Sample records for water analysis

  1. Skylab water balance analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    The water balance of the Skylab crew was analyzed. Evaporative water loss using a whole body input/output balance equation, water, body tissue, and energy balance was analyzed. The approach utilizes the results of several major Skylab medical experiments. Subsystems were designed for the use of the software necessary for the analysis. A partitional water balance that graphically depicts the changes due to water intake is presented. The energy balance analysis determines the net available energy to the individual crewman during any period. The balances produce a visual description of the total change of a particular body component during the course of the mission. The information is salvaged from metabolic balance data if certain techniques are used to reduce errors inherent in the balance method.

  2. WATER ANALYSIS

    EPA Science Inventory

    This review covers developments in water analysis from November 1996 to the end of October 1998, as found in the Chemical Abstracts Service CA Selects for gas chromatography, mass spectrometry, inorganic analytical chemistry, and pollution monitoring. In addition, because develop...

  3. Water Quality Analysis Simulation

    EPA Pesticide Factsheets

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  4. The artificial water cycle: emergy analysis of waste water treatment.

    PubMed

    Bastianoni, Simone; Fugaro, Laura; Principi, Ilaria; Rosini, Marco

    2003-04-01

    The artificial water cycle can be divided into the phases of water capture from the environment, potabilisation, distribution, waste water collection, waste water treatment and discharge back into the environment. The terminal phase of this cycle, from waste water collection to discharge into the environment, was assessed by emergy analysis. Emergy is the quantity of solar energy needed directly or indirectly to provide a product or energy flow in a given process. The emergy flow attributed to a process is therefore an index of the past and present environmental cost to support it. Six municipalities on the western side of the province of Bologna were analysed. Waste water collection is managed by the municipal councils and treatment is carried out in plants managed by a service company. Waste water collection was analysed by compiling a mass balance of the sewer system serving the six municipalities, including construction materials and sand for laying the pipelines. Emergy analysis of the water treatment plants was also carried out. The results show that the great quantity of emergy required to treat a gram of water is largely due to input of non renewable fossil fuels. As found in our previous analysis of the first part of the cycle, treatment is likewise characterised by high expenditure of non renewable resources, indicating a correlation with energy flows.

  5. Industrial Water Analysis Program: A Critical Study.

    DTIC Science & Technology

    1983-09-01

    Patterson Air Force Base, Ohio UMAMUION lTATEMNT A APtO.6UPbhtd3WJ 83 11 04 014’ X. .. . INDUSTRIAL WATER ANALYSIS PROGRAM: A CRITICAL STUDY Dennis C...Twhoo-17 (ATC) Wright-FPafewon AFB O 44 3 1S. KEY WORDS (Continue on reverse aide if necessary and identify by block number) Industrial Water Analysis ...Boiler Water Analysis Preservation Procedures Air Force Industrial Water Stabilization Procedures 20. ABSTRACT (Continue on reverse side it necessary and

  6. ECONOMIC ANALYSIS FOR THE GROUND WATER RULE ...

    EPA Pesticide Factsheets

    The Ground Water Rule Economic Analysis provides a description of the need for the rule, consideration of regulatory alternatives, baseline analysis including national ground water system profile and an estimate of pathogen and indicator occurrence (Chapter 4), a risk assessment and benefits analysis (Chapter 5), and a cost analysis ( Chapter 6). Chapters 4, 5 and 6, selected appendices and sections of other chapters will be peer reviewed. The objective of the Economic Analysis Document is to support the final Ground Water Rule.

  7. An analysis of water data systems to inform the Open Water Data Initiative

    USGS Publications Warehouse

    Blodgett, David L.; Read, Emily K.; Lucido, Jessica M.; Slawecki, Tad; Young, Dwane

    2016-01-01

    Improving access to data and fostering open exchange of water information is foundational to solving water resources issues. In this vein, the Department of the Interior's Assistant Secretary for Water and Science put forward the charge to undertake an Open Water Data Initiative (OWDI) that would prioritize and accelerate work toward better water data infrastructure. The goal of the OWDI is to build out the Open Water Web (OWW). We therefore considered the OWW in terms of four conceptual functions: water data cataloging, water data as a service, enriching water data, and community for water data. To describe the current state of the OWW and identify areas needing improvement, we conducted an analysis of existing systems using a standard model for describing distributed systems and their business requirements. Our analysis considered three OWDI-focused use cases—flooding, drought, and contaminant transport—and then examined the landscape of other existing applications that support the Open Water Web. The analysis, which includes a discussion of observed successful practices of cataloging, serving, enriching, and building community around water resources data, demonstrates that we have made significant progress toward the needed infrastructure, although challenges remain. The further development of the OWW can be greatly informed by the interpretation and findings of our analysis.

  8. WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla

    2008-02-28

    The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0more » of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of

  9. Skylab water balance error analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.

  10. Water Quality Analysis Simulation Program (WASP)

    EPA Pesticide Factsheets

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  11. Water Quality Analysis Tool (WQAT)

    EPA Science Inventory

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-pro...

  12. Water analysis via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Chakraborty, Somsubhra; Duda, Bogdan; Li, Bin; Weindorf, David C.; Deb, Shovik; Brevik, Eric; Ray, D. P.

    2017-01-01

    Rapid, in-situ elemental water analysis would be an invaluable tool in studying polluted and/or salt-impacted waters. Analysis of water salinity has commonly used electrical conductance (EC); however, the identity of the elements responsible for the salinity are not revealed using EC. Several studies have established the viability of using portable X-ray fluorescence (PXRF) spectrometry for elemental data analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study used PXRF elemental data in water samples to predict water EC. A total of 256 water samples, from 10 different countries were collected and analyzed via PXRF, inductively coupled plasma atomic emission spectroscopy (ICP-AES), and a digital salinity bridge. The PXRF detected some elements more effectively than others, but overall results indicated that PXRF can successfully predict water EC via quantifying Cl in water samples (validation R2 and RMSE of 0.77 and 0.95 log μS cm-1, respectively). The findings of this study elucidated the potential of PXRF for future analysis of pollutant and/or metal contaminated waters.

  13. WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES

    EPA Science Inventory

    This review covers developments in Water Analysis over the period of 2001-2002. A few significant references that appeared between January and February 2003 are also included. Previous Water Analysis reviews have been very comprehensive; however, in 2001, Analytical Chemistry c...

  14. GKI chloride in water, analysis method. GKI boron in water, analysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morriss, L.L.

    1979-05-01

    Procedures for the chemical analysis of chlorides and boron in water are presented. Chlorides can be titrated with mercuric nitrate to form mercuric chloride. At pH 2.3 to 2.8, diphenylcarbazone indicates the end point of this titration by formation of a purple complex with mercury ions. When a sample of water containing boron is acidified and evaporated in the presence of curcumin, a red colored product called rosocyanine is formed. This is dissolved and can be measured photometrically or visually. (DMC)

  15. An Analysis Model for Water Cone Subsidence in Bottom Water Drive Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Jianjun; Xu, Hui; Wu, Shucheng; Yang, Chao; Kong, lingxiao; Zeng, Baoquan; Xu, Haixia; Qu, Tailai

    2017-12-01

    Water coning in bottom water drive reservoirs, which will result in earlier water breakthrough, rapid increase in water cut and low recovery level, has drawn tremendous attention in petroleum engineering field. As one simple and effective method to inhibit bottom water coning, shut-in coning control is usually preferred in oilfield to control the water cone and furthermore to enhance economic performance. However, most of the water coning researchers just have been done on investigation of the coning behavior as it grows up, the reported studies for water cone subsidence are very scarce. The goal of this work is to present an analytical model for water cone subsidence to analyze the subsidence of water cone when the well shut in. Based on Dupuit critical oil production rate formula, an analytical model is developed to estimate the initial water cone shape at the point of critical drawdown. Then, with the initial water cone shape equation, we propose an analysis model for water cone subsidence in bottom water reservoir reservoirs. Model analysis and several sensitivity studies are conducted. This work presents accurate and fast analytical model to perform the water cone subsidence in bottom water drive reservoirs. To consider the recent interests in development of bottom drive reservoirs, our approach provides a promising technique for better understanding the subsidence of water cone.

  16. Urban water metabolism efficiency assessment: integrated analysis of available and virtual water.

    PubMed

    Huang, Chu-Long; Vause, Jonathan; Ma, Hwong-Wen; Yu, Chang-Ping

    2013-05-01

    Resolving the complex environmental problems of water pollution and shortage which occur during urbanization requires the systematic assessment of urban water metabolism efficiency (WME). While previous research has tended to focus on either available or virtual water metabolism, here we argue that the systematic problems arising during urbanization require an integrated assessment of available and virtual WME, using an indicator system based on material flow analysis (MFA) results. Future research should focus on the following areas: 1) analysis of available and virtual water flow patterns and processes through urban districts in different urbanization phases in years with varying amounts of rainfall, and their environmental effects; 2) based on the optimization of social, economic and environmental benefits, establishment of an indicator system for urban WME assessment using MFA results; 3) integrated assessment of available and virtual WME in districts with different urbanization levels, to facilitate study of the interactions between the natural and social water cycles; 4) analysis of mechanisms driving differences in WME between districts with different urbanization levels, and the selection of dominant social and economic driving indicators, especially those impacting water resource consumption. Combinations of these driving indicators could then be used to design efficient water resource metabolism solutions, and integrated management policies for reduced water consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. BASIC Programming In Water And Wastewater Analysis

    NASA Technical Reports Server (NTRS)

    Dreschel, Thomas

    1988-01-01

    Collection of computer programs assembled for use in water-analysis laboratories. First program calculates quality-control parameters used in routine water analysis. Second calculates line of best fit for standard concentrations and absorbances entered. Third calculates specific conductance from conductivity measurement and temperature at which measurement taken. Fourth calculates any one of four types of residue measured in water. Fifth, sixth, and seventh calculate results of titrations commonly performed on water samples. Eighth converts measurements, to actual dissolved-oxygen concentration using oxygen-saturation values for fresh and salt water. Ninth and tenth perform calculations of two other common titrimetric analyses. Eleventh calculates oil and grease residue from water sample. Last two use spectro-photometric measurements of absorbance at different wavelengths and residue measurements. Programs included in collection written for Hewlett-Packard 2647F in H-P BASIC.

  18. Ecological network analysis for a virtual water network.

    PubMed

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  19. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov Websites

    simultaneously. Example Projects Energy, water, and renewable opportunities assessment at Bagram Air Force Base opportunity to plan integrated infrastructure. Example Projects Identification of critical water and campus-level opportunities. Example Projects Net Zero Energy-Water-Waste analysis for Fort Carson Net

  20. Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems.

    PubMed

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof

    2009-04-01

    Drinking water systems are vulnerable and subject to a wide range of risks. To avoid sub-optimisation of risk-reduction options, risk analyses need to include the entire drinking water system, from source to tap. Such an integrated approach demands tools that are able to model interactions between different events. Fault tree analysis is a risk estimation tool with the ability to model interactions between events. Using fault tree analysis on an integrated level, a probabilistic risk analysis of a large drinking water system in Sweden was carried out. The primary aims of the study were: (1) to develop a method for integrated and probabilistic risk analysis of entire drinking water systems; and (2) to evaluate the applicability of Customer Minutes Lost (CML) as a measure of risk. The analysis included situations where no water is delivered to the consumer (quantity failure) and situations where water is delivered but does not comply with water quality standards (quality failure). Hard data as well as expert judgements were used to estimate probabilities of events and uncertainties in the estimates. The calculations were performed using Monte Carlo simulations. CML is shown to be a useful measure of risks associated with drinking water systems. The method presented provides information on risk levels, probabilities of failure, failure rates and downtimes of the system. This information is available for the entire system as well as its different sub-systems. Furthermore, the method enables comparison of the results with performance targets and acceptable levels of risk. The method thus facilitates integrated risk analysis and consequently helps decision-makers to minimise sub-optimisation of risk-reduction options.

  1. Ecological network analysis on global virtual water trade.

    PubMed

    Yang, Zhifeng; Mao, Xufeng; Zhao, Xu; Chen, Bin

    2012-02-07

    Global water interdependencies are likely to increase with growing virtual water trade. To address the issues of the indirect effects of water trade through the global economic circulation, we use ecological network analysis (ENA) to shed insight into the complicated system interactions. A global model of virtual water flow among agriculture and livestock production trade in 1995-1999 is also built as the basis for network analysis. Control analysis is used to identify the quantitative control or dependency relations. The utility analysis provides more indicators for describing the mutual relationship between two regions/countries by imitating the interactions in the ecosystem and distinguishes the beneficiary and the contributor of virtual water trade system. Results show control and utility relations can well depict the mutual relation in trade system, and direct observable relations differ from integral ones with indirect interactions considered. This paper offers a new way to depict the interrelations between trade components and can serve as a meaningful start as we continue to use ENA in providing more valuable implications for freshwater study on a global scale.

  2. Sensitivity analysis of water consumption in an office building

    NASA Astrophysics Data System (ADS)

    Suchacek, Tomas; Tuhovcak, Ladislav; Rucka, Jan

    2018-02-01

    This article deals with sensitivity analysis of real water consumption in an office building. During a long-term real study, reducing of pressure in its water connection was simulated. A sensitivity analysis of uneven water demand was conducted during working time at various provided pressures and at various time step duration. Correlations between maximal coefficients of water demand variation during working time and provided pressure were suggested. The influence of provided pressure in the water connection on mean coefficients of water demand variation was pointed out, altogether for working hours of all days and separately for days with identical working hours.

  3. Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions

    NASA Astrophysics Data System (ADS)

    Samayoa, S. D.

    2017-12-01

    Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions Susana Samayoa , Muhammed A. G. Chowdhury, Tushar Sinha Department of Environmental Engineering, Texas A & M University - Kingsville Freshwater sustainability in arid and semi-arid regions is highly uncertain under increasing demands due to population growth and urban development as well as limited water supply. In particular, six largest cities by population among the top twenty U.S. cities are located in Texas (TX), which also experience high variability in water availability due to frequent droughts and floods. Similarly, several regions in Arizona (AZ) are rapidly growing (e.g. Phoenix and Tucson) despite receiving scanty rainfall. Thus, the goal of this study is to analyze water use and water scarcity in watersheds within TX and AZ between 1985 and 2010. The water use data from U.S. Geological Survey (USGS) is analyzed by Hydrological Unit Code (HUC) - 8 within TX and AZ. Total freshwater use by county during 1985 and 2010 were converted into water use by HUC-8 using geospatial analysis. Water availability will be estimated by using a large scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC model will be calibrated and validated for multiple basins located in Texas and Arizona. The VIC model simulated total streamflow will be aggregated across the 1/8 degree grids that are within each HUC-8 to estimate water supply. The excess water for upstream HUC-8s (= local supply minus demands) will be routed, in addition to locally generated streamflow, to estimate water availability in downstream HUC-8s. Water Scarcity Index, defined as the ratio of total freshwater demand to supply, will be estimated during 1985 and 2010 to evaluate the effects of water availability and demands on scarcity. Finally, water scarcity and use will be analyzed by HUC-8s within TX and AZ. Such information could be useful in water resources management and planning. Keywords: Water scarcity, water use

  4. Kuipers performs Water Sample Analysis

    NASA Image and Video Library

    2012-05-15

    ISS031-E-084619 (15 May 2012) --- After collecting samples from the Water Recovery System (WRS), European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, processes the samples for chemical and microbial analysis in the Unity node of the International Space Station.

  5. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  6. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 258.53 Section 258.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysi...

  7. The analysis of water in the Martian regolith.

    PubMed

    Anderson, D M; Tice, A R

    1979-12-01

    One of the scientific objectives of the Viking Mission to Mars was to accomplish an analysis of water in the Martian regolith. The analytical scheme originally envisioned was severely compromised in the latter stages of the Lander instrument package design. Nevertheless, a crude soil water analysis was accomplished. Samples from each of the two widely separated sites yielded roughly 1 to 3% water by weight when heated successively to several temperatures up to 500 degrees C. A significant portion of this water was released in the 200 degrees to 350 degrees C interval indicating the presence of mineral hydrates of relatively low thermal stability, a finding in keeping with the low temperatures generally prevailing on Mars. The presence of a duricrust at one of the Lander sites is taken as possible evidence for the presence of hygroscopic minerals on Mars. The demonstrated presence of atmospheric water vapor and thermodynamic calculations lead to the belief that adsorbed water could provide a relatively favorable environment for endolithic organisms on Mars similar to types recently discovered in the dry antarctic deserts.

  8. Integrated risk assessment and screening analysis of drinking water safety of a conventional water supply system.

    PubMed

    Sun, F; Chen, J; Tong, Q; Zeng, S

    2007-01-01

    Management of drinking water safety is changing towards an integrated risk assessment and risk management approach that includes all processes in a water supply system from catchment to consumers. However, given the large number of water supply systems in China and the cost of implementing such a risk assessment procedure, there is a necessity to first conduct a strategic screening analysis at a national level. An integrated methodology of risk assessment and screening analysis is thus proposed to evaluate drinking water safety of a conventional water supply system. The violation probability, indicating drinking water safety, is estimated at different locations of a water supply system in terms of permanganate index, ammonia nitrogen, turbidity, residual chlorine and trihalomethanes. Critical parameters with respect to drinking water safety are then identified, based on which an index system is developed to prioritize conventional water supply systems in implementing a detailed risk assessment procedure. The evaluation results are represented as graphic check matrices for the concerned hazards in drinking water, from which the vulnerability of a conventional water supply system is characterized.

  9. Robust Multipoint Water-Fat Separation Using Fat Likelihood Analysis

    PubMed Central

    Yu, Huanzhou; Reeder, Scott B.; Shimakawa, Ann; McKenzie, Charles A.; Brittain, Jean H.

    2016-01-01

    Fat suppression is an essential part of routine MRI scanning. Multiecho chemical-shift based water-fat separation methods estimate and correct for Bo field inhomogeneity. However, they must contend with the intrinsic challenge of water-fat ambiguity that can result in water-fat swapping. This problem arises because the signals from two chemical species, when both are modeled as a single discrete spectral peak, may appear indistinguishable in the presence of Bo off-resonance. In conventional methods, the water-fat ambiguity is typically removed by enforcing field map smoothness using region growing based algorithms. In reality, the fat spectrum has multiple spectral peaks. Using this spectral complexity, we introduce a novel concept that identifies water and fat for multiecho acquisitions by exploiting the spectral differences between water and fat. A fat likelihood map is produced to indicate if a pixel is likely to be water-dominant or fat-dominant by comparing the fitting residuals of two different signal models. The fat likelihood analysis and field map smoothness provide complementary information, and we designed an algorithm (Fat Likelihood Analysis for Multiecho Signals) to exploit both mechanisms. It is demonstrated in a wide variety of data that the Fat Likelihood Analysis for Multiecho Signals algorithm offers highly robust water-fat separation for 6-echo acquisitions, particularly in some previously challenging applications. PMID:21842498

  10. Methods for collection and analysis of water samples

    USGS Publications Warehouse

    Rainwater, Frank Hays; Thatcher, Leland Lincoln

    1960-01-01

    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  11. Supercritical Water Oxidation Total Organic Carbon (TOC) Analysis

    EPA Pesticide Factsheets

    The work presented here is the evaluation of the modified wet‐oxidation method described as Supercritical Water Oxidation (SCWO) for the analysis of total organic carbon (TOC) in very difficult oil/gas produced water sample matrices.

  12. Cost analysis of water recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1972-01-01

    Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced life support subsystems for long range planning in support of earth orbital programs. Cost analysis are presented for five leading water reclamation systems; (1) RITE waste management-water system;(2) reverse osmosis system;(3) multifiltration system;(4) vapor compression system; and(5) closed air evaporation system with electrolytic pretreatment.

  13. WATER DISTRIBUTION SYSTEM ANALYSIS: FIELD STUDIES, MODELING AND MANAGEMENT

    EPA Science Inventory

    The user‘s guide entitled “Water Distribution System Analysis: Field Studies, Modeling and Management” is a reference guide for water utilities and an extensive summarization of information designed to provide drinking water utility personnel (and related consultants and research...

  14. Bacterial flora analysis of coliforms in sewage, river water, and ground water using MALDI-TOF mass spectrometry.

    PubMed

    Suzuki, Yoshihiro; Niina, Kouki; Matsuwaki, Tomonori; Nukazawa, Kei; Iguchi, Atsushi

    2018-01-28

    The aim of this study was to rapidly and effectively analyze coliforms, which are the most fundamental indicators of water quality for fecal pollution, using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Coliform bacteria were isolated from municipal sewage, river water, and groundwater. For each sample, 100 isolates were determined by MALDI-TOF MS. In addition, these same 100 isolates were also identified via 16S rRNA gene sequence analysis. Obtained MALDI-TOF MS data were compared with the 16S rRNA sequencing analysis, and the validity of MALDI-TOF MS for classification of coliform bacteria was examined. The concordance rate of bacterial identification for the 100 isolates obtained by MALDI-TOF MS analysis and 16S rRNA gene sequence analysis for sewage, river water, and ground water were 96%, 74%, and 62% at the genus level, respectively. Among the sewage, river water, and ground water samples, the coliform bacterial flora were distinct. The dominant genus of coliforms in sewage, river water, and groundwater were Klebsiella spp., Enterobacter spp., and Serratia spp., respectively. We determined that MALDI-TOF MS is a rapid and accurate tool that can be used to identify coliforms. Therefore, without using conventional 16S rRNA sequencing, it is possible to rapidly and effectively classify coliforms in water using MALDI-TOF MS.

  15. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    PubMed

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  16. Sensitivity Analysis for some Water Pollution Problem

    NASA Astrophysics Data System (ADS)

    Le Dimet, François-Xavier; Tran Thu, Ha; Hussaini, Yousuff

    2014-05-01

    Sensitivity Analysis for Some Water Pollution Problems Francois-Xavier Le Dimet1 & Tran Thu Ha2 & M. Yousuff Hussaini3 1Université de Grenoble, France, 2Vietnamese Academy of Sciences, 3 Florida State University Sensitivity analysis employs some response function and the variable with respect to which its sensitivity is evaluated. If the state of the system is retrieved through a variational data assimilation process, then the observation appears only in the Optimality System (OS). In many cases, observations have errors and it is important to estimate their impact. Therefore, sensitivity analysis has to be carried out on the OS, and in that sense sensitivity analysis is a second order property. The OS can be considered as a generalized model because it contains all the available information. This presentation proposes a method to carry out sensitivity analysis in general. The method is demonstrated with an application to water pollution problem. The model involves shallow waters equations and an equation for the pollutant concentration. These equations are discretized using a finite volume method. The response function depends on the pollutant source, and its sensitivity with respect to the source term of the pollutant is studied. Specifically, we consider: • Identification of unknown parameters, and • Identification of sources of pollution and sensitivity with respect to the sources. We also use a Singular Evolutive Interpolated Kalman Filter to study this problem. The presentation includes a comparison of the results from these two methods. .

  17. Analysis and Operational Feasibility of Potable Water Production

    DTIC Science & Technology

    2015-09-01

    III. MODELING, SIMULATION, AND TEST RESULTS ANALYSIS ..............27 A. INTRODUCTION...Regions of Study ......................57 Table 10. Drinking Water Tests ...chemicals, and coliform bacteria. Testing of the condensed water is important to ensure potability, as common tests have been conducted to ensure

  18. Global resilience analysis of water distribution systems.

    PubMed

    Diao, Kegong; Sweetapple, Chris; Farmani, Raziyeh; Fu, Guangtao; Ward, Sarah; Butler, David

    2016-12-01

    Evaluating and enhancing resilience in water infrastructure is a crucial step towards more sustainable urban water management. As a prerequisite to enhancing resilience, a detailed understanding is required of the inherent resilience of the underlying system. Differing from traditional risk analysis, here we propose a global resilience analysis (GRA) approach that shifts the objective from analysing multiple and unknown threats to analysing the more identifiable and measurable system responses to extreme conditions, i.e. potential failure modes. GRA aims to evaluate a system's resilience to a possible failure mode regardless of the causal threat(s) (known or unknown, external or internal). The method is applied to test the resilience of four water distribution systems (WDSs) with various features to three typical failure modes (pipe failure, excess demand, and substance intrusion). The study reveals GRA provides an overview of a water system's resilience to various failure modes. For each failure mode, it identifies the range of corresponding failure impacts and reveals extreme scenarios (e.g. the complete loss of water supply with only 5% pipe failure, or still meeting 80% of demand despite over 70% of pipes failing). GRA also reveals that increased resilience to one failure mode may decrease resilience to another and increasing system capacity may delay the system's recovery in some situations. It is also shown that selecting an appropriate level of detail for hydraulic models is of great importance in resilience analysis. The method can be used as a comprehensive diagnostic framework to evaluate a range of interventions for improving system resilience in future studies. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. ISS Expeditions 16 Thru 20: Chemical Analysis Results for Potable Water

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2010-01-01

    This slide presentation reviews the results of the chemical analysis of the potable water supply from the International Space Station (ISS) expeditions 16 thru 20. Both Russian ground water and shuttle-transferred water are available for the use of the ISS crew's requirements. This is supplemented with condensate water and water form the Water Recovery System (WRS). An overview of the condensate H2O recovery system is given and the WRS is described and diagrammed. The water quality requirements, the handling, and analytical methods for the inorganic and organic tests are reviewed. The chemical analysis results for expeditions 16-20 archival water samples collected from the various water sources indicate that all of the ISS potable water supplies were acceptable for crew consumption.

  20. Cost analysis of water recovery systems

    NASA Technical Reports Server (NTRS)

    Yakut, M. M.

    1973-01-01

    A methodology was developed to predict the relevant contributions of the more intangible cost elements encountered in the development of flight-qualified hardware based on an extrapolation of past hardware development experience. Major items of costs within water recovery systems were identified and related to physical and/or performance criteria. Cost and performance data from Gemini, Skylab, and other aerospace and biotechnology programs were analyzed to identify major cost elements required to establish cost estimating relationships for advanced water recovery systems. The results of the study are expected to assist NASA in long-range planning and allocation of resources in a cost effective manner in support of earth orbital programs. This report deals with the cost analysis of the five leading water reclamation systems, namely: (1) RITE waste management-water system, (2) reverse osmosis system, (3) multifiltration system, (4) vapor compression system, and (5) closed air evaporation system with electrolytic pretreatment.

  1. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries.

    PubMed

    Leusch, Frederic D L; Neale, Peta A; Arnal, Charlotte; Aneck-Hahn, Natalie H; Balaguer, Patrick; Bruchet, Auguste; Escher, Beate I; Esperanza, Mar; Grimaldi, Marina; Leroy, Gaela; Scheurer, Marco; Schlichting, Rita; Schriks, Merijn; Hebert, Armelle

    2018-08-01

    The aquatic environment can contain numerous micropollutants and there are concerns about endocrine activity in environmental waters and the potential impacts on human and ecosystem health. In this study a complementary chemical analysis and in vitro bioassay approach was applied to evaluate endocrine activity in treated wastewater, surface water and drinking water samples from six countries (Germany, Australia, France, South Africa, the Netherlands and Spain). The bioassay test battery included assays indicative of seven endocrine pathways, while 58 different chemicals, including pesticides, pharmaceuticals and industrial compounds, were analysed by targeted chemical analysis. Endocrine activity was below the limit of quantification for most water samples, with only two of six treated wastewater samples and two of six surface water samples exhibiting estrogenic, glucocorticoid, progestagenic and/or anti-mineralocorticoid activity above the limit of quantification. Based on available effect-based trigger values (EBT) for estrogenic and glucocorticoid activity, some of the wastewater and surface water samples were found to exceed the EBT, suggesting these environmental waters may pose a potential risk to ecosystem health. In contrast, the lack of bioassay activity and low detected chemical concentrations in the drinking water samples do not suggest a risk to human endocrine health, with all samples below the relevant EBTs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Analysis for water conflicts in a changing world

    NASA Astrophysics Data System (ADS)

    Lund, J. R.

    2012-12-01

    Like any subject which involves billions of dollars and thousands or millions of people, managing water involves serious conflicts among contending objectives and interest groups. These conflicts usually spill into the technical and scientific analysis of water resources problems and potential solutions. A favorable or unfavorable analytical outcome can be worth millions or cost millions to a stakeholder, so they have a self-interested duty to contend. This talk examines ideas for conducting analysis to improve the technical and scientific quality of public and policy discussions of controversial water problems. More than just solid technical work is needed. Investigators must organize, disseminate, and communicate their work effectively and attentively. Research must often be designed to be effective in informing policy discussions. Several sometimes conflicting strategies are available for this.

  3. An alternative procedure for uranium analysis in drinking water using AQUALIX columns: application to varied French bottled waters.

    PubMed

    Bouvier-Capely, C; Bonthonneau, J P; Dadache, E; Rebière, F

    2014-01-01

    The general population is chronically exposed to uranium ((234)U, (235)U, and (238)U) and polonium ((210)Po) mainly through day-to-day food and beverage intake. The measurement of these naturally-occurring radionuclides in drinking water is important to assess their health impact. In this work the applicability of calix[6]arene-derivatives columns for uranium analysis in drinking water was investigated. A simple and effective method was proposed on a specific column called AQUALIX, for the separation and preconcentration of U from drinking water. This procedure is suitable for routine analysis and the analysis time is considerably shortened (around 4h) by combining the separation on AQUALIX with fast ICP-MS measurement. This new method was tested on different French bottled waters (still mineral water, sparkling mineral water, and spring water). Then, the case of simultaneous presence of uranium and polonium in water was considered due to interferences in alpha spectrometry measurement. A protocol was proposed using a first usual step of spontaneous deposition of polonium on silver disc in order to separate Po, followed by the uranium extraction on AQUALIX column before alpha spectrometry counting. © 2013 Published by Elsevier B.V.

  4. Online analysis: Deeper insights into water quality dynamics in spring water.

    PubMed

    Page, Rebecca M; Besmer, Michael D; Epting, Jannis; Sigrist, Jürg A; Hammes, Frederik; Huggenberger, Peter

    2017-12-01

    We have studied the dynamics of water quality in three karst springs taking advantage of new technological developments that enable high-resolution measurements of bacterial load (total cell concentration: TCC) as well as online measurements of abiotic parameters. We developed a novel data analysis approach, using self-organizing maps and non-linear projection methods, to approximate the TCC dynamics using the multivariate data sets of abiotic parameter time-series, thus providing a method that could be implemented in an online water quality management system for water suppliers. The (TCC) data, obtained over several months, provided a good basis to study the microbiological dynamics in detail. Alongside the TCC measurements, online abiotic parameter time-series, including spring discharge, turbidity, spectral absorption coefficient at 254nm (SAC254) and electrical conductivity, were obtained. High-density sampling over an extended period of time, i.e. every 45min for 3months, allowed a detailed analysis of the dynamics in karst spring water quality. Substantial increases in both the TCC and the abiotic parameters followed precipitation events in the catchment area. Differences between the parameter fluctuations were only apparent when analyzed at a high temporal scale. Spring discharge was always the first to react to precipitation events in the catchment area. Lag times between the onset of precipitation and a change in discharge varied between 0.2 and 6.7h, depending on the spring and event. TCC mostly reacted second or approximately concurrent with turbidity and SAC254, whereby the fastest observed reaction in the TCC time series occurred after 2.3h. The methodological approach described here enables a better understanding of bacterial dynamics in karst springs, which can be used to estimate risks and management options to avoid contamination of the drinking water. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. [Impact of water pollution risk in water transfer project based on fault tree analysis].

    PubMed

    Liu, Jian-Chang; Zhang, Wei; Wang, Li-Min; Li, Dai-Qing; Fan, Xiu-Ying; Deng, Hong-Bing

    2009-09-15

    The methods to assess water pollution risk for medium water transfer are gradually being explored. The event-nature-proportion method was developed to evaluate the probability of the single event. Fault tree analysis on the basis of calculation on single event was employed to evaluate the extent of whole water pollution risk for the channel water body. The result indicates, that the risk of pollutants from towns and villages along the line of water transfer project to the channel water body is at high level with the probability of 0.373, which will increase pollution to the channel water body at the rate of 64.53 mg/L COD, 4.57 mg/L NH4(+) -N and 0.066 mg/L volatilization hydroxybenzene, respectively. The measurement of fault probability on the basis of proportion method is proved to be useful in assessing water pollution risk under much uncertainty.

  6. Turbidimetric Analysis of Water and Wastewater Samples Using a Spectrofluorimeter

    NASA Astrophysics Data System (ADS)

    Evans, Jason J.

    2000-12-01

    As student interest in environmental science grows, many colleges and universities are developing new courses in environmental chemistry. Environmental analysis in the "real world" has become increasingly instrumental, and it is important to introduce students to the instruments and procedures that are commonly used in environmental laboratories. Turbidimetric analysis of water and wastewater is ordinarily performed in environmental laboratories using a nephelometer. This experiment illustrates that a spectrofluorimeter can be successfully employed for these types of analysis. Samples from various stages of the water and wastewater treatment processes were collected from the Carlisle Water and Wastewater Treatment Plants. The students in our Environmental Chemistry laboratory used the spectrofluorimeter to measure the scattering intensity from the samples and from a series of formazine standards. The standard curve produced from their data gave a correlation coefficient of .999, and the detection limit was 0.03 Standard Turbidity Units, which is sufficient to obtain meaningful data on most water samples. This experiment was an excellent supplement to lecture material covering water and wastewater treatment because the students were able to monitor the level of suspended particulates in the water as it makes its way through the treatment plants.

  7. Analysis of trends in water-quality data for water conservation area 3A, the Everglades, Florida

    USGS Publications Warehouse

    Mattraw, H.C.; Scheidt, D.J.; Federico, A.C.

    1987-01-01

    Rainfall and water quality data bases from the South Florida Water Management District were used to evaluate water quality trends at 10 locations near or in Water Conservation Area 3A in The Everglades. The Seasonal Kendall test was applied to specific conductance, orthophosphate-phosphorus, nitrate-nitrogen, total Kjeldahl nitrogen, and total nitrogen regression residuals for the period 1978-82. Residuals of orthophosphate and nitrate quadratic models, based on antecedent 7-day rainfall at inflow gate S-11B, were the only two constituent-structure pairs that showed apparent significant (p < 0.05) increases in constituent concentrations. Elimination of regression models with distinct residual patterns and data outlines resulted in 17 statistically significant station water quality combinations for trend analysis. No water quality trends were observed. The 1979 Memorandum of Agreement outlining the water quality monitoring program between the Everglades National Park and the U.S. Army Corps of Engineers stressed collection four times a year at three stations, and extensive coverage of water quality properties. Trend analysis and other rigorous statistical evaluation programs are better suited to data monitoring programs that include more frequent sampling and that are organized in a water quality data management system. Pronounced areal differences in water quality suggest that a water quality monitoring system for Shark River Slough in Everglades National Park include collection locations near the source of inflow to Water Conservation Area 3A. (Author 's abstract)

  8. Lidar point density analysis: implications for identifying water bodies

    USGS Publications Warehouse

    Worstell, Bruce B.; Poppenga, Sandra K.; Evans, Gayla A.; Prince, Sandra

    2014-01-01

    Most airborne topographic light detection and ranging (lidar) systems operate within the near-infrared spectrum. Laser pulses from these systems frequently are absorbed by water and therefore do not generate reflected returns on water bodies in the resulting void regions within the lidar point cloud. Thus, an analysis of lidar voids has implications for identifying water bodies. Data analysis techniques to detect reduced lidar return densities were evaluated for test sites in Blackhawk County, Iowa, and Beltrami County, Minnesota, to delineate contiguous areas that have few or no lidar returns. Results from this study indicated a 5-meter radius moving window with fewer than 23 returns (28 percent of the moving window) was sufficient for delineating void regions. Techniques to provide elevation values for void regions to flatten water features and to force channel flow in the downstream direction also are presented.

  9. Analysis of Water Extraction From Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Balasubramaniam, R.; Gokoglu, S.

    2012-01-01

    Distribution of water concentration on the Moon is currently an area of active research. Recent studies suggest the presence of ice particles, and perhaps even ice blocks and ice-cemented regolith on the Moon. Thermal extraction of the in-situ water is an attractive means of sa tisfying water requirements for a lunar mission. In this paper, a model is presented to analyze the processes occurring during the heat-up of icy regolith and extraction of the evolved water vapor. The wet regolith is assumed to be present in an initially evacuated and sealed cell which is subsequently heated. The first step of the analysis invol ves calculating the gradual increase of vapor pressure in the closed cell as the temperature is raised. Then, in the second step, the cell is evacuated to low pressure (e.g., vacuum), allowing the water vapor to leave the cell and be captured. The parameters affecting water vap or pressure build-up and evacuation for the purpose of extracting water from lunar regolith are discussed in the paper. Some comparisons wi th available experimental measurements are also made.

  10. Neutron Activation Analysis of Water - A Review

    NASA Technical Reports Server (NTRS)

    Buchanan, John D.

    1971-01-01

    Recent developments in this field are emphasized. After a brief review of basic principles, topics discussed include sources of neutrons, pre-irradiation physical and chemical treatment of samples, neutron capture and gamma-ray analysis, and selected applications. Applications of neutron activation analysis of water have increased rapidly within the last few years and may be expected to increase in the future.

  11. Analysis of ground-water-quality data of the Upper Colorado River basin, water years 1972-92

    USGS Publications Warehouse

    Apodaca, L.E.

    1998-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment program, an analysis of the existing ground-water-quality data in the Upper Colorado River Basin study unit is necessary to provide information on the historic water-quality conditions. Analysis of the historical data provides information on the availability or lack of data and water-quality issues. The information gathered from the historical data will be used in the design of ground-water-quality studies in the basin. This report includes an analysis of the ground-water data (well and spring data) available for the Upper Colorado River Basin study unit from water years 1972 to 1992 for major cations and anions, metals and selected trace elements, and nutrients. The data used in the analysis of the ground-water quality in the Upper Colorado River Basin study unit were predominantly from the U.S. Geological Survey National Water Information System and the Colorado Department of Public Health and Environment data bases. A total of 212 sites representing alluvial aquifers and 187 sites representing bedrock aquifers were used in the analysis. The available data were not ideal for conducting a comprehensive basinwide water-quality assessment because of lack of sufficient geographical coverage.Evaluation of the ground-water data in the Upper Colorado River Basin study unit was based on the regional environmental setting, which describes the natural and human factors that can affect the water quality. In this report, the ground-water-quality information is evaluated on the basis of aquifers or potential aquifers (alluvial, Green River Formation, Mesaverde Group, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Leadville Limestone, and Precambrian) and land-use classifications for alluvial aquifers.Most of the ground-water-quality data in the study unit were for major cations and anions and dissolved-solids concentrations. The aquifer with the highest median concentrations of

  12. Cost-benefit analysis of central softening for production of drinking water.

    PubMed

    Van der Bruggen, B; Goossens, H; Everard, P A; Stemgée, K; Rogge, W

    2009-01-01

    Softening drinking water before distribution yields advantages with environmental impact, such as lower household products consumption, less scaling in piping and machines, and the avoidance of decentralized, domestic softeners. Central softening is under consideration in Flanders by the largest water supplier, VMW (Dutch acronym for "Flemish Company for Water Supply"), to deliver soft (15 degrees F) water to their customers. A case study is presented for a region with hard water (47 degrees F). The chosen technique is the pellet reactor, based on precipitation of CaCO(3) by NaOH addition. This softening operation has possibly large impact on the environment and the water consumption pattern. A cost-benefit analysis has been made to estimate the added value of central softening, by investigating the impact on the drinking water company, on their customers, on employment, on environment, on health, etc. The analysis for the region of study revealed benefits for customers which were higher than the costs for the drinking water company. However, pricing of drinking water remains an important problem. A sensitivity analysis of these results has also been made, to evaluate the impact of important hypothesis, and to be able to expand this study to other regions. The conclusions for this part show that softening is beneficial if water hardness is to be decreased by at least 5 degrees F.

  13. Particle size analysis of some water/oil/water multiple emulsions.

    PubMed

    Ursica, L; Tita, D; Palici, I; Tita, B; Vlaia, V

    2005-04-29

    Particle size analysis gives useful information about the structure and stability of multiple emulsions, which are important characteristics of these systems. It also enables the observation of the growth process of particles dispersed in multiple emulsions, accordingly, the evolution of their dimension in time. The size of multiple particles in the seven water/oil/water (W/O/W) emulsions was determined by measuring the particles size observed during the microscopic examination. In order to describe the distribution of the size of multiple particles, the value of two parameters that define the particle size was calculated: the arithmetical mean diameter and the median diameter. The results of the particle size analysis in the seven multiple emulsions W/O/W studied are presented as histograms of the distribution density immediately, 1 and 3 months after the preparation of each emulsion, as well as by establishing the mean and the median diameter of particles. The comparative study of the distribution histograms and of the mean and median diameters of W/O/W multiple particles indicates that the prepared emulsions are fine and very fine dispersions, stable, and presenting a growth of the abovementioned diameters during the study.

  14. Analysis of UV filters in tap water and other clean waters in Spain.

    PubMed

    Díaz-Cruz, M Silvia; Gago-Ferrero, Pablo; Llorca, Marta; Barceló, Damià

    2012-03-01

    The present paper describes the development of a method for the simultaneous determination of five hormonally active UV filters namely benzophenone-3 (BP3), 3-(4-methylbenzylidene) camphor (4MBC), 2-ethylhexyl 4-(dimethylamino) benzoate (OD-PABA), 2-ethylhexyl 4-methoxycinnamate (EHMC) and octocrylene (OC) by means of solid-phase extraction and gas chromatography-electron impact ionization-mass spectrometry. Under optimized conditions, this methodology achieved low method limits of detection (needed for clean waters, especially drinking water analysis), between 0.02 and 8.42 ng/L, and quantitative recovery rates higher than 73% in all cases. Inter- and intraday precision for all compounds were lower than 7% and 11%, respectively. The optimized methodology was applied to perform the first survey of UV absorbing compounds in tap water from the metropolitan area and the city of Barcelona (Catalonia, Spain). In addition, other types of clean water matrices (mineral bottled water, well water and tap water treated with an ion-exchange resin) were investigated as well. Results evidenced that all the UV filters investigated were detected in the water samples analyzed. The compounds most frequently found were EHMC and OC. Maximum concentrations reached in tap water were 290 (BP3), 35 (4MBC), 110 (OD-PABA), 260 (EHMC), and 170 ng/L (OC). This study constitutes the first evidence of the presence of UV filter residues in tap water in Europe.

  15. ISS Expeditions 16 & 17: Chemical Analysis Results for Potable Water

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2009-01-01

    During the twelve month span of Expeditions 16 and 17 beginning October of 2007, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principle sources of potable water and for the first time, European groundsupplied water was also available. Although water was transferred from Shuttle to ISS during Expeditions 16 and 17, no Shuttle potable water was consumed during this timeframe. A total of 12 potable water samples were collected using U.S. hardware during Expeditions 16 and 17 and returned on Shuttle flights 1E (STS122), 1JA (STS123), and 1J (STS124). The average sample volume was sufficient for complete chemical characterization to be performed. The results of JSC chemical analyses of these potable water samples are presented in this paper. The WAFAL also received potable water samples for analysis from the Russian side collected inflight with Russian hardware, as well as preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 30. Analytical results for these additional potable water samples are also reported and discussed herein. Although the potable water supplies available during Expeditions 16 and 17 were judged safe for crew consumption, a recent trending of elevated silver levels in the SVOZV water is a concern for longterm consumption and efforts are being made to lower these levels.

  16. Conceptual Analysis of System Average Water Stability

    NASA Astrophysics Data System (ADS)

    Zhang, H.

    2016-12-01

    Averaging over time and area, the precipitation in an ecosystem (SAP - system average precipitation) depends on the average surface temperature and relative humidity (RH) in the system if uniform convection is assumed. RH depends on the evapotranspiration of the system (SAE - system average evapotranspiration). There is a non-linear relationship between SAP and SAE. Studying this relationship can lead mechanistic understanding of the ecosystem health status and trend under different setups. If SAP is higher than SAE, the system will have a water runoff which flows out through rivers. If SAP is lower than SAE, irrigation is needed to maintain the vegetation status. This presentation will give a conceptual analysis of the stability in this relationship under different assumed areas, water or forest coverages, elevations and latitudes. This analysis shows that desert is a stable system. Water circulation in basins is also stabilized at a specific SAP based on the basin profile. It further shows that deforestation will reduce SAP, and can flip the system to an irrigation required status. If no irrigation is provided, the system will automatically reduce to its stable point - desert, which is extremely difficult to turn around.

  17. Ranking agricultural practices on soil water improvements: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Basche, A.; DeLonge, M. S.; Gonzalez, J.

    2016-12-01

    Increased rainfall variability is well documented in the historic record and predicted to intensify with future climate change. Managing excess water in periods of heavy rain and a lack of water in periods of inadequate precipitation will continue to be a challenge. Improving soil resiliency through increased water storage is a promising strategy to combat effects of both rainfall extremes. The goal of this research is to quantify to what extent various conservation and ecological practices can improve soil hydrology. We are conducting a global meta-analysis focused on studies where conservation and ecological practices are compared to more conventional management. To date we have analyzed 100 studies with more than 450 paired comparisons to understand the effect of management on water infiltration rates, a critical process that ensures water enters the soil profile for crop use, water storage and runoff prevention. The database will be expanded to include studies measuring soil porosity and the water retained at field capacity. Statistical analysis has been done both with both a bootstrap method and a mixed model that weights studies based on precision while accounting for between-study variation. We find that conservation and ecological practices, ranging from no-till, cover crops, crop rotation, perennial crops and agroforestry, on average significantly increased water infiltration rates relative to more conventional practice controls (mean of 75%, standard error 25%). There were significant differences between practices, where perennial and agroforestry systems show the greatest potential for improving water infiltration rates (> 100% increase). Cover crops also lead to a significant increase in water infiltration rates (> 60%) while crop rotations and no-till systems did not consistently demonstrate increases. We also found that studies needed to include alternative management for more than two years to detect a significant increase. Overall this global meta-analysis

  18. From water use to water scarcity footprinting in environmentally extended input-output analysis.

    PubMed

    Ridoutt, Bradley George; Hadjikakou, Michalis; Nolan, Martin; Bryan, Brett A

    2018-05-18

    Environmentally extended input-output analysis (EEIOA) supports environmental policy by quantifying how demand for goods and services leads to resource use and emissions across the economy. However, some types of resource use and emissions require spatially-explicit impact assessment for meaningful interpretation, which is not possible in conventional EEIOA. For example, water use in locations of scarcity and abundance is not environmentally equivalent. Opportunities for spatially-explicit impact assessment in conventional EEIOA are limited because official input-output tables tend to be produced at the scale of political units which are not usually well aligned with environmentally relevant spatial units. In this study, spatially-explicit water scarcity factors and a spatially disaggregated Australian water use account were used to develop water scarcity extensions that were coupled with a multi-regional input-output model (MRIO). The results link demand for agricultural commodities to the problem of water scarcity in Australia and globally. Important differences were observed between the water use and water scarcity footprint results, as well as the relative importance of direct and indirect water use, with significant implications for sustainable production and consumption-related policies. The approach presented here is suggested as a feasible general approach for incorporating spatially-explicit impact assessment in EEIOA.

  19. Bounding Analysis of Drinking Water Health Risks from a Spill of Hydraulic Fracturing Flowback Water.

    PubMed

    Rish, William R; Pfau, Edward J

    2018-04-01

    A bounding risk assessment is presented that evaluates possible human health risk from a hypothetical scenario involving a 10,000-gallon release of flowback water from horizontal fracturing of Marcellus Shale. The water is assumed to be spilled on the ground, infiltrates into groundwater that is a source of drinking water, and an adult and child located downgradient drink the groundwater. Key uncertainties in estimating risk are given explicit quantitative treatment using Monte Carlo analysis. Chemicals that contribute significantly to estimated health risks are identified, as are key uncertainties and variables to which risk estimates are sensitive. The results show that hypothetical exposure via drinking water impacted by chemicals in Marcellus Shale flowback water, assumed to be spilled onto the ground surface, results in predicted bounds between 10 -10 and 10 -6 (for both adult and child receptors) for excess lifetime cancer risk. Cumulative hazard indices (HI CUMULATIVE ) resulting from these hypothetical exposures have predicted bounds (5th to 95th percentile) between 0.02 and 35 for assumed adult receptors and 0.1 and 146 for assumed child receptors. Predicted health risks are dominated by noncancer endpoints related to ingestion of barium and lithium in impacted groundwater. Hazard indices above unity are largely related to exposure to lithium. Salinity taste thresholds are likely to be exceeded before drinking water exposures result in adverse health effects. The findings provide focus for policy discussions concerning flowback water risk management. They also indicate ways to improve the ability to estimate health risks from drinking water impacted by a flowback water spill (i.e., reducing uncertainty). © 2017 Society for Risk Analysis.

  20. Recent trends in water analysis triggering future monitoring of organic micropollutants.

    PubMed

    Schmidt, Torsten C

    2018-03-21

    Water analysis has been an important area since the beginning of analytical chemistry. The focus though has shifted substantially: from minerals and the main constituents of water in the time of Carl Remigius Fresenius to a multitude of, in particular, organic compounds at concentrations down to the sub-nanogram per liter level nowadays. This was possible only because of numerous innovations in instrumentation in recent decades, drivers of which are briefly discussed. In addition to the high demands on sensitivity, high throughput by automation and short analysis times are major requirements. In this article, some recent developments in the chemical analysis of organic micropollutants (OMPs) are presented. These include the analysis of priority pollutants in whole water samples, extension of the analytical window, in particular to encompass highly polar compounds, the trend toward more than one separation dimension before mass spectrometric detection, and ways of coping with unknown analytes by suspect and nontarget screening approaches involving high-resolution mass spectrometry. Furthermore, beyond gathering reliable concentration data for many OMPs, the question of the relevance of such data for the aquatic system under scrutiny is becoming ever more important. To that end, effect-based analytics can be used and may become part of future routine monitoring, mostly with a focus on adverse effects of OMPs in specific test systems mimicking environmental impacts. Despite advances in the field of water analysis in recent years, there are still many challenges for further analytical research. Graphical abstract Recent trends in water analysis of organic micropollutants that open new opportunities in future water monitoring. HRMS high-resolution mass spectrometry, PMOC persistent mobile organic compounds.

  1. Water-use analysis program for the Neshaminy Creek basin, Bucks and Montgomery counties, Pennsylvania

    USGS Publications Warehouse

    Schreffler, Curtis L.

    1996-01-01

    A water-use analysis computer program was developed for the Neshaminy Creek Basin to assist in managing and allocating water resources in the basin. The program was developed for IBM-compatible personal computers. Basin analysis and the methodologies developed for the Neshaminy Creek Basin can be transferred to other watersheds. The development and structure of the water-use analysis program is documented in this report. The report also serves as a user's guide. The program uses common relational database-management software that allows for water use-data input, editing, updating and output and can be used to generate a watershed water-use analysis report. The watershed-analysis report lists summations of public-supply well withdrawals; a combination of industrial, commercial, institutional, and ground-water irrigation well withdrawals; spray irrigation systems; a combination of public, industrial, and private surface-water withdrawals; wastewater-tratement-facility dishcarges; estimates of aggregate domestic ground-water withdrawals on an areal basin or subbasin basis; imports and exports of wastewater across basin or subbasin divides; imports and exports of public water supplies across basin or subbasin divides; estimates of evaporative loss and consumptive loss from produce incorporation; industrial septic-system discharges to ground water; and ground-water well-permit allocations.

  2. ISS Expeditions 16 through 20: Chemical Analysis Results for Potable Water

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2010-01-01

    During the 2-year span from Expedition 16 through Expedition 20, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of archival water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principal sources of potable water for Expeditions 16 through 18. During Expedition 18 the U.S. water processor assembly was delivered, installed, and tested during a 90-day checkout period. Beginning with Expedition 19, U.S. potable water recovered from a combined waste stream of humidity condensate and pretreated urine was also available for ISS crew use. A total of 74 potable water samples were collected using U.S. sampling hardware during Expeditions 16 through 20 and returned on both Shuttle and Soyuz vehicles. The results of JSC chemical analyses of these ISS potable water samples are presented in this paper. Eight potable water samples collected in flight with Russian hardware were also received for analysis, as well as 5 preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 34. Analytical results for these additional potable water samples are also reported and discussed.

  3. A History of Sandia’s Water Decision Modeling and Analysis Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowry, Thomas Stephen; Pate, Ronald C.

    This document provides a brief narrative, and selected project descriptions, that represent Sandia’s history involving data, modeling, and analysis related to water, energy-water nexus, and energy-water-agriculture nexus within the context of climate change. Sandia National Laboratories has been engaged since the early-1990s with program development involving data, modeling, and analysis projects that address the interdependent issues, risks, and technology-based mitigations associated with increasing demands and stresses being placed on energy, water, and agricultural/food resources, and the related impacts on their security and sustainability in the face of both domestic and global population growth, expanding economic development, and climate change.

  4. Substance flow analysis as a tool for urban water management.

    PubMed

    Chèvre, N; Guignard, C; Rossi, L; Pfeifer, H-R; Bader, H-P; Scheidegger, R

    2011-01-01

    Human activity results in the production of a wide range of pollutants that can enter the water cycle through stormwater or wastewater. Among others, heavy metals are still detected in high concentrations around urban areas and their impact on aquatic organisms is of major concern. In this study, we propose to use a substance flow analysis as a tool for heavy metals management in urban areas. We illustrate the approach with the case of copper in Lausanne, Switzerland. The results show that around 1,500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment enrichment, which may pose a long-term risk for benthic organisms. The major sources of copper in receiving surface water are roofs and catenaries of trolleybuses. They represent 75% of the total input of copper into the urban water system. Actions to reduce copper pollution should therefore focus on these sources. Substance flow analysis also highlights that copper enters surface water mainly during rain events, i.e., without passing through any treatment procedure. A reduction in pollution could also be achieved by improving stormwater management. In conclusion, the study showed that substance flow analysis is a very effective tool for sustainable urban water management.

  5. Irrigation water policy analysis using a business simulation game

    NASA Astrophysics Data System (ADS)

    Buchholz, M.; Holst, G.; Musshoff, O.

    2016-10-01

    Despite numerous studies on farmers' responses to changing irrigation water policies, uncertainties remain about the potential of water pricing schemes and water quotas to reduce irrigation. Thus far, policy impact analysis is predominantly based upon rational choice models that assume behavioral assumptions, such as a perfectly rational profit-maximizing decision maker. Also, econometric techniques are applied which could lack internal validity due to uncontrolled field data. Furthermore, such techniques are not capable of identifying ill-designed policies prior to their implementation. With this in mind, we apply a business simulation game for ex ante policy impact analysis of irrigation water policies at the farm level. Our approach has the potential to reveal the policy-induced behavioral change of the participants in a controlled environment. To do so, we investigate how real farmers from Germany, in an economic experiment, respond to a water pricing scheme and a water quota intending to reduce irrigation. In the business simulation game, the participants manage a "virtual" cash-crop farm for which they make crop allocation and irrigation decisions during several production periods, while facing uncertain product prices and weather conditions. The results reveal that a water quota is able to reduce mean irrigation applications, while a water pricing scheme does not have an impact, even though both policies exhibit equal income effects for the farmers. However, both policies appear to increase the variation of irrigation applications. Compared to a perfectly rational profit-maximizing decision maker, the participants apply less irrigation on average, both when irrigation is not restricted and when a water pricing scheme applies. Moreover, the participants' risk attitude affects the irrigation decisions.

  6. Analysis of Water-Quality Trends for Selected Streams in the Water Chemistry Monitoring Program, Michigan, 1998-2005

    USGS Publications Warehouse

    Hoard, C.J.; Fuller, Lori M.; Fogarty, Lisa R.

    2009-01-01

    In 1998, the Michigan Department of Environmental Quality and the U.S. Geological Survey began a long-term monitoring program to evaluate the water quality of most watersheds in Michigan. Major goals of this Water-Chemistry Monitoring Program were to identify streams exceeding or not meeting State or Federal water-quality standards and to assess if constituent concentrations reflecting water quality in these streams were increasing or decreasing over time. As part of this program, water-quality data collected from 1998 to 2005 were analyzed to identify potential trends. Sixteen water-quality constituents were analyzed at 31 sites across Michigan, 28 of which had sufficient data to analyze for trends. Trend analysis on the various water-quality data was done using the uncensored Seasonal Kendall test within the computer program ESTREND. The most prevalent trend detected throughout the state was for chloride. Chloride trends were detected at 8 of the 28 sites; trends at 7 sites were increasing and the trend at 1 site was decreasing. Although no trends were detected for various nitrogen species or phosphorus, these constituents were detected at levels greater than the U.S. Environmental Protection Agency recommendations for nutrients in water. The results of the trend analysis will help to establish a baseline to evaluate future changes in water quality in Michigan streams.

  7. LIBS: a potential tool for industrial/agricultural waste water analysis

    NASA Astrophysics Data System (ADS)

    Karpate, Tanvi; K. M., Muhammed Shameem; Nayak, Rajesh; V. K., Unnikrishnan; Santhosh, C.

    2016-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a multi-elemental analysis technique with various advantages and has the ability to detect any element in real time. This technique holds a potential for environmental monitoring and various such analysis has been done in soil, glass, paint, water, plastic etc confirms the robustness of this technique for such applications. Compared to the currently available water quality monitoring methods and techniques, LIBS has several advantages, viz. no need for sample preparation, fast and easy operation, and chemical free during the process. In LIBS, powerful pulsed laser generates plasma which is then analyzed to get quantitative and qualitative details of the elements present in the sample. Another main advantage of LIBS technique is that it can perform in standoff mode for real time analysis. Water samples from industries and agricultural strata tend to have a lot of pollutants making it harmful for consumption. The emphasis of this project is to determine such harmful pollutants present in trace amounts in industrial and agricultural wastewater. When high intensity laser is made incident on the sample, a plasma is generated which gives a multielemental emission spectra. LIBS analysis has shown outstanding success for solids samples. For liquid samples, the analysis is challenging as the liquid sample has the chances of splashing due to the high energy of laser and thus making it difficult to generate plasma. This project also deals with determining the most efficient method for testing of water sample for qualitative as well as quantitative analysis using LIBS.

  8. Water Quality Analysis Tool (WQAT) | Science Inventory | US ...

    EPA Pesticide Factsheets

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-processed and geographically gridded remotely sensed images are available. A graphical user interface (GUI), was created to enable the user to select and display imagery from a variety of remote sensing data sources. The user can select a date (or date range) and location to extract pixels from the remotely sensed imagery. The GUI is used to obtain all available pixel values (i.e. pixel from all available bands of all available satellites) for a given location on a given date and time. The resultant data set can be analyzed or saved to a file for future use. The WQAT software provides users with a way to establish algorithms between remote sensing reflectance (Rrs) and any available in situ parameters, as well as statistical and regression analysis. The combined data sets can be used to improve water quality research and studies. Satellites provide spatially synoptic data at high frequency (daily to weekly). These characteristics are desirable for supplementing existing water quality observations and for providing information for large aquatic ecosystems that are historically under-sampled by field programs. Thus, the Water Quality Assessment Tool (WQAT) software tool was developed to suppo

  9. A Data Analysis Toolbox for Modeling the Global Food-Energy-Water Nexus

    NASA Astrophysics Data System (ADS)

    AghaKouchak, A.; Sadegh, M.; Mallakpour, I.

    2017-12-01

    Water, Food and energy systems are highly interconnected. More than seventy percent of global water resource is used for food production. Water withdrawal, purification, and transfer systems are energy intensive. Furthermore, energy generation strongly depends on water availability. Therefore, considering the interactions in the nexus of water, food and energy is crucial for sustainable management of available resources. In this presentation, we introduce a user-friendly data analysis toolbox that mines the available global data on food, energy and water, and analyzes their interactions. This toolbox provides estimates of water footprint for a wide range of food types in different countries and also approximates the required energy and water resources. The toolbox also provides estimates of the corresponding emissions and biofuel production of different crops. In summary, this toolbox allows evaluating dependencies of the food, energy, and water systems at the country scale. We present global analysis of the interactions between water, food and energy from different perspectives including efficiency and diversity of resources use.

  10. Water-food-energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach

    NASA Astrophysics Data System (ADS)

    El-Gafy, Inas

    2017-10-01

    Analysis the water-food-energy nexus is the first step to assess the decision maker in developing and evaluating national strategies that take into account the nexus. The main objective of the current research is providing a method for the decision makers to analysis the water-food-energy nexus of the crop production system at the national level and carrying out a quantitative assessment of it. Through the proposed method, indicators considering the water and energy consumption, mass productivity, and economic productivity were suggested. Based on these indicators a water-food-energy nexus index (WFENI) was performed. The study showed that the calculated WFENI of the Egyptian summer crops have scores that range from 0.21 to 0.79. Comparing to onion (the highest scoring WFENI,i.e., the best score), rice has the lowest WFENI among the summer food crops. Analysis of the water-food-energy nexus of forty-two Egyptian crops in year 2010 was caried out (energy consumed for irrigation represent 7.4% of the total energy footprint). WFENI can be applied to developed strategies for the optimal cropping pattern that minimizing the water and energy consumption and maximizing their productivity. It can be applied as a holistic tool to evaluate the progress in the water and agricultural national strategies. Moreover, WFENI could be applied yearly to evaluate the performance of the water-food-energy nexus managmant.

