related aggression. A diverse community sample (55% African American) of men (N = 159) between 21 and 35 years of age (M = 25.80) were randomly assigned to 1 of 2 beverage conditions (i.e., alcohol, no-alcohol control) and 1 of 2 distraction conditions (i.e., distraction, no-distraction). Following beverage consumption, participants were provoked via reception of electric shocks and a verbal insult from a fictitious male opponent. Participants' attention allocation to aggression words (i.e., aggression bias) and physical aggression were measured using a dot probe task and a shock-based aggression task, respectively. Intoxicated men whose attention was distracted displayed significantly lower levels of aggression bias and enacted significantly less physical aggression than intoxicated men whose attention was not distracted. However, aggression bias did not account for the lower levels of alcohol-related aggression in the distraction, relative to the no-distraction, condition. These results replicated and extended past evidence that cognitive distraction is associated with lower levels of alcohol-related aggression in highly provoked males and provide the first known cognitive data to support the attentional processes posited by the attention-allocation model. Discussion focused on how these data inform intervention programming for alcohol-related aggression. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  17. Does Distraction Reduce the Alcohol-Aggression Relation?: A Cognitive and Behavioral Test of the Attention-Allocation Model

    PubMed Central

    Gallagher, Kathryn E.; Parrott, Dominic J.

    2011-01-01

    Objective This study provided the first direct test of the cognitive underpinnings of the attention-allocation model and attempted to replicate and extend past behavioral findings for this model as an explanation for alcohol-related aggression. Method A diverse community sample (55% African-American) of males (N = 159) between 21 and 35 years of age (M = 25.80) were randomly assigned to one of two beverage conditions (i.e., alcohol, no-alcohol control) and one of two distraction conditions (i.e., distraction, no-distraction). Following beverage consumption, participants were provoked via reception of electric shocks and a verbal insult from a fictitious male opponent. Participants’ attention-allocation to aggression words (i.e., aggression bias) and physical aggression were measured using a dot probe task and a shock-based aggression task, respectively. Results Intoxicated men whose attention was distracted displayed significantly lower levels of aggression bias and enacted significantly less physical aggression than intoxicated men whose attention was not distracted. However, aggression bias did not account for the lower levels of alcohol-related aggression in the distraction, relative to the no-distraction, condition. Conclusions These results replicated and extended past evidence that cognitive distraction is associated with lower levels of alcohol-related aggression in highly provoked males and provide the first known cognitive data to support the attentional processes posited by the attention-allocation model. Discussion focused on how these data inform intervention programming for alcohol-related aggression. PMID:21500889

  18. Incentives for Optimal Multi-level Allocation of HIV Prevention Resources

    PubMed Central

    Malvankar, Monali M.; Zaric, Gregory S.

    2013-01-01

    HIV/AIDS prevention funds are often allocated at multiple levels of decision-making. Optimal allocation of HIV prevention funds maximizes the number of HIV infections averted. However, decision makers often allocate using simple heuristics such as proportional allocation. We evaluate the impact of using incentives to encourage optimal allocation in a two-level decision-making process. We model an incentive based decision-making process consisting of an upper-level decision maker allocating funds to a single lower-level decision maker who then distributes funds to local programs. We assume that the lower-level utility function is linear in the amount of the budget received from the upper-level, the fraction of funds reserved for proportional allocation, and the number of infections averted. We assume that the upper level objective is to maximize the number of infections averted. We illustrate with an example using data from California, U.S. PMID:23766551

  19. Research on air and missile defense task allocation based on extended contract net protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzhi; Wang, Gang

    2017-10-01

    Based on the background of air and missile defense distributed element corporative engagement, the interception task allocation problem of multiple weapon units with multiple targets under network condition is analyzed. Firstly, a mathematical model of task allocation is established by combat task decomposition. Secondly, the initialization assignment based on auction contract and the adjustment allocation scheme based on swap contract were introduced to the task allocation. Finally, through the simulation calculation of typical situation, the model can be used to solve the task allocation problem in complex combat environment.

  20. Development of a Reservoir System Operation Model for Water Sustainability in the Yaqui River Basin

    NASA Astrophysics Data System (ADS)

    Mounir, A.; Che, D.; Robles-Morua, A.; Kauneckis, D.

    2017-12-01

    The arid state of Sonora, Mexico underwent the Sonora SI project to provide additional water supply to the capital of Hermosillo. The main component of the project involves an interbasin transfer from the Yaqui River Basin (YRB) to the Sonora River Basin via the Independencia aqueduct. This project has generated conflicts over water among different social sectors in the YRB. To improve the management of the Yaqui reservoir system, we developed a daily watershed model. This model allowed us to predict the amount of water available in different regions of the basin. We integrated this simulation to an optimization model which calculates the best water allocation according to water rights established in Mexico's National Water Law. We compared different precipitation forcing scenarios: (1) a network of ground observations from Mexican water agencies during the historical period of 1980-2013, (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution, and (3) we will be studying a future forecast scenario. The simulation results were compared to historical observations at the three reservoirs existing in the YRB to generate confidence in the simulation tools. Our results are presented in the form of flow duration, reliability and exceedance frequency curves that are commonly used in the water management agencies. Through this effort, we anticipate building confidence among regional stakeholders in utilizing hydrological models in the development of reservoir operation policies.

  1. Managing water and salinity with desalination, conveyance, conservation, waste-water treatment and reuse to counteract climate variability in Gaza

    NASA Astrophysics Data System (ADS)

    Rosenberg, D. E.; Aljuaidi, A. E.; Kaluarachchi, J. J.

    2009-12-01

    We include demands for water of different salinity concentrations as input parameters and decision variables in a regional hydro-economic optimization model. This specification includes separate demand functions for saline water. We then use stochastic non-linear programming to jointly identify the benefit maximizing set of infrastructure expansions, operational allocations, and use of different water quality types under climate variability. We present a detailed application for the Gaza Strip. The application considers building desalination and waste-water treatment plants and conveyance pipelines, initiating water conservation and leak reduction programs, plus allocating and transferring water of different qualities among agricultural, industrial, and urban sectors and among districts. Results show how to integrate a mix of supply enhancement, conservation, water quality improvement, and water quality management actions into a portfolio that can economically and efficiently respond to changes and uncertainties in surface and groundwater availability due to climate variability. We also show how to put drawn-down and saline Gaza aquifer water to more sustainable and economical use.

  2. Stochastic resource allocation in emergency departments with a multi-objective simulation optimization algorithm.

    PubMed

    Feng, Yen-Yi; Wu, I-Chin; Chen, Tzu-Li

    2017-03-01

    The number of emergency cases or emergency room visits rapidly increases annually, thus leading to an imbalance in supply and demand and to the long-term overcrowding of hospital emergency departments (EDs). However, current solutions to increase medical resources and improve the handling of patient needs are either impractical or infeasible in the Taiwanese environment. Therefore, EDs must optimize resource allocation given limited medical resources to minimize the average length of stay of patients and medical resource waste costs. This study constructs a multi-objective mathematical model for medical resource allocation in EDs in accordance with emergency flow or procedure. The proposed mathematical model is complex and difficult to solve because its performance value is stochastic; furthermore, the model considers both objectives simultaneously. Thus, this study develops a multi-objective simulation optimization algorithm by integrating a non-dominated sorting genetic algorithm II (NSGA II) with multi-objective computing budget allocation (MOCBA) to address the challenges of multi-objective medical resource allocation. NSGA II is used to investigate plausible solutions for medical resource allocation, and MOCBA identifies effective sets of feasible Pareto (non-dominated) medical resource allocation solutions in addition to effectively allocating simulation or computation budgets. The discrete event simulation model of ED flow is inspired by a Taiwan hospital case and is constructed to estimate the expected performance values of each medical allocation solution as obtained through NSGA II. Finally, computational experiments are performed to verify the effectiveness and performance of the integrated NSGA II and MOCBA method, as well as to derive non-dominated medical resource allocation solutions from the algorithms.

  3. Quantifying and understanding reproductive allocation schedules in plants.

    PubMed

    Wenk, Elizabeth Hedi; Falster, Daniel S

    2015-12-01

    A plant's reproductive allocation (RA) schedule describes the fraction of surplus energy allocated to reproduction as it increases in size. While theorists use RA schedules as the connection between life history and energy allocation, little is known about RA schedules in real vegetation. Here we review what is known about RA schedules for perennial plants using studies either directly quantifying RA or that collected data from which the shape of an RA schedule can be inferred. We also briefly review theoretical models describing factors by which variation in RA may arise. We identified 34 studies from which aspects of an RA schedule could be inferred. Within those, RA schedules varied considerably across species: some species abruptly shift all resources from growth to reproduction; most others gradually shift resources into reproduction, but under a variety of graded schedules. Available data indicate the maximum fraction of energy allocated to production ranges from 0.1 to 1 and that shorter lived species tend to have higher initial RA and increase their RA more quickly than do longer-lived species. Overall, our findings indicate, little data exist about RA schedules in perennial plants. Available data suggest a wide range of schedules across species. Collection of more data on RA schedules would enable a tighter integration between observation and a variety of models predicting optimal energy allocation, plant growth rates, and biogeochemical cycles.

  4. Concurrent airline fleet allocation and aircraft design with profit modeling for multiple airlines

    NASA Astrophysics Data System (ADS)

    Govindaraju, Parithi

    A "System of Systems" (SoS) approach is particularly beneficial in analyzing complex large scale systems comprised of numerous independent systems -- each capable of independent operations in their own right -- that when brought in conjunction offer capabilities and performance beyond the constituents of the individual systems. The variable resource allocation problem is a type of SoS problem, which includes the allocation of "yet-to-be-designed" systems in addition to existing resources and systems. The methodology presented here expands upon earlier work that demonstrated a decomposition approach that sought to simultaneously design a new aircraft and allocate this new aircraft along with existing aircraft in an effort to meet passenger demand at minimum fleet level operating cost for a single airline. The result of this describes important characteristics of the new aircraft. The ticket price model developed and implemented here enables analysis of the system using profit maximization studies instead of cost minimization. A multiobjective problem formulation has been implemented to determine characteristics of a new aircraft that maximizes the profit of multiple airlines to recognize the fact that aircraft manufacturers sell their aircraft to multiple customers and seldom design aircraft customized to a single airline's operations. The route network characteristics of two simple airlines serve as the example problem for the initial studies. The resulting problem formulation is a mixed-integer nonlinear programming problem, which is typically difficult to solve. A sequential decomposition strategy is applied as a solution methodology by segregating the allocation (integer programming) and aircraft design (non-linear programming) subspaces. After solving a simple problem considering two airlines, the decomposition approach is then applied to two larger airline route networks representing actual airline operations in the year 2005. The decomposition strategy serves

  5. THE 1985 NAPAP EMISSIONS INVENTORY: DEVELOPMENT OF SPECIES ALLOCATION FACTORS

    EPA Science Inventory

    The report describes the methodologies and data bases used to develop species allocation factors and data processing software used to develop the 1985 National Acid Precipitation Assessment Program (NAPAP) Modelers' Emissions Inventory (Version 2). Species allocation factors were...

  6. The past, present and future of HIV, AIDS and resource allocation

    PubMed Central

    2009-01-01

    Background How should HIV and AIDS resources be allocated to achieve the greatest possible impact? This paper begins with a theoretical discussion of this issue, describing the key elements of an "evidence-based allocation strategy". While it is noted that the quality of epidemiological and economic data remains inadequate to define such an optimal strategy, there do exist tools and research which can lead countries in a way that they can make allocation decisions. Furthermore, there are clear indications that most countries are not allocating their HIV and AIDS resources in a way which is likely to achieve the greatest possible impact. For example, it is noted that neighboring countries, even when they have a similar prevalence of HIV, nonetheless often allocate their resources in radically different ways. These differing allocation patterns appear to be attributable to a number of different issues, including a lack of data, contradictory results in existing data, a need for overemphasizing a multisectoral response, a lack of political will, a general inefficiency in the use of resources when they do get allocated, poor planning and a lack of control over the way resources get allocated. Methods There are a number of tools currently available which can improve the resource-allocation process. Tools such as the Resource Needs Model (RNM) can provide policymakers with a clearer idea of resource requirements, whereas other tools such as Goals and the Allocation by Cost-Effectiveness (ABCE) models can provide countries with a clearer vision of how they might reallocate funds. Results Examples from nine different countries provide information about how policymakers are trying to make their resource-allocation strategies more "evidence based". By identifying the challenges and successes of these nine countries in making more informed allocation decisions, it is hoped that future resource-allocation decisions for all countries can be improved. Conclusion We discuss the

  7. The Modular Modeling System (MMS): A modeling framework for water- and environmental-resources management

    USGS Publications Warehouse

    Leavesley, G.H.; Markstrom, S.L.; Viger, R.J.

    2004-01-01

    The interdisciplinary nature and increasing complexity of water- and environmental-resource problems require the use of modeling approaches that can incorporate knowledge from a broad range of scientific disciplines. The large number of distributed hydrological and ecosystem models currently available are composed of a variety of different conceptualizations of the associated processes they simulate. Assessment of the capabilities of these distributed models requires evaluation of the conceptualizations of the individual processes, and the identification of which conceptualizations are most appropriate for various combinations of criteria, such as problem objectives, data constraints, and spatial and temporal scales of application. With this knowledge, "optimal" models for specific sets of criteria can be created and applied. The U.S. Geological Survey (USGS) Modular Modeling System (MMS) is an integrated system of computer software that has been developed to provide these model development and application capabilities. MMS supports the integration of models and tools at a variety of levels of modular design. These include individual process models, tightly coupled models, loosely coupled models, and fully-integrated decision support systems. A variety of visualization and statistical tools are also provided. MMS has been coupled with the Bureau of Reclamation (BOR) object-oriented reservoir and river-system modeling framework, RiverWare, under a joint USGS-BOR program called the Watershed and River System Management Program. MMS and RiverWare are linked using a shared relational database. The resulting database-centered decision support system provides tools for evaluating and applying optimal resource-allocation and management strategies to complex, operational decisions on multipurpose reservoir systems and watersheds. Management issues being addressed include efficiency of water-resources management, environmental concerns such as meeting flow needs for

  8. Allocation of authority in European health policy.

    PubMed

    Adolph, Christopher; Greer, Scott L; Massard da Fonseca, Elize

    2012-11-01

    Although many study the effects of different allocations of health policy authority, few ask why countries assign responsibility over different policies as they do. We test two broad theories: fiscal federalism, which predicts rational governments will concentrate information-intensive operations at lower levels, and redistributive and regulatory functions at higher levels; and "politicized federalism", which suggests a combination of systematic and historically idiosyncratic political variables interfere with efficient allocation of authority. Drawing on the WHO Health in Transition country profiles, we present new data on the allocation of responsibility for key health care policy tasks (implementation, provision, finance, regulation, and framework legislation) and policy areas (primary, secondary and tertiary care, public health and pharmaceuticals) in the 27 EU member states and Switzerland. We use a Bayesian multinomial mixed logit model to analyze how different countries arrive at different allocations of authority over each task and area of health policy, and find the allocation of powers broadly follows fiscal federalism. Responsibility for pharmaceuticals, framework legislation, and most finance lodges at the highest levels of government, acute and primary care in the regions, and provision at the local and regional levels. Where allocation does not follow fiscal federalism, it appears to reflect ethnic divisions, the population of states and regions, the presence of mountainous terrain, and the timing of region creation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Reproductive allocation strategies in desert and Mediterranean populations of annual plants grown with and without water stress.

    PubMed

    Aronson, J; Kigel, J; Shmida, A

    1993-03-01

    Reproductive effort (relative allocation of biomass to diaspore production) was compared in matched pairs of Mediterranean and desert populations of three unrelated annual species, Erucaria hispanica (L.) Druce, Bromus fasciculatus C. Presl. and Brachypodium distachyon (L.) Beauv., grown under high and low levels of water availability in a common-environment experiment. Desert populations in all three species showed higher reproductive effort than corresponding Mediterranean populations, as expressed by both a reproductive index (RI= reproductive biomass/vegetative biomass), and a reproductive efficiency index (REI=number of diaspores/total plant biomass). Moreover, in E. hispanica and Brachypodium distachyon, inter-populational differences in reproductive effort were greater under water stress, the main limiting factor for plant growth in the desert. These results indicate that variability in reproductive effort in response to drought is a critical and dynamic component of life history strategies in annual species in heterogeneous, unpredictable xeric environments. When subjected to water stress the Mediterranean populations of E. hispanica and B. distachyon showed greater plasticity (e.g. had a greater reduction) in reproductive effort than the desert populations, while in Bromus fasciculatus both populations showed similar amounts of plasticity.

  10. A modified MBR system with post advanced purification for domestic water supply system in 180-day CELSS: Construction, pollutant removal and water allocation.

    PubMed

    Li, Ting; Zhang, Liangchang; Ai, Weidang; Dong, Wenyi; Yu, Qingni

    2018-05-22

    Water supply was vital to people's life, especially inside Controlled Ecological Life Support System (CELSS) for long-term space exploration. A platform of 4-person-180-day integrated experiment inside a CELSS including 6 cabins called 'SPACEnter' was established in Shenzhen, China. Based on this platform, a Membrane Bio-Reactor (MBR) system configuring post advanced purification, including I-MBR, II-MBR, nanofiltration (NF), reverse osmosis (RO), ion-exchange (IE), polyiodide disinfection (PI) and mineralization (MC) stages, used as a Domestic Water Supply System (DWSS) to guarantee crew's daily life was constructed. The performance of DWSS to treat the real plant cabin's condensate water was examined during continuously 180-day experiment. The long-term operation results showed that, though the influent pollutant load changed as the experiment processing, the system exhibited stable performance on pollutants removal with average effluent TOC<0.5 mg/L, NH 4 + -N<0.02 mg/L, NO 3 - -N<0.25 mg/L, NO 2 - -N<0.001 mg/L, and displayed good capacity for controlling the trace metal ions and microorganism. The effluent through such modified MBR system was sufficiently allocated as hygiene water and potable water, and the average value was 39.69 and 10.93 L/d, respectively. The consumption of the modified MBR process was within the designed allowable scope. The outcomes of this study will be helpful for facilitating future applications of MBR as bio-based water supply technology in the CELSS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  12. Who owns Australia's water--elements of an effective regulatory model.

    PubMed

    McKay, J

    2003-01-01

    This paper identifies and describes a number of global trends in regulatory theory and legal scholarship. It points out the huge level of complexity demanded by globalisation and the unfortunate complication of this is that there is legal indeterminacy. The legal indeterminacy springs from the desire to amend and alter existing models. That has been the thrust of the Council of Australian Governments changes to adapt and add huge amounts of complexity to a flawed system. This paper argues that an effective water regulatory model requires a fundamental re-examination of the concept of water ownership and a capturing by the State of the right to allocate rainfall. This foundation is effective and the way forward to deal with the key issues in this transition phase. The second key element to an effective regulatory model is the concept of performance-based assessment. This requires information and schemes to be set up to work out ways to monitor and evaluate the performance of the utility on selected criteria. For Australia at present there is a dire lack of agreed criteria on these key issues and these have the potential to pull apart the whole process. The key issues are indigenous rights, governance issues, public participation, alteration of pre-existing rights and incorporation of environmental requirements.

  13. Can hydro-economic river basin models simulate water shadow prices under asymmetric access?

    PubMed

    Kuhn, A; Britz, W

    2012-01-01

    Hydro-economic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit 'aggregate optimization' problems with a single, aggregate objective function. Often unintended, this format implicitly assumes that decisions on water allocation are made via central planning or functioning markets such as to maximize social welfare. In the absence of perfect water markets, however, individually optimal decisions by water users will differ from the social optimum. Classical aggregate HERBMs cannot simulate that situation and thus might be unable to describe existing institutions governing access to water and might produce biased results for alternative ones. We propose a new solution format for HERBMs, based on the format of the mixed complementarity problem (MCP), where modified shadow price relations express spatial externalities resulting from asymmetric access to water use. This new problem format, as opposed to commonly used linear (LP) or non-linear programming (NLP) approaches, enables the simultaneous simulation of numerous 'independent optimization' decisions by multiple water users while maintaining physical interdependences based on water use and flow in the river basin. We show that the alternative problem format allows the formulation HERBMs that yield more realistic results when comparing different water management institutions.

  14. Adaptive allocation for binary outcomes using decreasingly informative priors.

    PubMed

    Sabo, Roy T

    2014-01-01

    A method of outcome-adaptive allocation is presented using Bayes methods, where a natural lead-in is incorporated through the use of informative yet skeptical prior distributions for each treatment group. These prior distributions are modeled on unobserved data in such a way that their influence on the allocation scheme decreases as the trial progresses. Simulation studies show this method to behave comparably to the Bayesian adaptive allocation method described by Thall and Wathen (2007), who incorporate a natural lead-in through sample-size-based exponents.

  15. Evaluating the sources of water to wells: Three techniques for metamodeling of a groundwater flow model

    USGS Publications Warehouse

    Fienen, Michael N.; Nolan, Bernard T.; Feinstein, Daniel T.

    2016-01-01

    For decision support, the insights and predictive power of numerical process models can be hampered by insufficient expertise and computational resources required to evaluate system response to new stresses. An alternative is to emulate the process model with a statistical “metamodel.” Built on a dataset of collocated numerical model input and output, a groundwater flow model was emulated using a Bayesian Network, an Artificial neural network, and a Gradient Boosted Regression Tree. The response of interest was surface water depletion expressed as the source of water-to-wells. The results have application for managing allocation of groundwater. Each technique was tuned using cross validation and further evaluated using a held-out dataset. A numerical MODFLOW-USG model of the Lake Michigan Basin, USA, was used for the evaluation. The performance and interpretability of each technique was compared pointing to advantages of each technique. The metamodel can extend to unmodeled areas.

  16. An integrated model for the assessment of global water resources Part 2: Applications and assessments

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K.

    2008-07-01

    To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3) and the allocation of environmental flow requirements can alter the population under high water stress by approximately -11% to +5% globally. The integrated model is applicable to assessments of various global

  17. Seeing beyond borders: a game theoretic approach to anticipate the effect of satellite monitoring data on transboundary freshwater allocation.

    NASA Astrophysics Data System (ADS)

    Muller, M. F.; Gorelick, S.; Muller-Itten, M. C.

