Sample records for water availability projections

  1. Assessing surface water availability considering human water use and projected climate variability

    NASA Astrophysics Data System (ADS)

    Ashraf, Batool; AghaKouchak, Amir; Mousavi-Baygi, Mohammd; Moftakhari, Hamed; Anjileli, Hassan

    2017-04-01

    Climate variability along with anthropogenic activities alter the hydrological cycle and local water availability. The overarching goal of this presentation is to demonstrate the compounding interactions between human water use/withdrawals and climate change and variability. We focus on Karkheh River basin and Urmia basin, in western Iran, that have high level of human activity and water use, and suffer from low water productivity. The future of these basins and their growth relies on sustainable water resources and hence, requires a holistic, basin-wide management to cope with water scarcity challenges. In this study, we investigate changes in the hydrology of the basin including human-induced alterations of the system, during the past three decades. Then, we investigate the individual and combined effects of climate variability and human water withdrawals on surface water storage in the 21st century. We use bias-corrected historical simulations and future projections from ensemble mean of eleven General Circulation Models (GCMs) under two climate change scenarios RCP4.5 and RCP8.5. The results show that, hydrology of the studied basins are significantly dominated by human activities over the baseline period (1976 - 2005). Results show that the increased anthropogenic water demand resulting from substantial socio-economic growth in the past three decades have put significant stress on water resources. We evaluate a number of future water demand scenarios and their interactions with future climate projections. Our results show that by the end of the 21st century, the compounding effects of increased irrigation water demand and precipitation variability may lead to severe local water scarcity in these basins. Our study highlights the necessity for understanding and considering the compounding effects of human water use and future climate projections. Such studies would be useful for improving water management and developing adaption plans in water scarce regions.

  2. Projections of Declining Surface-Water Availability for the Southwestern United States

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Ting, Mingfang; Li, Cuihua; Naik, Naomi; Cook, Benjamin; Nakamura, Jennifer; Liu, Haibo

    2012-01-01

    Global warming driven by rising greenhouse-gas concentrations is expected to cause wet regions of the tropics and mid to high latitudes to get wetter and subtropical dry regions to get drier and expand polewards. Over southwest North America, models project a steady drop in precipitation minus evapotranspiration, P -- E, the net flux of water at the land surface, leading to, for example, a decline in Colorado River flow. This would cause widespread and important social and ecological consequences. Here, using new simulations from the Coupled Model Intercomparison Project Five, to be assessed in Intergovernmental Panel on Climate Change Assessment Report Five, we extend previous work by examining changes in P, E, runoff and soil moisture by season and for three different water resource regions. Focusing on the near future, 2021-2040, the new simulations project declines in surface-water availability across the southwest that translate into reduced soil moisture and runoff in California and Nevada, the Colorado River headwaters and Texas.

  3. Mapping water availability, projected use and cost in the western United States

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Moreland, Barbara D.; Zemlick, Katie M.; Roberts, Barry L.; Passell, Howard D.; Jensen, Daniel; Forsgren, Christopher; Sehlke, Gerald; Cook, Margaret A.; King, Carey W.; Larsen, Sara

    2014-05-01

    New demands for water can be satisfied through a variety of source options. In some basins surface and/or groundwater may be available through permitting with the state water management agency (termed unappropriated water), alternatively water might be purchased and transferred out of its current use to another (termed appropriated water), or non-traditional water sources can be captured and treated (e.g., wastewater). The relative availability and cost of each source are key factors in the development decision. Unfortunately, these measures are location dependent with no consistent or comparable set of data available for evaluating competing water sources. With the help of western water managers, water availability was mapped for over 1200 watersheds throughout the western US. Five water sources were individually examined, including unappropriated surface water, unappropriated groundwater, appropriated water, municipal wastewater and brackish groundwater. Also mapped was projected change in consumptive water use from 2010 to 2030. Associated costs to acquire, convey and treat the water, as necessary, for each of the five sources were estimated. These metrics were developed to support regional water planning and policy analysis with initial application to electric transmission planning in the western US.

  4. How uncertain are climate model projections of water availability indicators across the Middle East?

    PubMed

    Hemming, Debbie; Buontempo, Carlo; Burke, Eleanor; Collins, Mat; Kaye, Neil

    2010-11-28

    The projection of robust regional climate changes over the next 50 years presents a considerable challenge for the current generation of climate models. Water cycle changes are particularly difficult to model in this area because major uncertainties exist in the representation of processes such as large-scale and convective rainfall and their feedback with surface conditions. We present climate model projections and uncertainties in water availability indicators (precipitation, run-off and drought index) for the 1961-1990 and 2021-2050 periods. Ensembles from two global climate models (GCMs) and one regional climate model (RCM) are used to examine different elements of uncertainty. Although all three ensembles capture the general distribution of observed annual precipitation across the Middle East, the RCM is consistently wetter than observations, especially over the mountainous areas. All future projections show decreasing precipitation (ensemble median between -5 and -25%) in coastal Turkey and parts of Lebanon, Syria and Israel and consistent run-off and drought index changes. The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) GCM ensemble exhibits drying across the north of the region, whereas the Met Office Hadley Centre work Quantifying Uncertainties in Model ProjectionsAtmospheric (QUMP-A) GCM and RCM ensembles show slight drying in the north and significant wetting in the south. RCM projections also show greater sensitivity (both wetter and drier) and a wider uncertainty range than QUMP-A. The nature of these uncertainties suggests that both large-scale circulation patterns, which influence region-wide drying/wetting patterns, and regional-scale processes, which affect localized water availability, are important sources of uncertainty in these projections. To reduce large uncertainties in water availability projections, it is suggested that efforts would be well placed to focus on the understanding and modelling of both

  5. 25 CFR 137.2 - Availability of water.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Availability of water. 137.2 Section 137.2 Indians BUREAU... COSTS, SAN CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.2 Availability of water. Pursuant to section... notice to announce when water is actually available for lands in private ownership under the project and...

  6. 25 CFR 137.2 - Availability of water.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Availability of water. 137.2 Section 137.2 Indians BUREAU... COSTS, SAN CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.2 Availability of water. Pursuant to section... notice to announce when water is actually available for lands in private ownership under the project and...