  11. Analysis Sharpens Mars Hydrogen Map, Hinting Equatorial Water Ice

    NASA Image and Video Library

    2017-09-28

    Re-analysis of 2002-2009 data from a hydrogen-finding instrument on NASA's Mars Odyssey orbiter increased the resolution of maps of hydrogen abundance. The reprocessed data (lower map) shows more "water-equivalent hydrogen" (darker blue) in some parts of this equatorial region of Mars. Puzzingly, this suggests the possible presence of water ice just beneath the surface near the equator, though it would not be thermodynamically stable there. The upper map uses raw data from Odyssey's neutron spectrometer instrument, which senses the energy state of neutrons coming from Mars, providing an indication of how much hydrogen is present in the top 3 feet (1 meter) of the surface. Hydrogen detected by Odyssey at high latitudes of Mars in 2002 was confirmed to be in the form of water ice by the follow-up NASA Phoenix Mars Lander mission in 2008. A 2017 reprocessing of the older data applied image-reconstruction techniques often used to reduce blurring from medical imaging data. The results are shown here for an area straddling the equator for about one-fourth the circumference of the planet, centered at 175 degrees west longitude. The white contours outline lobes of a formation called Medusae Fossae, coinciding with some areas of higher hydrogen abundance in the enhanced-resolution analysis. The black line indicates the limit of a relatively young lava plain, coinciding with areas of lower hydrogen abundance in the enhanced-resolution analysis. The color-coding key for hydrogen abundance in both maps is indicated by the horizontal bar, in units expressed as how much water would be present in the ground if the hydrogen is all in the form of water. Units of the equivalent water weight, as a percentage of the material in the ground, are correlated with counts recorded by the spectrometer, ranging from less than 1 weight-percent water equivalent (red) to more than 30 percent (dark blue). https://photojournal.jpl.nasa.gov/catalog/PIA21848

  12. An Analysis of the Second Project High Water Data

    NASA Technical Reports Server (NTRS)

    Woodbridge, David D.; Lasater, James A.; Fultz, Bennett M.; Clark, Richard E.; Wylie, Nancy

    1963-01-01

    Early in 1962 NASA established "Project High Water" to investigate the sudden release of large quantities of water into the upper atmosphere. The primary objectives of these experiments were to obtain information on the behavior of liquids released in the ionosphere and the localized effects on the ionosphere produced by the injection of large quantities of water. The data obtained in the two (2) Project High Water experiments have yielded an extensive amount of information concerning the complex phenomena associated with the sudden release of liquids in the Ionosphere. The detailed analysis of data obtained during the second Project High Water experiment (i.e., the third Saturn I vehicle test or SA-3) presented in this report demonstrates that the objectives of the Project High Water were achieved. In addition, the Project High Water has provided essential information relevant to a number of problems vital to manned explorations of space.

  13. Experimental Analysis of Desalination Unit Coupled with Solar Water Lens Concentrator

    NASA Astrophysics Data System (ADS)

    Chaithanya, K. K.; Rajesh, V. R.; Suresh, Rahul

    2016-09-01

    The main problem that the world faces in this scenario is shortage of potable water. Hence this research work rivets to increase the yield of desalination system in an economical way. The integration of solar concentrator and desalination unit can project the desired yield, but the commercially available concentrated solar power technologies (CSP) are not economically viable. So this study proposes a novel method to concentrate ample amount of solar radiation in a cost effective way. Water acting as lens is a highlighted technology initiated in this work, which can be a substitute for CSP systems. And water lens can accelerate the desalination process so as to increase the yield economically. The solar irradiance passing through the water will be concentrated at a focal point, and the concentration depends on curvature of water lens. The experimental analysis of water lens makes use of transparent thin sheet, supported on a metallic structure. The Plano convex shape of water lens is developed by varying the volume of water that is being poured on the transparent thin sheet. From the experimental analysis it is inferred that, as the curvature of water lens increases, solar irradiance can be focused more accurately on to the focus and a higher water temperature is obtained inside the solar still.

  14. Factorial analysis of trihalomethanes formation in drinking water.

    PubMed

    Chowdhury, Shakhawat; Champagne, Pascale; McLellan, P James

    2010-06-01

    Disinfection of drinking water reduces pathogenic infection, but may pose risks to human health through the formation of disinfection byproducts. The effects of different factors on the formation of trihalomethanes were investigated using a statistically designed experimental program, and a predictive model for trihalomethanes formation was developed. Synthetic water samples with different factor levels were produced, and trihalomethanes concentrations were measured. A replicated fractional factorial design with center points was performed, and significant factors were identified through statistical analysis. A second-order trihalomethanes formation model was developed from 92 experiments, and the statistical adequacy was assessed through appropriate diagnostics. This model was validated using additional data from the Drinking Water Surveillance Program database and was applied to the Smiths Falls water supply system in Ontario, Canada. The model predictions were correlated strongly to the measured trihalomethanes, with correlations of 0.95 and 0.91, respectively. The resulting model can assist in analyzing risk-cost tradeoffs in the design and operation of water supply systems.

  15. Forecasting urban water demand: A meta-regression analysis.

    PubMed

    Sebri, Maamar

    2016-12-01

    Water managers and planners require accurate water demand forecasts over the short-, medium- and long-term for many purposes. These range from assessing water supply needs over spatial and temporal patterns to optimizing future investments and planning future allocations across competing sectors. This study surveys the empirical literature on the urban water demand forecasting using the meta-analytical approach. Specifically, using more than 600 estimates, a meta-regression analysis is conducted to identify explanations of cross-studies variation in accuracy of urban water demand forecasting. Our study finds that accuracy depends significantly on study characteristics, including demand periodicity, modeling method, forecasting horizon, model specification and sample size. The meta-regression results remain robust to different estimators employed as well as to a series of sensitivity checks performed. The importance of these findings lies in the conclusions and implications drawn out for regulators and policymakers and for academics alike. Copyright © 2016. Published by Elsevier Ltd.

  16. UNCERTAINTY ANALYSIS IN WATER QUALITY MODELING USING QUAL2E

    EPA Science Inventory

    A strategy for incorporating uncertainty analysis techniques (sensitivity analysis, first order error analysis, and Monte Carlo simulation) into the mathematical water quality model QUAL2E is described. The model, named QUAL2E-UNCAS, automatically selects the input variables or p...

  17. Understanding Beijing's water challenge: a decomposition analysis of changes in Beijing's water footprint between 1997 and 2007.

    PubMed

    Zhang, Zhuoying; Shi, Minjun; Yang, Hong

    2012-11-20

    Beijing has been experiencing increasing water shortage alongside its astonishing economic growth over the past decades. This study conducts a quasi-dynamic input-output (IO) analysis to investigate changes in Beijing's water footprint (WF) and decompose the effects of contributing factors to the changes during 1997-2007. The analysis distinguishes "internal" and "external" WF to depict connections of Beijing's water use with outside. The results show an increase in Beijing's WF from 4342 million m(3) in 1997 to 5748 million m(3) in 2007. Almost all the increase was attributable to the expansion of the external WF, while the internal WF only changed slightly, indicating a growing dependence of Beijing on external water resources. The decomposition analysis reveals that the technological effect was the principal contributor to offset the WF increase and the structural effect stemmed from the shift of demand toward products of the tertiary industries also contributed to reducing the WF. However, these effects were not sufficient to reverse the expansion of Beijing's WF resulted from the scale effect induced by expansion of final demand and the economic system efficiency effect associated with the growth of trade between Beijing and outside. The study provides insights into Beijing's water challenge and sheds lights on the combating strategies for the future. It is also an endeavor to enhance the policy relevance of the WF studies.

  18. The role of seasonal water scarcity on water quality: a global analysis with case study in the Magdalena, Colombia

    NASA Astrophysics Data System (ADS)

    Burke, Sophia; Mulligan, Mark

    2017-04-01

    Water scarcity is not just a problem of its own right (hydrological drought) but cascades the hydro-economic system to create problems for crop growth and livestock (agricultural drought) and thus for wellbeing and economic productivity (economic drought). One of these cascades is the impact of reduced water quantity on water quality as a result of non-point source pollutant concentration in water bodies such as rivers, lakes and wetlands. This paper investigates the impact of seasonal water shortages on the quality of supplied water to urban centres with a view to better understanding how land use management can reduce dry-season pollutant spikes. We apply a widely used spatial hydrological model (WaterWorld) and its water quality index (the human footprint on water quality, HFWQ) to examine to what extent HFWQ of water flowing into urban water intakes is affected by flow seasonality and by typical "dry year" events. A global analysis shows trends across climatic and land use gradients and is followed by a regional analysis of the Magdalena basin in Colombia: a large basin with 79% of the countries population and a mixture of intensively farmed and protected lands along a seasonality gradient from South to North. The Magdalena is a case study basin of the EartH2Observe project.

  19. Embodied water analysis for Hebei Province, China by input-output modelling

    NASA Astrophysics Data System (ADS)

    Liu, Siyuan; Han, Mengyao; Wu, Xudong; Wu, Xiaofang; Li, Zhi; Xia, Xiaohua; Ji, Xi

    2018-03-01

    With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional economic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors.

  20. Analysis of metal-laden water via portable X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pearson, Delaina; Weindorf, David C.; Chakraborty, Somsubhra; Li, Bin; Koch, Jaco; Van Deventer, Piet; de Wet, Jandre; Kusi, Nana Yaw

    2018-06-01

    A rapid method for in-situ elemental composition analysis of metal-laden water would be indispensable for studying polluted water. Current analytical lab methods to determine water quality include flame atomic absorption spectrometry (FAAS), atomic absorption spectrophotometry (AAS), electrothermal atomic absorption spectrometry (EAAS), and inductively coupled plasma (ICP) spectroscopy. However only two field methods, colorimetry and absorptiometry, exist for elemental analysis of water. Portable X-ray fluorescence (PXRF) spectrometry is an effective method for elemental analysis of soil, sediment, and other matrices. However, the accuracy of PXRF is known to be affected while scanning moisture-laden soil samples. This study sought to statistically establish PXRF's predictive ability for various elements in water at different concentrations relative to inductively coupled plasma atomic emission spectroscopy (ICP-AES). A total of 390 metal-laden water samples collected from leaching columns of mine tailings in South Africa were analyzed via PXRF and ICP-AES. The PXRF showed differential effectiveness in elemental quantification. For the collected water samples, the best relationships between ICP and PXRF elemental data were obtained for K and Cu (R2 = 0.92). However, when scanning ICP calibration solutions with elements in isolation, PXRF results indicated near perfect agreement; Ca, K, Fe, Cu and Pb produced an R2 of 0.99 while Zn and Mn produced an R2 of 1.00. The utilization of multiple PXRF (stacked) beams produced stronger correlation to ICP relative to the use of a single beam in isolation. The results of this study demonstrated the PXRF's ability to satisfactorily predict the composition of metal-laden water as reported by ICP for several elements. Additionally this study indicated the need for a "Water Mode" calibration for the PXRF and demonstrates the potential of PXRF for future study of polluted or contaminated waters.

  1. Operation, Modeling and Analysis of the Reverse Water Gas Shift Process

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2001-01-01

    The Reverse Water Gas Shift process is a candidate technology for water and oxygen production on Mars under the In-Situ Propellant Production project. This report focuses on the operation and analysis of the Reverse Water Gas Shift (RWGS) process, which has been constructed at Kennedy Space Center. A summary of results from the initial operation of the RWGS, process along with an analysis of these results is included in this report. In addition an evaluation of a material balance model developed from the work performed previously under the summer program is included along with recommendations for further experimental work.

  2. Multicomponent analysis of drinking water by a voltammetric electronic tongue.

    PubMed

    Winquist, Fredrik; Olsson, John; Eriksson, Mats

    2011-01-10

    A voltammetric electronic tongue is described that was used for multicomponent analysis of drinking water. Measurements were performed on drinking water from a tap and injections of the compounds NaCl, NaN(3), NaHSO(3), ascorbic acid, NaOCl and yeast suspensions could be identified by use of principal component analysis (PCA). A model based on partial least square (PLS) was developed for the simultaneously prediction of identification and concentration of the compounds NaCl, NaHSO(3) and NaOCl. By utilizing this type of non-selective sensor technique for water quality surveillance, it will be feasible to detect a plurality of events without the need of a specific sensor for each type of event. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Methods for Chemical Analysis of Fresh Waters.

    ERIC Educational Resources Information Center

    Golterman, H. L.

    This manual, one of a series prepared for the guidance of research workers conducting studies as part of the International Biological Programme, contains recommended methods for the analysis of fresh water. The techniques are grouped in the following major sections: Sample Taking and Storage; Conductivity, pH, Oxidation-Reduction Potential,…

  4. Stereoselective analysis of acid herbicides in natural waters by capillary electrophoresis.

    PubMed

    Polcaro, C M; Marra, C; Desiderio, C; Fanali, S

    1999-09-01

    A capillary electrophoretic method for the stereoselective analysis of aryloxypropionic and aryloxyphenoxypropionic acidic herbicides in ground water and river water was performed. Vancomycin and gamma-cyclodextrin were added to the background electrolyte (BGE) as chiral selectors. Water sample preconcentration was accomplished by solid-phase extraction on styrene-divinylbenzene packed cartridges (2 L of ground water and 1 L of river water). The analytical method allowed for the resolution of mecoprop, fenoprop, fluazifop and haloxyfop racemic mixtures in natural water samples spiked with enantiomer concentration levels in the range 0.1-0.13 ppb for ground water and 0.4-0.54 ppb for river water.

  5. Microprocessor controlled anodic stripping voltameter for trace metals analysis in tap water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clem, R.G.; Park, F.W.; Kirsten, F.A.

    1981-04-01

    The construction and use of a portable, microprocessor controlled anodic stripping voltameter for on-site simultaneous metal analysis of copper, lead and cadmium in tap water is discussed. The instrumental system is comprised of a programmable controller which permits keying in analytical parameters such as sparge time and plating time; a rotating cell for efficient oxygen removal and amalgam formation; and, a magnetic tape which can be used for data storage. Analysis time can be as short as 10 to 15 minutes. The stripping analysis is based on a pre-measurement step during which the metals from a water sample are concentratedmore » into a thin mercury film by deposition from an acetate solution of pH 4.5. The concentrated metals are then electrochemically dissolved from the film by application of a linearly increasing anodic potential. Typical peak-shaped curves are obtained. The heights of these curves are related to the concentration of metals in the water by calibration data. Results of tap water analysis showed 3 +- 1 ..mu..g/L lead, 22 +- 0.3 ..mu..g/L copper, and less than 0.2 ..mu..g/L cadmium for a Berkeley, California tap water, and 1 to 1000 ..mu..g/L Cu, 1 to 2 ..mu..g/L Pb for ten samples of Seattle, Washington tap water. Recommendations are given for a next generation instrument system.« less

  6. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra.

    PubMed

    Stoler, Justin; Weeks, John R; Appiah Otoo, Richard

    2013-01-01

    Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water-sealed single-use plastic sleeves-has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa.

  7. Effects of sterilization treatments on the analysis of TOC in water samples.

    PubMed

    Shi, Yiming; Xu, Lingfeng; Gong, Dongqin; Lu, Jun

    2010-01-01

    Decomposition experiments conducted with and without microbial processes are commonly used to study the effects of environmental microorganisms on the degradation of organic pollutants. However, the effects of biological pretreatment (sterilization) on organic matter often have a negative impact on such experiments. Based on the principle of water total organic carbon (TOC) analysis, the effects of physical sterilization treatments on determination of TOC and other water quality parameters were investigated. The results revealed that two conventional physical sterilization treatments, autoclaving and 60Co gamma-radiation sterilization, led to the direct decomposition of some organic pollutants, resulting in remarkable errors in the analysis of TOC in water samples. Furthermore, the extent of the errors varied with the intensity and the duration of sterilization treatments. Accordingly, a novel sterilization method for water samples, 0.45 microm micro-filtration coupled with ultraviolet radiation (MCUR), was developed in the present study. The results indicated that the MCUR method was capable of exerting a high bactericidal effect on the water sample while significantly decreasing the negative impact on the analysis of TOC and other water quality parameters. Before and after sterilization treatments, the relative errors of TOC determination could be controlled to lower than 3% for water samples with different categories and concentrations of organic pollutants by using MCUR.

  8. Spectral analysis of optical emission of microplasma in sea water

    NASA Astrophysics Data System (ADS)

    Gamaleev, Vladislav; Morita, Hayato; Oh, Jun-Seok; Furuta, Hiroshi; Hatta, Akimitsu

    2016-09-01

    This work presents an analysis of optical emission spectra from microplasma in three types of liquid, namely artificial sea water composed of 10 typical agents (10ASW), reference solutions each containing a single agent (NaCl, MgCl2 + H2O, Na2SO4, CaCl2, KCl, NaHCO3, KBr, NaHCO3, H3BO3, SrCl2 + H2O, NaF) and naturally sampled deep sea water (DSW). Microplasma was operated using a needle(Pd)-to-plate(Pt) electrode system sunk into each liquid in a quartz cuvette. The radius of the tip of the needle was 50 μm and the gap between the electrodes was set at 20 μm. An inpulse generator circuit, consisting of a MOSFET switch, a capacitor, an inductor and the resistance of the liquid between the electrodes, was used as a pulse current source for operation of discharges. In the spectra, the emission peaks for the main components of sea water and contaminants from the electrodes were detected. Spectra for reference solutions were examined to enable the identification of unassigned peaks in the spectra for sea water. Analysis of the Stark broadening of H α peak was carried out to estimate the electron density of the plasma under various conditions. The characteristics of microplasma discharge in sea water and the analysis of the optical emission spectra will be presented. This work was supported by JSPS KAKENHI Grant Number 26600129.

  9. Water use and time analysis in ablution from taps

    NASA Astrophysics Data System (ADS)

    Zaied, Roubi A.

    2017-09-01

    There is a lack of water resources and an extreme use of potable water in our Arab region. Ablution from taps was studied since it is a repeated daily activity that consumes more water. Five different tap types are investigated for water consumption fashions including traditional mixing tap and automatic tap. Analyzing 100 experimental observations revealed that 22.7-28.8 % of ablution water is used for washing of feet and the largest water waste occurs during washing of face portions. Moreover, 30-47 % amount of water consumed in ablution from taps is wasted which can be saved if tap releases water only at moments of need. The push-type tap is being spread recently especially in airports. If it is intended for use in ablution facilities, batch duration and volume must be tuned. When each batch is 0.25 L of water and lasts for 3 s, 3 L are sufficient for one complete ablution in average which means considerable saving. A cost-benefit model is proposed for using different tap types and an economic feasibility study is performed on a case study. This analysis can help us to design better ablution systems.

  10. Sensitivity analysis of a ground-water-flow model

    USGS Publications Warehouse

    Torak, Lynn J.; ,

    1991-01-01

    A sensitivity analysis was performed on 18 hydrological factors affecting steady-state groundwater flow in the Upper Floridan aquifer near Albany, southwestern Georgia. Computations were based on a calibrated, two-dimensional, finite-element digital model of the stream-aquifer system and the corresponding data inputs. Flow-system sensitivity was analyzed by computing water-level residuals obtained from simulations involving individual changes to each hydrological factor. Hydrological factors to which computed water levels were most sensitive were those that produced the largest change in the sum-of-squares of residuals for the smallest change in factor value. Plots of the sum-of-squares of residuals against multiplier or additive values that effect change in the hydrological factors are used to evaluate the influence of each factor on the simulated flow system. The shapes of these 'sensitivity curves' indicate the importance of each hydrological factor to the flow system. Because the sensitivity analysis can be performed during the preliminary phase of a water-resource investigation, it can be used to identify the types of hydrological data required to accurately characterize the flow system prior to collecting additional data or making management decisions.

  11. Comparison of pore water samplers and cryogenic distillation under laboratory and field conditions for soil water stable isotope analysis.

    PubMed

    Thoma, Michael; Frentress, Jay; Tagliavini, Massimo; Scandellari, Francesca

    2018-02-15

    We used pore water samplers (PWS) to sample for isotope analysis (1) only water, (2) soil under laboratory conditions, and (3) soil in the field comparing the results with cryogenic extraction (CE). In (1) and (2), no significant differences between source and water extracted with PWS were detected with a mean absolute difference (MAD) always lower than 2 ‰ for δ 2 H and 1 ‰ for δ 18 O. In (2), CE water was more enriched than PWS-extracted water, with a MAD respect to source water of roughly 8 ‰ for δ 2 H and 4 ‰ for δ 18 O. In (3), PWS water was enriched relative to CE water by 3 ‰ for δ 2 H and 0.9 ‰ for δ 18 O. The latter result may be due to the distinct water portions sampled by the two methods. Large pores, easily sampled by PWS, likely retain recent, and enriched, summer precipitation while small pores, only sampled by CE, possibly retain isotopically depleted water from previous winter precipitation or irrigation inputs. Accuracy and precision were greater for PWS relative to CE. PWS is therefore suggested as viable tool to extract soil water for stable isotope analysis, particularly for soils used in this study (sandy and silty loams).

  12. Analysis of the ecological water diversion project in Wenzhou City

    NASA Astrophysics Data System (ADS)

    Xu, Haibo; Fu, Lei; Lin, Tong

    2018-02-01

    As a developed city in China, Wenzhou City has been suffered from bad water quality for years. In order to improve the river network water quality, an ecological water diversion project was designed and executed by the regional government. In this study, an investigation and analysis of the regional ecological water diversion project is made for the purpose of examining the water quality improvements. A numerical model is also established, different water diversion flow rates and sewer interception levels are considered during the simulation. Simulation results reveal that higher flow rate and sewer interception level will greatly improve the river network water quality in Wenzhou City. The importance of the flow rate and interception level has been proved and future work will be focused on increasing the flow rate and upgrading the sewer interception level.

  13. A new method of tree xylem water extraction for isotopic analysis

    NASA Astrophysics Data System (ADS)

    Gierke, C.; Newton, B. T.

    2011-12-01

    The Sacramento Mountain Watershed Study in the southern Sacramento Mountains of New Mexico is designed to assess the forest restoration technique of tree thinning in mountain watersheds as an effective method of increasing local and regional groundwater recharge. The project is using a soil water balance approach to quantify the partitioning of local precipitation within this watershed before and after thinning trees. Understanding what sources trees extract their water from (e.g. shallow groundwater, unsaturated fractured bedrock, and soils) is difficult due to a complex hydrologic system and heterogeneous distribution of soil thicknesses. However, in order to accurately quantify the soil water balance and to assess how thinning trees will affect this water balance, it is important determine the sources from which trees extract their water. We plan to use oxygen and hydrogen stable isotopic analysis of various end member waters to identify these different sources. We are in the process of developing a new method of determining the isotopic composition of tree water that has several advantages over conventional methods. Within the tree there is the xylem which transports water from the roots to the leaves and the phloem which transports starches and sugars in a water media throughout the tree. Previous studies have shown that the isotopic composition of xylem water accurately reflects that of source water, while phloem water has undergone isotopic fractionation during photosynthesis and metabolism. The distillation of water from twigs, which is often used to extract tree water for isotopic analysis, is very labor intensive. Other disadvantages to distillation methods include possible fractionation due to phase changes and the possible extraction of fractionated phloem waters. Employing a new mixing method, the composition of the twig water (TW) can be determined by putting twigs of unknown isotopic water composition into waters of known compositions or initial

  14. Recent Advances in Water Analysis with Gas Chromatograph Mass Spectrometers

    NASA Technical Reports Server (NTRS)

    MacAskill, John A.; Tsikata, Edem

    2014-01-01

    We report on progress made in developing a water sampling system for detection and analysis of volatile organic compounds in water with a gas chromatograph mass spectrometer (GCMS). Two approaches are described herein. The first approach uses a custom water pre-concentrator for performing trap and purge of VOCs from water. The second approach uses a custom micro-volume, split-splitless injector that is compatible with air and water. These water sampling systems will enable a single GC-based instrument to analyze air and water samples for VOC content. As reduced mass, volume, and power is crucial for long-duration, manned space-exploration, these water sampling systems will demonstrate the ability of a GCMS to monitor both air and water quality of the astronaut environment, thereby reducing the amount of required instrumentation for long duration habitation. Laboratory prototypes of these water sampling systems have been constructed and tested with a quadrupole ion trap mass spectrometer as well as a thermal conductivity detector. Presented herein are details of these water sampling system with preliminary test results.

  15. Arrayed water-in-oil droplet bilayers for membrane transport analysis.

    PubMed

    Watanabe, R; Soga, N; Hara, M; Noji, H

    2016-08-02

    The water-in-oil droplet bilayer is a simple and useful lipid bilayer system for membrane transport analysis. The droplet interface bilayer is readily formed by the contact of two water-in-oil droplets enwrapped by a phospholipid monolayer. However, the size of individual droplets with femtoliter volumes in a high-throughput manner is difficult to control, resulting in low sensitivity and throughput of membrane transport analysis. To overcome this drawback, in this study, we developed a novel micro-device in which a large number of droplet interface bilayers (>500) are formed at a time by using femtoliter-sized droplet arrays immobilized on a hydrophobic/hydrophilic substrate. The droplet volume was controllable from 3.5 to 350 fL by changing the hydrophobic/hydrophilic pattern on the device, allowing high-throughput analysis of membrane transport mechanisms including membrane permeability to solutes (e.g., ions or small molecules) with or without the aid of transport proteins. Thus, this novel platform broadens the versatility of water-in-oil droplet bilayers and will pave the way for novel analytical and pharmacological applications such as drug screening.

  16. Coastal surface water suitability analysis for irrigation in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mahtab, Mohammad Hossain; Zahid, Anwar

    2018-03-01

    Water with adequate quality and quantity is very important for irrigation to ensure the crop yields. Salinity is common problem in the coastal waters in Bangladesh. The intensity of salinity in the coastal zone in Bangladesh is not same. It fluctuates over the year. Sodium is another hazard which may hamper permeability and ultimately affects the fertility. It can reduce the crop yields. Although surface water is available in the coastal zone of Bangladesh, but its quality for irrigation needs to be monitored over the year. This paper will investigate the overall quality of coastal surface waters. Thirty-three water samples from different rivers were collected both in wet period (October-December) and in dry period (February-April). Different physical and chemical parameters are considered for investigation of the adequacy of water with respect to international irrigation water quality standards and Bangladesh standards. A comparison between the dry and wet period coastal surface water quality in Bangladesh will also be drawn here. The analysis shows that coastal surface water in Bangladesh is overall suitable for irrigation during wet period, while it needs treatment (which will increase the irrigation cost) for using for irrigation during dry period. Adaptation to this situation can improve the scenario. An integrated plan should be taken to increase the water storing capacity in the coastal area to harvest water during wet period.

  17. Study of water based nanofluid flows in annular tubes using numerical simulation and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Siadaty, Moein; Kazazi, Mohsen

    2018-04-01

    Convective heat transfer, entropy generation and pressure drop of two water based nanofluids (Cu-water and Al2O3-water) in horizontal annular tubes are scrutinized by means of computational fluids dynamics, response surface methodology and sensitivity analysis. First, central composite design is used to perform a series of experiments with diameter ratio, length to diameter ratio, Reynolds number and solid volume fraction. Then, CFD is used to calculate the Nusselt Number, Euler number and entropy generation. After that, RSM is applied to fit second order polynomials on responses. Finally, sensitivity analysis is conducted to manage the above mentioned parameters inside tube. Totally, 62 different cases are examined. CFD results show that Cu-water and Al2O3-water have the highest and lowest heat transfer rate, respectively. In addition, analysis of variances indicates that increase in solid volume fraction increases dimensionless pressure drop for Al2O3-water. Moreover, it has a significant negative and insignificant effects on Cu-water Nusselt and Euler numbers, respectively. Analysis of Bejan number indicates that frictional and thermal entropy generations are the dominant irreversibility in Al2O3-water and Cu-water flows, respectively. Sensitivity analysis indicates dimensionless pressure drop sensitivity to tube length for Cu-water is independent of its diameter ratio at different Reynolds numbers.

  18. A central solar domestic hot water system - Performance and economic analysis

    NASA Astrophysics Data System (ADS)

    Wolf, D.; Tamir, A.; Kudish, A. I.

    1980-02-01

    A solar-assisted central hot water system was retrofitted onto one of the student dormitory complexes. The system consisted of twenty commercial solar collectors, of the pipe and plate type, and central hot water tank connected to two dormitory buildings. The system has two loops: (1) a solar loop, in which the heated water circulates between the collector panels and the central hot water tank, and (2) a consumer loop, where the solar-heated water circulates between the central hot water tank and the dormitory. The solar-heated water circulates through the individual electric hot water tanks which serve as individual hot water storage and booster units, and the mains water is introduced at the bottom of the central tank to replace consumed water. The description of the system, the design and its performance, together with an economic analysis, are presented.

  19. Water flows, energy demand, and market analysis of the informal water sector in Kisumu, Kenya

    PubMed Central

    Sima, Laura C.; Kelner-Levine, Evan; Eckelman, Matthew J.; McCarty, Kathleen M.; Elimelech, Menachem

    2013-01-01

    In rapidly growing urban areas of developing countries, infrastructure has not been able to cope with population growth. Informal water businesses fulfill unmet water supply needs, yet little is understood about this sector. This paper presents data gathered from quantitative interviews with informal water business operators (n=260) in Kisumu, Kenya, collected during the dry season. Sales volume, location, resource use, and cost were analyzed by using material flow accounting and spatial analysis tools. Estimates show that over 76% of the city's water is consumed by less than 10% of the population who have water piped into their dwellings. The remainder of the population relies on a combination of water sources, including water purchased directly from kiosks (1.5 million m3 per day) and delivered by hand-drawn water-carts (0.75 million m3 per day). Energy audits were performed to compare energy use among various water sources in the city. Water delivery by truck is the highest per cubic meter energy demand (35 MJ/m3), while the city's tap water has the highest energy use overall (21,000 MJ/day). We group kiosks by neighborhood and compare sales volume and cost with neighborhood-level population data. Contrary to popular belief, we do not find evidence of price gouging; the lowest prices are charged in the highest-demand low-income area. We also see that the informal sector is sensitive to demand, as the number of private boreholes that serve as community water collection points are much larger where demand is greatest. PMID:23543887

  20. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water studies

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Lambin, E. F.; Gorelick, S. M.; Thompson, B. H.; Rozelle, S.

    2012-10-01

    Freshwater scarcity has been cited as the major crisis of the 21st century, but it is surprisingly hard to describe the nature of the global water crisis. We conducted a meta-analysis of 22 coupled human-water system case studies, using qualitative comparison analysis (QCA) to identify water resource system outcomes and the factors that drive them. The cases exhibited different outcomes for human wellbeing that could be grouped into a six "syndromes": groundwater depletion, ecological destruction, drought-driven conflicts, unmet subsistence needs, resource capture by elite, and water reallocation to nature. For syndromes that were not successful adaptations, three characteristics gave cause for concern: (1) unsustainability—a decline in the water stock or ecosystem function that could result in a long-term steep decline in future human wellbeing; (2) vulnerability—high variability in water resource availability combined with inadequate coping capacity, leading to temporary drops in human wellbeing; (3) chronic scarcity—persistent inadequate access and hence low conditions of human wellbeing. All syndromes could be explained by a limited set of causal factors that fell into four categories: demand changes, supply changes, governance systems, and infrastructure/technology. By considering basins as members of syndrome classes and tracing common causal pathways of water crises, water resource analysts and planners might develop improved water policies aimed at reducing vulnerability, inequity, and unsustainability of freshwater systems.

  1. Microbiological analysis of tube-well water in a rural area of Bangladesh.

    PubMed

    Islam, M S; Siddika, A; Khan, M N; Goldar, M M; Sadique, M A; Kabir, A N; Huq, A; Colwell, R R

    2001-07-01

    Five tube-wells in Matlab, Bangladesh, were selected for analysis of selected biophysicochemical parameters. The results showed that all tube-well water samples contained zooplankton and bacteria. Results for some of the parameters were outside the accepted limits recommended by the World Health Organization for drinking water. It is concluded that water from tube-wells should be treated if used as drinking water.

  2. [Analysis of spectral features based on water content of desert vegetation].

    PubMed

    Zhao, Zhao; Li, Xia; Yin, Ye-biao; Tang, Jin; Zhou, Sheng-bin

    2010-09-01

    By using HR-768 field-portable spectroradiometer made by the Spectra Vista Corporation (SVC) of America, the hyper-spectral data of nine types of desert plants were measured, and the water content of corresponding vegetation was determined by roasting in lab. The continuum of measured hyperspectral data was removed by using ENVI, and the relationship between the water content of vegetation and the reflectance spectrum was analyzed by using correlation coefficient method. The result shows that the correlation between the bands from 978 to 1030 nm and water content of vegetation is weak while it is better for the bands from 1133 to 1266 nm. The bands from 1374 to 1534 nm are the characteristic bands because of the correlation between them and water content is the best. By using cluster analysis and according to the water content, the vegetation could be marked off into three grades: high (>70%), medium (50%-70%) and low (<50%). The research reveals the relationship between water content of desert vegetation and hyperspectral data, and provides basis for the analysis of area in desert and the monitoring of desert vegetation by using remote sensing data.

  3. Drinking Water in Transition: A Multilevel Cross-sectional Analysis of Sachet Water Consumption in Accra

    PubMed Central

    Stoler, Justin; Weeks, John R.; Appiah Otoo, Richard

    2013-01-01

    Rapid population growth in developing cities often outpaces improvements to drinking water supplies, and sub-Saharan Africa as a region has the highest percentage of urban population without piped water access, a figure that continues to grow. Accra, Ghana, implements a rationing system to distribute limited piped water resources within the city, and privately-vended sachet water–sealed single-use plastic sleeves–has filled an important gap in urban drinking water security. This study utilizes household survey data from 2,814 Ghanaian women to analyze the sociodemographic characteristics of those who resort to sachet water as their primary drinking water source. In multilevel analysis, sachet use is statistically significantly associated with lower overall self-reported health, younger age, and living in a lower-class enumeration area. Sachet use is marginally associated with more days of neighborhood water rationing, and significantly associated with the proportion of vegetated land cover. Cross-level interactions between rationing and proxies for poverty are not associated with sachet consumption after adjusting for individual-level sociodemographic, socioeconomic, health, and environmental factors. These findings are generally consistent with two other recent analyses of sachet water in Accra and may indicate a recent transition of sachet consumption from higher to lower socioeconomic classes. Overall, the allure of sachet water displays substantial heterogeneity in Accra and will be an important consideration in planning for future drinking water demand throughout West Africa. PMID:23840643

  4. THE ANALYSIS OF THE TIME-SERIES FLUCTUATION OF WATER DEMAND FOR THE SMALL WATER SUPPLY BLOCK

    NASA Astrophysics Data System (ADS)

    Koizumi, Akira; Suehiro, Miki; Arai, Yasuhiro; Inakazu, Toyono; Masuko, Atushi; Tamura, Satoshi; Ashida, Hiroshi

    The purpose of this study is to define one apartment complex as "the water supply block" and to show the relationship between the amount of water supply for an apartment house and its time series fluctuation. We examined the observation data which were collected from 33 apartment houses. The water meters were installed at individual observation points for about 20 days in Tokyo. This study used Fourier analysis in order to grasp the irregularity in a time series data. As a result, this paper demonstrated that the smaller the amount of water supply became, the larger irregularity the time series fluctuation had. We also found that it was difficult to describe the daily cyclical pattern for a small apartment house using the dominant periodic components which were obtained from a Fourier spectrum. Our research give useful information about the design for a directional water supply system, as to making estimates of the hourly fluctuation and the maximum daily water demand.

  5. The analysis of clean water demand for land use optimization based on water resource balance in Balikpapan city

    NASA Astrophysics Data System (ADS)

    Ghozali, Achmad; Yanti, Rossana Margaret Kadar

    2017-11-01

    Balikpapan city has transformed from oil city to trade and industry center. In the last 5 years, industry and trade sectors experienced annual economic growth by more than 25%, while mining had only 0.05%. This condition raised a strong economic attraction which increased urban activities and population growth, especially urbanization process. Nevertheless, the growth of the city had a challenge in the urban water supply. Due to natural condition of the city, Balikpapan does not have a large river, making water supply conducted by reservoirs relying on rainfall intensity. In line with population growth and conversion of green open space, the city government should consider to the allocation of land use effectively based on sustainable water resources. As the associated pressure on water resources continued to increase, it is crucial to identify the water demand future in Balikpapan City related to domestic and non-domestic activities as the first step to optimize land use allocation. Domestic's activities is defined as household and public hydrant, while non-domestic sectors are public facilities, offices, trade and services, and industrial areas. Mathematical calculations, population projections and water consumption estimation, were used as analysis methods. Analysis result showed that the total the city population in 2025 amounted to 740.302 people, increasing by 14.5% from 2016. Population growth increased the urban water needs. From the calculations, the amount of water consumption in 2016 amounted to 5075.77 liter/s, and in 2025 to 7528.59 liter/s. Thus, the water needs of the population of Balikpapan from 2016-2025 year increased by 32.58%.

  6. Bottled water: analysis of mycotoxins by LC-MS/MS.

    PubMed

    Mata, A T; Ferreira, J P; Oliveira, B R; Batoréu, M C; Barreto Crespo, M T; Pereira, V J; Bronze, M R

    2015-06-01

    The presence of mycotoxins in food samples has been widely studied as well as its impact in human health, however, information about its distribution in the environment is scarce. An analytical method comprising a solid phase extraction procedure followed by liquid chromatography tandem mass spectrometry analysis was implemented and validated for the trace analysis of mycotoxins in drinking bottled waters. Limits of quantification achieved for the method were between 0.2ngL(-1) for aflatoxins and ochratoxin, and 2.0ngL(-1) for fumonisins and neosolaniol. The method was applied to real samples. Aflatoxin B2 was the most frequently detected mycotoxin in water samples, with a maximum concentration of 0.48±0.05ngL(-1) followed by aflatoxin B1, aflatoxin G1 and ochratoxin A. The genera Cladosporium, Fusarium and Penicillium were the fungi more frequently detected. These results show that the consumption of these waters does not represent a toxicological risk for an adult. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  8. Water quality management using statistical analysis and time-series prediction model

    NASA Astrophysics Data System (ADS)

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2014-12-01

    This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.

  9. Cost-effectiveness analysis of risk-reduction measures to reach water safety targets.

    PubMed

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof; Pettersson, Thomas J R

    2011-01-01

    Identifying the most suitable risk-reduction measures in drinking water systems requires a thorough analysis of possible alternatives. In addition to the effects on the risk level, also the economic aspects of the risk-reduction alternatives are commonly considered important. Drinking water supplies are complex systems and to avoid sub-optimisation of risk-reduction measures, the entire system from source to tap needs to be considered. There is a lack of methods for quantification of water supply risk reduction in an economic context for entire drinking water systems. The aim of this paper is to present a novel approach for risk assessment in combination with economic analysis to evaluate risk-reduction measures based on a source-to-tap approach. The approach combines a probabilistic and dynamic fault tree method with cost-effectiveness analysis (CEA). The developed approach comprises the following main parts: (1) quantification of risk reduction of alternatives using a probabilistic fault tree model of the entire system; (2) combination of the modelling results with CEA; and (3) evaluation of the alternatives with respect to the risk reduction, the probability of not reaching water safety targets and the cost-effectiveness. The fault tree method and CEA enable comparison of risk-reduction measures in the same quantitative unit and consider costs and uncertainties. The approach provides a structured and thorough analysis of risk-reduction measures that facilitates transparency and long-term planning of drinking water systems in order to avoid sub-optimisation of available resources for risk reduction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. CFD Analysis of the Anti-Surge Effects by Water Hammering

    NASA Astrophysics Data System (ADS)

    Kim, Tae-oh; Jeong, Hyo-min; Chung, Han-shik; Lee, Sin-il; Lee, Kwang-sung

    2015-09-01

    Water hammering occurs due to the surge effect that comes from operating the pump, sudden stop during the operating due to a blackout and rapid open and close of the valve. By the water hammering of the pipeline and the pump, the valve are damaged. In this paper, transient analysis is conducted by CFD (Computational Fluid Dynamics). The purpose of this paper is to provide the research data about the change of the pressure and flow in the pipe that caused by the water hammering.

  11. HACCP (Hazard Analysis and Critical Control Points) to guarantee safe water reuse and drinking water production--a case study.

    PubMed

    Dewettinck, T; Van Houtte, E; Geenens, D; Van Hege, K; Verstraete, W

    2001-01-01

    To obtain a sustainable water catchment in the dune area of the Flemish west coast, the integration of treated domestic wastewater in the existing potable water production process is planned. The hygienic hazards associated with the introduction of treated domestic wastewater into the water cycle are well recognised. Therefore, the concept of HACCP (Hazard Analysis and Critical Control Points) was used to guarantee hygienically safe drinking water production. Taking into account the literature data on the removal efficiencies of the proposed advanced treatment steps with regard to enteric viruses and protozoa and after setting high quality limits based on the recent progress in quantitative risk assessment, the critical control points (CCPs) and points of attention (POAs) were identified. Based on the HACCP analysis a specific monitoring strategy was developed which focused on the control of these CCPs and POAs.

  12. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality

  13. Association between water fluoride and the level of children's intelligence: a dose-response meta-analysis.

    PubMed

    Duan, Q; Jiao, J; Chen, X; Wang, X

    2018-01-01

    Higher fluoride concentrations in water have inconsistently been associated with the levels of intelligence in children. The following study summarizes the available evidence regarding the strength of association between fluoridated water and children's intelligence. Meta-analysis. PubMed, Embase, and Cochrane Library databases were systematically analyzed from November 2016. Observational studies that have reported on intelligence levels in relation to high and low water fluoride contents, with 95% confidence intervals (CIs) were included. Further, the results were pooled using inverse variance methods. The correlation between water fluoride concentration and intelligence level was assessed by a dose-response meta-analysis. Twenty-six studies reporting data on 7258 children were included. The summary results indicated that high water fluoride exposure was associated with lower intelligence levels (standardized mean difference : -0.52; 95% CI: -0.62 to -0.42; P < 0.001). The findings from subgroup analyses were consistent with those from overall analysis. The dose-response meta-analysis suggested a significant association between water fluoride dosage and intelligence (P < 0.001), while increased water fluoride exposure was associated with reduced intelligence levels. Greater exposure to high levels of fluoride in water was significantly associated with reduced levels of intelligence in children. Therefore, water quality and exposure to fluoride in water should be controlled in areas with high fluoride levels in water. Copyright © 2017. Published by Elsevier Ltd.

  14. Life cycle based analysis of demands and emissions for residential water-using appliances.

    PubMed

    Lee, Mengshan; Tansel, Berrin

    2012-06-30

    Environmental impacts of energy and water demand and greenhouse gas emissions from three residential water-using appliances were analyzed using life cycle assessment (LCA) based approach in collaboration of economic input-output model. This study especially focused on indirect consumption and environmental impacts from end-use/demand phase of each appliance. Water-related activities such as water supply, water heating and wastewater treatment were included in the analysis. The results showed that environmental impacts from end-use/demand phase are most significant for the water system, particularly for the energy demand for water heating (73% for clothes washer and 93% for showerheads). Reducing water/hot water consumption during the end-use/demand phase is expected to improve the overall water-related energy burden and water use sustainability. In the analysis of optimal lifespan for appliances, the estimated values (8-21 years) using energy consumption balance approach were found to be lower than that using other methods (10-25 years). This implies that earlier replacement with efficiency models is encouraged to minimize the environmental impacts of the product. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface

  16. GIS-based analysis of drinking-water supply structures: a module for microbial risk assessment.

    PubMed

    Kistemann, T; Herbst, S; Dangendorf, F; Exner, M

    2001-05-01

    Water-related infections constitute an important health impact world-wide. A set of tools serving for Microbial Risk Assessment (MRA) of waterborne diseases should comprise the entire drinking-water management system and take into account the Hazard Analysis and Critical Control Point (HACCP) concept which provides specific Critical Control Points (CCPs) reflecting each step of drinking-water provision. A Geographical Information System (GIS) study concerning water-supply structure (WSS) was conducted in the Rhein-Berg District (North Rhine-Westphalia, Germany). As a result, suitability of the existing water databases HYGRIS (hydrological basis geo-information system) and TEIS (drinking-water recording and information system) for the development of a WSS-GIS module could be demonstrated. Spatial patterns within the integrated raw and drinking-water data can easily be uncovered by GIS-specific options. The application of WSS-GIS allows a rapid visualization and analysis of drinking-water supply structure and offers huge advantages concerning microbial monitoring of raw and drinking water as well as recognition and investigation of incidents and outbreaks. Increasing requests regarding health protection and health reporting, demands for a better outbreak management and water-related health impacts of global climate change are major challenges of future water management to be tackled with methods including spatial analysis. GIS is assumed to be a very useful tool to meet these requirements.

  17. Analysis of Large- Capacity Water Heaters in Electric Thermal Storage Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooke, Alan L.; Anderson, David M.; Winiarski, David W.

    2015-03-17

    This report documents a national impact analysis of large tank heat pump water heaters (HPWH) in electric thermal storage (ETS) programs and conveys the findings related to concerns raised by utilities regarding the ability of large-tank heat pump water heaters to provide electric thermal storage services.

  18. Analysis of change of retention capacity of a small water reservoir

    NASA Astrophysics Data System (ADS)

    Výleta, R.; Danáčová, M.; Valent, P.

    2017-10-01

    This study is focused on the analysis of the changes of retention capacity of a small water reservoir induced by intensive erosion and sedimentation processes. The water reservoir is situated near the village of Vrbovce in the Western part of Slovakia, and the analysis is carried out for a period 2008-2017. The data used to build a digital elevation model (DEM) of the reservoir’s bed came from a terrain measurement, utilizing an acoustic Doppler current profiler (ADCP) to measure the water depth in the reservoir. The DEM was used to quantify the soil loss from agricultural land situated within the basin of the reservoir. The ability of the water reservoir to transform a design flood with a return period of 100 years is evaluated for both design (2008) and current conditions (2017). The results show that the small water reservoir is a subject to siltation, with sediments comprised of fine soil particles transported from nearby agricultural land. The ability of the water reservoir to transform a 100-year flood has not changed significantly. The reduction of the reservoir’s retention capacity should be systematically and regularly monitored in order to adjust its operational manual and improve its efficiency.

  19. Issue a Boil-Water Advisory or Wait for Definitive Information? A Decision Analysis

    PubMed Central

    Wagner, Michael M.; Wallstrom, Garrick L.; Onisko, Agnieszka

    2005-01-01

    Objective Study the decision to issue a boil-water advisory in response to a spike in sales of diarrhea remedies or wait 72 hours for the results of definitive testing of water and people. Methods Decision analysis. Results In the base-case analysis, the optimal decision is test-and-wait. If the cost of issuing a boil-water advisory is less than 13.92 cents per person per day, the optimal decision is to issue the boil-water advisory immediately. Conclusions Decisions based on surveillance data that are suggestive but not conclusive about the existence of a disease outbreak can be modeled. PMID:16779145

  20. Analysis of water ice and water ice/soil mixtures using laser-induced breakdown spectroscopy: application to Mars polar exploration.

    PubMed

    Arp, Zane A; Cremers, David A; Wiens, Roger C; Wayne, David M; Sallé, Béatrice; Maurice, Sylvestre

    2004-08-01

    Recently, laser-induced breakdown spectroscopy (LIBS) has been developed for the elemental analysis of geological samples for application to space exploration. There is also interest in using the technique for the analysis of water ice and ice/dust mixtures located at the Mars polar regions. The application is a compact instrument for a lander or rover to the Martian poles to interrogate stratified layers of ice and dusts that contain a record of past geologic history, believed to date back several million years. Here we present results of a study of the use of LIBS for the analysis of water ice and ice/dust mixtures in situ and at short stand-off distances (< 6.5 m) using experimental parameters appropriate for a compact instrument. Characteristics of LIBS spectra of water ice, ice/soil mixtures, element detection limits, and the ability to ablate through ice samples to monitor subsurface dust deposits are discussed.

  1. Analysis of CL-20 in environmental matrices: water and soil.

    PubMed

    Larson, Steven L; Felt, Deborah R; Davis, Jeffrey L; Escalon, Lynn

    2002-04-01

    Analytical techniques for the detection of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo(5.5.0.05,9.03,11)dodecane (CL-20) in water and soil are developed by adapting methods traditionally used for the analysis of nitroaromatics. CL-20 (a new explosives compound) is thermally labile, exhibits high polarity, and has low solubility in water. These constraints make the use of specialized sample handling, preparation, extraction, and analysis necessary. The ability to determine the concentrations of this new explosive compound in environmental matrices is helpful in understanding the environmental fate and effects of CL-20; understanding the physical, chemical, and biological fate of CL-20; and can be used in developing remediation technologies and determining their efficiency. The toxicity and mobility of new explosives in soil and groundwater are also of interest, and analytical techniques for quantitating CL-20 and its degradation products in soil and natural waters make these investigations possible.

  2. Dynamic factor analysis for estimating ground water arsenic trends.

    PubMed

    Kuo, Yi-Ming; Chang, Fi-John

    2010-01-01

    Drinking ground water containing high arsenic (As) concentrations has been associated with blackfoot disease and the occurrence of cancer along the southwestern coast of Taiwan. As a result, 28 ground water observation wells were installed to monitor the ground water quality in this area. Dynamic factor analysis (DFA) is used to identify common trends that represent unexplained variability in ground water As concentrations of decommissioned wells and to investigate whether explanatory variables (total organic carbon [TOC], As, alkalinity, ground water elevation, and rainfall) affect the temporal variation in ground water As concentration. The results of the DFA show that rainfall dilutes As concentration in areas under aquacultural and agricultural use. Different combinations of geochemical variables (As, alkalinity, and TOC) of nearby monitoring wells affected the As concentrations of the most decommissioned wells. Model performance was acceptable for 11 wells (coefficient of efficiency >0.50), which represents 52% (11/21) of the decommissioned wells. Based on DFA results, we infer that surface water recharge may be effective for diluting the As concentration, especially in the areas that are relatively far from the coastline. We demonstrate that DFA can effectively identify the important factors and common effects representing unexplained variability common to decommissioned wells on As variation in ground water and extrapolate information from existing monitoring wells to the nearby decommissioned wells.

  3. [Analysis of fluorescence spectrum of petroleum-polluted water].

    PubMed

    Huang, Miao-Fen; Song, Qing-Jun; Xing, Xu-Feng; Jian, Wei-Jun; Liu, Yuan; Zhao, Zu-Long

    2014-09-01

    In four ratio experiments, natural waters, sampled from the mountain reservoir and the sea water around Dalian city, were mixed with the sewage from petroleum refinery and petroleum exploitation plants. The fluorescence spectra of water samples containing only chromophoric dissolved organic matters(CDOM), samples containing only petroleum, and samples containing a mixture of petroleum and CDOM were analyzed, respectively. The purpose of this analysis is to provide a basis for determining the contribution of petroleum substances and CDOM to the total absorption coefficient of the petroleum-contaminated water by using fluorescence technique. The results showed that firstly, CDOM in seawater had three main fluorescence peaks at Ex: 225-230 nm/Em: 320-330 nm, Ex: 280 nm/Em: 340 nm and Ex: 225-240 nm/Em: 430-470 nm, respectively, and these may arise from the oceanic chlorophyll. CDOM in natural reservoir water had two main fluorescence peaks at EX: 240- 260 nm/Em: 420-450 nm and Ex: 310~350 nm/Em: 420--440 nm, respectively, and these may arise from the terrestrial sources; secondly, the water samples containing only petroleum extracted with n-hexane had one to three fluorescence spectral peaksat Ex: 220-240 nm/Em: 320-340 nm, Ex: 270-290 nm/Em: 310-340 nm and Ex: 220-235 nm/Em: 280-310 nm, respectively, caused by their hydrocarbon component; finally, the water samples containing both petroleum and CDOM showed a very strong fluorescence peak at Ex: 230-250 nm/Em: 320-370 nm, caused by the combined effect of CDOM and petroleum hydrocarbons.

  4. Forecasting drought risks for a water supply storage system using bootstrap position analysis

    USGS Publications Warehouse

    Tasker, Gary; Dunne, Paul

    1997-01-01

    Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.

  5. Mapping of drinking water research: a bibliometric analysis of research output during 1992-2011.

    PubMed

    Fu, Hui-Zhen; Wang, Ming-Huang; Ho, Yuh-Shan

    2013-01-15

    A bibliometric analysis based on the Science Citation Index Expanded from the Web of Science was carried out to provide insights into research activities and tendencies of the global drinking water from 1992 to 2011. Study emphases included performance of publication covering annual outputs, mainstream journals, Web of Science categories, leading countries, institutions, research tendencies and hotspots. The results indicated that annual output of the related scientific articles increased steadily. Water Research, Environmental Science & Technology, and Journal American Water Works Association were the three most common journals in drinking water research. The USA took a leading position out of 168 countries/territories, followed by Japan and Germany. A summary of the most frequently used keywords obtained from words in paper title analysis, author keyword analysis and KeyWords Plus analysis provided the clues to discover the current research emphases. The mainstream research related to drinking water was water treatment methods and the related contaminants. Disinfection process and consequent disinfection by-products attracted much attention. Ozonation and chlorination in disinfection, and adsorption were common techniques and are getting popular. Commonly researched drinking water contaminants concerned arsenic, nitrate, fluoride, lead, and cadmium, and pharmaceuticals emerged as the frequently studied contaminants in recent years. Disease caused by contaminants strongly promoted the development of related research. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Application of risk analysis in water resourses management

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil; Palogos, Ioannis

    2017-04-01

    A common cost-benefit analysis approach, which is novel in the risk analysis of hydrologic/hydraulic applications, and a Bayesian decision analysis are applied to aid the decision making on whether or not to construct a water reservoir for irrigation purposes. The alternative option examined is a scaled parabolic fine variation in terms of over-pumping violations in contrast to common practices that usually consider short-term fines. Such an application, and in such detail, represents new feedback. The results indicate that the probability uncertainty is the driving issue that determines the optimal decision with each methodology, and depending on the unknown probability handling, each methodology may lead to a different optimal decision. Thus, the proposed tool can help decision makers (stakeholders) to examine and compare different scenarios using two different approaches before making a decision considering the cost of a hydrologic/hydraulic project and the varied economic charges that water table limit violations can cause inside an audit interval. In contrast to practices that assess the effect of each proposed action separately considering only current knowledge of the examined issue, this tool aids decision making by considering prior information and the sampling distribution of future successful audits. This tool is developed in a web service for the easier stakeholders' access.

  7. Early warning of changing drinking water quality by trend analysis.

    PubMed

    Tomperi, Jani; Juuso, Esko; Leiviskä, Kauko

    2016-06-01

    Monitoring and control of water treatment plants play an essential role in ensuring high quality drinking water and avoiding health-related problems or economic losses. The most common quality variables, which can be used also for assessing the efficiency of the water treatment process, are turbidity and residual levels of coagulation and disinfection chemicals. In the present study, the trend indices are developed from scaled measurements to detect warning signs of changes in the quality variables of drinking water and some operating condition variables that strongly affect water quality. The scaling is based on monotonically increasing nonlinear functions, which are generated with generalized norms and moments. Triangular episodes are classified with the trend index and its derivative. Deviation indices are used to assess the severity of situations. The study shows the potential of the described trend analysis as a predictive monitoring tool, as it provides an advantage over the traditional manual inspection of variables by detecting changes in water quality and giving early warnings.

  8. Field guide for collecting samples for analysis of volatile organic compounds in stream water for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1997-01-01

    For many years, stream samples for analysis of volatile organic compounds have been collected without specific guidelines or a sampler designed to avoid analyte loss. In 1996, the U.S. Geological Survey's National Water-Quality Assessment Program began aggressively monitoring urban stream-water for volatile organic compounds. To assure representative samples and consistency in collection procedures, a specific sampler was designed to collect samples for analysis of volatile organic compounds in stream water. This sampler, and the collection procedures, were tested in the laboratory and in the field for compound loss, contamination, sample reproducibility, and functional capabilities. This report describes that sampler and its use, and outlines field procedures specifically designed to provide contaminant-free, reproducible volatile organic compound data from stream-water samples. These guidelines and the equipment described represent a significant change in U.S. Geological Survey instructions for collecting and processing stream-water samples for analysis of volatile organic compounds. They are intended to produce data that are both defensible and interpretable, particularly for concentrations below the microgram-per-liter level. The guidelines also contain detailed recommendations for quality-control samples.

  9. Quantitative description of human skin water dynamics by a disposition-decomposition analysis (DDA) of trans-epidermal water loss and epidermal capacitance.

    PubMed

    Rodrigues, Luis Monteiro; Pinto, Pedro Contreiras; Pereira, Luis Marcelo

    2003-02-01

    In vivo water assessment would greatly benefit from a dynamical approach since the evaluation of common related variables such as trans-epidermal water loss or "capacitance" measurements is always limited to instantaneous data. Mathematical modelling is still an attractive alternative already attempted with bi-exponential empirical models. A classical two-compartment interpretation of such models raises a number of questions about the underlying fundamentals, which can hardly be experimentally confirmed. However, in a system analysis sense, skin water dynamics may be approached as an ensemble of many factors, impossible to discretize, but conceptually grouped in terms of feasible properties of the system. The present paper explores the applicability of this strategy to the in vivo water dynamics assessment. From the plastic occlusion stress test (POST) skin water balance is assessed by modelling trans-epidermal water loss (TEWL) and "capacitance" data obtained at skin's surface. With system analysis (disposition-decomposition analysis) the distribution function, H(t), modelled as a sum of exponential terms, covers only the distribution characteristics of water molecules traversing the skin. This may correspond macroscopically to the experimental data accessed by "corneometry". Separately, the hyperbolic elimination function Q(TEWL) helps to characterise the dynamic aspects of water influx through the skin. In the observable range there seems to be a linear relationship between the net amount of water lost at the surface by evaporation, and the capability of the system to replenish that loss. This may be a specific characteristic of the system related to what may be described as the skin's "intrinsic hydration capacity" (IHC) a new functional parameter only identified by this strategy. These new quantitative tools are expected to find different applicabilities (from the in vivo skin characterisation to efficacy testing) contributing to disclose the dynamical nature

  10. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China.

    PubMed

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-11-12

    The increase and the complexity of data caused by the uncertain environment is today's reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006-2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality.

  11. Application of factor analysis to the water quality in reservoirs

    NASA Astrophysics Data System (ADS)

    Silva, Eliana Costa e.; Lopes, Isabel Cristina; Correia, Aldina; Gonçalves, A. Manuela

    2017-06-01

    In this work we present a Factor Analysis of chemical and environmental variables of the water column and hydro-morphological features of several Portuguese reservoirs. The objective is to reduce the initial number of variables, keeping their common characteristics. Using the Factor Analysis, the environmental variables measured in the epilimnion and in the hypolimnion, together with the hydromorphological characteristics of the dams were reduced from 63 variables to only 13 factors, which explained a total of 83.348% of the variance in the original data. After performing rotation using the Varimax method, the relations between the factors and the original variables got clearer and more explainable, which provided a Factor Analysis model for these environmental variables using 13 varifactors: Water quality and distance to the source, Hypolimnion chemical composition, Sulfite-reducing bacteria and nutrients, Coliforms and faecal streptococci, Reservoir depth, Temperature, Location, among other factors.

  12. A novel water quality data analysis framework based on time-series data mining.

    PubMed

    Deng, Weihui; Wang, Guoyin

    2017-07-01

    The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Global sensitivity analysis of a local water balance model predicting evaporation, water yield and drought

    NASA Astrophysics Data System (ADS)

    Speich, Matthias; Zappa, Massimiliano; Lischke, Heike

    2017-04-01

    Evaporation and transpiration affect both catchment water yield and the growing conditions for vegetation. They are driven by climate, but also depend on vegetation, soil and land surface properties. In hydrological and land surface models, these properties may be included as constant parameters, or as state variables. Often, little is known about the effect of these variables on model outputs. In the present study, the effect of surface properties on evaporation was assessed in a global sensitivity analysis. To this effect, we developed a simple local water balance model combining state-of-the-art process formulations for evaporation, transpiration and soil water balance. The model is vertically one-dimensional, and the relative simplicity of its process formulations makes it suitable for integration in a spatially distributed model at regional scale. The main model outputs are annual total evaporation (TE, i.e. the sum of transpiration, soil evaporation and interception), and a drought index (DI), which is based on the ratio of actual and potential transpiration. This index represents the growing conditions for forest trees. The sensitivity analysis was conducted in two steps. First, a screening analysis was applied to identify unimportant parameters out of an initial set of 19 parameters. In a second step, a statistical meta-model was applied to a sample of 800 model runs, in which the values of the important parameters were varied. Parameter effect and interactions were analyzed with effects plots. The model was driven with forcing data from ten meteorological stations in Switzerland, representing a wide range of precipitation regimes across a strong temperature gradient. Of the 19 original parameters, eight were identified as important in the screening analysis. Both steps highlighted the importance of Plant Available Water Capacity (AWC) and Leaf Area Index (LAI). However, their effect varies greatly across stations. For example, while a transition from a

  14. Analytical methods of the U.S. Geological Survey's New York District Water-Analysis Laboratory

    USGS Publications Warehouse

    Lawrence, Gregory B.; Lincoln, Tricia A.; Horan-Ross, Debra A.; Olson, Mark L.; Waldron, Laura A.

    1995-01-01

    The New York District of the U.S. Geological Survey (USGS) in Troy, N.Y., operates a water-analysis laboratory for USGS watershed-research projects in the Northeast that require analyses of precipitation and of dilute surface water and soil water for major ions; it also provides analyses of certain chemical constituents in soils and soil gas samples.This report presents the methods for chemical analyses of water samples, soil-water samples, and soil-gas samples collected in wateshed-research projects. The introduction describes the general materials and technicques for each method and explains the USGS quality-assurance program and data-management procedures; it also explains the use of cross reference to the three most commonly used methods manuals for analysis of dilute waters. The body of the report describes the analytical procedures for (1) solution analysis, (2) soil analysis, and (3) soil-gas analysis. The methods are presented in alphabetical order by constituent. The method for each constituent is preceded by (1) reference codes for pertinent sections of the three manuals mentioned above, (2) a list of the method's applications, and (3) a summary of the procedure. The methods section for each constitutent contains the following categories: instrumentation and equipment, sample preservation and storage, reagents and standards, analytical procedures, quality control, maintenance, interferences, safety considerations, and references. Sufficient information is presented for each method to allow the resulting data to be appropriately used in environmental investigations.

  15. An analysis of hydrogen production via closed-cycle schemes. [thermochemical processings from water

    NASA Technical Reports Server (NTRS)

    Chao, R. E.; Cox, K. E.

    1975-01-01

    A thermodynamic analysis and state-of-the-art review of three basic schemes for production of hydrogen from water: electrolysis, thermal water-splitting, and multi-step thermochemical closed cycles is presented. Criteria for work-saving thermochemical closed-cycle processes are established, and several schemes are reviewed in light of such criteria. An economic analysis is also presented in the context of energy costs.

  16. Water Analysis: Emerging Contaminants and Current Issues (2009 Review)

    EPA Science Inventory

    This biennial review covers developments in Water Analysis for Emerging Environmental Contaminants over the period of 2007-2008. A few significant references that appeared between January and February 2009 are also included. Analytical Chemistry’s current policy is to limit rev...

  17. Fifty years of solid-phase extraction in water analysis--historical development and overview.

    PubMed

    Liska, I

    2000-07-14

    The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.

  18. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  19. Analysis of changes in water-level dynamics at selected sites in the Florida Everglades

    USGS Publications Warehouse

    Conrads, Paul; Benedict, Stephen T.