    2015-12-01

    The allocation of transboundary freshwater resources is a ubiquitous challenge with direct repercussions on the political stability of the concerned region. Under the right conditions, the need to share scarce water resources can act as a catalyst for dialogue between otherwise hostile neighbors. Yet the strategic reluctance of the involved parties to share water diversion and use data remains a major barrier that raises the probability of conflict. In that context, high-quality satellite data are progressively available to monitor water resources beyond political boundaries. These datasets have an increasing role to play in the allocation of shared waters. We develop a game theoretical framework to predict their effect on transboundary water negotiations. We consider repetitions of a game between two countries that have a water allocation agreement for transboundary river flow. The upstream country can observe the available flow in any given year and decide whether or not to provide her neighbor with the agreed upon river discharge. The downstream country cannot observe the initially available flow. He only observes the water allocated provided by his upstream neighbor and can take actions to impose a sanction on her if he can confidently determine that the agreement has been breached. In that context, satellite monitoring data will affect the informational advantage of the upstream country and increase her probability of either abiding by the agreement or being caught when breaching it. We find that the informed equilibrium will produce a lower probability of conflict, but changes in both players' positions regarding equitable allocation may destabilize the existing agreement in the short term.

  18. Innovative Approach for Developing Spacecraft Interior Acoustic Requirement Allocation

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Dandaroy, Indranil; Allen, Christopher S.

    2016-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) is an American spacecraft for carrying four astronauts during deep space missions. This paper describes an innovative application of Power Injection Method (PIM) for allocating Orion cabin continuous noise Sound Pressure Level (SPL) limits to the sound power level (PWL) limits of major noise sources in the Environmental Control and Life Support System (ECLSS) during all mission phases. PIM is simulated using both Statistical Energy Analysis (SEA) and Hybrid Statistical Energy Analysis-Finite Element (SEA-FE) models of the Orion MPCV to obtain the transfer matrix from the PWL of the noise sources to the acoustic energies of the receivers, i.e., the cavities associated with the cabin habitable volume. The goal of the allocation strategy is to control the total energy of cabin habitable volume for maintaining the required SPL limits. Simulations are used to demonstrate that applying the allocated PWLs to the noise sources in the models indeed reproduces the SPL limits in the habitable volume. The effects of Noise Control Treatment (NCT) on allocated noise source PWLs are investigated. The measurement of source PWLs of involved fan and pump development units are also discussed as it is related to some case-specific details of the allocation strategy discussed here.

  19. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  20. Robust allocation of a defensive budget considering an attacker's private information.

    PubMed

    Nikoofal, Mohammad E; Zhuang, Jun

    2012-05-01

    Attackers' private information is one of the main issues in defensive resource allocation games in homeland security. The outcome of a defense resource allocation decision critically depends on the accuracy of estimations about the attacker's attributes. However, terrorists' goals may be unknown to the defender, necessitating robust decisions by the defender. This article develops a robust-optimization game-theoretical model for identifying optimal defense resource allocation strategies for a rational defender facing a strategic attacker while the attacker's valuation of targets, being the most critical attribute of the attacker, is unknown but belongs to bounded distribution-free intervals. To our best knowledge, no previous research has applied robust optimization in homeland security resource allocation when uncertainty is defined in bounded distribution-free intervals. The key features of our model include (1) modeling uncertainty in attackers' attributes, where uncertainty is characterized by bounded intervals; (2) finding the robust-optimization equilibrium for the defender using concepts dealing with budget of uncertainty and price of robustness; and (3) applying the proposed model to real data. © 2011 Society for Risk Analysis.

  1. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  2. A trust-based sensor allocation algorithm in cooperative space search problems

    NASA Astrophysics Data System (ADS)

    Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik

    2011-06-01

    Sensor allocation is an important and challenging problem within the field of multi-agent systems. The sensor allocation problem involves deciding how to assign a number of targets or cells to a set of agents according to some allocation protocol. Generally, in order to make efficient allocations, we need to design mechanisms that consider both the task performers' costs for the service and the associated probability of success (POS). In our problem, the costs are the used sensor resource, and the POS is the target tracking performance. Usually, POS may be perceived differently by different agents because they typically have different standards or means of evaluating the performance of their counterparts (other sensors in the search and tracking problem). Given this, we turn to the notion of trust to capture such subjective perceptions. In our approach, we develop a trust model to construct a novel mechanism that motivates sensor agents to limit their greediness or selfishness. Then we model the sensor allocation optimization problem with trust-in-loop negotiation game and solve it using a sub-game perfect equilibrium. Numerical simulations are performed to demonstrate the trust-based sensor allocation algorithm in cooperative space situation awareness (SSA) search problems.

  3. Consumer-Resource Dynamics: Quantity, Quality, and Allocation

    PubMed Central

    Getz, Wayne M.; Owen-Smith, Norman

    2011-01-01

    Background The dominant paradigm for modeling the complexities of interacting populations and food webs is a system of coupled ordinary differential equations in which the state of each species, population, or functional trophic group is represented by an aggregated numbers-density or biomass-density variable. Here, using the metaphysiological approach to model consumer-resource interactions, we formulate a two-state paradigm that represents each population or group in a food web in terms of both its quantity and quality. Methodology and Principal Findings The formulation includes an allocation function controlling the relative proportion of extracted resources to increasing quantity versus elevating quality. Since lower quality individuals senesce more rapidly than higher quality individuals, an optimal allocation proportion exists and we derive an expression for how this proportion depends on population parameters that determine the senescence rate, the per-capita mortality rate, and the effects of these rates on the dynamics of the quality variable. We demonstrate that oscillations do not arise in our model from quantity-quality interactions alone, but require consumer-resource interactions across trophic levels that can be stabilized through judicious resource allocation strategies. Analysis and simulations provide compelling arguments for the necessity of populations to evolve quality-related dynamics in the form of maternal effects, storage or other appropriate structures. They also indicate that resource allocation switching between investments in abundance versus quality provide a powerful mechanism for promoting the stability of consumer-resource interactions in seasonally forcing environments. Conclusions/Significance Our simulations show that physiological inefficiencies associated with this switching can be favored by selection due to the diminished exposure of inefficient consumers to strong oscillations associated with the well-known paradox of

  4. A review of distributed parameter groundwater management modeling methods

    USGS Publications Warehouse

    Gorelick, Steven M.

    1983-01-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  5. A Review of Distributed Parameter Groundwater Management Modeling Methods

    NASA Astrophysics Data System (ADS)

    Gorelick, Steven M.

    1983-04-01

    Models which solve the governing groundwater flow or solute transport equations in conjunction with optimization techniques, such as linear and quadratic programing, are powerful aquifer management tools. Groundwater management models fall in two general categories: hydraulics or policy evaluation and water allocation. Groundwater hydraulic management models enable the determination of optimal locations and pumping rates of numerous wells under a variety of restrictions placed upon local drawdown, hydraulic gradients, and water production targets. Groundwater policy evaluation and allocation models can be used to study the influence upon regional groundwater use of institutional policies such as taxes and quotas. Furthermore, fairly complex groundwater-surface water allocation problems can be handled using system decomposition and multilevel optimization. Experience from the few real world applications of groundwater optimization-management techniques is summarized. Classified separately are methods for groundwater quality management aimed at optimal waste disposal in the subsurface. This classification is composed of steady state and transient management models that determine disposal patterns in such a way that water quality is protected at supply locations. Classes of research missing from the literature are groundwater quality management models involving nonlinear constraints, models which join groundwater hydraulic and quality simulations with political-economic management considerations, and management models that include parameter uncertainty.

  6. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants.

    PubMed

    Herrera, Javier

    2009-05-01

    While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200-400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed.

  7. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    PubMed

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  8. Optimal Resource Allocation in Library Systems

    ERIC Educational Resources Information Center

    Rouse, William B.

    1975-01-01

    Queueing theory is used to model processes as either waiting or balking processes. The optimal allocation of resources to these processes is defined as that which maximizes the expected value of the decision-maker's utility function. (Author)

  9. Incomplete water securitization in coupled hydro-human production sytems

    NASA Astrophysics Data System (ADS)

    van den Boom, B.; Pande, S.

    2012-04-01

    Due to the dynamics, the externalities and the contingencies involved in managing local water resource for production, the water allocation at basin-level is a subtle balance between laws of nature (gravity; flux) and laws of economics (price; productivity). We study this balance by looking at inter-temporal basin-level water resource allocations in which subbasins enjoy a certain degree of autonomy. Each subbasin is represented as an economic agent i, following a gravity ordering with i=1 representing the most upstream area and i=I the downstream boundary. The water allocation is modeled as a decentralized equilibrium in a coupled conceptual hydro-human production system. Agents i=1,2,...,I in the basin produce a composite good according to a technology that requires water as a main input and that is specific to the subbasin. Agent i manages her use Xi and her storage Si, conceptualizing surface and subsurface water, of water with the purpose of maximizing the utility derived from consumption Ci of the composite good, where Ci is a scalar and Xi and Si are vectors which are composed of one element for each time period and for each contingency. A natural way to consume the good would be to absorb the own production. Yet, the agent may have two more option, namely, she might get a social transfer from other agents or she could use an income from trading water securities with her contiguous neighbors. To study these options, we compare water allocations (Ci, Xi, Si) all i=1,2,...,I for three different settings. We look at allocations without water securitization (water autarky equilibrium EA) first. Next, we describe the imaginary case of full securitization (contingent water markets equilibrium ECM) and, in between, we study limited securitization (incomplete water security equilibrium EWS). We show that allocations under contingent water markets ECM are efficient in the sense that, for the prevailing production technologies, no other allocation exists that is at

  10. Solving the optimal attention allocation problem in manual control

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1976-01-01

    Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.

  11. Optimal Time-Resource Allocation for Energy-Efficient Physical Activity Detection

    PubMed Central

    Thatte, Gautam; Li, Ming; Lee, Sangwon; Emken, B. Adar; Annavaram, Murali; Narayanan, Shrikanth; Spruijt-Metz, Donna; Mitra, Urbashi

    2011-01-01

    The optimal allocation of samples for physical activity detection in a wireless body area network for health-monitoring is considered. The number of biometric samples collected at the mobile device fusion center, from both device-internal and external Bluetooth heterogeneous sensors, is optimized to minimize the transmission power for a fixed number of samples, and to meet a performance requirement defined using the probability of misclassification between multiple hypotheses. A filter-based feature selection method determines an optimal feature set for classification, and a correlated Gaussian model is considered. Using experimental data from overweight adolescent subjects, it is found that allocating a greater proportion of samples to sensors which better discriminate between certain activity levels can result in either a lower probability of error or energy-savings ranging from 18% to 22%, in comparison to equal allocation of samples. The current activity of the subjects and the performance requirements do not significantly affect the optimal allocation, but employing personalized models results in improved energy-efficiency. As the number of samples is an integer, an exhaustive search to determine the optimal allocation is typical, but computationally expensive. To this end, an alternate, continuous-valued vector optimization is derived which yields approximately optimal allocations and can be implemented on the mobile fusion center due to its significantly lower complexity. PMID:21796237

  12. How trees allocate carbon for optimal growth: insight from a game-theoretic model.

    PubMed

    Fu, Liyong; Sun, Lidan; Han, Hao; Jiang, Libo; Zhu, Sheng; Ye, Meixia; Tang, Shouzheng; Huang, Minren; Wu, Rongling

    2017-02-01

    How trees allocate photosynthetic products to primary height growth and secondary radial growth reflects their capacity to best use environmental resources. Despite substantial efforts to explore tree height-diameter relationship empirically and through theoretical modeling, our understanding of the biological mechanisms that govern this phenomenon is still limited. By thinking of stem woody biomass production as an ecological system of apical and lateral growth components, we implement game theory to model and discern how these two components cooperate symbiotically with each other or compete for resources to determine the size of a tree stem. This resulting allometry game theory is further embedded within a genetic mapping and association paradigm, allowing the genetic loci mediating the carbon allocation of stemwood growth to be characterized and mapped throughout the genome. Allometry game theory was validated by analyzing a mapping data of stem height and diameter growth over perennial seasons in a poplar tree. Several key quantitative trait loci were found to interpret the process and pattern of stemwood growth through regulating the ecological interactions of stem apical and lateral growth. The application of allometry game theory enables the prediction of the situations in which the cooperation, competition or altruism is an optimal decision of a tree to fully use the environmental resources it owns. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Direct reciprocity stabilizes simultaneous hermaphroditism at high mating rates: A model of sex allocation with egg trading.

    PubMed

    Henshaw, Jonathan M; Kokko, Hanna; Jennions, Michael D

    2015-08-01

    Simultaneous hermaphroditism is predicted to be unstable at high mating rates given an associated increase in sperm competition. The existence of reciprocal egg trading, which requires both hermaphroditism and high mating rates to evolve, is consequently hard to explain. We show using mathematical models that the presence of a trading economy creates an additional fitness benefit to egg production, which selects for traders to bias their sex allocation toward the female function. This female-biased sex allocation prevents pure females from invading a trading population, thereby allowing simultaneous hermaphroditism to persist stably at much higher levels of sperm competition than would otherwise be expected. More generally, our model highlights that simultaneous hermaphroditism can persist stably when mating opportunities are abundant, as long as sperm competition remains low. It also predicts that reciprocity will select for heavier investment in the traded resource. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  14. Balancing food security and water demand for freshwater ecosystems

    NASA Astrophysics Data System (ADS)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Obersteiner, Michael; Biemans, Hester; Wada, Yoshihide; Kabat, Pavel; Ludwig, Fulco

    2017-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  15. Calculation and application of energy transaction allocation factors in electric power transmission systems

    NASA Astrophysics Data System (ADS)

    Fradi, Aniss

    The ability to allocate the active power (MW) loading on transmission lines and transformers, is the basis of the "flow based" transmission allocation system developed by the North American Electric Reliability Council. In such a system, the active power flows must be allocated to each line or transformer in proportion to the active power being transmitted by each transaction imposed on the system. Currently, this is accomplished through the use of the linear Power Transfer Distribution Factors (PTDFs). Unfortunately, no linear allocation models exist for other energy transmission quantities, such as MW and MVAR losses, MVAR and MVA flows, etc. Early allocation schemes were developed to allocate MW losses due to transactions to branches in a transmission system, however they exhibited diminished accuracy, since most of them are based on linear power flow modeling of the transmission system. This thesis presents a new methodology to calculate Energy Transaction Allocation factors (ETA factors, or eta factors), using the well-known process of integration of a first derivative function, as well as consistent and well-established mathematical and AC power flow models. The factors give a highly accurate allocation of any non-linear system quantity to transactions placed on the transmission system. The thesis also extends the new ETA factors calculation procedure to restructure a new economic dispatch scheme where multiple sets of generators are economically dispatched to meet their corresponding load and their share of the losses.

  16. Simulated effects of allocated and projected 2025 withdrawals from the Potomac-Raritan-Magothy aquifer system, Gloucester and Northeastern Salem Counties, New Jersey

    USGS Publications Warehouse

    Charles, Emmanuel; Nawyn, John P.; Voronin, Lois M.; Gordon, Alison D.

    2011-01-01

    Withdrawals from the Potomac-Raritan-Magothy aquifer system in New Jersey, which includes the Upper, Middle, and Lower Potomac-Raritan-Magothy aquifers, are the principal source of groundwater supply in northern Gloucester and northeastern Salem Counties in the New Jersey Coastal Plain. Water levels in these aquifers have declined in response to pumping. With increased population growth and development expected in Gloucester County and parts of Salem County over the next 2 decades (2005-2025), withdrawals from these aquifers also are expected to increase. A steady-state groundwater-flow model, developed to simulate flow in the Potomac-Raritan-Magothy aquifer system in northern Gloucester and northeastern Salem Counties, was calibrated to withdrawal conditions in 1998, when groundwater withdrawals from the Potomac-Raritan-Magothy aquifer system in the model area were more than 10,100 Mgal/yr (million gallons per year). Withdrawals from water-purveyor wells accounted for about 63 percent of these withdrawals, and withdrawals from industrial self-supply wells accounted for about 32 percent. Withdrawals from agricultural-irrigation, commercial self-supply, and domestic self-supply wells accounted for the remaining 5 percent. Results of the 2000 baseline groundwater-flow simulation, incorporating average annual 1999-2001 groundwater withdrawals, indicate that the average simulated water levels in the Upper, Middle, and Lower Potomac-Raritan-Magothy aquifers are 31, 27, and 30 feet below the National Geodetic Vertical Datum of 1929 (NGVD 29), respectively, and the lowest simulated water levels are 77, 65, and 59 feet below NGVD 29, respectively. In the full-allocation scenario, the maximum State-permitted (allocated) groundwater withdrawals totaled 16,567 Mgal/yr, an increase of 72 percent from the 2000 baseline simulation. Results of the full-allocation simulation indicate that the average simulated water levels in the Upper, Middle, and Lower Potomac

  17. Sustainability in health care by allocating resources effectively (SHARE) 4: exploring opportunities and methods for consumer engagement in resource allocation in a local healthcare setting.

    PubMed

    Harris, Claire; Ko, Henry; Waller, Cara; Sloss, Pamela; Williams, Pamela

    2017-05-05

    This is the fourth in a series of papers reporting a program of Sustainability in Health care by Allocating Resources Effectively (SHARE) in a local healthcare setting. Healthcare decision-makers have sought to improve the effectiveness and efficiency of services through removal or restriction of practices that are unsafe or of little benefit, often referred to as 'disinvestment'. A systematic, integrated, evidence-based program for disinvestment was being established within a large Australian health service network. Consumer engagement was acknowledged as integral to this process. This paper reports the process of developing a model to integrate consumer views and preferences into an organisation-wide approach to resource allocation. A literature search was conducted and interviews and workshops were undertaken with health service consumers and staff. Findings were drafted into a model for consumer engagement in resource allocation which was workshopped and refined. Although consumer engagement is increasingly becoming a requirement of publicly-funded health services and documented in standards and policies, participation in organisational decision-making is not widespread. Several consistent messages for consumer engagement in this context emerged from the literature and consumer responses. Opportunities, settings and activities for consumer engagement through communication, consultation and participation were identified within the resource allocation process. Sources of information regarding consumer values and perspectives in publications and locally-collected data, and methods to use them in health service decision-making, were identified. A model bringing these elements together was developed. The proposed model presents potential opportunities and activities for consumer engagement in the context of resource allocation.

  18. Task allocation among multiple intelligent robots

    NASA Technical Reports Server (NTRS)

    Gasser, L.; Bekey, G.

    1987-01-01

    Researchers describe the design of a decentralized mechanism for allocating assembly tasks in a multiple robot assembly workstation. Currently, the approach focuses on distributed allocation to explore its feasibility and its potential for adaptability to changing circumstances, rather than for optimizing throughput. Individual greedy robots make their own local allocation decisions using both dynamic allocation policies which propagate through a network of allocation goals, and local static and dynamic constraints describing which robots are elibible for which assembly tasks. Global coherence is achieved by proper weighting of allocation pressures propagating through the assembly plan. Deadlock avoidance and synchronization is achieved using periodic reassessments of local allocation decisions, ageing of allocation goals, and short-term allocation locks on goals.

  19. CARBON AND NITROGEN ALLOCATION MODEL FOR THE SUB-TROPICAL SEAGRASS THALASSIA TESTUDINUM AND THE TEMPERATE SEAGRASS ZOSTER MARINA

    EPA Science Inventory

    Our understanding of seagrass physiology is based on crude estimates of production and biomass. To better understand the complex physiological relationships between the plants and the environment we developed a model of carbon and nitrogen allocation in the sub-tropical seagrass ...

  20. Offspring Size and Reproductive Allocation in Harvester Ants.

    PubMed

    Wiernasz, Diane C; Cole, Blaine J

    2018-01-01

    A fundamental decision that an organism must make is how to allocate resources to offspring, with respect to both size and number. The two major theoretical approaches to this problem, optimal offspring size and optimistic brood size models, make different predictions that may be reconciled by including how offspring fitness is related to size. We extended the reasoning of Trivers and Willard (1973) to derive a general model of how parents should allocate additional resources with respect to the number of males and females produced, and among individuals of each sex, based on the fitness payoffs of each. We then predicted how harvester ant colonies should invest additional resources and tested three hypotheses derived from our model, using data from 3 years of food supplementation bracketed by 6 years without food addition. All major results were predicted by our model: food supplementation increased the number of reproductives produced. Male, but not female, size increased with food addition; the greatest increases in male size occurred in colonies that made small females. We discuss how use of a fitness landscape improves quantitative predictions about allocation decisions. When parents can invest differentially in offspring of different types, the best strategy will depend on parental state as well as the effect of investment on offspring fitness.

  1. Optimal water management and conflict resolution: The Middle East Water Project

    NASA Astrophysics Data System (ADS)

    Fisher, Franklin M.; Arlosoroff, Shaul; Eckstein, Zvi; Haddadin, Munther; Hamati, Salem G.; Huber-Lee, Annette; Jarrar, Ammar; Jayyousi, Anan; Shamir, Uri; Wesseling, Hans

    2002-11-01

    In many situations, actual water markets will not allocate water resources optimally, largely because of the perceived social value of water. It is possible, however, to build optimizing models which, taking account of demand as well as supply considerations, can substitute for actual markets. Such models can assist the formation of water policies, taking into account user-supplied values and constraints. They provide powerful tools for the system-wide cost-benefit analysis of infrastructure; this is illustrated by an analysis of the need for desalination in Israel and the cost and benefits of adding a conveyance line. Further, the use of such models can facilitate cooperation in water, yielding gains that can be considerably greater than the value of the disputed water itself. This can turn what appear to be zero-sum games into win-win situations. The Middle East Water Project has built such a model for the Israeli-Jordanian-Palestinian region. We find that the value of the water in dispute in the region is very small and the possible gains from cooperation are relatively large. Analysis of the scarcity value of water is a crucial feature.

  2. Water dependency and water exploitation at global scale as indicators of water security

    NASA Astrophysics Data System (ADS)

    De Roo, A. P. J.; Beck, H.; Burek, P.; Bernard, B.