  7. 25 CFR 137.2 - Availability of water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Availability of water. 137.2 Section 137.2 Indians BUREAU... COSTS, SAN CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.2 Availability of water. Pursuant to section... notice to announce when water is actually available for lands in private ownership under the project and...

  8. 25 CFR 137.2 - Availability of water.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Availability of water. 137.2 Section 137.2 Indians BUREAU... COSTS, SAN CARLOS INDIAN IRRIGATION PROJECT, ARIZONA § 137.2 Availability of water. Pursuant to section... notice to announce when water is actually available for lands in private ownership under the project and...

  9. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. T.; Lockwood, B.; Schmid, Wolfgang

    2014-11-01

    The projection and analysis of the Pajaro Valley Hydrologic Model (PVHM) 34 years into the future using MODFLOW with the Farm Process (MF-FMP) facilitates assessment of potential future water availability. The projection is facilitated by the integrated hydrologic model, MF-FMP that fully couples the simulation of the use and movement of water from precipitation, streamflow, runoff, groundwater flow, and consumption by natural and agricultural vegetation throughout the hydrologic system at all times. MF-FMP allows for more complete analysis of conjunctive-use water-resource systems than previously possible with MODFLOW by combining relevant aspects of the landscape with the groundwater and surface-water components. This analysis is accomplished using distributed cell-by-cell supply-constrained and demand-driven components across the landscape within ;water-balance subregions; (WBS) comprised of one or more model cells that can represent a single farm, a group of farms, watersheds, or other hydrologic or geopolitical entities. Analysis of conjunctive use would be difficult without embedding the fully coupled supply-and-demand into a fully coupled simulation, and are difficult to estimate a priori. The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and

  10. Projections of water resources availability in Crete for the 21st century under the global change perspective

    NASA Astrophysics Data System (ADS)

    Koutroulis, A. G.; Tsanis, I. K.; Jacob, D.

    2012-04-01

    A robust signal of a warmer and drier climate over the western Mediterranean region is projected from the majority of climate models. This effect appears more pronounced during warm periods, when the seasonal decrease of precipitation can exceed control climatology by 25-30%. The rapid development of Crete in the last 30 years has exerted strong pressures on the natural resources of the region. Urbanization and growth of agriculture, tourism and industry had strong impact on the water resources of island by substantially increasing water demand. The objective of this study is to analyze and assess the impact of global change on the water resources status for the island of Crete for a range of 24 different scenarios of projected hydro-climatological regime, demand and supply potential. Water resources application issues analyzed and facilitated within this study, focusing on a refinement of the future water demands of the island, and comparing with "state of the art" global climate model (GCM) results and an ensemble of regional climate models (RCMs) under three different emission scenarios, to estimate water resources availability, during the 21st century. A robust signal of water scarcity is projected for all the combinations of emission (A2, A1B and B1), demand and infrastructure scenarios. Despite the uncertainty of the assessments, the quantitative impact of the projected changes on water availability indicates that climate change plays an equally important role to water use and management in controlling future water status in a Mediterranean island like the island of Crete. The outcome of this analysis will assist in short and long-term strategic water resources planning by prioritizing water related infrastructure development.

  11. Ensuring water availability in Mekelle City, Northern Ethiopia: evaluation of the water supply sub-project

    NASA Astrophysics Data System (ADS)

    Oyedotun, Temitope D. Timothy

    2017-11-01

    The need and demand for water in the world are becoming acute with the growing population. This is mostly pressing in developing countries of which Mekelle City in Northern Ethiopia is not an exception. World Bank borehole-support sub-project was aimed at addressing this challenge. The evaluation of the intervention indicates that there is a significant increase in water supply in the city because of the sub-project. However, the increase in water supply has not been able to meet up with the already established and increasing demand. Coupled with this challenge are: the limited capacity of human capital and expertise that will ensure the proper management of borehole interventions; insufficient cost recovery for proper operation and maintenance of the projects; loss of land and farmlands and lack of compensations because of the projects which affect the livelihood.

  12. Narrowing the range of water availability projections in China using the Budyko framework

    NASA Astrophysics Data System (ADS)

    Osborne, Joe; Lambert, Hugo

    2017-04-01

    There is a growing demand for reliable 21st-century projections of water availability at the regional scale. Used alone, global climate models (GCMs) are unsuitable for generating such projections at catchment scales in the presence of simulated aridity biases. This is because the Budyko framework dictates that the partitioning of precipitation into runoff and evapotranspiration scales as a non-linear function of aridity. Therefore, GCMs are typically used in tandem with global hydrological models (GHMs), but this process is computationally expensive. Here, considering a Chinese case study, we utilise the Budyko framework to make use of plentiful GCM output, without the need for GHMs. We first apply the framework to 20th-century observations to show that the significant declines in Yellow river discharge between 1951 and 2000 cannot be accounted for by modelled climate change alone, with human activities playing a larger but poorly quantified role. We further show that the Budyko framework can be used to narrow the range of water availability projections in the Yangtze and Yellow river catchments by 33% an 72%, respectively, in the 21st-century RCP8.5 business-as-usual emission scenario. In the Yellow catchment the best-guess end-of-21st-century change in runoff decreases from an increase of 0.09 mm/d in raw multi-model mean output to an increase of 0.04 mm/d in Budyko corrected multi-model mean output. While this is a valuable finding, we stress that these changes could be dwarfed by changes due to human activity in the 21st century, unless strict water management policies are implemented.

  13. Water Availability in a Warming World

    NASA Astrophysics Data System (ADS)

    Aminzade, Jennifer

    As climate warms during the 21st century, the resultant changes in water availability are a vital issue for society, perhaps even more important than the magnitude of warming itself. Yet our climate models disagree in their forecasts of water availability, limiting our ability to plan accordingly. This thesis investigates future water availability projections from Coupled Ocean-Atmosphere General Circulation Models (GCMs), primarily using two water availability measures: soil moisture and the Supply Demand Drought Index (SDDI). Chapter One introduces methods of measuring water availability and explores some of the fundamental differences between soil moisture, SDDI and the Palmer Drought Severity Index (PDSI). SDDI and PDSI tend to predict more severe future drought conditions than soil moisture; 21st century projections of SDDI show conditions rivaling North American historic mega-droughts. We compare multiple potential evapotranspiration (EP) methods in New York using input from the GISS Model ER GCM and local station data from Rochester, NY, and find that they compare favorably with local pan evaporation measurements. We calculate SDDI and PDSI values using various EP methods, and show that changes in future projections are largest when using EP methods most sensitive to global warming, not necessarily methods producing EP values with the largest magnitudes. Chapter Two explores the characteristics and biases of the five GCMs and their 20th and 21st century climate projections. We compare atmospheric variables that drive water availability changes globally, zonally, and geographically among models. All models show increases in both dry and wet extremes for SDDI and soil moisture, but increases are largest for extreme drying conditions using SDDI. The percentage of gridboxes that agree on the sign of change of soil moisture and SDDI between models is very low, but does increase in the 21st century. Still, differences between models are smaller than differences

  14. Climate impacts on human livelihoods: where uncertainty matters in projections of water availability

    NASA Astrophysics Data System (ADS)

    Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.