    2013-01-01

    The historical modification and regulation of the hydrologic patterns in the Florida Everglades have resulted in changes in the ecosystem of South Florida and the Florida Everglades. Since the 1970s, substantial focus has been given to the restoration of the Everglades ecosystem. The U.S. Geological Survey through its Greater Everglades Priority Ecosystem Science and National Water-Quality Assessment Programs has been providing scientific information to resource managers to assist in the Everglades restoration efforts. The current investigation included development of a simple method to identify and quantify changes in historical hydrologic behavior within the Everglades that could be used by researchers to identify responses of ecological communities to those changes. Such information then could be used by resource managers to develop appropriate water-management practices within the Everglades to promote restoration. The identification of changes in historical hydrologic behavior within the Everglades was accomplished by analyzing historical time-series water-level data from selected gages in the Everglades using (1) break-point analysis of cumulative Z-scores to identify hydrologic changes and (2) cumulative water-level frequency distribution curves to evaluate the magnitude of those changes. This analytical technique was applied to six long-term water-level gages in the Florida Everglades. The break-point analysis for the concurrent period of record (1978–2011) identified 10 common periods of changes in hydrologic behavior at the selected gages. The water-level responses at each gage for the 10 periods displayed similarity in fluctuation patterns, highlighting the interconnectedness of the Florida Everglades hydrologic system. While the patterns were similar, the analysis also showed that larger fluctuations in water levels between periods occurred in Water Conservation Areas 2 and 3 in contrast to those in Water Conservation Area 1 and the Everglades

  20. Analysis of the Water Resources on Baseflow River Basin in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Yang, S.-K.; Jung, W.-Y.; Kang, M.-S.

    2012-04-01

    Jeju Island is a volcanic island located at the southernmost of Korea, and is the heaviest raining area in Korea, but due to its hydrological / geological characteristics different from those of inland areas, most streams are of the dry form, and it relies on groundwater for water resources. As for some streams, however, springwater is discharged at a point near the downstream of the final discharge to maintain the flow of the stream; this has been developed as the source for water supply since the past, but the studies on detail observations and analysis are yet inadequate. This study utilizes the ADCP (Acoustic Doppler Current Profiler) hydrometer to regularly observe the flow amount of base run-off stream, and the water resources of base discharge basin of Jeju Island were analyzed using the SWAT (Soil & Water Assessment Tool) model. The detail water resource analysis study using modeling and site observation with high precision for Jeju Island water resources is expected to become the foundation for efficient usage and security of water resources against future climate changes.

  1. Energy-Water Modeling and Analysis | Energy Analysis | NREL

    Science.gov Websites

    future electricity scenarios under cases of limited water availability and electricity sector impacts of Manufacturing Water Use The Water Intensity and Resource Impacts of Unconventional Hydrocarbon Development Impacts of Unconventional Hydrocarbon Development Life Cycle Harmonization Project (Water) Sample

  2. Neutron Scattering Analysis of Water's Glass Transition and Micropore Collapse in Amorphous Solid Water.

    PubMed

    Hill, Catherine R; Mitterdorfer, Christian; Youngs, Tristan G A; Bowron, Daniel T; Fraser, Helen J; Loerting, Thomas

    2016-05-27

    The question of the nature of water's glass transition has continued to be disputed over many years. Here we use slow heating scans (0.4  K min^{-1}) of compact amorphous solid water deposited at 77 K and an analysis of the accompanying changes in the small-angle neutron scattering signal, to study mesoscale changes in the ice network topology. From the data we infer the onset of rotational diffusion at 115 K, a sudden switchover from nondiffusive motion and enthalpy relaxation of the network at <121  K to diffusive motion across sample grains and sudden pore collapse at >121  K, in excellent agreement with the glass transition onset deduced from heat capacity and dielectric measurements. This indicates that water's glass transition is linked with long-range transport of water molecules on the time scale of minutes and, thus, clarifies its nature. Furthermore, the slow heating rates combined with the high crystallization resistance of the amorphous sample allow us to identify the glass transition end point at 136 K, which is well separated from the crystallization onset at 144 K-in contrast to all earlier experiments in the field.

  3. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia.

    PubMed

    Hussain, Mahbub; Ahmed, Syed Munaf; Abderrahman, Walid

    2008-01-01

    A multivariate statistical technique, cluster analysis, was used to assess the logged surface water quality at an irrigation project at Al-Fadhley, Eastern Province, Saudi Arabia. The principal idea behind using the technique was to utilize all available hydrochemical variables in the quality assessment including trace elements and other ions which are not considered in conventional techniques for water quality assessments like Stiff and Piper diagrams. Furthermore, the area belongs to an irrigation project where water contamination associated with the use of fertilizers, insecticides and pesticides is expected. This quality assessment study was carried out on a total of 34 surface/logged water samples. To gain a greater insight in terms of the seasonal variation of water quality, 17 samples were collected from both summer and winter seasons. The collected samples were analyzed for a total of 23 water quality parameters including pH, TDS, conductivity, alkalinity, sulfate, chloride, bicarbonate, nitrate, phosphate, bromide, fluoride, calcium, magnesium, sodium, potassium, arsenic, boron, copper, cobalt, iron, lithium, manganese, molybdenum, nickel, selenium, mercury and zinc. Cluster analysis in both Q and R modes was used. Q-mode analysis resulted in three distinct water types for both the summer and winter seasons. Q-mode analysis also showed the spatial as well as temporal variation in water quality. R-mode cluster analysis led to the conclusion that there are two major sources of contamination for the surface/shallow groundwater in the area: fertilizers, micronutrients, pesticides, and insecticides used in agricultural activities, and non-point natural sources.

  4. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    PubMed

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

  5. National Water Infrastructure Adaptation Assessment, Part I: Climate Change Adaptation Readiness Analysis

    EPA Science Inventory

    The report “National Water Infrastructure Adaptation Assessment” is comprised of four parts (Part I to IV), each in an independent volume. The Part I report presented herein describes a preliminary regulatory and technical analysis of water infrastructure and regulations in the ...

  6. Selenium analysis in waters. Part 2: Speciation methods.

    PubMed

    LeBlanc, Kelly L; Kumkrong, Paramee; Mercier, Patrick H J; Mester, Zoltán

    2018-06-21

    In aquatic ecosystems, there is often no correlation between the total concentration of selenium present in the water column and the toxic effects observed in that environment. This is due, in part, to the variation in the bioavailability of different selenium species to organisms at the base of the aquatic food chain. The first part of this review (Kumkrong et al., 2018) discusses regulatory framework and standard methodologies for selenium analysis in waters. In this second article, we are reviewing the state of speciation analysis and importance of speciation data for decision makers in industry and regulators. We look in detail at fractionation methods for speciation, including the popular selective sequential hydride generation. We examine advantages and limitations of these methods, in terms of achievable detection limits and interferences from other matrix species, as well as the potential to over- or under-estimate operationally-defined fractions based on the various conversion steps involved in fractionation processes. Additionally, we discuss methods of discrete speciation (through separation methods), their importance in analyzing individual selenium species, difficulties associated with their implementation, as well as ways to overcome these difficulties. We also provide a brief overview of biological treatment methods for the remediation of selenium-contaminated waters. We discuss the importance of selenium speciation in the application of these methods and their potential to actually increase the bioavailability of selenium despite decreasing its total waterborne concentration. Copyright © 2018. Published by Elsevier B.V.

  7. WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES, 2005 REVIEW

    EPA Science Inventory

    This biennial review covers developments in Water Analysis over the period of 2003-2004. A few significant references that appeared between January and February 2005 are also included. Analytical Chemistry's current policy is to limit reviews to include 100-200 significant refe...

  8. WATER ANALYSIS: EMERGING CONTAMINANTS AND CURRENT ISSUES: 2007 REVIEW

    EPA Science Inventory

    This biennial review covers developments in Water Analysis over the period of 2005-2006. A few significant references that appeared between January and March 2007 are also included. Analytical Chemistry's current policy is to limit reviews to include 200-250 significant referen...

  9. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring.

    PubMed

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-03-02

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety.

  10. Drought analysis and water resource availability using standardised precipitation evapotranspiration index

    NASA Astrophysics Data System (ADS)

    Hui-Mean, Foo; Yusop, Zulkifli; Yusof, Fadhilah

    2018-03-01

    Trend analysis for potential evapotranspiration (PET) and climatic water balance (CWB) is critical in identifying the wetness or dryness episodes with respect to the water surplus or deficit. The PET is computed based on the monthly average temperature for the entire Peninsular Malaysia using Thornthwaite parameterization. The trends and slope's magnitude for the PET and CWB were then investigated using Mann-Kendall, Spearman's rho tests and Thiel-Sen estimator. The 1-, 3-, 6- and 12-month standardised precipitation evapotranspiration index (SPEI) is applied to determine the drought episodes and the average recurrence interval are calculated based on the SPEI. The results indicate that most of the stations show an upward trend in annual and monthly PET while majority of the regions show an upward trend in annual CWB except for the Pahang state. The increasing trends detected in the CWB describe water is in excess especially during the northeast monsoons while the decreasing trends imply water insufficiency. The excess water is observed mostly in January especially in the west coast, east coast and southwest regions that suggest more water is available for crop requirement. The average recurrence interval for drought episodes is almost the same for the smaller severity with various time scale of SPEI and high probability of drought occurrence is observed for some regions. The findings are useful for policymakers and practitioners to improve water resources planning and management, in particular to minimise drought effects in the future. Future research shall address the influence of topography on drought behaviour using more meteorological stations and to include east Malaysia in the analysis.

  11. An Enhanced K-Means Algorithm for Water Quality Analysis of The Haihe River in China

    PubMed Central

    Zou, Hui; Zou, Zhihong; Wang, Xiaojing

    2015-01-01

    The increase and the complexity of data caused by the uncertain environment is today’s reality. In order to identify water quality effectively and reliably, this paper presents a modified fast clustering algorithm for water quality analysis. The algorithm has adopted a varying weights K-means cluster algorithm to analyze water monitoring data. The varying weights scheme was the best weighting indicator selected by a modified indicator weight self-adjustment algorithm based on K-means, which is named MIWAS-K-means. The new clustering algorithm avoids the margin of the iteration not being calculated in some cases. With the fast clustering analysis, we can identify the quality of water samples. The algorithm is applied in water quality analysis of the Haihe River (China) data obtained by the monitoring network over a period of eight years (2006–2013) with four indicators at seven different sites (2078 samples). Both the theoretical and simulated results demonstrate that the algorithm is efficient and reliable for water quality analysis of the Haihe River. In addition, the algorithm can be applied to more complex data matrices with high dimensionality. PMID:26569283

  12. Performance analysis of underwater pump for water-air dual-use engine

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Yun; Chen, Yu

    2017-10-01

    To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.

  13. How much water is required for coal power generation: An analysis of gray and blue water footprints.

    PubMed

    Ma, Xiaotian; Yang, Donglu; Shen, Xiaoxu; Zhai, Yijie; Zhang, Ruirui; Hong, Jinglan

    2018-04-28

    Although water resource shortage is closely connected with coal-based electricity generation, relevant water footprint analyses remain limited. This study aims to address this limitation by conducting a water footprint analysis of coal-based electricity generation in China for the first time to inform decision-makers about how freshwater consumption and wastewater discharge can be reduced. In China, 1 kWh of electricity supply obtained 1.78 × 10 -3  m 3 of gray water footprint in 2015, and the value is 1.3 times the blue water footprint score of 1.35 × 10 -3  m 3 /kWh. Although water footprint of 1 kWh of electricity supply decreased, the national total gray water footprint increased significantly from 2006 to 2015 with increase in power generating capacity. An opposite trend was observed for blue water footprint. Indirect processes dominated the influence of gray water footprint, whereas direct freshwater consumption contributed 63.6% to blue water footprint. Ameliorating key processes, including transportation, direct freshwater consumption, direct air emissions, and coal washing could thus bring substantial environmental benefits. Moreover, phosphorus, mercury, hexavalent chromium, arsenic, COD, and BOD 5 were key substances of gray water footprint. Results indicated that the combination of railway and water transportation should be prioritized. The targeted transition toward high coal washing rate and pithead power plant development provides a possibility to relieve environmental burdens, but constraints on water resources in coal production sites have to be considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Automated Spatio-Temporal Analysis of Remotely Sensed Imagery for Water Resources Management

    NASA Astrophysics Data System (ADS)

    Bahr, Thomas

    2016-04-01

    Since 2012, the state of California faces an extreme drought, which impacts water supply in many ways. Advanced remote sensing is an important technology to better assess water resources, monitor drought conditions and water supplies, plan for drought response and mitigation, and measure drought impacts. In the present case study latest time series analysis capabilities are used to examine surface water in reservoirs located along the western flank of the Sierra Nevada region of California. This case study was performed using the COTS software package ENVI 5.3. Integration of custom processes and automation is supported by IDL (Interactive Data Language). Thus, ENVI analytics is running via the object-oriented and IDL-based ENVITask API. A time series from Landsat images (L-5 TM, L-7 ETM+, L-8 OLI) of the AOI was obtained for 1999 to 2015 (October acquisitions). Downloaded from the USGS EarthExplorer web site, they already were georeferenced to a UTM Zone 10N (WGS-84) coordinate system. ENVITasks were used to pre-process the Landsat images as follows: • Triangulation based gap-filling for the SLC-off Landsat-7 ETM+ images. • Spatial subsetting to the same geographic extent. • Radiometric correction to top-of-atmosphere (TOA) reflectance. • Atmospheric correction using QUAC®, which determines atmospheric correction parameters directly from the observed pixel spectra in a scene, without ancillary information. Spatio-temporal analysis was executed with the following tasks: • Creation of Modified Normalized Difference Water Index images (MNDWI, Xu 2006) to enhance open water features while suppressing noise from built-up land, vegetation, and soil. • Threshold based classification of the water index images to extract the water features. • Classification aggregation as a post-classification cleanup process. • Export of the respective water classes to vector layers for further evaluation in a GIS. • Animation of the classification series and export to

  15. Comparing mean high water and high water line shorelines: Should prosy-datum offsets be incorporated into shoreline change analysis?

    USGS Publications Warehouse

    Moore, L.J.; Ruggiero, P.; List, J.H.

    2006-01-01

    More than one type of shoreline indicator can be used in shoreline change analyses, and quantifying the effects of this practice on the resulting shoreline change rates is important. Comparison of three high water line (proxy-based) shorelines and a mean high water intercept (datum-based) shoreline collected from simultaneous aerial photographic and lidar surveys of a relatively steep reflective beach (tan ?? = 0.07), which experiences a moderately energetic wave climate (annual average Hs = 1.2 m), reveals an average horizontal offset of 18.8 m between the two types of shoreline indicators. Vertical offsets are also substantial and are correlated with foreshore beach slope and corresponding variations in wave runup. Incorporating the average horizontal offset into both a short-term, endpoint shoreline change analysis and a long-term, linear regression analysis causes rates to be shifted an average of -0.5 m/y and -0.1 m/y, respectively. The rate shift increases with increasing horizontal offset and decreasing measurement intervals and, depending on the rapidity of shoreline change rates, is responsible for varying degrees of analysis error. Our results demonstrate that under many circumstances, the error attributable to proxy-datum offsets is small relative to shoreline change rates and thus not important. Furthermore, we find that when the error associated with proxy-datum offsets is large enough to be important, the shoreline change rates themselves are not likely to be significant. A total water level model reveals that the high water line digitized by three independent coastal labs for this study was generated by a combination of large waves and a high tide several days before the collection of aerial photography. This illustrates the complexity of the high water line as a shoreline indicator and calls into question traditional definitions, which consider the high water line a wetted bound or "marks left by the previous high tide.".

  16. Exploring Northwest China's agricultural water-saving strategy: analysis of water use efficiency based on an SE-DEA model conducted in Xi'an, Shaanxi Province.

    PubMed

    Mu, L; Fang, L; Wang, H; Chen, L; Yang, Y; Qu, X J; Wang, C Y; Yuan, Y; Wang, S B; Wang, Y N

    Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004-2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.

  17. Sensitivity Analysis as a Tool to assess Energy-Water Nexus in India

    NASA Astrophysics Data System (ADS)

    Priyanka, P.; Banerjee, R.

    2017-12-01

    Rapid urbanization, population growth and related structural changes with-in the economy of a developing country act as a stressor on energy and water demand, which forms a well-established energy-water nexus. Energy-water nexus is thoroughly studied at various spatial scales viz. city level, river basin level and national level- to guide different stakeholders for sustainable management of energy and water. However, temporal dimensions of energy-water nexus at national level have not been thoroughly investigated because of unavailability of relevant time-series data. In this study we investigated energy-water nexus at national level using environmentally-extended input-output tables for Indian economy (2004-2013) as provided by EORA database. Perturbation based sensitivity analysis is proposed to highlight the critical nodes of interactions among economic sectors which is further linked to detect the synergistic effects of energy and water consumption. Technology changes (interpreted as change in value of nodes) results in modification of interactions among economic sectors and synergy is affected through direct as well as indirect effects. Indirect effects are not easily understood through preliminary examination of data, hence sensitivity analysis within an input-output framework is important to understand the indirect effects. Furthermore, time series data helps in developing the understanding on dynamics of synergistic effects. We identified the key sectors and technology changes for Indian economy which will provide the better decision support for policy makers about sustainable use of energy-water resources in India.

  18. The Relationship between Water, Sanitation and Schistosomiasis: A Systematic Review and Meta-analysis

    PubMed Central

    Grimes, Jack E. T.; Croll, David; Harrison, Wendy E.; Utzinger, Jürg; Freeman, Matthew C.; Templeton, Michael R.

    2014-01-01

    Background Access to “safe” water and “adequate” sanitation are emphasized as important measures for schistosomiasis control. Indeed, the schistosomes' lifecycles suggest that their transmission may be reduced through safe water and adequate sanitation. However, the evidence has not previously been compiled in a systematic review. Methodology We carried out a systematic review and meta-analysis of studies reporting schistosome infection rates in people who do or do not have access to safe water and adequate sanitation. PubMed, Web of Science, Embase, and the Cochrane Library were searched from inception to 31 December 2013, without restrictions on year of publication or language. Studies' titles and abstracts were screened by two independent assessors. Papers deemed of interest were read in full and appropriate studies included in the meta-analysis. Publication bias was assessed through the visual inspection of funnel plots and through Egger's test. Heterogeneity of datasets within the meta-analysis was quantified using Higgins' I2. Principal Findings Safe water supplies were associated with significantly lower odds of schistosomiasis (odds ratio (OR) = 0.53, 95% confidence interval (CI): 0.47–0.61). Adequate sanitation was associated with lower odds of Schistosoma mansoni, (OR = 0.59, 95% CI: 0.47–0.73) and Schistosoma haematobium (OR = 0.69, 95% CI: 0.57–0.84). Included studies were mainly cross-sectional and quality was largely poor. Conclusions/Significance Our systematic review and meta-analysis suggests that increasing access to safe water and adequate sanitation are important measures to reduce the odds of schistosome infection. However, most of the studies were observational and quality was poor. Hence, there is a pressing need for adequately powered cluster randomized trials comparing schistosome infection risk with access to safe water and adequate sanitation, more studies which rigorously define water and sanitation, and new

  19. Statistical Analysis of Terrestrial Water Storage Change Over Southwestern United States

    NASA Astrophysics Data System (ADS)

    Eibedingil, I. G.; Mubako, S. T.; Hargrove, W. L.; Espino, A. C.

    2017-12-01

    A warming trend over recent decades has aggravated water resource challenges in the arid southwestern region of the United States (U.S.). An increase in temperature, coupled with decreasing snowpack and rainfall have impacted the region's cities, ecosystems, and agriculture. The region is the largest contributor of agricultural products to the U.S. market resulting from irrigation. Water use through irrigation is stressing already limited terrestrial water resources. Population growth in recent decades has also led to increased water demand. This study utilizes products of the Gravity Recovery and Climate Experiment (GRACE) twin satellites experiment in MATLAB and ArcGIS to examine terrestrial water storage changes in the southwestern region of the U.S., comprised of the eight states of Texas, California, Nevada, Utah, Arizona, Colorado, New Mexico, and Oklahoma. Linear trend analysis was applied to the equivalent water-height data of terrestrial water storage changes (TWSC), precipitation, and air temperature. Correlation analysis was performed on couplings of TWSC - precipitation and TWSC - air temperature to examine the impact of temperature and precipitation on the region's water resources. Our preliminary results show a decreasing trend of TWSC from April 2002 to July 2016 in almost all parts of the region. Precipitation shows a decreasing trend from March 2000 to March 2017 for most of the region, except for sparse areas of increased precipitation near the northwestern coast of California, and a belt running from Oklahoma through the middle of Texas to the El Paso/New Mexico border. From April 2002 to December 2014, air temperature exhibited a negative trend for most of the region, except a larger part of California and a small location in central Texas. Correlation between TWSC and precipitation was mostly positive, but a negative trend was observed when TWSC and air temperature were correlated. The study contributes to the understanding of terrestrial water

  20. Is water exchange superior to water immersion for colonoscopy? A systematic review and meta-analysis.

    PubMed

    Chen, Zhihao; Li, Zhengqi; Yu, Xinying; Wang, Guiqi

    2018-06-05

    Recently, water exchange (WE) instead of water immersion (WI) for colonoscopy has been proposed to decrease pain and improve adenoma detection rate (ADR). This systematic review and meta-analysis is conducted to assess whether WE is superior to WI based on the published randomized controlled trials (RCTs). We searched studies from PubMed, Cochrane Central Register of Controlled Trials, EMBASE, and MEDLINE. Only RCTs were eligible for our study. The pooled risk ratios (RRs), pooled mean difference (MD), and pooled 95% confidence intervals (CIs) were calculated by using the fixed-effects model or random-effects model based on heterogeneity. Five RCTs consisting of 2229 colonoscopies were included in this study. WE was associated with a significantly higher ADR than WI (RR = 1.18; CI = 1.05-1.32; P = 0.004), especially in right colon (RR = 1.31; CI = 1.07-1.61; P = 0.01). Compared with WI, WE was confirmed with lower pain score, higher Boston Bowel Preparation Scale score, but more infused water during insertion. There was no statistical difference between WE and WI in cecal intubation rate and the number of patients who had willingness to repeat the examination. Furthermore, both total procedure time and cecal intubation time in WE were significantly longer than that in WI (MD = 2.66; CI = 1.42-3.90; P < 0.0001; vs MD = 4.58; CI = 4.01-5.15; P < 0.0001). This meta-analysis supports the hypothesis that WE is superior to WI in improving ADR, attenuating insertion pain and providing better bowel cleansing, but inferior in time and consumption of infused water consumption during insertion.

  1. An Analysis of the Waste Water Treatment Operator Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The occupational analysis contains a brief job description for the waste water treatment occupations of operator and maintenance mechanic and 13 detailed task statements which specify job duties (tools, equipment, materials, objects acted upon, performance knowledge, safety considerations/hazards, decisions, cues, and errors) and learning skills…

  2. Scenario Analysis of Soil and Water Conservation in Xiejia Watershed Based on Improved CSLE Model

    NASA Astrophysics Data System (ADS)

    Liu, Jieying; Yu, Ming; Wu, Yong; Huang, Yao; Nie, Yawen

    2018-01-01

    According to the existing research results and related data, use the scenario analysis method, to evaluate the effects of different soil and water conservation measures on soil erosion in a small watershed. Based on the analysis of soil erosion scenarios and model simulation budgets in the study area, it is found that all scenarios simulated soil erosion rates are lower than the present situation of soil erosion in 2013. Soil and water conservation measures are more effective in reducing soil erosion than soil and water conservation biological measures and soil and water conservation tillage measures.

  3. Water quality observations of ice-covered, stagnant, eutrophic water bodies and analysis of influence of ice-covered period on water quality

    NASA Astrophysics Data System (ADS)

    sugihara, K.; Nakatsugawa, M.

    2013-12-01

    The water quality characteristics of ice-covered, stagnant, eutrophic water bodies have not been clarified because of insufficient observations. It has been pointed out that climate change has been shortening the duration of ice-cover; however, the influence of climate change on water quality has not been clarified. This study clarifies the water quality characteristics of stagnant, eutrophic water bodies that freeze in winter, based on our surveys and simulations, and examines how climate change may influence those characteristics. We made fixed-point observation using self-registering equipment and vertical water sampling. Self-registering equipment measured water temperature and dissolved oxygen(DO).vertical water sampling analyzed biological oxygen demand(BOD), total nitrogen(T-N), nitrate nitrogen(NO3-N), nitrite nitrogen(NO2-N), ammonium nitrogen(NH4-N), total phosphorus(TP), orthophosphoric phosphorus(PO4-P) and chlorophyll-a(Chl-a). The survey found that climate-change-related increases in water temperature were suppressed by ice covering the water area, which also blocked oxygen supply. It was also clarified that the bottom sediment consumed oxygen and turned the water layers anaerobic beginning from the bottom layer, and that nutrient salts eluted from the bottom sediment. The eluted nutrient salts were stored in the water body until the ice melted. The ice-covered period of water bodies has been shortening, a finding based on the analysis of weather and water quality data from 1998 to 2008. Climate change was surveyed as having caused decreases in nutrient salts concentration because of the shortened ice-covered period. However, BOD in spring showed a tendency to increase because of the proliferation of phytoplankton that was promoted by the climate-change-related increase in water temperature. To forecast the water quality by using these findings, particularly the influence of climate change, we constructed a water quality simulation model that

  4. Forest Inventory and Analysis: What it Tells Us About Water Quality in Arkansas

    Treesearch

    Edwin L. Miller; Hal O. Liechty

    2001-01-01

    Forests and forest activities have a significant impact on the amount and quality of surface water in Arkansas. Recognizing this important relationship between forests and water quality, we utilized the Forest Inventory and Analysis (FIA) data from Arkansas to better understand how forest land use in Arkansas has likely influenced the water quality in the State during...

  5. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  6. Assessment of water quality parameters using multivariate analysis for Klang River basin, Malaysia.

    PubMed

    Mohamed, Ibrahim; Othman, Faridah; Ibrahim, Adriana I N; Alaa-Eldin, M E; Yunus, Rossita M

    2015-01-01

    This case study uses several univariate and multivariate statistical techniques to evaluate and interpret a water quality data set obtained from the Klang River basin located within the state of Selangor and the Federal Territory of Kuala Lumpur, Malaysia. The river drains an area of 1,288 km(2), from the steep mountain rainforests of the main Central Range along Peninsular Malaysia to the river mouth in Port Klang, into the Straits of Malacca. Water quality was monitored at 20 stations, nine of which are situated along the main river and 11 along six tributaries. Data was collected from 1997 to 2007 for seven parameters used to evaluate the status of the water quality, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen, pH, and temperature. The data were first investigated using descriptive statistical tools, followed by two practical multivariate analyses that reduced the data dimensions for better interpretation. The analyses employed were factor analysis and principal component analysis, which explain 60 and 81.6% of the total variation in the data, respectively. We found that the resulting latent variables from the factor analysis are interpretable and beneficial for describing the water quality in the Klang River. This study presents the usefulness of several statistical methods in evaluating and interpreting water quality data for the purpose of monitoring the effectiveness of water resource management. The results should provide more straightforward data interpretation as well as valuable insight for managers to conceive optimum action plans for controlling pollution in river water.

  7. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within ;water-balance subregions; (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and

  8. To What Extent is Drinking Water Tested in Sub-Saharan Africa? A Comparative Analysis of Regulated Water Quality Monitoring

    PubMed Central

    Peletz, Rachel; Kumpel, Emily; Bonham, Mateyo; Rahman, Zarah; Khush, Ranjiv

    2016-01-01

    Water quality information is important for guiding water safety management and preventing water-related diseases. To assess the current status of regulated water quality monitoring in sub-Saharan Africa, we evaluated testing programs for fecal contamination in 72 institutions (water suppliers and public health agencies) across 10 countries. Data were collected through written surveys, in-person interviews, and analysis of microbial water quality testing levels. Though most institutions did not achieve the testing levels specified by applicable standards or World Health Organization (WHO) Guidelines, 85% of institutions had conducted some microbial water testing in the previous year. Institutions were more likely to meet testing targets if they were suppliers (as compared to surveillance agencies), served larger populations, operated in urban settings, and had higher water quality budgets (all p < 0.05). Our results indicate that smaller water providers and rural public health offices will require greater attention and additional resources to achieve regulatory compliance for water quality monitoring in sub-Saharan Africa. The cost-effectiveness of water quality monitoring should be improved by the application of risk-based water management approaches. Efforts to strengthen monitoring capacity should pay greater attention to program sustainability and institutional commitment to water safety. PMID:26950135

  9. Factor analysis and cluster analysis applied to assess the water quality of middle and lower Han River in Central China

    NASA Astrophysics Data System (ADS)

    Kuo, Yi-Ming; Liu, Wen-Wen

    2015-04-01

    The Han River basin is one of the most important industrial and grain production bases in the central China. A lot of factories and towns have been established along the river where large farmlands are located nearby. In the last few decades the water quality of the Han River, specifically in middle and lower reaches, has gradually declined. The agricultural nonpoint pollution and municipal and industrial point pollution significantly degrade the water quality of the Han River. Factor analysis can be applied to reduce the dimensionality of a data set consisting of a large number of inter-related variables. Cluster analysis can classify the samples according to their similar characters. In this study, factor analysis is used to identify major pollution indicators, and cluster analysis is employed to classify the samples based on the sample locations and hydrochemical variables. Water samples were collected from 12 sample sites collected from Xiangyang City (middle Han River) to Wuhan City (lower Han River). Correlations among 25 hydrochemical variables are statistically examined. The important pollutants are determined by factor analysis. A three-factor model is determined and explains over 85% of the total river water quality variation. Factor 1, including SS, Chl-a, TN and TP, can be considered as the nonpoint source pollution. Factor 2, including Cl-, Br-, SO42-, Ca2+, Mg2+, K+, Fe2+ and PO43-, can be treated as the industrial pollutant pollution. Factor 3, including F- and NO3-, reflects the influence of the groundwater or self-purification capability of the river water. The various land uses along the Han River correlate well with the pollution types. In addition, the result showed that the water quality of Han River deteriorated gradually from middle to lower Han River. Some tributaries have been seriously polluted and significantly influence the mainstream water quality of the Han River. Finally, the result showed that the nonpoint pollution and the point

  10. Temporal Variations of Water Productivity in Irrigated Corn: An Analysis of Factors Influencing Yield and Water Use across Central Nebraska

    PubMed Central

    Carr, Tony; Yang, Haishun; Ray, Chittaranjan

    2016-01-01

    Water Productivity (WP) of a crop defines the relationship between the economic or physical yield of the crop and its water use. With this concept it is possible to identify disproportionate water use or water-limited yield gaps and thereby support improvements in agricultural water management. However, too often important qualitative and quantitative environmental factors are not part of a WP analysis and therefore neglect the aspect of maintaining a sustainable agricultural system. In this study, we examine both the physical and economic WP in perspective with temporally changing environmental conditions. The physical WP analysis was performed by comparing simulated maximum attainable corn yields per unit of water using the crop model Hybrid-Maize with observed data from 2005 through 2013 from 108 farm plots in the Central Platte and the Tri Basin Natural Resource Districts of Nebraska. In order to expand the WP analysis on external factors influencing yields, a second model, Maize-N, was used to estimate optimal nitrogen (N)–fertilizer rate for specific fields in the study area. Finally, a vadose zone flow and transport model, HYDRUS-1D for simulating vertical nutrient transport in the soil, was used to estimate locations of nitrogen pulses in the soil profile. The comparison of simulated and observed data revealed that WP was not on an optimal level, mainly due to large amounts of irrigation used in the study area. The further analysis illustrated year-to-year variations of WP during the nine consecutive years, as well as the need to improve fertilizer management to favor WP and environmental quality. In addition, we addressed the negative influence of groundwater depletion on the economic WP through increasing pumping costs. In summary, this study demonstrated that involving temporal variations of WP as well as associated environmental and economic issues can represent a bigger picture of WP that can help to create incentives to sustainably improve

  11. Modeling Power Plant Cooling Water Requirements: A Regional Analysis of the Energy-Water Nexus Considering Renewable Sources within the Power Generation Mix

    NASA Astrophysics Data System (ADS)

    Peck, Jaron Joshua

    Water is used in power generation for cooling processes in thermoelectric power. plants and currently withdraws more water than any other sector in the U.S. Reducing water. use from power generation will help to alleviate water stress in at risk areas, where droughts. have the potential to strain water resources. The amount of water used for power varies. depending on many climatic aspects as well as plant operation factors. This work presents. a model that quantifies the water use for power generation for two regions representing. different generation fuel portfolios, California and Utah. The analysis of the California Independent System Operator introduces the methods. of water energy modeling by creating an overall water use factor in volume of water per. unit of energy produced based on the fuel generation mix of the area. The idea of water. monitoring based on energy used by a building or region is explored based on live fuel mix. data. This is for the purposes of increasing public awareness of the water associated with. personal energy use and helping to promote greater energy efficiency. The Utah case study explores the effects more renewable, and less water-intensive, forms of energy will have on the overall water use from power generation for the state. Using a similar model to that of the California case study, total water savings are quantified. based on power reduction scenarios involving increased use of renewable energy. The. plausibility of implementing more renewable energy into Utah’s power grid is also. discussed. Data resolution, as well as dispatch methods, economics, and solar variability, introduces some uncertainty into the analysis.

  12. Subcritical water extractor for Mars analog soil analysis.

    PubMed

    Amashukeli, Xenia; Grunthaner, Frank J; Patrick, Steven B; Yung, Pun To

    2008-06-01

    Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C).

  13. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis

    PubMed Central

    Bain, Robert E.S.; Cronk, Ryan; Wright, Jim A.; Bartram, Jamie

    2015-01-01

    Background Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. Objectives We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. Methods We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Results Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p < 0.001) and in HSW (p = 0.03). Source water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Conclusions Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water. Citation Shields KF, Bain RE, Cronk R, Wright JA, Bartram J. 2015. Association of supply type with fecal contamination of source water and household stored drinking water in developing countries: a bivariate meta-analysis. Environ Health Perspect 123:1222–1231; http://dx.doi.org/10.1289/ehp.1409002 PMID:25956006

  14. Water Supplies: Microbiological Analysis

    EPA Science Inventory

    Producing high-quality drinking water that is free of harmful microorganisms and maintaining its purity through distribution systems are essential for public health. Drinking water quality standards and guidelines for microbial contaminants vary within and among countries but typ...

  15. Analysis of the high water wave volume for the Sava River near Zagreb

    NASA Astrophysics Data System (ADS)

    Trninic, Dusan

    2010-05-01

    The paper analyses volumes of the Sava River high water waves near Zagreb during the period: 1926-2008 (N = 83 years), which is needed for more efficient control of high and flood waters. The primary Sava flood control structures in the City of Zagreb are dikes built on both riverbanks, and the Odra Relief Canal with lateral spillway upstream from the City of Zagreb. Intensive morphological changes in the greater Sava area near Zagreb, and anthropological and climate variations and changes at the Sava catchment up to the Zagreb area require detailed analysis of the water wave characteristics. In one analysis, maximum annual volumes are calculated for high water waves with constant duration of: 10, 20, 30, 40, 50 and 60 days. Such calculations encompass total quantity of water (basic and surface runoff). The log Pearson III distribution is adapted for this series of maximum annual volumes. Based on the results obtained, the interrelations are established between the wave volume as function of duration and occurrence probability. In addition to the analysis of maximum volumes of constant duration, it is interesting to carry out the analyses of maximum volume in excess of the reference discharge since it is very important for the flood control. To determine the reference discharges, a discharge of specific duration is used from an average discharge duration curve. The adopted reference discharges have durations of 50, 40, 30, 20 and 10%. Like in the previous case, log Pearson III distribution is adapted to the maximum wave data series. For reference discharge Q = 604 m3/s (duration 10%), a linear trend is calculated of maximum annual volumes exceeding the reference discharge for the Sava near Zagreb during the analyzed period. The analysis results show a significant decrease trend. A similar analysis is carried out for the following three reference discharges: regular flood control measures at the Sava near Zagreb, which are proclaimed when the water level is 350 cm

  16. Risk analysis of emergent water pollution accidents based on a Bayesian Network.

    PubMed

    Tang, Caihong; Yi, Yujun; Yang, Zhifeng; Sun, Jie

    2016-01-01

    To guarantee the security of water quality in water transfer channels, especially in open channels, analysis of potential emergent pollution sources in the water transfer process is critical. It is also indispensable for forewarnings and protection from emergent pollution accidents. Bridges above open channels with large amounts of truck traffic are the main locations where emergent accidents could occur. A Bayesian Network model, which consists of six root nodes and three middle layer nodes, was developed in this paper, and was employed to identify the possibility of potential pollution risk. Dianbei Bridge is reviewed as a typical bridge on an open channel of the Middle Route of the South to North Water Transfer Project where emergent traffic accidents could occur. Risk of water pollutions caused by leakage of pollutants into water is focused in this study. The risk for potential traffic accidents at the Dianbei Bridge implies a risk for water pollution in the canal. Based on survey data, statistical analysis, and domain specialist knowledge, a Bayesian Network model was established. The human factor of emergent accidents has been considered in this model. Additionally, this model has been employed to describe the probability of accidents and the risk level. The sensitive reasons for pollution accidents have been deduced. The case has also been simulated that sensitive factors are in a state of most likely to lead to accidents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Chlorine Analysis - Water. Training Module 5.260.2.77.

    ERIC Educational Resources Information Center

    Kirkwood Community Coll., Cedar Rapids, IA.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the procedures for chlorine residual analysis. It includes objectives, an instructor guide, and student handouts. The module addresses the determination of combined and free residual chlorine in water supply samples using three…

  18. The added value of a water footprint approach: Micro- and macroeconomic analysis of cotton production, processing and export in water bound Uzbekistan

    NASA Astrophysics Data System (ADS)

    Rudenko, I.; Bekchanov, M.; Djanibekov, U.; Lamers, J. P. A.

    2013-11-01

    Since independence from the former Soviet Union in 1991, Uzbekistan is challenged to consolidate its efforts and identify and introduce suitable agricultural policies to ease the threat of advancing land, water and ecosystem deterioration. On the one hand, irrigated cotton production provides income, food and energy sources for a large part of the rural households, which accounts for about 70% of the total population. On the other hand, this sector is considered a major driver of the on-going environmental degradation. Due to this dual nature, an integrated approach is needed that allows the analyses of the cotton sector at different stages and, consequently, deriving comprehensive options for action. The findings of the economic based value chain analysis and ecologically-oriented water footprint analysis on regional level were complemented with the findings of an input-output model on national level. This combination gave an added value for better-informed decision-making to reach land, water and ecosystem sustainability, compared to the individual results of each approach. The synergy of approaches pointed at various options for actions, such as to (i) promote the shift of water use from the high water consuming agricultural sector to a less water consuming cotton processing sector, (ii) increase overall water use efficiency by expanding the highly water productive industrial sectors and concurrently decreasing sectors with inefficient water use, and (iii) reduce agricultural water use by improving irrigation and conveyance efficiencies. The findings showed that increasing water use efficiency, manufacturing products with higher value added and raising water users' awareness of the real value of water are essential for providing water security in Uzbekistan.

  19. Parametric sensitivity analysis of an agro-economic model of management of irrigation water

    NASA Astrophysics Data System (ADS)

    El Ouadi, Ihssan; Ouazar, Driss; El Menyari, Younesse

    2015-04-01

    The current work aims to build an analysis and decision support tool for policy options concerning the optimal allocation of water resources, while allowing a better reflection on the issue of valuation of water by the agricultural sector in particular. Thus, a model disaggregated by farm type was developed for the rural town of Ait Ben Yacoub located in the east Morocco. This model integrates economic, agronomic and hydraulic data and simulates agricultural gross margin across in this area taking into consideration changes in public policy and climatic conditions, taking into account the competition for collective resources. To identify the model input parameters that influence over the results of the model, a parametric sensitivity analysis is performed by the "One-Factor-At-A-Time" approach within the "Screening Designs" method. Preliminary results of this analysis show that among the 10 parameters analyzed, 6 parameters affect significantly the objective function of the model, it is in order of influence: i) Coefficient of crop yield response to water, ii) Average daily gain in weight of livestock, iii) Exchange of livestock reproduction, iv) maximum yield of crops, v) Supply of irrigation water and vi) precipitation. These 6 parameters register sensitivity indexes ranging between 0.22 and 1.28. Those results show high uncertainties on these parameters that can dramatically skew the results of the model or the need to pay particular attention to their estimates. Keywords: water, agriculture, modeling, optimal allocation, parametric sensitivity analysis, Screening Designs, One-Factor-At-A-Time, agricultural policy, climate change.

  20. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were < 21 % based on isotope tracers but were

  1. Optimization of Water Output by Experimental Analysis on Passive Solar Still

    NASA Astrophysics Data System (ADS)

    Parekh, Winners; Patel, Mrugen; Patel, Nikunj; Prajapati, Jaimin; Patel, Maitrik

    2018-02-01

    This paper presents experimental analysis obtained using the single slope passive solar still. The experiments were conducted in Ahmedabad (23°03’ N, 72°40’ E) using a passive solar still with different water depths and basin materials. Salt was added to study the effect of salinity of water on solar distillation. An extra clear glass is used as cover plate as it transmits 91% light into solar still. Rubber plate and Styrofoam were used as insulating material. So, the productivity of solar still was determined by increasing the temperature of water in the basin and glass temperature.

  2. Sequence-based analysis of the microbial composition of water kefir from multiple sources.

    PubMed

    Marsh, Alan J; O'Sullivan, Orla; Hill, Colin; Ross, R Paul; Cotter, Paul D

    2013-11-01

    Water kefir is a water-sucrose-based beverage, fermented by a symbiosis of bacteria and yeast to produce a final product that is lightly carbonated, acidic and that has a low alcohol percentage. The microorganisms present in water kefir are introduced via water kefir grains, which consist of a polysaccharide matrix in which the microorganisms are embedded. We aimed to provide a comprehensive sequencing-based analysis of the bacterial population of water kefir beverages and grains, while providing an initial insight into the corresponding fungal population. To facilitate this objective, four water kefirs were sourced from the UK, Canada and the United States. Culture-independent, high-throughput, sequencing-based analyses revealed that the bacterial fraction of each water kefir and grain was dominated by Zymomonas, an ethanol-producing bacterium, which has not previously been detected at such a scale. The other genera detected were representatives of the lactic acid bacteria and acetic acid bacteria. Our analysis of the fungal component established that it was comprised of the genera Dekkera, Hanseniaspora, Saccharomyces, Zygosaccharomyces, Torulaspora and Lachancea. This information will assist in the ultimate identification of the microorganisms responsible for the potentially health-promoting attributes of these beverages. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Development, application, and sensitivity analysis of a water quality index for drinking water management in small systems.

    PubMed

    Scheili, A; Rodriguez, Manuel J; Sadiq, R

    2015-11-01

    The aim of this study was to produce a drinking water assessment tool for operators of small distribution systems. A drinking water quality index (DWQI) was developed and applied to small systems based on the water quality index of the Canadian Council of Ministers of Environment. The drinking water quality index was adapted to specific needs by creating four drinking water quality scenarios. First, the temporal and spatial dimensions of drinking water quality variability were taken into account. The DWQI was designed to express global drinking water quality according to different monitoring frequencies. Daily, monthly, and seasonal assessment was also considered. With the data made available, it was possible to use the index as a spatial monitoring tool and express water quality in different points in the distribution system. Moreover, adjustments were made to prioritize the type of contaminant to monitor. For instance, monitoring contaminants with acute health effects led to a scenario based on daily measures, including easily accessible and affordable water quality parameters. On the other hand, contaminants with chronic effects, especially disinfection by-products, were considered in a seasonal monitoring scenario where disinfection by-product reference values were redefined according to their seasonal variability. A sensitivity analysis was also carried out to validate the index. Globally, the DWQI developed is adapted to the needs of small systems. In fact, expressing drinking water quality using the DWQI contributes to the identification of problematic periods and segments in the distribution system. Further work may include this index in the development of a customized decision-making tool for small-system operators and managers.

  4. Identifying the causes of water crises: A configurational frequency analysis of 22 basins world wide

    NASA Astrophysics Data System (ADS)

    Srinivasan, V.; Gorelick, S.; Lambin, E.; Rozelle, S.; Thompson, B.

    2010-12-01

    Freshwater "scarcity" has been identified as being a major problem world-wide, but it is surprisingly hard to assess if water is truly scarce at a global or even regional scale. Most empirical water research remains location specific. Characterizing water problems, transferring lessons across regions, to develop a synthesized global view of water issues remains a challenge. In this study we attempt a systematic understanding of water problems across regions. We compared case studies of basins across different regions of the world using configurational frequency analysis. Because water crises are multi-symptom and multi-causal, a major challenge was to categorize water problems so as to make comparisons across cases meaningful. In this study, we focused strictly on water unsustainability, viz. the inability to sustain current levels of the anthropogenic (drinking water, food, power, livelihood) and natural (aquatic species, wetlands) into the future. For each case, the causes of three outcome variables, groundwater declines, surface water declines and aquatic ecosystem declines, were classified and coded. We conducted a meta-analysis in which clusters of peer-reviewed papers by interdisciplinary teams were considered to ensure that the results were not biased towards factors privileged by any one discipline. Based on our final sample of 22 case study river basins, some clear patterns emerged. The meta-analysis suggests that water resources managers have long overemphasized the factors governing supply of water resources and while insufficient attention has been paid to the factors driving demand. Overall, uncontrolled increase in demand was twice as frequent as declines in availability due to climate change or decreased recharge. Moreover, groundwater and surface water declines showed distinct causal pathways. Uncontrolled increases in demand due to lack of credible enforcement were a key factor driving groundwater declines; while increased upstream abstractions

  5. Total coliform and Escherichia coli contamination in rural well water: analysis for passive surveillance.

    PubMed

    Invik, Jesse; Barkema, Herman W; Massolo, Alessandro; Neumann, Norman F; Checkley, Sylvia

    2017-10-01

    With increasing stress on our water resources and recent waterborne disease outbreaks, understanding the epidemiology of waterborne pathogens is crucial to build surveillance systems. The purpose of this study was to explore techniques for describing microbial water quality in rural drinking water wells, based on spatiotemporal analysis, time series analysis and relative risk mapping. Tests results for Escherichia coli and coliforms from private and small public well water samples, collected between 2004 and 2012 in Alberta, Canada, were used for the analysis. Overall, 14.6 and 1.5% of the wells were total coliform and E. coli-positive, respectively. Private well samples were more often total coliform or E. coli-positive compared with untreated public well samples. Using relative risk mapping we were able to identify areas of higher risk for bacterial contamination of groundwater in the province not previously identified. Incorporation of time series analysis demonstrated peak contamination occurring for E. coli in July and a later peak for total coliforms in September, suggesting a temporal dissociation between these indicators in terms of groundwater quality, and highlighting the potential need to increase monitoring during certain periods of the year.

  6. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethynylestradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl der...

  7. Water vapor weathering of Taurus-Littrow orange soil - A pore-structure analysis

    NASA Technical Reports Server (NTRS)

    Cadenhead, D. A.; Mikhail, R. S.

    1975-01-01

    A pore-volume analysis was performed on water vapor adsorption data previously obtained on a fresh sample of Taurus-Littrow orange soil, and the analysis was repeated on the same sample after its exposure to moist air for a period of approximately six months. The results indicate that exposure of an outgassed sample to high relative pressures of water vapor can result in the formation of substantial micropore structure, the precise amount being dependent on the sample pretreatment, particularly the outgassing temperature. Micropore formation is explained in terms of water penetration into surface defects. In contrast, long-term exposure to moist air at low relative pressures appears to reverse the process with the elimination of micropores and enlargement of mesopores possibly through surface diffusion of metastable adsorbent material. The results are considered with reference to the storage of lunar samples.

  8. Miniaturized and direct spectrophotometric multi-sample analysis of trace metals in natural waters.

    PubMed

    Albendín, Gemma; López-López, José A; Pinto, Juan J

    2016-03-15

    Trends in the analysis of trace metals in natural waters are mainly based on the development of sample treatment methods to isolate and pre-concentrate the metal from the matrix in a simpler extract for further instrumental analysis. However, direct analysis is often possible using more accessible techniques such as spectrophotometry. In this case a proper ligand is required to form a complex that absorbs radiation in the ultraviolet-visible (UV-Vis) spectrum. In this sense, the hydrazone derivative, di-2-pyridylketone benzoylhydrazone (dPKBH), forms complexes with copper (Cu) and vanadium (V) that absorb light at 370 and 395 nm, respectively. Although spectrophotometric methods are considered as time- and reagent-consuming, this work focused on its miniaturization by reducing the volume of sample as well as time and cost of analysis. In both methods, a micro-amount of sample is placed into a microplate reader with a capacity for 96 samples, which can be analyzed in times ranging from 5 to 10 min. The proposed methods have been optimized using a Box-Behnken design of experiments. For Cu determination, concentration of phosphate buffer solution at pH 8.33, masking agents (ammonium fluoride and sodium citrate), and dPKBH were optimized. For V analysis, sample (pH 4.5) was obtained using acetic acid/sodium acetate buffer, and masking agents were ammonium fluoride and 1,2-cyclohexanediaminetetraacetic acid. Under optimal conditions, both methods were applied to the analysis of certified reference materials TMDA-62 (lake water), LGC-6016 (estuarine water), and LGC-6019 (river water). In all cases, results proved the accuracy of the method. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Calibration of equipment for analysis of drinking water fluoride: a comparison study.

    PubMed

    Quock, Ryan L; Chan, Jarvis T

    2012-03-01

    Current American Dental Association evidence-based recommendations for prescription of dietary fluoride supplements are based in part on the fluoride concentration of a pediatric patient's drinking water. With these recommendations in mind, this study compared the relative accuracy of fluoride concentration analysis when a common apparatus is calibrated with different combinations of standard values. Fluoride solutions in increments of 0.1 ppm, from a range of 0.1 to 1.0 ppm fluoride, as well as 2.0 and 4.0 ppm, were gravimetrically prepared and fluoride concentration measured in pentad, using a fluoride ion-specific electrode and millivolt meter. Fluoride concentrations of these solutions were recorded after calibration with the following 3 different combinations of standard fluoride solutions: 0.1 ppm and 0.5 ppm, 0.1 ppm and 1.0 ppm, 0.5 ppm and 1.0 ppm. Statistical analysis showed significant differences in the fluoride content of water samples obtained with different two-standard fluoride solutions. Among the two-standard fluoride solutions tested, using 0.5 ppm and 1.0 ppm as two-standard fluoride solutions provided the most accurate fluoride measurement of water samples containing fluoride in the range of 0.1 ppm to 4.0 ppm. This information should be valuable to dental clinics or laboratories in fluoride analysis of drinking water samples.

  10. Accident analysis and control options in support of the sludge water system safety analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HEY, B.E.

    A hazards analysis was initiated for the SWS in July 2001 (SNF-8626, K Basin Sludge and Water System Preliminary Hazard Analysis) and updated in December 2001 (SNF-10020 Rev. 0, Hazard Evaluation for KE Sludge and Water System - Project A16) based on conceptual design information for the Sludge Retrieval System (SRS) and 60% design information for the cask and container. SNF-10020 was again revised in September 2002 to incorporate new hazards identified from final design information and from a What-if/Checklist evaluation of operational steps. The process hazards, controls, and qualitative consequence and frequency estimates taken from these efforts have beenmore » incorporated into Revision 5 of HNF-3960, K Basins Hazards Analysis. The hazards identification process documented in the above referenced reports utilized standard industrial safety techniques (AIChE 1992, Guidelines for Hazard Evaluation Procedures) to systematically guide several interdisciplinary teams through the system using a pre-established set of process parameters (e.g., flow, temperature, pressure) and guide words (e.g., high, low, more, less). The teams generally included representation from the U.S. Department of Energy (DOE), K Basins Nuclear Safety, T Plant Nuclear Safety, K Basin Industrial Safety, fire protection, project engineering, operations, and facility engineering.« less

  11. ANALYSIS OF SWINE LAGOONS AND GROUND WATER FOR ENVIRONMENTAL ESTROGENS

    EPA Science Inventory

    A method was developed for analysis of low levels of natural (estradiol, estrone, estriol) and synthetic (ethinyl estradiol) estrogens in ground water and swine waste lagoon effluent. The method includes solid phase extraction of the estrogens, preparation of pentafluorobenzyl de...

  12. Environmental benefit analysis of strategies for potable water savings in residential buildings.

    PubMed

    Marinoski, Ana Kelly; Rupp, Ricardo Forgiarini; Ghisi, Enedir

    2018-01-15

    The objective of this study is to assess the environmental benefit of using rainwater, greywater, water-efficient appliances and their combinations in low-income houses. The study was conducted surveying twenty households located in southern Brazil, which resulted in water end-uses estimation. Then, embodied energy, potential for potable water savings and sewage reduction when using the different strategies were estimated. The environmental benefit analysis of these strategies was performed using an indicator that includes embodied energy, potable water savings, reduction of sewage and energy consumption in the water utility, and sewage production during the life cycle of the system. The results indicated that the strategy with the greatest environmental benefit is the use of water-efficient appliances, which resulted in substantial water savings and reduction of sewage, causing low environmental impact due to lower embodied energy over the life cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Decomposition analysis of water footprint changes in a water-limited river basin: a case study of the Haihe River basin, China

    NASA Astrophysics Data System (ADS)

    Zhi, Y.; Yang, Z. F.; Yin, X. A.

    2014-05-01

    Decomposition analysis of water footprint (WF) changes, or assessing the changes in WF and identifying the contributions of factors leading to the changes, is important to water resource management. Instead of focusing on WF from the perspective of administrative regions, we built a framework in which the input-output (IO) model, the structural decomposition analysis (SDA) model and the generating regional IO tables (GRIT) method are combined to implement decomposition analysis for WF in a river basin. This framework is illustrated in the WF in Haihe River basin (HRB) from 2002 to 2007, which is a typical water-limited river basin. It shows that the total WF in the HRB increased from 4.3 × 1010 m3 in 2002 to 5.6 × 1010 m3 in 2007, and the agriculture sector makes the dominant contribution to the increase. Both the WF of domestic products (internal) and the WF of imported products (external) increased, and the proportion of external WF rose from 29.1 to 34.4%. The technological effect was the dominant contributor to offsetting the increase of WF. However, the growth of WF caused by the economic structural effect and the scale effect was greater, so the total WF increased. This study provides insights about water challenges in the HRB and proposes possible strategies for the future, and serves as a reference for WF management and policy-making in other water-limited river basins.

  14. Modal Analysis of a Steel Radial Gate Exposed to Different Water Levels

    NASA Astrophysics Data System (ADS)

    Brusewicz, Krzysztof; Sterpejkowicz-Wersocki, Witold; Jankowski, Robert

    2017-06-01

    With the increase in water retention needs and planned river regulation, it might be important to investigate the dynamic resistance of vulnerable elements of hydroelectric power plants, including steelwater locks. The most frequent dynamic loads affecting hydroengineering structures in Poland include vibrations caused by heavy road and railway traffic, piling works and mining tremors. More destructive dynamic loads, including earthquakes, may also occur in our country, although their incidence is relatively low. However, given the unpredictable nature of such events, as well as serious consequences they might cause, the study of the seismic resistance of the steel water gate, as one of the most vulnerable elements of a hydroelectric power plant, seems to be important. In this study, a steel radial gate has been analyzed. As far as water gates are concerned, it is among the most popular solutions because of its relatively small weight, compared to plain gates. A modal analysis of the steel radial gate was conducted with the use of the FEM in the ABAQUS software. All structural members were modelled using shell elements with detailed geometry representing a real structure.Water was modelled as an added mass affecting the structure. Different water levels were used to determine the most vulnerable state of the working steel water gate. The results of the modal analysis allowed us to compare the frequencies and their eigenmodes in response to different loads, which is one of the first steps in researching the dynamic properties of steel water gates and their behaviour during extreme dynamic loads, including earthquakes.

  15. Analysis of internal flow characteristics of a smooth-disk water-brake dynamometer

    NASA Technical Reports Server (NTRS)

    Evans, D. G.

    1973-01-01

    The principal of absorbing power with an enclosed partially submerged rotating disk through the turbulent viscous shearing of water is discussed. Reference information is used to develop a flow model of the water brake. A method is then presented that uses vector diagrams to relate the effects of rotational flow, through flow, and secondary flow to power absorption. The method is used to describe the operating characteristics of an example 111-cm (43.7-in.) diameter water brake. Correlating performance parameters are developed in a dimensional analysis.

  16. Water Distribution System Deficiencies and Gastrointestinal Illness: A Systematic Review and Meta-Analysis

    PubMed Central

    Gruber, Joshua S.; Colford, John M.

    2014-01-01

    Background: Water distribution systems are vulnerable to performance deficiencies that can cause (re)contamination of treated water and plausibly lead to increased risk of gastrointestinal illness (GII) in consumers. Objectives: It is well established that large system disruptions in piped water networks can cause GII outbreaks. We hypothesized that routine network problems can also contribute to background levels of waterborne illness and conducted a systematic review and meta-analysis to assess the impact of distribution system deficiencies on endemic GII. Methods: We reviewed published studies that compared direct tap water consumption to consumption of tap water re-treated at the point of use (POU) and studies of specific system deficiencies such as breach of physical or hydraulic pipe integrity and lack of disinfectant residual. Results: In settings with network malfunction, consumers of tap water versus POU-treated water had increased GII [incidence density ratio (IDR) = 1.34; 95% CI: 1.00, 1.79]. The subset of nonblinded studies showed a significant association between GII and tap water versus POU-treated water consumption (IDR = 1.52; 95% CI: 1.05, 2.20), but there was no association based on studies that blinded participants to their POU water treatment status (IDR = 0.98; 95% CI: 0.90, 1.08). Among studies focusing on specific network deficiencies, GII was associated with temporary water outages (relative risk = 3.26; 95% CI: 1.48, 7.19) as well as chronic outages in intermittently operated distribution systems (odds ratio = 1.61; 95% CI: 1.26, 2.07). Conclusions: Tap water consumption is associated with GII in malfunctioning distribution networks. System deficiencies such as water outages also are associated with increased GII, suggesting a potential health risk for consumers served by piped water networks. Citation: Ercumen A, Gruber JS, Colford JM Jr. 2014. Water distribution system deficiencies and gastrointestinal illness: a systematic review and

  17. A Probabilistic Analysis of Surface Water Flood Risk in London.

    PubMed

    Jenkins, Katie; Hall, Jim; Glenis, Vassilis; Kilsby, Chris

    2018-06-01

    Flooding in urban areas during heavy rainfall, often characterized by short duration and high-intensity events, is known as "surface water flooding." Analyzing surface water flood risk is complex as it requires understanding of biophysical and human factors, such as the localized scale and nature of heavy precipitation events, characteristics of the urban area affected (including detailed topography and drainage networks), and the spatial distribution of economic and social vulnerability. Climate change is recognized as having the potential to enhance the intensity and frequency of heavy rainfall events. This study develops a methodology to link high spatial resolution probabilistic projections of hourly precipitation with detailed surface water flood depth maps and characterization of urban vulnerability to estimate surface water flood risk. It incorporates probabilistic information on the range of uncertainties in future precipitation in a changing climate. The method is applied to a case study of Greater London and highlights that both the frequency and spatial extent of surface water flood events are set to increase under future climate change. The expected annual damage from surface water flooding is estimated to be to be £171 million, £343 million, and £390 million/year under the baseline, 2030 high, and 2050 high climate change scenarios, respectively. © 2017 Society for Risk Analysis.

  18. Integrated systems analysis of persistent polar pollutants in the water cycle.

    PubMed

    van der Voet, E; Nikolic, I; Huppes, G; Kleijn, R

    2004-01-01

    Persistent polar pollutants (P3) are difficult to degrade in standard waste water treatment plants. As a result, they end up in the effluent and are emitted to the surface water. In some areas, this problem is aggravated through "closed loop recycling", causing concentrations of P3 in surface water to build up over time. This could cause violation of (future) EU regulations. In the P-THREE project, various alternative waste water treatment techniques are investigated regarding their effectiveness in eliminating these substances, especially membrane bioreactor treatment and advanced oxidation processes, MBR and AOP. The integrated systems analysis which is the subject of this paper assesses these techniques in a broader systems context: (1) the life-cycle of the P3, (2) the life cycle of the WWTPs, and (3) the WWTP life cycle costs.

  19. Scenario analysis for sustainable development of Chongming Island: water resources sustainability.

    PubMed

    Ni, Xiong; Wu, Yanqing; Wu, Jun; Lu, Jian; Wilson, P Chris

    2012-11-15

    With the socioeconomic and urban development of Chongming Island (the largest alluvial island in the world), water demand is rapidly growing. To make adjustments to the water utilization structure of each industry, allocate limited water resources, and increase local water use efficiency, this study performed a scenario analysis for the water sustainability of Chongming Island. Four different scenarios were performed to assess the water resource availability by 2020. The growth rate for water demand will be much higher than that of water supply under a serious situation prediction. The water supply growth volume will be 2.22 × 10(8)m(3) from 2010 to 2020 under Scenario I and Scenario II while the corresponding water demand growth volume will be 2.74 × 10(8)m(3) and 2.64 × 10(8)m(3), respectively. There will be a rapid growth in water use benefit under both high and low development modes. The water use benefit will be about 50 CNY/m(3) under Scenarios I and II in 2020. The production structure will need to be adjusted for sustainable utilization of water resources. Sewage drainage but not the forest and grass coverage rate will be a major obstacle to future development and environmental quality. According to a multi-level fuzzy comprehensive evaluation, Scenario II is finally deemed to be the most desirable plan, suggesting that the policy of rapid socioeconomic development and better environmental protection may achieve the most sustainable development of Chongming Island in the future. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Use of an automated chromium reduction system for hydrogen isotope ratio analysis of physiological fluids applied to doubly labeled water analysis.

    PubMed

    Schoeller, D A; Colligan, A S; Shriver, T; Avak, H; Bartok-Olson, C

    2000-09-01

    The doubly labeled water method is commonly used to measure total energy expenditure in free-living subjects. The method, however, requires accurate and precise deuterium abundance determinations, which can be laborious. The aim of this study was to evaluate a fully automated, high-throughput, chromium reduction technique for the measurement of deuterium abundances in physiological fluids. The chromium technique was compared with an off-line zinc bomb reduction technique and also subjected to test-retest analysis. Analysis of international water standards demonstrated that the chromium technique was accurate and had a within-day precision of <1 per thousand. Addition of organic matter to water samples demonstrated that the technique was sensitive to interference at levels between 2 and 5 g l(-1). Physiological samples could be analyzed without this interference, plasma by 10000 Da exclusion filtration, saliva by sedimentation and urine by decolorizing with carbon black. Chromium reduction of urine specimens from doubly labeled water studies indicated no bias relative to zinc reduction with a mean difference in calculated energy expenditure of -0.2 +/- 3.9%. Blinded reanalysis of urine specimens from a second doubly labeled water study demonstrated a test-retest coefficient of variation of 4%. The chromium reduction method was found to be a rapid, accurate and precise method for the analysis of urine specimens from doubly labeled water. Copyright 2000 John Wiley & Sons, Ltd.