    2015-12-01

    A water dependency index has been developed indicating the dependency of water consumption from upstream sources of water, sometimes across (multiple) national border. This index is calculated at global scale using the 0.1 global LISFLOOD hydrological modelling system forced by WFDEI meteorological data for the timeframe 1979-2012. The global LISFLOOD model simulates the most important hydrological processes, as well as water abstraction and consumption from various sectors, and flood routing, at daily scale, with sub-timesteps for routing and subgrid parameterization related to elevation and landuse. The model contains also options for water allocation, to allow preferences of water use for particular sectors in water scarce periods. LISFLOOD is also used for the Global Flood Awareness System (GloFAS), the European Flood Awareness System (EFAS), continental scale climate change impact studies on floods and droughts. The water dependency indicator is calculated on a monthly basis, and various annual and multiannual indicators are derived from it. In this study, the indicator will be compared against water security areas known from other studies. Other indicators calculated are the Water Exploitation Index (WEI+), which is a commonly use water security indicator in Europe, and freshwater resources per capita indicators at regional, national and river basin scale. Several climate scnearios are run to indicate future trends in water security.

  3. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    NASA Technical Reports Server (NTRS)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  4. Assessment of future crop yield and agricultural sustainable water use in north china plain using multiple crop models

    NASA Astrophysics Data System (ADS)

    Huang, G.

    2016-12-01

    Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.

  5. Impacts of climate change on the food-energy-water nexus in the upper Yellow River Basin: An integrated hydro-economic modeling approach

    NASA Astrophysics Data System (ADS)

    Si, Y.; Cai, X.

    2017-12-01

    The large-scale reservoir system built on the upper Yellow River serves multiple purposes. The generated hydropower supplies over 60% of the entire electricity for the regional power grid while the irrigated crop production feeds almost one-third of the total population throughout the whole river basin. Moreover, the reservoir system also bears the responsibility for controlling ice flood, which occurs during the non-flood season due to winter ice freezing followed by spring thawing process, and could be even more disastrous than the summer flood. The contradiction of water allocation to satisfy multi-sector demands while mitigating ice flood risk has been longstanding. However, few researchers endeavor to employ the nexus thinking to addressing the complexities involved in all the interlinked purposes. In this study, we develop an integrated hydro-economic model that can be used to explore both the tradeoffs and synergies between the multiple purposes, based on which the water infrastructures (e.g., reservoir, diversion canal, pumping well) can be coordinated for maximizing the co-benefits of multiple sectors. The model is based on a node-link schematic of multiple operations including hydropower generation, irrigation scheduling, and the conjunctive use of surface and ground water resources. In particular, the model depicts some details regarding reservoir operation rules during the ice season using two indicators, i.e., flow control period and flow control level. The rules are obtained from historical records using data mining techniques under different climate conditions, and they are added to the model as part of the system constraints. Future reservoir inflow series are generated by a hydrological model with future climate scenarios projected by General Circulation Model (GCM). By analyzing the model results under the various climate scenarios, the future possible shifting trajectory of the food-energy-water system characteristics will be derived compared to

  6. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    NASA Astrophysics Data System (ADS)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; MacBean, Natasha; Alexander, M. Ross; Dye, Alex; Bishop, Daniel A.; Trouet, Valerie; Babst, Flurin; Hessl, Amy E.; Pederson, Neil; Blanken, Peter D.; Bohrer, Gil; Gough, Christopher M.; Litvak, Marcy E.; Novick, Kimberly A.; Phillips, Richard P.; Wood, Jeffrey D.; Moore, David J. P.

    2017-09-01

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocation schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.-iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m-2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m-2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C-LAI relationship in the model did not match the observed leaf C

  7. Carbon limitation reveals allocation priority to defense compounds in peppermint

    NASA Astrophysics Data System (ADS)

    Forkelova, Lenka; Unsicker, Sybille; Forkel, Matthias; Huang, Jianbei; Trumbore, Susan; Hartmann, Henrik

    2016-04-01

    Studies of carbon partitioning during insect or pathogen infestation reveal high carbon investment into induced chemical defenses to deter the biotic agent (Baldwin, 1998). However, little is known how carbon investment into chemical defenses changes under abiotic stress such as drought. Drought forces plants to close their stomata to prevent water loss through transpiration while decreasing the amount of assimilated carbon. Furthermore drought hampers carbohydrates translocation due to declining plant hydration and reduced phloem functioning (McDowell, 2011; Hartmann et al., 2013; Sevanto, 2014). Hence long lasting drought can force plants into carbon starvation. The aim of our study was to disentangle carbon allocation priorities between growth, maintenance metabolism, storage and production of defense compounds under carbon limiting conditions using peppermint as our model plant. Drought is not the only method how to manipulate plant carbon metabolism and photosynthetic yield. Exposing plants to reduced [CO2] air is a promising tool simulating drought induced carbon limitation without affecting phloem functioning and so carbohydrate translocation (Hartmann et al., 2015). We exposed peppermint plants to drought (50% of the control irrigation) and to low [CO2] (progressive decrease from 350 ppm to 20 ppm) to disentangle hydraulic failure from carbon starvation effects on carbon allocation. Drought was applied as a cross-treatment yielding four treatments: watered and high [CO2] (W+CO2), drought and high [CO2] (D+CO2), water and low [CO2] (W-CO2), drought and low [CO2] (D-CO2). We analyzed the most abundant terpenoid defense compounds (α-Pinene, sabinene, myrcene, limonene, menthone, menthol and pulegone) and used continuous 13CO2 labelling to trace allocation pattern of new and old assimilated carbon in the four carbon sinks (structural biomass, water soluble sugars, starch and terpenoid defense compounds) in young expanding leaf tissue. This leaf tissue grew

  8. Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.

    PubMed

    Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei

    2017-09-01

    Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.

  9. Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability

    USGS Publications Warehouse

    DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.

    2012-01-01

    We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.

  10. Supply chain carbon footprinting and responsibility allocation under emission regulations.

    PubMed

    Chen, Jin-Xiao; Chen, Jian

    2017-03-01

    Reduction of greenhouse gas emissions has become an enormous challenge for any single enterprise and its supply chain because of the increasing concern on global warming. This paper investigates carbon footprinting and responsibility allocation for supply chains involved in joint production. Our study is conducted from the perspective of a social planner who aims to achieve social value optimization. The carbon footprinting model is based on operational activities rather than on firms because joint production blurs the organizational boundaries of footprints. A general model is proposed for responsibility allocation among firms who seek to maximize individual profits. This study looks into ways for the decentralized supply chain to achieve centralized optimality of social value under two emission regulations. Given a balanced allocation for the entire supply chain, we examine the necessity of over-allocation to certain firms under specific situations and find opportunities for the firms to avoid over-allocation. The comparison of the two regulations reveals that setting an emission standard per unit of product will motivate firms to follow the standard and improve their emission efficiencies. Hence, a more efficient and promising policy is needed in contrast to existing regulations on total production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Congestion Pricing for Aircraft Pushback Slot Allocation.

    PubMed

    Liu, Lihua; Zhang, Yaping; Liu, Lan; Xing, Zhiwei

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the "external cost of surface congestion" is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm.

  12. Congestion Pricing for Aircraft Pushback Slot Allocation

    PubMed Central

    Zhang, Yaping

    2017-01-01

    In order to optimize aircraft pushback management during rush hour, aircraft pushback slot allocation based on congestion pricing is explored while considering monetary compensation based on the quality of the surface operations. First, the concept of the “external cost of surface congestion” is proposed, and a quantitative study on the external cost is performed. Then, an aircraft pushback slot allocation model for minimizing the total surface cost is established. An improved discrete differential evolution algorithm is also designed. Finally, a simulation is performed on Xinzheng International Airport using the proposed model. By comparing the pushback slot control strategy based on congestion pricing with other strategies, the advantages of the proposed model and algorithm are highlighted. In addition to reducing delays and optimizing the delay distribution, the model and algorithm are better suited for use for actual aircraft pushback management during rush hour. Further, it is also observed they do not result in significant increases in the surface cost. These results confirm the effectiveness and suitability of the proposed model and algorithm. PMID:28114429

  13. Ising game: Nonequilibrium steady states of resource-allocation systems

    NASA Astrophysics Data System (ADS)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  14. [Ethical Debates Related to the Allocation of Medical Resources During the Response to the Mass Casualty Incident at Formosa Fun Coast Water Park].

    PubMed

    Tang, Jing-Shia; Chen, Chia-Jung; Huang, Mei-Chih

    2017-02-01

    Disasters are unpredictable and often result in mass casualties. Limited medical resources often affect the response to mass casualty incidents, undermining the ability of responders to adequately protect all of the casualties. Thus, the injuries of casualties are classified in hopes of fully utilizing medical resources efficiently in order to save the maximum possible number of people. However, as opinions on casualty prioritization are subjective, disagreements and disputes often arise regarding allocating medical resources. The present article focused on the 2015 explosion at Formosa Fun Coast, a recreational water park in Bali, New Taipei City, Taiwan as a way to explore the dilemma over the triage and resource allocation for casualties with burns over 90% and 50-60% of their bodies. The principles of utilitarianism and deontology in Western medicine were used to discuss the reasons and rationale behind the allocation of medical resources during this incident. Confucianism, a philosophical mindset that significantly influences Taiwanese society today, was then discussed to describe the "miracles" that happened during the incident, including the acquisition of assistance from the public and medical professionals. External supplies and professional help (social resources) were provided voluntarily after this incident, which had a profound impact on both the immediate response and the longer-term recovery efforts.

  15. Forage-based dairying in a water-limited future: use of models to investigate farming system adaptation in southern Australia.

    PubMed

    Chapman, D F; Dassanayake, K; Hill, J O; Cullen, B R; Lane, N

    2012-07-01

    The irrigated dairy industry in southern Australia has experienced significant restrictions in irrigation water allocations since 2005, consistent with climate change impact predictions for the region. Simulation models of pasture growth (DairyMod), crop yield (Agricultural Production Systems Simulator, APSIM), and dairy system management and production (UDDER) were used in combination to investigate a range of forage options that may be capable of sustaining dairy business profitability under restricted water-allocation scenarios in northern Victoria, Australia. A total of 23 scenarios were simulated and compared with a base farm system (100% of historical water allocations, grazed perennial ryegrass pasture with supplements; estimated operating surplus $A2,615/ha at a milk price of $A4.14/kg of milk solids). Nine simulations explored the response of the base farm to changes in stocking rate or the implementation of a double cropping rotation on 30% of farm area, or both. Five simulations explored the extreme scenario of dairying without any irrigation water. Two general responses to water restrictions were investigated in a further 9 simulations. Annual ryegrass grazed pasture, complemented by a double cropping rotation (maize grown in summer for silage, followed by either brassica forage crop and annual ryegrass for silage in winter and spring) on 30% of farm area, led to an estimated operating surplus of $A1746/ha at the same stocking rate as the base farm when calving was moved to autumn (instead of late winter, as in the base system). Estimated total irrigation water use was 2.7ML/ha compared with 5.4ML/ha for the base system. Summer-dormant perennial grass plus double cropping (30% of farm area) lifted operating surplus by a further $A100/ha if associated with autumn calving (estimated total irrigation water use 3.1ML/ha). Large shifts in the forage base of dairy farms could sustain profitability in the face of lower, and fluctuating, water allocations

  16. Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Final Report, Version 2)

    EPA Science Inventory

    EPA's announced the availability of the final report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2). This update furthered land change modeling by providing nationwide housing developmen...

  17. Modeling Resources Allocation in Attacker-Defender Games with "Warm Up" CSF.

    PubMed

    Guan, Peiqiu; Zhuang, Jun

    2016-04-01

    Like many other engineering investments, the attacker's and defender's investments may have limited impact without initial capital to "warm up" the systems. This article studies such "warm up" effects on both the attack and defense equilibrium strategies in a sequential-move game model by developing a class of novel and more realistic contest success functions. We first solve a single-target attacker-defender game analytically and provide numerical solutions to a multiple-target case. We compare the results of the models with and without consideration of the investment "warm up" effects, and find that the defender would suffer higher expected damage, and either underestimate the attacker effort or waste defense investment if the defender falsely believes that no investment "warm up" effects exist. We illustrate the model results with real data, and compare the results of the models with and without consideration of the correlation between the "warm up" threshold and the investment effectiveness. Interestingly, we find that the defender is suggested to give up defending all the targets when the attack or the defense "warm up" thresholds are sufficiently high. This article provides new insights and suggestions on policy implications for homeland security resource allocation. © 2015 Society for Risk Analysis.

  18. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants

    PubMed Central

    Herrera, Javier

    2009-01-01

    Background and Aims While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. Methods The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Key Results Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200–400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Conclusions Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed. PMID:19258340

  19. Modeling the Water - Quality Effects of Changes to the Klamath River Upstream of Keno Dam, Oregon

    USGS Publications Warehouse

    Sullivan, Annett B.; Sogutlugil, I. Ertugrul; Rounds, Stewart A.; Deas, Michael L.

    2013-01-01

    The Link River to Keno Dam (Link-Keno) reach of the Klamath River, Oregon, generally has periods of water-quality impairment during summer, including low dissolved oxygen, elevated concentrations of ammonia and algae, and high pH. Efforts are underway to improve water quality in this reach through a Total Maximum Daily Load (TMDL) program and other management and operational actions. To assist in planning, a hydrodynamic and water-quality model was used in this study to provide insight about how various actions could affect water quality in the reach. These model scenarios used a previously developed and calibrated CE-QUAL-W2 model of the Link-Keno reach developed by the U.S. Geological Survey (USGS), Watercourse Engineering Inc., and the Bureau of Reclamation for calendar years 2006-09 (referred to as the "USGS model" in this report). Another model of the same river reach was previously developed by Tetra Tech, Inc. and the Oregon Department of Environmental Quality for years 2000 and 2002 and was used in the TMDL process; that model is referred to as the "TMDL model" in this report. This report includes scenarios that (1) assess the effect of TMDL allocations on water quality, (2) provide insight on certain aspects of the TMDL model, (3) assess various methods to improve water quality in this reach, and (4) examine possible water-quality effects of a future warmer climate. Results presented in this report for the first 5 scenarios supersede or augment those that were previously published (scenarios 1 and 2 in Sullivan and others [2011], 3 through 5 in Sullivan and others [2012]); those previous results are still valid, but the results for those scenarios in this report are more current.

  20. Decision support for the management of water resources at Sub-middle of the São Francisco river basin in Brazil using integrated hydro-economic modeling and scenarios for land use changes

    NASA Astrophysics Data System (ADS)

    Moraes, M. G. A.; Souza da Silva, G.

    2016-12-01

    Hydro-economic models can measure the economic effects of different operating rules, environmental restrictions, ecosystems services, technical constraints and institutional constraints. Furthermore, water allocation can be improved by considering economical criteria's. Likewise, climate and land use change can be analyzed to provide resilience. We developed and applied a hydro-economic optimization model to determine the optimal water allocation of main users in the Lower-middle São Francisco River Basin in Northeast (NE) Brazil. The model uses demand curves for the irrigation projects, small farmers and human supply, rather than fixed requirements for water resources. This study analyzed various constraints and operating alternatives for the installed hydropower dams in economic terms. A seven-year period (2000-2006) with water scarcity in the past has been selected to analyze the water availability and the associated optimal economic water allocation. The used constraints are technical, socioeconomic and environmental. The economically impacts of scenarios like prioritizing human consumption, impacts of the implementation of the São Francisco river transposition, human supply without high distribution losses, environmental hydrographs, forced reservoir level control, forced reduced reservoir capacity, alteration of lower flow restriction were analyzed. The results in this period show that scarcity costs related ecosystem service and environmental constraints are significant, and have major impacts (increase of scarcity cost) for consumptive users like irrigation projects. In addition, institutional constraints such as prioritizing human supply, minimum release limits downstream of the reservoirs and the implementation of the transposition project impact the costs and benefits of the two main economic sectors (irrigation and power generation) in the region of the Lower-middle of the São Francisco river basin. Scarcity costs for irrigation users generally

  1. Synaptic Tagging During Memory Allocation

    PubMed Central

    Rogerson, Thomas; Cai, Denise; Frank, Adam; Sano, Yoshitake; Shobe, Justin; Aranda, Manuel L.; Silva, Alcino J.

    2014-01-01

    There is now compelling evidence that the allocation of memory to specific neurons (neuronal allocation) and synapses (synaptic allocation) in a neurocircuit is not random and that instead specific mechanisms, such as increases in neuronal excitability and synaptic tagging and capture, determine the exact sites where memories are stored. We propose an integrated view of these processes, such that neuronal allocation, synaptic tagging and capture, spine clustering and metaplasticity reflect related aspects of memory allocation mechanisms. Importantly, the properties of these mechanisms suggest a set of rules that profoundly affect how memories are stored and recalled. PMID:24496410

  2. A leader-follower-interactive method for regional water resources management with considering multiple water demands and eco-environmental constraints

    NASA Astrophysics Data System (ADS)

    Chen, Yizhong; Lu, Hongwei; Li, Jing; Ren, Lixia; He, Li

    2017-05-01

    This study presents the mathematical formulation and implementations of a synergistic optimization framework based on an understanding of water availability and reliability together with the characteristics of multiple water demands. This framework simultaneously integrates a set of leader-followers-interactive objectives established by different decision makers during the synergistic optimization. The upper-level model (leader's one) determines the optimal pollutants discharge to satisfy the environmental target. The lower-level model (follower's one) accepts the dispatch requirement from the upper-level one and dominates the optimal water-allocation strategy to maximize economic benefits representing the regional authority. The complicated bi-level model significantly improves upon the conventional programming methods through the mutual influence and restriction between the upper- and lower-level decision processes, particularly when limited water resources are available for multiple completing users. To solve the problem, a bi-level interactive solution algorithm based on satisfactory degree is introduced into the decision-making process for measuring to what extent the constraints are met and the objective reaches its optima. The capabilities of the proposed model are illustrated through a real-world case study of water resources management system in the district of Fengtai located in Beijing, China. Feasible decisions in association with water resources allocation, wastewater emission and pollutants discharge would be sequentially generated for balancing the objectives subject to the given water-related constraints, which can enable Stakeholders to grasp the inherent conflicts and trade-offs between the environmental and economic interests. The performance of the developed bi-level model is enhanced by comparing with single-level models. Moreover, in consideration of the uncertainty in water demand and availability, sensitivity analysis and policy analysis are

  3. Integrated modelling to assess long-term water supply capacity of a meso-scale Mediterranean catchment.

    PubMed

    Collet, Lila; Ruelland, Denis; Borrell-Estupina, Valérie; Dezetter, Alain; Servat, Eric

    2013-09-01

    Assessing water supply capacity is crucial to meet stakeholders' needs, notably in the Mediterranean region. This region has been identified as a climate change hot spot, and as a region where water demand is continuously increasing due to population growth and the expansion of irrigated areas. The Hérault River catchment (2500 km(2), France) is a typical example and a negative trend in discharge has been observed since the 1960s. In this context, local stakeholders need first to understand the processes controlling the evolution of water resources and demands in the past to latter evaluate future water supply capacity and anticipate the tensions users could be confronted to in the future. A modelling framework is proposed at a 10-day time step to assess whether water resources have been able to meet water demands over the last 50 years. Water supply was evaluated using hydrological modelling and a dam management model. Water demand dynamics were estimated for the domestic and agricultural sectors. A water supply capacity index is computed to assess the extent and the frequency to which water demand has been satisfied at the sub-basin scale. Simulated runoff dynamics were in good agreement with observations over the calibration and validation periods. Domestic water demand has increased considerably since the 1980s and is characterized by a seasonal peak in summer. Agricultural demand has increased in the downstream sub-basins and decreased upstream where irrigated areas have decreased. As a result, although most water demands were satisfied between 1961 and 1980, irrigation requirements in summer have sometimes not been satisfied since the 1980s. This work is the first step toward evaluating possible future changes in water allocation capacity in the catchment, using future climate change, dam management and water use scenarios. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Modeling a complex system of multipurpose reservoirs under prospective scenarios (hydrology, water uses, water management): the case of the Durance River basin (South Eastern France, 12 800 km2)

    NASA Astrophysics Data System (ADS)

    Monteil, Céline; Hendrickx, Frédéric; Samie, René; Sauquet, Eric

    2015-04-01

    The Durance River and its main tributary, the Verdon River, are two major rivers located in the Southern part of France. Three large dams (Serre-Ponçon, Castillon and Sainte-Croix) were built on their streams during the second half of the 20th century for multiple purposes. Stored water is used for hydropower, recreational, industry, drinking water and irrigation. Flows are partly diverted to feed areas outside the basin. On average 30 plants located in the Durance and Verdon valleys currently produce a total of 600 million kWh per year, equal to the annual residential consumption of a city with over 2.5 million inhabitants. The Southern part of France has been recently affected by severe droughts (2003, 2007 and 2011) and the rules for water allocation and reservoir management are now questioned particularly in the light of global change. The objective of the research project named "R²D²-2050" was to assess water availability and risks of water shortage in the mid-21st century by taking into account changes in both climate and water management. Therefore, a multi-model multi-scenario approach was considered to simulate regional climate, water resources and water demands under present-day (over the 1980-2009 baseline period) and under future conditions (over the 2036-2065 period). In addition, a model of water management was developed to simulate reservoir operating rules of the three dams. This model was calibrated to simulate water released from reservoir under constraints imposed by current day water allocation rules (e.g. downstream water requirements for irrigation, minimum water levels in the reservoirs during summer time for recreational purposes). Four territorial socio-economic scenarios were also elaborated with the help of stake holders to project water needs in the 2050s for the areas supplied with water from the Durance River basin. Results suggest an increase of the average air temperature with consequences on snow accumulation, snowmelt processes

  5. A hybrid system dynamics and optimization approach for supporting sustainable water resources planning in Zhengzhou City, China

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Li, Chunhui; Wang, Xuan; Peng, Cong; Cai, Yanpeng; Huang, Weichen

    2018-01-01

    Problems with water resources restrict the sustainable development of a city with water shortages. Based on system dynamics (SD) theory, a model of sustainable utilization of water resources using the STELLA software has been established. This model consists of four subsystems: population system, economic system, water supply system and water demand system. The boundaries of the four subsystems are vague, but they are closely related and interdependent. The model is applied to Zhengzhou City, China, which has a serious water shortage. The difference between the water supply and demand is very prominent in Zhengzhou City. The model was verified with data from 2009 to 2013. The results show that water demand of Zhengzhou City will reach 2.57 billion m3 in 2020. A water resources optimization model is developed based on interval-parameter two-stage stochastic programming. The objective of the model is to allocate water resources to each water sector and make the lowest cost under the minimum water demand. Using the simulation results, decision makers can easily weigh the costs of the system, the water allocation objectives, and the system risk. The hybrid system dynamics method and optimization model is a rational try to support water resources management in many cities, particularly for cities with potential water shortage and it is solidly supported with previous studies and collected data.