    2014-03-01

    Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target-measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models as well as greenhouse gas scenarios are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure Adequate Human livelihood conditions for wEll-being And Development (AHEAD). Based on a transdisciplinary sample of influential concepts addressing human well-being, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows identifying and differentiating uncertainty of climate and impact model projections. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that in many countries today, livelihood conditions are compromised by water scarcity. However, more often, AHEAD fulfilment is limited through other elements. Moreover, the analysis shows that for 44 out of 111 countries, the water-specific uncertainty ranges are

  15. Climate impacts on human livelihoods: where uncertainty matters in projections of water availability

    NASA Astrophysics Data System (ADS)

    Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.

    2014-10-01

    Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models, as well as greenhouse gas scenarios, are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure what is referred to here as AHEAD (Adequate Human livelihood conditions for wEll-being And Development). Based on a trans-disciplinary sample of concepts addressing human well-being and livelihoods, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows for the uncertainty of climate and impact model projections to be identified and differentiated. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that livelihood conditions are compromised by water scarcity in 34 countries. However, more often, AHEAD fulfilment is limited through other elements. The analysis shows that the water-specific uncertainty ranges of the

  16. Analysis of projected water availability with current basin management plan, Pajaro Valley, California

    USGS Publications Warehouse

    Hanson, Randall T.; Lockwood, Brian; Schmid, Wolfgang

    2014-01-01

    The analysis of projected supply and demand for the Pajaro Valley indicate that the current water supply facilities constructed to provide alternative local sources of supplemental water to replace coastal groundwater pumpage, but may not completely eliminate additional overdraft. The simulation of the coastal distribution system (CDS) replicates: 20 miles of conveyance pipeline, managed aquifer recharge and recovery (MARR) system that captures local runoff, and recycled-water treatment facility (RWF) from urban wastewater, along with the use of other blend water supplies, provide partial relief and substitution for coastal pumpage (aka in-lieu recharge). The effects of these Basin Management Plan (BMP) projects were analyzed subject to historical climate variations and assumptions of 2009 urban water demand and land use. Water supplied directly from precipitation, and indirectly from reuse, captured local runoff, and groundwater is necessary but inadequate to satisfy agricultural demand without coastal and regional storage depletion that facilitates seawater intrusion. These facilities reduce potential seawater intrusion by about 45% with groundwater levels in the four regions served by the CDS projected to recover to levels a few feet above sea level. The projected recoveries are not high enough to prevent additional seawater intrusion during dry-year periods or in the deeper aquifers where pumpage is greater. While these facilities could reduce coastal pumpage by about 55% of the historical 2000–2009 pumpage for these regions, and some of the water is delivered in excess of demand, other coastal regions continue to create demands on coastal pumpage that will need to be replaced to reduce seawater intrusion. In addition, inland urban and agricultural demands continue to sustain water levels below sea level causing regional landward gradients that also drive seawater intrusion. Seawater intrusion is reduced by about 45% but it supplies about 55% of the recovery

  17. Current and projected water demand and water availability estimates under climate change scenarios in the Weyib River basin in Bale mountainous area of Southeastern Ethiopia

    NASA Astrophysics Data System (ADS)

    Serur, Abdulkerim Bedewi; Sarma, Arup Kumar

    2017-07-01

    This study intended to estimate the spatial and temporal variation of current and projected water demand and water availability under climate change scenarios in Weyib River basin, Bale mountainous area of Southeastern Ethiopia. Future downscaled climate variables from three Earth System Models under the three RCP emission scenarios were inputted into ArcSWAT hydrological model to simulate different components of water resources of a basin whereas current and projected human and livestock population of the basin is considered to estimate the total annual water demand for various purposes. Results revealed that the current total annual water demand of the basin is found to be about 289 Mm3, and this has to increase by 83.47% after 15 years, 200.67% after 45 years, and 328.78% after 75 years by the 2020s, 2050s, and 2080s, respectively, from base period water demand mainly due to very rapid increasing population (40.81, 130.80, and 229.12% by the 2020s, 2050s, and 2080s, respectively) and climatic variability. The future average annual total water availability in the basin is observed to be increased by ranging from 15.04 to 21.61, 20.08 to 23.34, and 16.21 to 39.53% by the 2020s, 2050s, and 2080s time slice, respectively, from base period available water resources (2333.39 Mm3). The current water availability per capita per year of the basin is about 3112.23 m3 and tends to decline ranging from 11.78 to 17.49, 46.02 to 47.45, and 57.18 to 64.34% by the 2020s, 2050s, and 2080s, respectively, from base period per capita per year water availability. This indicated that there might be possibility to fall the basin under water stress condition in the long term.

  18. Mapping water availability, cost and projected consumptive use in the eastern United States with comparisons to the west

    NASA Astrophysics Data System (ADS)

    Tidwell, Vincent C.; Moreland, Barbie D.; Shaneyfelt, Calvin R.; Kobos, Peter

    2018-01-01

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. With the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31 contiguous states in the eastern US complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source of water; and is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as areas of concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered ‘water rich’ roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. Little effort was noted on the part of eastern or western water managers to quantify non-fresh water resources.