  1. Using the Image Analysis Method for Describing Soil Detachment by a Single Water Drop Impact

    PubMed Central

    Ryżak, Magdalena; Bieganowski, Andrzej

    2012-01-01

    The aim of the present work was to develop a method based on image analysis for describing soil detachment caused by the impact of a single water drop. The method consisted of recording tracks made by splashed particles on blotting paper under an optical microscope. The analysis facilitated division of the recorded particle tracks on the paper into drops, “comets” and single particles. Additionally, the following relationships were determined: (i) the distances of splash; (ii) the surface areas of splash tracks into relation to distance; (iii) the surface areas of the solid phase transported over a given distance; and (iv) the ratio of the solid phase to the splash track area in relation to distance. Furthermore, the proposed method allowed estimation of the weight of soil transported by a single water drop splash in relation to the distance of the water drop impact. It was concluded that the method of image analysis of splashed particles facilitated analysing the results at very low water drop energy and generated by single water drops.

  2. Detection and genetic analysis of human sapoviruses in river water in Japan.

    PubMed

    Kitajima, Masaaki; Oka, Tomoichiro; Haramoto, Eiji; Katayama, Hiroyuki; Takeda, Naokazu; Katayama, Kazuhiko; Ohgaki, Shinichiro

    2010-04-01

    We investigated the prevalence of sapoviruses (SaVs) in the Tamagawa River in Japan from April 2003 to March 2004 and performed genetic analysis of the SaV genes identified in river water. A total of 60 river water samples were collected from five sites along the river, and 500 ml was concentrated using the cation-coated filter method. By use of a real-time reverse transcription (RT)-PCR assay, 12 (20%) of the 60 samples were positive for SaV. SaV sequences were obtained from 15 (25%) samples, and a total of 30 SaV strains were identified using six RT-PCR assays followed by cloning and sequence analysis. A newly developed nested RT-PCR assay utilizing a broadly reactive forward primer showed the highest detection efficiency and amplified more diverse SaV genomes in the samples. SaV sequences were frequently detected from November to March, whereas none were obtained in April, July, September, or October. No SaV sequences were detected in the upstream portion of the river, whereas the midstream portion showed high positive rates. Based on phylogenetic analysis, SaV strains identified in the river water samples were classified into nine genotypes, namely, GI/1, GI/2, GI/3, GI/5, GI/untyped, GII/1, GII/2, GII/3, and GV/1. To our knowledge, this is the first study describing seasonal and spatial distributions and genetic diversity of SaVs in river water. A combination of real-time RT-PCR assay and newly developed nested RT-PCR assay is useful for identifying and characterizing SaV strains in a water environment.

  3. Comprehensive benefit analysis of regional water resources based on multi-objective evaluation

    NASA Astrophysics Data System (ADS)

    Chi, Yixia; Xue, Lianqing; Zhang, Hui

    2018-01-01

    The purpose of the water resources comprehensive benefits analysis is to maximize the comprehensive benefits on the aspects of social, economic and ecological environment. Aiming at the defects of the traditional analytic hierarchy process in the evaluation of water resources, it proposed a comprehensive benefit evaluation of social, economic and environmental benefits index from the perspective of water resources comprehensive benefit in the social system, economic system and environmental system; determined the index weight by the improved fuzzy analytic hierarchy process (AHP), calculated the relative index of water resources comprehensive benefit and analyzed the comprehensive benefit of water resources in Xiangshui County by the multi-objective evaluation model. Based on the water resources data in Xiangshui County, 20 main comprehensive benefit assessment factors of 5 districts belonged to Xiangshui County were evaluated. The results showed that the comprehensive benefit of Xiangshui County was 0.7317, meanwhile the social economy has a further development space in the current situation of water resources.

  4. A Retrospective Analysis on the Occurrence of Arsenic in Ground-Water Resources of the United States and Limitations in Drinking-Water-Supply Characterizations

    USGS Publications Warehouse

    Focazio, Michael J.; Welch, Alan H.; Watkins, Sharon A.; Helsel, Dennis R.; Horn, Marilee A.

    2000-01-01

    The Safe Drinking Water Act, as amended in 1996, requires the U.S. Environmental Protection Agency (USEPA) to review current drinking-water standards for arsenic, propose a maximum contaminant level for arsenic by January 1, 2000, and issue a final regulation by January, 2001. Quantification of the national occurrence of targeted ranges in arsenic concentration in ground water used for public drinking-water supplies is an important component of USEPA's regulatory process. Data from the U.S. Geological Survey (USGS) National Water Information System (NWIS) were used in a retrospective analysis of arsenic in the ground-water resources of the United States. The analysis augments other existing sources of data on the occurrence of arsenic collected in ground water at public water-supply systems.The USGS, through its District offices and national programs, has been compiling data for many years on arsenic concentrations collected from wells used for public water supply, research, agriculture, industry, and domestic water supply throughout the United States. These data have been collected for a variety of purposes ranging from simple descriptions of the occurrence of arsenic in local or regional ground-water resources to detailed studies on arsenic geochemistry associated with contamination sites. A total of 18,864 sample locations were selected from the USGS NWIS data base regardless of well type, of which 2,262 were taken from public water-supply sources. Samples with non-potable water (dissolved-solids concentration greater than 2,000 milligrams per liter and water temperature greater than 50o Celsius) were not selected for the retrospective analysis and other criteria for selection included the amount and type of ancillary data available for each sample. The 1,528 counties with sufficient data included 76 percent of all large public water-supply systems (serving more than 10,000 people) and 61 percent of all small public water-supply systems (serving more than 1

  5. Detection of water contamination from hydraulic fracturing wastewater: a μPAD for bromide analysis in natural waters.

    PubMed

    Loh, Leslie J; Bandara, Gayan C; Weber, Genevieve L; Remcho, Vincent T

    2015-08-21

    Due to the rapid expansion in hydraulic fracturing (fracking), there is a need for robust, portable and specific water analysis techniques. Early detection of contamination is crucial for the prevention of lasting environmental damage. Bromide can potentially function as an early indicator of water contamination by fracking waste, because there is a high concentration of bromide ions in fracking wastewaters. To facilitate this, a microfluidic paper-based analytical device (μPAD) has been developed and optimized for the quantitative colorimetric detection of bromide in water using a smartphone. A paper microfluidic platform offers the advantages of inexpensive fabrication, elimination of unstable wet reagents, portability and high adaptability for widespread distribution. These features make this assay an attractive option for a new field test for on-site determination of bromide.

  6. Multivariate analysis of water quality and environmental variables in the Great Barrier Reef catchments

    NASA Astrophysics Data System (ADS)

    Ryu, D.; Liu, S.; Western, A. W.; Webb, J. A.; Lintern, A.; Leahy, P.; Wilson, P.; Watson, M.; Waters, D.; Bende-Michl, U.

    2016-12-01

    The Great Barrier Reef (GBR) lagoon has been experiencing significant water quality deterioration due in part to agricultural intensification and urban settlement in adjacent catchments. The degradation of water quality in rivers is caused by land-derived pollutants (i.e. sediment, nutrient and pesticide). A better understanding of dynamics of water quality is essential for land management to improve the GBR ecosystem. However, water quality is also greatly influenced by natural hydrological processes. To assess influencing factors and predict the water quality accurately, selection of the most important predictors of water quality is necessary. In this work, multivariate statistical techniques - cluster analysis (CA), principal component analysis (PCA) and factor analysis (FA) - are used to reduce the complexity derived from the multidimensional water quality monitoring data. Seventeen stations are selected across the GBR catchments, and the event-based measurements of 12 variables monitored during 9 years (2006 - 2014) were analysed by means of CA and PCA/FA. The key findings are: (1) 17 stations can be grouped into two clusters according to the hierarchical CA, and the spatial dissimilarity between these sites is characterised by the different climatic and land use in the GBR catchments. (2) PCA results indicate that the first 3 PCs explain 85% of the total variance, and FA on the entire data set shows that the varifactor (VF) loadings can be used to interpret the sources of spatial variation in water quality on the GBR catchments level. The impact of soil erosion and non-point source of pollutants from agriculture contribution to VF1 and the variability in hydrological conditions and biogeochemical processes can explain the loadings in VF2. (3) FA is also performed on two groups of sites identified in CA individually, to evaluate the underlying sources that are responsible for spatial variability in water quality in the two groups. For the Cluster 1 sites

  7. UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from themore » US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.« less

  8. [GIS and scenario analysis aid to water pollution control planning of river basin].

    PubMed

    Wang, Shao-ping; Cheng, Sheng-tong; Jia, Hai-feng; Ou, Zhi-dan; Tan, Bin

    2004-07-01

    The forward and backward algorithms for watershed water pollution control planning were summarized in this paper as well as their advantages and shortages. The spatial databases of water environmental function region, pollution sources, monitoring sections and sewer outlets were built with ARCGIS8.1 as the platform in the case study of Ganjiang valley, Jiangxi province. Based on the principles of the forward algorithm, four scenarios were designed for the watershed pollution control. Under these scenarios, ten sets of planning schemes were generated to implement cascade pollution source control. The investment costs of sewage treatment for these schemes were estimated by means of a series of cost-effective functions; with pollution source prediction, the water quality was modeled with CSTR model for each planning scheme. The modeled results of different planning schemes were visualized through GIS to aid decision-making. With the results of investment cost and water quality attainment as decision-making accords and based on the analysis of the economic endurable capacity for water pollution control in Ganjiang river basin, two optimized schemes were proposed. The research shows that GIS technology and scenario analysis can provide a good guidance to the synthesis, integrity and sustainability aspects for river basin water quality planning.

  9. Crospovidone interactions with water. II. Dynamic vapor sorption analysis of the effect of Polyplasdone particle size on its uptake and distribution of water.

    PubMed

    Saripella, Kalyan K; Mallipeddi, Rama; Neau, Steven H

    2014-11-20

    Polyplasdone of different particle size was used to study the sorption, desorption, and distribution of water, and to seek evidence that larger particles can internalize water. The three samples were Polyplasdone® XL, XL-10, and INF-10. Moisture sorption and desorption isotherms at 25 °C at 5% intervals from 0 to 95% relative humidity (RH) were generated by dynamic vapor sorption analysis. The three products provided similar data, judged to be Type III with a small hysteresis that appears when RH is below 65%. An absent rounded knee in the sorption curve suggests that multilayers form before the monolayer is completed. The hysteresis indicates that internally absorbed moisture is trapped as the water is desorbed and the polymer sample shrinks, thus requiring a lower level of RH to continue desorption. The fit of the Guggenheim-Anderson-de Boer (GAB) and the Young and Nelson equations was accomplished in the data analysis. The W(m), C(G), and K values from GAB analysis are similar across the three samples, revealing 0.962 water molecules per repeating unit in the monolayer. A small amount of absorbed water is identified, but this is consistent across the three particle sizes. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Integrated water assessment and modelling: A bibliometric analysis of trends in the water resource sector

    NASA Astrophysics Data System (ADS)

    Zare, Fateme; Elsawah, Sondoss; Iwanaga, Takuya; Jakeman, Anthony J.; Pierce, Suzanne A.

    2017-09-01

    There are substantial challenges facing humanity in the water and related sectors and purposeful integration of the disciplines, connected sectors and interest groups is now perceived as essential to address them. This article describes and uses bibliometric analysis techniques to provide quantitative insights into the general landscape of Integrated Water Resource Assessment and Modelling (IWAM) research over the last 45 years. Keywords, terms in titles, abstracts and the full texts are used to distinguish the 13,239 IWAM articles in journals and other non-grey literature. We identify the major journals publishing IWAM research, influential authors through citation counts, as well as the distribution and strength of source countries. Fruitfully, we find that the growth in numbers of such publications has continued to accelerate, and attention to both the biophysical and socioeconomic aspects has also been growing. On the other hand, our analysis strongly indicates that the former continue to dominate, partly by embracing integration with other biophysical sectors related to water - environment, groundwater, ecology, climate change and agriculture. In the social sciences the integration is occurring predominantly through economics, with the others, including law, policy and stakeholder participation, much diminished in comparison. We find there has been increasing attention to management and decision support systems, but a much weaker focus on uncertainty, a pervasive concern whose criticalities must be identified and managed for improving decision making. It would seem that interdisciplinary science still has a long way to go before crucial integration with the non-economic social sciences and uncertainty considerations are achieved more routinely.

  11. [Quantitative analysis of Cu in water by collinear DP-LIBS].

    PubMed

    Zheng, Mei-Lan; Yao, Ming-Yin; Chen, Tian-Bing; Lin, Yong-Zeng; Li, Wen-Bing; Liu, Mu-Hua

    2014-07-01

    The purpose of this research is to study the influence of double pulse laser induced breakdown spectroscopy (DP-LIBS) on the sensitivity of Cu in water. The water solution of Cu was tested by collinear DP-LIBS in this article. The results show that spectral intensity of Cu can be enhanced obviously by DP-LIBS, compared with single pulse laser induced breakdown spectroscopy (SP-LIBS). Besides, the experimental results were significantly impacted by delay time between laser pulse and spectrometer acquisition, delay time of double laser pulse and energy of laser pulse and so on. The paper determined the best conditions for DP-LIBS detecting Cu in water. The optimal acquisition delay time was 1 380 ns. The best laser pulse delay time was 25 ns. The most appropriate energy of double laser pulse was 100 mJ. Characteristic analysis of spectra of Cu at 324.7 and 327.4 nm was done for quantitative analysis. The detection limit was 3.5 microg x mL(-1) at 324.7 nm, and the detection limit was 4.84 microg x mL(-1) at 327.4 nm. The relative standard deviation of the two characteristic spectral lines was within 10%. The calibration curve of characteristic spectral line, established by 327.4 nm, was verified with 500 microg x mL(-1) sample. Concentration of the sample was 446 microg x mL(-1) calculated by the calibration curve. This research shows that the detection sensitivity of Cu in water can be improved by DP-LIBS. At the same time, it had high stability.

  12. Application of Bayesian and cost benefit risk analysis in water resources management

    NASA Astrophysics Data System (ADS)

    Varouchakis, E. A.; Palogos, I.; Karatzas, G. P.

    2016-03-01

    Decision making is a significant tool in water resources management applications. This technical note approaches a decision dilemma that has not yet been considered for the water resources management of a watershed. A common cost-benefit analysis approach, which is novel in the risk analysis of hydrologic/hydraulic applications, and a Bayesian decision analysis are applied to aid the decision making on whether or not to construct a water reservoir for irrigation purposes. The alternative option examined is a scaled parabolic fine variation in terms of over-pumping violations in contrast to common practices that usually consider short-term fines. The methodological steps are analytically presented associated with originally developed code. Such an application, and in such detail, represents new feedback. The results indicate that the probability uncertainty is the driving issue that determines the optimal decision with each methodology, and depending on the unknown probability handling, each methodology may lead to a different optimal decision. Thus, the proposed tool can help decision makers to examine and compare different scenarios using two different approaches before making a decision considering the cost of a hydrologic/hydraulic project and the varied economic charges that water table limit violations can cause inside an audit interval. In contrast to practices that assess the effect of each proposed action separately considering only current knowledge of the examined issue, this tool aids decision making by considering prior information and the sampling distribution of future successful audits.

  13. Quantitative and qualitative analysis of naphthenic acids in natural waters surrounding the Canadian oil sands industry.

    PubMed

    Ross, Matthew S; Pereira, Alberto dos Santos; Fennell, Jon; Davies, Martin; Johnson, James; Sliva, Lucie; Martin, Jonathan W

    2012-12-04

    The Canadian oil sands industry stores toxic oil sands process-affected water (OSPW) in large tailings ponds adjacent to the Athabasca River or its tributaries, raising concerns over potential seepage. Naphthenic acids (NAs; C(n)H(2n-Z)O(2)) are toxic components of OSPW, but are also natural components of bitumen and regional groundwaters, and may enter surface waters through anthropogenic or natural sources. This study used a selective high-resolution mass spectrometry method to examine total NA concentrations and NA profiles in OSPW (n = 2), Athabasca River pore water (n = 6, representing groundwater contributions) and surface waters (n = 58) from the Lower Athabasca Region. NA concentrations in surface water (< 2-80.8 μg/L) were 100-fold lower than previously estimated. Principal components analysis (PCA) distinguished sample types based on NA profile, and correlations to water quality variables identified two sources of NAs: natural fatty acids, and bitumen-derived NAs. Analysis of NA data with water quality variables highlighted two tributaries to the Athabasca River-Beaver River and McLean Creek-as possibly receiving OSPW seepage. This study is the first comprehensive analysis of NA profiles in surface waters of the region, and demonstrates the need for highly selective analytical methods for source identification and in monitoring for potential effects of development on ambient water quality.

  14. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0237] Cost-Benefit Analysis for Radwaste Systems for Light... (RG) 1.110, ``Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors... components for light water nuclear power reactors. ADDRESSES: Please refer to Docket ID NRC-2013-0237 when...

  15. Heavy Analysis and Light Virtualization of Water Use Data with Python

    NASA Astrophysics Data System (ADS)

    Kim, H.; Bijoor, N.; Famiglietti, J. S.

    2014-12-01

    Water utilities possess a large amount of water data that could be used to inform urban ecohydrology, management decisions, and conservation policies, but such data are rarely analyzed owing to difficulty in analyzation, visualization, and interpretion. We have developed a high performance computing resource for this purpose. We partnered with 6 water agencies in Orange County who provided 10 years of parcel-level monthly water use billing data for a pilot study. The first challenge that we overcame was to refine all human errors and unify the many different formats of data over all agencies. Second, we tested and applied experimental approaches to the data, including complex calculations, with high efficiency. Third, we developed a method to refine the data so it can be browsed along a time series index and/or geo-spatial queries with high efficiency, no matter how large the data. Python scientific libraries were the best match to handle arbitrary data sets in our environment. Further milestones include agency entry, sets of formulae, and maintaining 15M rows X 70 columns of data with high performance of cpu-bound processes. To deal with billions of rows, we performed an analysis virtualization stack by leveraging iPython parallel computing. With this architecture, one agency could be considered one computing node or virtual machine that maintains its own data sets respectively. For example, a big agency could use a large node, and a small agency could use a micro node. Under the minimum required raw data specs, more agencies could be analyzed. The program developed in this study simplifies data analysis, visualization, and interpretation of large water datasets, and can be used to analyze large data volumes from water agencies nationally or worldwide.

  16. Annual Book of ASTM Standards, Part 23: Water; Atmospheric Analysis.

    ERIC Educational Resources Information Center

    American Society for Testing and Materials, Philadelphia, PA.

    Standards for water and atmospheric analysis are compiled in this segment, Part 23, of the American Society for Testing and Materials (ASTM) annual book of standards. It contains all current formally approved ASTM standard and tentative test methods, definitions, recommended practices, proposed methods, classifications, and specifications. One…

  17. Energy-Water Nexus | Energy Analysis | NREL

    Science.gov Websites

    Deployment NREL has extensive experience and expertise related to energy-water technology research all along Nexus Energy-Water Nexus Water is required to produce energy. Energy is required to pump, treat , and transport water. The energy-water nexus examines the interactions between these two inextricably

  18. Recycling wastewater after hemodialysis: an environmental analysis for alternative water sources in arid regions.

    PubMed

    Tarrass, Faissal; Benjelloun, Meryem; Benjelloun, Omar

    2008-07-01

    Water is a vital aspect of hemodialysis. During the procedure, large volumes of water are used to prepare dialysate and clean and reprocess machines. This report evaluates the technical and economic feasibility of recycling hemodialysis wastewater for irrigation uses, such as watering gardens and landscape plantings. Water characteristics, possible recycling methods, and production costs of treated water are discussed in terms of the quality of the generated wastewater. A cost-benefit analysis is also performed through comparison of intended cost with that of seawater desalination, which is widely used in irrigation.

  19. Informing Regional Water-Energy-Food Nexus with System Analysis and Interactive Visualizations

    NASA Astrophysics Data System (ADS)

    Yang, Y. C. E.; Wi, S.

    2016-12-01

    Communicating scientific results to non-technical practitioners is challenging due to their differing interests, concerns and agendas. It is further complicated by the growing number of relevant factors that need to be considered, such as climate change and demographic dynamic. Visualization is an effective method for the scientific community to disseminate results, and it represents an opportunity for the future of water resources systems analysis (WRSA). This study demonstrates an intuitive way to communicate WRSA results to practitioners using interactive web-based visualization tools developed by the JavaScript library: Data-Driven Documents (D3) with a case study in Great Ruaha River of Tanzania. The decreasing trend of streamflow during the last decades in the region highlights the need of assessing the water usage competition between agricultural production, energy generation, and ecosystem service. Our team conduct the advance water resources systems analysis to inform policy that will affect the water-energy-food nexus. Modeling results are presented in the web-based visualization tools and allow non-technical practitioners to brush the graph directly (e. g. Figure 1). The WRSA suggests that no single measure can completely resolve the water competition. A combination of measures, each of which is acceptable from a social and economic perspective, and accepting that zero flows cannot be totally eliminated during dry years in the wetland, are likely to be the best way forward.

  20. A Qualitative Comparative Analysis of sustainable household water treatment interventions in developing countries

    NASA Astrophysics Data System (ADS)

    Sihombing, Daniel; Pande, Saket; Rietveld, Luuk

    2017-04-01

    One of the sub-goals of United Nations Sustainable Development Goal 6 is to achieve universal and equitable access to safe and affordable drinking water for all by 2030. Household water treatment (HWT; such as boiling, chlorination, solar or UV disinfection with lamps, etc.) is one of the technologies that can be used to reach this target. However, there is a big challenge to scale up the widespread implementation of this technology. Even though there are many HWT products on the market, sustainable uptake of this method (compliance) is unsatisfying. Researchers have shown that its compliance rate has often declined over time. Since there are many factors that influence the compliance rate, it is desirable to know the best combination of causal factors (pathway) that give the highest compliance based on the success stories reported in the literature. The motivation of this research is to find the pathways characteristic of local people that influence the compliance rate of HWT, using QCA (Qualitative Comparative Analysis). The comparative analysis is essentially a meta-analysis of HWT interventions and factors, possibly, behind successful or unsuccessful HWT uptake reported in literature. This thus helps to identify the characteristics of target communities that are willing to adopt HWT intervention, irrespective of the type of HWT. Out of 102 case studies reported in literature, 36 are selected from developing countries where an HWT intervention lasted for at least 12 months were selected and analyzed. Factors such as education level, perception about water quality, local beliefs, sanitation coverage, existing water treatment, type of water source, ability to pay, willingness to pay, existing local supply chain, and accessibility to water treatment were examined. Preliminary results show that 1) a combination of no prior HWT intervention in the community with a general perception of water quality being poor often leads to uptake of HWT technology, 2) education

  1. Contribution of Water from Food and Fluids to Total Water Intake: Analysis of a French and UK Population Surveys.

    PubMed

    Guelinckx, Isabelle; Tavoularis, Gabriel; König, Jürgen; Morin, Clémentine; Gharbi, Hakam; Gandy, Joan

    2016-10-14

    Little has been published on the contribution of food moisture (FM) to total water intake (TWI); therefore, the European Food Safety Authority assumed FM to contribute 20%-30% to TWI. The aim of the present analysis was to estimate and compare TWI, the percentage of water from FM and from fluids in population samples of France and UK. Data from 2 national nutrition surveys (Enquête Comportements et Consommations Alimentaires en France (CCAF) 2013 and the National Diet and Nutrition Survey (NDNS) 2008/2009-2011/2012) were analyzed for TWI and the contribution of water from FM and fluids. Children and adults TWI were significantly lower in France than in the UK. The contribution of water from foods was lower in the UK than in France (27% vs. 36%). As TWI increased, the proportion of water from fluids increased, suggesting that low drinkers did not compensate by increasing intake of water-rich foods. In addition, 80%-90% of the variance in TWI was explained by differences in water intake from fluids. More data on the contribution of FM to TWI is needed to develop more robust dietary recommendations on TWI and guidance on fluid intake for the general public.

  2. Water budget analysis and management for Bangkok Metropolis, Thailand.

    PubMed

    Singkran, Nuanchan

    2017-09-01

    The water budget of the Bangkok Metropolis system was analyzed using a material flow analysis model. Total imported flows into the system were 80,080 million m 3 per year (Mm 3 y -1 ) including inflows from the Chao Phraya and Mae Klong rivers and rainwater. Total exported flows out of the system were 78,528 Mm 3 y -1 including outflow into the lower Chao Phraya River and tap water (TW) distributed to suburbs. Total rates of stock exchange (1,552 Mm 3 y -1 ) were found in the processes of water recycling, TW distribution, domestic use, swine farming, aquaculture, and paddy fields. Only 21% of the total amount of wastewater (1,255 Mm 3 y -1 ) was collected, with insufficient treatment capacity of about 415 Mm 3 y -1 . Domestic and business (industrial and commercial sectors) areas were major point sources, whereas paddy fields were a major non-point source of wastewater. To manage Bangkok's water budget, critical measures have to be considered. Wastewater treatment capacity and efficiency of wastewater collection should be improved. On-site wastewater treatment plants for residential areas should be installed. Urban planning and land use zoning are suggested to control land use activities. Green technology should be supported to reduce wastewater from farming.

  3. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally...

  4. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis requirements. 257.23 Section 257.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Disposal Standards for the Receipt of Conditionally...

  5. Moment analysis description of wetting and redistribution plumes in wettable and water-repellent soils

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2012-02-01

    SummaryWater repellency has a significant impact on water flow patterns in the soil profile. Transient 2D flow in wettable and natural water-repellent soils was monitored in a transparent flow chamber. The substantial differences in plume shape and spatial water content distribution during the wetting and subsequent redistribution stages were related to the variation of contact angle while in contact with water. The observed plumes shape, internal water content distribution in general and the saturation overshoot behind the wetting front in particular in the repellent soils were associated with unstable flow. Moment analysis was applied to characterize the measured plumes during the wetting and subsequent redistribution. The center of mass and spatial variances determined for the measured evolving plumes were fitted by a model that accounts for capillary and gravitational driving forces in a medium of temporally varying wettability. Ellipses defined around the stable and unstable plumes' centers of mass and whose semi-axes represented a particular number of spatial variances were used to characterize plume shape and internal moisture distribution. A single probability curve was able to characterize the corresponding fractions of the total added water in the different ellipses for all measured plumes, which testify the competence and advantage of the moment analysis method.

  6. An orbital and electron density analysis of weak interactions in ethanol-water, methanol-water, ethanol and methanol small clusters.

    PubMed

    Mejía, Sol M; Flórez, Elizabeth; Mondragón, Fanor

    2012-04-14

    A computational study of (ethanol)(n)-water, n = 1 to 5 heteroclusters was carried out employing the B3LYP∕6-31+G(d) approach. The molecular (MO) and atomic (AO) orbital analysis and the topological study of the electron density provided results that were successfully correlated. Results were compared with those obtained for (ethanol)(n), (methanol)(n), n = 1 to 6 clusters and (methanol)(n)-water, n = 1 to 5 heteroclusters. These systems showed the same trends observed in the (ethanol)(n)-water, n = 1 to 5 heteroclusters such as an O---O distance of 5 Å to which the O-H---O hydrogen bonds (HBs) can have significant influence on the constituent monomers. The HOMO of the hetero(clusters) is less stable than the HOMO of the isolated alcohol monomer as the hetero(cluster) size increases, that destabilization is higher for linear geometries than for cyclic geometries. Changes of the occupancy and energy of the AO are correlated with the strength of O-H---O and C-H---O HBs as well as with the proton donor and/or acceptor character of the involved molecules. In summary, the current MO and AO analysis provides alternative ways to characterize HBs. However, this analysis cannot be applied to the study of H---H interactions observed in the molecular graphs.

  7. Smoke on the water-Oral fluid analysis at sea.

    PubMed

    Griffiths, Andrew; Leonars, Richard; Hadley, Lenore; Stephenson, Mark; Teale, Richard

    2017-09-01

    This study outlines the operational challenges and findings of an illicit drug oral fluid testing program carried out on the skippers (those in charge) of water vessels in Queensland, Australia. Between 2010 and 2016, 953 tests of skippers were conducted on water (waterside) for three proscribed illicit drugs; delta-9-tetrahydrocannabinol (THC), methylamphetamine (MA) and 3,4-methylendioxymethylamphetamine (MDMA). 126 (13%) of the skippers tested returned an on-site positive during waterside testing, 125 were confirmed positive for one or more illicit drug by subsequent laboratory analysis, whilst one skipper did not provide an oral fluid sample for confirmatory analysis. The skippers were entirely male (100%) with an average age of 39 years (range 17-59). THC was by far the most common drug detected (91%); MA was detected in 22% of skippers and a combination or THC and MA in 14% of specimens. MDMA was identified only once during the study, this being in combination with THC. As a single waterside operation can take more than a week, operational pre-planning becomes essential. Aspects of the operation such as, weather, shift times, food, testing consumables, sleeping quarters, hygiene, liaison between different agencies and multiple other factors need to be taken into account prior to commencement. A waterside operation must be mobile and, in Queensland at least, able to cover a large area of water. There is also a much lower volume of vessels likely to be encountered at sea compared to a roadside operation targeting motor vehicles. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Water and growth: An econometric analysis of climate and policy impacts

    NASA Astrophysics Data System (ADS)

    Khan, Hassaan Furqan; Morzuch, Bernard J.; Brown, Casey M.

    2017-06-01

    Water-related hazards such as floods, droughts, and disease cause damage to an economy through the destruction of physical capital including property and infrastructure, the loss of human capital, and the interruption of economic activities, like trade and education. The question for policy makers is whether the impacts of water-related risk accrue to manifest as a drag on economic growth at a scale suggesting policy intervention. In this study, the average drag on economic growth from water-related hazards faced by society at a global level is estimated. We use panel regressions with various specifications to investigate the relationship between economic growth and hydroclimatic variables at the country-river basin level. In doing so, we make use of surface water runoff variables never used before. The analysis of the climate variables shows that water availability and water hazards have significant effects on economic growth, providing further evidence beyond earlier studies finding that precipitation extremes were at least as important or likely more important than temperature effects. We then incorporate a broad set of variables representing the areas of infrastructure, institutions, and information to identify the characteristics of a region that determine its vulnerability to water-related risks. The results identify water scarcity, governance, and agricultural intensity as the most relevant measures affecting vulnerabilities to climate variability effects.

  9. Crystal water dynamics of guanosine dihydrate: analysis of atomic displacement parameters, time profile of hydrogen-bonding probability, and translocation of water by MD simulation.

    PubMed

    Yoneda, Shigetaka; Sugawara, Yoko; Urabe, Hisako

    2005-01-27

    The dynamics of crystal water molecules of guanosine dihydrate are investigated in detail by molecular dynamics (MD) simulation. A 2 ns simulation is performed using a periodic boundary box composed of 4 x 5 x 8 crystallographic unit cells and using the particle-mesh Ewald method for calculation of electrostatic energy. The simulated average atomic positions and atomic displacement parameters are remarkably coincident with the experimental values determined by X-ray analysis, confirming the high accuracy of this simulation. The dynamics of crystal water are analyzed in terms of atomic displacement parameters, orientation vectors, order parameters, self-correlation functions of the orientation vectors, time profiles of hydrogen-bonding probability, and translocations. The simulation clarifies that the average structure is composed of various stable and transient structures of the molecules. The simulated guanosine crystal forms a layered structure, with four water sites per asymmetric unit, classified as either interlayer water or intralayer water. From a detailed analysis of the translocations of water molecules in the simulation, columns of intralayer water molecules along the c axis appear to represent a pathway for hydration and dehydration by a kind of molecular valve mechanism.

  10. Underwater manipulator's kinematic analysis for sustainable and energy efficient water hydraulics system

    NASA Astrophysics Data System (ADS)

    Hassan, Siti Nor Habibah; Yusof, Ahmad Anas; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie; Nik, Wan Mohd Norsani Wan

    2015-05-01

    In promoting energy saving and sustainability, this paper presents research development of water hydraulics manipulator test rig for underwater application. Kinematic analysis of the manipulator has been studied in order to identify the workspace of the fabricated manipulator. The workspace is important as it will define the working area suitable to be developed on the test rig, in order to study the effectiveness of using water hydraulics system for underwater manipulation application. Underwater manipulator that has the ability to utilize the surrounding sea water itself as the power and energy carrier should have better advantages over sustainability and performance.

  11. Meta-regression analysis of commensal and pathogenic Escherichia coli survival in soil and water.

    PubMed

    Franz, Eelco; Schijven, Jack; de Roda Husman, Ana Maria; Blaak, Hetty

    2014-06-17

    The extent to which pathogenic and commensal E. coli (respectively PEC and CEC) can survive, and which factors predominantly determine the rate of decline, are crucial issues from a public health point of view. The goal of this study was to provide a quantitative summary of the variability in E. coli survival in soil and water over a broad range of individual studies and to identify the most important sources of variability. To that end, a meta-regression analysis on available literature data was conducted. The considerable variation in reported decline rates indicated that the persistence of E. coli is not easily predictable. The meta-analysis demonstrated that for soil and water, the type of experiment (laboratory or field), the matrix subtype (type of water and soil), and temperature were the main factors included in the regression analysis. A higher average decline rate in soil of PEC compared with CEC was observed. The regression models explained at best 57% of the variation in decline rate in soil and 41% of the variation in decline rate in water. This indicates that additional factors, not included in the current meta-regression analysis, are of importance but rarely reported. More complete reporting of experimental conditions may allow future inference on the global effects of these variables on the decline rate of E. coli.

  12. Analysis of Terrestrial Water Storage Changes from GRACE and GLDAS

    NASA Technical Reports Server (NTRS)

    Syed, Tajdarul H.; Famiglietti, James S.; Rodell, Matthew; Chen, Jianli; Wilson, Clark R.

    2008-01-01

    Since March 2002, the Gravity Recovery and Climate Experiment (GRACE) has provided first estimates of land water storage variations by monitoring the time-variable component of Earth's gravity field. Here we characterize spatial-temporal variations in terrestrial water storage changes (TWSC) from GRACE and compare them to those simulated with the Global Land Data Assimilation System (GLDAS). Additionally, we use GLDAS simulations to infer how TWSC is partitioned into snow, canopy water and soil water components, and to understand how variations in the hydrologic fluxes act to enhance or dissipate the stores. Results quantify the range of GRACE-derived storage changes during the studied period and place them in the context of seasonal variations in global climate and hydrologic extremes including drought and flood, by impacting land memory processes. The role of the largest continental river basins as major locations for freshwater redistribution is highlighted. GRACE-based storage changes are in good agreement with those obtained from GLDAS simulations. Analysis of GLDAS-simulated TWSC illustrates several key characteristics of spatial and temporal land water storage variations. Global averages of TWSC were partitioned nearly equally between soil moisture and snow water equivalent, while zonal averages of TWSC revealed the importance of soil moisture storage at low latitudes and snow storage at high latitudes. Evapotranspiration plays a key role in dissipating globally averaged terrestrial water storage. Latitudinal averages showed how precipitation dominates TWSC variations in the tropics, evapotranspiration is most effective in the midlatitudes, and snowmelt runoff is a key dissipating flux at high latitudes. Results have implications for monitoring water storage response to climate variability and change, and for constraining land model hydrology simulations.

  13. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated,more » distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.« less

  14. Consumptive Water Use Analysis of Upper Rio Grande Basin in Southern Colorado.

    PubMed

    Dubinsky, Jonathan; Karunanithi, Arunprakash T

    2017-04-18

    Water resource management and governance at the river basin scale is critical for the sustainable development of rural agrarian regions in the West. This research applies a consumptive water use analysis, inspired by the Water Footprint methodology, to the Upper Rio Grande Basin (RGB) in south central Colorado. The region is characterized by water stress, high dessert conditions, declining land health, and a depleting water table. We utilize region specific data and models to analyze the consumptive water use of RGB. The study reveals that, on an average, RGB experiences three months of water shortage per year due to the unsustainable extraction of groundwater (GW). Our results show that agriculture accounts for 77% of overall water consumption and it relies heavily on an aquifer (about 50% of agricultural consumption) that is being depleted over time. We find that, even though potato cultivation provides the most efficient conversion of groundwater resources into economic value (m 3 GW/$) in this region, it relies predominantly (81%) on the aquifer for its water supply. However, cattle, another important agricultural commodity produced in the region, provides good economic value but also relies significantly less on the aquifer (30%) for water needs. The results from this paper are timely to the RGB community, which is currently in the process of developing strategies for sustainable water management.

  15. Extended statistical entropy analysis as a quantitative management tool for water resource systems

    NASA Astrophysics Data System (ADS)

    Sobantka, Alicja; Rechberger, Helmut

    2010-05-01

    The use of entropy in hydrology and water resources has been applied to various applications. As water resource systems are inherently spatial and complex, a stochastic description of these systems is needed, and entropy theory enables development of such a description by providing determination of the least-biased probability distributions with limited knowledge and data. Entropy can also serve as a basis for risk and reliability analysis. The relative entropy has been variously interpreted as a measure freedom of choice, uncertainty and disorder, information content, missing information or information gain or loss. In the analysis of empirical data, entropy is another measure of dispersion, an alternative to the variance. Also, as an evaluation tool, the statistical entropy analysis (SEA) has been developed by previous workers to quantify the power of a process to concentrate chemical elements. Within this research programme the SEA is aimed to be extended for application to chemical compounds and tested for its deficits and potentials in systems where water resources play an important role. The extended SEA (eSEA) will be developed first for the nitrogen balance in waste water treatment plants (WWTP). Later applications on the emission of substances to water bodies such as groundwater (e.g. leachate from landfills) will also be possible. By applying eSEA to the nitrogen balance in a WWTP, all possible nitrogen compounds, which may occur during the water treatment process, are taken into account and are quantified in their impact towards the environment and human health. It has been shown that entropy reducing processes are part of modern waste management. Generally, materials management should be performed in a way that significant entropy rise is avoided. The entropy metric might also be used to perform benchmarking on WWTPs. The result out of this management tool would be the determination of the efficiency of WWTPs. By improving and optimizing the efficiency

  16. Target Water Consumption Calculation for Human Water Management based on Water Balance

    NASA Astrophysics Data System (ADS)

    Sang, X.; Zhai, Z.; Ye, Y.; Zhai, J.

    2016-12-01

    Degradation of the regional ecological environment has become increasingly serious due to the rapid increase of water usage. Critical to water consumption management is a good approach to control the growth of water usage. Through the identification and analysis of water consumption for various sectors in the hydrosocial cycle, the method for calculating the regional target water consumption also is derived based on water balance theory. Analysis shows that during 1980 - 2004 in Tianjin City, there were 22 years in which the actual water consumption of Tianjin exceeded its target water consumption, with an average excess of 66 million m3 annually. Moreover, calculations show that the maximum human target water consumption water supply is 1.91 billion m3/a. If water consumption is controlled according to the target, the sustainable development of water resource, economic and social growth, and ecological environment in this region can be expected to be achieved.

  17. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    NASA Astrophysics Data System (ADS)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  18. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    PubMed

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with

  19. Quality-assurance data for routine water analysis in the National Water-Quality Laboratory of the US Geological Survey for water year 1988

    USGS Publications Warehouse

    Lucey, K.J.

    1989-01-01

    The US Geological Survey maintains a quality assurance program based on the analysis of reference samples for its National Water Quality Laboratory located in Denver, Colorado. Reference samples containing selected inorganic, nutrient, and precipitation (low-level concentration) constituents are prepared at the Survey 's Water Quality Services Unit in Ocala, Florida, disguised as routine samples, and sent daily or weekly, as appropriate, to the laboratory through other Survey offices. The results are stored permanently in the National Water Data Storage and Retrieval System (WATSTORE), the Survey 's database for all water data. These data are analyzed statistically for precision and bias. An overall evaluation of the inorganic major ion and trace metal constituent data for water year 1988 indicated a lack of precision in the National Water Quality Laboratory for the determination of 8 out of 58 constituents: calcium (inductively coupled plasma emission spectrometry), fluoride, iron (atomic absorption spectrometry), iron (total recoverable), magnesium (atomic absorption spectrometry), manganese (total recoverable), potassium, and sodium (inductively coupled plasma emission spectrometry). The results for 31 constituents had positive or negative bias during water year 1988. A lack of precision was indicated in the determination of three of the six nutrient constituents: nitrate plus nitrite nitrogen as nitrogen, nitrite nitrogen as nitrogen, and orthophosphate as phosphorus. A biased condition was indicated in the determination of ammonia nitrogen as nitrogen, ammonia plus organic nitrogen as nitrogen, and nitrate plus nitrite nitrogen as nitrogen. There was acceptable precision in the determination of all 10 constituents contained in precipitation samples. Results for ammonia nitrogen as nitrogen, sodium, and fluoride indicated a biased condition. (Author 's abstract)

  20. Water analysis in a lab-on-a-chip system

    NASA Astrophysics Data System (ADS)

    Freimuth, Herbert; von Germar, Frithjof; Frese, Ines; Nahrstedt, Elzbieta; Küpper, Michael; Schenk, Rainer; Baser, Björn; Ott, Johannes; Drese, Klaus; Detemple, Peter; Doll, Theodor

    2006-01-01

    The development of a lab-on-chip system which allows the parallel detection of a variety of different parameters of a water sample is presented. Water analysis typically comprises the determination of around 30 physical and chemical parameters. An even larger number can arise when special contaminations of organic molecules are of interest. A demonstration system has been realised to show the feasibility and performance of an integrated device for the determination of physical quantities like electrical conductivity, light absorption and turbidity. Additionally, chemical quantities like the pH-value and the content of inorganic and organic contaminations are also determined. Two chips of credit card size contain the analytical functions and will be fabricated by injection moulding. First prototypes have been manufactured by milling or precision milling for the optical components.

  1. Targeted nano analysis of water and ions using cryocorrelative light and scanning transmission electron microscopy.

    PubMed

    Nolin, Frédérique; Ploton, Dominique; Wortham, Laurence; Tchelidze, Pavel; Balossier, Gérard; Banchet, Vincent; Bobichon, Hélène; Lalun, Nathalie; Terryn, Christine; Michel, Jean

    2012-11-01

    Cryo fluorescence imaging coupled with the cryo-EM technique (cryo-CLEM) avoids chemical fixation and embedding in plastic, and is the gold standard for correlated imaging in a close to native state. This multi-modal approach has not previously included elementary nano analysis or evaluation of water content. We developed a new approach allowing analysis of targeted in situ intracellular ions and water measurements at the nanoscale (EDXS and STEM dark field imaging) within domains identified by examination of specific GFP-tagged proteins. This method allows both water and ions- fundamental to cell biology- to be located and quantified at the subcellular level. We illustrate the potential of this approach by investigating changes in water and ion content in nuclear domains identified by GFP-tagged proteins in cells stressed by Actinomycin D treatment and controls. The resolution of our approach was sufficient to distinguish clumps of condensed chromatin from surrounding nucleoplasm by fluorescence imaging and to perform nano analysis in this targeted compartment. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Analysis of 70 Environmental Protection Agency priority pharmaceuticals in water by EPA Method 1694.

    PubMed

    Ferrer, Imma; Zweigenbaum, Jerry A; Thurman, E Michael

    2010-09-03

    The U.S. Environmental Protection Agency (EPA) Method 1694 for the determination of pharmaceuticals in water recently brought a new challenge for treatment utilities, where pharmaceuticals have been reported in the drinking water of 41-million Americans. This proposed methodology, designed to address this important issue, consists of solid-phase extraction (SPE) followed by liquid chromatography-mass spectrometry (LC/MS-MS) using triple quadrupole. Under the guidelines of Method 1694, a multi-residue method was developed, validated, and applied to wastewater, surface water and drinking water samples for the analysis of 70 pharmaceuticals. Four distinct chromatographic gradients and LC conditions were used according to the polarity and extraction of the different pharmaceuticals. Positive and negative ion electrospray were used with two MRM transitions (a quantifier and a qualifier ion for each compound), which adds extra confirmation not included in the original Method 1694. Finally, we verify, for the first time, EPA Method 1694 on water samples collected in several locations in Colorado, where positive identifications for several pharmaceuticals were found. This study is a valuable indicator of the potential of LC/MS-MS for routine quantitative multi-residue analysis of pharmaceuticals in drinking water and wastewater samples and will make monitoring studies much easier to develop for water utilities across the US, who are currently seeking guidance on analytical methods for pharmaceuticals in their water supplies. 2010 Elsevier B.V. All rights reserved.

  3. An analysis of a low-energy, low-water use community in Mexico City

    NASA Astrophysics Data System (ADS)

    Bermudez Alcocer, Jose Luis

    This study investigated how to determine a potential scenario to reduce energy, water and transportation use in Mexico City by implementing low-energy, low-water use communities. The proposed mixed-use community has multi-family apartments and a small grocery store. The research included the analysis of: case studies, energy simulation, and hand calculations for water, transportation and cost analysis. The previous case studies reviewed include: communities in Mexico City, Mexico, Austin, Texas, Phoenix, Arizona, New York City, New York and San Diego, California in terms of successful low-energy, low-water use projects. The analysis and comparison of these centers showed that the Multifamiliar Miguel Aleman is an excellent candidate to be examined for Mexico City. This technical potential study evaluated energy conserving measures such as low-energy appliances and efficient lighting that could be applied to the apartments in Mexico City to reduce energy-use. The use of the simulations and manual calculations showed that the application of the mixed-use concept was successful in reducing the energy and water use and the corresponding carbon footprint. Finally, this technical potential study showed taking people out of their cars as a result of the presence of the on-site grocery store, small recreation center and park on the ground floor also reduced their overall transportation energy-use. The improvement of the whole community (i.e., apartments plus grocery store) using energy-efficient measures provided a reduction of 70 percent of energy from the base-case. In addition a 69 percent reduction in water-use was achieved by using water-saving fixtures and greywater reuse technologies for the complex. The combination of high-efficiency automobiles and the presence of the on-site grocery store, small recreation center and park potentially reduced the transportation energy-use by 65 percent. The analysis showed an energy cost reduction of 82 percent reduction for

  4. Regional Analysis of Energy, Water, Land and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Tidwell, V. C.; Averyt, K.; Harriss, R. C.; Hibbard, K. A.; Newmark, R. L.; Rose, S. K.; Shevliakova, E.; Wilson, T.

    2014-12-01

    Energy, water, and land systems interact in many ways and are impacted by management and climate change. These systems and their interactions often differ in significant ways from region-to-region. To explore the coupled energy-water-land system and its relation to climate change and management a simple conceptual model of demand, endowment and technology (DET) is proposed. A consistent and comparable analysis framework is needed as climate change and resource management practices have the potential to impact each DET element, resource, and region differently. These linkages are further complicated by policy and trade agreements where endowments of one region are used to meet demands in another. This paper reviews the unique DET characteristics of land, energy and water resources across the United States. Analyses are conducted according to the eight geographic regions defined in the 2014 National Climate Assessment. Evident from the analyses are regional differences in resources endowments in land (strong East-West gradient in forest, cropland and desert), water (similar East-West gradient), and energy. Demands likewise vary regionally reflecting differences in population density and endowment (e.g., higher water use in West reflecting insufficient precipitation to support dryland farming). The effect of technology and policy are particularly evident in differences in the energy portfolios across the eight regions. Integrated analyses that account for the various spatial and temporal differences in regional energy, water and land systems are critical to informing effective policy requirements for future energy, climate and resource management. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  5. Analysis of perfluoroalkyl substances in waters from Germany and Spain.

    PubMed

    Llorca, Marta; Farré, Marinella; Picó, Yolanda; Müller, Jutta; Knepper, Thomas P; Barceló, Damià

    2012-08-01

    Water has been identified as one of the main routes of human exposure to perfluoroalkyl substances (PFASs). This work assessed the presence of 21 PFASs along the whole water cycle using a new fast and cost effective analytical method based on an online sample enrichment followed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The method was validated for different types of matrices (ultrapure water, tap water and treated wastewater). The quality parameters for the 21 selected compounds presented good limits of detection (LOD) and quantification (LOQ) ranging, in general, from 0.83-10 ng/L to 2.8-50 ng/L, respectively. The method was applied to assess the occurrence of PFASs in 148 water samples of different steps along the whole water cycle, including: mineral bottled water, tap water, river water and treated effluent wastewater, from Germany to Spain. In addition, in order to prove the good performance of the online analytical method, the analysis of PFASs was carried out in parallel using a method based on offline anionic solid phase extraction (SPE) followed by LC-MS/MS. Consistent results were obtained using both approaches. The more frequently found compounds were perfluoroalkyl acids, such as the perfluorobutanoic acid which was in the 54% of the tap water samples investigated with concentrations in the range between 2.4 and 27 ng/L, the perfluoroheptanoic acid (0.23-53 ng/L) and perfluorooctanoic acid (0.16-35 ng/L), and the sulphonate perfluorooctanesulfonate (0.04-258 ng/L) which was the second more frequent compound and also the compound found in with the higher concentration. It should be remarked that the 88% of the samples analyzed presented at least one of the compounds at quantifiable concentrations. In addition, PFASs including short chain compounds were proved to be prevalent in drinking water, and the 50% of the drinking water samples showed quantifiable concentrations of PFASs. It should be said that the great majority of

  6. Cloud-based Jupyter Notebooks for Water Data Analysis

    NASA Astrophysics Data System (ADS)

    Castronova, A. M.; Brazil, L.; Seul, M.

    2017-12-01

    The development and adoption of technologies by the water science community to improve our ability to openly collaborate and share workflows will have a transformative impact on how we address the challenges associated with collaborative and reproducible scientific research. Jupyter notebooks offer one solution by providing an open-source platform for creating metadata-rich toolchains for modeling and data analysis applications. Adoption of this technology within the water sciences, coupled with publicly available datasets from agencies such as USGS, NASA, and EPA enables researchers to easily prototype and execute data intensive toolchains. Moreover, implementing this software stack in a cloud-based environment extends its native functionality to provide researchers a mechanism to build and execute toolchains that are too large or computationally demanding for typical desktop computers. Additionally, this cloud-based solution enables scientists to disseminate data processing routines alongside journal publications in an effort to support reproducibility. For example, these data collection and analysis toolchains can be shared, archived, and published using the HydroShare platform or downloaded and executed locally to reproduce scientific analysis. This work presents the design and implementation of a cloud-based Jupyter environment and its application for collecting, aggregating, and munging various datasets in a transparent, sharable, and self-documented manner. The goals of this work are to establish a free and open source platform for domain scientists to (1) conduct data intensive and computationally intensive collaborative research, (2) utilize high performance libraries, models, and routines within a pre-configured cloud environment, and (3) enable dissemination of research products. This presentation will discuss recent efforts towards achieving these goals, and describe the architectural design of the notebook server in an effort to support collaborative

  7. Health risk assessment of polycyclic aromatic hydrocarbons in the source water and drinking water of China: Quantitative analysis based on published monitoring data.

    PubMed

    Wu, Bing; Zhang, Yan; Zhang, Xu-Xiang; Cheng, Shu-Pei

    2011-12-01

    A carcinogenic risk assessment of polycyclic aromatic hydrocarbons (PAHs) in source water and drinking water of China was conducted using probabilistic techniques from a national perspective. The published monitoring data of PAHs were gathered and converted into BaP equivalent (BaP(eq)) concentrations. Based on the transformed data, comprehensive risk assessment was performed by considering different age groups and exposure pathways. Monte Carlo simulation and sensitivity analysis were applied to quantify uncertainties of risk estimation. The risk analysis indicated that, the risk values for children and teens were lower than the accepted value (1.00E-05), indicating no significant carcinogenic risk. The probability of risk values above 1.00E-05 was 5.8% and 6.7% for adults and lifetime groups, respectively. Overall, carcinogenic risks of PAHs in source water and drinking water of China were mostly accepted. However, specific regions, such as Yellow river of Lanzhou reach and Qiantang river should be paid more attention. Notwithstanding the uncertainties inherent in the risk assessment, this study is the first attempt to provide information on carcinogenic risk of PAHs in source water and drinking water of China, and might be useful for potential strategies of carcinogenic risk management and reduction. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. An Analysis of the Waste Water Treatment Maintenance Mechanic Occupation.

    ERIC Educational Resources Information Center

    Clark, Anthony B.; And Others

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the waste water treatment mechanics occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Twelve duties are broken…

  9. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Perched Water Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Brady D.; Moran, James J.; Nims, Megan K.

    Fine-grained sediments associated with the Cold Creek Unit at Hanford have caused the formation of a perched water aquifer in the deep vadose zone at the B Complex area, which includes waste sites in the 200-DV-1 Operable Unit and the single-shell tank farms in Waste Management Area B-BX-BY. High levels of contaminants, such as uranium, technetium-99, and nitrate, make this aquifer a continuing source of contamination for the groundwater located a few meters below the perched zone. Analysis of deuterium ( 2H) and 18-oxygen ( 18O) of nine perched water samples from three different wells was performed. Samples represent timemore » points from hydraulic tests performed on the perched aquifer using the three wells. The isotope analyses showed that the perched water had δ 2H and δ 18O ratios consistent with the regional meteoric water line, indicating that local precipitation events at the Hanford site likely account for recharge of the perched water aquifer. Data from the isotope analysis can be used along with pumping and recovery data to help understand the perched water dynamics related to aquifer size and hydraulic control of the aquifer in the future.« less

  10. Water System Adaptation To Hydrological Changes: Module 14, Life Cycle Analysis (LCA) and Prioritization Tools in Water System Adaptation

    EPA Science Inventory

    This course will introduce students to the fundamental principles of water system adaptation to hydrological changes, with emphasis on data analysis and interpretation, technical planning, and computational modeling. Starting with real-world scenarios and adaptation needs, the co...

  11. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water.

    PubMed

    Ullinger, Heather L; Kennedy, Marla J; Schneider, William H; Miller, Christopher M

    2016-01-01

    The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies.

  12. Exploratory Disposal and Reuse Feasibility Analysis of Winter Maintenance Wash Water

    PubMed Central

    2016-01-01

    The Ohio Department of Transportation has more than 60 facilities without sewer access generating approximately 19 million gallons of winter maintenance wash water. Off-site disposal is costly, creating the need for sustainable management strategies. The objective of this study was to conduct an exploratory feasibility analysis to assess wash water disposal and potential reuse as brine. Based on a comprehensive literature review and relevant environmental chemistry, a sampling protocol consisting of 31 water quality constituents was utilized for monthly sampling at three geographically distinct Ohio Department of Transportation garages during the winter of 2012. Results were compared to local disposal and reuse guidance limits. Three constituents, including a maximum copper concentration of 858 ppb, exceeded disposal limits, and many constituents also failed to meet reuse limits. Some concentrations were orders of magnitude higher than reuse limits and suggest pre-treatment would be necessary if wash water were reused as brine. These water quality results, in conjunction with copper chemical equilibrium modeling, show pH and dissolved carbon both significantly impact the total dissolved copper concentration and should be measured to assess reuse potential. The sampling protocol and specific obstacles highlighted in this paper aid in the future development of sustainable wash water management strategies. PMID:26908148

  13. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    USGS Publications Warehouse

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  14. The Application of Climate Risk Informed Decision Analysis to the Ioland Water Treatment Plant in Lusaka, Zambia

    NASA Astrophysics Data System (ADS)

    Kucharski, John; Tkach, Mark; Olszewski, Jennifer; Chaudhry, Rabia; Mendoza, Guillermo

    2016-04-01

    This presentation demonstrates the application of Climate Risk Informed Decision Analysis (CRIDA) at Zambia's principal water treatment facility, The Iolanda Water Treatment Plant. The water treatment plant is prone to unacceptable failures during periods of low hydropower production at the Kafue Gorge Dam Hydroelectric Power Plant. The case study explores approaches of increasing the water treatment plant's ability to deliver acceptable levels of service under the range of current and potential future climate states. The objective of the study is to investigate alternative investments to build system resilience that might have been informed by the CRIDA process, and to evaluate the extra resource requirements by a bilateral donor agency to implement the CRIDA process. The case study begins with an assessment of the water treatment plant's vulnerability to climate change. It does so by following general principals described in "Confronting Climate Uncertainty in Water Resource Planning and Project Design: the Decision Tree Framework". By utilizing relatively simple bootstrapping methods a range of possible future climate states is generated while avoiding the use of more complex and costly downscaling methodologies; that are beyond the budget and technical capacity of many teams. The resulting climate vulnerabilities and uncertainty in the climate states that produce them are analyzed as part of a "Level of Concern" analysis. CRIDA principals are then applied to this Level of Concern analysis in order to arrive at a set of actionable water management decisions. The principal goals of water resource management is to transform variable, uncertain hydrology into dependable services (e.g. water supply, flood risk reduction, ecosystem benefits, hydropower production, etc…). Traditional approaches to climate adaptation require the generation of predicted future climate states but do little guide decision makers how this information should impact decision making. In

  15. Data analysis considerations for pesticides determined by National Water Quality Laboratory schedule 2437

    USGS Publications Warehouse

    Shoda, Megan E.; Nowell, Lisa H.; Stone, Wesley W.; Sandstrom, Mark W.; Bexfield, Laura M.

    2018-04-02

    In 2013, the U.S. Geological Survey National Water Quality Laboratory (NWQL) made a new method available for the analysis of pesticides in filtered water samples: laboratory schedule 2437. Schedule 2437 is an improvement on previous analytical methods because it determines the concentrations of 225 fungicides, herbicides, insecticides, and associated degradates in one method at similar or lower concentrations than previously available methods. Additionally, the pesticides included in schedule 2437 were strategically identified in a prioritization analysis that assessed likelihood of occurrence, prevalence of use, and potential toxicity. When the NWQL reports pesticide concentrations for analytes in schedule 2437, the laboratory also provides supplemental information useful to data users for assessing method performance and understanding data quality. That supplemental information is discussed in this report, along with an initial analysis of analytical recovery of pesticides in water-quality samples analyzed by schedule 2437 during 2013–2015. A total of 523 field matrix spike samples and their paired environmental samples and 277 laboratory reagent spike samples were analyzed for this report (1,323 samples total). These samples were collected in the field as part of the U.S. Geological Survey National Water-Quality Assessment groundwater and surface-water studies and as part of the NWQL quality-control program. This report reviews how pesticide samples are processed by the NWQL, addresses how to obtain all the data necessary to interpret pesticide concentrations, explains the circumstances that result in a reporting level change or the occurrence of a raised reporting level, and describes the calculation and assessment of recovery. This report also discusses reasons why a data user might choose to exclude data in an interpretive analysis and outlines the approach used to identify the potential for decreased data quality in the assessment of method recovery. The

  16. Breath alcohol analysis incorporating standardization to water vapour is as precise as blood alcohol analysis.

    PubMed

    Grubb, D; Rasmussen, B; Linnet, K; Olsson, S G; Lindberg, L

    2012-03-10

    A novel breath-alcohol analyzer based on the standardization of the breath alcohol concentration (BrAC) to the alveolar-air water vapour concentration has been developed and evaluated. The present study compares results with this particular breath analyzer with arterial blood alcohol concentrations (ABAC), the most relevant quantitative measure of brain alcohol exposure. The precision of analysis of alcohol in arterial blood and breath were determined as well as the agreement between ABAC and BrAC over time post-dosing. Twelve healthy volunteers were administered 0.6g alcohol/kg bodyweight via an orogastric tube. Duplicate breath and arterial blood samples were obtained simultaneously during the absorption, distribution and elimination phases of the alcohol metabolism with particular emphasis on the absorption phase. The precision of the breath analyzer was similar to the determination of blood alcohol concentration by headspace gas chromatography (CV 2.40 vs. 2.38%, p=0.43). The ABAC/BrAC ratio stabilized 30min post-dosing (2089±99; mean±SD). Before this the BrAC tended to underestimate the coexisting ABAC. In conclusion, breath alcohol analysis utilizing standardization of alcohol to water vapour was as precise as blood alcohol analysis, the present "gold standard" method. The BrAC reliably predicted the coexisting ABAC from 30min onwards after the intake of alcohol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. User's Guide to the Water-Analysis Screening Tool (WAST): A Tool for Assessing Available Water Resources in Relation to Aquatic-Resource Uses

    USGS Publications Warehouse

    Stuckey, Marla H.; Kiesler, James L.

    2008-01-01

    A water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in partnership with the Pennsylvania Department of Environmental Protection, to provide an initial screening of areas in the state where potential problems may exist related to the availability of water resources to meet current and future water-use demands. The tool compares water-use information to an initial screening criteria of the 7-day, 10-year low-flow statistic (7Q10) resulting in a screening indicator for influences of net withdrawals (withdrawals minus discharges) on aquatic-resource uses. This report is intended to serve as a guide for using the screening tool. The WAST can display general basin characteristics, water-use information, and screening-indicator information for over 10,000 watersheds in the state. The tool includes 12 primary functions that allow the user to display watershed information, edit water-use and water-supply information, observe effects downstream from edited water-use information, reset edited values to baseline, load new water-use information, save and retrieve scenarios, and save output as a Microsoft Excel spreadsheet.

  18. Extended principle component analysis - a useful tool to understand processes governing water quality at catchment scales

    NASA Astrophysics Data System (ADS)

    Selle, B.; Schwientek, M.