  6. The effect of limited availability of N or water on C allocation to fine roots and annual fine root turnover in Alnus incana and Salix viminalis.

    PubMed

    Rytter, Rose-Marie

    2013-09-01

    The effect of limited nitrogen (N) or water availability on fine root growth and turnover was examined in two deciduous species, Alnus incana L. and Salix viminalis L., grown under three different regimes: (i) supply of N and water in amounts which would not hamper growth, (ii) limited N supply and (iii) limited water supply. Plants were grown outdoors during three seasons in covered and buried lysimeters placed in a stand structure and filled with quartz sand. Computer-controlled irrigation and fertilization were supplied through drip tubes. Production and turnover of fine roots were estimated by combining minirhizotron observations and core sampling, or by sequential core sampling. Annual turnover rates of fine roots <1 mm (5-6 year(-1)) and 1-2 mm (0.9-2.8 year(-1)) were not affected by changes in N or water availability. Fine root production (<1 mm) differed between Alnus and Salix, and between treatments in Salix; i.e., absolute length and biomass production increased in the order: water limited < unlimited < N limited. Few treatment effects were detected for fine roots 1-2 mm. Proportionally more C was allocated to fine roots (≤2 mm) in N or water-limited Salix; 2.7 and 2.3 times the allocation to fine roots in the unlimited regime, respectively. Estimated input to soil organic carbon increased by ca. 20% at N limitation in Salix. However, future studies on fine root decomposition under various environmental conditions are required. Fine root growth responses to N or water limitation were less pronounced in Alnus, thus indicating species differences caused by N-fixing capacity and slower initial growth in Alnus, or higher fine root plasticity in Salix. A similar seasonal growth pattern across species and treatments suggested the influence of outer stimuli, such as temperature and light.

  7. Financial Resource Allocation in Higher Education

    ERIC Educational Resources Information Center

    Ušpuriene, Ana; Sakalauskas, Leonidas; Dumskis, Valerijonas

    2017-01-01

    The paper considers a problem of financial resource allocation in a higher education institution. The basic financial management instruments and the multi-stage cost minimization model created are described involving financial instruments to constraints. Both societal and institutional factors that determine the costs of educating students are…

  8. Regulation of C:N:P stoichiometry of microbes and soil organic matter by optimizing enzyme allocation: an omics-informed model study

    NASA Astrophysics Data System (ADS)

    Song, Y.; Yao, Q.; Wang, G.; Yang, X.; Mayes, M. A.

    2017-12-01

    Increasing evidences is indicating that soil organic matter (SOM) decomposition and stabilization process is a continuum process and controlled by both microbial functions and their interaction with minerals (known as the microbial efficiency-matrix stabilization theory (MEMS)). Our metagenomics analysis of soil samples from both P-deficit and P-fertilization sites in Panama has demonstrated that community-level enzyme functions could adapt to maximize the acquisition of limiting nutrients and minimize energy demand for foraging (known as the optimal foraging theory). This optimization scheme can mitigate the imbalance of C/P ratio between soil substrate and microbial community and relieve the P limitation on microbial carbon use efficiency over the time. Dynamic allocation of multiple enzyme groups and their interaction with microbial/substrate stoichiometry has rarely been considered in biogeochemical models due to the difficulties in identifying microbial functional groups and quantifying the change in enzyme expression in response to soil nutrient availability. This study aims to represent the omics-informed optimal foraging theory in the Continuum Microbial ENzyme Decomposition model (CoMEND), which was developed to represent the continuum SOM decomposition process following the MEMS theory. The SOM pools in the model are classified based on soil chemical composition (i.e. Carbohydrates, lignin, N-rich SOM and P-rich SOM) and the degree of SOM depolymerization. The enzyme functional groups for decomposition of each SOM pool and N/P mineralization are identified by the relative composition of gene copy numbers. The responses of microbial activities and SOM decomposition to nutrient availability are simulated by optimizing the allocation of enzyme functional groups following the optimal foraging theory. The modeled dynamic enzyme allocation in response to P availability is evaluated by the metagenomics data measured from P addition and P-deficit soil samples in

  9. 18 CFR 366.5 - Allocation of costs for non-power goods and services.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Allocation of costs for non-power goods and services. 366.5 Section 366.5 Conservation of Power and Water Resources FEDERAL... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT BOOKS AND RECORDS Definitions and Provisions Under...

  10. 18 CFR 366.5 - Allocation of costs for non-power goods and services.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Allocation of costs for non-power goods and services. 366.5 Section 366.5 Conservation of Power and Water Resources FEDERAL... ACT OF 2005, FEDERAL POWER ACT AND NATURAL GAS ACT BOOKS AND RECORDS Definitions and Provisions Under...

  11. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  12. Optimizing Real-Time Vaccine Allocation in a Stochastic SIR Model

    PubMed Central

    Nguyen, Chantal; Carlson, Jean M.

    2016-01-01

    Real-time vaccination following an outbreak can effectively mitigate the damage caused by an infectious disease. However, in many cases, available resources are insufficient to vaccinate the entire at-risk population, logistics result in delayed vaccine deployment, and the interaction between members of different cities facilitates a wide spatial spread of infection. Limited vaccine, time delays, and interaction (or coupling) of cities lead to tradeoffs that impact the overall magnitude of the epidemic. These tradeoffs mandate investigation of optimal strategies that minimize the severity of the epidemic by prioritizing allocation of vaccine to specific subpopulations. We use an SIR model to describe the disease dynamics of an epidemic which breaks out in one city and spreads to another. We solve a master equation to determine the resulting probability distribution of the final epidemic size. We then identify tradeoffs between vaccine, time delay, and coupling, and we determine the optimal vaccination protocols resulting from these tradeoffs. PMID:27043931

  13. Measuring demand for flat water recreation using a two-stage/disequilibrium travel cost model with adjustment for overdispersion and self-selection

    NASA Astrophysics Data System (ADS)

    McKean, John R.; Johnson, Donn; Taylor, R. Garth

    2003-04-01

    An alternate travel cost model is applied to an on-site sample to estimate the value of flat water recreation on the impounded lower Snake River. Four contiguous reservoirs would be eliminated if the dams are breached to protect endangered Pacific salmon and steelhead trout. The empirical method applies truncated negative binomial regression with adjustment for endogenous stratification. The two-stage decision model assumes that recreationists allocate their time among work and leisure prior to deciding among consumer goods. The allocation of time and money among goods in the second stage is conditional on the predetermined work time and income. The second stage is a disequilibrium labor market which also applies if employers set work hours or if recreationists are not in the labor force. When work time is either predetermined, fixed by contract, or nonexistent, recreationists must consider separate prices and budgets for time and money.

  14. Sperm economy between female mating frequency and male ejaculate allocation.

    PubMed

    Abe, Jun; Kamimura, Yoshitaka

    2015-03-01

    Why females of many species mate multiply is a major question in evolutionary biology. Furthermore, if females accept matings more than once, ejaculates from different males compete for fertilization (sperm competition), which confronts males with the decision of how to allocate their reproductive resources to each mating event. Although most existing models have examined either female mating frequency or male ejaculate allocation while assuming fixed levels of the opposite sex's strategies, these strategies are likely to coevolve. To investigate how the interaction of the two sexes' strategies is influenced by the level of sperm limitation in the population, we developed models in which females adjust their number of allowable matings and males allocate their ejaculate in each mating. Our model predicts that females mate only once or less than once at an even sex ratio or in an extremely female-biased condition, because of female resistance and sperm limitation in the population, respectively. However, in a moderately female-biased condition, males favor partitioning their reproductive budgets across many females, whereas females favor multiple matings to obtain sufficient sperm, which contradicts the predictions of most existing models. We discuss our model's predictions and relationships with the existing models and demonstrate applications for empirical findings.

  15. Modeling Hydrological Processes in New Mexico-Texas-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Samimi, M.; Jahan, N. T.; Mirchi, A.

    2017-12-01

    Efficient allocation of limited water resources to competing use sectors is becoming increasingly critical for water-scarce regions. Understanding natural and anthropogenic processes affecting hydrological processes is key for efficient water management. We used Soil and Water Assessment Tool (SWAT) to model governing hydrologic processes in New Mexico-Texas-Mexico border region. Our study area includes the Elephant Butte Irrigation District (EBID), which manages water resources to support irrigated agriculture. The region is facing water resources challenges associated with chronic water scarcity, over-allocation, diminishing water supply, and growing water demand. Agricultural activities rely on conjunctive use of Rio Grande River water supply and groundwater withdrawal. The model is calibrated and validated under baseline conditions in the arid and semi-arid climate in order to evaluate potential impacts of climate change on the agricultural sector and regional water availability. We highlight the importance of calibrating the crop growth parameters, evapotranspiration, and groundwater recharge to provide a realistic representation of the hydrological processes and water availability in the region. Furthermore, limitations of the model and its utility to inform stakeholders will be discussed.

  16. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source–sink models

    PubMed Central

    Pallas, Benoît; Da Silva, David; Valsesia, Pierre; Yang, Weiwei; Guillaume, Olivier; Lauri, Pierre-Eric; Vercambre, Gilles; Génard, Michel; Costes, Evelyne

    2016-01-01

    Background and aims Plant growth depends on carbon availability and allocation among organs. QualiTree has been designed to simulate carbon allocation and partitioning in the peach tree (Prunus persica), whereas MappleT is dedicated to the simulation of apple tree (Malus × domestica) architecture. The objective of this study was to couple both models and adapt QualiTree to apple trees to simulate organ growth traits and their within-tree variability. Methods MappleT was used to generate architectures corresponding to the ‘Fuji’ cultivar, accounting for the variability within and among individuals. These architectures were input into QualiTree to simulate shoot and fruit growth during a growth cycle. We modified QualiTree to account for the observed shoot polymorphism in apple trees, i.e. different classes (long, medium and short) that were characterized by different growth function parameters. Model outputs were compared with observed 3D tree geometries, considering shoot and final fruit size and growth dynamics. Key Results The modelling approach connecting MappleT and QualiTree was appropriate to the simulation of growth and architectural characteristics at the tree scale (plant leaf area, shoot number and types, fruit weight at harvest). At the shoot scale, mean fruit weight and its variability within trees was accurately simulated, whereas the model tended to overestimate individual shoot leaf area and underestimate its variability for each shoot type. Varying the parameter related to the intensity of carbon exchange between shoots revealed that behaviour intermediate between shoot autonomy and a common assimilate pool was required to properly simulate within-tree fruit growth variability. Moreover, the model correctly dealt with the crop load effect on organ growth. Conclusions This study provides understanding of the integration of shoot ontogenetic properties, carbon supply and transport between entities for simulating organ growth in trees. Further

  17. Analytic hierarchy process (AHP) as a tool in asset allocation

    NASA Astrophysics Data System (ADS)

    Zainol Abidin, Siti Nazifah; Mohd Jaffar, Maheran

    2013-04-01

    Allocation capital investment into different assets is the best way to balance the risk and reward. This can prevent from losing big amount of money. Thus, the aim of this paper is to help investors in making wise investment decision in asset allocation. This paper proposes modifying and adapting Analytic Hierarchy Process (AHP) model. The AHP model is widely used in various fields of study that are related in decision making. The results of the case studies show that the proposed model can categorize stocks and determine the portion of capital investment. Hence, it can assist investors in decision making process and reduce the risk of loss in stock market investment.

  18. Load allocation of power plant using multi echelon economic dispatch

    NASA Astrophysics Data System (ADS)

    Wahyuda, Santosa, Budi; Rusdiansyah, Ahmad

    2017-11-01

    In this paper, the allocation of power plant load which is usually done with a single echelon as in the load flow calculation, is expanded into a multi echelon. A plant load allocation model based on the integration of economic dispatch and multi-echelon problem is proposed. The resulting model is called as Single Objective Multi Echelon Economic Dispatch (SOME ED). This model allows the distribution of electrical power in more detail in the transmission and distribution substations along the existing network. Considering the interconnection system where the distance between the plant and the load center is usually far away, therefore the loss in this model is seen as a function of distance. The advantages of this model is its capability of allocating electrical loads properly, as well as economic dispatch information with the flexibility of electric power system as a result of using multi-echelon. In this model, the flexibility can be viewed from two sides, namely the supply and demand sides, so that the security of the power system is maintained. The model was tested on a small artificial data. The results demonstrated a good performance. It is still very open to further develop the model considering the integration with renewable energy, multi-objective with environmental issues and applied to the case with a larger scale.

  19. Development of an Optimal Water Allocation Decision Tool for the Major Crops During the Water Deficit Period in the Southeast U.S.

    NASA Technical Reports Server (NTRS)

    Paudel, Krishna P.; Limaye, Ashutosh; Hatch, Upton; Cruise, James; Musleh, Fuad

    2005-01-01

    We developed a dynamic model to optimize irrigation application in three major crops (corn, cotton and peanuts) grown in the Southeast USA. Water supply amount is generated from an engineering model which is then combined with economic models to find the optimal amount of irrigation water to apply on each crop field during the six critical water deficit weeks in summer. Results indicate that water is applied on the crop with the highest marginal value product of irrigation. Decision making tool such as the one developed here would help farmers and policy makers to find the maximum profitable solution when water shortage is a serious concern.

  20. Assessing The Ecosystem Service Freshwater Production From An Integrated Water Resources Management Perspective. Case Study: The Tormes Water Resources System (Spain)

    NASA Astrophysics Data System (ADS)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2014-05-01

    The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current

  1. A method to assess the allocation suitability of recreational activities: An economic approach

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Lin

    1996-03-01

    Most existing methods of planning focus on development of a recreational area; less consideration is placed on the allocation of recreational activities within a recreational area. Most existing research emphasizes the economic benefits of developing a recreational area; few authors assessed the allocation suitability of recreational activities from an economic point of view. The purpose of this work was to develop a model to assess the allocation suitability of recreational activities according to the application of a concept of analysis of cost and benefit under a premise of ecological concern. The model was verified with a case study of Taiwan. We suggest that the proposed model should form a critical part of recreational planning.

  2. Optimal allocation of leaf epidermal area for gas exchange.

    PubMed

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  3. 50 CFR 660.55 - Allocations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... biennial fishing period's open access allocation. (B) [Reserved] (f) Catch accounting. Catch accounting... allocations in a given biennial cycle, catch of those species are counted against the limited entry/open... fisheries—(i) Catch accounting for the trawl allocation. Any groundfish caught by a vessel registered to a...

  4. Evaluating the Impacts of an Agricultural Water Market in the Guadalupe River Basin, Texas: An Agent-based Modeling Approach

    NASA Astrophysics Data System (ADS)

    Du, E.; Cai, X.; Minsker, B. S.

    2014-12-01

    Agriculture comprises about 80 percent of the total water consumption in the US. Under conditions of water shortage and fully committed water rights, market-based water allocations could be promising instruments for agricultural water redistribution from marginally profitable areas to more profitable ones. Previous studies on water market have mainly focused on theoretical or statistical analysis. However, how water users' heterogeneous physical attributes and decision rules about water use and water right trading will affect water market efficiency has been less addressed. In this study, we developed an agent-based model to evaluate the benefits of an agricultural water market in the Guadalupe River Basin during drought events. Agricultural agents with different attributes (i.e., soil type for crops, annual water diversion permit and precipitation) are defined to simulate the dynamic feedback between water availability, irrigation demand and water trading activity. Diversified crop irrigation rules and water bidding rules are tested in terms of crop yield, agricultural profit, and water-use efficiency. The model was coupled with a real-time hydrologic model and run under different water scarcity scenarios. Preliminary results indicate that an agricultural water market is capable of increasing crop yield, agricultural profit, and water-use efficiency. This capability is more significant under moderate drought scenarios than in mild and severe drought scenarios. The water market mechanism also increases agricultural resilience to climate uncertainty by reducing crop yield variance in drought events. The challenges of implementing an agricultural water market under climate uncertainty are also discussed.

  5. Grey fuzzy optimization model for water quality management of a river system

    NASA Astrophysics Data System (ADS)

    Karmakar, Subhankar; Mujumdar, P. P.

    2006-07-01

    A grey fuzzy optimization model is developed for water quality management of river system to address uncertainty involved in fixing the membership functions for different goals of Pollution Control Agency (PCA) and dischargers. The present model, Grey Fuzzy Waste Load Allocation Model (GFWLAM), has the capability to incorporate the conflicting goals of PCA and dischargers in a deterministic framework. The imprecision associated with specifying the water quality criteria and fractional removal levels are modeled in a fuzzy mathematical framework. To address the imprecision in fixing the lower and upper bounds of membership functions, the membership functions themselves are treated as fuzzy in the model and the membership parameters are expressed as interval grey numbers, a closed and bounded interval with known lower and upper bounds but unknown distribution information. The model provides flexibility for PCA and dischargers to specify their aspirations independently, as the membership parameters for different membership functions, specified for different imprecise goals are interval grey numbers in place of a deterministic real number. In the final solution optimal fractional removal levels of the pollutants are obtained in the form of interval grey numbers. This enhances the flexibility and applicability in decision-making, as the decision-maker gets a range of optimal solutions for fixing the final decision scheme considering technical and economic feasibility of the pollutant treatment levels. Application of the GFWLAM is illustrated with case study of the Tunga-Bhadra river system in India.

  6. Bringing Water into an Integrated Assessment Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izaurralde, Roberto C.; Thomson, Allison M.; Sands, Ronald

    We developed a modeling capability to understand how water is allocated within a river basin and examined present and future water allocations among agriculture, energy production, other human requirements, and ecological needs. Water is an essential natural resource needed for food and fiber production, household and industrial uses, energy production, transportation, tourism and recreation, and the functioning of natural ecosystems. Anthropogenic climate change and population growth are anticipated to impose unprecedented pressure on water resources during this century. Pacific Northwest National Laboratory (PNNL) researchers have pioneered the development of integrated assessment (IA) models for the analysis of energy and economicmore » systems under conditions of climate change. This Laboratory Directed Research and Development (LDRD) effort led to the development of a modeling capability to evaluate current and future water allocations between human requirements and ecosystem services. The Water Prototype Model (WPM) was built in STELLA®, a computer modeling package with a powerful interface that enables users to construct dynamic models to simulate and integrate many processes (biological, hydrological, economics, sociological). A 150,404-km2 basin in the United States (U.S.) Pacific Northwest region served as the platform for the development of the WPM. About 60% of the study basin is in the state of Washington with the rest in Oregon. The Columbia River runs through the basin for 874 km, starting at the international border with Canada and ending (for the purpose of the simulation) at The Dalles dam. Water enters the basin through precipitation and from streamflows originating from the Columbia River at the international border with Canada, the Spokane River, and the Snake River. Water leaves the basin through evapotranspiration, consumptive uses (irrigation, livestock, domestic, commercial, mining, industrial, and off-stream power generation), and

  7. A bi-objective model for robust yard allocation scheduling for outbound containers

    NASA Astrophysics Data System (ADS)

    Liu, Changchun; Zhang, Canrong; Zheng, Li

    2017-01-01

    This article examines the yard allocation problem for outbound containers, with consideration of uncertainty factors, mainly including the arrival and operation time of calling vessels. Based on the time buffer inserting method, a bi-objective model is constructed to minimize the total operational cost and to maximize the robustness of fighting against the uncertainty. Due to the NP-hardness of the constructed model, a two-stage heuristic is developed to solve the problem. In the first stage, initial solutions are obtained by a greedy algorithm that looks n-steps ahead with the uncertainty factors set as their respective expected values; in the second stage, based on the solutions obtained in the first stage and with consideration of uncertainty factors, a neighbourhood search heuristic is employed to generate robust solutions that can fight better against the fluctuation of uncertainty factors. Finally, extensive numerical experiments are conducted to test the performance of the proposed method.

  8. Graph theoretical stable allocation as a tool for reproduction of control by human operators

    NASA Astrophysics Data System (ADS)

    van Nooijen, Ronald; Ertsen, Maurits; Kolechkina, Alla

    2016-04-01

    During the design of central control algorithms for existing water resource systems under manual control it is important to consider the interaction with parts of the system that remain under manual control and to compare the proposed new system with the existing manual methods. In graph theory the "stable allocation" problem has good solution algorithms and allows for formulation of flow distribution problems in terms of priorities. As a test case for the use of this approach we used the algorithm to derive water allocation rules for the Gezira Scheme, an irrigation system located between the Blue and White Niles south of Khartoum. In 1925, Gezira started with 300,000 acres; currently it covers close to two million acres.

  9. Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent-Based Simulation.

    PubMed

    Kroshl, William M; Sarkani, Shahram; Mazzuchi, Thomas A

    2015-09-01

    This article presents ongoing research that focuses on efficient allocation of defense resources to minimize the damage inflicted on a spatially distributed physical network such as a pipeline, water system, or power distribution system from an attack by an active adversary, recognizing the fundamental difference between preparing for natural disasters such as hurricanes, earthquakes, or even accidental systems failures and the problem of allocating resources to defend against an opponent who is aware of, and anticipating, the defender's efforts to mitigate the threat. Our approach is to utilize a combination of integer programming and agent-based modeling to allocate the defensive resources. We conceptualize the problem as a Stackelberg "leader follower" game where the defender first places his assets to defend key areas of the network, and the attacker then seeks to inflict the maximum damage possible within the constraints of resources and network structure. The criticality of arcs in the network is estimated by a deterministic network interdiction formulation, which then informs an evolutionary agent-based simulation. The evolutionary agent-based simulation is used to determine the allocation of resources for attackers and defenders that results in evolutionary stable strategies, where actions by either side alone cannot increase its share of victories. We demonstrate these techniques on an example network, comparing the evolutionary agent-based results to a more traditional, probabilistic risk analysis (PRA) approach. Our results show that the agent-based approach results in a greater percentage of defender victories than does the PRA-based approach. © 2015 Society for Risk Analysis.