  19. Water Availability for Shale Gas Development in Sichuan Basin, China.

    PubMed

    Yu, Mengjun; Weinthal, Erika; Patiño-Echeverri, Dalia; Deshusses, Marc A; Zou, Caineng; Ni, Yunyan; Vengosh, Avner

    2016-03-15

    Unconventional shale gas development holds promise for reducing the predominant consumption of coal and increasing the utilization of natural gas in China. While China possesses some of the most abundant technically recoverable shale gas resources in the world, water availability could still be a limiting factor for hydraulic fracturing operations, in addition to geological, infrastructural, and technological barriers. Here, we project the baseline water availability for the next 15 years in Sichuan Basin, one of the most promising shale gas basins in China. Our projection shows that continued water demand for the domestic sector in Sichuan Basin could result in high to extremely high water stress in certain areas. By simulating shale gas development and using information from current water use for hydraulic fracturing in Sichuan Basin (20,000-30,000 m(3) per well), we project that during the next decade water use for shale gas development could reach 20-30 million m(3)/year, when shale gas well development is projected to be most active. While this volume is negligible relative to the projected overall domestic water use of ∼36 billion m(3)/year, we posit that intensification of hydraulic fracturing and water use might compete with other water utilization in local water-stress areas in Sichuan Basin.

  20. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE PAGES

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin; ...

    2017-11-08

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  1. Mapping water availability, cost and projected consumptive use in the Eastern United States with comparisons to the West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent; Moreland, Barbara D.; Shaneyfelt, Calvin

    The availability of freshwater supplies to meet future demand is a growing concern. Water availability metrics are needed to inform future water development decisions. Furthermore, with the help of water managers, water availability was mapped for over 1300 watersheds throughout the 31-contiguous states in the eastern U.S. complimenting a prior study of the west. The compiled set of water availability data is unique in that it considers multiple sources of water (fresh surface and groundwater, wastewater and brackish groundwater); accommodates institutional controls placed on water use; is accompanied by cost estimates to access, treat and convey each unique source ofmore » water, and; is compared to projected future growth in consumptive water use to 2030. Although few administrative limits have been set on water availability in the east, water managers have identified 315 fresh surface water and 398 fresh groundwater basins (with 151 overlapping basins) as Areas of Concern (AOCs) where water supply challenges exist due to drought related concerns, environmental flows, groundwater overdraft, or salt water intrusion. This highlights a difference in management where AOCs are identified in the east which simply require additional permitting, while in the west strict administrative limits are established. Although the east is generally considered "water rich" roughly a quarter of the basins were identified as AOCs; however, this is still in strong contrast to the west where 78% of the surface water basins are operating at or near their administrative limit. There was little effort noted on the part of eastern or western water managers to quantify non-fresh water resources.« less

  2. Records available to September 30, 1956, on use of water in the Delaware Basin Project area

    USGS Publications Warehouse

    Kammerer, John C.

    1957-01-01

    The purpose of this report is to summarize data on the use of water in the Delaware Basin Project area (fig. 2) and to list the principal data sources that are available in published form. The tables and bibliography will assist Geological Survey personnel assigned to the Delaware Basin Project in evaluating the scope and deficiencies of previous studies of the basin. Information is also given on the use of water by public supplies in the New York-New Jersey region comprising the New York City Metropolitan Area and in the remaining north-central and south-eastern parts of New Jersey. These regions may depend increasingly on water from the Delaware River basin for part of their public supplies. The Geological Survey has the responsibility for appraising and describing the water resources of the Nation as a guide to use, development, control, and conservation of these resources. Cooperative Federal-State water-resources investigations in the Delaware Basin States have been carried on the the Geological Survey for more than 50 years. In July 1956 the Survey began the "Delaware Basin Project," a hydrologic study of the Delaware River basin in order to: 1) Determine present status and trends in water availability, quality, and use, 2) assess and improve the adequacy of the Survey's basic water data program in the basin, 3) interpret and evaluate the water-resources data in terms of past and possible future water-use and land-use practices, and 4) disseminate promptly the results of this investigation for the benefit of all interested agencies and the general public. The Geological Survey is working closely with the U.S. Corps of Engineers and other cooperating Federal and State agencies in providing water data which will contribute to the present coordinated investigation aimed at developing a plan for long-range water development in the Delaware River basin. Estimates of quantities of water used are given for water withdrawn from streams and aquifers during calendar

  3. Water governance within Kenya's Upper Ewaso Ng'iro Basin: Assessing the performance of water projects

    NASA Astrophysics Data System (ADS)

    McCord, P. F.; Evans, T. P.; Dell'Angelo, J.; Gower, D.; McBride, L.; Caylor, K. K.

    2013-12-01

    Climate change processes are projected to change the availability and seasonality of streamflow with dramatic implications for irrigated agricultural systems. Within mountain environments, this alteration in water availability may be quite pronounced over a relatively short distance as upstream users with first access to river water directly impact the availability of water to downstream users. Livelihood systems that directly depend on river water for both domestic consumption and practices such as irrigated agriculture are particularly vulnerable. The Mount Kenya region is an exemplary case of a semi-arid upstream-downstream system in which water availability rapidly decreases and directly impacts the livelihoods of river water users existing across this steep environmental gradient. To effectively manage river water within these water-scarce environs, water projects have been established along the major rivers of the Mount Kenya region. These water projects are responsible for managing water within discrete sub-catchments of the region. While water projects develop rules that encourage the responsible use of water and maintenance of the project itself, the efficiency of water allocation to the projects' members remains unclear. This research analyzes water projects from five sub-catchments on the northwest slopes of Mount Kenya. It utilizes data from household surveys and water project management surveys as well as stream gauge data and flow measurements within individual water projects to assess the governance structure and performance of water projects. The performance of water projects is measured through a variety of household level metrics including: farm-level water flow and volume over time, mean and variability in maize yield, per capita crop productivity, household-level satisfaction with water availability, number of days where water volume was insufficient for irrigation, and quantity harvested compared with expected quantity harvested. We present

  4. Report: EPA’s Allowing States to Use Bonds to Meet Revolving Fund Match Requirements Reduces Funds Available for Water Projects

    EPA Pesticide Factsheets

    Report #2007-P-00012, March 29, 2007. EPA regulations and policies allowing States to use bonds repaid from SRF interest to meet SRF match requirements are resulting in fewer dollars being available for water projects.