    2012-04-01

    Water quality of ground and surface waters in catchments is typically driven by many complex and interacting processes. While small scale processes are often studied in great detail, their relevance and interplay at catchment scales remain often poorly understood. For many catchments, extensive monitoring data on water quality have been collected for different purposes. These heterogeneous data sets contain valuable information on catchment scale processes but are rarely analysed using integrated methods. Principle component analysis (PCA) has previously been applied to this kind of data sets. However, a detailed analysis of scores, which are an important result of a PCA, is often missing. Mathematically, PCA expresses measured variables on water quality, e.g. nitrate concentrations, as linear combination of independent, not directly observable key processes. These computed key processes are represented by principle components. Their scores are interpretable as process intensities which vary in space and time. Subsequently, scores can be correlated with other key variables and catchment characteristics, such as water travel times and land use that were not considered in PCA. This detailed analysis of scores represents an extension of the commonly applied PCA which could considerably improve the understanding of processes governing water quality at catchment scales. In this study, we investigated the 170 km2 Ammer catchment in SW Germany which is characterised by an above average proportion of agricultural (71%) and urban (17%) areas. The Ammer River is mainly fed by karstic springs. For PCA, we separately analysed concentrations from (a) surface waters of the Ammer River and its tributaries, (b) spring waters from the main aquifers and (c) deep groundwater from production wells. This analysis was extended by a detailed analysis of scores. We analysed measured concentrations on major ions and selected organic micropollutants. Additionally, redox-sensitive variables

  19. Chemical Analysis of Water-accommodated Fractions of Crude Oil Spills Using TIMS-FT-ICR MS.

    PubMed

    Benigni, Paolo; Marin, Rebecca; Sandoval, Kathia; Gardinali, Piero; Fernandez-Lima, Francisco

    2017-03-03

    Multiple chemical processes control how crude oil is incorporated into seawater and also the chemical reactions that occur overtime. Studying this system requires the careful preparation of the sample in order to accurately replicate the natural formation of the water-accommodated fraction that occurs in nature. Low-energy water-accommodated fractions (LEWAF) are carefully prepared by mixing crude oil and water at a set ratio. Aspirator bottles are then irradiated, and at set time points, the water is sampled and extracted using standard techniques. A second challenge is the representative characterization of the sample, which must take into consideration the chemical changes that occur over time. A targeted analysis of the aromatic fraction of the LEWAF can be performed using an atmospheric-pressure laser ionization source coupled to a custom-built trapped ion mobility spectrometry-Fourier transform-ion cyclotron resonance mass spectrometer (TIMS-FT-ICR MS). The TIMS-FT-ICR MS analysis provides high-resolution ion mobility and ultrahigh-resolution MS analysis, which further allow the identification of isomeric components by their collision cross-sections (CCS) and chemical formula. Results show that as the oil-water mixture is exposed to light, there is significant photo-solubilization of the surface oil into the water. Over time, the chemical transformation of the solubilized molecules takes place, with a decrease in the number of identifications of nitrogen- and sulfur-bearing species in favor of those with a greater oxygen content than were typically observed in the base oil.

  20. Comparative analysis of DG and solar PV water pumping system

    NASA Astrophysics Data System (ADS)

    Tharani, Kusum; Dahiya, Ratna

    2016-03-01

    Looking at present day electricity scenario, there is a major electricity crisis in rural areas. The farmers are still dependant on the monsoon rains for their irrigation needs and livestock maintenance. Some of the agrarian population has opted to use Diesel Generators for pumping water in their fields. But taking into consideration the economics and environmental conditions, the above choice is not suitable for longer run. An effort to shift from non-renewable sources such as diesel to renewable energy source such as solar has been highlighted. An approximate comparative analysis showing the life cycle costs of a PV pumping system with Diesel Generator powered water pumping is done using MATLAB/STMULTNK.

  1. Thermogravimetric analysis for the determination of water release rate from microcrystalline cellulose dry powder and wet bead systems.

    PubMed

    Mayville, Francis C; Wigent, Rodney J; Schwartz, Joseph B

    2006-01-01

    The purpose of this work was to determine the total amount of water contained in dry powder and wet bead samples of microcrystalline cellulose, MCC, (Avicel PH-101), taken from various stages of the extrusion/marumerization process used to make beads and to determine the kinetic rates of water release from each sample. These samples were allowed to equilibrate in controlled humidity chambers at 25 degrees C. The total amount of water in each sample, after equilibration, was determined by thermogravimetric analysis (TGA) as a function of temperature. The rates of water release from these samples were determined by using isothermal gravimetric analysis (ITGA) as a function of time. Analysis of the results for these studies suggest that water was released from these systems by several different kinetic mechanisms. The water release mechanisms for these systems include: zero order, second order, and diffusion controlled kinetics. It is believed that all three kinetic mechanisms will occur at the same time, however; only one mechanism will be prominent. The prominent mechanism was based on the amount of water present in the sample.

  2. A more thorough analysis of water rockets: Moist adiabats, transient flows, and inertial forces in a soda bottle

    NASA Astrophysics Data System (ADS)

    Gommes, Cedric J.

    2010-03-01

    Although water rockets are widely used to illustrate first year physics principles, accurate measurements show that they outperform the usual textbook analysis at the beginning of the thrust phase. This paper gives a more thorough analysis of this problem. It is shown that the air expansion in the rocket is accompanied by water vapor condensation, which provides an extra thrust; the downward acceleration of water within the rocket also contributes to the thrust, an effect that is negligible in other types of rockets; the apparent gravity resulting from the acceleration of the rocket contributes as much to water ejection as does the pressure difference between the inside and outside of the rocket; and the water flow is transient, which precludes the use of Bernoulli's equation. Although none of these effects is negligible, they mostly cancel each other, and the overall accuracy of the analysis is only marginally improved. There remains a difference between theory and experiment with water rockets.

  3. A vastly improved method for in situ stable isotope analysis of very small water samples.

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Christensen, L. E.; Kriesel, J.; Kelly, J.; Moran, J.; Vance, S.

    2016-12-01

    The stable isotope compositions of hydrogen and oxygen in water, ice and hydrated minerals are key characteristics to determine the origin and history of the material. Originally, analyses were performed by separating hydrogen and preparing CO2 from the oxygen in water for stable isotope ratio mass spectrometry. Subsequently, infrared absorption spectrometry in either a Herriot cell or by cavity ring down allowed direct analysis of water vapor. We are developing an instrument, intended for spaceflight and in situ deployment, which will exploit Capillary Absorption Spectrometry (CAS) for the H and O isotope analysis and a laser to sample planetary ices and hydrated minerals. The Tunable Laser Spectrometer (TLS) instrument (part of SAM on the MSL rover Curiosity) works by infrared absorption and we use its performance as a benchmark for comparison. TLS has a relatively large sample chamber to contain mirrors which give a long absorption pathlength. CAS works on the same principle but utilizes a hollow optic fiber, greatly reducing the sample volume. The fiber is a waveguide, enhancing the laser - water-vapor interaction and giving more than four orders of magnitude increase in sensitivity, despite a shorter optical path length. We have calculated that a fiber only 2 m long will be able to analyze 5 nanomoles of water with a precision of less than 1 per mil for D?H. The fiber is coiled to minimize instrument volume. Our instrument will couple this analytical capability with laser sampling to free water from hydrated minerals and ice and ideally we would use the same laser via a beam-splitter both for sampling and analysis. The ability to analyze very small samples is of benefit in two ways. In this concept it will allow much faster analysis of small sub-samples, while the high spatial sampling resolution offered by the laser will allow analysis of the heterogeneity of isotopic composition within grains or crystals, revealing the history of their growth.

  4. Drought analysis of the Haihe river basin based on GRACE terrestrial water storage.

    PubMed

    Wang, Jianhua; Jiang, Dong; Huang, Yaohuan; Wang, Hao

    2014-01-01

    The Haihe river basin (HRB) in the North China has been experiencing prolonged, severe droughts in recent years that are accompanied by precipitation deficits and vegetation wilting. This paper analyzed the water deficits related to spatiotemporal variability of three variables of the gravity recovery and climate experiment (GRACE) derived terrestrial water storage (TWS) data, precipitation, and EVI in the HRB from January 2003 to January 2013. The corresponding drought indices of TWS anomaly index (TWSI), precipitation anomaly index (PAI), and vegetation anomaly index (AVI) were also compared for drought analysis. Our observations showed that the GRACE-TWS was more suitable for detecting prolonged and severe droughts in the HRB because it can represent loss of deep soil water and ground water. The multiyear droughts, of which the HRB has sustained for more than 5 years, began in mid-2007. Extreme drought events were detected in four periods at the end of 2007, the end of 2009, the end of 2010, and in the middle of 2012. Spatial analysis of drought risk from the end of 2011 to the beginning of 2012 showed that human activities played an important role in the extent of drought hazards in the HRB.

  5. Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem

    NASA Technical Reports Server (NTRS)

    Duval, J. D.; Davidson, W. R.; Parkman, William E.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.

  6. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    USGS Publications Warehouse

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  7. Evaluation of the Analysis Influence on Transport in Reanalysis Regional Water Cycles

    NASA Technical Reports Server (NTRS)

    Bosilovich, M. G.; Chen, J.; Robertson, F. R.

    2011-01-01

    Regional water cycles of reanalyses do not follow theoretical assumptions applicable to pure simulated budgets. The data analysis changes the wind, temperature and moisture, perturbing the theoretical balance. Of course, the analysis is correcting the model forecast error, so that the state fields should be more aligned with observations. Recently, it has been reported that the moisture convergence over continental regions, even those with significant quantities of radiosonde profiles present, can produce long term values not consistent with theoretical bounds. Specifically, long averages over continents produce some regions of moisture divergence. This implies that the observational analysis leads to a source of water in the region. One such region is the Unite States Great Plains, which many radiosonde and lidar wind observations are assimilated. We will utilize a new ancillary data set from the MERRA reanalysis called the Gridded Innovations and Observations (GIO) which provides the assimilated observations on MERRA's native grid allowing more thorough consideration of their impact on regional and global climatology. Included with the GIO data are the observation minus forecast (OmF) and observation minus analysis (OmA). Using OmF and OmA, we can identify the bias of the analysis against each observing system and gain a better understanding of the observations that are controlling the regional analysis. In this study we will focus on the wind and moisture assimilation.

  8. Chattahoochee River Water Quality Analysis.

    DTIC Science & Technology

    1978-04-01

    in 1972 with WRE for addition of storm water quality computations. Since then the HEC has added other capabilities including snowmelt and land surface...Geological Survey. The storm water quality data were reported in reference 2. Quantity The quantity calibration involved adjusting the pervious area

  9. Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Chen, Z. M.; Zeng, L.; Qiao, H.; Chen, B.

    2016-03-01

    With ever increasing water demands and the continuous intensification of water scarcity arising from China's industrialization, the country is struggling to harmonize its industrial development and water supply. This paper presents a systems analysis of water withdrawals by Chinese industry and investigates demand-driven industrial water uses embodied in final demand and interregional trade based on a multi-regional input-output model. In 2007, the Electric Power, Steam, and Hot Water Production and Supply sector ranks first in direct industrial water withdrawal (DWW), and Construction has the largest embodied industrial water use (EWU). Investment, consumption, and exports contribute to 34.6%, 33.3%, and 30.6% of the national total EWU, respectively. Specifically, 58.0%, 51.1%, 48.6%, 43.3%, and 37.5% of the regional EWUs respectively in Guangdong, Shanghai, Zhejiang, Jiangsu, and Fujian are attributed to international exports. The total interregional import/export of embodied water is equivalent to about 40% of the national total DWW, of which 55.5% is associated with the DWWs of Electric Power, Steam, and Hot Water Production and Supply. Jiangsu is the biggest interregional exporter and deficit receiver of embodied water, in contrast to Guangdong as the biggest interregional importer and surplus receiver. Without implementing effective water-saving measures and adjusting industrial structures, the regional imbalance between water availability and water demand tends to intensify considering the water impact of domestic trade of industrial products. Steps taken to improve water use efficiency in production, and to enhance embodied water saving in consumption are both of great significance for supporting China's water policies.

  10. Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress

    PubMed Central

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696

  11. Code System for Performance Assessment Ground-water Analysis for Low-level Nuclear Waste.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MATTHEW,; KOZAK, W.

    1994-02-09

    Version 00 The PAGAN code system is a part of the performance assessment methodology developed for use by the U. S. Nuclear Regulatory Commission in evaluating license applications for low-level waste disposal facilities. In this methodology, PAGAN is used as one candidate approach for analysis of the ground-water pathway. PAGAN, Version 1.1 has the capability to model the source term, vadose-zone transport, and aquifer transport of radionuclides from a waste disposal unit. It combines the two codes SURFACE and DISPERSE which are used as semi-analytical solutions to the convective-dispersion equation. This system uses menu driven input/out for implementing a simplemore » ground-water transport analysis and incorporates statistical uncertainty functions for handling data uncertainties. The output from PAGAN includes a time- and location-dependent radionuclide concentration at a well in the aquifer, or a time- and location-dependent radionuclide flux into a surface-water body.« less

  12. Abiotic control of underwater light in a drinking water reservoir: Photon budget analysis and implications for water quality monitoring

    NASA Astrophysics Data System (ADS)

    Watanabe, Shohei; Laurion, Isabelle; Markager, Stiig; Vincent, Warwick F.

    2015-08-01

    In optically complex inland waters, the underwater attenuation of photosynthetically active radiation (PAR) is controlled by a variable combination of absorption and scattering components of the lake or river water. Here we applied a photon budget approach to identify the main optical components affecting PAR attenuation in Lake St. Charles, a drinking water reservoir for Québec City, Canada. This analysis showed the dominant role of colored dissolved organic matter (CDOM) absorption (average of 44% of total absorption during the sampling period), but with large changes over depth in the absolute and relative contribution of the individual absorption components (water, nonalgal particulates, phytoplankton and CDOM) to PAR attenuation. This pronounced vertical variation occurred because of the large spectral changes in the light field with depth, and it strongly affected the average in situ diffuse absorption coefficients in the water column. For example, the diffuse absorption coefficient for pure-water in the ambient light field was 10-fold higher than the value previously measured in the blue open ocean and erroneously applied to lakes and coastal waters. Photon absorption budget calculations for a range of limnological conditions confirmed that phytoplankton had little direct influence on underwater light, even at chlorophyll a values above those observed during harmful algal blooms in the lake. These results imply that traditional measures of water quality such as Secchi depth and radiometric transparency do not provide a meaningful estimate of the biological state of the water column in CDOM-colored lakes and reservoirs.

  13. Analysis of MIR Condensate and Potable Water

    NASA Technical Reports Server (NTRS)

    Pierre, L. M.; Bobe, L.; Protasov, N. N.; Sauer, R. L.; Schultz, J. R.; Sinyak, Y. E.; Skuratov, V. M.

    1999-01-01

    Approximately fifty percent of the potable water supplied to the Russian cosmonauts, American astronauts, and other occupants of the current Russian Mir Space Station is produced by the direct recycle of water from humidity condensate. The remainder comes from ground supplied potable water that is delivered on a Progress resupply spacecraft, or processed fuel cell water transferred from the Shuttle. Reclamation of water for potable and hygiene purposes is considered essential for extended duration missions in order to avoid massive costs associated with resupplying water from the ground. The Joint U.S/Russian Phase 1 program provided the U.S. the first opportunity to evaluate the performance of water reclamation hardware in microgravity. During the Phase I program, the U.S. collected recycled water, stored water, and humidity condensate samples for chemical and microbial evaluation. This experiment was conducted to determine the potability of the water supplied on Mir, to assess the reliability of the water reclamation and distribution systems, and to aid in developing water quality monitoring standards for International Space Station.

  14. Analysis of China department water consumption efficiency

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Xi-Feng; Liu, Jia-Hong

    2018-03-01

    The water comparable non-competitive input-out model of China in 2002, 2007 and 2012 is established to calculate the department water consumption efficiency. The water direct and complete consumption coefficients of 38 departments are analysed. Agriculture and Electricity and steam supply have the highest water consumption coefficients and utilize water resource mainly by the direct way. Manufacture of food products and tobacco products, Manufacture of textiles, Manufacture of wearing apparel and leather products and Information service activities have high water complete consumption coefficients and affect water consumption mainly by the indirect way. Water complete consumption efficiency measures the efficiency from the view of final product, which reflected the department water use driving force more precisely.

  15. TREAT Neutronics Analysis of Water-Loop Concept Accommodating LWR 9-rod Bundle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Connie M.; Woolstenhulme, Nicolas E.; Parry, James R.

    Abstract. Simulation of a variety of transient conditions has been successfully achieved in the Transient Reactor Test (TREAT) facility during operation between 1959 and 1994 to support characterization and safety analysis of nuclear fuels and materials. A majority of previously conducted tests were focused on supporting sodium-cooled fast reactor (SFR) designs. Experiments evolved in complexity. Simulation of thermal-hydraulic conditions expected to be encountered by fuels and materials in a reactor environment was realized in the development of TREAT sodium loop experiment vehicles. These loops accommodated up to 7-pin fuel bundles and served to simulate more closely the reactor environment whilemore » safely delivering large quantities of energy into the test specimen. Some of the immediate TREAT restart operations will be focused on testing light water reactor (LWR) accident tolerant fuels (ATF). Similar to the sodium loop objectives, a water loop concept, developed and analyzed in the 1990’s, aimed at achieving thermal-hydraulic conditions encountered in commercial power reactors. The historic water loop concept has been analyzed in the context of a reactivity insertion accident (RIA) simulation for high burnup LWR 2-pin and 3-pin fuel bundles. Findings showed sufficient energy could be deposited into the specimens for evaluation. Similar results of experimental feasibility for the water loop concept (past and present) have recently been obtained using MCNP6.1 with ENDF/B-VII.1 nuclear data libraries. The old water loop concept required only two central TREAT core grid spaces. Preparation for future experiments has resulted in a modified water loop conceptual design designated the TREAT water environment recirculating loop (TWERL). The current TWERL design requires nine TREAT core grid spaces in order to place the water recirculating pump under the TREAT core. Due to the effectiveness of water moderation, neutronics analysis shows that removal of seven

  16. Martian rampart crater ejecta - Experiments and analysis of melt-water interaction

    NASA Technical Reports Server (NTRS)

    Wohletz, K. H.; Sheridan, M. F.

    1983-01-01

    The possible effects of explosive water vaporization on ejecta emplacement after impact into a wet target are described. A general model is formulated from analysis of Viking imagery of Mars and experimental vapor explosions as well as consideration of fluidized particulate transport and lobate volcanic deposits. The discussed model contends that as target water content increases, the effects of vapor expansion due to impact increasingly modify the ballistic flow field during crater excavation. This modification results in transport by gravity-driven surface flowage, and is similar to that of atmospheric drag effects on ejecta modelled by Schultz and Gault (1979).

  17. Sucrose lyophiles: a semi-quantitative study of residual water content by total X-ray diffraction analysis.

    PubMed

    Bates, S; Jonaitis, D; Nail, S

    2013-10-01

    Total X-ray Powder Diffraction Analysis (TXRPD) using transmission geometry was able to observe significant variance in measured powder patterns for sucrose lyophilizates with differing residual water contents. Integrated diffraction intensity corresponding to the observed variances was found to be linearly correlated to residual water content as measured by an independent technique. The observed variance was concentrated in two distinct regions of the lyophilizate powder pattern, corresponding to the characteristic sucrose matrix double halo and the high angle diffuse region normally associated with free-water. Full pattern fitting of the lyophilizate powder patterns suggested that the high angle variance was better described by the characteristic diffraction profile of a concentrated sucrose/water system rather than by the free-water diffraction profile. This suggests that the residual water in the sucrose lyophilizates is intimately mixed at the molecular level with sucrose molecules forming a liquid/solid solution. The bound nature of the residual water and its impact on the sucrose matrix gives an enhanced diffraction response between 3.0 and 3.5 beyond that expected for free-water. The enhanced diffraction response allows semi-quantitative analysis of residual water contents within the studied sucrose lyophilizates to levels below 1% by weight. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Quantification of the Water-Energy Nexus in Beijing City Based on Copula Analysis

    NASA Astrophysics Data System (ADS)

    Cai, J.; Cai, Y.

    2017-12-01

    Water resource and energy resource are intimately and highly interwoven, called ``water-energy nexus", which poses challenges for the sustainable management of water resource and energy resource. In this research, the Copula analysis method is first proposed to be applied in "water-energy nexus" field to clarify the internal relationship of water resource and energy resource, which is a favorable tool to explore the relevance among random variables. Beijing City, the capital of China, is chosen as a case study. The marginal distribution functions of water resource and energy resource are analyzed first. Then the Binary Copula function is employed to construct the joint distribution function of "water-energy nexus" to quantify the inherent relationship between water resource and energy resource. The results show that it is more appropriate to apply Lognormal distribution to establish the marginal distribution function of water resource. Meanwhile, Weibull distribution is more feasible to describe the marginal distribution function of energy resource. Furthermore, it is more suitable to adopt the Bivariate Normal Copula function to construct the joint distribution function of "water-energy nexus" in Beijing City. The findings can help to identify and quantify the "water-energy nexus". In addition, our findings can provide reasonable policy recommendations on the sustainable management of water resource and energy resource to promote regional coordinated development.

  19. Direct Analysis and Quantification of Metaldehyde in Water using Reactive Paper Spray Mass Spectrometry

    PubMed Central

    Maher, Simon; Jjunju, Fred P. M.; Damon, Deidre E.; Gorton, Hannah; Maher, Yosef S.; Syed, Safaraz U.; Heeren, Ron M. A.; Young, Iain S.; Taylor, Stephen; Badu-Tawiah, Abraham K.

    2016-01-01

    Metaldehyde is extensively used worldwide as a contact and systemic molluscicide for controlling slugs and snails in a wide range of agricultural and horticultural crops. Contamination of surface waters due to run-off, coupled with its moderate solubility in water, has led to increased concentration of the pesticide in the environment. In this study, for the first time, rapid analysis (<~1 minute) of metaldehyde residues in water is demonstrated using paper spray mass spectrometry (PS-MS). The observed precursor molecular ions of metaldehyde were confirmed from tandem mass spectrometry (MS/MS) experiments by studying the fragmentation patterns produced via collision-induced dissociation. The signal intensity ratios of the most abundant MS/MS transitions for metaldehyde (177 → 149 for protonated ion) and atrazine (221 → 179) were found to be linear in the range 0.01 to 5 ng/mL. Metaldehyde residues were detectable in environmental water samples at low concentration (LOD < 0.1 ng/mL using reactive PS-MS), with a relative standard deviation <10% and an R2 value >0.99, without any pre-concentration/separation steps. This result is of particular importance for environmental monitoring and water quality analysis providing a potential means of rapid screening to ensure safe drinking water. PMID:27767044

  20. Preliminary Analysis of a Water Shield for a Surface Power Reactor

    NASA Technical Reports Server (NTRS)

    Pearson, J. Boise

    2006-01-01

    A water based shielding system is being investigated for use on initial lunar surface power systems. The use of water may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. A simple 1-D thermal model indicates the necessity of natural convection to maintain acceptable temperatures and pressures in the water shield. CFD analysis is done to quantify the natural convection in the shield, and predicts sufficient natural convection to transfer heat through the shield with small temperature gradients. A test program will he designed to experimentally verify the thermal hydraulic performance of the shield, and to anchor the CFD models to experimental results.

  1. Modern Era Retrospective-analysis for Research and Applications (MERRA) Global Water and Energy Budgets

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Chen, Junye

    2009-01-01

    In the Summer of 2009, NASA's Modern Era Retrospective-analysis for Research and Applications (MERRA) will have completed 28 years of global satellite data analyses. Here, we characterize the global water and energy budgets of MERRA, compared with available observations and the latest reanalyses. In this analysis, the climatology of the global average components are studied as well as the separate land and ocean averages. In addition, the time series of the global averages are evaluated. For example, the global difference of precipitation and evaporation generally shows the influence of water vapor observations on the system. Since the observing systems change in time, especially remotely sensed observations of water, significant temporal variations can occur across the 28 year record. These then are also closely connected to changes in the atmospheric energy and water budgets. The net imbalance of the energy budget at the surface can be large and different signs for different reanalyses. In MERRA, the imbalance of energy at the surface tends to improve with time being the smallest during the most recent and abundant satellite observations.

  2. Quantitative analysis of microbial contamination in private drinking water supply systems.

    PubMed

    Allevi, Richard P; Krometis, Leigh-Anne H; Hagedorn, Charles; Benham, Brian; Lawrence, Annie H; Ling, Erin J; Ziegler, Peter E

    2013-06-01

    Over one million households rely on private water supplies (e.g. well, spring, cistern) in the Commonwealth of Virginia, USA. The present study tested 538 private wells and springs in 20 Virginia counties for total coliforms (TCs) and Escherichia coli along with a suite of chemical contaminants. A logistic regression analysis was used to investigate potential correlations between TC contamination and chemical parameters (e.g. NO3(-), turbidity), as well as homeowner-provided survey data describing system characteristics and perceived water quality. Of the 538 samples collected, 41% (n = 221) were positive for TCs and 10% (n = 53) for E. coli. Chemical parameters were not statistically predictive of microbial contamination. Well depth, water treatment, and farm location proximate to the water supply were factors in a regression model that predicted presence/absence of TCs with 74% accuracy. Microbial and chemical source tracking techniques (Bacteroides gene Bac32F and HF183 detection via polymerase chain reaction and optical brightener detection via fluorometry) identified four samples as likely contaminated with human wastewater.

  3. Radiochemical analysis of waters and mud of Euganean spas (Padua)

    NASA Astrophysics Data System (ADS)

    Cantaluppi, C.; Fasson, A.; Ceccotto, F.; Cianchi, A.; Degetto, S.

    2012-04-01

    The area around the Euganean Hills (North-East Italy) is concerned with thermal phenomena known and used for therapeutic purposes since ancient times. The thermal waters collected in this area have taken up a natural radionuclides content due to the leaching of hot and permeable deep rocks, with which they come into contact, before their rising to the surface. During the "maturation" process of the mud used for treatment purposes, the thermal waters make happen a complex series of biochemical changes and release a series of chemical species to the mud, resulting, in particular, in an enrichment phenomenon for some radionuclides. In this work, the first radiochemical analysis extended to all the Euganean Thermal District is reported. In particular, chemical analyses of mud, as well as radiochemical analyses of both mud and waters were performed; the enrichment of the radioisotopes in mud used for treatments was also documented. The results show that the 226Ra content in mud, during the "maturation" process, presents an enrichment even of one order of magnitude with respect to the value found in the unprocessed mud. Furthermore, in the same thermal waters, high concentrations of "unsupported" 222Rn have been found, which have shown to be not completely negligible both for people under treatment and particularly for spa workers.

  4. Strategic rehabilitation planning of piped water networks using multi-criteria decision analysis.

    PubMed

    Scholten, Lisa; Scheidegger, Andreas; Reichert, Peter; Maurer, Max; Mauer, Max; Lienert, Judit

    2014-02-01

    To overcome the difficulties of strategic asset management of water distribution networks, a pipe failure and a rehabilitation model are combined to predict the long-term performance of rehabilitation strategies. Bayesian parameter estimation is performed to calibrate the failure and replacement model based on a prior distribution inferred from three large water utilities in Switzerland. Multi-criteria decision analysis (MCDA) and scenario planning build the framework for evaluating 18 strategic rehabilitation alternatives under future uncertainty. Outcomes for three fundamental objectives (low costs, high reliability, and high intergenerational equity) are assessed. Exploitation of stochastic dominance concepts helps to identify twelve non-dominated alternatives and local sensitivity analysis of stakeholder preferences is used to rank them under four scenarios. Strategies with annual replacement of 1.5-2% of the network perform reasonably well under all scenarios. In contrast, the commonly used reactive replacement is not recommendable unless cost is the only relevant objective. Exemplified for a small Swiss water utility, this approach can readily be adapted to support strategic asset management for any utility size and based on objectives and preferences that matter to the respective decision makers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. A comparative molecular analysis of water-filled limestone sinkholes in north-eastern Mexico.

    PubMed

    Sahl, Jason W; Gary, Marcus O; Harris, J Kirk; Spear, John R

    2011-01-01

    Sistema Zacatón in north-eastern Mexico is host to several deep, water-filled, anoxic, karstic sinkholes (cenotes). These cenotes were explored, mapped, and geochemically and microbiologically sampled by the autonomous underwater vehicle deep phreatic thermal explorer (DEPTHX). The community structure of the filterable fraction of the water column and extensive microbial mats that coat the cenote walls was investigated by comparative analysis of small-subunit (SSU) 16S rRNA gene sequences. Full-length Sanger gene sequence analysis revealed novel microbial diversity that included three putative bacterial candidate phyla and three additional groups that showed high intra-clade distance with poorly characterized bacterial candidate phyla. Limited functional gene sequence analysis in these anoxic environments identified genes associated with methanogenesis, sulfate reduction and anaerobic ammonium oxidation. A directed, barcoded amplicon, multiplex pyrosequencing approach was employed to compare ∼100,000 bacterial SSU gene sequences from water column and wall microbial mat samples from five cenotes in Sistema Zacatón. A new, high-resolution sequence distribution profile (SDP) method identified changes in specific phylogenetic types (phylotypes) in microbial mats at varied depths; Mantel tests showed a correlation of the genetic distances between mat communities in two cenotes and the geographic location of each cenote. Community structure profiles from the water column of three neighbouring cenotes showed distinct variation; statistically significant differences in the concentration of geochemical constituents suggest that the variation observed in microbial communities between neighbouring cenotes are due to geochemical variation. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  6. Engineering Water Analysis Laboratory Activity.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    The purposes of water treatment in a marine steam power plant are to prevent damage to boilers, steam-operated equipment, and steam and condensate lives, and to keep all equipment operating at the highest level of efficiency. This laboratory exercise is designed to provide students with experiences in making accurate boiler water tests and to…

  7. Peak flow estimation in ungauged basins by means of water level data analysis

    NASA Astrophysics Data System (ADS)

    Corato, G.; Moramarco, T.; Tucciarelli, T.

    2009-04-01

    Discharge hydrograph estimation in rivers is usually carried out by means of water level measurements and the use of a water depth - discharge relationship. The water depth - discharge curve is obtained by integrating local velocities measured in a given section at specified water depth values. To build up such curve is very expensive and very often the highest points, used for the peak flow estimation, are the result of rough extrapolation of points corresponding to much lower water depths. Recently, discharge estimation methodologies based only on the analysis of synchronous water level data recorded in two different river sections far some kilometers from each other have been developed. These methodologies are based only on the analysis of the water levels, the knowledge of the river bed elevations within the two sections, and the use of a diffusive flow routing numerical model. The bed roughness estimation, in terms of average Manning coefficient, is carried out along with the discharge hydrograph estimation. The 1D flow routing model is given by the following Saint Venant equations, simplified according to the diffusive hypothesis: ‚-+ ‚q-= 0 ‚t ‚x (1) ‚h+ (Sf - S0) = 0 ‚x (2) where q(x,t) is the discharge, h(x,t) is the water depth, Sf is the energy slope and S0 is the bed slope. The energy slope is related to the average n Manning coefficient by the Chezy relationship: -q2n2- Sf = 2ℜ4•3 (3) whereℜ is the hydraulic radius and gs the river section. The upstream boundary condition of the flow routing model is given by the measured upstream water level hydrograph. The computational domain is extended some kilometers downstream the second measurement section and the downstream boundary condition is properly approximated. This avoids the use of the downstream measured data for the solution of the system (1)-(3) and limits the model error even in the case of subcritical flow. The optimal average Manning coefficient is obtained by fitting the water

  8. Examining water in model membranes by near infrared spectroscopy and multivariate analysis.

    PubMed

    Wenz, Jorge J

    2018-03-01

    By exploiting the sensitivity of the NIR spectrum, particularly the first overtone of water, to the number and strength of hydrogen bonds, the hydrogen bond network and water polymerization in membranes of DMPA (1,2-dimyristoyl-sn-glycero-3-phosphate) and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) was investigated as a function of the temperature and the presence of this two phospholipids having the same tail but different polar head. Principal components analysis performed on the spectra was used to disclose subtle spectral changes that mirror the alteration of the vibrational energy of the water O-H bonds, as a measure of the H-bond network. Temperature showed a dominating effect on the H-bond network. Increasing temperatures diminished the number of strongly H-bonded water molecules and increased the number of weakly H-bonded waters. This main effect of temperature was missing after the subtraction of the pure water spectra from the lipid-containing ones. An intriguing secondary effect of temperature was also revealed. Phospholipids exhibited an effect qualitatively similar to that of the temperature. DMPA, and particularly DMPC, disrupted the H-bond network in the neighboring lipid-water interface, reducing water polymerization and strengthening the water O-H bonds. The type of the polar head affects the H-bonds more than duplicate the concentration of the lipid. A connection between head group structure and the effect on the H-bonds network, and the existence of two populations of water molecules are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Trend analysis of a tropical urban river water quality in Malaysia.

    PubMed

    Othman, Faridah; M E, Alaa Eldin; Mohamed, Ibrahim

    2012-12-01

    Rivers play a significant role in providing water resources for human and ecosystem survival and health. Hence, river water quality is an important parameter that must be preserved and monitored. As the state of Selangor and the city of Kuala Lumpur, Malaysia, are undergoing tremendous development, the river is subjected to pollution from point and non-point sources. The water quality of the Klang River basin, one of the most densely populated areas within the region, is significantly degraded due to human activities as well as urbanization. Evaluation of the overall river water quality status is normally represented by a water quality index (WQI), which consists of six parameters, namely dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, suspended solids, ammoniacal nitrogen and pH. The objectives of this study are to assess the water quality status for this tropical, urban river and to establish the WQI trend. Using monthly WQI data from 1997 to 2007, time series were plotted and trend analysis was performed by employing the first-order autocorrelated trend model on the moving average values for every station. The initial and final values of either the moving average or the trend model were used as the estimates of the initial and final WQI at the stations. It was found that Klang River water quality has shown some improvement between 1997 and 2007. Water quality remains good in the upper stream area, which provides vital water sources for water treatment plants in the Klang valley. Meanwhile, the water quality has also improved in other stations. Results of the current study suggest that the present policy on managing river quality in the Klang River has produced encouraging results; the policy should, however, be further improved alongside more vigorous monitoring of pollution discharge from various point sources such as industrial wastewater, municipal sewers, wet markets, sand mining and landfills, as well as non-point sources such as

  10. Sound of shallow and deep water lobsters: Measurements, analysis, and characterization (L)

    NASA Astrophysics Data System (ADS)

    Latha, G.; Senthilvadivu, S.; Venkatesan, R.; Rajendran, V.

    2005-05-01

    Study of sound made by marine species aid in ambient noise studies and characterization. This letter presents the work carried out on measurement of sound made by lobsters in a controlled environment and the data processing and the spectral analysis to identify the frequency contents. Lobsters collected in the shallow waters as well as deep waters in the ocean have been used for the sound measurement. The Panulirus Homarus and Palinustur Waguersis species were kept in a tank in a laboratory and measurements were made. Their fundamental frequencies, harmonics, and peaks are analyzed in the band 3 to 100 kHz under different conditions such as molting and nonmolting states. Analysis with respect to diurnal variations is also carried out. The results show that lobsters produce sound like musical instruments, which agree with the observations of Patek [Nature (London) 411, 153-154 (2001)]. .

  11. A Selected Annotated Bibliography on the Analysis of Water Resource Systems.

    ERIC Educational Resources Information Center

    Gysi, Marshall; And Others

    Presented is an annotated bibliography of some selected publications pertaining to the application of systems analysis techniques to water resource problems. The majority of the references included in this bibliography have been published within the last five years. About half of the entries have informative abstracts and keywords following the…

  12. Manganese Analysis in Water Samples. Training Module 5.211.2.77.

    ERIC Educational Resources Information Center

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the spectrophotometric analysis of manganese in water using the persulfate method. Included are objectives, an instructor guide, student handouts, and transparency masters. A video tape is also available from the author. This module…

  13. Drought Analysis of the Haihe River Basin Based on GRACE Terrestrial Water Storage

    PubMed Central

    Wang, Jianhua; Jiang, Dong; Huang, Yaohuan; Wang, Hao

    2014-01-01

    The Haihe river basin (HRB) in the North China has been experiencing prolonged, severe droughts in recent years that are accompanied by precipitation deficits and vegetation wilting. This paper analyzed the water deficits related to spatiotemporal variability of three variables of the gravity recovery and climate experiment (GRACE) derived terrestrial water storage (TWS) data, precipitation, and EVI in the HRB from January 2003 to January 2013. The corresponding drought indices of TWS anomaly index (TWSI), precipitation anomaly index (PAI), and vegetation anomaly index (AVI) were also compared for drought analysis. Our observations showed that the GRACE-TWS was more suitable for detecting prolonged and severe droughts in the HRB because it can represent loss of deep soil water and ground water. The multiyear droughts, of which the HRB has sustained for more than 5 years, began in mid-2007. Extreme drought events were detected in four periods at the end of 2007, the end of 2009, the end of 2010, and in the middle of 2012. Spatial analysis of drought risk from the end of 2011 to the beginning of 2012 showed that human activities played an important role in the extent of drought hazards in the HRB. PMID:25202732

  14. Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis.

    PubMed

    Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy; Kawazoe, Yoshiyuki

    2017-11-01

    This study aims to cast light on the physico-chemical nature and energetics of interactions between the nucleobases and water/DMSO molecules which occurs through the non-conventional CH⋯O/N-H bonds using a comprehensive quantum-chemical approach. The computed interaction energies do not show any appreciable change for all the nucleobase-solvent complexes, conforming the experimental findings on the hydration enthalpies. Compared to water, DMSO form complexes with high interaction energies. The quantitative molecular electrostatic potentials display a charge transfer during the complexation. NBO analysis shows the nucleobase-DMSO complexes, have higher stabilization energy values than the nucleobase-water complexes. AIM analysis illustrates that the in the nucleobase-DMSO complexes, SO⋯H-N type interaction have strongest hydrogen bond strength with high E HB values. Furthermore, the Laplacian of electron density and total electron density were negative indicating the partial covalent nature of bonding in these systems, while the other bonds are classified as noncovalent interactions. EDA analysis indicates, the electrostatic interaction is more pronounced in the case of nucleobase-water complexes, while the dispersion contribution is more dominant in nucleobase-DMSO complexes. NCI-RDG analysis proves the existence of strong hydrogen bonding in nucleobase-DMSO complex, which supports the AIM results. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    PubMed

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the

  16. Analysis of water levels in the Frenchman Flat area, Nevada Test Site

    USGS Publications Warehouse

    Bright, D.J.; Watkins, S.A.; Lisle, B.A.

    2001-01-01

    Analysis of water levels in 21 wells in the Frenchman Flat area, Nevada Test Site, provides information on the accuracy of hydraulic-head calculations, temporal water-level trends, and potential causes of water-level fluctuations. Accurate hydraulic heads are particularly important in Frenchman Flat where the hydraulic gradients are relatively flat (less than 1 foot per mile) in the alluvial aquifer. Temporal water-level trends with magnitudes near or exceeding the regional hydraulic gradient may have a substantial effect on ground-water flow directions. Water-level measurements can be adjusted for the effects of barometric pressure, formation water density (from water-temperature measurements), borehole deviation, and land-surface altitude in selected wells in the Frenchman Flat area. Water levels in one well were adjusted for the effect of density; this adjustment was significantly greater (about 17 feet) than the adjustment of water levels for barometric pressure, borehole deviation, or land-surface altitude (less than about 4 feet). Water-level measurements from five wells exhibited trends that were statistically and hydrologically significant. Statistically significant water-level trends were observed for three wells completed in the alluvial aquifer (WW-5a, UE-5n, and PW-3), for one well completed in the carbonate aquifer (SM-23), and for one well completed in the quartzite confining unit (Army-6a). Potential causes of water-level fluctuations in wells in the Frenchman Flat area include changes in atmospheric conditions (precipitation and barometric pressure), Earth tides, seismic activity, past underground nuclear testing, and nearby pumping. Periodic water-level measurements in some wells completed in the carbonate aquifer indicate cyclic-type water-level fluctuations that generally correlate with longer term changes (more than 5 years) in precipitation. Ground-water pumping fromthe alluvial aquifer at well WW-5c and pumping and discharge from well RNM-2s

  17. Conjoint Analysis of the Surface and Atmospheric Water Balances of the Andes-Amazon System

    NASA Astrophysics Data System (ADS)

    Builes-Jaramillo, Alejandro; Poveda, Germán

    2017-04-01

    Acknowledging the interrelation between the two branches of the hydrological cycle, we perform a comprehensive analysis of the long-term mean surface and atmospheric water balances in the Amazon-Andes River basins system. We estimate the closure of the water budgets based on the long-term approximation of the water balance equations, and estimate the imbalance between both atmospheric and surface budgets. The analysis was performed with observational and reanalysis datasets for the entire basin, for several sub-catchments inside the entire Amazon River basin and for two physical and geographical distinctive subsystems of the basin, namely upper Andean the low-lying Amazon River basin. Our results evidence that for the entire Amazon River basin the surface water balance can be considered to be in balance (P = 2225 mm.yr-1, ET= 1062 mm.yr-1, R= 965 mm.yr-1), whereas for the separated subsystems it not so clear, showing high discrepancies between observations and reanalysis datasets. In turn, the atmospheric budget does not close regardless of datasets or geographical disaggregation. Our results indicate that the amount of imbalance of the atmospheric branch of the water balance depends on the evaporation data source used. The imbalance calculated as I=(C/R)-1, where C is net moisture convergence (C= -∇Q where ∇Q is the net vertically integrated moisture divergence) and R the runoff,represents the difference between the two branches of the hydrological cycle. For the entire Amazon River basin we found a consistent negative imbalance driven by higher values of runoff, and when calculated for monthly time scales the imbalance is characterized by a high dependence on the Amazon dry season. The separated analysis performed to the Andes and Low-lying Amazonia subsystems unveils two shortcomings of the available data, namely a poor quality of the representation of surface processes in the reanalysis models (including precipitation and evapotranspiration), and the

  18. Economic analysis of condensers for water recovery in steam injected gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Paepe, M.; Huvenne, P.; Dick, E.

    1998-07-01

    Steam injection cycles are interesting for small power ranges because of the high efficiency and the relatively low investment costs. A big disadvantage is the consumption of water by the cycle. Water recovery is seldom realized in industrial practice. In this paper an analysis of the technical and economical possibilities of water recovery by condensation of water out of the exhaust gases is made. Three gas turbines are considered : the Kawasaki M1A-13CC (2.3 MWe), the Allison 501KH (6.8 MWe) and the General Electric LM1600 (17 MWe). For every gas turbine two types of condensers are designed. In the watermore » cooled condenser finned tubes are used to cool the exhaust gases, flowing at the outside of the tubes. The water itself flows at the inside of the tubes and is cooled by a water to air cooler. In the air cooled condenser the exhaust gases flow at the inside of the tubes and the cooling air at the outside. The investment costs of the condensers is compared to the costs of the total installation. The investment costs are relatively smaller if the produced power goes up. The water cooled condenser with water to air cooler is cheaper than the air cooled condenser. Using a condenser results in higher exploitation costs due to the fans and pumps. It is shown that the air cooled condenser has lower exploitation costs than the water cooled one. Pay back time of the total installation does not significantly vary compared to the installation without recovery. Water prices are determined for which water recovery is profitable. For the water cooled condenser the turning point lies at 2.2 Euro/m; for the air cooled condenser this is 0.6 Euro/m.« less

  19. Development of the water-analysis screening tool used in the initial screening for the Pennsylvania State Water Plan update of 2008

    USGS Publications Warehouse

    Stuckey, Marla H.

    2008-01-01

    The Water Resources Planning Act, Act 220 of 2002, requires the Pennsylvania Department of Environmental Protection (PaDEP) to update the State Water Plan by 2008. As part of this update, a water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in cooperation with the PaDEP, to provide assistance to the state in the identification of critical water-planning areas. The WAST has two primary inputs: net withdrawals and the initial screening criteria. A comprehensive water-use database that includes data from registration, estimation, discharge monitoring reports, mining data, and other sources was developed as input into the WAST. Water use in the following categories was estimated using water-use factors: residential, industrial, commercial, agriculture, and golf courses. A percentage of the 7-day, 10-year low flow is used for the initial screenings using the WAST to identify potential critical water-planning areas. This quantity, or initial screening criteria, is 50 percent of the 7-day, 10-year low flow for most streams. Using a basic water-balance equation, a screening indicator is calculated that indicates the potential influences of net withdrawals on aquatic-resource uses for watersheds generally larger than 15 square miles. Points representing outlets of these watersheds are colored-coded within the WAST to show the screening criteria for each watershed.

  20. Correction analysis for a supersonic water cooled total temperature probe tested to 1370 K

    NASA Technical Reports Server (NTRS)

    Lagen, Nicholas T.; Seiner, John M.

    1991-01-01

    The authors address the thermal analysis of a water cooled supersonic total temperature probe tested in a Mach 2 flow, up to 1366 K total temperature. The goal of this experiment was the determination of high-temperature supersonic jet mean flow temperatures. An 8.99 cm exit diameter water cooled nozzle was used in the tests. It was designed for exit Mach 2 at 1366 K exit total temperature. Data along the jet centerline were obtained for total temperatures of 755 K, 1089 K, and 1366 K. The data from the total temperature probe were affected by the water coolant. The probe was tested through a range of temperatures between 755 K and 1366 K with and without the cooling system turned on. The results were used to develop a relationship between the indicated thermocouple bead temperature and the freestream total temperature. The analysis and calculated temperatures are presented.

  1. Association of Supply Type with Fecal Contamination of Source Water and Household Stored Drinking Water in Developing Countries: A Bivariate Meta-analysis.

    PubMed

    Shields, Katherine F; Bain, Robert E S; Cronk, Ryan; Wright, Jim A; Bartram, Jamie

    2015-12-01

    Access to safe drinking water is essential for health. Monitoring access to drinking water focuses on water supply type at the source, but there is limited evidence on whether quality differences at the source persist in water stored in the household. We assessed the extent of fecal contamination at the source and in household stored water (HSW) and explored the relationship between contamination at each sampling point and water supply type. We performed a bivariate random-effects meta-analysis of 45 studies, identified through a systematic review, that reported either the proportion of samples free of fecal indicator bacteria and/or individual sample bacteria counts for source and HSW, disaggregated by supply type. Water quality deteriorated substantially between source and stored water. The mean percentage of contaminated samples (noncompliance) at the source was 46% (95% CI: 33, 60%), whereas mean noncompliance in HSW was 75% (95% CI: 64, 84%). Water supply type was significantly associated with noncompliance at the source (p < 0.001) and in HSW (p = 0.03). Source water (OR = 0.2; 95% CI: 0.1, 0.5) and HSW (OR = 0.3; 95% CI: 0.2, 0.8) from piped supplies had significantly lower odds of contamination compared with non-piped water, potentially due to residual chlorine. Piped water is less likely to be contaminated compared with other water supply types at both the source and in HSW. A focus on upgrading water services to piped supplies may help improve safety, including for those drinking stored water.

  2. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    NASA Astrophysics Data System (ADS)

    Shi, J.; Liu, J.; Pinter, L.

    2014-04-01

    China has dramatically increased its virtual water import over recent years. Many studies have focused on the quantity of traded virtual water, but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North America and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export, and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops, soybeans, mostly imported from the US, Brazil and Argentina, are the most significant. In order to mitigate water scarcity and secure the food supply, virtual water should actively be incorporated into national water management strategies. And the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  3. Techniques for water demand analysis and forecasting: Puerto Rico, a case study

    USGS Publications Warehouse

    Attanasi, E.D.; Close, E.R.; Lopez, M.A.

    1975-01-01

    The rapid economic growth of the Commonwealth-of Puerto Rico since 1947 has brought public pressure on Government agencies for rapid development of public water supply and waste treatment facilities. Since 1945 the Puerto Rico Aqueduct and Sewer Authority has had the responsibility for planning, developing and operating water supply and waste treatment facilities on a municipal basis. The purpose of this study was to develop operational techniques whereby a planning agency, such as the Puerto Rico Aqueduct and Sewer Authority, could project the temporal and spatial distribution of .future water demands. This report is part of a 2-year cooperative study between the U.S. Geological Survey and the Environmental Quality Board of the Commonwealth of Puerto Rico, for the development of systems analysis techniques for use in water resources planning. While the Commonwealth was assisted in the development of techniques to facilitate ongoing planning, the U.S. Geological Survey attempted to gain insights in order to better interface its data collection efforts with the planning process. The report reviews the institutional structure associated with water resources planning for the Commonwealth. A brief description of alternative water demand forecasting procedures is presented and specific techniques and analyses of Puerto Rico demand data are discussed. Water demand models for a specific area of Puerto Rico are then developed. These models provide a framework for making several sets of water demand forecasts based on alternative economic and demographic assumptions. In the second part of this report, the historical impact of water resources investment on regional economic development is analyzed and related to water demand .forecasting. Conclusions and future data needs are in the last section.

  4. Water conservation in irrigation can increase water use

    PubMed Central

    Ward, Frank A.; Pulido-Velazquez, Manuel

    2008-01-01

    Climate change, water supply limits, and continued population growth have intensified the search for measures to conserve water in irrigated agriculture, the world's largest water user. Policy measures that encourage adoption of water-conserving irrigation technologies are widely believed to make more water available for cities and the environment. However, little integrated analysis has been conducted to test this hypothesis. This article presents results of an integrated basin-scale analysis linking biophysical, hydrologic, agronomic, economic, policy, and institutional dimensions of the Upper Rio Grande Basin of North America. It analyzes a series of water conservation policies for their effect on water used in irrigation and on water conserved. In contrast to widely-held beliefs, our results show that water conservation subsidies are unlikely to reduce water use under conditions that occur in many river basins. Adoption of more efficient irrigation technologies reduces valuable return flows and limits aquifer recharge. Policies aimed at reducing water applications can actually increase water depletions. Achieving real water savings requires designing institutional, technical, and accounting measures that accurately track and economically reward reduced water depletions. Conservation programs that target reduced water diversions or applications provide no guarantee of saving water. PMID:19015510

  5. Water microbiology. Bacterial pathogens and water.

    PubMed

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  6. Preliminary analysis for trends in selected water-quality characteristics, Powder River, Montana and Wyoming, water years 1952-85

    USGS Publications Warehouse

    Cary, L.E.

    1989-01-01

    Selected water-quality data from two streamflow-gaging stations on the Powder River, Montana and Wyoming, were statistically analyzed for trends using the seasonal Kendall test. Data for water years 1952-63 and 1975-85 from the Powder River near Locate, Montana, and water years 1967-68 and 1976-85 from the Powder River at Sussex, Wyoming, were analyzed. Data for the earlier period near Locate were discharge-weighted monthly mean values, whereas data for the late period near Locate and at Sussex were from periodic samples. For data from water years 1952-63 near Locate, increasing trends were detected in sodium and sodium-adsorption ratio; no trends were detected in specific conductance, hardness, non-carbonate hardness, alkalinity, dissolved solids, or sulfate. For data from water years 1975-85 near Locate, increasing trends were detected in specific conductance, sodium, sodium-adsorption ratio, and chloride; no trends were detected in hardness, noncarbonate hardness, alkalinity, dissolved solids, calcium, magnesium, potassium, or sulfate. At Sussex (water years 1967-68 and 1976-85), increasing trends were detected in sodium, sodium-adsorption ratio, and chloride, and a decreasing trend was detected in sulfate. No trends were detected in specific conductance, alkalinity, or dissolved solids. When the 1967-68 data were deleted and the analysis repeated for the 1976-85 data, only sodium-adsorption ratio displayed a significant (increasing) trend. Because the study was exploratory, causes and effects were not considered. The results might have been affected by sample size, number of seasons, heterogeneity, significance level, serial correlation, and data adjustment for changes in discharge. (USGS)

  7. City-scale analysis of water-related energy identifies more cost-effective solutions.

    PubMed

    Lam, Ka Leung; Kenway, Steven J; Lant, Paul A

    2017-02-01

    Energy and greenhouse gas management in urban water systems typically focus on optimising within the direct system boundary of water utilities that covers the centralised water supply and wastewater treatment systems, despite a greater energy influence by the water end use. This work develops a cost curve of water-related energy management options from a city perspective for a hypothetical Australian city. It is compared with that from the water utility perspective. The curves are based on 18 water-related energy management options that have been implemented or evaluated in Australia. In the studied scenario, the cost-effective energy saving potential from a city perspective (292 GWh/year) is far more significant than that from a utility perspective (65 GWh/year). In some cases, for similar capital cost, if regional water planners invested in end use options instead of utility options, a greater energy saving potential at a greater cost-effectiveness could be achieved in urban water systems. For example, upgrading a wastewater treatment plant for biogas recovery at a capital cost of $27.2 million would save 31 GWh/year with a marginal cost saving of $63/MWh, while solar hot water system rebates at a cost of $28.6 million would save 67 GWh/year with a marginal cost saving of $111/MWh. Options related to hot water use such as water-efficient shower heads, water-efficient clothes washers and solar hot water system rebates are among the most cost-effective city-scale opportunities. This study demonstrates the use of cost curves to compare both utility and end use options in a consistent framework. It also illustrates that focusing solely on managing the energy use within the utility would miss substantial non-utility water-related energy saving opportunities. There is a need to broaden the conventional scope of cost curve analysis to include water-related energy and greenhouse gas at the water end use, and to value their management from a city perspective. This

  8. Assessment of repeatability of composition of perfumed waters by high-performance liquid chromatography combined with numerical data analysis based on cluster analysis (HPLC UV/VIS - CA).

    PubMed

    Ruzik, L; Obarski, N; Papierz, A; Mojski, M

    2015-06-01

    High-performance liquid chromatography (HPLC) with UV/VIS spectrophotometric detection combined with the chemometric method of cluster analysis (CA) was used for the assessment of repeatability of composition of nine types of perfumed waters. In addition, the chromatographic method of separating components of the perfume waters under analysis was subjected to an optimization procedure. The chromatograms thus obtained were used as sources of data for the chemometric method of cluster analysis (CA). The result was a classification of a set comprising 39 perfumed water samples with a similar composition at a specified level of probability (level of agglomeration). A comparison of the classification with the manufacturer's declarations reveals a good degree of consistency and demonstrates similarity between samples in different classes. A combination of the chromatographic method with cluster analysis (HPLC UV/VIS - CA) makes it possible to quickly assess the repeatability of composition of perfumed waters at selected levels of probability. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  9. Physico-chemical and genotoxicity analysis of Guaribas river water in the Northeast Brazil.

    PubMed

    de Castro E Sousa, João Marcelo; Peron, Ana Paula; da Silva, Felipe Cavalcanti Carneiro; de Siqueira Dantas, Ellifran Bezerra; de Macedo Vieira Lima, Ataíde; de Oliveira, Victor Alves; Matos, Leomá Albuquerque; Paz, Márcia Fernanda Correia Jardim; de Alencar, Marcus Vinicius Oliveira Barros; Islam, Muhammad Torequl; de Carvalho Melo-Cavalcante, Ana Amélia; Bonecker, Cláudia Costa; Júlio, Horácio Ferreira

    2017-06-01

    River pollution in Brazil is significant. This study aimed to evaluate the physico-chemical and genotoxic profiles of the Guaribas river water, located in Northeast Brazil (State of Piauí, Brazil). The study conducted during the dry and wet seasons to understand the frequency of pollution throughout the year. Genotoxicity analysis was done with the blood of Oreochromis niloticus by using the comet assay. Water samples were collected from upstream, within and downstream the city Picos. The results suggest a significant (p < 0.05) genotoxic effect of the Guaribas river water when compared to the control group. In comparison to the control group, in the river water we found a significant increase in metals such as - Fe, Zn, Cr, Cu and Al. In conclusion, Guaribas river carries polluted water, especially a large quantity of toxic metals, which may impart the genotoxic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. [New paradigm for soil and water conservation: a method based on watershed process modeling and scenario analysis].

    PubMed

    Zhu, A-Xing; Chen, La-Jiao; Qin, Cheng-Zhi; Wang, Ping; Liu, Jun-Zhi; Li, Run-Kui; Cai, Qiang-Guo

    2012-07-01

    With the increase of severe soil erosion problem, soil and water conservation has become an urgent concern for sustainable development. Small watershed experimental observation is the traditional paradigm for soil and water control. However, the establishment of experimental watershed usually takes long time, and has the limitations of poor repeatability and high cost. Moreover, the popularization of the results from the experimental watershed is limited for other areas due to the differences in watershed conditions. Therefore, it is not sufficient to completely rely on this old paradigm for soil and water loss control. Recently, scenario analysis based on watershed modeling has been introduced into watershed management, which can provide information about the effectiveness of different management practices based on the quantitative simulation of watershed processes. Because of its merits such as low cost, short period, and high repeatability, scenario analysis shows great potential in aiding the development of watershed management strategy. This paper elaborated a new paradigm using watershed modeling and scenario analysis for soil and water conservation, illustrated this new paradigm through two cases for practical watershed management, and explored the future development of this new soil and water conservation paradigm.

  11. Analysis and interpretation of water-quality trends in major U.S. rivers, 1974-81

    USGS Publications Warehouse

    Smith, Richard A.; Alexander, Richard B.; Wolman, M. Gordon

    1987-01-01

    Water-quality records from two nationwide sampling networks are now of sufficient length to permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U.S. rivers. Observed trends in 24 water-quality measures for the period 1974--81 provide evidence of both improvement and deterioration in stream quality during a time of major changes in atmospheric and terrestrial influences on surface waters. Particularly noteworthy are widespread decreases in lead and fecal bacteria concentrations and widespread increases in nitrate, arsenic, and cadmium concentrations. Changes in municipal waste treatment, leaded-gasoline consumption, highway-salt use, and nitrogen-fertilizer application, and regionally variable trends in coal production and combustion during the period, appear to be reflected in water-quality changes. There is evidence that atmospheric deposition of a variety of substances has played a surprisingly large role in water-quality changes.

  12. [Analysis of the rationality of the water schedule in student-athletes of various specializations].

    PubMed

    Davletova, N Kh; Ivanov, A V; Tafeeva, E A

    The presented in the article the analysis of water schedule in student-athletes showed a low level of water consumption culture and the irrationality of the actual water schedule. According to the results of the survey revealed that 86.7% of boys-athletes and 67.2% of girls athletes were revealed to fail to keep a certain water schedule; 98.3% student-athletes are in a state of dehydration of the body. There are established correlations between the presence of dehydration of the body and symptoms such as fatigue and decreased performance (correlation coefficient 0.594, p = 0.01), the appearance of dryness in the morning on an empty stomach (correlation coefficient 0.512, p = 0.01).

  13. Comparison and cost analysis of drinking water quality monitoring requirements versus practice in seven developing countries.

    PubMed

    Crocker, Jonny; Bartram, Jamie

    2014-07-18

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country's ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries.

  14. Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Pratt, D.; Orlowski, N.; McDonnell, J.

    2016-12-01

    The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.

  15. A Computational Approach for Probabilistic Analysis of LS-DYNA Water Impact Simulations

    NASA Technical Reports Server (NTRS)

    Horta, Lucas G.; Mason, Brian H.; Lyle, Karen H.

    2010-01-01

    NASA s development of new concepts for the Crew Exploration Vehicle Orion presents many similar challenges to those worked in the sixties during the Apollo program. However, with improved modeling capabilities, new challenges arise. For example, the use of the commercial code LS-DYNA, although widely used and accepted in the technical community, often involves high-dimensional, time consuming, and computationally intensive simulations. Because of the computational cost, these tools are often used to evaluate specific conditions and rarely used for statistical analysis. The challenge is to capture what is learned from a limited number of LS-DYNA simulations to develop models that allow users to conduct interpolation of solutions at a fraction of the computational time. For this problem, response surface models are used to predict the system time responses to a water landing as a function of capsule speed, direction, attitude, water speed, and water direction. Furthermore, these models can also be used to ascertain the adequacy of the design in terms of probability measures. This paper presents a description of the LS-DYNA model, a brief summary of the response surface techniques, the analysis of variance approach used in the sensitivity studies, equations used to estimate impact parameters, results showing conditions that might cause injuries, and concluding remarks.

  16. Scaling of the Urban Water Footprint: An Analysis of 65 Mid- to Large-Sized U.S. Metropolitan Areas

    NASA Astrophysics Data System (ADS)

    Mahjabin, T.; Garcia, S.; Grady, C.; Mejia, A.

    2017-12-01

    Scaling laws have been shown to be relevant to a range of disciplines including biology, ecology, hydrology, and physics, among others. Recently, scaling was shown to be important for understanding and characterizing cities. For instance, it was found that urban infrastructure (water supply pipes and electrical wires) tends to scale sublinearly with city population, implying that large cities are more efficient. In this study, we explore the scaling of the water footprint of cities. The water footprint is a measure of water appropriation that considers both the direct and indirect (virtual) water use of a consumer or producer. Here we compute the water footprint of 65 mid- to large-sized U.S. metropolitan areas, accounting for direct and indirect water uses associated with agricultural and industrial commodities, and residential and commercial water uses. We find that the urban water footprint, computed as the sum of the water footprint of consumption and production, exhibits sublinear scaling with an exponent of 0.89. This suggests the possibility of large cities being more water-efficient than small ones. To further assess this result, we conduct additional analysis by accounting for international flows, and the effects of green water and city boundary definition on the scaling. The analysis confirms the scaling and provides additional insight about its interpretation.

  17. Multilayer geospatial analysis of water availability for shale resources development in Mexico

    NASA Astrophysics Data System (ADS)

    Galdeano, C.; Cook, M. A.; Webber, M. E.

    2017-08-01

    Mexico’s government enacted an energy reform in 2013 that aims to foster competitiveness and private investment throughout the energy sector value chain. As part of this reform, it is expected that extraction of oil and gas via hydraulic fracturing will increase in five shale basins (e.g. Burgos, Sabinas, Tampico, Tuxpan, and Veracruz). Because hydraulic fracturing is a water-intensive activity, it is relevant to assess the potential water availability for this activity in Mexico. This research aims to quantify the water availability for hydraulic fracturing in Mexico and identify its spatial distribution along the five shale basins. The methodology consisted of a multilayer geospatial analysis that overlays the water availability in the watersheds and aquifers with the different types of shale resources areas (e.g. oil and associated gas, wet gas and condensate, and dry gas) in the five shale basins. The aquifers and watersheds in Mexico are classified in four zones depending on average annual water availability. Three scenarios were examined based on different impact level on watersheds and aquifers from hydraulic fracturing. For the most conservative scenario analyzed, the results showed that the water available could be used to extract between 8.15 and 70.42 Quadrillion British thermal units (Quads) of energy in the typical 20-30 year lifetime of the hydraulic fracturing wells that could be supplied with the annual water availability overlaying the shale areas, with an average across estimates of around 18.05 Quads. However, geographic variation in water availability could represent a challenge for extracting the shale reserves. Most of the water available is located closer to the Gulf of Mexico, but the areas with the larger recoverable shale reserves coincide with less water availability in Northern Mexico. New water management techniques (such as recycling and re-use), more efficient fracturing methods, shifts in usage patterns, or other water sources need

  18. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  19. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    PubMed

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality.

  20. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents

    USGS Publications Warehouse

    Wood, Warren W.

    1976-01-01

    The unstable nature of many chemical and physical constituents in ground water requires special collection procedures and field analysis immediately after collection. This report describes the techniques and equipment commonly used m the collection and field analysis of samples for pH, temperature, carbonate, bicarbonate, specific conductance, Eh, and dissolved oxygen.