  10. Confronting water in an Israeli-Palestinian peace agreement

    NASA Astrophysics Data System (ADS)

    Brooks, David; Trottier, Julie

    2010-03-01

    SummaryTrans-boundary water agreements are usually conceived as allocation agreements. In other words, water is treated as if it were a pie to be divided among the riparian states. The treatment of water as if it were as immobile as land may be useful in the short term, but it is fundamentally flawed as a means to avoid conflict as well as to ensure efficient, equitable, and sustainable management of water over the long term. This article proposes to avoid quantitative allocations within international water agreements, whether they be presented as percentage or fixed allocations or whether or not accompanied by a periodic revision clause. It proposes instead an ongoing joint management structure that allows for continuous conflict resolution concerning water demands and uses in a manner that effectively de-nationalises water uses. As well, it builds on existing, functioning institutions that are already active over a variety of scalar levels. It disaggregates what is usually perceived as a national water demand into its component institutions and re-aggregates them within an international institutional context. Though this approach for building trans-boundary water agreements can prove useful in any geographical situation, this article uses the Israeli-Palestinian conflict as a model. It proposes to respect the existing differences in the institutional management of water between the two entities and to reach four general objectives: economic efficiency, social and political equity, ecological sustainability, and the ability to implement the agreement in practice. The institutional design and proposed mechanisms follow five key principles for shared management: water allocations that are not fixed but variable over time; equality in rights and responsibilities; priority for demand management over supply management; continuous monitoring of water quality and quantity; and mediation among competing uses of fresh water. This institutional structure balances water

  11. The Community Water Model (CWATM) / Development of a community driven global water model

    NASA Astrophysics Data System (ADS)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide

    2017-04-01

    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In

  12. Plant reproductive allocation predicts herbivore dynamics across spatial and temporal scales.

    PubMed

    Miller, Tom E X; Tyre, Andrew J; Louda, Svata M

    2006-11-01

    Life-history theory suggests that iteroparous plants should be flexible in their allocation of resources toward growth and reproduction. Such plasticity could have consequences for herbivores that prefer or specialize on vegetative versus reproductive structures. To test this prediction, we studied the response of the cactus bug (Narnia pallidicornis) to meristem allocation by tree cholla cactus (Opuntia imbricata). We evaluated the explanatory power of demographic models that incorporated variation in cactus relative reproductive effort (RRE; the proportion of meristems allocated toward reproduction). Field data provided strong support for a single model that defined herbivore fecundity as a time-varying, increasing function of host RRE. High-RRE plants were predicted to support larger insect populations, and this effect was strongest late in the season. Independent field data provided strong support for these qualitative predictions and suggested that plant allocation effects extend across temporal and spatial scales. Specifically, late-season insect abundance was positively associated with interannual changes in cactus RRE over 3 years. Spatial variation in insect abundance was correlated with variation in RRE among five cactus populations across New Mexico. We conclude that plant allocation can be a critical component of resource quality for insect herbivores and, thus, an important mechanism underlying variation in herbivore abundance across time and space.

  13. 42 CFR § 510.325 - Allocation of payments for services that straddle the episode.

    Code of Federal Regulations, 2010 CFR

    2016-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) HEALTH CARE INFRASTRUCTURE AND MODEL PROGRAMS COMPREHENSIVE CARE FOR JOINT REPLACEMENT MODEL Pricing and Payment § 510.325 Allocation of payments for services... 42 Public Health 5 2016-10-01 2016-10-01 false Allocation of payments for services that straddle...

  14. 42 CFR § 510.325 - Allocation of payments for services that straddle the episode.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) HEALTH CARE INFRASTRUCTURE AND MODEL PROGRAMS COMPREHENSIVE CARE FOR JOINT REPLACEMENT MODEL Pricing and Payment § 510.325 Allocation of payments for services... 42 Public Health 5 2017-10-01 2017-10-01 false Allocation of payments for services that straddle...

  15. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.

    PubMed

    Brown, Caleb E; Mickelbart, Michael V; Jacobs, Douglass F

    2014-12-01

    Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (Ψpd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf Ψpd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Applicability and Limitations of Reliability Allocation Methods

    NASA Technical Reports Server (NTRS)

    Cruz, Jose A.

    2016-01-01

    Reliability allocation process may be described as the process of assigning reliability requirements to individual components within a system to attain the specified system reliability. For large systems, the allocation process is often performed at different stages of system design. The allocation process often begins at the conceptual stage. As the system design develops, more information about components and the operating environment becomes available, different allocation methods can be considered. Reliability allocation methods are usually divided into two categories: weighting factors and optimal reliability allocation. When properly applied, these methods can produce reasonable approximations. Reliability allocation techniques have limitations and implied assumptions that need to be understood by system engineers. Applying reliability allocation techniques without understanding their limitations and assumptions can produce unrealistic results. This report addresses weighting factors, optimal reliability allocation techniques, and identifies the applicability and limitations of each reliability allocation technique.

  17. Research on Evaluation of resource allocation efficiency of transportation system based on DEA

    NASA Astrophysics Data System (ADS)

    Zhang, Zhehui; Du, Linan

    2017-06-01

    In this paper, we select the time series data onto 1985-2015 years, construct the land (shoreline) resources, capital and labor as inputs. The index system of the output is freight volume and passenger volume, we use Quantitative analysis based on DEA method evaluated the resource allocation efficiency of railway, highway, water transport and civil aviation in China. Research shows that the resource allocation efficiency of various modes of transport has obvious difference, and the impact on scale efficiency is more significant. The most important two ways to optimize the allocation of resources to improve the efficiency of the combination of various modes of transport is promoting the co-ordination of various modes of transport and constructing integrated transportation system.

  18. A predictive model to allocate frequent service users of community-based mental health services to different packages of care.

    PubMed

    Grigoletti, Laura; Amaddeo, Francesco; Grassi, Aldrigo; Boldrini, Massimo; Chiappelli, Marco; Percudani, Mauro; Catapano, Francesco; Fiorillo, Andrea; Perris, Francesco; Bacigalupi, Maurizio; Albanese, Paolo; Simonetti, Simona; De Agostini, Paola; Tansella, Michele

    2010-01-01

    To develop predictive models to allocate patients into frequent and low service users groups within the Italian Community-based Mental Health Services (CMHSs). To allocate frequent users to different packages of care, identifying the costs of these packages. Socio-demographic and clinical data and GAF scores at baseline were collected for 1250 users attending five CMHSs. All psychiatric contacts made by these patients during six months were recorded. A logistic regression identified frequent service users predictive variables. Multinomial logistic regression identified variables able to predict the most appropriate package of care. A cost function was utilised to estimate costs. Frequent service users were 49%, using nearly 90% of all contacts. The model classified correctly 80% of users in the frequent and low users groups. Three packages of care were identified: Basic Community Treatment (4,133 Euro per six months); Intensive Community Treatment (6,180 Euro) and Rehabilitative Community Treatment (11,984 Euro) for 83%, 6% and 11% of frequent service users respectively. The model was found to be accurate for 85% of users. It is possible to develop predictive models to identify frequent service users and to assign them to pre-defined packages of care, and to use these models to inform the funding of psychiatric care.

  19. Fixed allocation patterns, rather than plasticity, benefit recruitment and recovery from drought in seedlings of a desert shrub

    PubMed Central

    Zhang, Yao; Li, Yan; Xie, Jiang-Bo

    2016-01-01

    The response of plants to drought is controlled by the interaction between physiological regulation and morphological adjustment. Although recent studies have highlighted the long-term morphological acclimatization of plants to drought, there is still debate on how plant biomass allocation patterns respond to drought. In this study, we performed a greenhouse experiment with first-year seedlings of a desert shrub in control, drought and re-water treatments, to examine their physiological and morphological traits during drought and subsequent recovery. We found that (i) biomass was preferentially allocated to roots along a fixed allometric trajectory throughout the first year of development, irrespective of the variation in water availability; and (ii) this fixed biomass allocation pattern benefited the post-drought recovery. These results suggest that, in a stressful environment, natural selection has favoured a fixed biomass allocation pattern rather than plastic responses to environmental variation. The fixed ‘preferential allocation to root’ biomass suggests that roots may play a critical role in determining the fate of this desert shrub during prolonged drought. As the major organ for resource acquisition and storage, how the root system functions during drought requires further investigation. PMID:27073036

  20. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft

    NASA Technical Reports Server (NTRS)

    Davidson, John B.; Lallman, Frederick J.; Bundick, W. Thomas

    2001-01-01

    Abstract This paper presents the development and application of one approach to the control of aircraft with large numbers of control effectors. This approach, referred to as real-time adaptive control allocation, combines a nonlinear method for control allocation with actuator failure detection and isolation. The control allocator maps moment (or angular acceleration) commands into physical control effector commands as functions of individual control effectiveness and availability. The actuator failure detection and isolation algorithm is a model-based approach that uses models of the actuators to predict actuator behavior and an adaptive decision threshold to achieve acceptable false alarm/missed detection rates. This integrated approach provides control reconfiguration when an aircraft is subjected to actuator failure, thereby improving maneuverability and survivability of the degraded aircraft. This method is demonstrated on a next generation military aircraft Lockheed-Martin Innovative Control Effector) simulation that has been modified to include a novel nonlinear fluid flow control control effector based on passive porosity. Desktop and real-time piloted simulation results demonstrate the performance of this integrated adaptive control allocation approach.

  1. Using Regression Analysis in Departmental Budget Allocations. IR Applications, Volume 24, November 1, 2009

    ERIC Educational Resources Information Center

    Luna, Andrew L.; Brennan, Kelly A.

    2009-01-01

    This study uses a regression model to determine if a significant difference exists between the actual budget allocation that an academic department received and the model's predicted budget allocation for that same department. Budget data from a Southeastern Master's/Comprehensive state university were used as the dependent variable, and the…

  2. Perceived Relationship, Sex-Role Orientation, and Gender Differences in Reward Allocation.

    ERIC Educational Resources Information Center

    Bowden, Maryanne; Zanna, Mark P.

    Lerner has proposed an equity model used in the determination of fair allocations which suggests that if two individuals are perceived as being similar to and in a positive relationship with each other, there are two possible rules that give fair allocation of rewards. If individuals see each other as occupants of positions the characteristics of…

  3. Variable-Internal-Stores models of microbial growth and metabolism with dynamic allocation of cellular resources.

    PubMed

    Nev, Olga A; van den Berg, Hugo A

    2017-01-01

    Variable-Internal-Stores models of microbial metabolism and growth have proven to be invaluable in accounting for changes in cellular composition as microbial cells adapt to varying conditions of nutrient availability. Here, such a model is extended with explicit allocation of molecular building blocks among various types of catalytic machinery. Such an extension allows a reconstruction of the regulatory rules employed by the cell as it adapts its physiology to changing environmental conditions. Moreover, the extension proposed here creates a link between classic models of microbial growth and analyses based on detailed transcriptomics and proteomics data sets. We ascertain the compatibility between the extended Variable-Internal-Stores model and the classic models, demonstrate its behaviour by means of simulations, and provide a detailed treatment of the uniqueness and the stability of its equilibrium point as a function of the availabilities of the various nutrients.

  4. Evaluation of Irrigation Water Use Efficiency and Water-saving in the Middle Oasis of Heihe River Basin Using a Distributed Agro-hydrological Model

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Huang, G., Sr.; Xu, X.; Huang, Q.; Huo, Z.

    2015-12-01

    Severe water scarcity and unreasonable allocation are threatening the eco-environment in the Heihe River basin (HRB), an arid and semi-arid watershed in Northwest China. The water use in the middle oasis accounts for about 70% of the total water use in the HRB, in which over 85% are consumed by irrigated agriculture. Thus the regional assessment and improvement of irrigation water use are quite essential for water-saving and eco-environmental sustainability. This paper applied a distributed agro-hydrological model (SWAP-EPIC) integrated with ArcGIS to investigate the irrigation water use efficiency (WUE) in the middle oasis. The detailed distributed data in 2012, including soil properties, irrigation schedules, crop pattern and calendar, were collected and used in the regional simulation. The spatial-temporal distribution of LAI and evapotranspiration (ETa) from remote sensing were used as observations to calibrate the model. Results showed that the simulation data was in a good agreement with the observation one. The relative WUE (i.e. divided by the mean value) ranged from 0.77 to 1.33 in different canal command areas. Large spatial variations of WUE were mainly caused by the non-uniform distribution of irrigation water. The present irrigation performance was poor, and only 50% of total irrigation amount was finally utilized through evapotranspiration in the whole district. While nearly 24% of the irrigation water were lost through field deep percolation and 26% were wasted in canal conveyance. Further analysis of water-saving scenarios was conducted through applying the improved irrigation schedule for each crop-soil unites and increasing the canal conveyance efficiency. Prediction showed that 15% of total irrigation amount can be saved without reduction of crop yield.

  5. Models of knot and stem development in black spruce trees indicate a shift in allocation priority to branches when growth is limited

    PubMed Central

    Duchateau, Emmanuel; Auty, David; Mothe, Frédéric; Longuetaud, Fleur; Ung, Chhun Huor

    2015-01-01

    The branch autonomy principle, which states that the growth of individual branches can be predicted from their morphology and position in the forest canopy irrespective of the characteristics of the tree, has been used to simplify models of branch growth in trees. However, observed changes in allocation priority within trees towards branches growing in light-favoured conditions, referred to as ‘Milton’s Law of resource availability and allocation,’ have raised questions about the applicability of the branch autonomy principle. We present models linking knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.) B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within and between trees. Data describing the annual radial growth of 445 stem rings and the three-dimensional shape of 5,377 knots were extracted from optical scans and X-ray computed tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios (KSR) were calculated for each year of growth, and statistical models were developed to describe the annual development of knot diameter and curvature as a function of stem radial increment, total tree height, stem diameter, and the position of knots along an annual growth unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a variable indicative of the competitive status of the tree. Simulations of the development of an individual knot showed that an increase in the stem radial growth rate was associated with an increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide support for ‘Milton’s Law,’ since they indicate that allocation priority is given to locations where the potential return is the highest. The developed models provided realistic simulations of knot morphology within trees, which could be integrated into a functional-structural model of tree growth and above

  6. Models of knot and stem development in black spruce trees indicate a shift in allocation priority to branches when growth is limited.

    PubMed

    Duchateau, Emmanuel; Auty, David; Mothe, Frédéric; Longuetaud, Fleur; Ung, Chhun Huor; Achim, Alexis

    2015-01-01

    The branch autonomy principle, which states that the growth of individual branches can be predicted from their morphology and position in the forest canopy irrespective of the characteristics of the tree, has been used to simplify models of branch growth in trees. However, observed changes in allocation priority within trees towards branches growing in light-favoured conditions, referred to as 'Milton's Law of resource availability and allocation,' have raised questions about the applicability of the branch autonomy principle. We present models linking knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.) B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within and between trees. Data describing the annual radial growth of 445 stem rings and the three-dimensional shape of 5,377 knots were extracted from optical scans and X-ray computed tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios (KSR) were calculated for each year of growth, and statistical models were developed to describe the annual development of knot diameter and curvature as a function of stem radial increment, total tree height, stem diameter, and the position of knots along an annual growth unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a variable indicative of the competitive status of the tree. Simulations of the development of an individual knot showed that an increase in the stem radial growth rate was associated with an increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide support for 'Milton's Law,' since they indicate that allocation priority is given to locations where the potential return is the highest. The developed models provided realistic simulations of knot morphology within trees, which could be integrated into a functional-structural model of tree growth and above

  7. Quantifying Risks in the Global Water-Food-Climate Nexus in the Coming Decades: An Integrated Modeling Approach

    NASA Astrophysics Data System (ADS)

    Schlosser, C. A.; Strzepek, K.; Arndt, C.; Gueneau, A.; Cai, Y.; Gao, X.; Robinson, S.; Sokolov, A. P.; Thurlow, J.

    2011-12-01

    The growing need for risk-based assessments of impacts and adaptation to regional climate change calls for the quantification of the likelihood of regional outcomes and the representation of their uncertainty. Moreover, our global water resources include energy, agricultural and environmental systems, which are linked together as well as to climate. With the prospect of potential climate change and associated shifts in hydrologic variation and extremes, the MIT Integrated Global Systems Model (IGSM) framework, in collaboration with UNU-WIDER, has enhanced its capabilities to model impacts (or effects) on the managed water-resource systems. We first present a hybrid approach that extends the MIT Integrated Global System Model (IGSM) framework to provide probabilistic projections of regional climate changes. This procedure constructs meta-ensembles of the regional hydro-climate, combining projections from the MIT IGSM that represent global-scale uncertainties with regionally resolved patterns from archived climate-model projections. From these, a river routing and water-resource management module allocates water among irrigation, hydropower, urban/industrial, and in-stream uses and investigate how society might adapt water resources due to shifts in hydro-climate variations and extremes. These results are then incorporated into economic models allowing us to consider the implications of climate for growth, land use, and development prospects. In this model-based investigation, we consider how changes in the regional hydro-climate over major river basins in southern Africa, Vietnam, as well as the United States impact agricultural productivity and water-management systems, and whether adaptive strategies can cope with the more severe climate-related threats to growth and development. All this is cast under a probabilistic description of regional climate changes encompassed by the IGSM framework.

  8. Developing models that analyze the economic/environmental trade-offs implicit in water resource management

    NASA Astrophysics Data System (ADS)

    Howitt, R. E.

    2016-12-01

    Hydro-economic models have been used to analyze optimal supply management and groundwater use for the past 25 years. They are characterized by an objective function that usually maximizes economic measures such as consumer and producer surplus subject to hydrologic equations of motion or water distribution systems. The hydrologic and economic components are sometimes fully integrated. Alternatively they may use an iterative interactive process. Environmental considerations have been included in hydro-economic models as inequality constraints. Representing environmental requirements as constraints is a rigid approximation of the range of management alternatives that could be used to implement environmental objectives. The next generation of hydro-economic models, currently being developed, require that the environmental alternatives be represented by continuous or semi-continuous functions which relate water resource use allocated to the environment with the probabilities of achieving environmental objectives. These functions will be generated by process models of environmental and biological systems which are now advanced to the state that they can realistically represent environmental systems and flexibility to interact with economic models. Examples are crop growth models, climate modeling, and biological models of forest, fish, and fauna systems. These process models can represent environmental outcomes in a form that is similar to economic production functions. When combined with economic models the interacting process models can reproduce a range of trade-offs between economic and environmental objectives, and thus optimize social value of many water and environmental resources. Some examples of this next-generation of hydro-enviro- economic models are reviewed. In these models implicit production functions for environmental goods are combined with hydrologic equations of motion and economic response functions. We discuss models that show interaction between

  9. Sex allocation promotes the stable co-occurrence of competitive species

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuya

    2017-03-01

    Biodiversity has long been a source of wonder and scientific curiosity. Theoretically, the co-occurrence of competitive species requires niche differentiation, and such differences are well known; however, the neutral theory, which assumes the equivalence of all individuals regardless of the species in a biological community, has successfully recreated observed patterns of biodiversity. In this research, the evolution of sex allocation is demonstrated to be the key to resolving why the neutral theory works well, despite the observed species differences. The sex allocation theory predicts that female-biased allocation evolves in species in declining density and that this allocation improves population growth, which should lead to an increase in density. In contrast, when the density increases, a less biased allocation evolves, which reduces the population growth rate and leads to decreased density. Thus, sex allocation provides a buffer against species differences in population growth. A model incorporating this mechanism demonstrates that hundreds of species can co-occur over 10,000 generations, even in homogeneous environments, and reproduces the observed patterns of biodiversity. This study reveals the importance of evolutionary processes within species for the sustainability of biodiversity. Integrating the entire biological process, from genes to community, will open a new era of ecology.

  10. Managing water quality under drought conditions in the Llobregat River Basin.

    PubMed

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. 29 CFR 4044.10 - Manner of allocation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Manner of allocation. 4044.10 Section 4044.10 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION PLAN TERMINATIONS ALLOCATION OF ASSETS IN SINGLE-EMPLOYER PLANS Allocation of Assets Allocation of Assets to Benefit Categories § 4044.10 Manner of allocation. (a) General. The...

  12. 29 CFR 4044.10 - Manner of allocation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 9 2012-07-01 2012-07-01 false Manner of allocation. 4044.10 Section 4044.10 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION PLAN TERMINATIONS ALLOCATION OF ASSETS IN SINGLE-EMPLOYER PLANS Allocation of Assets Allocation of Assets to Benefit Categories § 4044.10 Manner of allocation. (a) General. The...

  13. 29 CFR 4044.10 - Manner of allocation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Manner of allocation. 4044.10 Section 4044.10 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION PLAN TERMINATIONS ALLOCATION OF ASSETS IN SINGLE-EMPLOYER PLANS Allocation of Assets Allocation of Assets to Benefit Categories § 4044.10 Manner of allocation. Link to an...

  14. 29 CFR 4044.10 - Manner of allocation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 9 2013-07-01 2013-07-01 false Manner of allocation. 4044.10 Section 4044.10 Labor Regulations Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION PLAN TERMINATIONS ALLOCATION OF ASSETS IN SINGLE-EMPLOYER PLANS Allocation of Assets Allocation of Assets to Benefit Categories § 4044.10 Manner of allocation. (a) General. The...

  15. A person based formula for allocating commissioning funds to general practices in England: development of a statistical model.