  5. Water availability change in central Belgium for the late 21st century

    NASA Astrophysics Data System (ADS)

    Tabari, Hossein; Taye, Meron Teferi; Willems, Patrick

    2015-08-01

    We investigate the potential impact of climate change on water availability in central Belgium. Two water balance components being precipitation and potential evapotranspiration are initially projected for the late 21st century (2071-2100) based on 30 Coupled Models Intercomparison Project phase 5 (CMIP5) models relative to a baseline period of 1961-1990, assuming forcing by four representative concentration pathway emission scenarios (RCP2.6, RCP4.5, RCP6.0, RCP8.5). The future available water is then estimated as the difference between precipitation and potential evapotranspiration projections. The number of wet days and mean monthly precipitation for summer season is projected to decrease in most of the scenarios, while the projections show an increase in those variables for the winter months. Potential evapotranspiration is expected to increase during both winter and summer seasons. The results show a decrease in water availability for summer and an increase for winter, suggesting drier summers and wetter winters for the late 21st century in central Belgium.

  6. Comprehensive assessment of projected changes in water availability and aridity

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Seneviratne, Sonia I.

    2015-04-01

    Substantial changes in the hydrological cycle are projected for the 21st century, with potential major impacts, particularly at regional scale. However, the projections are subject to major uncertainties and the metrics generally used to assess such changes do not fully account for the hydroclimatological characteristics of the land surface. In this context, the 'dry gets drier, wet gets wetter' paradigm is often used as a simplifying summary. However, recent studies have challenged the validity of the paradigm both for observations (Greve et al., 2014) and projections (Roderick et al., 2014), especially casting doubt on applying the widely used P-E (precipitation - evapotranspiration) metric over global land surfaces. Here we show in a comprehensive assessment that projected changes in mean annual P-E are generally not significant in most land areas, with the exception of the northern high latitudes where significant changes towards wetter conditions are found. We further show that the combination of decreasing P and increasing atmospheric demand (potential evapotranspiration, Ep) leads to a significant increase in aridity in many subtropical and neighbouring regions, thus confirming the paradigm for some dry regions, but invalidating it for the relative large fraction of the affected area which is currently in a humid or transitional climate regime. Combining both metrics (P-E and P-E_p) we conclude that the 'dry gets drier, wet gets wetter' paradigm is generally not confirmed for projected changes in most land areas (despite notable exceptions in the high latitudes and subtropics), because of a lack of robustness of the projected changes in some regions (tropics) and because humid to transitional regions are shifting to drier conditions, i.e. not following the paradigm. References Greve, P., Orlowsky, B., Mueller, B., Sheffield, J., Reichstein, M., & Seneviratne, S. I. Global assessment of trends in wetting and drying over land. Nature Geosci. 7, 716-721 (2014

  7. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability.

    PubMed

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J; Peel, Murray C; Phillips, Thomas J; Wada, Yoshihide; Ravalico, Jakin K

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  8. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    NASA Technical Reports Server (NTRS)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  9. Availability of Water in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Coplen, T.B.; Plummer, Niel; Rezai, M.T.; Verstraeten, Ingrid M.

    2010-01-01

    The availability of water resources is vital to the social and economic well being and rebuilding of Afghanistan. Kabul City currently (2010) has a population of nearly 4 million and is growing rapidly as a result of periods of relative security and the return of refugees. Population growth and recent droughts have placed new stresses on the city's limited water resources and have caused many wells to become contaminated, dry, or inoperable in recent years. The projected vulnerability of Central and West Asia to climate change (Cruz and others, 2007; Milly and others, 2005) and observations of diminishing glaciers in Afghanistan (Molnia, 2009) have heightened concerns for future water availability in the Kabul Basin of Afghanistan.

  10. 78 FR 21414 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review... establish and administer an office on Central Valley Project water conservation best management practices...

  11. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE PAGES

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; ...

    2017-07-24

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  12. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the regionmore » could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.« less

  13. 78 FR 63491 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review: Westside... project contractors using best available cost-effective technology and best management practices.'' These...

  14. Uncertainties in Past and Future Global Water Availability

    NASA Astrophysics Data System (ADS)

    Sheffield, J.; Kam, J.

    2014-12-01

    Understanding how water availability changes on inter-annual to decadal time scales and how it may change in the future under climate change are a key part of understanding future stresses on water and food security. Historic evaluations of water availability on regional to global scales are generally based on large-scale model simulations with their associated uncertainties, in particular for long-term changes. Uncertainties are due to model errors and missing processes, parameter uncertainty, and errors in meteorological forcing data. Recent multi-model inter-comparisons and impact studies have highlighted large differences for past reconstructions, due to different simplifying assumptions in the models or the inclusion of physical processes such as CO2 fertilization. Modeling of direct anthropogenic factors such as water and land management also carry large uncertainties in their physical representation and from lack of socio-economic data. Furthermore, there is little understanding of the impact of uncertainties in the meteorological forcings that underpin these historic simulations. Similarly, future changes in water availability are highly uncertain due to climate model diversity, natural variability and scenario uncertainty, each of which dominates at different time scales. In particular, natural climate variability is expected to dominate any externally forced signal over the next several decades. We present results from multi-land surface model simulations of the historic global availability of water in the context of natural variability (droughts) and long-term changes (drying). The simulations take into account the impact of uncertainties in the meteorological forcings and the incorporation of water management in the form of reservoirs and irrigation. The results indicate that model uncertainty is important for short-term drought events, and forcing uncertainty is particularly important for long-term changes, especially uncertainty in precipitation due

  15. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2017-04-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  16. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma - Analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Parkhurst, David L.; Christenson, Scott C.; Schlottmann, Jamie L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to:Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources;Define long-term trends (or lack of trends) in water quality; andIdentify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends.The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs.At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study unit.The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial description of

  17. Understanding surface-water availability in the Central Valley as a means to projecting future groundwater storage with climate variability

    NASA Astrophysics Data System (ADS)

    Goodrich, J. P.; Cayan, D. R.

    2017-12-01

    surface water data are compiled. We can then develop groundwater pumping and storage predictions in real time, and make them available to water managers. In addition, we are working toward future projections by coupling the regional CVHM to downscaled GCM output to assess future scenarios of water availability in this critical region.

  18. An Assessment of Water Demand and Availability to meet Construction and Operational Needs for Large Utility-Scale Solar Projects in the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Klise, G. T.; Tidwell, V. C.; Macknick, J.; Reno, M. D.; Moreland, B. D.; Zemlick, K. M.