  1. Analysis of the Earthquake Impact towards water-based fire extinguishing system

    NASA Astrophysics Data System (ADS)

    Lee, J.; Hur, M.; Lee, K.

    2015-09-01

    Recently, extinguishing system installed in the building when the earthquake occurred at a separate performance requirements. Before the building collapsed during the earthquake, as a function to maintain a fire extinguishing. In particular, the automatic sprinkler fire extinguishing equipment, such as after a massive earthquake without damage to piping also must maintain confidentiality. In this study, an experiment installed in the building during the earthquake, the water-based fire extinguishing saw grasp the impact of the pipe. Experimental structures for water-based fire extinguishing seismic construction step by step, and then applied to the seismic experiment, the building appears in the extinguishing of the earthquake response of the pipe was measured. Construction of acceleration caused by vibration being added to the size and the size of the displacement is measured and compared with the data response of the pipe from the table, thereby extinguishing water piping need to enhance the seismic analysis. Define the seismic design category (SDC) for the four groups in the building structure with seismic criteria (KBC2009) designed according to the importance of the group and earthquake seismic intensity. The event of a real earthquake seismic analysis of Category A and Category B for the seismic design of buildings, the current fire-fighting facilities could have also determined that the seismic performance. In the case of seismic design categories C and D are installed in buildings to preserve the function of extinguishing the required level of seismic retrofit design is determined.

  2. Water Microbiology. Bacterial Pathogens and Water

    PubMed Central

    Cabral, João P. S.

    2010-01-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters. PMID:21139855

  3. Whole-cell luminescence biosensor-based lab-on-chip integrated system for water toxicity analysis

    NASA Astrophysics Data System (ADS)

    Rabner, Arthur; Belkin, Shimshon; Rozen, Rachel; Shacham, Yosi

    2006-01-01

    A novel water chemical toxin sensor has been successfully developed and evaluated as a working portable laboratory prototype. This sensor relies on a disposable plastic biochip prepared with a 4x4 micro-laboratory (μLab) chambers array of Escherichia coli reporter cells and micro-fluidic channels for liquids translocation. Each bacterial strain has been genetically modified into a bioluminescent reporter that responds to a pre-determined class of chemical agents. When challenged with a water sample containing a toxic chemical, the sensor responds with an increased bioluminescent signal from the biochip that is monitored over time. The signal is received by a motorized photomultiplier-based analyzer and interpreted by signal processing software. We have performed several levels of analysis: (i) the change in the bioluminescent signal from the sensor bacteria serves as a rapid indication for the presence of toxic chemicals in the water sample; (ii) the intensity of the change indicates the toxin concentration level; and (iii) the pattern of the responses for the different members of the bacterial panel on the biochip characterizes the biological origin of the toxin. The analyzer contains housing mechanics, electro-optics for signal acquisition, motorized readout calibration accessories, hydro-pneumatics modules for water sample translocation into biochip micro laboratories, electronics for overall control and communication with the host computer. This prototype has a demonstrated sensitivity for broad classes of water-borne toxic chemicals including naladixic acid (a model genotoxic agent), botulinum and acetylcholine esterase inhibitors. This work has initiated an investigation of a novel handheld field-deployable Water Toxicity Analysis (WTA) device.

  4. Rapid and non-destructive identification of water-injected beef samples using multispectral imaging analysis.

    PubMed

    Liu, Jinxia; Cao, Yue; Wang, Qiu; Pan, Wenjuan; Ma, Fei; Liu, Changhong; Chen, Wei; Yang, Jianbo; Zheng, Lei

    2016-01-01

    Water-injected beef has aroused public concern as a major food-safety issue in meat products. In the study, the potential of multispectral imaging analysis in the visible and near-infrared (405-970 nm) regions was evaluated for identifying water-injected beef. A multispectral vision system was used to acquire images of beef injected with up to 21% content of water, and partial least squares regression (PLSR) algorithm was employed to establish prediction model, leading to quantitative estimations of actual water increase with a correlation coefficient (r) of 0.923. Subsequently, an optimized model was achieved by integrating spectral data with feature information extracted from ordinary RGB data, yielding better predictions (r = 0.946). Moreover, the prediction equation was transferred to each pixel within the images for visualizing the distribution of actual water increase. These results demonstrate the capability of multispectral imaging technology as a rapid and non-destructive tool for the identification of water-injected beef. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Tracing gadolinium-based contrast agents from surface water to drinking water by means of speciation analysis.

    PubMed

    Birka, Marvin; Wehe, Christoph A; Hachmöller, Oliver; Sperling, Michael; Karst, Uwe

    2016-04-01

    In recent decades, a significant amount of anthropogenic gadolinium has been released into the environment as a result of the broad application of contrast agents for magnetic resonance imaging (MRI). Since this anthropogenic gadolinium anomaly has also been detected in drinking water, it has become necessary to investigate the possible effect of drinking water purification on these highly polar microcontaminats. Therefore, a novel highly sensitive method for speciation analysis of gadolinium is presented. For that purpose, the hyphenation of hydrophilic interaction liquid chromatography (HILIC) and inductively coupled plasma-mass spectrometry (ICP-MS) was employed. In order to enhance the detection power, sample introduction was carried out by ultrasonic nebulization. In combination with a novel HILIC method using a diol-based stationary phase, it was possible to achieve superior limits of detection for frequently applied gadolinium-based contrast agents below 20pmol/L. With this method, the contrast agents Gd-DTPA, Gd-DOTA and Gd-BT-DO3A were determined in concentrations up to 159pmol/L in samples from several waterworks in a densely populated region of Germany alongside the river Ruhr as well as from a waterworks near a catchment lake. Thereby, the direct impact of anthropogenic gadolinium species being present in the surface water on the amount of anthropogenic gadolinium in drinking water was shown. There was no evidence for the degradation of contrast agents, the release of Gd(3+) or the presence of further Gd species. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Regional analysis of ground-water recharge: Chapter B in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    A modeling analysis of runoff and ground-water recharge for the arid and semiarid southwestern United States was performed to investigate the interactions of climate and other controlling factors and to place the eight study-site investigations into a regional context. A distributed-parameter water-balance model (the Basin Characterization Model, or BCM) was used in the analysis. Data requirements of the BCM included digital representations of topography, soils, geology, and vegetation, together with monthly time-series of precipitation and air-temperature data. Time-series of potential evapotranspiration were generated by using a submodel for solar radiation, taking into account topographic shading, cloudiness, and vegetation density. Snowpack accumulation and melting were modeled using precipitation and air-temperature data. Amounts of water available for runoff and ground-water recharge were calculated on the basis of water-budget considerations by using measured- and generated-meteorologic time series together with estimates of soil-water storage and saturated hydraulic conductivity of subsoil geologic units. Calculations were made on a computational grid with a horizontal resolution of about 270 meters for the entire 1,033,840 square-kilometer study area. The modeling analysis was composed of 194 basins, including the eight basins containing ground-water recharge-site investigations. For each grid cell, the BCM computed monthly values of potential evapotranspiration, soil-water storage, in-place ground-water recharge, and runoff (potential stream flow). A fixed percentage of runoff was assumed to become recharge beneath channels operating at a finer resolution than the computational grid of the BCM. Monthly precipitation and temperature data from 1941 to 2004 were used to explore climatic variability in runoff and ground-water recharge.The selected approach provided a framework for classifying study-site basins with respect to climate and dominant recharge

  7. Hydrogeology and analysis of ground-water withdrawal in the Mendenhall-D'Lo area, Simpson County, Mississippi

    USGS Publications Warehouse

    Strom, E.W.; Oakley, W.T.

    1995-01-01

    The cities of Mendenhall and D'Lo, located in Simpson County, rely on ground water for their public supply and industrial needs. Most of the ground water comes from an aquifer of Miocene age. A study began in 1991 to describe the hydrogeology, analyze effects of ground-water withdrawal by making a drawdown map, and estimate the effects increased ground-water withdrawal might have on water levels in the Miocene age aquifer in the Mendenhall-D'Lo area. The most significant withdrawals of ground water in the study area are from 10 wells screened in the lower sand of the Catahoula Formation of Miocene age. Analysis of the effect of withdrawals from the 10 wells was made using the Theis non- equilibrium equation and applying the principle of superposition. Analysis of 1994 conditions was based on the pumpage history and aquifer properties deter- mined for each well. The drawdown surface resulting from the analysis indicates three general cones of depression. One cone is in the northwestern D'Lo area, one in the south-central Mendenhall area, and one about 1-1/2 miles east of Mendenhall. Calculated drawdown ranges from 21 to 47 feet. Potential drawdown-surface maps were made for 10 years and 20 years beyond 1994 using a constant pumpage. The map made for 10 years beyond 1994 indicates an average total increase in drawdown of about 5.3 feet. The map made for 20 years beyond 1994 indicates an average total increase in drawdown of about 7.3 feet.

  8. Life Cycle Assessment and Cost Analysis of Water and ...

    EPA Pesticide Factsheets

    changes in drinking and wastewater infrastructure need to incorporate a holistic view of the water service sustainability tradeoffs and potential benefits when considering shifts towards new treatment technology, decentralized systems, energy recovery and reuse of treated wastewater. The main goal of this study is to determine the influence of scale on the energy and cost performance of different transitional membrane bioreactors (MBR) in decentralized wastewater treatment (WWT) systems by performing a life cycle assessment (LCA) and cost analysis. LCA is a tool used to quantify sustainability-related metrics from a systems perspective. The study calculates the environmental and cost profiles of both aerobic MBRs (AeMBR) and anaerobic MBRs (AnMBR), which not only recover energy from waste, but also produce recycled water that can displace potable water for uses such as irrigation and toilet flushing. MBRs represent an intriguing technology to provide decentralized WWT services while maximizing resource recovery. A number of scenarios for these WWT technologies are investigated for different scale systems serving various population density and land area combinations to explore the ideal application potentials. MBR systems are examined from 0.05 million gallons per day (MGD) to 10 MGD and serve land use types from high density urban (100,000 people per square mile) to semi-rural single family (2,000 people per square mile). The LCA and cost model was built with ex

  9. Modular AUV System with Integrated Real-Time Water Quality Analysis.

    PubMed

    Eichhorn, Mike; Ament, Christoph; Jacobi, Marco; Pfuetzenreuter, Torsten; Karimanzira, Divas; Bley, Kornelia; Boer, Michael; Wehde, Henning

    2018-06-05

    This paper describes the concept, the technical implementation and the practical application of a miniaturized sensor system integrated into an autonomous underwater vehicle (AUV) for real-time acquisition of water quality parameters. The main application field of the presented system is the analysis of the discharge of nitrates into Norwegian fjords near aqua farms. The presented system was developed within the research project SALMON (Sea Water Quality Monitoring and Management) over a three-year period. The development of the sensor system for water quality parameters represented a significant challenge for the research group, as it was to be integrated in the payload unit of the autonomous underwater vehicle in compliance with the underwater environmental conditions. The German company -4H- JENA engineering GmbH (4HJE), with experience in optical in situ-detection of nutrients, designed and built the measurement system. As a carrier platform, the remotely operated vehicle (ROV) "CWolf" from Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung - Institutsteil Angewandte Systemtechnik (IOSB-AST) modified to an AUV was deployed. The concept presented illustrates how the measurement system can be integrated easily into the vehicle with a minimum of hard- and software technical interfaces.

  10. Quantification of soil water retention parameters using multi-section TDR-waveform analysis

    NASA Astrophysics Data System (ADS)

    Baviskar, S. M.; Heimovaara, T. J.

    2017-06-01

    Soil water retention parameters are important for describing flow in variably saturated soils. TDR is one of the standard methods used for determining water content in soil samples. In this study, we present an approach to estimate water retention parameters of a sample which is initially saturated and subjected to an incremental decrease in boundary head causing it to drain in a multi-step fashion. TDR waveforms are measured along the height of the sample at assumed different hydrostatic conditions at daily interval. The cumulative discharge outflow drained from the sample is also recorded. The saturated water content is obtained using volumetric analysis after the final step involved in multi-step drainage. The equation obtained by coupling the unsaturated parametric function and the apparent dielectric permittivity is fitted to a TDR wave propagation forward model. The unsaturated parametric function is used to spatially interpolate the water contents along TDR probe. The cumulative discharge outflow data is fitted with cumulative discharge estimated using the unsaturated parametric function. The weight of water inside the sample estimated at the first and final boundary head in multi-step drainage is fitted with the corresponding weights calculated using unsaturated parametric function. A Bayesian optimization scheme is used to obtain optimized water retention parameters for these different objective functions. This approach can be used for samples with long heights and is especially suitable for characterizing sands with a uniform particle size distribution at low capillary heads.

  11. Global sensitivity analysis for urban water quality modelling: Terminology, convergence and comparison of different methods

    NASA Astrophysics Data System (ADS)

    Vanrolleghem, Peter A.; Mannina, Giorgio; Cosenza, Alida; Neumann, Marc B.

    2015-03-01

    Sensitivity analysis represents an important step in improving the understanding and use of environmental models. Indeed, by means of global sensitivity analysis (GSA), modellers may identify both important (factor prioritisation) and non-influential (factor fixing) model factors. No general rule has yet been defined for verifying the convergence of the GSA methods. In order to fill this gap this paper presents a convergence analysis of three widely used GSA methods (SRC, Extended FAST and Morris screening) for an urban drainage stormwater quality-quantity model. After the convergence was achieved the results of each method were compared. In particular, a discussion on peculiarities, applicability, and reliability of the three methods is presented. Moreover, a graphical Venn diagram based classification scheme and a precise terminology for better identifying important, interacting and non-influential factors for each method is proposed. In terms of convergence, it was shown that sensitivity indices related to factors of the quantity model achieve convergence faster. Results for the Morris screening method deviated considerably from the other methods. Factors related to the quality model require a much higher number of simulations than the number suggested in literature for achieving convergence with this method. In fact, the results have shown that the term "screening" is improperly used as the method may exclude important factors from further analysis. Moreover, for the presented application the convergence analysis shows more stable sensitivity coefficients for the Extended-FAST method compared to SRC and Morris screening. Substantial agreement in terms of factor fixing was found between the Morris screening and Extended FAST methods. In general, the water quality related factors exhibited more important interactions than factors related to water quantity. Furthermore, in contrast to water quantity model outputs, water quality model outputs were found to be

  12. [Drinking water hardness and chronic degenerative diseases. I. Analysis of epidemiological research].

    PubMed

    Nardi, G; Donato, F; Monarca, S; Gelatti, U

    2003-01-01

    For many years a causal relation between drinking water hardness and cardiovascular or other chronic degenerative diseases in humans has been hypothesized. In order to evaluate the association between the concentration of minerals (calcium and magnesium) responsible for the hardness of drinking water and human health, a review of all the articles published on the subject from 1980 up to today has been carried out. The retrieved articles have been divided into 4 categories: geographic correlation studies, cross-sectional studies, case-control and cohort studies, and clinical trials. The methods for the selection of the articles and the extraction and analysis of the data are detailed in this paper. Epidemiological studies have been reviewed critically, and some conclusions have been drawn taking into account the research in basic sciences and experimental studies. However, a formal meta-analysis has not been performed, due to the heterogeneity of measures of effect among the different studies.

  13. Insights into streamflow generation mechanisms using high-frequency analysis of isotopes and water quality in streamflow and precipitation

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Kirchner, James W.

    2017-04-01

    In the pre-Alpine Alptal catchment in central Switzerland, snowmelt and rainfall events cause rapid changes not only in hydrological conditions, but also in water quality. A flood forecasting model for such a mountainous catchment thus requires process understanding that is informed by high-frequency monitoring of hydrological and hydrochemical parameters. Therefore, we installed a high-frequency sampling and analysis system near the outlet of the 0.7 km2 Erlenbach catchment, a headwater tributary of the Alp river. We measured stable water isotopes (δ18O, δ2H) in precipitation and streamwater using Picarro, Inc.'s (Santa Clara, CA, USA) newly developed Continuous Water Sampler Module (CWS) coupled to their L2130-i Cavity Ring-Down Spectrometer, at 30 min temporal resolution. Water quality was monitored with a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as with a UV-Vis spectroscopy system and electrochemical probes (s::can Messtechnik GmbH, Vienna, Austria) for characterization of nutrients and basic water quality parameters. For quantification of trace elements and metals, we collected additional water samples for subsequent ICP-MS analysis in the laboratory. To illustrate the applicability of our newly developed automated analysis and sampling system under field conditions, we will present initial results from the 2016 fall and winter seasons at the Erlenbach catchment. During this period, river discharge was mainly fed by groundwater, as well as intermittent snowmelt and rain-on-snow events. Our high-frequency data set, along with spatially distributed sampling of snowmelt, enables a detailed analysis of source areas, flow pathways and biogeochemical processes that control chemical dynamics in streamflow and the discharge regime.

  14. Water exploration using Magnetotelluric and gravity data analysis; Wadi Nisah, Riyadh, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Aboud, Essam; Saud, Ramzi; Asch, Theodore; Aldamegh, Khaled; Mogren, Saad

    2014-12-01

    Saudi Arabia is a desert country with no permanent rivers or lakes and very little rainfall. Ground water aquifers are the major source of water in Saudi Arabia. In the Riyadh region, several Wadies including Wadi Nisah store about 14 × 106 m3 of water, which is extracted for local irrigation purposes. In such areas, the water wells are as shallow as 200-300 m in depth. The importance of Wadi Nisah is because the subsurface water aquifers that are present there could support the region for many years as a water resource. Accordingly, in this study, we performed a Magnetotelluric survey using a portable broadband sounding system (MT24/LF) to evaluate the ground water aquifer at great depths. We collected 10 broadband Magnetotelluric sounding stations (1 station/day) with an interval of about 2-3 km reaching a profile length of about 25-30 km along Wadi Nisah. Additionally, we used available gravity data to image the subsurface structure containing the aquifer. MT results indicated a low resistivity layer, associated with alluvium deposits, which was defined at a depth of about 1-2 km and extended horizontally about 15 km. Gravity data analysis was used to model this resistivity layer indicating a basement surface at 3-4 km depth.

  15. Water mass analysis for the U.S. GEOTRACES (GA03) North Atlantic sections

    NASA Astrophysics Data System (ADS)

    Jenkins, W. J.; Smethie, W. M.; Boyle, E. A.; Cutter, G. A.

    2015-06-01

    We present the distributions of hydrographic properties (potential temperature, salinity, dissolved oxygen, and micromolar level inorganic macronutrients) along two sections occupied in the subtropical North Atlantic as part of the first U.S. GEOTRACES (GA03) survey during 2010 and 2011. The purpose of this work is to place subsequent papers in this special issue in a general context and to provide a framework in which the observed distributions of Trace Elements and Isotopes can be interpreted. Using these hydrographic properties we use a modified Optimum Multiparameter water mass analysis method to diagnose the relative contributions of various water types along the sections and rationalize their distributions. The water mass compositions appear largely consistent with what is understood from previous studies about the large scale circulation and ventilation of the North Atlantic, with perhaps one exception. We found that the North Atlantic Deep water both east and west of the Mid Atlantic Ridge is more strongly influenced by Iceland Scotland Overflow Water relative to Denmark Straits Overflow Water (about 3:1) than inferred from other tracer studies (typically 2:1). It remains unclear whether this is an artifact of our calculation or a real change in deep water composition in the decades between the determinations.

  16. Energy-Water Microgrid Opportunity Analysis at the University of Arizona's Biosphere 2 Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Jennifer A; Kandt, Alicen J; Macknick, Jordan E

    Microgrids provide reliable and cost-effective energy services in a variety of conditions and locations. There has been minimal effort invested in developing energy-water microgrids that demonstrate the feasibility and leverage synergies of operating renewable energy and water systems in a coordinated framework. Water systems can be operated in ways to provide ancillary services to the electrical grid and renewable energy can be utilized to power water-related infrastructure, but the potential for co-managed systems has not yet been quantified or fully characterized. Energy-water microgrids could be a promising solution to improve energy and water resource management for islands, rural communities, distributedmore » generation, Defense operations, and many parts of the world lacking critical infrastructure. NREL and the University of Arizona have been jointly researching energy-water microgrid opportunities at the University's Biosphere 2 (B2) research facility. B2 is an ideal case study for an energy-water microgrid test site, given its size, its unique mission and operations, the criticality of water and energy infrastructure, and its ability to operate connected to or disconnected from the local electrical grid. Moreover, the B2 is a premier facility for undertaking agricultural research, providing an excellent opportunity to evaluate connections and tradeoffs at the food-energy-water nexus. In this study, NREL used the B2 facility as a case study for an energy-water microgrid test site, with the potential to catalyze future energy-water system integration research. The study identified opportunities for energy and water efficiency and estimated the sizes of renewable energy and storage systems required to meet remaining loads in a microgrid, identified dispatchable loads in the water system, and laid the foundation for an in-depth energy-water microgrid analysis. The foundational work performed at B2 serves a model that can be built upon for identifying

  17. Evaluation of soil water stable isotope analysis by H2O(liquid)-H2O(vapor) equilibration method

    NASA Astrophysics Data System (ADS)

    Gralher, Benjamin; Stumpp, Christine

    2014-05-01

    Environmental tracers like stable isotopes of water (δ18O, δ2H) have proven to be valuable tools to study water flow and transport processes in soils. Recently, a new technique for soil water isotope analysis has been developed that employs a vapor phase being in isothermal equilibrium with the liquid phase of interest. This has increased the potential application of water stable isotopes in unsaturated zone studies as it supersedes laborious extraction of soil water. However, uncertainties of analysis and influencing factors need to be considered. Therefore, the objective of this study was to evaluate different methodologies of analysing stable isotopes in soil water in order to reduce measurement uncertainty. The methodologies included different preparation procedures of soil cores for equilibration of vapor and soil water as well as raw data correction. Two different inflatable sample containers (freezer bags, bags containing a metal layer) and equilibration atmospheres (N2, dry air) were tested. The results showed that uncertainties for δ18O were higher compared to δ2H that cannot be attributed to any specific detail of the processing routine. Particularly, soil samples with high contents of organic matter showed an apparent isotope enrichment which is indicative for fractionation due to evaporation. However, comparison of water samples obtained from suction cups with the local meteoric water line indicated negligible fractionation processes in the investigated soils. Therefore, a method was developed to correct the raw data reducing the uncertainties of the analysis.. We conclude that the evaluated method is advantageous over traditional methods regarding simplicity, resource requirements and sample throughput but careful consideration needs to be made regarding sample handling and data processing. Thus, stable isotopes of water are still a good tool to determine water flow and transport processes in the unsaturated zone.

  18. Soil water erosion processes in mountain forest catchment - analysis by using terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Dąbek, Paweł; Żmuda, Romuald; Szczepański, Jakub; Ćmielewski, Bartłomiej; Patrzałek, Ciechosław

    2013-04-01

    The paper presents the results of the analysis of the water erosion processes of soil occurring in forestry mountain catchment area in the region of West Sudetes Mountain in Poland. The research was carried out within the experimental area of skid trails (operational trails), which were used to the end of 2010 in obtaining wood and its mechanical transport to the place of storage. As a consequence of forestry works that were carried out it was changing the natural structure of ground and its surface on the wooded slopes, which, combined with the favorable hydro-meteorological conditions contributed to the intensification of the water erosion processes of soil on surface of trails. For the implementation of the research project of the analysis of water erosion processes in the forestry catchment area innovative was used terrestrial laser scanning. Using terrestrial laser scanning has enabled the analysis of the dynamics of erosion processes both in time, as well as in spatial and quantitative terms. Scanning was performed at a resolution of 4 mm, resulting in 62 500 points per 1 square meter. After filtering the data were interpolated to other resolution of 1 cm, which can identify even the smallest linear and surface effects of erosion. While installed on the experimental area, along the skid trails, anti-erosion barriers in order to reduce transport eroded material and allow its accumulation. Allowed to precisely determine the location of areas of accumulation, the rate and amount of accumulated material. The result of the analyses that was carried out is identification areas of denudation of the eroded material, and also determine the intensity of the erosion processes and their quantitative analysis. The long-term researches on hydrological conditions and forest complexes functioning show that forest effectively stores water, limits linear and surface flow and delays water outflow from a catchment. Carried out a research project using the terrestrial laser

  19. Comparison and Cost Analysis of Drinking Water Quality Monitoring Requirements versus Practice in Seven Developing Countries

    PubMed Central

    Crocker, Jonny; Bartram, Jamie

    2014-01-01

    Drinking water quality monitoring programs aim to support provision of safe drinking water by informing water quality management. Little evidence or guidance exists on best monitoring practices for low resource settings. Lack of financial, human, and technological resources reduce a country’s ability to monitor water supply. Monitoring activities were characterized in Cambodia, Colombia, India (three states), Jordan, Peru, South Africa, and Uganda according to water sector responsibilities, monitoring approaches, and marginal cost. The seven study countries were selected to represent a range of low resource settings. The focus was on monitoring of microbiological parameters, such as E. coli, coliforms, and H2S-producing microorganisms. Data collection involved qualitative and quantitative methods. Across seven study countries, few distinct approaches to monitoring were observed, and in all but one country all monitoring relied on fixed laboratories for sample analysis. Compliance with monitoring requirements was highest for operational monitoring of large water supplies in urban areas. Sample transport and labor for sample collection and analysis together constitute approximately 75% of marginal costs, which exclude capital costs. There is potential for substantive optimization of monitoring programs by considering field-based testing and by fundamentally reconsidering monitoring approaches for non-piped supplies. This is the first study to look quantitatively at water quality monitoring practices in multiple developing countries. PMID:25046632

  20. Mixed-spectrum generation mechanism analysis of dispersive hyperspectral imaging for improving environmental monitoring of coastal waters

    NASA Astrophysics Data System (ADS)

    Xie, Feng; Xiao, Gonghai; Qi, Hongxing; Shu, Rong; Wang, Jianyu; Xue, Yongqi

    2010-11-01

    At present, most part of coast zone in China belong to Case II waters with a large volume of shallow waters. Through theories and experiences of ocean water color remote sensing has a prominent improvement, there still exist many problems mainly as follows: (a) there is not a special sensor for heat pollution of coast water remote sensing up to now; (b) though many scholars have developed many water quality parameter retrieval models in the open ocean, there still exists a large gap from practical applications in turbid coastal waters. It is much more difficult due to the presence of high concentrations of suspended sediments and dissolved organic material, which overwhelm the spectral signal of sea water. Hyperspectral remote sensing allows a sensor on a moving platform to gather emitted radiation from the Earth's surface, which opens a way to reach a better analysis and understanding of coast water. Operative Modular Imaging Spectrometer (OMIS) is a type of representative imaging spectrometer developed by the Chinese Academy of Sciences. OMIS collects reflective and radiation light from ground by RC telescope with the scanning mirror cross track and flight of plane along track. In this paper, we explore the use of OMIS as the airborne sensor for the heat pollution monitoring in coast water, on the basis of an analysis on the mixed-spectrum arising from the image correcting process for geometric distortion. An airborne experiment was conducted in the winter of 2009 on the coast of the East Sea in China.

  1. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    USGS Publications Warehouse

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  2. Analysis of water quality on several waters affected by contamination in West Sumbawa Regency

    NASA Astrophysics Data System (ADS)

    Dewi, N. N.; Satyantini, W. H.; Sahidu, A. M.; Sari, L. A.; Mukti, A. T.

    2018-04-01

    This study reports the result of water quality in several waters in West Sumbawa Regency. The load of waste input from anthropogenic activity becomes an indication of the decrease of water quality in West Sumbawa Regency Waters. The existence of illegal mining activities around the water has the potential to cause water pollution. Sample of water were collected on April 2017 in four location such as Sejorong 1, Sejorong 2, Tongo, and Taliwang. Sample were analyzed as insitu and exsitu parameters. The result of this research showed that Sejorong 2 have the highest value of pollution index but generally four site on West Sumbawa Regency Waters were categorized lightly contaminated. Concentration of heavy metal cadmium at four locations exceed the water quality standard for fisheries and drinking water. However, the trophic classification using TSI and TRIX of all location was oligothropic water.

  3. Assessing the effects of regional payment for watershed services program on water quality using an intervention analysis model.

    PubMed

    Lu, Yan; He, Tian

    2014-09-15

    Much attention has been recently paid to ex-post assessments of socioeconomic and environmental benefits of payment for ecosystem services (PES) programs on poverty reduction, water quality, and forest protection. To evaluate the effects of a regional PES program on water quality, we selected chemical oxygen demand (COD) and ammonia-nitrogen (NH3-N) as indicators of water quality. Statistical methods and an intervention analysis model were employed to assess whether the PES program produced substantial changes in water quality at 10 water-quality sampling stations in the Shaying River watershed, China during 2006-2011. Statistical results from paired-sample t-tests and box plots of COD and NH3-N concentrations at the 10 stations showed that the PES program has played a positive role in improving water quality and reducing trans-boundary water pollution in the Shaying River watershed. Using the intervention analysis model, we quantitatively evaluated the effects of the intervention policy, i.e., the watershed PES program, on water quality at the 10 stations. The results suggest that this method could be used to assess the environmental benefits of watershed or water-related PES programs, such as improvements in water quality, seasonal flow regulation, erosion and sedimentation, and aquatic habitat. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water--First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds.

    PubMed

    Pekar, Heidi; Westerberg, Erik; Bruno, Oscar; Lääne, Ants; Persson, Kenneth M; Sundström, L Fredrik; Thim, Anna-Maria

    2016-01-15

    Freshwater blooms of cyanobacteria (blue-green algae) in source waters are generally composed of several different strains with the capability to produce a variety of toxins. The major exposure routes for humans are direct contact with recreational waters and ingestion of drinking water not efficiently treated. The ultra high pressure liquid chromatography tandem mass spectrometry based analytical method presented here allows simultaneous analysis of 22 cyanotoxins from different toxin groups, including anatoxins, cylindrospermopsins, nodularin and microcystins in raw water and drinking water. The use of reference standards enables correct identification of toxins as well as precision of the quantification and due to matrix effects, recovery correction is required. The multi-toxin group method presented here, does not compromise sensitivity, despite the large number of analytes. The limit of quantification was set to 0.1 μg/L for 75% of the cyanotoxins in drinking water and 0.5 μg/L for all cyanotoxins in raw water, which is compliant with the WHO guidance value for microcystin-LR. The matrix effects experienced during analysis were reasonable for most analytes, considering the large volume injected into the mass spectrometer. The time of analysis, including lysing of cell bound toxins, is less than three hours. Furthermore, the method was tested in Swedish source waters and infiltration ponds resulting in evidence of presence of anatoxin, homo-anatoxin, cylindrospermopsin and several variants of microcystins for the first time in Sweden, proving its usefulness. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  5. [Analysis on characteristics of red tide in Fujian coastal waters during the last 10 years].

    PubMed

    Li, Xue-Ding

    2012-07-01

    There were 161 red tide events collected during the last 10 years from 2001 to 2010 in Fujian coastal waters. Comprehensive analysis was performed using statistical methods and the results indicated the following characteristics of the temporal and spatial distribution of red tide in Fujian coastal waters: (1) Outbreaks of red tide often occurred between April and September, and the peak period was in May and June. Most red tide events lasted for 2 to 4 days, and the affected area was below 50 square kilometers. The first outbreak of red tide tended to occur earlier in recent years, and the lasting time became longer. (2) There were 20 species of organisms causing the red tides in Fujian coastal waters, among which 10 species were Bacillariophyta, 9 species were Dinophyta and 1 species was Protozoa. Prorocentrum donghaiense was the most frequent cause of red tides, followed by Noctiluca scintillans, Skeletonema costatum and Chaetoceros sp.. The species caused red tides obeyed the succession law and there were always new species involved. (2) In terms of spatial distribution, outbreaks of red tides mainly occurred in the coastal waters of Ningde, Fuzhou and Xiamen. The species causing red tides were Prorocentrum donghaiense and Noctiluca in the coastal waters in the north of Pingtan, Fujian Province, Skeletonema costatum and Chaetoceros in the coastal waters in the south of Pingtan, Fujian Province. The comprehensive analysis of the characteristics of red tides during the last 10 years is expected to provide scientific and reasonable basis for the prevention, reduction and forecast of red tides in Fujian coastal waters.

  6. Analysis of algae growth mechanism and water bloom prediction under the effect of multi-affecting factor.

    PubMed

    Wang, Li; Wang, Xiaoyi; Jin, Xuebo; Xu, Jiping; Zhang, Huiyan; Yu, Jiabin; Sun, Qian; Gao, Chong; Wang, Lingbin

    2017-03-01

    The formation process of algae is described inaccurately and water blooms are predicted with a low precision by current methods. In this paper, chemical mechanism of algae growth is analyzed, and a correlation analysis of chlorophyll-a and algal density is conducted by chemical measurement. Taking into account the influence of multi-factors on algae growth and water blooms, the comprehensive prediction method combined with multivariate time series and intelligent model is put forward in this paper. Firstly, through the process of photosynthesis, the main factors that affect the reproduction of the algae are analyzed. A compensation prediction method of multivariate time series analysis based on neural network and Support Vector Machine has been put forward which is combined with Kernel Principal Component Analysis to deal with dimension reduction of the influence factors of blooms. Then, Genetic Algorithm is applied to improve the generalization ability of the BP network and Least Squares Support Vector Machine. Experimental results show that this method could better compensate the prediction model of multivariate time series analysis which is an effective way to improve the description accuracy of algae growth and prediction precision of water blooms.

  7. Preliminary analysis on the water quality index (WQI) of irradiated basic filter elements

    NASA Astrophysics Data System (ADS)

    Arif Abu Bakar, Asyraf; Muhamad Pauzi, Anas; Aziz Mohamed, Abdul; Syima Sharifuddin, Syazrin; Mohamad Idris, Faridah

    2018-01-01

    Simple water filtration system is needed in times of extreme floods. Clean water for sanitation at evacuation centres is essential and its production is possible by using the famous simple filtration system consisting of empty bottle and filter elements (sands, gravels, cotton/coffee filter). This research intends to study the effects of irradiated filter elements on the filtration effectiveness through experiments. The filter elements will be irradiated with gamma and neutron radiation using the facilities available at Malaysia Nuclear Agency. The filtration effectiveness is measured using the water quality index (WQI) that is developed in this study to reflect the quality of filtered water. The WQI of the filtered water using the system with irradiated filter elements is then compared with that of the system with non-irradiated filter elements. This preliminary analysis only focus on filtration element of silica sand. Results shows very nominal variation in in WQI after filtered by non-irradiated, gamma and neutron filter element (silica sand), where the hypothesis could not be affirmed.

  8. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    USGS Publications Warehouse

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  9. Foulant Analysis of Three RO Membranes Used in Treating Simulated Brackish Water of the Iraqi Marshes

    PubMed Central

    Sachit, Dawood Eisa; Veenstra, John N.

    2017-01-01

    In this work, three different types of Reverse Osmosis (RO) (Thin-Film Composite (SE), Cellulose Acetate (CE), and Polyamide (AD)) were used to perform foulant analysis (autopsy) study on the deposited materials from three different simulated brackish surface feed waters. The brackish surface water qualities represented the water quality in Iraqi marshes. The main foulants from the simulated feed waters were characterized by using Scanning Electron Microscope (SEM) images and Energy-Dispersive X-ray Spectroscopy (EDXS) spectra. The effect of feed water temperatures (37 °C and 11 °C) on the formation of the fouled material deposited on the membrane surface was examined in this study. Also, pretreatment by a 0.1 micron microfiltration (MF) membrane of the simulated feed water in advance of the RO membrane on the precipitated material on the membrane surface was investigated. Finally, Fourier Transform Infrared Spectroscopy (FTIR) analysis was used to identify the functional groups of the organic matter deposited on the RO membrane surfaces. The SEM images and EDSX spectra suggested that the fouled material was mainly organic matter, and the major crystal deposited on the RO membrane was calcium carbonate (CaCO3). The FTIR spectra of the fouled RO membranes suggested that the constituents of the fouled material included aliphatic and aromatic compounds. PMID:28406468

  10. Effect of molecular exchange on water droplet size analysis as determined by diffusion NMR: The W/O/W double emulsion case.

    PubMed

    Vermeir, Lien; Sabatino, Paolo; Balcaen, Mathieu; Declerck, Arnout; Dewettinck, Koen; Martins, José C; Guthausen, Gisela; Van der Meeren, Paul

    2016-08-01

    The accuracy of the inner water droplet size determination of W/O/W emulsions upon water diffusion measurement by diffusion NMR was evaluated. The resulting droplet size data were compared to the results acquired from the diffusion measurement of a highly water soluble marker compound with low permeability in the oil layer of a W/O/W emulsion, which provide a closer representation of the actual droplet size. Differences in droplet size data obtained from water and the marker were ascribed to extra-droplet water diffusion. The diffusion data of the tetramethylammonium cation marker were measured using high-resolution pulsed field gradient NMR, whereas the water diffusion was measured using both low-resolution and high-resolution NMR. Different data analysis procedures were evaluated to correct for the effect of extra-droplet water diffusion on the accuracy of water droplet size analysis. Using the water diffusion data, the use of a low measurement temperature and diffusion delay Δ could reduce the droplet size overestimation resulting from extra-droplet water diffusion, but this undesirable effect was inevitable. Detailed analysis of the diffusion data revealed that the extra-droplet diffusion effect was due to an exchange between the inner water phase and the oil phase, rather than by exchange between the internal and external aqueous phase. A promising data analysis procedure for retrieving reliable size data consisted of the application of Einstein's diffusion law to the experimentally determined diffusion distances. This simple procedure allowed determining the inner water droplet size of W/O/W emulsions upon measurement of water diffusion by low-resolution NMR at or even above room temperature. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Improvements in crop water productivity increase water sustainability and food security—a global analysis

    NASA Astrophysics Data System (ADS)

    Brauman, Kate A.; Siebert, Stefan; Foley, Jonathan A.

    2013-06-01

    Irrigation consumes more water than any other human activity, and thus the challenges of water sustainability and food security are closely linked. To evaluate how water resources are used for food production, we examined global patterns of water productivity—food produced (kcal) per unit of water (l) consumed. We document considerable variability in crop water productivity globally, not only across different climatic zones but also within climatic zones. The least water productive systems are disproportionate freshwater consumers. On precipitation-limited croplands, we found that ˜40% of water consumption goes to production of just 20% of food calories. Because in many cases crop water productivity is well below optimal levels, in many cases farmers have substantial opportunities to improve water productivity. To demonstrate the potential impact of management interventions, we calculated that raising crop water productivity in precipitation-limited regions to the 20th percentile of productivity would increase annual production on rainfed cropland by enough to provide food for an estimated 110 million people, and water consumption on irrigated cropland would be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people.

  12. Browns Ferry Nuclear Plant low-level radwaste storage facility ground-water pathway analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs, J.M.

    1982-10-01

    The proposed low-level radwaste storage facility (LLRWSF) at Browns Ferry Nuclear Plant is underlain by soils having low hydraulic conductivity and high sorptive capacity which greatly reduce the risks associated with a potential contaminant excursion. A conservative ground-water pathway accident analysis using flow and solute transport modeling techniques indicates that without interdiction the concentrations of the five radionuclides of concern (Sr-90, Cs-137, Cs-134, Co-60, and Mn-54) would be well below 10 CFR Part 20 criteria at downgradient receptors. These receptors include a possible future private water well located near the eastern site boundary and Wheeler Reservoir. Routine ground-water monitoring ismore » not recommended at the LLRWSF except in the unlikely event of an accident.« less

  13. The modelling influence of water content to mechanical parameter of soil in analysis of slope stability

    NASA Astrophysics Data System (ADS)

    Gusman, M.; Nazki, A.; Putra, R. R.

    2018-04-01

    One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.

  14. Analysis of oxytetracycline in water using a portable analyzer

    NASA Astrophysics Data System (ADS)

    Chen, Guoying; Braden, Susan; Qin, Feng

    2006-10-01

    Oxytetracycline (OTC) is extensively used in aquaculture worldwide for preventive and therapeutic purposes. Most of the drug, however, is discharged into the marine environment due to leaching from medicated feed and poor gastrointestinal (GI) absorption. Without exposure to sun light OTC has a long lifetime in the marine environment, therefore it is important to monitor and study its occurrence, distribution, fate and impact on the ecosystem. A portable tetracycline (TC) analyzer was developed in this laboratory for this purpose based on europium-sensitized luminescence. In this study, an assay method is developed for OTC analysis in water using this instrument. Water samples are filtered with glass wool; and solid phase extraction (SPE) is performed using Oasis HLB cartridges for OTC extraction and cleanup. Following reagent application, the samples are excited by 385 nm LED pulses; and time-resolved luminescence (TRL) is measured at 610 nm by a photomultiplier tube. A 0-3 ppm linear dynamic range (r2 = 0.9988) and a 0.021 ppb limit of detection were achieved with a typical <5% relative standard deviation.

  15. Application of Analysis and Modeling for Surface Water-Ground Water System: Preliminary Study of Artificial Recharge in Jeju Island, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Koo, M.; Lee, K.; Ko, K.; Barry, J. M.

    2008-12-01

    The primary goal of this study is to secure sustainable groundwater resources with application of the analysis and modeling of coupled surface water-groundwater system to Jeju Island in the form of artificial recharge. Artificial recharge technology is a feasible method to augment groundwater resources in Jeju Island, Korea. Jeju-friendly Aquifer Recharge Technology (J-ART) that will be developed in this study is a technology for securing sustainable water resources by capturing ephemeral stream water with no interference in the environment such as natural recharge or eco-system, capturing the water in the reservoirs, recharging it through designed borehole after appropriate treatment, and then making it to be used at down-gradient production wells. Precipitation pattern in the study area is shifting to more sparsely-distributed and heavier rain type in summer season which reduces infiltration and/or groundwater recharge but increases runoff and flash flood on stream. Stream water as a source for J-ART is available only a few times a year since the stream bed is highly feasible to be percolated. To characterize quantitatively stream water, automatic temporal data collection system for water level, water velocity, and water qualities of total 8 parameters including temperature, water depth, pH, EC, DO, turbidity, NO3-N and Cl-. Characterizing groundwater flow from recharge area to discharge area should be achieved to evaluate the efficiency of J-ART. Jeju volcanic island has very thick unsaturated zone which is approximately 50 percent of the elevation on which it is. This hydrogeological property is good to inject source water through unsaturated zone to increase transport time, to get main basal aquifer, and to naturally filter the injected water during the transport. However, characterizing groundwater flow through the thick unsaturated zone with repeatedly overlapping permeable/impermeable layers would be a challenge. Estimation method of the infiltration

  16. Propagating Water Quality Analysis Uncertainty Into Resource Management Decisions Through Probabilistic Modeling

    NASA Astrophysics Data System (ADS)

    Gronewold, A. D.; Wolpert, R. L.; Reckhow, K. H.

    2007-12-01

    Most probable number (MPN) and colony-forming-unit (CFU) are two estimates of fecal coliform bacteria concentration commonly used as measures of water quality in United States shellfish harvesting waters. The MPN is the maximum likelihood estimate (or MLE) of the true fecal coliform concentration based on counts of non-sterile tubes in serial dilution of a sample aliquot, indicating bacterial metabolic activity. The CFU is the MLE of the true fecal coliform concentration based on the number of bacteria colonies emerging on a growth plate after inoculation from a sample aliquot. Each estimating procedure has intrinsic variability and is subject to additional uncertainty arising from minor variations in experimental protocol. Several versions of each procedure (using different sized aliquots or different numbers of tubes, for example) are in common use, each with its own levels of probabilistic and experimental error and uncertainty. It has been observed empirically that the MPN procedure is more variable than the CFU procedure, and that MPN estimates are somewhat higher on average than CFU estimates, on split samples from the same water bodies. We construct a probabilistic model that provides a clear theoretical explanation for the observed variability in, and discrepancy between, MPN and CFU measurements. We then explore how this variability and uncertainty might propagate into shellfish harvesting area management decisions through a two-phased modeling strategy. First, we apply our probabilistic model in a simulation-based analysis of future water quality standard violation frequencies under alternative land use scenarios, such as those evaluated under guidelines of the total maximum daily load (TMDL) program. Second, we apply our model to water quality data from shellfish harvesting areas which at present are closed (either conditionally or permanently) to shellfishing, to determine if alternative laboratory analysis procedures might have led to different

  17. GIS ANALYSIS FOR EPIDEMIOLOGIC RECREATIONAL WATER SUTDIES

    EPA Science Inventory

    Introduction: The Beaches Act of 2000 requires that the Agency develop new rapid method water quality indicators (2 hours or less) that predict whether or not coastal water is safe for swimming. This new set of water quality indicators must be validated through the epidemiologi...

  18. THE MULTIELEMENTAL ANALYSIS OF DRINKING WATER USING PROTON-INDUCED X-RAY EMISSION (PIXE)

    EPA Science Inventory

    A new, rapid, and economical method for the multielemental analysis of drinking water samples is described. The concentrations of 76 elements heavier than aluminum are determined using proton-induced x-ray emission (PIXE) technology. The concentration of sodium is evaluated using...

  19. Fractional calculus applied to the analysis of spectral electrical conductivity of clay-water system.

    PubMed

    Korosak, Dean; Cvikl, Bruno; Kramer, Janja; Jecl, Renata; Prapotnik, Anita

    2007-06-16

    The analysis of the low-frequency conductivity spectra of the clay-water mixtures is presented. The frequency dependence of the conductivity is shown to follow the power-law with the exponent n=0.67 before reaching the frequency-independent part. When scaled with the value of the frequency-independent part of the spectrum the conductivity spectra for samples at different water content values are shown to fit to a single master curve. It is argued that the observed conductivity dispersion is a consequence of the anomalously diffusing ions in the clay-water system. The fractional Langevin equation is then used to describe the stochastic dynamics of the single ion. The results indicate that the experimentally observed dielectric properties originate in anomalous ion transport in clay-water system characterized with time-dependent diffusion coefficient.

  20. Human and climate impact on global riverine water and sediment fluxes - a distributed analysis

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Syvitski, J. P.

    2013-05-01

    Understanding riverine water and sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of climate, landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. The intensity and dynamics between man-made and climatic factors vary widely across the globe and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment and water discharge model (WBMsed) to simulate human and climate effect on our planet's large rivers.

  1. Methods for collection and analysis of geopressured geothermal and oil field waters

    USGS Publications Warehouse

    Lico, Michael S.; Kharaka, Yousif K.; Carothers, William W.; Wright, Victoria A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, .and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C2 through C5) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  2. Development of a cost-effectiveness analysis of leafy green marketing agreement irrigation water provisions.

    PubMed

    Jensen, Helen H; Pouliot, Sébastien; Wang, Tong; Jay-Russell, Michele T

    2014-06-01

    An analysis of the effectiveness of meeting the irrigation water provisions of the Leafy Green Marketing Agreement (LGMA) relative to its costs provides an approach to evaluating the cost-effectiveness of good agricultural practices that uses available data. A case example for lettuce is used to evaluate data requirements and provide a methodological example to determine the cost-effectiveness of the LGMA water quality provision. Both cost and field data on pathogen or indicator bacterial levels are difficult and expensive to obtain prospectively. Therefore, methods to use existing field and experimental data are required. Based on data from current literature and experimental studies, we calculate a cost-efficiency ratio that expresses the reduction in E. coli concentration per dollar expenditure on testing of irrigation water. With appropriate data, the same type of analysis can be extended to soil amendments and other practices and to evaluation of public benefits of practices used in production. Careful use of existing and experimental data can lead to evaluation of an expanded set of practices.

  3. Nonlinear quasi-static analysis of ultra-deep-water top-tension riser

    NASA Astrophysics Data System (ADS)

    Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun

    2017-09-01

    In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.

  4. Continuous water sampling and water analysis in estuaries

    USGS Publications Warehouse

    Schemel, L.E.; Dedini, L.A.

    1982-01-01

    Salinity, temperature, light transmission, oxygen saturation, pH, pCO2, chlorophyll a fluorescence, and the concentrations of nitrate, nitrite, dissolved silica, orthophosphate, and ammonia are continuously measured with a system designed primarily for estuarine studies. Near-surface water (2-m depth) is sampled continuously while the vessel is underway; on station, water to depths of 100 m is sampled with a submersible pump. The system is comprised of commercially available instruments, equipment, and components, and of specialized items designed and fabricated by the authors. Data are read from digital displays, analog strip-chart recorders, and a teletype printout, and can be logged in disc storage for subsequent plotting. Data records made in San Francisco Bay illustrate physical, biological, and chemical estuarine processes, such as mixing and phytoplankton net production. The system resolves large- and small-scale events, which contributes to its reliability and usefulness.

  5. Testing the Waters.

    ERIC Educational Resources Information Center

    Finks, Mason

    1993-01-01

    Provides information about home drinking water treatment systems to address concerns about the safety and quality of drinking water. Discusses water testing, filtration, product options and selection, water testing resources, water treatment device guidelines, water analysis terminology, and laboratory selection. (MCO)

  6. Analysis of halonitriles in drinking water using solid-phase microextraction and gas chromatography-mass spectrometry.

    PubMed

    Kristiana, Ina; Joll, Cynthia; Heitz, Anna

    2012-02-17

    Halonitriles are a class of nitrogen-containing disinfection by-products (DBPs) that have been reported to be more toxic and carcinogenic than the regulated DBPs. While haloacetonitriles (HANs) are often measured in drinking waters, there is little information on the formation, characteristics, and occurrence of other, higher molecular weight halonitriles. Halopropionitriles and halobutyronitriles have been predicted to be highly toxic and carcinogenic, and may have sufficient potency and selectivity to account for epidemiological associations of chlorinated and chloraminated water with adverse health effects. This paper reports on the development, optimisation, and validation of a simple, robust, and sensitive analytical method for the determination of halonitriles in waters, as well as the application of the method to study the formation and characteristics of halonitriles. This is the first reported method development for analysis halopropionitriles and halobutyronitriles, and the first study on their formation and occurrence as DBPs in drinking waters. The new method uses headspace solid-phase microextraction to extract the halonitriles from water, which are then analysed using gas chromatography-mass spectrometry (HS SPME/GC-S). The method demonstrated good sensitivity (detection limits: 0.9-80 ng L⁻¹) and good precision (repeatability: 3.8-12%), and is linear over three orders of magnitude. Matrix effects from raw drinking water containing organic carbon (4.1 mg L⁻¹) were shown to be negligible in the analysis of halonitriles. The optimised method was used to study the stability and persistence of halonitriles in aqueous samples, and the formation and occurrence of halonitriles in waters. Results from laboratory-scale disinfection experiments showed that haloacetonitriles were formed in chlorinated and chloraminated samples, but 2,2-dichloropropionitrile was only measured in chloraminated samples. Results from surveys of several drinking water

  7. Long-term behaviour and cross-correlation water quality analysis of the River Elbe, Germany.

    PubMed

    Lehmann, A; Rode, M

    2001-06-01

    This study analyses weekly data samples from the river Elbe at Magdeburg between 1984 and 1996 to investigate the changes in metabolism and water quality in the river Elbe since the German reunification in 1990. Modelling water quality variables by autoregressive component models and ARIMA models reveals the improvement of water quality due to the reduction of waste water emissions since 1990. The models are used to determine the long-term and seasonal behaviour of important water quality variables. Organic and heavy metal pollution parameters showed a significant decrease since 1990, however, no significant change of chlorophyll-a as a measure for primary production could be found. A new procedure for testing the significance of a sample correlation coefficient is discussed, which is able to detect spurious sample correlation coefficients without making use of time-consuming prewhitening. The cross-correlation analysis is applied to hydrophysical, biological, and chemical water quality variables of the river Elbe since 1984. Special emphasis is laid on the detection of spurious sample correlation coefficients.

  8. An input-output table based analysis on the virtual water by sectors with the five northwest provinces in China

    NASA Astrophysics Data System (ADS)

    Shi, Chenchen; Zhan, Jinyan

    Virtual water refers to the volumes of water required to produce a commodity or service. It reflects human's actual consumption of water resources and therefore has certain significance in water resources management. Over the years, the concept of virtual water has caught the attentions of water manager and decision maker. In order to utilize this concept, the accounting and estimation of virtual water is the foundation that lies in this issue. Till now, the accounting methods mainly include the method provided by Food and Agriculture Organization of the United Nations (FAO), water footprint and input-output analysis method. In this paper, we chose Northwest China, which is a typical arid region that is facing with rapid economic development, as the study area and built an Input-Output (IO) analysis method to estimate virtual water among different industry sectors in the northwest China. The accounting and estimation results could be used to give suggestions to increase water use efficiency and promote virtual water trade in the study area. Comparison of the proposed method with other prevailing method was also analyzed. The introduced method could be utilized for accounting and estimation of virtual water by sectors, with its superiority in characterizing industrial water consumption and the accounting results could lend certain credence to the water resource management and industrial transformation for the future economic development of northwest China.

  9. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    NASA Astrophysics Data System (ADS)

    Shi, J.; Liu, J.; Pinter, L.

    2013-09-01

    China has dramatically increased its virtual water import unconsciously for recent years. Many studies have focused on the quantity of traded virtual water but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops soybeans, mostly imported from the US, Brazil and Argentina are the most significant. As crop yield and crop water productivity in North and South America are generally higher than those in Asia and Africa, the effect of China's crop-related virtual water trade positively contributes to optimizing crop water use efficiency at the global scale. In order to mitigate water scarcity and secure the food supply, virtual water should be actively incorporated into national water management strategies. From the national perspective, China should reduce the export and increase the import of water-intensive crops. But the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  10. Integrated cost-effectiveness analysis of agri-environmental measures for water quality.

    PubMed

    Balana, Bedru B; Jackson-Blake, Leah; Martin-Ortega, Julia; Dunn, Sarah

    2015-09-15

    This paper presents an application of integrated methodological approach for identifying cost-effective combinations of agri-environmental measures to achieve water quality targets. The methodological approach involves linking hydro-chemical modelling with economic costs of mitigation measures. The utility of the approach was explored for the River Dee catchment in North East Scotland, examining the cost-effectiveness of mitigation measures for nitrogen (N) and phosphorus (P) pollutants. In-stream nitrate concentration was modelled using the STREAM-N and phosphorus using INCA-P model. Both models were first run for baseline conditions and then their effectiveness for changes in land management was simulated. Costs were based on farm income foregone, capital and operational expenditures. The costs and effects data were integrated using 'Risk Solver Platform' optimization in excel to produce the most cost-effective combination of measures by which target nutrient reductions could be attained at a minimum economic cost. The analysis identified different combination of measures as most cost-effective for the two pollutants. An important aspect of this paper is integration of model-based effectiveness estimates with economic cost of measures for cost-effectiveness analysis of land and water management options. The methodological approach developed is not limited to the two pollutants and the selected agri-environmental measures considered in the paper; the approach can be adapted to the cost-effectiveness analysis of any catchment-scale environmental management options. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Analysis of (210)Pb in water samples with plastic scintillation resins.

    PubMed

    Lluch, E; Barrera, J; Tarancón, A; Bagán, H; García, J F

    2016-10-12

    (210)Pb is a radioactive lead isotope present in the environment as member of the (238)U decay chain. Since it is a relatively long-lived radionuclide (T1/2 = 22.2 years), its analysis is of interest in radiation protection and the geochronology of sediments and artwork. Here, we present a method for analysing (210)Pb using plastic scintillation resins (PSresins) packaged in solid-phase extraction columns (SPE cartridge). The advantages of this method are its selectivity, the low limit of detection, as well as reductions in the amount of time and reagents required for analysis and the quantity of waste generated. The PSresins used in this study were composed of a selective extractant (4',4″(5″)-Di-tert-butyldicyclohexano-18-crown-6 in 1-octanol) covering the surface of plastic scintillation microspheres. Once the amount of extractant (1:1/4) and medium of separation (2 M HNO3) were optimised, PSresins in SPE cartridges were calibrated with a standard solution of (210)Pb. (210)Pb could be fully separated from its daughters, (210)Bi and (210)Po, with a recovery value of 91(3)% and detection efficiency of 44(3)%. Three spiked water samples (one underground and two river water samples) were analysed in triplicates with deviations lower than 10%, demonstrating the validity of the PS resin method for (210)Pb analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Influence of water content on the laser-induced breakdown spectroscopy analysis of human cell pellet

    NASA Astrophysics Data System (ADS)

    Moon, Youngmin; Han, Jung Hyun; Lee, Jong Jin; Jeong, Sungho

    2015-12-01

    The effects of water content change in a biological sample on the emission signal intensity and intensity ratio during LIBS analysis were investigated. To examine the effects of water content only avoiding matrix effects, a homogeneous human cell pellet consisting of cultured human immortalized keratinocyte cell only was used as the sample. LIBS spectra of the human cell pellet sample produced with a Q-switched Nd:YAG laser (λ = 532 nm, τ = 5 ns, top-hat profile) and a six-channel CCD spectrometer (spectral range = 187-1045 nm, spectral resolution = 0.1 nm) revealed that most of the emission lines observed from a tissue sample were also observable from the human cell pellet. The intensity and intensity ratio of the emission lines varied significantly as the water content of the human cell pellet was changed. It was found that a typically selected internal standard in LIBS analysis of biological samples such as carbon could produce inconsistent results, whereas the ratio of properly selected emission lines such as Mg(II) 280.270 nm and Ca(II) 396.847 nm was nearly independent of sample water content.

  13. Water Phase Change Heat Exchanger System Level Analysis for Low Lunar Orbit

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Ungar, Eugene; Sheth, Rubik; Hansen, Scott

    2016-01-01

    In low Lunar orbit (LLO) the thermal environment is cyclic - extremely cold in the eclipse and as warm as room temperature near the subsolar point. Phase change material heat exchangers (PCHXs) are the best option for long term missions in these environments. The Orion spacecraft will use a n-pentadecane wax PCHX for its envisioned mission to LLO. Using water as a PCM material is attractive because its higher heat of fusion and greater density result in a lighter, more compact PCHX. To assess the use of a water PCHX for a human spacecraft in a circular LLO, a system level analysis was performed for the Orion spacecraft. Three cases were evaluated: 1) A one-to-one replacement of the wax PCHX on the internal thermal control loop with a water PCHX (including the appropriate control modifications), 2) reducing the radiator return setpoint temperature below Orion's value to enhance PCHX freezing, and 3) placing the water PCM on the external loop. The model showed that the water PCHX could not be used as a drop-in replacement for the wax PCHX. It did not freeze fully during the eclipse owing to its low freezing point. To obtain equivalent performance, 40% more radiator area than the Orion baseline was required. The study shows that, although water PCHXs are attractive at a component level, system level effects mean that they are not the best choice for LLO.

  14. A continuous stream flash evaporator for the calibration of an IR cavity ring-down spectrometer for the isotopic analysis of water.

    PubMed

    Gkinis, Vasileios; Popp, Trevor J; Johnsen, Sigfus J; Blunier, Thomas

    2010-12-01

    A new technique for high-resolution simultaneous isotopic analysis of δ¹⁸O and δD in liquid water is presented. A continuous stream flash evaporator has been designed that is able to vapourise a stream of liquid water in a continuous mode and deliver a stable and finely controlled water vapour sample to a commercially available infrared cavity ring-down spectrometer. Injection of sub-microlitre amounts of the liquid water is achieved by pumping liquid water sample through a fused silica capillary and instantaneously vapourising it with 100% efficiency in a home-made oven at a temperature of 170 °C. The system's simplicity, low power consumption and low dead volume together with the possibility for automated unattended operation provides a solution for the calibration of laser instruments performing isotopic analysis of water vapour. Our work is mainly driven by the possibility to perform high-resolution online water isotopic analysis on continuous-flow analysis (CFA) systems typically used to analyse the chemical composition of ice cores drilled in polar regions. In the following, we describe the system's precision and stability and sensitivity to varying levels of sample size and we assess the observed memory effects. A test run with standard waters of different isotopic compositions is presented, demonstrating the ability to calibrate the spectrometer's measurements on a VSMOW scale with a relatively simple and fast procedure.

  15. Determination of the design space of the HPLC analysis of water-soluble vitamins.

    PubMed

    Wagdy, Hebatallah A; Hanafi, Rasha S; El-Nashar, Rasha M; Aboul-Enein, Hassan Y

    2013-06-01

    Analysis of water-soluble vitamins has been tremendously approached through the last decades. A multitude of HPLC methods have been reported with a variety of advantages/shortcomings, yet, the design space of HPLC analysis of these vitamins was not defined in any of these reports. As per the food and drug administration (FDA), implementing the quality by design approach for the analysis of commercially available mixtures is hypothesized to enhance the pharmaceutical industry via facilitating the process of analytical method development and approval. This work illustrates a multifactorial optimization of three measured plus seven calculated influential HPLC parameters on the analysis of a mixture containing seven common water-soluble vitamins (B1, B2, B6, B12, C, PABA, and PP). These three measured parameters are gradient time, temperature, and ternary eluent composition (B1/B2) and the seven calculated parameters are flow rate, column length, column internal diameter, dwell volume, extracolumn volume, %B (start), and %B (end). The design is based on 12 experiments in which, examining of the multifactorial effects of these 3 + 7 parameters on the critical resolution and selectivity, was carried out by systematical variation of all these parameters simultaneously. The 12 basic runs were based on two different gradient time each at two different temperatures, repeated at three different ternary eluent compositions (methanol or acetonitrile or a mixture of both). Multidimensional robust regions of high critical R(s) were defined and graphically verified. The optimum method was selected based on the best resolution separation in the shortest run time for a synthetic mixture, followed by application on two pharmaceutical preparations available in the market. The predicted retention times of all peaks were found to be in good match with the virtual ones. In conclusion, the presented report offers an accurate determination of the design space for critical resolution in the

  16. A comparative analysis: storm water pollution policy in California, USA and Victoria, Australia.

    PubMed

    Swamikannu, X; Radulescu, D; Young, R; Allison, R

    2003-01-01

    Urban drainage systems historically were developed on principles of hydraulic capacity for the transport of storm water to reduce the risk of flooding. However, with urbanization the percent of impervious surfaces increases dramatically resulting in increased flood volumes, peak discharge rates, velocities and duration, and a significant increase in pollutant loads. Storm water and urban runoff are the leading causes of the impairment of receiving waters and their beneficial uses in Australia and the United States today. Strict environmental and technology controls on wastewater treatment facilities and industry for more than three decades have ensured that these sources are less significant today as the cause of impairment of receiving waters. This paper compares the approach undertaken by the Environmental Protection Authority Victoria for the Melbourne metropolitan area with the approach implemented by the California Environmental Protection Agency for the Los Angeles area to control storm water pollution. Both these communities are largely similar in population size and the extent of urbanization. The authors present an analysis of the different approaches contrasting Australia with the USA, comment on their comparative success, and discuss the relevance of the two experiences for developed and developing nations in the context of environmental policy making to control storm water and urban runoff pollution.