    PubMed

    Dixon, Jennifer; Smith, Peter; Gravelle, Hugh; Martin, Steve; Bardsley, Martin; Rice, Nigel; Georghiou, Theo; Dusheiko, Mark; Billings, John; Lorenzo, Michael De; Sanderson, Colin

    2011-11-22

    To develop a formula for allocating resources for commissioning hospital care to all general practices in England based on the health needs of the people registered in each practice Multivariate prospective statistical models were developed in which routinely collected electronic information from 2005-6 and 2006-7 on individuals and the areas in which they lived was used to predict their costs of hospital care in the next year, 2007-8. Data on individuals included all diagnoses recorded at any inpatient admission. Models were developed on a random sample of 5 million people and validated on a second random sample of 5 million people and a third sample of 5 million people drawn from a random sample of practices. All general practices in England as of 1 April 2007. All NHS inpatient admissions and outpatient attendances for individuals registered with a general practice on that date. All individuals registered with a general practice in England at 1 April 2007. Power of the statistical models to predict the costs of the individual patient or each practice's registered population for 2007-8 tested with a range of metrics (R(2) reported here). Comparisons of predicted costs in 2007-8 with actual costs incurred in the same year were calculated by individual and by practice. Models including person level information (age, sex, and ICD-10 codes diagnostic recorded) and a range of area level information (such as socioeconomic deprivation and supply of health facilities) were most predictive of costs. After accounting for person level variables, area level variables added little explanatory power. The best models for resource allocation could predict upwards of 77% of the variation in costs at practice level, and about 12% at the person level. With these models, the predicted costs of about a third of practices would exceed or undershoot the actual costs by 10% or more. Smaller practices were more likely to be in these groups. A model was developed that performed well by

  16. A person based formula for allocating commissioning funds to general practices in England: development of a statistical model

    PubMed Central

    Smith, Peter; Gravelle, Hugh; Martin, Steve; Bardsley, Martin; Rice, Nigel; Georghiou, Theo; Dusheiko, Mark; Billings, John; Lorenzo, Michael De; Sanderson, Colin

    2011-01-01

    Objectives To develop a formula for allocating resources for commissioning hospital care to all general practices in England based on the health needs of the people registered in each practice Design Multivariate prospective statistical models were developed in which routinely collected electronic information from 2005-6 and 2006-7 on individuals and the areas in which they lived was used to predict their costs of hospital care in the next year, 2007-8. Data on individuals included all diagnoses recorded at any inpatient admission. Models were developed on a random sample of 5 million people and validated on a second random sample of 5 million people and a third sample of 5 million people drawn from a random sample of practices. Setting All general practices in England as of 1 April 2007. All NHS inpatient admissions and outpatient attendances for individuals registered with a general practice on that date. Subjects All individuals registered with a general practice in England at 1 April 2007. Main outcome measures Power of the statistical models to predict the costs of the individual patient or each practice’s registered population for 2007-8 tested with a range of metrics (R2 reported here). Comparisons of predicted costs in 2007-8 with actual costs incurred in the same year were calculated by individual and by practice. Results Models including person level information (age, sex, and ICD-10 codes diagnostic recorded) and a range of area level information (such as socioeconomic deprivation and supply of health facilities) were most predictive of costs. After accounting for person level variables, area level variables added little explanatory power. The best models for resource allocation could predict upwards of 77% of the variation in costs at practice level, and about 12% at the person level. With these models, the predicted costs of about a third of practices would exceed or undershoot the actual costs by 10% or more. Smaller practices were more likely to be

  17. 77 FR 67663 - Notice of Availability of the Proposed Land Use Plan Amendments for Allocation of Oil Shale and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... quality, climate change, water quality and quantity, socio- economic concerns, wildlife concerns, and...] Notice of Availability of the Proposed Land Use Plan Amendments for Allocation of Oil Shale and Tar Sands... (BLM) has prepared the Proposed Resource Management Plan (RMP) Amendments for Allocation of Oil Shale...

  18. Make or buy analysis model based on tolerance allocation to minimize manufacturing cost and fuzzy quality loss

    NASA Astrophysics Data System (ADS)

    Rosyidi, C. N.; Puspitoingrum, W.; Jauhari, W. A.; Suhardi, B.; Hamada, K.

    2016-02-01

    The specification of tolerances has a significant impact on the quality of product and final production cost. The company should carefully pay attention to the component or product tolerance so they can produce a good quality product at the lowest cost. Tolerance allocation has been widely used to solve problem in selecting particular process or supplier. But before merely getting into the selection process, the company must first make a plan to analyse whether the component must be made in house (make), to be purchased from a supplier (buy), or used the combination of both. This paper discusses an optimization model of process and supplier selection in order to minimize the manufacturing costs and the fuzzy quality loss. This model can also be used to determine the allocation of components to the selected processes or suppliers. Tolerance, process capability and production capacity are three important constraints that affect the decision. Fuzzy quality loss function is used in this paper to describe the semantic of the quality, in which the product quality level is divided into several grades. The implementation of the proposed model has been demonstrated by solving a numerical example problem that used a simple assembly product which consists of three components. The metaheuristic approach were implemented to OptQuest software from Oracle Crystal Ball in order to obtain the optimal solution of the numerical example.

  19. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    DOE PAGES

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.; ...

    2017-09-22

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed

  20. Evaluating the effect of alternative carbon allocation schemes in a land surface model (CLM4.5) on carbon fluxes, pools, and turnover in temperate forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montané, Francesc; Fox, Andrew M.; Arellano, Avelino F.

    How carbon (C) is allocated to different plant tissues (leaves, stem, and roots) determines how long C remains in plant biomass and thus remains a central challenge for understanding the global C cycle. We used a diverse set of observations (AmeriFlux eddy covariance tower observations, biomass estimates from tree-ring data, and leaf area index (LAI) measurements) to compare C fluxes, pools, and LAI data with those predicted by a land surface model (LSM), the Community Land Model (CLM4.5). We ran CLM4.5 for nine temperate (including evergreen and deciduous) forests in North America between 1980 and 2013 using four different C allocationmore » schemes: i. dynamic C allocation scheme (named "D-CLM4.5") with one dynamic allometric parameter, which allocates C to the stem and leaves to vary in time as a function of annual net primary production (NPP); ii. an alternative dynamic C allocation scheme (named "D-Litton"), where, similar to (i), C allocation is a dynamic function of annual NPP, but unlike (i) includes two dynamic allometric parameters involving allocation to leaves, stem, and coarse roots; iii.–iv. a fixed C allocation scheme with two variants, one representative of observations in evergreen (named "F-Evergreen") and the other of observations in deciduous forests (named "F-Deciduous"). D-CLM4.5 generally overestimated gross primary production (GPP) and ecosystem respiration, and underestimated net ecosystem exchange (NEE). In D-CLM4.5, initial aboveground biomass in 1980 was largely overestimated (between 10 527 and 12 897 g C m -2) for deciduous forests, whereas aboveground biomass accumulation through time (between 1980 and 2011) was highly underestimated (between 1222 and 7557 g C m -2) for both evergreen and deciduous sites due to a lower stem turnover rate in the sites than the one used in the model. D-CLM4.5 overestimated LAI in both evergreen and deciduous sites because the leaf C–LAI relationship in the model did not match the observed

  1. Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) (Version 2) (External Review Draft)

    EPA Science Inventory

    EPA announced the availability of the draft report, Updates to the Demographic and Spatial Allocation Models to Produce Integrated Climate and Land Use Scenarios (ICLUS) for a 30-day public comment period. The ICLUS version 2 (v2) modeling tool furthered land change mod...

  2. Waste Load Allocation for Conservative Substances to Protect Aquatic Organisms

    NASA Astrophysics Data System (ADS)

    Hutcheson, M. R.

    1992-01-01

    A waste load allocation process is developed to determine the maximum effluent concentration of a conservative substance that will not harm fish and wildlife propagation. If this concentration is not exceeded in the effluent, the acute toxicity criterion will not be violated in the receiving stream, and the chronic criterion will not be exceeded in the zone of passage, defined in many state water quality standards to allow the movement of aquatic organisms past a discharge. Considerable simplification of the concentration equation, which is the heart of any waste load allocation, is achieved because it is based on the concentration in the receiving stream when the concentration gradient on the zone of passage boundary is zero. Consequently, the expression obtained for effluent concentration is independent of source location or stream morphology. Only five independent variables, which are routinely available to regulatory agencies, are required to perform this allocation. It aids in developing permit limits which are protective without being unduly restrictive or requiring large expenditures of money and manpower on field investigations.

  3. Complex Genetic Effects on Early Vegetative Development Shape Resource Allocation Differences Between Arabidopsis lyrata Populations

    PubMed Central

    Remington, David L.; Leinonen, Päivi H.; Leppälä, Johanna; Savolainen, Outi

    2013-01-01

    Costs of reproduction due to resource allocation trade-offs have long been recognized as key forces in life history evolution, but little is known about their functional or genetic basis. Arabidopsis lyrata, a perennial relative of the annual model plant A. thaliana with a wide climatic distribution, has populations that are strongly diverged in resource allocation. In this study, we evaluated the genetic and functional basis for variation in resource allocation in a reciprocal transplant experiment, using four A. lyrata populations and F2 progeny from a cross between North Carolina (NC) and Norway parents, which had the most divergent resource allocation patterns. Local alleles at quantitative trait loci (QTL) at a North Carolina field site increased reproductive output while reducing vegetative growth. These QTL had little overlap with flowering date QTL. Structural equation models incorporating QTL genotypes and traits indicated that resource allocation differences result primarily from QTL effects on early vegetative growth patterns, with cascading effects on later vegetative and reproductive development. At a Norway field site, North Carolina alleles at some of the same QTL regions reduced survival and reproductive output components, but these effects were not associated with resource allocation trade-offs in the Norway environment. Our results indicate that resource allocation in perennial plants may involve important adaptive mechanisms largely independent of flowering time. Moreover, the contributions of resource allocation QTL to local adaptation appear to result from their effects on developmental timing and its interaction with environmental constraints, and not from simple models of reproductive costs. PMID:23979581

  4. Opportunistic Capacity-Based Resource Allocation for Chunk-Based Multi-Carrier Cognitive Radio Sensor Networks

    PubMed Central

    Huang, Jie; Zeng, Xiaoping; Jian, Xin; Tan, Xiaoheng; Zhang, Qi

    2017-01-01

    The spectrum allocation for cognitive radio sensor networks (CRSNs) has received considerable research attention under the assumption that the spectrum environment is static. However, in practice, the spectrum environment varies over time due to primary user/secondary user (PU/SU) activity and mobility, resulting in time-varied spectrum resources. This paper studies resource allocation for chunk-based multi-carrier CRSNs with time-varied spectrum resources. We present a novel opportunistic capacity model through a continuous time semi-Markov chain (CTSMC) to describe the time-varied spectrum resources of chunks and, based on this, a joint power and chunk allocation model by considering the opportunistically available capacity of chunks is proposed. To reduce the computational complexity, we split this model into two sub-problems and solve them via the Lagrangian dual method. Simulation results illustrate that the proposed opportunistic capacity-based resource allocation algorithm can achieve better performance compared with traditional algorithms when the spectrum environment is time-varied. PMID:28106803

  5. Accelerating Dust Storm Simulation by Balancing Task Allocation in Parallel Computing Environment

    NASA Astrophysics Data System (ADS)

    Gui, Z.; Yang, C.; XIA, J.; Huang, Q.; YU, M.

    2013-12-01

    Dust storm has serious negative impacts on environment, human health, and assets. The continuing global climate change has increased the frequency and intensity of dust storm in the past decades. To better understand and predict the distribution, intensity and structure of dust storm, a series of dust storm models have been developed, such as Dust Regional Atmospheric Model (DREAM), the NMM meteorological module (NMM-dust) and Chinese Unified Atmospheric Chemistry Environment for Dust (CUACE/Dust). The developments and applications of these models have contributed significantly to both scientific research and our daily life. However, dust storm simulation is a data and computing intensive process. Normally, a simulation for a single dust storm event may take several days or hours to run. It seriously impacts the timeliness of prediction and potential applications. To speed up the process, high performance computing is widely adopted. By partitioning a large study area into small subdomains according to their geographic location and executing them on different computing nodes in a parallel fashion, the computing performance can be significantly improved. Since spatiotemporal correlations exist in the geophysical process of dust storm simulation, each subdomain allocated to a node need to communicate with other geographically adjacent subdomains to exchange data. Inappropriate allocations may introduce imbalance task loads and unnecessary communications among computing nodes. Therefore, task allocation method is the key factor, which may impact the feasibility of the paralleling. The allocation algorithm needs to carefully leverage the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire system. This presentation introduces two algorithms for such allocation and compares them with evenly distributed allocation method. Specifically, 1) In order to get optimized solutions, a

  6. Introduction to the invited issue on carbon allocation of trees and forests

    Treesearch

    Daniel Epron; Yann Nouvellon; Michael G. Ryan

    2012-01-01

    Carbon (C) allocation is a major issue in plant ecology, controlling the flows of C fixed in photosynthesis between respiration and biomass production, and between short- and long-lived and aboveground and belowground tissues. Incomplete knowledge of C allocation currently hinders accurate modelling of tree growth and forest ecosystem metabolism (Friedlingstein et al....

  7. Optimal water allocation in small hydropower plants between traditional and non-traditional water users: merging theory and existing practices.

    NASA Astrophysics Data System (ADS)

    Gorla, Lorenzo; Crouzy, Benoît; Perona, Paolo

    2014-05-01

    Water demand for hydropower production is increasing together with the consciousness of the importance of riparian ecosystems and biodiversity. Some Cantons in Switzerland and other alpine regions in Austria and in Süd Tiröl (Italy) started replacing the inadequate concept of Minimum Flow Requirement (MFR) with a dynamic one, by releasing a fix percentage of the total inflow (e.g. 25 %) to the environment. Starting from a model proposed by Perona et al. (2013) and the need of including the environment as an actual water user, we arrived to similar qualitative results, and better quantitative performances. In this paper we explore the space of non-proportional water repartition rules analysed by Gorla and Perona (2013), and we propose new ecological indicators which are directly derived from current ecologic evaluation practices (fish habitat modelling and hydrological alteration). We demonstrate that both MFR water redistribution policy and also proportional repartition rules can be improved using nothing but available information. Furthermore, all water redistribution policies can be described by the model proposed by Perona et al. (2013) in terms of the Principle of Equal Marginal Utility (PEMU) and a suitable class of nonlinear functions. This is particularly useful to highlights implicit assumptions and choosing best-compromise solutions, providing analytical reasons explaining why efficiency cannot be attained by classic repartition rules. Each water repartition policy underlies an ecosystem monetization and a political choice always has to be taken. We explicit the value of the ecosystem health underlying each policy by means of the PEMU under a few assumptions, and discuss how the theoretic efficient redistribution law obtained by our approach is feasible and doesn't imply high costs or advanced management tools. For small run-of-river power plants, this methodology answers the question "how much water should be left to the river?" and is therefore a

  8. Rate distortion optimal bit allocation methods for volumetric data using JPEG 2000.

    PubMed

    Kosheleva, Olga M; Usevitch, Bryan E; Cabrera, Sergio D; Vidal, Edward

    2006-08-01

    Computer modeling programs that generate three-dimensional (3-D) data on fine grids are capable of generating very large amounts of information. These data sets, as well as 3-D sensor/measured data sets, are prime candidates for the application of data compression algorithms. A very flexible and powerful compression algorithm for imagery data is the newly released JPEG 2000 standard. JPEG 2000 also has the capability to compress volumetric data, as described in Part 2 of the standard, by treating the 3-D data as separate slices. As a decoder standard, JPEG 2000 does not describe any specific method to allocate bits among the separate slices. This paper proposes two new bit allocation algorithms for accomplishing this task. The first procedure is rate distortion optimal (for mean squared error), and is conceptually similar to postcompression rate distortion optimization used for coding codeblocks within JPEG 2000. The disadvantage of this approach is its high computational complexity. The second bit allocation algorithm, here called the mixed model (MM) approach, mathematically models each slice's rate distortion curve using two distinct regions to get more accurate modeling at low bit rates. These two bit allocation algorithms are applied to a 3-D Meteorological data set. Test results show that the MM approach gives distortion results that are nearly identical to the optimal approach, while significantly reducing computational complexity.

  9. The value of models in informing resource allocation in colorectal cancer screening – 1 the case of the Netherlands

    PubMed Central

    van Hees, Frank; Zauber, Ann G.; van Veldhuizen, Harriët; Heijnen, Marie-Louise A.; Penning, Corine; de Koning, Harry J.; van Ballegooijen, Marjolein; Lansdorp-Vogelaar, Iris

    2015-01-01

    In May 2011, the Dutch government decided to implement a national programme for colorectal cancer (CRC) screening using biennial faecal immunochemical test (FIT) screening between ages 55 and 75.[1] Decision modelling played an important role in informing this decision, as well as in the planning and implementation of the programme afterwards. In this overview, we illustrate the value of models in informing resource allocation in CRC screening, using the role that decision modelling has played in the Dutch CRC screening programme as an example. PMID:26063755

  10. How to get the most bang for your buck: the evolution and physiology of nutrition-dependent resource allocation strategies.

    PubMed

    Ng'oma, Enoch; Perinchery, Anna M; King, Elizabeth G

    2017-06-28

    All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the 'omic' opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory. © 2017 The Author(s).

  11. How to get the most bang for your buck: the evolution and physiology of nutrition-dependent resource allocation strategies

    PubMed Central

    2017-01-01

    All organisms use resources to grow, survive and reproduce. The supply of these resources varies widely across landscapes and time, imposing ultimate constraints on the maximal trait values for allocation-related traits. In this review, we address three key questions fundamental to our understanding of the evolution of allocation strategies and their underlying mechanisms. First, we ask: how diverse are flexible resource allocation strategies among different organisms? We find there are many, varied, examples of flexible strategies that depend on nutrition. However, this diversity is often ignored in some of the best-known cases of resource allocation shifts, such as the commonly observed pattern of lifespan extension under nutrient limitation. A greater appreciation of the wide variety of flexible allocation strategies leads directly to our second major question: what conditions select for different plastic allocation strategies? Here, we highlight the need for additional models that explicitly consider the evolution of phenotypically plastic allocation strategies and empirical tests of the predictions of those models in natural populations. Finally, we consider the question: what are the underlying mechanisms determining resource allocation strategies? Although evolutionary biologists assume differential allocation of resources is a major factor limiting trait evolution, few proximate mechanisms are known that specifically support the model. We argue that an integrated framework can reconcile evolutionary models with proximate mechanisms that appear at first glance to be in conflict with these models. Overall, we encourage future studies to: (i) mimic ecological conditions in which those patterns evolve, and (ii) take advantage of the ‘omic’ opportunities to produce multi-level data and analytical models that effectively integrate across physiological and evolutionary theory. PMID:28637856

  12. [Management of allocation of positions for specialist medical training].

    PubMed

    Alonso, M I

    2003-01-01

    Currently there is a large imbalance between supply and demand for medical specialists in the Spanish Health System. The aim of this study was to demonstrate the possible effects of current policies of allocating vacancies for interns and residents as well as to describe several measures and alternative policies. Using the methodology of System Dynamics, we designed a simulation model of the allocation process. Based on the validated model, possible changes in the system through time in response to diverse allocation policies were simulated. Specifically, changes in the accumulated number of graduates who over the years have remained without specialty, the number of unemployed specialists, and the imbalance between supply and demand in the period under consideration were observed. The results obtained from the simulation indicate that allocation policies such as the current one tends to reduce the accumulated number of graduates without specialty, due to the philosophy characterizing this policy, but that it considerably increases the number of unemployed specialists and aggravates the supply-demand imbalance. In the simulation, this tendency remained over time even though more restrictive measures in numerus clausus and retirement age were adopted. Equally, a policy based on social needs and aware of delays in training would substantially contribute to eliminating unemployment among specialists and supply-demand imbalance over time. If such a policy were combined with the above-mentioned measures the results would be even better, more rapidly eliminating graduates without specialty, unemployed specialists, and supply-demand imbalances. If the Health Administration continues with the current system of allocation of places, the present imbalance in supply and demand will become even worse. Therefore, new and far-sighted measures and policies are required, as well as greater coordination between undergraduate and postgraduate training.

  13. Water ecosystem service function assessment based on eco-hydrological process in Luanhe Basin,China

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Hao, C.; Qin, T.; Wang, G.; Weng, B.

    2012-12-01

    At present, ecological water are mainly occupied by a rapid development of social economic and population explosion, which seriously threat the ecological security and water security in watershed and regional scale. Due to the lack of a unified standard of measuring the benefit of water resource, social economic and ecosystem, the water allocation can't take place in social economic and ecosystem. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. The function which provided by water in terrestrial, aquatic and social economic system can be addressed through water ecosystem service function research, and it can guide the water allocation in water resource management. Throughout the researches of water ecosystem service, a clear identification of the connection of water ecosystem service function has not been established, and eco-economic approach can't meet the practical requirement of water allocation. Based on "nature-artificiality" dual water cycle theory and eco-hydrological process, this paper proposes a connection and indicator system of water ecosystem service function. In approach, this paper establishes an integrated assessment approach through prototype observation technology, numerical simulation, physical simulation and modern geographic information technology. The core content is to couple an eco-hydrological model, which involves the key processes of distributed hydrological model (WEP), ecological model (CLM-DGVM), in terms of eco-hydrological process. This paper systematically evaluates the eco-hydrological process and evolution of Luanhe Basin in terms of precipitation, ET, runoff, groundwater, ecosystem's scale, form and distribution. According to the results of eco-hydrological process, this paper assesses the direct and derived service function. The result indicates that the

  14. Optimal allocation of trend following strategies

    NASA Astrophysics Data System (ADS)

    Grebenkov, Denis S.; Serror, Jeremy

    2015-09-01

    We consider a portfolio allocation problem for trend following (TF) strategies on multiple correlated assets. Under simplifying assumptions of a Gaussian market and linear TF strategies, we derive analytical formulas for the mean and variance of the portfolio return. We construct then the optimal portfolio that maximizes risk-adjusted return by accounting for inter-asset correlations. The dynamic allocation problem for n assets is shown to be equivalent to the classical static allocation problem for n2 virtual assets that include lead-lag corrections in positions of TF strategies. The respective roles of asset auto-correlations and inter-asset correlations are investigated in depth for the two-asset case and a sector model. In contrast to the principle of diversification suggesting to treat uncorrelated assets, we show that inter-asset correlations allow one to estimate apparent trends more reliably and to adjust the TF positions more efficiently. If properly accounted for, inter-asset correlations are not deteriorative but beneficial for portfolio management that can open new profit opportunities for trend followers. These concepts are illustrated using daily returns of three highly correlated futures markets: the E-mini S&P 500, Euro Stoxx 50 index, and the US 10-year T-note futures.

  15. Carbon allocation and accumulation in conifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gower, S.T.; Isebrands, J.G.; Sheriff, D.W.