    2013-12-01

    In the Southwestern United States, there are many large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities currently in operation, with even more under construction and planned for future development. These are locations with high solar insolation and access to large metropolitan areas and existing grid infrastructure. The Bureau of Land Management, under a reasonably foreseeable development scenario, projects a total of almost 32 GW of installed utility-scale solar project capacity in the Southwest by 2030. To determine the potential impacts to water resources and the potential limitations water resources may have on development, we utilized methods outlined by the Bureau of Land Management (BLM) to determine potential water use in designated solar energy zones (SEZs) for construction and operations & maintenance (O&M), which is then evaluated according to water availability in six Southwestern states. Our results indicate that PV facilities overall use less water, however water for construction is high compared to lifetime operational water needs. There is a transition underway from wet cooled to dry cooled CSP facilities and larger PV facilities due to water use concerns, though some water is still necessary for construction, operations, and maintenance. Overall, ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability. Understanding the location of potentially available water sources can help the solar industry determine locations that minimize impacts to existing water resources, and help understand potential costs when utilizing non-potable water sources or purchasing existing appropriated water. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract

  19. Determining the impacts of climate change and catchment development on future water availability in Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Post, David

    2010-05-01

    In a water-scarce country such as Australia, detailed, accurate and reliable assessments of current and future water availability are essential in order to adequately manage the limited water resource. This presentation describes a recently completed study which provided an assessment of current water availability in Tasmania, Australia, and also determined how this water availability would be impacted by climate change and proposed catchment development by the year 2030. The Tasmania Sustainable Yields Project (http://www.csiro.au/partnerships/TasSY.html) assessed current water availability through the application of rainfall-runoff models, river models, and recharge and groundwater models. These were calibrated to streamflow records and parameterised using estimates of current groundwater and surface water extractions and use. Having derived a credible estimate of current water availability, the impacts of future climate change on water availability were determined through deriving changes in rainfall and potential evapotranspiration from 15 IPCC AR4 global climate models. These changes in rainfall were then dynamically downscaled using the CSIRO-CCAM model over the relatively small study area (50,000 square km). A future climate sequence was derived by modifying the historical 84-year climate sequence based on these changes in rainfall and potential evapotranspiration. This future climate sequence was then run through the rainfall-runoff, river, recharge and groundwater models to give an estimate of water availability under future climate. To estimate the impacts of future catchment development on water availability, the models were modified and re-run to reflect projected increases in development. Specifically, outputs from the rainfall-runoff and recharge models were reduced over areas of projected future plantation forestry. Conversely, groundwater recharge was increased over areas of new irrigated agriculture and new extractions of water for irrigation were

  20. Climate change impacts on water availability in the Red River Basin and critical areas for future water conservation

    NASA Astrophysics Data System (ADS)

    Zamani Sabzi, H.; Moreno, H. A.; Neeson, T. M.; Rosendahl, D. H.; Bertrand, D.; Xue, X.; Hong, Y.; Kellog, W.; Mcpherson, R. A.; Hudson, C.; Austin, B. N.

    2017-12-01

    Previous periods of severe drought followed by exceptional flooding in the Red River Basin (RRB) have significantly affected industry, agriculture, and the environment in the region. Therefore, projecting how climate may change in the future and being prepared for potential impacts on the RRB is crucially important. In this study, we investigated the impacts of climate change on water availability across the RRB. We used three down-scaled global climate models and three potential greenhouse gas emission scenarios to assess precipitation, temperature, streamflow and lake levels throughout the RRB from 1961 to 2099 at a spatial resolution of 1/10°. Unit-area runoff and streamflow were obtained using the Variable Infiltration Capacity (VIC) model applied across the entire basin. We found that most models predict less precipitation in the western side of the basin and more in the eastern side. In terms of temperature, the models predict that average temperature could increase as much as 6°C. Most models project slightly more precipitation and streamflow values in the future, specifically in the eastern side of the basin. Finally, we analyzed the projected meteorological and hydrologic parameters alongside regional water demand for different sectors to identify the areas on the RRB that will need water-environmental conservation actions in the future. These hotspots of future low water availability are locations where regional environmental managers, water policy makers, and the agricultural and industrial sectors must proactively prepare to deal with declining water availability over the coming decades.

  1. Project W.A.T.E.R.

    ERIC Educational Resources Information Center

    EnviroTeach, 1992

    1992-01-01

    Introduces networking projects for studying rivers and water quality. Describes two projects in South Africa (Project W.A.T.E.R and SWAP) associated with the international network, Global Rivers Environmental Education Network. Discusses water test kits and educational material developed through Project W.A.T.E.R. (Water Awareness through…

  2. 75 FR 44805 - Central Utah Project Completion Act; Notice of Availability, Draft Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... DEPARTMENT OF THE INTERIOR Central Utah Project Completion Act; Notice of Availability, Draft Environmental Assessment (Draft EA); Realignment of a Portion of the Utah Lake Drainage Basin Water Delivery System AGENCY: Office of the Assistant Secretary--Water and Science, Interior ACTION: Notice of...

  3. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    NASA Astrophysics Data System (ADS)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  4. Water chemistry, seepage investigation, streamflow, reservoir storage, and annual availability of water for the San Juan-Chama Project, northern New Mexico, 1942-2010

    USGS Publications Warehouse

    McKean, Sarah E.; Anderholm, Scott K.

    2014-01-01

    The Albuquerque Bernalillo County Water Utility Authority supplements the municipal water supply for the Albuquerque metropolitan area, in central New Mexico, with surface water diverted from the Rio Grande. The U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority, undertook this study in which water-chemistry data and historical streamflow were compiled and new water-chemistry data were collected to characterize the water chemistry and streamflow of the San Juan-Chama Project (SJCP). Characterization of streamflow included analysis of the variability of annual streamflow and comparison of the theoretical amount of water that could have been diverted into the SJCP to the actual amount of water that was diverted for the SJCP. Additionally, a seepage investigation was conducted along the channel between Azotea Tunnel Outlet and the streamflow-gaging station at Willow Creek above Heron Reservoir to estimate the magnitude of the gain or loss in streamflow resulting from groundwater interaction over the approximately 10-mile reach. Generally, surface-water chemistry varied with streamflow throughout the year. Streamflow ranged from high flow to low flow on the basis of the quantity of water diverted from the Rio Blanco, Little Navajo River, and Navajo River for the SJCP. Vertical profiles of the water temperature over the depth of the water column at Heron Reservoir indicated that the reservoir is seasonally stratified. The results from the seepage investigations indicated a small amount of loss of streamflow along the channel. Annual variability in streamflow for the SJCP was an indication of the variation in the climate parameters that interact to contribute to streamflow in the Rio Blanco, Little Navajo River, Navajo River, and Willow Creek watersheds. For most years, streamflow at Azotea Tunnel Outlet started in March and continued for approximately 3 months until the middle of July. The majority of annual streamflow

  5. The role of reservoir storage in large-scale surface water availability analysis for Europe

    NASA Astrophysics Data System (ADS)

    Garrote, L. M.; Granados, A.; Martin-Carrasco, F.; Iglesias, A.