  17. Geospatial Water Quality Analysis of Dilla Town, Gadeo Zone, Ethiopia - A Case Study

    NASA Astrophysics Data System (ADS)

    Pakhale, G. K.; Wakeyo, T. B.

    2015-12-01

    Dilla is a socio-economically important town in Ethiopia, established on the international highway joining capital cities of Ethiopia and Kenya. It serves as an administrative center of the Gedeo Zone in SNNPR region of Ethiopia accommodating around 65000 inhabitants and also as an important trade centre for coffee. Due to the recent developments and urbanization in town and surrounding area, waste and sewage discharge has been raised significantly into the water resources. Also frequent rainfall in the region worsens the problem of water quality. In this view, present study aims to analyze water quality profile of Dilla town using 12 physico-chemical parameters. 15 Sampling stations are identified amongst the open wells, bore wells and from surface water, which are being extensively used for drinking and other domestic purposes. Spectrophotometer is used to analyze data and Gaussian process regression is used to interpolate the same in GIS environment to represent spatial distribution of parameters. Based on observed and desirable values of parameters, water quality index (WQI); an indicator of weighted estimate of the quantities of various parameters ranging from 1 to 100, is developed in GIS. Higher value of WQI indicates better while low value indicates poor water quality. This geospatial analysis is carried out before and after rainfall to understand temporal variation with reference to rainfall which facilitates in identifying the potential zones of drinking water. WQI indicated that 8 out of 15 locations come under acceptable category indicating the suitability of water for human use, however remaining locations are unfit. For example: the water sample at main_campus_ustream_1 (site name) site has very low WQI after rainfall, making it unfit for human usage. This suggests undertaking of certain measures in town to enhance the water quality. These results are useful for town authorities to take corrective measures and ameliorate the water quality for human

  18. Schistosomiasis and water resources development: systematic review, meta-analysis, and estimates of people at risk.

    PubMed

    Steinmann, Peter; Keiser, Jennifer; Bos, Robert; Tanner, Marcel; Utzinger, Jürg

    2006-07-01

    An estimated 779 million people are at risk of schistosomiasis, of whom 106 million (13.6%) live in irrigation schemes or in close proximity to large dam reservoirs. We identified 58 studies that examined the relation between water resources development projects and schistosomiasis, primarily in African settings. We present a systematic literature review and meta-analysis with the following objectives: (1) to update at-risk populations of schistosomiasis and number of people infected in endemic countries, and (2) to quantify the risk of water resources development and management on schistosomiasis. Using 35 datasets from 24 African studies, our meta-analysis showed pooled random risk ratios of 2.4 and 2.6 for urinary and intestinal schistosomiasis, respectively, among people living adjacent to dam reservoirs. The risk ratio estimate for studies evaluating the effect of irrigation on urinary schistosomiasis was in the range 0.02-7.3 (summary estimate 1.1) and that on intestinal schistosomiasis in the range 0.49-23.0 (summary estimate 4.7). Geographic stratification showed important spatial differences, idiosyncratic to the type of water resources development. We conclude that the development and management of water resources is an important risk factor for schistosomiasis, and hence strategies to mitigate negative effects should become integral parts in the planning, implementation, and operation of future water projects.

  19. Electro-thermal vaporization direct analysis in real time-mass spectrometry for water contaminant analysis during space missions.

    PubMed

    Dwivedi, Prabha; Gazda, Daniel B; Keelor, Joel D; Limero, Thomas F; Wallace, William T; Macatangay, Ariel V; Fernández, Facundo M

    2013-10-15

    The development of a direct analysis in real time-mass spectrometry (DART-MS) method and first prototype vaporizer for the detection of low molecular weight (∼30-100 Da) contaminants representative of those detected in water samples from the International Space Station is reported. A temperature-programmable, electro-thermal vaporizer (ETV) was designed, constructed, and evaluated as a sampling interface for DART-MS. The ETV facilitates analysis of water samples with minimum user intervention while maximizing analytical sensitivity and sample throughput. The integrated DART-ETV-MS methodology was evaluated in both positive and negative ion modes to (1) determine experimental conditions suitable for coupling DART with ETV as a sample inlet and ionization platform for time-of-flight MS, (2) to identify analyte response ions, (3) to determine the detection limit and dynamic range for target analyte measurement, and (4) to determine the reproducibility of measurements made with the method when using manual sample introduction into the vaporizer. Nitrogen was used as the DART working gas, and the target analytes chosen for the study were ethyl acetate, acetone, acetaldehyde, ethanol, ethylene glycol, dimethylsilanediol, formaldehyde, isopropanol, methanol, methylethyl ketone, methylsulfone, propylene glycol, and trimethylsilanol.

  20. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  1. [Risk analysis of nitrate contamination in wells supplying drinking water in a rural area of Chile].

    PubMed

    Arumi, José Luis; Núñez, Jorge; Salgado, Luis; Claret, Marcelino

    2006-12-01

    To assess the risk associated with nitrate contamination of wells that supply drinking water in the rural, Parral region of central Chile. The nitrate concentration levels were determined using water samples from 94 wells. An analysis of the distribution of nitrate concentration levels was performed in order to assess possible geographic correlations. For the risk analysis, two exposure situations were identified among the population (for adults and for infants), and the health risks were mapped. Fourteen percent of the wells studied had nitrate concentration levels greater than what the Chilean health standards allow for drinking water. There was no geographic correlation for the nitrate concentration levels. The mean hazard quotient (HQ) for adults in the study area was 0.12, indicating an absence of risk for this population group. For infants, the HQ values had a maximum value of 3.1 in some locations, but the average was 0.69 (still below 1.0), indicating that the well water in the study area was generally not hazardous for infants. In the Parral region of Chile, nitrate contamination of wells is primarily linked to certain factors such as construction practices and the proximity of livestock. These factors affect the quality of drinking water in isolated cases. There was no risk found for the adult population, but there was for infants fed on formula mixed with water coming from the contaminated wells.

  2. Multicausal analysis on water deterioration processes present in a drinking water treatment system.

    PubMed

    Wang, Li; Ma, Fang; Pang, Changlong; Firdoz, Shaik

    2013-03-01

    The fluctuation of water turbidity has been studied during summer in the settling tanks of a drinking water treatment plant. Results from the multiple cause-effect model indicated that five main pathways interactively influenced thequalityof tank water. During rain, turbidity levels increased mainly as a result of decreasing pH and anaerobic reactions (partial effect = 68%). Increasing water temperature combined with dissolved oxygen concentration (partial effect = 64%) was the key parameterforcontrolling decreases in water turbidity during nighttime periods after a rainy day. The dominant factor influencing increases in turbidity during sunny daytime periods was algal blooms (partial effect = 86%). However, short-circuiting waves (partial effect = 77%) was the main cause for increased nighttime water turbidity after a sunny day. The trade offbetween regulatory pathways was responsible for environmental changes, and the outcome was determined by the comparative strengths of each pathway.

  3. Analysis of residual chlorine in simple drinking water distribution system with intermittent water supply

    NASA Astrophysics Data System (ADS)

    Goyal, Roopali V.; Patel, H. M.

    2015-09-01

    Knowledge of residual chlorine concentration at various locations in drinking water distribution system is essential final check to the quality of water supplied to the consumers. This paper presents a methodology to find out the residual chlorine concentration at various locations in simple branch network by integrating the hydraulic and water quality model using first-order chlorine decay equation with booster chlorination nodes for intermittent water supply. The explicit equations are developed to compute the residual chlorine in network with a long distribution pipe line at critical nodes. These equations are applicable to Indian conditions where intermittent water supply is the most common system of water supply. It is observed that in intermittent water supply, the residual chlorine at farthest node is sensitive to water supply hours and travelling time of chlorine. Thus, the travelling time of chlorine can be considered to justify the requirement of booster chlorination for intermittent water supply.

  4. Spatiotemporal analysis of prior appropriations water calls

    NASA Astrophysics Data System (ADS)

    Elbakidze, Levan; Shen, Xiaozhe; Taylor, Garth; Mooney, SiâN.

    2012-06-01

    A spatiotemporal model is developed to examine prior appropriations-based water curtailment in Idaho's Snake River Plain Aquifer. Using a 100 year horizon, prior appropriations-based curtailment supplemented with optimized water use reductions is shown to produce a spatial distribution of water use reductions that differs from that produced by regulatory curtailment based strictly on initial water right assignments. Discounted profits over 100 years of crop production are up to 7% higher when allocation is optimized. Total pumping over 100 years is 0.3%, 3%, and 40% higher under 1, 10, and 100 year prior appropriations-based regulatory curtailment, respectively.

  5. Moment Analysis Characterizing Water Flow in Repellent Soils from On- and Sub-Surface Point Sources

    NASA Astrophysics Data System (ADS)

    Xiong, Yunwu; Furman, Alex; Wallach, Rony

    2010-05-01

    Water repellency has a significant impact on water flow patterns in the soil profile. Flow tends to become unstable in such soils, which affects the water availability to plants and subsurface hydrology. In this paper, water flow in repellent soils was experimentally studied using the light reflection method. The transient 2D moisture profiles were monitored by CCD camera for tested soils packed in a transparent flow chamber. Water infiltration experiments and subsequent redistribution from on-surface and subsurface point sources with different flow rates were conducted for two soils of different repellency degrees as well as for wettable soil. We used spatio-statistical analysis (moments) to characterize the flow patterns. The zeroth moment is related to the total volume of water inside the moisture plume, and the first and second moments are affinitive to the center of mass and spatial variances of the moisture plume, respectively. The experimental results demonstrate that both the general shape and size of the wetting plume and the moisture distribution within the plume for the repellent soils are significantly different from that for the wettable soil. The wetting plume of the repellent soils is smaller, narrower, and longer (finger-like) than that of the wettable soil compared with that for the wettable soil that tended to roundness. Compared to the wettable soil, where the soil water content decreases radially from the source, moisture content for the water-repellent soils is higher, relatively uniform horizontally and gradually increases with depth (saturation overshoot), indicating that flow tends to become unstable. Ellipses, defined around the mass center and whose semi-axes represented a particular number of spatial variances, were successfully used to simulate the spatial and temporal variation of the moisture distribution in the soil profiles. Cumulative probability functions were defined for the water enclosed in these ellipses. Practically identical

  6. Effects of Cold Water Immersion and Contrast Water Therapy for Recovery From Team Sport: A Systematic Review and Meta-analysis.

    PubMed

    Higgins, Trevor R; Greene, David A; Baker, Michael K

    2017-05-01

    Higgins, TR, Greene, DA, Baker, MK. Effects of cold water immersion and contrast water therapy for recovery from team sport: a systematic review and meta-analysis. J Strength Cond Res 31(5): 1443-1460, 2017-To enhance recovery from sport, cold water immersion (CWI) and contrast water therapy (CWT) have become common practice within high level team sport. Initially, athletes relied solely on anecdotal support. As there has been an increase in the volume of research into recovery including a number of general reviews, an opportunity existed to narrow the focus specifically examining the use of hydrotherapy for recovery in team sport. A Boolean logic [AND] keyword search of databases was conducted: SPORTDiscus; AMED; CINAHL; MEDLINE. Data were extracted and the standardized mean differences were calculated with 95% confidence interval (CI). The analysis of pooled data was conducted using a random-effect model, with heterogeneity assessed using I. Twenty-three peer reviewed articles (n = 606) met the criteria. Meta-analyses results indicated CWI was beneficial for recovery at 24 hours (countermovement jump: p = 0.05, CI: -0.004 to 0.578; All-out sprint: p = 0.02, -0.056 to 0.801) following team sport. The CWI was beneficial for recovery at 72 hours (fatigue: p = 0.03, CI: 0.061-1.418) and CWT was beneficial for recovery at 48 hours (fatigue: p = 0.04, CI: 0.013-0.942) following team sport. The CWI was beneficial for neuromuscular recovery 24 hours following team sport, whereas CWT was not beneficial for recovery following team sport. In addition, when evaluating accumulated sprinting, CWI was not beneficial for recovery following team sports. In evaluating subjective measures, both CWI (72 hours) and CWT (24 hours) were beneficial for recovery of perceptions of fatigue, following team sport. However neither CWI nor CWT was beneficial for recovery, of perceptions of muscle soreness, following team sport.

  7. Process Design and Techno-economic Analysis for Materials to Treat Produced Waters.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heimer, Brandon Walter; Paap, Scott M; Sasan, Koroush

    Significant quantities of water are produced during enhanced oil recovery making these “produced water” streams attractive candidates for treatment and reuse. However, high concentrations of dissolved silica raise the propensity for fouling. In this paper, we report the design and economic analysis for a new ion exchange process using calcined hydrotalcite (HTC) to remove silica from water. This process improves upon known technologies by minimizing sludge product, reducing process fouling, and lowering energy use. Process modeling outputs included raw material requirements, energy use, and the minimum water treatment price (MWTP). Monte Carlo simulations quantified the impact of uncertainty and variabilitymore » in process inputs on MWTP. These analyses showed that cost can be significantly reduced if the HTC materials are optimized. Specifically, R&D improving HTC reusability, silica binding capacity, and raw material price can reduce MWTP by 40%, 13%, and 20%, respectively. Optimizing geographic deployment further improves cost competitiveness.« less

  8. Study of a two-bed silica gel-water adsorption chiller: performance analysis

    NASA Astrophysics Data System (ADS)

    Sah, Ramesh P.; Choudhury, Biplab; Das, Ranadip K.

    2018-01-01

    In this study, a lumped parameter simulation model has been developed for analysis of the thermal performance of a single-stage two-bed adsorption chiller. Since silica gel has low regeneration temperature and water has high latent heat of vaporisation, silica gel-water pair has been chosen as the working pair of the adsorption chiller. Low-grade waste heat or solar heat at around 70-80°C can be used to run this adsorption chiller. In this model, the effects of operating parameters on the performance of the chiller have been studied. The simulated results show that the cooling capacity of the chiller has an optimum value of 5.95 kW for a cycle time of 1600 s with the hot, cooling, and chilled water inlet temperatures at 85°C, 25°C, and 14°C, respectively. The present model can be utilised to investigate and optimise adsorption chillers.

  9. Punched belt hole position deviation analysis of float type water level gauge

    NASA Astrophysics Data System (ADS)

    Mao, Chunlei; Wang, Tao; Fu, Weijie; Li, Lianhui

    2018-03-01

    The key parts of the float type water level gauge instrument is perforated belt, The size and tolerance requirements of its aperture is: (1) alternation of 100+0.2 and 100-0.2, (2) 200±0.1, (3) 1000±0.15, (4) 10000±0.2. The single hole position: alternation of 100+0.2 and 100-0.2; double: 200±0.1, and ensure the best hole position error avoidance tends to be one-way, that is to say: when the punched belt combined with a water wheel rotating line moving, The hole position error to single direction increase or decrease, caused the water level nail gradually and close to the edge of the hole, and then edge and final punched belt was lifted. This paper uses the laser drilling process of steel strip for data collection and analysis. It is found that this method cannot meet the tolerance requirements and the double stamping processing method with adjustable cylindrical pin is feasible.

  10. Remote sensing of atmospheric water content from Bhaskara SAMIR data. [using statistical linear regression analysis

    NASA Technical Reports Server (NTRS)

    Gohil, B. S.; Hariharan, T. A.; Sharma, A. K.; Pandey, P. C.

    1982-01-01

    The 19.35 GHz and 22.235 GHz passive microwave radiometers (SAMIR) on board the Indian satellite Bhaskara have provided very useful data. From these data has been demonstrated the feasibility of deriving atmospheric and ocean surface parameters such as water vapor content, liquid water content, rainfall rate and ocean surface winds. Different approaches have been tried for deriving the atmospheric water content. The statistical and empirical methods have been used by others for the analysis of the Nimbus data. A simulation technique has been attempted for the first time for 19.35 GHz and 22.235 GHz radiometer data. The results obtained from three different methods are compared with radiosonde data. A case study of a tropical depression has been undertaken to demonstrate the capability of Bhaskara SAMIR data to show the variation of total water vapor and liquid water contents.

  11. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data.

    PubMed

    Hoque, Yamen M; Tripathi, Shivam; Hantush, Mohamed M; Govindaraju, Rao S

    2012-10-30

    A method for assessment of watershed health is developed by employing measures of reliability, resilience and vulnerability (R-R-V) using stream water quality data. Observed water quality data are usually sparse, so that a water quality time-series is often reconstructed using surrogate variables (streamflow). A Bayesian algorithm based on relevance vector machine (RVM) was employed to quantify the error in the reconstructed series, and a probabilistic assessment of watershed status was conducted based on established thresholds for various constituents. As an application example, observed water quality data for several constituents at different monitoring points within the Cedar Creek watershed in north-east Indiana (USA) were utilized. Considering uncertainty in the data for the period 2002-2007, the R-R-V analysis revealed that the Cedar Creek watershed tends to be in compliance with respect to selected pesticides, ammonia and total phosphorus. However, the watershed was found to be prone to violations of sediment standards. Ignoring uncertainty in the water quality time-series led to misleading results especially in the case of sediments. Results indicate that the methods presented in this study may be used for assessing the effects of different stressors over a watershed. The method shows promise as a management tool for assessing watershed health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Ground-water-quality assessment of the Carson River basin, Nevada and California; analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Welch, A.H.; Plume, R.W.; Frick, E.A.; Hughes, J.L.

    1989-01-01

    Data on groundwater quality, hydrogeology, and land and water use for the Carson River basin, Nevada and California were analyzed as part of the U. S. Geological Survey National Water-Quality Assessment program. The basin consists of six hydrographic areas--a mountainous headwaters area and five downstream areas interconnected by the Carson River. Each valley contains one or more basin-fill aquifers. The data on groundwater quality came from several agencies and were screened to verify site location and to avoid analyses of treated water. The screened data are stored in the U. S. Geological Survey National Water Information System data base. Differences in sample-collection and preservation procedures among some of the data-collection agencies restrict use of the data to a descriptive analysis. Drinking water standards were employed as the basis for evaluating reported concentrations. Frequencies with which primary or secondary standards are exceeded increase from upstream parts of the basin to downstream parts. Primary standards commonly exceeded are fluoride in upstream areas and arsenic and fluoride in downstream areas. Secondary standards commonly exceeded are iron and manganese in upstream areas and chloride, dissolved solids, iron, manganese, and sulfate in downstream areas. The poorer-quality groundwater generally is a result of natural geochemical reactions, rather than the introduction of chemicals by man. Limited data indicate, however , that manmade organic compounds are present, mostly at or near urban land. (USGS)

  13. Analysis of Water Well Quality Drilling Around Waste Disposal Site in Makassar City Indonesia

    NASA Astrophysics Data System (ADS)

    Maru, R.; Baharuddin, I. I.; Badwi, N.; Nyompa, S.; Sudarso

    2018-02-01

    Clean water is one of human need which is very important in carrying out its life. Therefore, this article analyzes the quality of the well water dug around the landfill. The method used is a well water well sample taken from 4 wells around a landfill taken by a purposive sampling at a different distance. The parameters measured are physical, chemical, and biological properties. The results of the analysis were then compared with the standard of drinking water quality criteria allowed under The Regulation of Health Minister of Indonesia No. 416 year 1990 on the Terms and Supervision of Water Quality of the Minister of Health of the Republic of Indonesia. The result of the research shows that there are two wells whose water quality does not meet the physical requirement i.e Location of Points II and III, based on the construction of wells also does not meet the requirements of the wells in general. While at the well Locations Point I and IV the quality of water physically, chemically and biologically as well as well construction qualify. From the result of this research, the researcher give suggestion of the need to improve the physical condition of dug wells, it is necessary to do the extension to the well water user community for drinking water about the physical condition of the dug well, the need to monitor and supervise the quality of drinking water, and should involve the community to independently meet the needs absolute i.e clean water to drink.

  14. The role of reservoir storage in large-scale surface water availability analysis for Europe

    NASA Astrophysics Data System (ADS)

    Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.

    2017-12-01

    A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.

  15. Foale performs potable water analysis OPS in the SM during Expedition 8

    NASA Image and Video Library

    2003-11-07

    ISS008-E-05553 (7 November 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, floats in front of the galley in the Zvezda Service Module on the International Space Station (ISS) as he fills a Crew Healthcare System (CheCSS) Water Microbiology (WMK) in-flight analysis bag from the potable warter dispenser.

  16. Enhanced sampling simulation analysis of the structure of lignin in the THF–water miscibility gap

    DOE PAGES

    Smith, Micholas Dean; Petridis, Loukas; Cheng, Xiaolin; ...

    2016-01-26

    Using temperature replica-exchange molecular dynamics, we characterize a globule-to-coil transition for a softwood-like lignin biopolymer in a tetrahydrofuran (THF)-water cosolvent system at temperatures at which the cosolvent undergoes a de-mixing transition. The lignin is found to be in a coil state, similar to that in the high-temperature miscible region. Analysis of the transition kinetics indicates that THF acts in a surfactant-like fashion. In conclusion, the present study thus suggests that THF-water based pretreatments may efficiently remove lignin from biomass even at relatively low (non-water boiling) temperatures.

  17. Analysis of Compound Water Hazard in Coastal Urbanized Areas under the Future Climate

    NASA Astrophysics Data System (ADS)

    Shibuo, Y.; Taniguchi, K.; Sanuki, H.; Yoshimura, K.; Lee, S.; Tajima, Y.; Koike, T.; Furumai, H.; Sato, S.

    2017-12-01

    Several studies indicate the increased frequency and magnitude of heavy rainfalls as well as the sea level rise under the future climate, which implies that coastal low-lying urbanized areas may experience increased risk against flooding. In such areas, where river discharge, tidal fluctuation, and city drainage networks altogether influence urban inundation, it is necessary to consider their potential interference to understand the effect of compound water hazard. For instance, pump stations cannot pump out storm water when the river water level is high, and in the meantime the river water level shall increase when it receives pumped water from cities. At the further downstream, as the tidal fluctuation regulates the water levels in the river, it will also affect the functionality of pump stations and possible inundation from rivers. In this study, we estimate compound water hazard in the coastal low-lying urbanized areas of the Tsurumi river basin under the future climate. We developed the seamlessly integrated river, sewerage, and coastal hydraulic model that can simulate river water levels, water flow in sewerage network, and inundation from the rivers and/or the coast to address the potential interference issue. As a forcing, the pseudo global warming method, which applies the changes in GCM anomaly to re-analysis data, is employed to produce ensemble typhoons to drive the seamlessly integrated model. The results show that heavy rainfalls caused by the observed typhoon generally become stronger under the pseudo global climate condition. It also suggests that the coastal low-lying areas become extensively inundated if the onset of river flooding and storm surge coincides.

  18. Analysis on the Upwelling of the Anoxic Water Mass in Inner Tokyo Bay

    NASA Astrophysics Data System (ADS)

    Kitahara, Kouichi; Wada, Akira; Kawanaga, Mitsuhito; Fukuoka, Ippei; Takano, Tairyu

    In the period of strong density stratification from early summer through early fall, the supply of oxygen from the sea surface to the deeper water is cut off. At the same time, organic matter decomposes near the ocean bottom, so that the anoxic water mass forms. In inner Tokyo Bay, when a northeasterly wind(directed from the inner bay toward the mouth of the bay)blows, the anoxic water mass upwells(an “Aoshio” occurs). In some cases fishes and shellfish die along the coast. Based on the report of results of continuous observations of water temperature, salinity and dissolved oxygen content presented by Fukuoka et al, 2005, here we have used an improved fluid flow model to carry out 3-dimensional calculations of the water level, water temperature, salinity and flow distributions. The computational results have reproduced the observational results well. The calculations showed that upwelling of the anoxic water mass that forms during the stratified period is not only affected by the continuously blowing northeasterly wind, but also by a continuous southwesterly wind that blew several days previously. Surface water blown against the coast by this continuous southwesterly wind is pushed downward; the calculations reproduced the process by which the rising force of this previously downwelled surface water also affects the phenomenon of anoxia. Furthermore, we presented the results of time dependent analysis of quantities relevant to water quality, including dissolved oxygen, which is closely related to the Aoshio, using the flow and diffusion model and a primary ecological model during the stratified ocean period, the sinking period and the upwelling period. We have compared the computed results to the results of continuous observations of dissolved oxygen during occurrence of an Aoshio in 1992 at observation point D-2, and confirmed that this model is an appropriate one to describe this phenomenon.

  19. Comparison of four-hour and twenty-four-hour refrigerated storage of nonpotable water for fecal coliform analysis.

    PubMed Central

    Standridge, J H; Lesar, D J

    1977-01-01

    The problem of extending the storage time of water samples for fecal coliform analysis was addressed. Included in this report is a literature review of the storage problem. Twenty-eight samples were analyzed in replicate to determine the effect of 24-h storage of water samples at 4 degrees C. A new statistical approach to data analysis, coupled with the concept of practical acceptability, is presented. According to our results, many samples can successfully be stored at 4 degrees C for 24 h. PMID:335972

  20. Water-Energy Correlations: Analysis of Water Technologies, Processes and Systems in Rural and Urban India

    NASA Astrophysics Data System (ADS)

    Murumkar, A. R.; Gupta, S.; Kaurwar, A.; Satankar, R. K.; Mounish, N. K.; Pitta, D. S.; Virat, J.; Kumar, G.; Hatte, S.; Tripathi, R. S.; Shedekar, V.; George, K. J.; Plappally, A. K.

    2015-12-01

    In India, the present value of water, both potable and not potable, bears no relation to the energy of water production. However, electrical energy spent on ground water extraction alone is equivalent to the nation's hydroelectric capacity of 40.1 GWh. Likewise, desalinating 1m3 water of the Bay of Bengal would save three times the energy for potable ground water extraction along the coast of the Bay. It is estimated that every second woman in rural India expends 0.98 kWhe/m3/d for bringing water for household needs. Yet, the water-energy nexus remains to be a topic which is gravely ignored. This is largely caused by factors such as lack of awareness, defective public policies, and intrusive cultural practices. Furthermore, there are instances of unceasing dereliction towards water management and maintenance of the sparsely distributed water and waste water treatment plants across the country. This pollutes the local water across India apart from other geogenic impurities. Additionally, product aesthetics and deceptive advertisements take advantage of the abulia generated by users' ignorance of technical specifications of water technologies and processes in mismanagement of water use. Accordingly, urban residents are tempted to expend on energy intensive water technologies at end use. This worsens the water-energy equation at urban households. Cooking procedures play a significant role in determining the energy expended on water at households. The paper also evaluates total energy expense involved in cultivating some major Kharif and Rabi crops. Manual and traditional agricultural practices are more prominent than mechanized and novel agricultural techniques. The specific energy consumption estimate for different water technologies will help optimize energy expended on water in its life cycles. The implication of the present study of water-energy correlation will help plan and extend water management infrastructure at different locations across India.

  1. Optimal water management and conflict resolution: The Middle East Water Project

    NASA Astrophysics Data System (ADS)

    Fisher, Franklin M.; Arlosoroff, Shaul; Eckstein, Zvi; Haddadin, Munther; Hamati, Salem G.; Huber-Lee, Annette; Jarrar, Ammar; Jayyousi, Anan; Shamir, Uri; Wesseling, Hans

    2002-11-01

    In many situations, actual water markets will not allocate water resources optimally, largely because of the perceived social value of water. It is possible, however, to build optimizing models which, taking account of demand as well as supply considerations, can substitute for actual markets. Such models can assist the formation of water policies, taking into account user-supplied values and constraints. They provide powerful tools for the system-wide cost-benefit analysis of infrastructure; this is illustrated by an analysis of the need for desalination in Israel and the cost and benefits of adding a conveyance line. Further, the use of such models can facilitate cooperation in water, yielding gains that can be considerably greater than the value of the disputed water itself. This can turn what appear to be zero-sum games into win-win situations. The Middle East Water Project has built such a model for the Israeli-Jordanian-Palestinian region. We find that the value of the water in dispute in the region is very small and the possible gains from cooperation are relatively large. Analysis of the scarcity value of water is a crucial feature.

  2. Analysis of antibiotic fungicide kasugamycin in irrigation water by high performance liquid chromatography.

    PubMed

    Sheu, Ceshing; Chen, Shu-Chuan; Lo, Chi-Chu

    2010-07-01

    A high performance liquid chromatographic (HPLC) analysis method with an ultraviolet (UV) detector and an Aqua C18 (250 x 4.6 mm, Phenomenex) column were applied to analyze the antibiotic fungicide kasugamycin in water. An aromatic sulfonic acid spe column (Backerbond, J. T. Backer) was used to remove the interfering materials from irrigation water. A good linear relation existed between the concentration of the fungicide and the peak area, and correlation coefficient of linearity from 0.1 to 10.2 microg/mL was 0.998. The accuracies expressed as the recoveries of kasugamycin from irrigation water ranged from 112.2 to 111.7 %. The precisions expressed as relative standard deviations (RSD) were found to be below 7.0 %. The quantitative detection limit (LOQ) of kasugamycin in irrigation water was set at 2.2 microg/mL which was 2-times higher than the method detection limit (MDL) 1.03 microg/mL. Electrospray ionization-mass (ESI-MS) and fast-atom bombardment-mass (FAB-MS) were applied to compare the ability of identifying the component of the eluent peak from HPLC, and the result indicated that electrospray ionization-mass (ESI-MS) was more sensitive than fast-atom bombardment-mass (FAB-MS) in the detection of kasugamycin. There was no kasugamycin residue detected in irrigation water samples collected from paddyfields at Wufong, indicated that the residues of kasugamycin in water were less than 2.2 microg/mL, and the risk of water contamination was very low.

  3. Uncertainty analysis of an irrigation scheduling model for water management in crop production

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling tools are critical to allow producers to manage water resources for crop production in an accurate and timely manner. To be useful, these tools need to be accurate, complete, and relatively reliable. The current work presents the uncertainty analysis and its results for the Mis...

  4. Recovery of Ground-Water Levels From 1988 to 2003 and Analysis of Potential Water-Supply Management Options in Critical Area 1, East-Central New Jersey

    USGS Publications Warehouse

    Spitz, Frederick J.; Watt, Martha K.; dePaul, Vincent T.

    2008-01-01

    Water levels in four confined aquifers in the New Jersey Coastal Plain within Water Supply Critical Area 1 have recovered as a result of reductions in ground-water withdrawals initiated by the State in the late 1980s. The aquifers are the Wenonah-Mount Laurel, the Upper and Middle Potomac-Raritan-Magothy, and Englishtown aquifer system. Because of increased water demand due to increased development in Monmouth, Ocean, and Middlesex Counties, five base and nine alternate management models were designed for the four aquifers to evaluate the effects resulting from potential reallocation of part of the Critical Area 1 reductions in withdrawals. The change in withdrawals and associated water-level changes in the aquifers for 1988-2003 are discussed. Generally, withdrawals decreased 25 to 30 Mgal/d (million gallons per day), and water levels increased 0 to 80 ft (feet). The Regional Aquifer-System Analysis (RASA) ground-water-flow model of the New Jersey Coastal Plain developed by the U.S. Geological Survey was used to simulate ground-water flow and optimize withdrawals using the Ground-Water Management Process (GWM) for MODFLOW. Results of the model were used to evaluate the effects of several possible water-supply management options in order to provide the information to water managers. The optimization method, which provides a means to set constraints that support mandated hydrologic conditions, then determine the maximum withdrawals that meet the constraints, is a more cost-effective approach than simulating a range of withdrawals to determine the effects on the aquifer system. The optimization method is particularly beneficial for a regional-scale study of this kind because of the large number of wells to be evaluated. Before the model was run, a buffer analysis was done to define an area with no additional withdrawals that minimizes changes in simulated streamflow in aquifer outcrop areas and simulated movement of ground water toward the wells from areas of

  5. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  6. Enhancing concentration and mass sensitivities for liquid chromatography trace analysis of clopyralid in drinking water.

    PubMed

    Gu, Binghe; Meldrum, Brian; McCabe, Terry; Phillips, Scott

    2012-01-01

    A theoretical treatment was developed and validated that relates analyte concentration and mass sensitivities to injection volume, retention factor, particle diameter, column length, column inner diameter and detection wavelength in liquid chromatography, and sample volume and extracted volume in solid-phase extraction (SPE). The principles were applied to improve sensitivity for trace analysis of clopyralid in drinking water. It was demonstrated that a concentration limit of detection of 0.02 ppb (μg/L) for clopyralid could be achieved with the use of simple UV detection and 100 mL of a spiked drinking water sample. This enabled reliable quantitation of clopyralid at the targeted 0.1 ppb level. Using a buffered solution as the elution solvent (potassium acetate buffer, pH 4.5, containing 10% of methanol) in the SPE procedures was found superior to using 100% methanol, as it provided better extraction recovery (70-90%) and precision (5% for a concentration at 0.1 ppb level). In addition, the eluted sample was in a weaker solvent than the mobile phase, permitting the direct injection of the extracted sample, which enabled a faster cycle time of the overall analysis. Excluding the preparation of calibration standards, the analysis of a single sample, including acidification, extraction, elution and LC run, could be completed in 1 h. The method was used successfully for the determination of clopyralid in over 200 clopyralid monoethanolamine-fortified drinking water samples, which were treated with various water treatment resins. Copyright © 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower

    NASA Astrophysics Data System (ADS)

    Lee, Hyunsub; Son, Gihun

    2017-11-01

    Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.

  8. Impact of groundwater markets in India on water use efficiency: a data envelopment analysis approach.

    PubMed

    Manjunatha, A V; Speelman, S; Chandrakanth, M G; Van Huylenbroeck, G

    2011-11-01

    In the hard rock areas of India, overdraft of groundwater has led to negative externalities. It increased costs of groundwater irrigation and caused welfare losses. At the same time informal groundwater markets are slowly emerging and are believed to improve water distribution and to increase water use efficiency in the irrigation sector. These claims are evaluated in this study. For this purpose data was collected from a sample containing three different groups of water users: water sellers, water buyers and a control group of non-traders. First the socio-economic characteristics of these groups are compared. Then the efficiency of water use of the three groups is studied using Data Envelopment Analysis. The results indicate that groundwater markets provide resource poor farmers access to irrigation water, giving them the opportunity to raise their productivity. Water buyers are furthermore shown to be most efficient in their water use, while water sellers are also shown to be more efficient than the control group. The differences in efficiency between the groups are statistically significant. The demonstrated potential of groundwater markets to improve the efficiency of water use and to increase equity in resource access should be taken into account by the Indian government when deciding on their attitude towards the emerging groundwater markets. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Characterizing the transplanar and in-plane water transport of textiles with gravimetric and image analysis technique: Spontaneous Uptake Water Transport Tester

    PubMed Central

    Tang, K. P. M.; Wu, Y. S.; Chau, K. H.; Kan, C. W.; Fan, J. T.

    2015-01-01

    Water absorption and transport property of textiles is important since it affects wear comfort, efficiency of treatment and functionality of product. This paper introduces an accurate and reliable measurement tester, which is based on gravimetric and image analysis technique, for characterising the transplanar and in-plane wicking property of fabrics. The uniqueness of this instrument is that it is able to directly measure the water absorption amount in real-time, monitor the direction of water transport and estimate the amount of water left on skin when sweating. Throughout the experiment, water supply is continuous which simulates profuse sweating. Testing automation could even minimise variation caused by subjective manipulation, thus enhancing testing accuracy. This instrument is versatile in terms of the fabrics could be tested. A series of shirting fabrics made by different fabric structure and yarn were investigated and the results show that the proposed method has high sensitivity in differentiating fabrics with varying geometrical differences. Fabrics with known hydrophobicity were additionally tested to examine the sensitivity of the instrument. This instrument also demonstrates the flexibility to test on high performance moisture management fabrics and these fabrics were found to have excellent transplanar and in-plane wicking properties. PMID:25875329

  10. Multiresidue analysis of 24 Water Framework Directive priority substances by on-line solid phase extraction-liquid chromatography tandem mass spectrometry in environmental waters.

    PubMed

    Rubirola, Adrià; Boleda, Mª Rosa; Galceran, Mª Teresa

    2017-04-14

    This paper reports the development of a fully multiresidue and automated on-line solid phase extraction (SPE) - liquid chromatography tandem mass spectrometry (LC-MS/MS) method for the determination of 24 priority substances (PS) belonging to different classes (pesticides, hormones or pharmaceuticals) included in the Directive 2013/39/UE and the recent Watch List (Decision 2015/495) in water samples (drinking water, surface water, and effluent wastewaters). LC-MS/MS conditions and on-line SPE parameters such as sorbent type, sample and wash volumes were optimized. The developed method is highly sensitive (limits of detection between 0.1 and 1.4ngL -1 ) and precise (relative standard deviations lower than 8%). As part of the method validation studies, linearity, accuracy and matrix effects were assessed. The main advantage of this method over traditional off-line procedures is the minimization of tedious sample preparation increasing productivity and sample throughput. The optimized method was applied to the analysis of water samples and the results revealed the presence of 16 PS in river water and effluent water of wastewater treatment plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. An Analysis of Total Phosphorus Dispersion in Lake Used As a Municipal Water Supply.

    PubMed

    Lima, Rômulo C; Mesquita, André L A; Blanco, Claudio J C; Santos, Maria de Lourdes S; Secretan, Yves

    2015-09-01

    In Belém city is located the potable water supply system of its metropolitan area, which includes, in addition to this city, four more municipalities. In this water supply complex is the Água Preta lake, which serves as a reservoir for the water pumped from the Guamá river. Due to the great importance of this lake for this system, several works have been devoted to its study, from the monitoring of the quality of its waters to its hydrodynamic modeling. This paper presents the results obtained by computer simulation of the phosphorus dispersion within this reservoir by the numerical solution of two-dimensional equation of advection-diffusion-reaction by the method θ/SUPG. Comparing these results with data concentration of total phosphorus collected from November 2008 to October 2009 and from satellite photos show that the biggest polluters of the water of this lake are the domestic sewage dumps from the population living in its vicinity. The results obtained indicate the need for more information for more precise quantitative analysis. However, they show that the phosphorus brought by the Guamá river water is consumed in an area adjacent to the canal that carries this water into the lake. Phosphorus deposits in the lake bottom should be monitored to verify their behavior, thus preventing the quality of water maintained therein.

  12. Improved automated analysis of radon (222Rn) and thoron (220Rn) in natural waters.

    PubMed

    Dimova, Natasha; Burnett, William C; Lane-Smith, Derek

    2009-11-15

    Natural radon ((222)Rn) and thoron ((220)Rn) can be used as tracers of various chemical and physical processes in the environment. We present here results from an extended series of laboratory experiments intended to improve the automated analysis of (222)Rn and (220)Rn in water using a modified RAD AQUA (Durridge Inc.) system. Previous experience with similar equipment showed that it takes about 30-40 min for the system to equilibrate to radon-in-water concentration increases and even longer for the response to return to baseline after a sharp spike. While the original water/gas exchanger setup was built only for radon-in-water measurement, our goal here is to provide an automated system capable of high resolution and good sensitivity for both radon- and thoron-in-water detections. We found that faster water flow rates substantially improved the response for both isotopes while thoron is detected most efficiently at airflow rates of 3 L/min. Our results show that the optimum conditions for fastest response and sensitivity for both isotopes are at water flow rates up to 17 L/min and an airflow rate of 3 L/min through the detector. Applications for such measurements include prospecting for naturally occurring radioactive material (NORM) in pipelines and locating points of groundwater/surface water interaction.

  13. Identification of Thyroid Receptor Ant/Agonists in Water Sources Using Mass Balance Analysis and Monte Carlo Simulation

    PubMed Central

    Shi, Wei; Wei, Si; Hu, Xin-xin; Hu, Guan-jiu; Chen, Cu-lan; Wang, Xin-ru; Giesy, John P.; Yu, Hong-xia

    2013-01-01

    Some synthetic chemicals, which have been shown to disrupt thyroid hormone (TH) function, have been detected in surface waters and people have the potential to be exposed through water-drinking. Here, the presence of thyroid-active chemicals and their toxic potential in drinking water sources in Yangtze River Delta were investigated by use of instrumental analysis combined with cell-based reporter gene assay. A novel approach was developed to use Monte Carlo simulation, for evaluation of the potential risks of measured concentrations of TH agonists and antagonists and to determine the major contributors to observed thyroid receptor (TR) antagonist potency. None of the extracts exhibited TR agonist potency, while 12 of 14 water samples exhibited TR antagonistic potency. The most probable observed antagonist equivalents ranged from 1.4 to 5.6 µg di-n-butyl phthalate (DNBP)/L, which posed potential risk in water sources. Based on Monte Carlo simulation related mass balance analysis, DNBP accounted for 64.4% for the entire observed antagonist toxic unit in water sources, while diisobutyl phthalate (DIBP), di-n-octyl phthalate (DNOP) and di-2-ethylhexyl phthalate (DEHP) also contributed. The most probable observed equivalent and most probable relative potency (REP) derived from Monte Carlo simulation is useful for potency comparison and responsible chemicals screening. PMID:24204563

  14. ENHANCED CONCENTRATION AND ANALYSIS METHOD FOR MEASURING WATER SOLUABLE ENDOGENOUS COMPOUNDS IN HUMAN BREATH

    EPA Science Inventory

    Exhaled human breath analysis has become a standard technique for assessing exposure to exogenous volatile organic compounds (VOCs) such as trihalomethanes from water chlorination; aromatics, hydrocarbons, and oxygenates from fuels usage; and various chlorinated solvents from i...

  15. Trend analysis of selected water-quality constituents in the Verde River Basin, central Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldys, S.

    1990-01-01

    Temporal trends of eight water quality constituents at six data collection sites in the Verde River basin in central Arizona were investigated using seasonal Kendall tau and ordinary least-squares regression methods of analysis. The constituents are dissolved solids, dissolved sulfate, dissolved arsenic, total phosphorus, pH, total nitrite plus nitrate-nitrogen, dissolved iron, and fecal coliform bacteria. Increasing trends with time in dissolved-solids concentrations of 7 to 8 mg/L/yr at Verde River near Camp Verde were found at significant level. An increasing trend in dissolved-sulfate concentrations of 3.59 mg/L/yr was also found at Verde River near Camp Verde, although at nonsignificant levels.more » Statistically significant decreasing trends with time in dissolved-solids and dissolved-sulfate concentrations were found at Verde River above Horseshoe Reservoir, which is downstream from Verde River near Camp Verde. Observed trends in the other constituents do not indicate the emergence of water quality problems in the Verde River basin. Analysis of the eight water quality constituents generally indicate nonvarying concentration levels after adjustment for seasonality and streamflow were made.« less

  16. Advanced water window x-ray microscope design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, D. L.; Wang, C.; Jiang, W.; Lin, J.

    1992-01-01

    The project was focused on the design and analysis of an advanced water window soft-x-ray microscope. The activities were accomplished by completing three tasks contained in the statement of work of this contract. The new results confirm that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use aspherical mirror surfaces and to use graded multilayer coatings on the secondary (to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater). The results are included in a manuscript which is enclosed in the Appendix.

  17. Retrofitting a water-pumping station with adjustable speed drives: Feasibility analysis: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    The objective of this report is to develop a generalized methodology for examining water distribution systems for adjustable speed drive (ASD) applications and to provide an example (the City of Chicago 68th Street Water Pumping Station) using the methodology. The City of Chicago water system was chosen as the candidate for analysis because it has a large service area distribution network with no storage provisions after the distribution pumps. Many industrial motors operate at only one speed or a few speeds. By speeding up or slowing down, ASDs achieve gentle startups and gradual shutdowns thereby providing plant equipment a longermore » life with fewer breakdowns while minimizing the energy requirements. The test program substantiated that ASDs enhance product quality and increase productivity in many industrial operations, including extended equipment life. 35 figs.« less

  18. Potable water taste enhancement

    NASA Technical Reports Server (NTRS)

    1974-01-01

    An analysis was conducted to determine the causes of and remedies for the unpalatability of potable water in manned spacecraft. Criteria and specifications for palatable water were established and a quantitative laboratory analysis technique was developed for determinig the amounts of volatile organics in good tasting water. Prototype spacecraft water reclamation systems are evaluated in terms of the essential palatability factors.

  19. ARE MACRO AND MICRO ENVIRONMENT AFFECTING MANAGEMENT OF FRESH WATER RESOURCES? A CASE FROM IRAN WITH PESTLE ANALYSIS.

    PubMed

    Atighechian, Golrokh; Maleki, Mohammadreza; Aryankhesal, Aidin; Jahangiri, Katayoun

    2016-07-24

    Oil spill in fresh water can affect ecological processes and accordingly it can influence human health. Iran, due to having 58.8 % of the world oil reserves, is highly vulnerable to water contamination by oil products. The aim of this study was to determine environmental factors affecting the management of the oil spill into one of the river in Iran using the PESTLE analysis. This was a qualitative case study conducted in 2015 on an oil spill incident in Iran and its roots from a disaster management approach. Semi-structured interviews were conducted for data collection. Seventy managers and staffs with those responsible or involved in oil spill incident management were recruited to the study. Qualitative content analysis approach was employed for the data analysis. Document analysis was used to collect additional information. Findings of the present study indicated that different factors affected the management of the event of oil spill onto one of the central river and consequently the management of drink water resources. Using this analysis, managers can plan for such events and develop scenarios for them to have better performance for the future events.

  20. ARE MACRO AND MICRO ENVIRONMENT AFFECTING MANAGEMENT OF FRESH WATER RESOURCES? A CASE FROM IRAN WITH PESTLE ANALYSIS

    PubMed Central

    Atighechian, Golrokh; Maleki, Mohammadreza; Aryankhesal, Aidin; Jahangiri, Katayoun

    2016-01-01

    Introduction: Oil spill in fresh water can affect ecological processes and accordingly it can influence human health. Iran, due to having 58.8 % of the world oil reserves, is highly vulnerable to water contamination by oil products. Aim: The aim of this study was to determine environmental factors affecting the management of the oil spill into one of the river in Iran using the PESTLE analysis. Material and methods: This was a qualitative case study conducted in 2015 on an oil spill incident in Iran and its roots from a disaster management approach. Semi-structured interviews were conducted for data collection. Seventy managers and staffs with those responsible or involved in oil spill incident management were recruited to the study. Qualitative content analysis approach was employed for the data analysis. Document analysis was used to collect additional information. Results: Findings of the present study indicated that different factors affected the management of the event of oil spill onto one of the central river and consequently the management of drink water resources. Using this analysis, managers can plan for such events and develop scenarios for them to have better performance for the future events. PMID:27698608

  1. Virtual water trade and time scales for loss of water sustainability: a comparative regional analysis.

    PubMed

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-03-20

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.

  2. Virtual water trade and time scales for loss of water sustainability: A comparative regional analysis

    NASA Astrophysics Data System (ADS)

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-03-01

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective.

  3. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Meng, Deshuo; Zhao, Nanjing; Wang, Yuanyuan; Ma, Mingjun; Fang, Li; Gu, Yanhong; Jia, Yao; Liu, Jianguo

    2017-11-01

    The enrichment method of heavy metal in water with graphite and aluminum electrode was studied, and combined with plasma restraint device for improving the sensitivity of detection and reducing the limit of detection (LOD) of elements. For aluminum electrode enrichment, the LODs of Cd, Pb and Ni can be as low as several ppb. For graphite enrichment, the measurement time can be less than 3 min. The results showed that the graphite enrichment and aluminum electrode enrichment method can effectively improve the LIBS detection ability. The graphite enrichment method combined with plasma spatial confinement is more suitable for on-line monitoring of industrial waste water, the aluminum electrode enrichment method can be used for trace heavy metal detection in water. A LIBS method and device for soil heavy metals analysis was also developed, and a mobile LIBS system was tested in outfield. The measurement results deduced from LIBS and ICP-MS had a good consistency. The results provided an important application support for rapid and on-site monitoring of heavy metals in soil. (Left: the mobile LIBS system for analysis of heavy metals in soils. Top right: the spatial confinement device. Bottom right: automatic graphite enrichment device for on0line analysis of heavy metals in water).

  4. A geomatic methodology for spatio-temporal analysis of climatologic variables and water related diseases

    NASA Astrophysics Data System (ADS)

    Quentin, E.; Gómez Albores, M. A.; Díaz Delgado, C.

    2009-04-01

    The main objective of this research is to propose, by the way of geomatic developments, an integrated tool to analyze and model the spatio-temporal pattern of human diseases related to environmental conditions, in particular the ones that are linked to water resources. The geomatic developments follows four generic steps : requirement analysis, conceptual modeling, geomatic modeling and implementation (in Idrisi GIS software). A first development consists of the preprocessing of water, population and health data in order to facilitate the conversion and validation of tabular data into the required structure for spatio-temporal analysis. Three parallel developments follow : water balance, demographic state and evolution, epidemiological measures (morbidity and mortality rates, diseases burden). The new geomatic modules in their actual state have been tested on various regions of Mexico Republic (Lerma watershed, Chiapas state) focusing on diarrhea and vector borne diseases (dengue and malaria) and considering records over the last decade : a yearly as well as seasonal spreading trend can be observed in correlation with precipitation and temperature data. In an ecohealth perspective, the geomatic approach results particularly appropriate since one of its purposes is the integration of the various spatial themes implied in the study problem, environmental as anthropogenic. By the use of powerful spatial analysis functions, it permits the detection of spatial trends which, combined to the temporal evolution, can be of particularly use for example in climate change context, if sufficiently valid historical data can be obtain.

  5. Mechanical analysis of the strains generated by water tension in plant stems. Part I: stress transmission from the water to the cell walls.

    PubMed

    Alméras, Tancrède; Gril, Joseph

    2007-11-01

    Plant tissues shrink and swell in response to changes in water pressure. These strains can be easily measured, e.g., at the surface of tree stems, to obtain indirect information about plant water status and other physiological parameters. We developed a mechanical model to clarify how water pressure is transmitted to cell walls and causes shrinkage of plant tissues, particularly in the case of thick-walled cells such as wood fibers. Our analysis shows that the stress inside the fiber cell walls is lower than the water tension. The difference is accounted for by a stress transmission factor that depends on two main effects. The first effect is the dilution of the stress through the cell wall, because water acts at the lumen border and is transmitted to the outer border of the cell, which has a larger circumference. The second effect is the partial conversion of radial stress into tangential stress. Both effects are quantified as functions of parameters of the cell wall structure and its mechanical properties.

  6. Industrial wastewater minimization using water pinch analysis: a case study on an old textile plant.

    PubMed

    Ujang, Z; Wong, C L; Manan, Z A

    2002-01-01

    Industrial wastewater minimization can be conducted using four main strategies: (i) reuse; (ii) regeneration-reuse; (iii) regeneration-recycling; and (iv) process changes. This study is concerned with (i) and (ii) to investigate the most suitable approach to wastewater minimization for an old textile industry plant. A systematic water networks design using water pinch analysis (WPA) was developed to minimize the water usage and wastewater generation for the textile plant. COD was chosen as the main parameter. An integrated design method has been applied, which brings the engineering insight using WPA that can determine the minimum flowrate of the water usage and then minimize the water consumption and wastewater generation as well. The overall result of this study shows that WPA has been effectively applied using both reuse and regeneration-reuse strategies for the old textile industry plant, and reduced the operating cost by 16% and 50% respectively.

  7. A Selected Annotated Bibliography on the Analysis of Water Resources System, Volume 2.

    ERIC Educational Resources Information Center

    Kriss, Carol; And Others

    Presented is an annotated bibliography of some recent selected publications pertaining to the application of systems analysis techniques for defining and evaluating alternative solutions to water resource problems. Both subject and author indices are provided. Keywords are listed at the end of each abstract. The abstracted material emphasizes the…

  8. Light water reactor lower head failure analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broadermore » range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.« less

  9. International patent analysis of water source heat pump based on orbit database

    NASA Astrophysics Data System (ADS)

    Li, Na

    2018-02-01

    Using orbit database, this paper analysed the international patents of water source heat pump (WSHP) industry with patent analysis methods such as analysis of publication tendency, geographical distribution, technology leaders and top assignees. It is found that the beginning of the 21st century is a period of rapid growth of the patent application of WSHP. Germany and the United States had done researches and development of WSHP in an early time, but now Japan and China have become important countries of patent applications. China has been developing faster and faster in recent years, but the patents are concentrated in universities and urgent to be transferred. Through an objective analysis, this paper aims to provide appropriate decision references for the development of domestic WSHP industry.

  10. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.; Christy, John R.; Goodman, Steven J.; Miller, Tim L.; Fitzjarrald, Dan; Lapenta, Bill; Wang, Shouping

    1991-01-01

    The primary objective is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates changes on both global and regional scales. The following subject areas are covered: (1) water vapor variability; (2) multi-phase water analysis; (3) diabatic heating; (4) MSU (Microwave Sounding Unit) temperature analysis; (5) Optimal precipitation and streamflow analysis; (6) CCM (Community Climate Model) hydrological cycle; (7) CCM1 climate sensitivity to lower boundary forcing; and (8) mesoscale modeling of atmosphere/surface interaction.

  11. Virtual water trade and time scales for loss of water sustainability: A comparative regional analysis

    PubMed Central

    Goswami, Prashant; Nishad, Shiv Narayan

    2015-01-01

    Assessment and policy design for sustainability in primary resources like arable land and water need to adopt long-term perspective; even small but persistent effects like net export of water may influence sustainability through irreversible losses. With growing consumption, this virtual water trade has become an important element in the water sustainability of a nation. We estimate and contrast the virtual (embedded) water trades of two populous nations, India and China, to present certain quantitative measures and time scales. Estimates show that export of embedded water alone can lead to loss of water sustainability. With the current rate of net export of water (embedded) in the end products, India is poised to lose its entire available water in less than 1000 years; much shorter time scales are implied in terms of water for production. The two cases contrast and exemplify sustainable and non-sustainable virtual water trade in long term perspective. PMID:25790964

  12. Searching for Lunar Water: The Lunar Volatile Resources Analysis Package

    NASA Technical Reports Server (NTRS)

    Morse, A. D.; Barber, S. J.; Dewar, K. R.; Pillinger, J. M.; Sheridan, S.; Wright, I, P.; Gibson, E. K.; Merrifield, J. A.; Howe, C. J.; Waugh, L. J.; hide

    2012-01-01

    The ESA Lunar Lander has been conceived to demonstrate an autonomous landing capability. Once safely on the Moon the scientific payload will conduct investigations aimed at preparing the way for human exploration. As part of the provisional payload an instrument known as The Lunar Volatile Resources Analysis Package (L-VRAP) will analyse surface and exospheric volatiles. The presence and abundance of lunar water is an important consideration for ISRU (In Situ Resource Utilisation) since this is likely to be part of a strategy for supporting long-term human exploration of the Moon.

  13. "Water Is Life"--Farmer Rationales and Water Saving in Khorezm, Uzbekistan: A Lifeworld Analysis

    ERIC Educational Resources Information Center

    Oberkircher, Lisa; Hornidge, Anna-Katharina

    2011-01-01

    Khorezm Province is located in the Amu Darya lowlands of Uzbekistan, where unsustainable use of irrigation water has led to the Aral Sea crisis. This study deals with the question of how farmers in Khorezm perceive water and its management and how this facilitates or prevents water conservation, or "water saving," in irrigated…

  14. Hydrogeochemical analysis and evaluation of surface water quality of Pratapgarh district, Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Tiwari, Ashwani Kumar; Singh, Abhay Kumar; Singh, Amit Kumar; Singh, M. P.

    2017-07-01

    The hydrogeochemical study of surface water in Pratapgarh district has been carried out to assess the major ion chemistry and water quality for drinking and domestic purposes. For this purpose, twenty-five surface water samples were collected from river, ponds and canals and analysed for pH, electrical conductivity, total dissolved solids (TDS), turbidity, hardness, major cations (Ca2+, Mg2+, Na+ and K+), major anions (HCO3 -, F-, Cl-, NO3 -, SO4 2-) and dissolved silica concentration. The analytical results show mildly acidic to alkaline nature of surface water resources of Pratapgarh district. HCO3 - and Cl- are the dominant anions, while cation chemistry is dominated by Na+ and Ca2+. The statistical analysis and data plotted on the Piper diagram reveals that the surface water chemistry is mainly controlled by rock weathering with secondary contributions from agriculture and anthropogenic sources. Ca2+-Mg2+-HCO3 -, Ca2+-Mg2+-Cl- and Na+-HCO3 --Cl- are the dominant hydrogeochemical facies in the surface water of the area. For quality assessment, values of analysed parameters were compared with Indian and WHO water quality standards, which shows that the concentrations of TDS, F-, NO3 -, Na+, Mg2+ and total hardness are exceeding the desirable limits in some water samples. Water Quality Index (WQI) is one of the most effective tools to communicate information on the quality of any water body. The computed WQI values of Pratapgarh district surface water range from 28 to 198 with an average value of 82, and more than half of the study area is under excellent to good category.

  15. [Analysis of sulfonamids and their metabolites in drinking water by high Performance liquid chromatography tandem mass spectrometry].

    PubMed

    Wang, Shuo; Li, Shuming; Zhang, Xiangming; Wei, Yunfang; Zhang, Meiyun; Zhang, Jing

    2015-07-01

    To develop a comprehensive method for simultaneous analysis of sulfonamides and their metabolites in drinking water by high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Different solid-phase extraction columns were compared with respect to the recovery of target drugs from drinking water. The drinking water samples were adjusted to 3 by HCl and purified by a mix mode cation-ion exchange solid-phase extraction (SPE), following determination using LG-MS/MS. A total of 21 sulfonamides were separated by a C15 column (2.1 mm x 100 mm, 1.7 µm) and analyzed under positive ion mode with multi-reaction monitoring. The matrix-matched external standard calibration was used for quantification. The method quantification limits for 21 analytes were 0.03-0.63 ng/L with overall recoveries of 50.1%-114.9%, and the relative standard deviations less than 20%. The method was finally used to analyze sulfonamides in drinking water in Beijing, and 5 target compounds (sulfadiazine, sulfathiazole, sulfapyridine, trimethoprim and sulfamethazine) were detected at a concentration range of 0.08-32.54 ng/L. This method could be applied in simultaneous analysis of sulfonamides and their metabolites in drinking water samples.

  16. A Systematic Review and Meta-Analysis of Fecal Contamination and Inadequate Treatment of Packaged Water.

    PubMed

    Williams, Ashley R; Bain, Robert E S; Fisher, Michael B; Cronk, Ryan; Kelly, Emma R; Bartram, Jamie

    2015-01-01

    Packaged water products provide an increasingly important source of water for consumption. However, recent studies raise concerns over their safety. To assess the microbial safety of packaged water, examine differences between regions, country incomes, packaged water types, and compare packaged water with other water sources. We performed a systematic review and meta-analysis. Articles published in English, French, Portuguese, Spanish and Turkish, with no date restrictions were identified from online databases and two previous reviews. Studies published before April 2014 that assessed packaged water for the presence of Escherichia coli, thermotolerant or total coliforms were included provided they tested at least ten samples or brands. A total of 170 studies were included in the review. The majority of studies did not detect fecal indicator bacteria in packaged water (78/141). Compared to packaged water from upper-middle and high-income countries, packaged water from low and lower-middle-income countries was 4.6 (95% CI: 2.6-8.1) and 13.6 (95% CI: 6.9-26.7) times more likely to contain fecal indicator bacteria and total coliforms, respectively. Compared to all other packaged water types, water from small bottles was less likely to be contaminated with fecal indicator bacteria (OR = 0.32, 95%CI: 0.17-0.58) and total coliforms (OR = 0.10, 95%CI: 0.05, 0.22). Packaged water was less likely to contain fecal indicator bacteria (OR = 0.35, 95%CI: 0.20, 0.62) compared to other water sources used for consumption. Policymakers and regulators should recognize the potential benefits of packaged water in providing safer water for consumption at and away from home, especially for those who are otherwise unlikely to gain access to a reliable, safe water supply in the near future. To improve the quality of packaged water products they should be integrated into regulatory and monitoring frameworks.

  17. Characterization of chlorinated and chloraminated drinking water microbial communities in a distribution system simulator using pyrosequencing data analysis

    EPA Science Inventory

    The molecular analysis of drinking water microbial communities has focused primarily on 16S rRNA gene sequence analysis. Since this approach provides limited information on function potential of microbial communities, analysis of whole-metagenome pyrosequencing data was used to...

  18. NDMA formation during drinking water treatment: A multivariate analysis of factors influencing formation.

    PubMed

    Leavey-Roback, Shannon L; Sugar, Catherine A; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-05-15

    The formation of the carcinogen N-nitrosodimethylamine (NDMA) during drinking water treatment has raised concerns in the drinking water industry. Many bench-scale laboratory tests and pilot plant studies have been completed to try to determine which factors during water treatment increase or decrease the amount of NDMA formed in drinking water. This study used data from over 20 drinking water treatment plants in the United States and Canada to determine which factors are most highly correlated with the NDMA concentration in delivered water using a mixed effects model with a random intercept. This type of analysis has not been used previously with trihalomethane (THM) models due to the fact that those studies did not sample such a large number and range of plants as was done in this NDMA study. Ultraviolet absorbance at 254 nm (UV254) in the plant influent and pre-chlorination time used at the plant were highly correlated in all models with NDMA concentration in finished water as well as the percentage change between NDMA formation potential in the plant influent and actual formation in the finished water. Specifically, an increase in UV254 absorbance in a model was associated with an increase in NDMA and an increase in pre-chlorination time in a model was associated with a decrease in NDMA. Other water quality parameters including sucralose concentration in the plant influent, polyDADMAC polymer dose, pH, and chlorine-to-ammonia weight ratio used in the plant were also correlated with NDMA concentration in the distribution system. Lastly, NDMA precursor loading was correlated with the use of polyDADMAC (where precursors were added) and the use of ozone and granular activated carbon (GAC) treatment (where precursors were removed). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Simultaneous dispersive liquid-liquid microextraction derivatisation and gas chromatography mass spectrometry analysis of subcritical water extracts of sweet and sour cherry stems.