    1995-07-01

    Forests cover approximately 33% of the land surface of the earth, yet they are responsible for 65% of the annual carbon (C) accumulated by all terrestrial biomes. In general, total C content and net primary production rates are greater for forests than for other biomes, but C budgets differ greatly among forests. Despite several decades of research on forest C budgets, there is still an incomplete understanding of the factors controlling C allocation. Yet, if we are to understand how changing global events such as land use, climate change, atmospheric N deposition, ozone, and elevated atmospheric CO{sub 2} affect themore » global C budget, a mechanistic understanding of C assimilation, partitioning, and allocation is necessary. The objective of this chapter is to review the major factors that influence C allocation and accumulation in conifer trees and forests. In keeping with the theme of this book, we will focus primarily on evergreen conifers. However, even among evergreen conifers, leaf, canopy, and stand-level C and nutrient allocation patterns differ, often as a function of leaf development and longevity. The terminology related to C allocation literature is often inconsistent, confusing and inadequate for understanding and integrating past and current research. For example, terms often used synonymously to describe C flow or movement include translocation, transport, distribution, allocation, partitioning, apportionment, and biomass allocation. A common terminology is needed because different terms have different meanings to readers. In this paper we use C allocation, partitioning, and accumulation according to the definitions of Dickson and Isebrands (1993). Partitioning is the process of C flow into and among different chemical, storage, and transport pools. Allocation is the distribution of C to different plant parts within the plant (i.e., source to sink). Accumulation is the end product of the process of C allocation.« less

  16. Optimal resource allocation for defense of targets based on differing measures of attractiveness.

    PubMed

    Bier, Vicki M; Haphuriwat, Naraphorn; Menoyo, Jaime; Zimmerman, Rae; Culpen, Alison M

    2008-06-01

    This article describes the results of applying a rigorous computational model to the problem of the optimal defensive resource allocation among potential terrorist targets. In particular, our study explores how the optimal budget allocation depends on the cost effectiveness of security investments, the defender's valuations of the various targets, and the extent of the defender's uncertainty about the attacker's target valuations. We use expected property damage, expected fatalities, and two metrics of critical infrastructure (airports and bridges) as our measures of target attractiveness. Our results show that the cost effectiveness of security investment has a large impact on the optimal budget allocation. Also, different measures of target attractiveness yield different optimal budget allocations, emphasizing the importance of developing more realistic terrorist objective functions for use in budget allocation decisions for homeland security.

  17. Constant time worker thread allocation via configuration caching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eichenberger, Alexandre E; O'Brien, John K. P.

    Mechanisms are provided for allocating threads for execution of a parallel region of code. A request for allocation of worker threads to execute the parallel region of code is received from a master thread. Cached thread allocation information identifying prior thread allocations that have been performed for the master thread are accessed. Worker threads are allocated to the master thread based on the cached thread allocation information. The parallel region of code is executed using the allocated worker threads.

  18. Enhancing community based health programs in Iran: a multi-objective location-allocation model.

    PubMed

    Khodaparasti, S; Maleki, H R; Jahedi, S; Bruni, M E; Beraldi, P

    2017-12-01

    Community Based Organizations (CBOs) are important health system stakeholders with the mission of addressing the social and economic needs of individuals and groups in a defined geographic area, usually no larger than a county. The access and success efforts of CBOs vary, depending on the integration between health care providers and CBOs but also in relation to the community participation level. To achieve widespread results, it is important to carefully design an efficient network which can serve as a bridge between the community and the health care system. This study addresses this challenge through a location-allocation model that deals with the hierarchical nature of the system explicitly. To reflect social welfare concerns of equity, local accessibility, and efficiency, we develop the model in a multi-objective framework, capturing the ambiguity in the decision makers' aspiration levels through a fuzzy goal programming approach. This study reports the findings for the real case of Shiraz city, Fars province, Iran, obtained by a thorough analysis of the results.

  19. Multimedia transmission in MC-CDMA using adaptive subcarrier power allocation and CFO compensation

    NASA Astrophysics Data System (ADS)

    Chitra, S.; Kumaratharan, N.

    2018-02-01

    Multicarrier code division multiple access (MC-CDMA) system is one of the most effective techniques in fourth-generation (4G) wireless technology, due to its high data rate, high spectral efficiency and resistance to multipath fading. However, MC-CDMA systems are greatly deteriorated by carrier frequency offset (CFO) which is due to Doppler shift and oscillator instabilities. It leads to loss of orthogonality among the subcarriers and causes intercarrier interference (ICI). Water filling algorithm (WFA) is an efficient resource allocation algorithm to solve the power utilisation problems among the subcarriers in time-dispersive channels. The conventional WFA fails to consider the effect of CFO. To perform subcarrier power allocation with reduced CFO and to improve the capacity of MC-CDMA system, residual CFO compensated adaptive subcarrier power allocation algorithm is proposed in this paper. The proposed technique allocates power only to subcarriers with high channel to noise power ratio. The performance of the proposed method is evaluated using random binary data and image as source inputs. Simulation results depict that the bit error rate performance and ICI reduction capability of the proposed modified WFA offered superior performance in both power allocation and image compression for high-quality multimedia transmission in the presence of CFO and imperfect channel state information conditions.

  20. Pollution control costs of a transboundary river basin: Empirical tests of the fairness and stability of cost allocation mechanisms using game theory.

    PubMed

    Shi, Guang-Ming; Wang, Jin-Nan; Zhang, Bing; Zhang, Zhe; Zhang, Yong-Liang

    2016-07-15

    With rapid economic growth, transboundary river basin pollution in China has become a very serious problem. Based on practical experience in other countries, cooperation among regions is an economic way to control the emission of pollutants. This study develops a game theoretic simulation model to analyze the cost effectiveness of reducing water pollutant emissions in four regions of the Jialu River basin while considering the stability and fairness of four cost allocation schemes. Different schemes (the nucleolus, the weak nucleolus, the Shapley value and the Separable Cost Remaining Benefit (SCRB) principle) are used to allocate regionally agreed-upon water pollutant abatement costs. The main results show that the fully cooperative coalition yielded the highest incremental gain for regions willing to cooperate if each region agreed to negotiate by transferring part of the incremental gain obtained from the cooperation to cover the losses of other regions. In addition, these allocation schemes produce different outcomes in terms of their fairness to the players and in terms of their derived stability, as measured by the Shapley-Shubik Power Index and the Propensity to Disrupt. Although the Shapley value and the SCRB principle exhibit superior fairness and stabilization to the other methods, only the SCRB principle may maintains full cooperation among regions over the long term. The results provide clear empirical evidence that regional gain allocation may affect the sustainability of cooperation. Therefore, it is implied that not only the cost-effectiveness but also the long-term sustainability should be considered while formulating and implementing environmental policies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. System Resource Allocations | High-Performance Computing | NREL

    Science.gov Websites

    Allocations System Resource Allocations To use NREL's high-performance computing (HPC) resources : Compute hours on NREL HPC Systems including Peregrine and Eagle Storage space (in Terabytes) on Peregrine , Eagle and Gyrfalcon. Allocations are principally done in response to an annual call for allocation

  2. 47 CFR 64.901 - Allocation of costs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... cost categories) for which a direct assignment or allocation is available. (iii) When neither direct... 47 Telecommunication 3 2010-10-01 2010-10-01 false Allocation of costs. 64.901 Section 64.901... RULES RELATING TO COMMON CARRIERS Allocation of Costs § 64.901 Allocation of costs. (a) Carriers...

  3. On the Water-Food Nexus: an Optimization Approach for Water and Food Security

    NASA Astrophysics Data System (ADS)

    Mortada, Sarah; Abou Najm, Majdi; Yassine, Ali; Alameddine, Ibrahim; El-Fadel, Mutasem

    2016-04-01

    Water and food security is facing increased challenges with population increase, climate and land use change, as well as resource depletion coupled with pollution and unsustainable practices. Coordinated and effective management of limited natural resources have become an imperative to meet these challenges by optimizing the usage of resources under various constraints. In this study, an optimization model is developed for optimal resource allocation towards sustainable water and food security under nutritional, socio-economic, agricultural, environmental, and natural resources constraints. The core objective of this model is to maximize the composite water-food security status by recommending an optimal water and agricultural strategy. The model balances between the healthy nutritional demand side and the constrained supply side while considering the supply chain in between. It equally ensures that the population achieves recommended nutritional guidelines and population food-preferences by quantifying an optimum agricultural and water policy through transforming optimum food demands into optimum cropping policy given the water and land footprints of each crop or agricultural product. Through this process, water and food security are optimized considering factors that include crop-food transformation (food processing), water footprints, crop yields, climate, blue and green water resources, irrigation efficiency, arable land resources, soil texture, and economic policies. The model performance regarding agricultural practices and sustainable food and water security was successfully tested and verified both at a hypothetical and pilot scale levels.

  4. An intelligent allocation algorithm for parallel processing

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Homaifar, Abdollah; Ananthram, Kishan G.

    1988-01-01

    The problem of allocating nodes of a program graph to processors in a parallel processing architecture is considered. The algorithm is based on critical path analysis, some allocation heuristics, and the execution granularity of nodes in a program graph. These factors, and the structure of interprocessor communication network, influence the allocation. To achieve realistic estimations of the executive durations of allocations, the algorithm considers the fact that nodes in a program graph have to communicate through varying numbers of tokens. Coarse and fine granularities have been implemented, with interprocessor token-communication duration, varying from zero up to values comparable to the execution durations of individual nodes. The effect on allocation of communication network structures is demonstrated by performing allocations for crossbar (non-blocking) and star (blocking) networks. The algorithm assumes the availability of as many processors as it needs for the optimal allocation of any program graph. Hence, the focus of allocation has been on varying token-communication durations rather than varying the number of processors. The algorithm always utilizes as many processors as necessary for the optimal allocation of any program graph, depending upon granularity and characteristics of the interprocessor communication network.

  5. Budgeting based on need: a model to determine sub-national allocation of resources for health services in Indonesia

    PubMed Central

    2012-01-01

    Background Allocating national resources to regions based on need is a key policy issue in most health systems. Many systems utilise proxy measures of need as the basis for allocation formulae. Increasingly these are underpinned by complex statistical methods to separate need from supplier induced utilisation. Assessment of need is then used to allocate existing global budgets to geographic areas. Many low and middle income countries are beginning to use formula methods for funding however these attempts are often hampered by a lack of information on utilisation, relative needs and whether the budgets allocated bear any relationship to cost. An alternative is to develop bottom-up estimates of the cost of providing for local need. This method is viable where public funding is focused on a relatively small number of targeted services. We describe a bottom-up approach to developing a formula for the allocation of resources. The method is illustrated in the context of the state minimum service package mandated to be provided by the Indonesian public health system. Methods A standardised costing methodology was developed that is sensitive to the main expected drivers of local cost variation including demographic structure, epidemiology and location. Essential package costing is often undertaken at a country level. It is less usual to utilise the methods across different parts of a country in a way that takes account of variation in population needs and location. Costing was based on best clinical practice in Indonesia and province specific data on distribution and costs of facilities. The resulting model was used to estimate essential package costs in a representative district in each province of the country. Findings Substantial differences in the costs of providing basic services ranging from USD 15 in urban Yogyakarta to USD 48 in sparsely populated North Maluku. These costs are driven largely by the structure of the population, particularly numbers of births

  6. Budgeting based on need: a model to determine sub-national allocation of resources for health services in Indonesia.

    PubMed

    Ensor, Tim; Firdaus, Hafidz; Dunlop, David; Manu, Alex; Mukti, Ali Ghufron; Ayu Puspandari, Diah; von Roenne, Franz; Indradjaya, Stephanus; Suseno, Untung; Vaughan, Patrick

    2012-08-29

    Allocating national resources to regions based on need is a key policy issue in most health systems. Many systems utilise proxy measures of need as the basis for allocation formulae. Increasingly these are underpinned by complex statistical methods to separate need from supplier induced utilisation. Assessment of need is then used to allocate existing global budgets to geographic areas. Many low and middle income countries are beginning to use formula methods for funding however these attempts are often hampered by a lack of information on utilisation, relative needs and whether the budgets allocated bear any relationship to cost. An alternative is to develop bottom-up estimates of the cost of providing for local need. This method is viable where public funding is focused on a relatively small number of targeted services. We describe a bottom-up approach to developing a formula for the allocation of resources. The method is illustrated in the context of the state minimum service package mandated to be provided by the Indonesian public health system. A standardised costing methodology was developed that is sensitive to the main expected drivers of local cost variation including demographic structure, epidemiology and location. Essential package costing is often undertaken at a country level. It is less usual to utilise the methods across different parts of a country in a way that takes account of variation in population needs and location. Costing was based on best clinical practice in Indonesia and province specific data on distribution and costs of facilities. The resulting model was used to estimate essential package costs in a representative district in each province of the country. Substantial differences in the costs of providing basic services ranging from USD 15 in urban Yogyakarta to USD 48 in sparsely populated North Maluku. These costs are driven largely by the structure of the population, particularly numbers of births, infants and children and also key

  7. Hydrological Modeling and WEB-GIS for the Water Resource Management

    NASA Astrophysics Data System (ADS)

    Pierleoni, A.; Bellezza, M.; Casadei, S.; Manciola, P.

    2006-12-01

    effective decision support system (DSS). The second software tool is a simulation model of a managed water resource for multipurpose uses. The algorithm is based on a topological sketch of the hydrographic network in terms of "Nodes" and "Links" combined with computation procedures for managing the water resource of big reservoirs. The peculiar feature of this method is that it performs a preliminary budget between the total available amount and the demand over a time span longer than the simulation step (week, month). During the managing phase, four different allocation methods are available: proportional, percentage, priority and balanced priority, hence this tool becomes flexible and allows to simulate many different management policies. This project was developed in JAVA and as a workstation product. Both software tools will be handled in a single system that, combined with a GIS map engine, is an integrated model for managing the water resource at the basin scale. The final aim of this project is to be able to share these scientific tools and hydrological data among many institutional uses. For this purpose, a WEB-based system, under the control of an administrator, provides on the one hand the possibility to easily keep the database up-to-date and on the other, the possibility to share data and retrieve the results of the procedures optimized for managing superficial water resources at the basin scale.

  8. Water use efficiency and integrated water resource management for river basin

    NASA Astrophysics Data System (ADS)

    Deng, Xiangzheng; Singh, R. B.; Liu, Junguo; Güneralp, Burak

    Water use efficiency and management have attracted increasing attention as water has become scare to challenge the world's sustainable development. Water use efficiency is correlated to the land use and cover changes (LUCC), population distribution, industrial structure, economic development, climate changes, and environmental governance. These factors significantly alter water productivity for water balance through the changes in natural environment and socio-economic system (Wang et al., 2015b). Consequently, dynamics of water inefficiency lower the social welfare of water allocation (Wang et al., 2015b), and induce water management alternation interactively and financially (Wang et al., 2015a). This triggers on actual water price changes through both natural resource and socioeconomic system (Zhou et al., 2015). Therefore, it is very important to figure out a mechanism of water allocation in the course of LUCC (Jin et al., 2015) at a global perspective (Zhao et al., 2015), climate and economic changes of ecosystem service at various spatial and temporal scales (Li et al., 2015).

  9. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.

    2012-04-01

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between watermore » resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.« less

  10. Constructing a framework for risk analyses of climate change effects on the water budget of differently sloped vineyards with a numeric simulation using the Monte Carlo method coupled to a water balance model

    PubMed Central

    Hofmann, Marco; Lux, Robert; Schultz, Hans R.

    2014-01-01

    Grapes for wine production are a highly climate sensitive crop and vineyard water budget is a decisive factor in quality formation. In order to conduct risk assessments for climate change effects in viticulture models are needed which can be applied to complete growing regions. We first modified an existing simplified geometric vineyard model of radiation interception and resulting water use to incorporate numerical Monte Carlo simulations and the physical aspects of radiation interactions between canopy and vineyard slope and azimuth. We then used four regional climate models to assess for possible effects on the water budget of selected vineyard sites up 2100. The model was developed to describe the partitioning of short-wave radiation between grapevine canopy and soil surface, respectively, green cover, necessary to calculate vineyard evapotranspiration. Soil water storage was allocated to two sub reservoirs. The model was adopted for steep slope vineyards based on coordinate transformation and validated against measurements of grapevine sap flow and soil water content determined down to 1.6 m depth at three different sites over 2 years. The results showed good agreement of modeled and observed soil water dynamics of vineyards with large variations in site specific soil water holding capacity (SWC) and viticultural management. Simulated sap flow was in overall good agreement with measured sap flow but site-specific responses of sap flow to potential evapotranspiration were observed. The analyses of climate change impacts on vineyard water budget demonstrated the importance of site-specific assessment due to natural variations in SWC. The improved model was capable of describing seasonal and site-specific dynamics in soil water content and could be used in an amended version to estimate changes in the water budget of entire grape growing areas due to evolving climatic changes. PMID:25540646

  11. Spatiotemporal analysis of prior appropriations water calls

    NASA Astrophysics Data System (ADS)

    Elbakidze, Levan; Shen, Xiaozhe; Taylor, Garth; Mooney, SiâN.

    2012-06-01

    A spatiotemporal model is developed to examine prior appropriations-based water curtailment in Idaho's Snake River Plain Aquifer. Using a 100 year horizon, prior appropriations-based curtailment supplemented with optimized water use reductions is shown to produce a spatial distribution of water use reductions that differs from that produced by regulatory curtailment based strictly on initial water right assignments. Discounted profits over 100 years of crop production are up to 7% higher when allocation is optimized. Total pumping over 100 years is 0.3%, 3%, and 40% higher under 1, 10, and 100 year prior appropriations-based regulatory curtailment, respectively.

  12. Choices Matter, but How Do We Model Them?

    NASA Astrophysics Data System (ADS)

    Brelsford, C.; Dumas, M.

    2017-12-01

    Quantifying interactions between social systems and the physical environment we live within has long been a major scientific challenge. Humans have had such a large influence on our environment that it is no longer reasonable to consider the behavior of an ecological or hydrological system from a purely `physical' perspective: imagining a system that excludes the influence of human choices and behavior. Understanding the role that human social choices play in the energy water nexus is crucial for developing accurate models in that space. The relatively new field of socio-hydrology is making progress towards understanding the role humans play in hydrological systems. While this fact is now widely recognized across the many academic fields that study water systems, we have yet to develop a coherent set of theories for how to model the behavior of these complex and highly interdependent socio-hydrological systems. How should we conceptualize hydrological systems as socio-ecological systems (i.e. system with variables, states, parameters, actors who can control certain variables and a sense of the desirability of states) within which the rigorous study of feedbacks becomes possible? This talk reviews the state of knowledge of how social decisions around water consumption, allocation, and transport influence and are influenced by the physical hydrology that water also moves within. We cover recent papers in socio-hydrology, engineering, water law, and institutional analysis. There have been several calls within socio-hydrology to model human social behavior endogenously along with the hydrology. These improvements are needed across a range of spatial and temporal scales. We suggest two potential strategies for coupled models that allow endogenous water consumption behavior: a social first model which looks for empirical relationships between water consumption and allocation choices and the hydrological state, and a hydrology first model in which we look for regularities

  13. Development of an Integrated Agricultural Planning Model Considering Climate Change

    NASA Astrophysics Data System (ADS)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  14. Collective credit allocation in science

    PubMed Central

    Shen, Hua-Wei; Barabási, Albert-László

    2014-01-01

    Collaboration among researchers is an essential component of the modern scientific enterprise, playing a particularly important role in multidisciplinary research. However, we continue to wrestle with allocating credit to the coauthors of publications with multiple authors, because the relative contribution of each author is difficult to determine. At the same time, the scientific community runs an informal field-dependent credit allocation process that assigns credit in a collective fashion to each work. Here we develop a credit allocation algorithm that captures the coauthors’ contribution to a publication as perceived by the scientific community, reproducing the informal collective credit allocation of science. We validate the method by identifying the authors of Nobel-winning papers that are credited for the discovery, independent of their positions in the author list. The method can also compare the relative impact of researchers working in the same field, even if they did not publish together. The ability to accurately measure the relative credit of researchers could affect many aspects of credit allocation in science, potentially impacting hiring, funding, and promotion decisions. PMID:25114238

  15. A new conceptual model to understand the water budget of an Irrigated Basin with Groundwater Dependent Ecosystems

    NASA Astrophysics Data System (ADS)

    Foglia, L.; McNally, A.; Harter, T.

    2012-12-01

    The Scott River is one of four major tributaries in the Klamath River Basin that provide cold water habitat for salmonid populations. The Scott Valley is also a major agricultural growing region with extensive alfalfa and hay productions that are key to the local economy. Due to the Mediterranean climate in the area, discharge rates in the river are highly seasonal. Almost all annual discharge occurs during the winter precipitation season and spring snowmelt. During the summer months (July through September), the main-stem river becomes disconnected from its tributaries throughout much of Scott Valley and relies primarily on baseflow from the Scott Valley aquifer. Scott Valley agriculture relies on a combination of surface water and groundwater supplies for crop irrigation during April through September. Conflicts between ecosystem services needs to guarantee a sustainable water quality (mainly in-stream temperature) for the native salmon population and water demands for agricultural irrigation motivated the development of a new conceptual model for the evaluation of the soil-water budget throughout the valley, as a basis for developing alternative surface water and groundwater management practices. The model simulates daily hydrologic fluxes at the individual field scale (100 - 200 m), allocates water resources to nearby irrigation systems, and tracks soil moisture to determine groundwater recharge. The water budget model provides recharge and pumping values for each field. These values in turn are used as inputs for a valley-wide groundwater model developed with MODFLOW-2000. In a first step, separate sensitivity analysis and calibration of the groundwater model is used to provide insights on the accuracy of the recharge and pumping distribution estimated with the water budget model. In a further step, the soil water budget and groundwater flow models will be coupled and sensitivity analysis and calibration will be performed simultaneously. Field-based, local

  16. Task allocation in a distributed computing system

    NASA Technical Reports Server (NTRS)

    Seward, Walter D.

    1987-01-01

    A conceptual framework is examined for task allocation in distributed systems. Application and computing system parameters critical to task allocation decision processes are discussed. Task allocation techniques are addressed which focus on achieving a balance in the load distribution among the system's processors. Equalization of computing load among the processing elements is the goal. Examples of system performance are presented for specific applications. Both static and dynamic allocation of tasks are considered and system performance is evaluated using different task allocation methodologies.

  17. Emergency material allocation with time-varying supply-demand based on dynamic optimization method for river chemical spills.