    2017-12-01

    A regional assessment of current and future water availability in Europe is presented in this study. The assessment was made using the Water Availability and Adaptation Policy Analysis (WAAPA) model. The model was built on the river network derived from the Hydro1K digital elevation maps, including all major river basins of Europe. Reservoir storage volume was taken from the World Register of Dams of ICOLD, including all dams with storage capacity over 5 hm3. Potential Water Availability is defined as the maximum amount of water that could be supplied at a certain point of the river network to satisfy a regular demand under pre-specified reliability requirements. Water availability is the combined result of hydrological processes, which determine streamflow in natural conditions, and human intervention, which determines the available hydraulic infrastructure to manage water and establishes water supply conditions through operating rules. The WAAPA algorithm estimates the maximum demand that can be supplied at every node of the river network accounting for the regulation capacity of reservoirs under different management scenarios. The model was run for a set of hydrologic scenarios taken from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP), where the PCRGLOBWB hydrological model was forced with results from five global climate models. Model results allow the estimation of potential water stress by comparing water availability to projections of water abstractions along the river network under different management alternatives. The set of sensitivity analyses performed showed the effect of policy alternatives on water availability and highlighted the large uncertainties linked to hydrological and anthropological processes.

  6. 77 FR 33240 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... Project water conservation best management practices that shall ``develop criteria for evaluating the... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  7. 75 FR 70020 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior ACTION: Notice of Availability. SUMMARY: The...

  8. 77 FR 64544 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Central Valley Project water conservation best management practices that shall ``develop criteria for... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  9. 76 FR 12756 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  10. The Influence of Climate Change on Irrigated Water Demands and Surface Water Availability of the Yellow River Basin

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Zhang, J.

    2017-12-01

    Balancing irrigated water demands and surface water availability is critical for sustainable water resources management. In China, irrigation is the largest water user, and there is concern that irrigated water demands will be affected by climate change. If the relationship between climate change, irrigated water demands and surface water availability is quantified, then effective measures can be developed to maintain food production while ensuring water sustainability. This research focuses on the Yellow River, the second longest in China, and analyzes the impact of historical and projected climate change on agricultural water demands and surface water availability. Corn and wheat are selected as representative crops to estimate the effect of temperature and precipitin changes on irrigated water demands. The VIC model is used to simulate daily streamflow throughout the Yellow River, providing estimates of surface water availability. Overall, results indicate the irrigated water need and surface water availability are impacted by climate change, with spatially varying impacts depending on spatial patterns of climate trends and river network position. This research provides insight into water security in the Yellow River basin, indicating where water efficiency measures are needed and where they are not.

  11. Identification of glacial melt water runoff in a karstic environment and its implication for present and future water availability

    NASA Astrophysics Data System (ADS)

    Finger, D.; Hugentobler, A.; Huss, M.; Voinesco, A.; Wernli, H.; Fischer, D.; Weber, E.; Jeannin, P.-Y.; Kauzlaric, M.; Wirz, A.; Vennemann, T.; Hüsler, F.; Schädler, B.; Weingartner, R.

    2013-03-01

    Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the melt water can be drained by souterrain karst systems. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, tracer results and geologic information were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier melt water is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season melt water enters into the karst and is drained to the south. Climate change projections reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.

  12. 76 FR 54251 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-31

    ... and administer an office on Central Valley Project water conservation best management practices that... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  13. 75 FR 38538 - Central Valley Project Improvement Act, Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... to establish and administer an office on Central Valley Project water conservation best management... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  14. Middle-term Metropolitan Water Availability Index Assessment Based on Synergistic Potentials of Multi-sensor Data

    EPA Science Inventory

    The impact of recent drought and water pollution episodes results in an acute need to project future water availability to assist water managers in water utility infrastructure management within many metropolitan regions. Separate drought and water quality indices previously deve...

  15. A Novel Application of Agent-based Modeling: Projecting Water Access and Availability Using a Coupled Hydrologic Agent-based Model in the Nzoia Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Le, A.; Pricope, N. G.

    2015-12-01

    Projections indicate that increasing population density, food production, and urbanization in conjunction with changing climate conditions will place stress on water resource availability. As a result, a holistic understanding of current and future water resource distribution is necessary for creating strategies to identify the most sustainable means of accessing this resource. Currently, most water resource management strategies rely on the application of global climate predictions to physically based hydrologic models to understand potential changes in water availability. However, the need to focus on understanding community-level social behaviors that determine individual water usage is becoming increasingly evident, as predictions derived only from hydrologic models cannot accurately represent the coevolution of basin hydrology and human water and land usage. Models that are better equipped to represent the complexity and heterogeneity of human systems and satellite-derived products in place of or in conjunction with historic data significantly improve preexisting hydrologic model accuracy and application outcomes. We used a novel agent-based sociotechnical model that combines the Soil and Water Assessment Tool (SWAT) and Agent Analyst and applied it in the Nzoia Basin, an area in western Kenya that is becoming rapidly urbanized and industrialized. Informed by a combination of satellite-derived products and over 150 household surveys, the combined sociotechnical model provided unique insight into how populations self-organize and make decisions based on water availability. In addition, the model depicted how population organization and current management alter water availability currently and in the future.

  16. Sensitivity of power system operations to projected changes in water availability due to climate change: the Western U.S. case study

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Macknick, J.; Fu, T.; O'Connell, M.; Zhou, T.; Brinkman, G.