    PubMed

    Švarc-Gajić, Jaroslava; Clavijo, Sabrina; Suárez, Ruth; Cvetanović, Aleksandra; Cerdà, Víctor

    2018-03-01

    Cherry stems have been used in traditional medicine mostly for the treatment of urinary tract infections. Extraction with subcritical water, according to its selectivity, efficiency and other aspects, differs substantially from conventional extraction techniques. The complexity of plant subcritical water extracts is due to the ability of subcritical water to extract different chemical classes of different physico-chemical properties and polarities in a single run. In this paper, dispersive liquid-liquid microextraction (DLLME) with simultaneous derivatisation was optimised for the analysis of complex subcritical water extracts of cherry stems to allow simple and rapid preparation prior to gas chromatography-mass spectrometry (GC-MS). After defining optimal extracting and dispersive solvents, the optimised method was used for the identification of compounds belonging to different chemical classes in a single analytical run. The developed sample preparation protocol enabled simultaneous extraction and derivatisation, as well as convenient coupling with GC-MS analysis, reducing the analysis time and number of steps. The applied analytical protocol allowed simple and rapid chemical screening of subcritical water extracts and was used for the comparison of subcritical water extracts of sweet and sour cherry stems. Graphical abstract DLLME GC MS analysis of cherry stem extracts obtained by subcritical water.

  20. The Validity Chlorophyll-a Estimation by Sun Induced Fluorescence in Estuarine Waters: An Analysis of Long-term (2003-2011) Water Quality Data from Tampa Bay, Florida (USA)

    NASA Technical Reports Server (NTRS)

    Moreno-Madrinan, Max Jacobo; Fischer, Andrew

    2012-01-01

    Satellite observation of phytoplankton concentration or chlorophyll-a is an important characteristic, critically integral to monitoring coastal water quality. However, the optical properties of estuarine and coastal waters are highly variable and complex and pose a great challenge for accurate analysis. Constituents such as suspended solids and dissolved organic matter and the overlapping and uncorrelated absorptions in the blue region of the spectrum renders the blue-green ratio algorithms for estimating chlorophyll-a inaccurate. Measurement of sun-induced chlorophyll fluorescence, on the other hand, which utilizes the near infrared portion of the electromagnetic spectrum, may provide a better estimate of phytoplankton concentrations. While modelling and laboratory studies have illustrated both the utility and limitations of satellite baseline algorithms based on the sun induced chlorophyll fluorescence signal, few have examined the empirical validity of these algorithms using a comprehensive long term in situ data set. In an unprecedented analysis of a long term (2003-2011) in situ monitoring data from Tampa Bay, Florida (USA), we assess the validity of the FLH product from the Moderate Resolution Imaging Spectrometer (MODIS) against chlorophyll ]a and a suite of water quality parameters taken in a variety of conditions throughout a large optically complex estuarine system. A systematic analysis of sampling sites throughout the bay is undertaken to understand how the relationship between FLH and in situ chlorophyll-a responds to varying conditions within the estuary including water depth, distance from shore and structures and eight water quality parameters. From the 39 station for which data was derived, 22 stations showed significant correlations when the FLH product was matched with in situ chlorophyll-alpha data. The correlations (r2) for individual stations within Tampa Bay ranged between 0.67 (n=28, pless than 0.01) and-0.457 (n=12, p=.016), indicating that

  1. System Level Analysis of a Water PCM HX Integrated into Orion's Thermal Control System

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Hansen, Scott; Seth, Rubik; Ungar, Eugene

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system in a 100km Lunar orbit. The study verified of the thermal model by using a wax PCM and analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option for any case. Additionally, it was found that the radiator area would have to be increased by at least 40% in order to support a viable water-based PCM HX.

  2. Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis

    USGS Publications Warehouse

    Coplen, T.B.; Wildman, J.D.; Chen, J.

    1991-01-01

    Improved precision in the H2-H2O equilibration method for ??D analysis has been achieved in an automated system. Reduction in 1-?? standard deviation of a single mass-spectrometer analysis to 1.3??? is achieved by (1) bonding catalyst to glass rods and assigning use to specific equilibration chambers to monitor performance of catalyst, (2) improving the apparatus design, and (3) reducing the H3+ contribution of the mass-spectrometer ion source. For replicate analysis of a water sample, the standard deviation improved to 0.8???. H2S-bearing samples and samples as small as 0.1 mL can be analyzed routinely with this method.

  3. Hydrochemical and environmental isotope analysis of groundwater and surface water in a dry mountain region in Northern Chile.

    PubMed

    Zang, Carina; Dame, Juliane; Nüsser, Marcus

    2018-05-08

    This case study examines the geological imprint and land use practices on water quality in the arid Huasco Valley against the backdrop of ongoing water conflicts surrounding competing demands for agriculture and mining. The study is based on a detailed analysis of spatial and temporal variations of monthly surface and bi-monthly groundwater quality samples measured during the Chilean summer of 2015/16. Additional information on source regions and river-groundwater interactions were collected using stable water isotopes. Regarding the geological impact on water quality, high concentrations of Ca 2+ , SO 4 2- and HCO 3 - indicate a strong influence of magmatic rocks, which constitute this high mountain basin, on the hydrochemistry. Piper and Gibbs-diagrams revealed that all samples show a homogenous distribution dominated by rock-water interactions. Measured NO 3 - concentrations in surface water are generally low. However, groundwater aquifers exhibit higher concentrations. Mn is the only heavy metal with elevated concentrations in surface water, which are possibly related to mining activities. The results illustrate that both surface and groundwater can be classified as suitable for irrigation. In addition, groundwater has been found to be suitable as drinking water. High similarities in isotopic signatures indicate a strong connection between surface and groundwater. Isotopic analyses suggest a strong influence of evaporation. This combined approach of hydrogeochemical and isotopic analysis proved to be a helpful tool in characterizing the catchment and can serve as a basis for future sustainable water management.

  4. Relative controls of natural and socio-economic drivers on water availability over India: an exploratory modelling analysis

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Singh, R.; Kumar, R.

    2017-12-01

    India, a water stressed nation with an estimated per capita water availability of 1500m3/year/person, is projected to surpass China in population to become the most populous country by 2022. This increasing population will further exacerbate the water stress, which will also vary due to climate and land use change. Here, we quantify the relative controls on per capita water availability from climatic, non-climatic and socio-economic factors. We achieve this by using several definitions of per capita water availability and accounting for virtual water trade transfer. Our exploratory analysis employs the recently developed probabilistic Budyko framework modified to account for inter-regional virtual water trade. We find that the Indo-Gangetic plains and Southeastern parts of India emerge as vulnerable regions where a growing population will lead to a drastic reduction in per capita water availability. The proposed framework can serve as a prototype for understanding the relative importance of socio-economic interventions versus water infrastructure or demand reduction investments.

  5. Molecular Analysis of Bacterial Communities in Biofilms of a Drinking Water Clearwell

    PubMed Central

    Zhang, Minglu; Liu, Wenjun; Nie, Xuebiao; Li, Cuiping; Gu, Junnong; Zhang, Can

    2012-01-01

    Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation. PMID:23059725

  6. A meta-analysis of leaf gas exchange and water status responses to drought.

    PubMed

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2016-02-12

    Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Our results were as follows: 1) drought negatively impacted gas exchange and water status, and stomatal conductance (gs) decreased more than other physiological traits and declined to the greatest extent in shrubs and C3 plants. Furthermore, C4 plants had an advantage compared to C3 plants under the same drought conditions. 2) The decrease in gs mainly reduced the transpiration rate (Tr), and gs could explain 55% of the decrease in the photosynthesis (A) and 74% of the decline in Tr. 3). Finally, gas exchange showed a close relationship with the leaf water status. Our study provides comprehensive information about the changes in plant gas exchange and water status under drought.

  7. A meta-analysis of leaf gas exchange and water status responses to drought

    PubMed Central

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2016-01-01

    Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Our results were as follows: 1) drought negatively impacted gas exchange and water status, and stomatal conductance (gs) decreased more than other physiological traits and declined to the greatest extent in shrubs and C3 plants. Furthermore, C4 plants had an advantage compared to C3 plants under the same drought conditions. 2) The decrease in gs mainly reduced the transpiration rate (Tr), and gs could explain 55% of the decrease in the photosynthesis (A) and 74% of the decline in Tr. 3). Finally, gas exchange showed a close relationship with the leaf water status. Our study provides comprehensive information about the changes in plant gas exchange and water status under drought. PMID:26868055

  8. Risk-cost-benefit analysis of atrazine in drinking water from agricultural activities and policy implications

    NASA Astrophysics Data System (ADS)

    Tesfamichael, Aklilu A.; Caplan, Arthur J.; Kaluarachchi, Jagath J.

    2005-05-01

    This study provides an improved methodology for investigating the trade-offs between the health risks and economic benefits of using atrazine in the agricultural sector by incorporating public attitude to pesticide management in the analysis. Regression models are developed to predict finished water atrazine concentration in high-risk community water supplies in the United States. The predicted finished water atrazine concentrations are then used in a health risk assessment. The computed health risks are compared with the total economic surplus in the U.S. corn market for different atrazine application rates using estimated demand and supply functions developed in this work. Analysis of different scenarios with consumer price premiums for chemical-free and reduced-chemical corn indicate that if the society is willing to pay a price premium, risks can be reduced without a large reduction in the total economic surplus and net benefits may be higher. The results also show that this methodology provides an improved scientific framework for future decision making and policy evaluation in pesticide management.

  9. Inferring time-varying recharge from inverse analysis of long-term water levels

    NASA Astrophysics Data System (ADS)

    Dickinson, Jesse E.; Hanson, R. T.; Ferré, T. P. A.; Leake, S. A.

    2004-07-01

    Water levels in aquifers typically vary in response to time-varying rates of recharge, suggesting the possibility of inferring time-varying recharge rates on the basis of long-term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño-Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one-dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long-term water level records using southwest aquifers as the case study. Time-varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.

  10. Inferring time‐varying recharge from inverse analysis of long‐term water levels

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, R.T.; Ferré, T.P.A.; Leake, S.A.

    2004-01-01

    Water levels in aquifers typically vary in response to time‐varying rates of recharge, suggesting the possibility of inferring time‐varying recharge rates on the basis of long‐term water level records. Presumably, in the southwestern United States (Arizona, Nevada, New Mexico, southern California, and southern Utah), rates of mountain front recharge to alluvial aquifers depend on variations in precipitation rates due to known climate cycles such as the El Niño‐Southern Oscillation index and the Pacific Decadal Oscillation. This investigation examined the inverse application of a one‐dimensional analytical model for periodic flow described by Lloyd R. Townley in 1995 to estimate periodic recharge variations on the basis of variations in long‐term water level records using southwest aquifers as the case study. Time‐varying water level records at various locations along the flow line were obtained by simulation of forward models of synthetic basins with applied sinusoidal recharge of either a single period or composite of multiple periods of length similar to known climate cycles. Periodic water level components, reconstructed using singular spectrum analysis (SSA), were used to calibrate the analytical model to estimate each recharge component. The results demonstrated that periodic recharge estimates were most accurate in basins with nearly uniform transmissivity and the accuracy of the recharge estimates depends on monitoring well location. A case study of the San Pedro Basin, Arizona, is presented as an example of calibrating the analytical model to real data.

  11. Molecular Dynamics Analysis of Lysozyme Protein in Ethanol-Water Mixed Solvent Environment

    NASA Astrophysics Data System (ADS)

    Ochije, Henry Ikechukwu

    Effect of protein-solvent interaction on the protein structure is widely studied using both experimental and computational techniques. Despite such extensive studies molecular level understanding of proteins and some simple solvents is still not fully understood. This work focuses on detailed molecular dynamics simulations to study of solvent effect on lysozyme protein, using water, alcohol and different concentrations of water-alcohol mixtures as solvents. The lysozyme protein structure in water, alcohol and alcohol-water mixture (0-12% alcohol) was studied using GROMACS molecular dynamics simulation code. Compared to water environment, the lysozome structure showed remarkable changes in solvents with increasing alcohol concentration. In particular, significant changes were observed in the protein secondary structure involving alpha helices. The influence of alcohol on the lysozyme protein was investigated by studying thermodynamic and structural properties. With increasing ethanol concentration we observed a systematic increase in total energy, enthalpy, root mean square deviation (RMSD), and radius of gyration. a polynomial interpolation approach. Using the resulting polynomial equation, we could determine above quantities for any intermediate alcohol percentage. In order to validate this approach, we selected an intermediate ethanol percentage and carried out full MD simulation. The results from MD simulation were in reasonably good agreement with that obtained using polynomial approach. Hence, the polynomial approach based method proposed here eliminates the need for computationally intensive full MD analysis for the concentrations within the range (0-12%) studied in this work.

  12. Pretest thermal analysis of the Tuff Water Migration/In-Situ Heater Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulmer, B.M.

    This report describes the pretest thermal analysis for the Tuff Water Migration/In-Situ Heater Experiment to be conducted in welded tuff in G-tunnel, Nevada Test Site. The parametric thermal modeling considers variable boiling temperature, tuff thermal conductivity, tuff emissivity, and heater operating power. For nominal tuff properties, some near field boiling is predicted for realistic operating power. However, the extent of boiling will be strongly determined by the ambient (100% water saturated) rock thermal conductivity. In addition, the thermal response of the heater and of the tuff within the dry-out zone (i.e., bounded by boiling isotherm) is dependent on the temperaturemore » variation of rock conductivity as well as the extent of induced boiling.« less

  13. Analysis of profitability of using a heat recovery system from grey water discharged from the shower (case study of Poland)

    NASA Astrophysics Data System (ADS)

    Kordana, Sabina; Słys, Daniel

    2017-11-01

    The paper analyses the profitability of the use of Drain Water Heat Recovery units. An original simulation model was used for this purpose, and a detached residential building located in Poland was selected as the test facility. The conducted analysis proved that the type of the hot water heater has decisive influence on the profitability level of such an investment. Application of the abovementioned technology is particularly profitable, when water is heated with the use of an electrical device. When the energy source in the system is a gas water heater, the obtained calculation results are not as favourable, and the period of investment return in many cases exceeds the expected service life of these devices. Moreover, the analysis demonstrated that the potential energy savings, and thus also the financial savings, may be in both cases increased as a result of simultaneous intake of water from various water taps.

  14. Characterisation of the volatile profile of coconut water from five varieties using an optimised HS-SPME-GC analysis.

    PubMed

    Prades, Alexia; Assa, Rebecca Rachel Ablan; Dornier, Manuel; Pain, Jean-Pierre; Boulanger, Renaud

    2012-09-01

    Coconut (Cocos nucifera L.) water is a refreshing tropical drink whose international market has recently been growing. However, little is yet known about its physicochemical composition, particularly its aroma. This study set out to characterise the volatile profile of water from five coconut varieties. Aroma compounds were characterised by headspace solid phase microextraction gas chromatography (HS-SPME-GC) analysis. An experimental design was established to optimise SPME conditions, leading to an equilibration time of 10 min followed by an extraction time of 60 min at 50 °C. Accordingly, immature coconut water from WAT (West African Tall), PB121 (MYD × WAT Hybrid), MYD (Malayan Yellow Dwarf), EGD (Equatorial Guinea Green Dwarf) and THD (Thailand Aromatic Green Dwarf) palms was analysed and described. Ketones were mainly present in the Tall and Hybrid varieties, whereas aldehydes were most abundant in the Dwarf palms. Tall coconut water was characterised by a high lactone content. THD exhibited a high ethyl octanoate level. The cluster analysis of the volatile fraction from the five coconut cultivars was found to be related to their genetic classification. The volatile compounds of immature coconut water from five varieties were characterised for the first time. Volatile profile analysis could be a useful tool for the selection of Dwarf coconut varieties, which are mainly consumed as a beverage. Copyright © 2012 Society of Chemical Industry.

  15. Research development, current hotspots, and future directions of water research based on MODIS images: a critical review with a bibliometric analysis.

    PubMed

    Zhang, Yibo; Zhang, Yunlin; Shi, Kun; Yao, Xiaolong

    2017-06-01

    Water is essential for life as it provides drinking water and food for humans and animals. Additionally, the water environment provides habitats for numerous species and plays an important role in hydrological, nutrient, and carbon cycles. Among the existing natural resources on Earth's surface, water is the most extensive as it covers more than 70% of the Earth. To gather a comprehensive understanding of the focus of past, present, and future directions of remote sensing water research, we provide an alternative perspective on water research using moderate resolution imaging spectroradiometer (MODIS) imagery by conducting a comparative quantitative and qualitative analysis of research development, current hotspots, and future directions using a bibliometric analysis. Our study suggests that there has been a rapid growth in the scientific outputs of water research using MODIS imagery over the past 15 years compared to other popular satellites around the world. The analysis indicated that Remote Sensing of Environment was the most active journal, and "remote sensing," "imaging science photographic technology," "environmental sciences ecology," "meteorology atmospheric sciences," and "geology" are the top 5 most popular subject categories. The Chinese Academy of Sciences was the most productive institution with a total of 477 papers, and Hu CM (Chinese) was the most productive author with 76 papers. A keyword analysis indicated that "vegetation index," "evapotranspiration," and "phytoplankton" were the most active research topics throughout the study period. In addition, it is predicted that more attention will be paid to research on climate change and phenology in the future. Based on the keyword analysis and in consideration of current environmental problems, more studies should focus on the following three aspects: (1) develop methods suitable for data assimilation to fully explain climate or phenological phenomena at continental or global scales rather than at

  16. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  17. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    NASA Astrophysics Data System (ADS)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS

  18. Interventions to improve water quality for preventing diarrhoea: systematic review and meta-analysis

    PubMed Central

    Schmidt, Wolf-Peter; Rabie, Tamer; Roberts, Ian; Cairncross, Sandy

    2007-01-01

    Objective To assess the effectiveness of interventions to improve the microbial quality of drinking water for preventing diarrhoea. Design Systematic review. Data sources Cochrane Infectious Diseases Group's trials register, CENTRAL, Medline, Embase, LILACS; hand searching; and correspondence with experts and relevant organisations. Study selection Randomised and quasirandomised controlled trials of interventions to improve the microbial quality of drinking water for preventing diarrhoea in adults and in children in settings with endemic disease. Data extraction Allocation concealment, blinding, losses to follow-up, type of intervention, outcome measures, and measures of effect. Pooled effect estimates were calculated within the appropriate subgroups. Data synthesis 33 reports from 21 countries documenting 42 comparisons were included. Variations in design, setting, and type and point of intervention, and variations in defining, assessing, calculating, and reporting outcomes limited the comparability of study results and pooling of results by meta-analysis. In general, interventions to improve the microbial quality of drinking water are effective in preventing diarrhoea. Effectiveness was not conditioned on the presence of improved water supplies or sanitation in the study setting and was not enhanced by combining the intervention with instructions on basic hygiene, a water storage vessel, or improved sanitation or water supplies—other common environmental interventions intended to prevent diarrhoea. Conclusion Interventions to improve water quality are generally effective for preventing diarrhoea in all ages and in under 5s. Significant heterogeneity among the trials suggests that the level of effectiveness may depend on a variety of conditions that research to date cannot fully explain. PMID:17353208

  19. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    characterized by a slight-green color, with varying water clarity, low dissolved oxygen (indicative of deep groundwater), and a hydrogen sulfide odor. Water-quality samples detected ammonium-nitrogen and nitrates, but at low concentrations. The drinking water standard for nitrate adopted by the U.S. Environmental Protection Agency is 10 milligrams per liter, measured as nitrogen. Water samples collected at spring vents by divers on April 29, 2015, had concentrations of 0.9 milligram per liter nitrate-nitrogen at vent A and 0.04–0.05 milligram per liter at vents B, C, and D. Typically, the water clarity is highest in the morning (about 30 feet Secchi depth) and often decreases throughout the day.Analysis of existing data provided some insight into the hydrologic processes affecting Warm Mineral Springs; however, data have been sparsely and discontinuously collected since the 1940s. Continuous monitoring of hydrologic characteristics such as discharge, water temperature, specific conductance, and water-quality indicators, such as nitrate and turbidity (water clarity), would be valuable for monitoring and development of models of spring discharge and water quality. In addition, water samples could be analyzed for isotopic tracers, such as strontium, and the results used to identify and quantify the sources of groundwater that discharge at Warm Mineral Springs. Groundwater flow/transport models could be used to evaluate the sensitivity of the quality and quantity of water flowing from Warm Mineral Springs to changes in climate, aquifer levels, and water use.

  20. Ultra-high resolution water window x ray microscope optics design and analysis

    NASA Technical Reports Server (NTRS)

    Shealy, David L.; Wang, C.

    1993-01-01

    This project has been focused on the design and analysis of an ultra-high resolution water window soft-x-ray microscope. These activities have been accomplished by completing two tasks contained in the statement of work of this contract. The new results from this work confirm: (1) that in order to achieve resolutions greater than three times the wavelength of the incident radiation, it will be necessary to use spherical mirror surfaces and to use graded multilayer coatings on the secondary in order to accommodate the large variations of the angle of incidence over the secondary when operating the microscope at numerical apertures of 0.35 or greater; (2) that surface contour errors will have a significant effect on the optical performance of the microscope and must be controlled to a peak-to-valley variation of 50-100 A and a frequency of 8 periods over the surface of a mirror; and (3) that tolerance analysis of the spherical Schwarzschild microscope has been shown that the water window operations will require 2-3 times tighter tolerances to achieve a similar performance of operations with 130 A radiation. These results have been included in a manuscript included in the appendix.

  1. Data Sparsity Considerations in Climate Impact Analysis for the Water Sector (Invited)

    NASA Astrophysics Data System (ADS)

    Asante, K. O.; Khimsara, P.; Chan, A.

    2013-12-01

    Scientists and planners are helping governments and communities around the world to prepare for climate change by performing local impact studies and developing adaptation plans. Most studies begin by analyzing global climate models outputs to estimate the magnitude of projected change, assessing vulnerabilities and proposing adaptation measures. In these studies, climate projections from the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (DDC) are either used directly or downscaled using regional models. Since climate projections cover the entire global, climate change analysis can be performed for any location. However, selection of climate projections for use in historically data sparse regions presents special challenges. Key questions arise about the impact of historical data sparsity on quality of climate projections, spatial consistency of results and suitability for applications such as water resource planning. In this paper, a water-sector climate study conducted in a data-rich setting in California is compared to a similar study conducted a data-sparse setting in Mozambique. The challenges of selecting projections, performing analysis and interpreting the results for climate adaption planning are compared to illustrate the decision process and challenges encountered in these two very different settings.

  2. Magnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis.

    PubMed

    Jiang, Lei; He, Pengcheng; Chen, Jiyan; Liu, Yong; Liu, Dehui; Qin, Genggeng; Tan, Ning

    2016-01-02

    Epidemiological studies have demonstrated inconsistent associations between drinking water magnesium levels and risk of mortality from coronary heart disease (CHD); thus, a meta-analysis was performed to assess the association between them. Relevant studies were searched by the databases of Cochrane, EMBASE, PubMed and Web of Knowledge. Pooled relative risks (RR) with their 95% CI were calculated to assess this association using a random-effects model. Finally, nine articles with 10 studies involving 77,821 CHD cases were used in this study. Our results revealed an inverse association between drinking water magnesium level and CHD mortality (RR = 0.89, 95% CI = 0.79-0.99, I² = 70.6). Nine of the 10 studies came from Europe, and the association was significant between drinking water magnesium level and the risk of CHD mortality (RR = 0.83, 95% CI = 0.69-0.98). In conclusion, drinking water magnesium level was significantly inversely associated with CHD mortality.

  3. Magnesium Levels in Drinking Water and Coronary Heart Disease Mortality Risk: A Meta-Analysis

    PubMed Central

    Jiang, Lei; He, Pengcheng; Chen, Jiyan; Liu, Yong; Liu, Dehui; Qin, Genggeng; Tan, Ning

    2016-01-01

    Epidemiological studies have demonstrated inconsistent associations between drinking water magnesium levels and risk of mortality from coronary heart disease (CHD); thus, a meta-analysis was performed to assess the association between them. Relevant studies were searched by the databases of Cochrane, EMBASE, PubMed and Web of Knowledge. Pooled relative risks (RR) with their 95% CI were calculated to assess this association using a random-effects model. Finally, nine articles with 10 studies involving 77,821 CHD cases were used in this study. Our results revealed an inverse association between drinking water magnesium level and CHD mortality (RR = 0.89, 95% CI = 0.79–0.99, I2 = 70.6). Nine of the 10 studies came from Europe, and the association was significant between drinking water magnesium level and the risk of CHD mortality (RR = 0.83, 95% CI = 0.69–0.98). In conclusion, drinking water magnesium level was significantly inversely associated with CHD mortality. PMID:26729158

  4. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  5. Quantifying Water-Rock Interactions during Hydraulic Fracturing from the Analysis of Flowback Water

    NASA Astrophysics Data System (ADS)

    Osselin, F.; Nightingale, M.; Kloppmann, W.; Gaucher, E.; Clarkson, C.; Mayer, B.

    2017-12-01

    Hydraulic fracturing technologies have facilitated the rapid development of shale gas and other unconventional resources throughout the world. In order to get sufficient access to the trapped hydrocarbon, it is necessary to fracture the bedrock and increase its permeability. Fracturing fluids are usually composed of tens of thousand of cubic meters of low salinity water with numerous additives, such as viscosity agent or breakers. The objective of this study was to investigate and quantify the water-rock interactions during hydraulic fracturing. This study was based on repeated sampling of flowback water from a hydraulically fractured well in Alberta, Canada. The flowback water was sampled 24 times during the first week and one last time after one, and analyzed for major ions and trace elements, as well as stable isotopes of sulfate and water among others. Results showed that salinity rapidly increases up to 100 000 mg/L at the end of the first week. We demonstrate that conservative species such as Na and Cl follow a clear two end-members mixing line, while some species including sulfate had much higher concentrations (8 times higher than the expected value from the mixing line). This indicates that the rapid increase of salinity in flowback water is caused by both mixing with formation water initially present in the shale formation, and from water-rock interactions triggered by the fracturing fluid and in some cases by the additives. Stable isotope data suggest that additional sulfate is mobilized as a consequence of pyrite oxidation, releasing sulfate, iron and potentially other heavy metals into the flowback water. This release of excess sulfate can be detrimental because it has the potential to promote scaling of sulfate minerals. Moreover, pyrite oxidation is a highly acidifying reaction and this may decrease the effectiveness of other additives, and promote carbonate minerals dissolution enhancing further scaling. We propose that a better control of the

  6. A new criterion to evaluate water vapor interference in protein secondary structural analysis by FTIR spectroscopy.

    PubMed

    Zou, Ye; Ma, Gang

    2014-06-04

    Second derivative and Fourier self-deconvolution (FSD) are two commonly used techniques to resolve the overlapped component peaks from the often featureless amide I band in Fourier transform infrared (FTIR) curve-fitting approach for protein secondary structural analysis. Yet, the reliability of these two techniques is greatly affected by the omnipresent water vapor in the atmosphere. Several criteria are currently in use as quality controls to ensure the protein absorption spectrum is negligibly affected by water vapor interference. In this study, through a second derivative study of liquid water, we first argue that the previously established criteria cannot guarantee a reliable evaluation of water vapor interference due to a phenomenon that we refer to as sample's absorbance-dependent water vapor interference. Then, through a comparative study of protein and liquid water, we show that a protein absorption spectrum can still be significantly affected by water vapor interference even though it satisfies the established criteria. At last, we propose to use the comparison between the second derivative spectra of protein and liquid water as a new criterion to better evaluate water vapor interference for more reliable second derivative and FSD treatments on the protein amide I band.

  7. Regional water-quality analysis of 2,4-D and dicamba in river water using gas chromatography-isotope dilution mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.

    2001-01-01

    Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.

  8. Wash water recovery system

    NASA Technical Reports Server (NTRS)

    Deckman, G.; Rousseau, J. (Editor)

    1973-01-01

    The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design.

  9. Impact analysis of government investment on water projects in the arid Gansu Province of China

    NASA Astrophysics Data System (ADS)

    Wang, Zhan; Deng, Xiangzheng; Li, Xiubin; Zhou, Qing; Yan, Haiming

    In this paper, we introduced three-nested Constant Elasticity of Substitution (CES) production function into a static Computable General Equilibrium (CGE) Model. Through four levels of factor productivity, we constructed three nested production function of land use productivity in the conceptual modeling frameworks. The first level of factor productivity is generated by the basic value-added land. On the second level, factor productivity in each sector is generated by human activities that presents human intervention to the first level of factor productivity. On the third level of factor productivity, water allocation reshapes the non-linear structure of transaction among first and second levels. From the perspective of resource utilization, we examined the economic efficiency of water allocation. The scenario-based empirical analysis results show that the three-nested CES production function within CGE model is well-behaved to present the economy system of the case study area. Firstly, water scarcity harmed economic production. Government investment on water projects in Gansu thereby had impacts on economic outcomes. Secondly, huge governmental financing on water projects bring depreciation of present value of social welfare. Moreover, water use for environment adaptation pressures on water supply. The theoretical water price can be sharply increased due to the increasing costs of factor inputs. Thirdly, water use efficiency can be improved by water projects, typically can be benefited from the expansion of water-saving irrigation areas even in those expanding dry area in Gansu. Therefore, increasing governmental financing on water projects can depreciate present value of social welfare but benefit economic efficiency for future generation.

  10. Laboratory and quality assurance protocols for the analysis of herbicides in ground water from the Management Systems Evaluation Area, Princeton, Minnesota

    USGS Publications Warehouse

    Larson, S.J.; Capel, P.D.; VanderLoop, A.G.

    1996-01-01

    Laboratory and quality assurance procedures for the analysis of ground-water samples for herbicides at the Management Systems Evaluation Area near Princeton, Minnesota are described. The target herbicides include atrazine, de-ethylatrazine, de-isopropylatrazine, metribuzin, alachlor, 2,6-diethylaniline, and metolachlor. The analytical techniques used are solid-phase extraction, and analysis by gas chromatography with mass-selective detection. Descriptions of cleaning procedures, preparation of standard solutions, isolation of analytes from water, sample transfer methods, instrumental analysis, and data analysis are included.

  11. Mercury-Free Analysis of Lead in Drinking Water by Anodic Stripping Square Wave Voltammetry

    ERIC Educational Resources Information Center

    Wilburn, Jeremy P.; Brown, Kyle L.; Cliffel, David E.

    2007-01-01

    The analysis of drinking water for lead, which has well-known health effects, is presented as an instructive example for undergraduate chemistry students. It allows the students to perform an experiment and evaluate to monitor risk factors and common hazard of everyday life.

  12. Analysis of field measurements of carbon dioxide and water vapor fluxes

    NASA Technical Reports Server (NTRS)

    Verma, Shashi B.

    1991-01-01

    Analysis of the field measurements of carbon dioxide and water vapor fluxes is discussed. These data were examined in conjunction with reflectance obtained from helicopter mounted Modular Multiband Radiometer. These measurements are representative of the canopy scale (10 to 100 m)(exp 2) and provide a good basis for investigating the hypotheses/relationship potentially useful in remote sensing applications. All the micrometeorological data collected during FIFE-89 were processed and fluxes of CO2, water vapor, and sensible heat were calculated. Soil CO2 fluxes were also estimated. Employing these soil CO2 flux values, in conjunction with micrometeorological measurements, canopy photosynthesis is being estimated. A biochemical model of leaf photosynthesis was adapted to the prairie vegetation. The modeled leaf photosynthesis rates were scaled up to the canopy level. This model and a multiplicative stomatal conductance model are also used to calculate canopy conductance.

  13. A global sensitivity analysis of crop virtual water content

    NASA Astrophysics Data System (ADS)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for

  14. Numerical analysis of one-dimensional temperature data for groundwater/surface-water exchange with 1DTempPro

    NASA Astrophysics Data System (ADS)

    Voytek, E. B.; Drenkelfuss, A.; Day-Lewis, F. D.; Healy, R. W.; Lane, J. W.; Werkema, D. D.

    2012-12-01

    Temperature is a naturally occurring tracer, which can be exploited to infer the movement of water through the vadose and saturated zones, as well as the exchange of water between aquifers and surface-water bodies, such as estuaries, lakes, and streams. One-dimensional (1D) vertical temperature profiles commonly show thermal amplitude attenuation and increasing phase lag of diurnal or seasonal temperature variations with propagation into the subsurface. This behavior is described by the heat-transport equation (i.e., the convection-conduction-dispersion equation), which can be solved analytically in 1D under certain simplifying assumptions (e.g., sinusoidal or steady-state boundary conditions and homogeneous hydraulic and thermal properties). Analysis of 1D temperature profiles using analytical models provides estimates of vertical groundwater/surface-water exchange. The utility of these estimates can be diminished when the model assumptions are violated, as is common in field applications. Alternatively, analysis of 1D temperature profiles using numerical models allows for consideration of more complex and realistic boundary conditions. However, such analyses commonly require model calibration and the development of input files for finite-difference or finite-element codes. To address the calibration and input file requirements, a new computer program, 1DTempPro, is presented that facilitates numerical analysis of vertical 1D temperature profiles. 1DTempPro is a graphical user interface (GUI) to the USGS code VS2DH, which numerically solves the flow- and heat-transport equations. Pre- and post-processor features within 1DTempPro allow the user to calibrate VS2DH models to estimate groundwater/surface-water exchange and hydraulic conductivity in cases where hydraulic head is known. This approach improves groundwater/ surface-water exchange-rate estimates for real-world data with complexities ill-suited for examination with analytical methods. Additionally, the code

  15. Use of Linear Prediction Uncertainty Analysis to Guide Conditioning of Models Simulating Surface-Water/Groundwater Interactions

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; White, J.; Doherty, J.

    2011-12-01

    Linear prediction uncertainty analysis in a Bayesian framework was applied to guide the conditioning of an integrated surface water/groundwater model that will be used to predict the effects of groundwater withdrawals on surface-water and groundwater flows. Linear prediction uncertainty analysis is an effective approach for identifying (1) raw and processed data most effective for model conditioning prior to inversion, (2) specific observations and periods of time critically sensitive to specific predictions, and (3) additional observation data that would reduce model uncertainty relative to specific predictions. We present results for a two-dimensional groundwater model of a 2,186 km2 area of the Biscayne aquifer in south Florida implicitly coupled to a surface-water routing model of the actively managed canal system. The model domain includes 5 municipal well fields withdrawing more than 1 Mm3/day and 17 operable surface-water control structures that control freshwater releases from the Everglades and freshwater discharges to Biscayne Bay. More than 10 years of daily observation data from 35 groundwater wells and 24 surface water gages are available to condition model parameters. A dense parameterization was used to fully characterize the contribution of the inversion null space to predictive uncertainty and included bias-correction parameters. This approach allows better resolution of the boundary between the inversion null space and solution space. Bias-correction parameters (e.g., rainfall, potential evapotranspiration, and structure flow multipliers) absorb information that is present in structural noise that may otherwise contaminate the estimation of more physically-based model parameters. This allows greater precision in predictions that are entirely solution-space dependent, and reduces the propensity for bias in predictions that are not. Results show that application of this analysis is an effective means of identifying those surface-water and

  16. Analysis of Water Volume Changes and Temperature Measurement Location Effect to the Accuracy of RTP Power Calibration

    NASA Astrophysics Data System (ADS)

    Lanyau, T.; Hamzah, N. S.; Jalal Bayar, A. M.; Karim, J. Abdul; Phongsakorn, P. K.; Suhaimi, K. Mohammad; Hashim, Z.; Razi, H. Md; Fazli, Z. Mohd; Ligam, A. S.; Mustafa, M. K. A.

    2018-01-01

    Power calibration is one of the important aspect for safe operation of the reactor. In RTP, the calorimetric method has been applied in reactor power calibration. This method involves measurement of water temperature in the RTP tank. Water volume and location of the temperature measurement may play an important role to the accuracy of the measurement. In this study, the analysis of water volume changes and thermocouple location effect to the power calibration accuracy has been done. The changes of the water volume are controlled by the variation of water level in reactor tank. The water level is measured by the ultrasonic measurement device. Temperature measurement has been done by thermocouple placed at three different locations. The accuracy of the temperature trend from various condition of measurement has been determined and discussed in this paper.

  17. Analysis of 22 Elements in Milk, Feed, and Water of Dairy Cow, Goat, and Buffalo from Different Regions of China.

    PubMed

    Zhou, Xuewei; Qu, Xueyin; Zhao, Shengguo; Wang, Jiaqi; Li, Songli; Zheng, Nan

    2017-03-01

    The objectives of this study were to measure the concentrations of elements in raw milk by inductively coupled plasma-mass spectrometry (ICP-MS) and evaluate differences in element concentrations among animal species and regions of China. Furthermore, drinking water and feed samples were analyzed to investigate whether the element concentrations in raw milk are correlated with those in water and feed. All samples were analyzed by ICP-MS following microwave-assisted acid digestion. The mean recovery of the elements was 98.7 % from milk, 103.7 % from water, and 93.3 % from a certified reference material (cabbage). Principal component analysis results revealed that element concentrations differed among animal species and regions. Correlation analysis showed that trace elements Mn, Fe, Ni, Ga, Se, Sr, Cs, U in water and Co, Ni, Cu, Se, U in feed were significantly correlated with those in milk (p < 0.05). Toxic and potential toxic elements Cr, As, Cd, Tl, Pb in water and Al, Cr, As, Hg, Tl in feed were significantly correlated with those in milk (p < 0.05). Results of correlation analysis revealed that elements in water and feed might contribute to the elements in milk.

  18. Drinking water quality assessment.

    PubMed

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (P<0.05) of physico-chemical parameters and total coliform count of drinking water for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  19. Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis

    USGS Publications Warehouse

    Welch, Alan H.

    1995-01-01

    Gross-beta activity has been used as an indicator of beta-emitting isotopes in water since at least the early 1950s. Originally designed for detection of radioactive releases from nuclear facilities and weapons tests, analysis of gross-beta activity is widely used in studies of naturally occurring radioactivity in ground water. Analyses of about 800 samples from 5 ground-water regions of the United States provide a basis for evaluating the utility of this measurement. The data suggest that measured gross-beta activities are due to (1) long-lived radionuclides in ground water, and (2) ingrowth of beta-emitting radionuclides during holding times between collection of samples and laboratory measurements.Although40K and228Ra appear to be the primary sources of beta activity in ground water, the sum of40K plus228Ra appears to be less than the measured gross-beta activity in most ground-water samples. The difference between the contribution from these radionuclides and gross-beta activity is most pronounced in ground water with gross-beta activities > 10 pCi/L, where these 2 radionuclides account for less than one-half the measured ross-beta activity. One exception is groundwater from the Coastal Plain of New Jersey, where40K plus228Ra generally contribute most of the gross-beta activity. In contrast,40K and228Ra generally contribute most of beta activity in ground water with gross-beta activities < 1 pCi/L.The gross-beta technique does not measure all beta activity in ground water. Although3H contributes beta activity to some ground water, it is driven from the sample before counting and therefore is not detected by gross-beta measurements. Beta-emitting radionuclides with half-lives shorter than a few days can decay to low values between sampling and counting. Although little is known about concentrations of most short-lived beta-emitting radionuclides in environmental ground water (water unaffected by direct releases from nuclear facilities and weapons tests), their

  20. Comparing drinking water treatment costs to source water protection costs using time series analysis

    NASA Astrophysics Data System (ADS)

    Heberling, Matthew T.; Nietch, Christopher T.; Thurston, Hale W.; Elovitz, Michael; Birkenhauer, Kelly H.; Panguluri, Srinivas; Ramakrishnan, Balaji; Heiser, Eric; Neyer, Tim

    2015-11-01

    We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reduction in the watershed rather than pay for treatment on site. To illustrate, we use daily observations from 2007 to 2011 for the Bob McEwen Water Treatment Plant, Clermont County, Ohio, to understand the relationship between treatment costs and water quality and operational variables (e.g., turbidity, total organic carbon [TOC], pool elevation, and production volume). Part of our contribution to understanding drinking water treatment costs is examining both long-run and short-run relationships using error correction models (ECMs). Treatment costs per 1000 gallons (per 3.79 m3) were based on chemical, pumping, and granular activated carbon costs. Results from the ECM suggest that a 1% decrease in turbidity decreases treatment costs by 0.02% immediately and an additional 0.1% over future days. Using mean values for the plant, a 1% decrease in turbidity leads to $1123/year decrease in treatment costs. To compare these costs with source water protection costs, we use a polynomial distributed lag model to link total phosphorus loads, a source water quality parameter affected by land use changes, to turbidity at the plant. We find the costs for source water protection to reduce loads much greater than the reduction in treatment costs during these years. Although we find no incentive to protect source water in our case study, this framework can help DWTPs quantify the trade-offs.

  1. Water Quality Protection from Nutrient Pollution: Case Analysis

    EPA Science Inventory

    Water bodies and coastal areas around the world are threatened by increases in upstream sediment and nutrient loads, which influence drinking water sources, aquatic species, and other ecologic functions and services of streams, lakes, and coastal water bodies. For example, incre...

  2. System Level Analysis of a Water PCM HX Integrated Into Orion's Thermal Control System Abstract

    NASA Technical Reports Server (NTRS)

    Navarro, Moses; Hansen, Scott; Ungar, Eugene; Sheth, Rubik

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development an Orion system level analysis was performed using Thermal Desktop for a water PCM HX integrated into Orion's thermal control system and in a 100km Lunar orbit. The study analyzed 1) placing the PCM on the Internal Thermal Control System (ITCS) versus the External Thermal Control System (ETCS) 2) use of 30/70 PGW verses 50/50 PGW and 3) increasing the radiator area in order to reduce PCM freeze times. The analysis showed that for the assumed operating and boundary conditions utilizing a water PCM HX on Orion is not a viable option. Additionally, it was found that the radiator area would have to be increased over 20% in order to have a viable water-based PCM HX.

  3. Analysis on the spatiotemporal characteristics of water quality and trophic states in Tiegang Reservoir: A public drinking water supply reservoir in South China

    NASA Astrophysics Data System (ADS)

    Song, Yun-long; Zhu, Jia; Li, Wang; Tao, Yi; Zhang, Jin-song

    2017-08-01

    Shenzhen is the most densely populated city in China and with a severe shortage of water. The per capita water resource is less than 200 m3, which is approximately 1/12 of the national average level. In 2016, nearly 90% of Shenzhen’s drinking water needed to be imported from the Pearl River. After arrived at Shenzhen, overseas water was firstly stockpiled in local reservoirs and then was supplied to nearby water works. Tiegang Reservoir is the largest drinking water supply reservoir and its water quality has played an important role to the city’s drinking water security. A fifteen-month’s field observation was conducted from April 2013 to June 2014 in Tiegang Reservoir, in order to analyze the temporal and spatial distribution of water quality factors and seasonal variation of trophic states. One-way ANOVA showed that significant difference was found in water quality factors on month (p<0.005). The spatial heterogeneity of water quality was obvious (p<0.05). The distribution pattern of WT, TOC, Silicate, NO3 --N, TN and Fe was pre-rainy period > latter rainy period > high temperature and rain free period > temperature jump period > winter drought period, while SD showed the contrary. Two-way ANOVA showed that months rather than locations were the key influencing factors of water quality factors succession. Tiegang reservoir was seriously polluted by TN, as a result WQI were at IV∼V level. If TN was not taken into account, WQI were atI∼III level. TLI (Σ) were about 35∼60, suggesting Tiegang reservoir was in mesotrophic and light-eutrophic trophic states. The WQI and TLI (Σ) in sampling sites 9 and 10 were poorer than that of other sites. The 14 water quality factors were divided into 5 groups by factor analysis (FA). The total interpretation rate was 73.54%. F1 represents the climatic change represented by water temperature. F2 and F4 represent the concentration of nutrients. F3 and F5 represent the sensory indexes of water body, such as turbidity

  4. δ13C Analysis of Dissolved Organic Carbon in Eastern Canadian Coastal Waters

    NASA Astrophysics Data System (ADS)

    Gelinas, Y.; Barber, A.

    2016-12-01

    The application of carbon stable isotope analysis on dissolved organic carbon (δ13C-DOC) from natural seawater samples has been limited owing to the difficulty of such analysis, with order of magnitude differences between interfering ions and analyte concentrations. High temperature catalytic oxidation allows for the separation of interferences from the organic carbon by precipitation on quartz chips upstream from the oxidation catalyst. Unlike wet chemical oxidation, where salts inhibit the oxidation of organic matter to CO2 via side reactions between the salt anions and the persulfate oxidizing agent, high temperature combustion ensures complete organic matter oxidation in a stream of O2. Using a programmable chemical trap to switch carrier gasses from O2 to He, the OI 1030C combustion unit can be coupled to and IRMS, allowing for the analysis of low DOC content saline waters with relatively high throughput. The analytical limitations and large water volumes traditionally required for these types of analyses have prevented any large-scale δ13C-DOC studies. Here we present DOC concentrations and δ13C-DOC signatures for surface and bottom waters obtained along Canada's East Coast. Included in the study are samples from the Esquiman channel (between Newfoundland and Labrador), Lake Melville, the Saglek and Nachvak Fjords, the Hudson Strait and finally covering the salinity gradient across the Gulf of the St. Lawrence, the St. Lawrence Estuary and the Saguenay Fjord. Measured δ13C-DOC signatures ranged from predominantly marine values of -21.3 ± 0.6 ‰ (vs. VPDB) off the coast of Newfoundland to predominantly terrestrial signatures of -25.8 ± 0.1‰ in Lake Melville. Overall, proper blank subtraction using the isotope mass balance equation and four replicate injections are crucial for the collection of meaningful high quality δ13C-DOC signatures on natural abundance, seawater samples.

  5. Regulatory impact analysis: benefits and costs of proposed surface water treatment rule and total coliform rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-09-01

    This report contains an analysis of the costs and benefits of controlling microbial contaminants in drinking water through the promulgation of two regulations: (1) the Surface Water Treatment Rule (SWTR); and (2) the Total Coliform Rule. This regulatory impact analysis (RIA) was prepared in accordance with Executive Order 12291, which requires that the costs and benefits of all major rules be examined and compared. The major topical areas covered in the RIA are as follows: problem definition; market imperfections, the need for federal regulation, and consideration of regulatory alternatives; assessment of total costs; assessment of benefits; regulatory flexibility act andmore » Paperwork Reduction Act analyses; and a summary of costs and benefits.« less

  6. Receiver Operating Characteristic Curve Analysis of Beach Water Quality Indicator Variables

    PubMed Central

    Morrison, Ann Michelle; Coughlin, Kelly; Shine, James P.; Coull, Brent A.; Rex, Andrea C.

    2003-01-01

    Receiver operating characteristic (ROC) curve analysis is a simple and effective means to compare the accuracies of indicator variables of bacterial beach water quality. The indicator variables examined in this study were previous day's Enterococcus density and antecedent rainfall at 24, 48, and 96 h. Daily Enterococcus densities and 15-min rainfall values were collected during a 5-year (1996 to 2000) study of four Boston Harbor beaches. The indicator variables were assessed for their ability to correctly classify water as suitable or unsuitable for swimming at a maximum threshold Enterococcus density of 104 CFU/100 ml. Sensitivity and specificity values were determined for each unique previous day's Enterococcus density and antecedent rainfall volume and used to construct ROC curves. The area under the ROC curve was used to compare the accuracies of the indicator variables. Twenty-four-hour antecedent rainfall classified elevated Enterococcus densities more accurately than previous day's Enterococcus density (P = 0.079). An empirically derived threshold for 48-h antecedent rainfall, corresponding to a sensitivity of 0.75, was determined from the 1996 to 2000 data and evaluated to ascertain if the threshold would produce a 0.75 sensitivity with independent water quality data collected in 2001 from the same beaches. PMID:14602593

  7. ESTIMATION OF WATER DEMANDS USING DEFICIT ANALYSIS

    EPA Science Inventory

    Competition for water among governmental entities with common river systems has become increasingly fierce. The competition will no doubt become even more fierce as populations continue to grow and become increasingly dispersed. One of the major issues involved in water resource ...

  8. AUTOMATED SOLID PHASE EXTRACTION GC/MS FOR ANALYSIS OF SEMIVOLATILES IN WATER AND SEDIMENTS

    EPA Science Inventory

    Data is presented on the development of a new automated system combining solid phase extraction (SPE) with GC/MS spectrometry for the single-run analysis of water samples containing a broad range of organic compounds. The system uses commercially available automated in-line sampl...

  9. Ultra high performance liquid chromatography tandem mass spectrometry for rapid analysis of trace organic contaminants in water

    PubMed Central

    2013-01-01

    Background The widespread utilization of organic compounds in modern society and their dispersion through wastewater have resulted in extensive contamination of source and drinking waters. The vast majority of these compounds are not regulated in wastewater outfalls or in drinking water while trace amounts of certain compounds can impact aquatic wildlife. Hence it is prudent to monitor these contaminants in water sources until sufficient toxicological data relevant to humans becomes available. A method was developed for the analysis of 36 trace organic contaminants (TOrCs) including pharmaceuticals, pesticides, steroid hormones (androgens, progestins, and glucocorticoids), personal care products and polyfluorinated compounds (PFCs) using a single solid phase extraction (SPE) technique with ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The method was applied to a variety of water matrices to demonstrate method performance and reliability. Results UHPLC-MS/MS in both positive and negative electrospray ionization (ESI) modes was employed to achieve optimum sensitivity while reducing sample analysis time (<20 min) compared with previously published methods. The detection limits for most compounds was lower than 1.0 picogram on the column while reporting limits in water ranged from 0.1 to 15 ng/L based on the extraction of a 1 L sample and concentration to 1 mL. Recoveries in ultrapure water for most compounds were between 90-110%, while recoveries in surface water and wastewater were in the range of 39-121% and 38-141% respectively. The analytical method was successfully applied to analyze samples across several different water matrices including wastewater, groundwater, surface water and drinking water at different stages of the treatment. Among several compounds detected in wastewater, sucralose and TCPP showed the highest concentrations. Conclusion The proposed method is sensitive, rapid and robust; hence it can

  10. A conceptual model for the analysis of multi-stressors in linked groundwater-surface water systems.

    PubMed

    Kaandorp, Vince P; Molina-Navarro, Eugenio; Andersen, Hans E; Bloomfield, John P; Kuijper, Martina J M; de Louw, Perry G B

    2018-06-15

    Groundwater and surface water are often closely coupled and are both under the influence of multiple stressors. Stressed groundwater systems may lead to a poor ecological status of surface waters but to date no conceptual framework to analyse linked multi-stressed groundwater - surface water systems has been developed. In this paper, a framework is proposed showing the effect of groundwater on surface waters in multiple stressed systems. This framework will be illustrated by applying it to four European catchments, the Odense, Denmark, the Regge and Dinkel, Netherlands, and the Thames, UK, and by assessing its utility in analysing the propagation or buffering of multi-stressors through groundwater to surface waters in these catchments. It is shown that groundwater affects surface water flow, nutrients and temperature, and can both propagate stressors towards surface waters and buffer the effect of stressors in space and time. The effect of groundwater on drivers and states depends on catchment characteristics, stressor combinations, scale and management practises. The proposed framework shows how groundwater in lowland catchments acts as a bridge between stressors and their effects within surface waters. It shows water managers how their management areas might be influenced by groundwater, and helps them to include this important, but often overlooked part of the water cycle in their basin management plans. The analysis of the study catchments also revealed a lack of data on the temperature of both groundwater and surface water, while it is an important parameter considering future climate warming. Copyright © 2018. Published by Elsevier B.V.

  11. Hydrogeologic setting, water budget, and preliminary analysis of ground-water exchange at Lake Starr, a seepage lake in Polk County, Florida

    USGS Publications Warehouse

    Swancar, Amy; Lee, T.M.; O'Hare, T. M.

    2000-01-01

    Lake Starr, a 134-acre seepage lake of multiple-sinkhole origin on the Lake Wales Ridge of central Florida, was the subject of a detailed water-budget study from August 1996 through July 1998. The study monitored the effects of hydrogeologic setting, climate, and ground-water pumping on the water budget and lake stage. The hydrogeologic setting of the Lake Starr basin differs markedly on the two sides of the lake. Ground water from the surficial aquifer system flows into the lake from the northwest side of the basin, and lake water leaks out to the surficial aquifer system on the southeast side of the basin. Lake Starr and the surrounding surficial aquifer system recharge the underlying Upper Floridan aquifer. The rate of recharge to the Upper Floridan aquifer is determined by the integrity of the intermediate confining unit and by the downward head gradient between the two aquifers. On the inflow side of the lake, the intermediate confining unit is more continuous, allowing ground water from the surficial aquifer system to flow laterally into the lake. Beneath the lake and on the southeast side of the basin, breaches in the intermediate confining unit enhance downward flow to the Upper Floridan aquifer, so that water flows both downward and laterally away from the lake through the ground-water flow system in these areas. An accurate water budget, including evaporation measured by the energy-budget method, was used to calculate net ground-water flow to the lake, and to do a preliminary analysis of the relation of net ground-water fluxes to other variables. Water budgets constructed over different timeframes provided insight on processes that affect ground-water interactions with Lake Starr. Weekly estimates of net ground-water flow provided evidence for the occurrence of transient inflows from the nearshore basin, as well as the short-term effects of head in the Upper Floridan aquifer on ground-water exchange with the lake. Monthly water budgets showed the effects

  12. Global water cycle

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin; Goodman, Steven J.; Christy, John R.; Fitzjarrald, Daniel E.; Chou, Shi-Hung; Crosson, William; Wang, Shouping; Ramirez, Jorge

    1993-01-01

    This research is the MSFC component of a joint MSFC/Pennsylvania State University Eos Interdisciplinary Investigation on the global water cycle extension across the earth sciences. The primary long-term objective of this investigation is to determine the scope and interactions of the global water cycle with all components of the Earth system and to understand how it stimulates and regulates change on both global and regional scales. Significant accomplishments in the past year are presented and include the following: (1) water vapor variability; (2) multi-phase water analysis; (3) global modeling; and (4) optimal precipitation and stream flow analysis and hydrologic processes.

  13. An innovative distillation device for tritiated water analysis with high decontamination factor.

    PubMed

    Fang, Hsin-Fa; Wang, Chu-Fang; Wang, Jeng-Jong

    2013-11-01

    Institute of Nuclear Energy Research (INER) has designed an air-cooling distillation device and got a US patent. The decontamination factor (60)Co and (137)Cs is above 23,000. Tritium loss rate is one of testing items in ASTM D4107 Standard Test Method for Tritium in Drinking Water. In this study, the 3 levels (high, middle and low level) of tritium concentration of testing samples for the loss rate test were prepared similar to the concentrations reported in ASTM D4107. The loss rate of the high level is -2.37%, the middle is -2.31% and the low level is -2.47%. These results show that the air-cooling distillation device has good performance in the environmental water tritium analysis work. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Comparing drinking water treatment costs to source water protection costs using time series analysis.

    EPA Science Inventory

    We present a framework to compare water treatment costs to source water protection costs, an important knowledge gap for drinking water treatment plants (DWTPs). This trade-off helps to determine what incentives a DWTP has to invest in natural infrastructure or pollution reductio...

  15. Determining risk for severe leptospirosis by molecular analysis of environmental surface waters for pathogenic Leptospira.

    PubMed

    Ganoza, Christian A; Matthias, Michael A; Collins-Richards, Devon; Brouwer, Kimberly C; Cunningham, Calaveras B; Segura, Eddy R; Gilman, Robert H; Gotuzzo, Eduardo; Vinetz, Joseph M

    2006-08-01

    Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters. A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013). The concentration of pathogen-related Leptospira was higher in urban than rural water sources (approximately 10(3) leptospires/ml versus 0.5 x 10(2) leptospires/ml; F = 8.406, p < 0.05). Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates); human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates) (chi-square analysis; p < 0.01). This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources. Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure and transmission. This

  16. Determining Risk for Severe Leptospirosis by Molecular Analysis of Environmental Surface Waters for Pathogenic Leptospira

    PubMed Central

    Collins-Richards, Devon; Brouwer, Kimberly C; Cunningham, Calaveras B; Segura, Eddy R; Gilman, Robert H; Gotuzzo, Eduardo; Vinetz, Joseph M

    2006-01-01

    Background Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters. Methods and Findings A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013). The concentration of pathogen-related Leptospira was higher in urban than rural water sources (~103 leptospires/ml versus 0.5 × 102 leptospires/ml; F = 8.406, p < 0.05). Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates); human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates) (chi-square analysis; p < 0.01). This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources. Conclusions Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure

  17. A Systematic Review and Meta-Analysis of Fecal Contamination and Inadequate Treatment of Packaged Water

    PubMed Central

    Williams, Ashley R.; Bain, Robert E. S.; Fisher, Michael B.; Cronk, Ryan; Kelly, Emma R.; Bartram, Jamie

    2015-01-01

    Background Packaged water products provide an increasingly important source of water for consumption. However, recent studies raise concerns over their safety. Objectives To assess the microbial safety of packaged water, examine differences between regions, country incomes, packaged water types, and compare packaged water with other water sources. Methods We performed a systematic review and meta-analysis. Articles published in English, French, Portuguese, Spanish and Turkish, with no date restrictions were identified from online databases and two previous reviews. Studies published before April 2014 that assessed packaged water for the presence of Escherichia coli, thermotolerant or total coliforms were included provided they tested at least ten samples or brands. Results A total of 170 studies were included in the review. The majority of studies did not detect fecal indicator bacteria in packaged water (78/141). Compared to packaged water from upper-middle and high-income countries, packaged water from low and lower-middle-income countries was 4.6 (95% CI: 2.6–8.1) and 13.6 (95% CI: 6.9–26.7) times more likely to contain fecal indicator bacteria and total coliforms, respectively. Compared to all other packaged water types, water from small bottles was less likely to be contaminated with fecal indicator bacteria (OR = 0.32, 95%CI: 0.17–0.58) and total coliforms (OR = 0.10, 95%CI: 0.05, 0.22). Packaged water was less likely to contain fecal indicator bacteria (OR = 0.35, 95%CI: 0.20, 0.62) compared to other water sources used for consumption. Conclusions Policymakers and regulators should recognize the potential benefits of packaged water in providing safer water for consumption at and away from home, especially for those who are otherwise unlikely to gain access to a reliable, safe water supply in the near future. To improve the quality of packaged water products they should be integrated into regulatory and monitoring frameworks. PMID:26505745

  18. [Effects of antiseptic on the analysis of greenhouse gases concentrations in lake water].

    PubMed

    Xiao, Qi-Tao; Hu, Zheng-Hu; James, Deng; Xiao, Wei; Liu, Shou-Dong; Li, Xu-Hui

    2014-01-01

    To gain insight into antiseptic effects on the concentrations of CO2, CH4, and N2O in lake water, antisepetic (CuSO4 and HgCl2) were added into water sample, and concentrations of greenhouse gases were measured by the gas chromatography based on water equilibrium method. Experiments were conducted as following: the control group without antisepetic (CK), the treatment group with 1 mL CuSO4 solution (T1), the treatment group with 5 mL CuSO4 solution (T2), and the treatment group with 0.5 mL HgCl2 solution (T3). All groups were divided into two batches: immediately analysis (I), and after 2 days analysis (II). Results showed that CuSO4 and HgCl2 significantly increased CO2 concentration, the mean CO2 concentration (Mco2) of CK (I) and CK (II) were (11.5 +/- 1.47) micromol x L(-1) and (14.38 +/- 1.59) micromol x L(-1), respectively; the Mco2 of T1 (I) and T1 (II) were (376 +/- 70) micromol x L(-1) and (448 +/- 246.83) micromol x L(-1), respectively; the Mco2 of T2 (I) and T2 (II) were (885 +/- 51.53) micromol x L(-1) and (988.83 +/- 101.96) micromol x L(-1), respectively; the Mco2 of T3 (I) and T3 (II) were (287.19 +/- 30.01) micromol x L(-1) and (331.33 +/- 22.06) micromol x L(-1), respectively. The results also showed that there was no difference in CH4 and N2O concentrations among treatments. Water samples should be analyzed as soon as possible after pretreatment. Our findings suggest that adding antiseptic may lead an increase in CO2 concentration.

  19. Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran

    NASA Astrophysics Data System (ADS)

    Faramarzi, M.; Yang, H.; Mousavi, J.; Schulin, R.; Binder, C. R.; Abbaspour, K. C.

    2010-08-01

    Increasing water scarcity has posed a major constraint to sustain food production in many parts of the world. To study the situation at the regional level, we took Iran as an example and analyzed how an intra-country "virtual water trade strategy" (VWTS) may help improve cereal production as well as alleviate the water scarcity problem. This strategy calls, in part, for the adjustment of the structure of cropping pattern (ASCP) and interregional food trade where crop yield and crop water productivity as well as local economic and social conditions are taken into account. We constructed a systematic framework to assess ASCP at the provincial level under various driving forces and constraints. A mixed-integer, multi-objective, linear optimization model was developed and solved by linear programming. Data from 1990-2004 were used to account for yearly fluctuations of water availability and food production. Five scenarios were designed aimed at maximizing the national cereal production while meeting certain levels of wheat self-sufficiency under various water and land constraints in individual provinces. The results show that under the baseline scenario, which assumes a continuation of the existing water use and food policy at the national level, some ASCP scenarios could produce more wheat with less water. Based on different scenarios in ASCP, we calculated that 31% to 100% of the total wheat shortage in the deficit provinces could be supplied by the wheat surplus provinces. As a result, wheat deficit provinces would receive 3.5 billion m3 to 5.5 billion m3 of virtual water by importing wheat from surplus provinces.

  20. Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran

    NASA Astrophysics Data System (ADS)

    Faramarzi, M.; Yang, H.; Mousavi, J.; Schulin, R.; Binder, C. R.; Abbaspour, K. C.

    2010-04-01

    Increasing water scarcity has posed a major constraint to sustain food production in many parts of the world. To study the situation at the regional level, we took Iran as an example and analyzed how an intra-country "virtual water trade strategy" (VWTS) may help improve cereal production as well as alleviate the water scarcity problem. This strategy calls, in part, for the adjustment of the structure of cropping pattern (ASCP) and interregional food trade where crop yield and crop water productivity as well as local economic and social conditions are taken into account. We constructed a systematic framework to assess ASCP at the provincial level under various driving forces and constraints. A mixed-integer, multi-objective, linear optimization model was developed and solved by linear programming. Data from 1990-2004 were used to account for yearly fluctuations of water availability and food production. Five scenarios were designed aimed at maximizing the national cereal production while meeting certain levels of wheat self-sufficiency under various water and land constraints in individual provinces. The results show that under the baseline scenario, which assumes a continuation of the existing water use and food policy at the national level, some ASCP scenarios could produce more wheat with less water. Based on different scenarios in ASCP, we calculated that 31% to 100% of the total wheat shortage in the deficit provinces could be supplied by the wheat surplus provinces. As a result, wheat deficit provinces would receive 3.5 billion m3 to 5.5 billion m3 of virtual water by importing wheat from surplus provinces.