    PubMed

    Liu, Jie; Guo, Liang; Jiang, Jiping; Jiang, Dexun; Wang, Peng

    2018-04-13

    Aiming to minimize the damage caused by river chemical spills, efficient emergency material allocation is critical for an actual emergency rescue decision-making in a quick response. In this study, an emergency material allocation framework based on time-varying supply-demand constraint is developed to allocate emergency material, minimize the emergency response time, and satisfy the dynamic emergency material requirements in post-accident phases dealing with river chemical spills. In this study, the theoretically critical emergency response time is firstly obtained for the emergency material allocation system to select a series of appropriate emergency material warehouses as potential supportive centers. Then, an enumeration method is applied to identify the practically critical emergency response time, the optimum emergency material allocation and replenishment scheme. Finally, the developed framework is applied to a computational experiment based on south-to-north water transfer project in China. The results illustrate that the proposed methodology is a simple and flexible tool for appropriately allocating emergency material to satisfy time-dynamic demands during emergency decision-making. Therefore, the decision-makers can identify an appropriate emergency material allocation scheme in a balance between time-effective and cost-effective objectives under the different emergency pollution conditions.

  18. Direct potable reuse microbial risk assessment methodology: Sensitivity analysis and application to State log credit allocations.

    PubMed

    Soller, Jeffrey A; Eftim, Sorina E; Nappier, Sharon P

    2018-01-01

    Understanding pathogen risks is a critically important consideration in the design of water treatment, particularly for potable reuse projects. As an extension to our published microbial risk assessment methodology to estimate infection risks associated with Direct Potable Reuse (DPR) treatment train unit process combinations, herein, we (1) provide an updated compilation of pathogen density data in raw wastewater and dose-response models; (2) conduct a series of sensitivity analyses to consider potential risk implications using updated data; (3) evaluate the risks associated with log credit allocations in the United States; and (4) identify reference pathogen reductions needed to consistently meet currently applied benchmark risk levels. Sensitivity analyses illustrated changes in cumulative annual risks estimates, the significance of which depends on the pathogen group driving the risk for a given treatment train. For example, updates to norovirus (NoV) raw wastewater values and use of a NoV dose-response approach, capturing the full range of uncertainty, increased risks associated with one of the treatment trains evaluated, but not the other. Additionally, compared to traditional log-credit allocation approaches, our results indicate that the risk methodology provides more nuanced information about how consistently public health benchmarks are achieved. Our results indicate that viruses need to be reduced by 14 logs or more to consistently achieve currently applied benchmark levels of protection associated with DPR. The refined methodology, updated model inputs, and log credit allocation comparisons will be useful to regulators considering DPR projects and design engineers as they consider which unit treatment processes should be employed for particular projects. Published by Elsevier Ltd.

  19. Developing Subdomain Allocation Algorithms Based on Spatial and Communicational Constraints to Accelerate Dust Storm Simulation

    PubMed Central

    Gui, Zhipeng; Yu, Manzhu; Yang, Chaowei; Jiang, Yunfeng; Chen, Songqing; Xia, Jizhe; Huang, Qunying; Liu, Kai; Li, Zhenlong; Hassan, Mohammed Anowarul; Jin, Baoxuan

    2016-01-01

    Dust storm has serious disastrous impacts on environment, human health, and assets. The developments and applications of dust storm models have contributed significantly to better understand and predict the distribution, intensity and structure of dust storms. However, dust storm simulation is a data and computing intensive process. To improve the computing performance, high performance computing has been widely adopted by dividing the entire study area into multiple subdomains and allocating each subdomain on different computing nodes in a parallel fashion. Inappropriate allocation may introduce imbalanced task loads and unnecessary communications among computing nodes. Therefore, allocation is a key factor that may impact the efficiency of parallel process. An allocation algorithm is expected to consider the computing cost and communication cost for each computing node to minimize total execution time and reduce overall communication cost for the entire simulation. This research introduces three algorithms to optimize the allocation by considering the spatial and communicational constraints: 1) an Integer Linear Programming (ILP) based algorithm from combinational optimization perspective; 2) a K-Means and Kernighan-Lin combined heuristic algorithm (K&K) integrating geometric and coordinate-free methods by merging local and global partitioning; 3) an automatic seeded region growing based geometric and local partitioning algorithm (ASRG). The performance and effectiveness of the three algorithms are compared based on different factors. Further, we adopt the K&K algorithm as the demonstrated algorithm for the experiment of dust model simulation with the non-hydrostatic mesoscale model (NMM-dust) and compared the performance with the MPI default sequential allocation. The results demonstrate that K&K method significantly improves the simulation performance with better subdomain allocation. This method can also be adopted for other relevant atmospheric and numerical

  20. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  1. Survival Benefit of Lung Transplantation in the Modern Era of Lung Allocation.

    PubMed

    Vock, David M; Durheim, Michael T; Tsuang, Wayne M; Finlen Copeland, C Ashley; Tsiatis, Anastasios A; Davidian, Marie; Neely, Megan L; Lederer, David J; Palmer, Scott M

    2017-02-01

    Lung transplantation is an accepted and increasingly employed treatment for advanced lung diseases, but the anticipated survival benefit of lung transplantation is poorly understood. To determine whether and for which patients lung transplantation confers a survival benefit in the modern era of U.S. lung allocation. Data on 13,040 adults listed for lung transplantation between May 2005 and September 2011 were obtained from the United Network for Organ Sharing. A structural nested accelerated failure time model was used to model the survival benefit of lung transplantation over time. The effects of patient, donor, and transplant center characteristics on the relative survival benefit of transplantation were examined. Overall, 73.8% of transplant recipients were predicted to achieve a 2-year survival benefit with lung transplantation. The survival benefit of transplantation varied by native disease group (P = 0.062), with 2-year expected benefit in 39.2 and 98.9% of transplants occurring in those with obstructive lung disease and cystic fibrosis, respectively, and by lung allocation score at the time of transplantation (P < 0.001), with net 2-year benefit in only 6.8% of transplants occurring for lung allocation score less than 32.5 and in 99.9% of transplants for lung allocation score exceeding 40. A majority of adults undergoing transplantation experience a survival benefit, with the greatest potential benefit in those with higher lung allocation scores or restrictive native lung disease or cystic fibrosis. These results provide novel information to assess the expected benefit of lung transplantation at an individual level and to enhance lung allocation policy.

  2. Allocating capital systemwide. Who gets how much and why.

    PubMed

    Albertina, R M; Bakewell, T F

    1989-05-01

    The maturing of multi-institutional healthcare systems has created a need for systemwide approaches to managing investment in capital expenditures. Historically, hospitals have allocated capital using traditional capital budgeting techniques, including discounted cash flow, net present value, and internal rate of return methodologies. Now systems can use a multifactored model to allocate capital among member hospitals. This approach uses historical and projected financial and statistical information to quantify the risks member hospitals face. At the system level, capital allocation decisions should start with the strategic and financial planning processes. Catholic systems face an additional caveat: The system's mission statement drives the planning processes. Conceptually, the capital allocation plan is an attempt to value each hospital as a going, or viable, concern. From this perspective, value is understood as a function of expected return, the certainty of the return, and the return offered by similar investments in other hospital markets. Despite the many determinants of business and financial risk, much of the variance in asset market value can be explained through five assessment criteria: market demographics, position within the market, historical and projected financial performance, historical utilization, and third-party reimbursement mix.

  3. Physiological water model development

    NASA Technical Reports Server (NTRS)

    Doty, Susan

    1993-01-01

    The water of the human body can be categorized as existing in two main compartments: intracellular water and extracellular water. The intracellular water consists of all the water within the cells and constitutes over half of the total body water. Since red blood cells are surrounded by plasma, and all other cells are surrounded by interstitial fluid, the intracellular compartment has been subdivided to represent these two cell types. The extracellular water, which includes all of the fluid outside of the cells, can be further subdivided into compartments which represent the interstitial fluid, circulating blood plasma, lymph, and transcellular water. The interstitial fluid surrounds cells outside of the vascular system whereas plasma is contained within the blood vessels. Avascular tissues such as dense connective tissue and cartilage contain interstitial water which slowly equilibrates with tracers used to determine extracellular fluid volume. For this reason, additional compartments are sometimes used to represent these avascular tissues. The average size of each compartment, in terms of percent body weight, has been determined for adult males and females. These compartments and the forces which cause flow between them are presented. The kidneys, a main compartment, receive about 25 percent of the cardiac output and filters out a fluid similar to plasma. The composition of this filtered fluid changes as it flows through the kidney tubules since compounds are continually being secreted and reabsorbed. Through this mechanism, the kidneys eliminate wastes while conserving body water, electrolytes, and metabolites. Since sodium accounts for over 90 percent of the cations in the extracellular fluid, and the number of cations is balanced by the number of anions, considering the renal handling sodium and water only should sufficiently describe the relationship between the plasma compartment and kidneys. A kidney function model is presented which has been adapted from a

  4. Quantifying Changes in Accessible Water in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Castle, S.; Thomas, B.; Reager, J. T.; Swenson, S. C.; Famiglietti, J. S.

    2013-12-01

    The Colorado River Basin (CRB) in the western United States is heavily managed yet remains one of the most over-allocated rivers in the world providing water across seven US states and Mexico. Future water management strategies in the CRB have employed land surface models to forecast discharges; such approaches have focused on discharge estimates to meet allocation requirements yet ignore groundwater abstractions to meet water demands. In this analysis, we illustrate the impact of changes in accessible water, which we define as the conjunctive use of both surface water reservoir storage and groundwater storage, using remote sensing observations to explore sustainable water management strategies in the CRB. We employ high resolution Landsat Thematic Mapper satellite data to detect changes in reservoir storage in the two largest reservoirs within the CRB, Lakes Mead and Powell, and the Gravity Recovery and Climate Experiment (GRACE) terrestrial water storage anomalies to isolate changes in basin-wide groundwater storage in the Upper and Lower CRB from October 2003 to December 2012. Our approach quantifies reservoir and groundwater storage within the CRB using remote sensing to provide new information to water managers to sustainably and conjunctively manage accessible water.

  5. 10 CFR 455.30 - Allocation of funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Allocation of funds. 455.30 Section 455.30 Energy... § 455.30 Allocation of funds. (a) DOE will allocate available funds among the States for two purposes... that are eligible pursuant to § 455.91, up to 100 percent of the funds allocated to the State by DOE...

  6. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla

    2008-02-28

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0more » of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of

  7. Decision-theoretic methodology for reliability and risk allocation in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, N.Z.; Papazoglou, I.A.; Bari, R.A.

    1985-01-01

    This paper describes a methodology for allocating reliability and risk to various reactor systems, subsystems, components, operations, and structures in a consistent manner, based on a set of global safety criteria which are not rigid. The problem is formulated as a multiattribute decision analysis paradigm; the multiobjective optimization, which is performed on a PRA model and reliability cost functions, serves as the guiding principle for reliability and risk allocation. The concept of noninferiority is used in the multiobjective optimization problem. Finding the noninferior solution set is the main theme of the current approach. The assessment of the decision maker's preferencesmore » could then be performed more easily on the noninferior solution set. Some results of the methodology applications to a nontrivial risk model are provided and several outstanding issues such as generic allocation and preference assessment are discussed.« less

  8. An Optimization Model for the Allocation of University Based Merit Aid

    ERIC Educational Resources Information Center

    Sugrue, Paul K.

    2010-01-01

    The allocation of merit-based financial aid during the college admissions process presents postsecondary institutions with complex and financially expensive decisions. This article describes the application of linear programming as a decision tool in merit based financial aid decisions at a medium size private university. The objective defined for…

  9. An Approach for Transmission Loss and Cost Allocation by Loss Allocation Index and Co-operative Game Theory

    NASA Astrophysics Data System (ADS)

    Khan, Baseem; Agnihotri, Ganga; Mishra, Anuprita S.

    2016-03-01

    In the present work authors proposed a novel method for transmission loss and cost allocation to users (generators and loads). In the developed methodology transmission losses are allocated to users based on their usage of the transmission line. After usage allocation, particular loss allocation indices (PLAI) are evaluated for loads and generators. Also Cooperative game theory approach is applied for comparison of results. The proposed method is simple and easy to implement on the practical power system. Sample 6 bus and IEEE 14 bus system is used for showing the effectiveness of proposed method.

  10. Game theory based models to analyze water conflicts in the Middle Route of the South-to-North Water Transfer Project in China.

    PubMed

    Wei, Shouke; Yang, Hong; Abbaspour, Karim; Mousavi, Jamshid; Gnauck, Albrecht

    2010-04-01

    This study applied game theory based models to analyze and solve water conflicts concerning water allocation and nitrogen reduction in the Middle Route of the South-to-North Water Transfer Project in China. The game simulation comprised two levels, including one main game with five players and four sub-games with each containing three sub-players. We used statistical and econometric regression methods to formulate payoff functions of the players, economic valuation methods (EVMs) to transform non-monetary value into economic one, cost-benefit Analysis (CBA) to compare the game outcomes, and scenario analysis to investigate the future uncertainties. The validity of game simulation was evaluated by comparing predictions with observations. The main results proved that cooperation would make the players collectively better off, though some player would face losses. However, players were not willing to cooperate, which would result in a prisoners' dilemma. Scenarios simulation results displayed that players in water scare area could not solve its severe water deficit problem without cooperation with other players even under an optimistic scenario, while the uncertainty of cooperation would come from the main polluters. The results suggest a need to design a mechanism to reduce the risk of losses of those players by a side payment, which provides them with economic incentives to cooperate. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  11. On-Line Allocation Of Robot Resources To Task Plans

    NASA Astrophysics Data System (ADS)

    Lyons, Damian M.

    1989-02-01

    In this paper, I present an approach to representing plans that make on-line decisions about resource allocation. An on-line decision is the evaluation of a conditional expression involving sensory information as the plan is being executed. I use a plan representation called 7ZS10'1 1,12that has been especially designed for the domain of robot programming, and in particular, for the problem of on-line decisions. The resource allocation example is based on the robot assembly cell architecture outlined by Venkataraman and Lyons16. I begin by setting forth a definition of on-line decision making and some arguments as to why this form of decision making is important and useful. To set the context for the resource allocation example, I take some care in categorizing the types of on-line decision making and the approaches adopted by other workers so far. In particular, I justify a plan-based approach to the study of on-line decision making. From that, the focus shifts to one type of decision making: on-line allocation of robot resources to task plans. Robot resources are the physical manipulators (grippers, wrists, arms, feeders, etc) that are available to carry out the task. I formulate the assembly cell architecture of Venkataraman and Lyons16 as an R.S plan schema, and show how the on-line allocation specified in that architecture can be implemented. Finally, I show how considering the on-line allocation of logical resources, that is a physical resource plus some model information, can be used as a non-traditional approach to some problems in robot task planning.

  12. Preliminary ECLSS waste water model

    NASA Technical Reports Server (NTRS)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  13. Constrained Allocation Flux Balance Analysis

    PubMed Central

    Mori, Matteo; Hwa, Terence; Martin, Olivier C.

    2016-01-01

    New experimental results on bacterial growth inspire a novel top-down approach to study cell metabolism, combining mass balance and proteomic constraints to extend and complement Flux Balance Analysis. We introduce here Constrained Allocation Flux Balance Analysis, CAFBA, in which the biosynthetic costs associated to growth are accounted for in an effective way through a single additional genome-wide constraint. Its roots lie in the experimentally observed pattern of proteome allocation for metabolic functions, allowing to bridge regulation and metabolism in a transparent way under the principle of growth-rate maximization. We provide a simple method to solve CAFBA efficiently and propose an “ensemble averaging” procedure to account for unknown protein costs. Applying this approach to modeling E. coli metabolism, we find that, as the growth rate increases, CAFBA solutions cross over from respiratory, growth-yield maximizing states (preferred at slow growth) to fermentative states with carbon overflow (preferred at fast growth). In addition, CAFBA allows for quantitatively accurate predictions on the rate of acetate excretion and growth yield based on only 3 parameters determined by empirical growth laws. PMID:27355325

  14. Development of a coupled model of a distributed hydrological model and a rice growth model for optimizing irrigation schedule

    NASA Astrophysics Data System (ADS)

    Tsujimoto, Kumiko; Homma, Koki; Koike, Toshio; Ohta, Tetsu

    2013-04-01

    A coupled model of a distributed hydrological model and a rice growth model was developed in this study. The distributed hydrological model used in this study is the Water and Energy Budget-based Distributed Hydrological Model (WEB-DHM) developed by Wang et al. (2009). This model includes a modified SiB2 (Simple Biosphere Model, Sellers et al., 1996) and the Geomorphology-Based Hydrological Model (GBHM) and thus it can physically calculate both water and energy fluxes. The rice growth model used in this study is the Simulation Model for Rice-Weather relations (SIMRIW) - rainfed developed by Homma et al. (2009). This is an updated version of the original SIMRIW (Horie et al., 1987) and can calculate rice growth by considering the yield reduction due to water stress. The purpose of the coupling is the integration of hydrology and crop science to develop a tool to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. The efficient water use and optimal water allocation in the agricultural sector are necessary to balance supply and demand of limited water resources. In addition, variations in available soil moisture are the main reasons of variations in rice yield. In our model, soil moisture and the Leaf Area Index (LAI) are calculated inside SIMRIW-rainfed so that these variables can be simulated dynamically and more precisely based on the rice than the more general calculations is the original WEB-DHM. At the same time by coupling SIMRIW-rainfed with WEB-DHM, lateral flow of soil water, increases in soil moisture and reduction of river discharge due to the irrigation, and its effects on the rice growth can be calculated. Agricultural information such as planting date, rice cultivar, fertilization amount are given in a fully distributed manner. The coupled model was validated using LAI and soil moisture in a small basin in western Cambodia (Sangker River Basin). This

  15. A data-driven emulation framework for representing water-food nexus in a changing cold region

    NASA Astrophysics Data System (ADS)

    Nazemi, A.; Zandmoghaddam, S.; Hatami, S.

    2017-12-01

    Water resource systems are under increasing pressure globally. Growing population along with competition between water demands and emerging effects of climate change have caused enormous vulnerabilities in water resource management across many regions. Diagnosing such vulnerabilities and provision of effective adaptation strategies requires the availability of simulation tools that can adequately represent the interactions between competing water demands for limiting water resources and inform decision makers about the critical vulnerability thresholds under a range of potential natural and anthropogenic conditions. Despite a significant progress in integrated modeling of water resource systems, regional models are often unable to fully represent the contemplating dynamics within the key elements of water resource systems locally. Here we propose a data-driven approach to emulate a complex regional water resource system model developed for Oldman River Basin in southern Alberta, Canada. The aim of the emulation is to provide a detailed understanding of the trade-offs and interaction at the Oldman Reservoir, which is the key to flood control and irrigated agriculture in this over-allocated semi-arid cold region. Different surrogate models are developed to represent the dynamic of irrigation demand and withdrawal as well as reservoir evaporation and release individually. The nan-falsified offline models are then integrated through the water balance equation at the reservoir location to provide a coupled model for representing the dynamic of reservoir operation and water allocation at the local scale. The performance of individual and integrated models are rigorously examined and sources of uncertainty are highlighted. To demonstrate the practical utility of such surrogate modeling approach, we use the integrated data-driven model for examining the trade-off in irrigation water supply, reservoir storage and release under a range of changing climate, upstream

  16. The drinking water contamination crisis in Flint: Modeling temporal trends of lead level since returning to Detroit water system.

    PubMed

    Goovaerts, Pierre

    2017-03-01

    Since Flint returned to its pre-crisis source of drinking water close to 25,000 water samples have been collected and tested for lead and copper in >10,000 residences. This paper presents the first analysis and time trend modeling of lead data, providing new insights about the impact of this intervention. The analysis started with geocoding all water lead levels (WLL) measured during an 11-month period following the return to the Detroit water supply. Each data was allocated to the corresponding tax parcel unit and linked to secondary datasets, such as the composition of service lines, year built, or census tract poverty level. Only data collected on residential parcels within the City limits were used in the analysis. One key feature of Flint data is their collection through two different sampling initiatives: (i) voluntary or homeowner-driven sampling whereby concerned citizens decided to acquire a testing kit and conduct sampling on their own (non-sentinel sites), and (ii) State-controlled sampling where data were collected bi-weekly at selected sites after training of residents by technical teams (sentinel sites). Temporal trends modeled from these two datasets were found to be statistically different with fewer sentinel data exceeding WLL thresholds ranging from 10 to 50μg/L. Even after adjusting for housing characteristics the odds ratio (OR) of measuring WLL above 15μg/L at non-sentinel sites is significantly >1 (OR=1.480) and it increases with the threshold (OR=2.055 for 50μg/L). Joinpoint regression showed that the city-wide percentage of WLL data above 15μg/L displayed four successive trends since the return to Detroit Water System. Despite the recent improvement in water quality, the culprit for differences between sampling programs needs to be identified as it impacts exposure assessment and might influence whether there is compliance or not with the Lead and Copper Rule. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A Two-Phase Model of Resource Allocation in Visual Working Memory

    ERIC Educational Resources Information Center

    Ye, Chaoxiong; Hu, Zhonghua; Li, Hong; Ristaniemi, Tapani; Liu, Qiang; Liu, Taosheng

    2017-01-01

    Two broad theories of visual working memory (VWM) storage have emerged from current research, a discrete slot-based theory and a continuous resource theory. However, neither the discrete slot-based theory or continuous resource theory clearly stipulates how the mental commodity for VWM (discrete slot or continuous resource) is allocated.…

  18. 50 CFR 648.74 - Annual individual allocations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Measures for the Atlantic Surf Clam and Ocean Quahog Fisheries § 648.74 Annual individual allocations. (a... surfclams and ocean quahogs for the next fishing year for each allocation holder owning an allocation...

  19. 50 CFR 648.74 - Annual individual allocations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Measures for the Atlantic Surf Clam and Ocean Quahog Fisheries § 648.74 Annual individual allocations. (a... surfclams and ocean quahogs for the next fishing year for each allocation holder owning an allocation...

  20. 50 CFR 648.74 - Annual individual allocations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Measures for the Atlantic Surf Clam and Ocean Quahog Fisheries § 648.74 Annual individual allocations. (a... surfclams and ocean quahogs for the next fishing year for each allocation holder owning an allocation...