    2017-12-01

    Water resources provide multiple critical services to the electrical grid through hydropower technologies, from generation to regulation of the electric grid (frequency, capacity reserve). Water resources can also represent vulnerabilities to the electric grid, as hydropower and thermo-electric facilities require water for operations. In the Western U.S., hydropower and thermo-electric plants that rely on fresh surface water represent 67% of the generating capacity. Prior studies have looked at the impact of change in water availability under future climate conditions on expected generating capacity in the Western U.S., but have not evaluated operational risks or changes resulting from climate. In this study, we systematically assess the impact of change in water availability and air temperatures on power operations, i.e. we take into account the different grid services that water resources can provide to the electric grid (generation, regulation) in the system-level context of inter-regional coordination through the electric transmission network. We leverage the Coupled Model Intercomparison Project Phase 5 (CMIP5) hydrology simulations under historical and future climate conditions, and force the large scale river routing- water management model MOSART-WM along with 2010-level sectoral water demands. Changes in monthly hydropower potential generation (including generation and reserves), as well as monthly generation capacity of thermo-electric plants are derived for each power plant in the Western U.S. electric grid. We then utilize the PLEXOS electricity production cost model to optimize power system dispatch and cost decisions for the 2010 infrastructure under 100 years of historical and future (2050 horizon) hydroclimate conditions. We use economic metrics as well as operational metrics such as generation portfolio, emissions, and reserve margins to assess the changes in power system operations between historical and future normal and extreme water

  17. 76 FR 36143 - Central Utah Project Completion Act: Availability of Draft Environmental Assessment; Block Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... DEPARTMENT OF THE INTERIOR Central Utah Project Completion Act: Availability of Draft Environmental Assessment; Block Notice 1A, Heber Sub-Area Irrigation to M&I Water Conversion, Wasatch County, UT AGENCY: Department of the Interior, Office of the Assistant Secretary-- Water and Science. ACTION: Notice...

  18. Front Range Infrastructure Resources Project: water-resources activities

    USGS Publications Warehouse

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  19. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  20. Climate change and water availability for vulnerable agriculture

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  1. Impact of rural water projects on hygienic behaviour in Swaziland

    NASA Astrophysics Data System (ADS)

    Peter, Graciana

    In Swaziland, access to safe water supply and sanitation has improved significantly and was expected to result in improved health and, in particular, reduced infant mortality rates. On the contrary, mortality rates in the under 5 years age group are high and have doubled from 60 in 1996, to 120 deaths per 1000 in 2006. The main objective of the study was to assess whether the water projects permit, and are accompanied by, changes in hygienic behaviour to prevent transmission of diseases. The study area was Phonjwane, located in the dry Lowveld of Swaziland, where water projects play a significant role in meeting domestic water demands. Hygienic behaviour and sanitation facilities were analysed and compared before and after project. The results of the study show that domestic water supply projects have significantly reduced distances travelled and time taken to collect water, and that increased quantities of water are collected and used. While the majority of respondents (95.6%) used the domestic water project source, the quantities allowed per household (125 l which translates to an average of 20.8 l per person) were insufficient and therefore were supplemented with harvested rainwater (57.8%), water from a polluted river (17.8%), and water from a dam (2.2%). Increased water quantities have permitted more baths and washing of clothes and hands, but significant proportions of the population still skip hygienic practices such as keeping water for washing hands inside or near toilet facilities (40%) and washing hands (20%). The study concludes that the water supply project has permitted and improved hygienic practices but not sufficiently. The health benefits of safe domestic water supplies are hampered by insufficient quantities of water availed through the projects, possible contamination of the water in the house, poor hygienic behaviours and lack of appropriate sanitation measures by some households. There is a need to provide sufficient quantities of safe water

  2. 18 CFR 8.2 - Posting of project lands as to recreational use and availability of information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Posting of project lands as to recreational use and availability of information. 8.2 Section 8.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL...

  3. Identification of the effective water availability from streamflows in the Zerafshan river basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Olsson, Oliver; Gassmann, Matthias; Wegerich, Kai; Bauer, Melanie

    2010-09-01

    SummaryQuantitative estimates of the hydrologic effects of climate change are essential for understanding and solving potential transboundary water conflicts in the Zerafshan river basin, Central Asia. This paper introduces an identification of runoff generation processes and a detection of changes in hydrological regimes supporting Mann-Kendall trend analysis for streamflows. By this, the effective available and future water resources are identified for the Zerafshan. The results for the subbasins in the upper Zerafshan and for the reference station at the upper catchment outlet indicate that glacier melt is the most significant component of river runoff. The Mann-Kendall trend analysis confirms the regime analysis with the shift in the seasonality of the discharge. Furthermore, the results of the Kendall-Theil Robust Line for predicted long-term discharge trends show a decreasing annual discharge. The experience gained during this study emphasizes the fact that the summer flood, urgently required for the large irrigation projects downstream in Uzbekistan, is reduced and more water will be available in spring. Additionally, following the estimation of future discharges in 50 and 100 years the hydrological changes are affecting the seasonal water availability for irrigation. This analysis highlighted that water availability is decreasing and the timing of availability is changing. Hence, there will be more competition between upstream Tajikistan and downstream Uzbekistan. Planned projects within the basin might have to be reconsidered and the changed scenario of water availability needs to be properly taken into account for long-term basin scale water management.

  4. Socioeconomic differentials and availability of domestic water in South Africa

    NASA Astrophysics Data System (ADS)

    Dungumaro, Esther W.

    The past few decades has seen massive efforts to increasing provision of domestic water. However, water is still unavailable to many people most of them located in sub-Saharan Africa, South Asia and East Asia. Furthermore, availability of water varies greatly both spatially and temporary. While other people pay so dearly for domestic water others have an easy access to adequate clean water and sanitation. Accessibility and affordability of domestic water and sanitation is determined by a great variety of factors including socioeconomic status of households. The main objective of the paper is to inform on factors which need to be taken into account when coming up with projects to provide domestic water. It is more critical when the issue of water pricing comes into the equation. Water pricing has many facets, including equity, willingness to pay and affordability. In this premise, it is deemed important to understand the socioeconomic characteristics of the people before deciding on the amount of money they will have to pay for water consumption. It is argued that understanding people’s socioeconomic situation will greatly help to ensure that principles of sustainability and equity in water allocation and pricing are achieved. To do so, the paper utilized 2002 South Africa General Household Survey (GHS), to analyze socioeconomic variables and availability of domestic water. Analysis was mainly descriptive. However, logistic regression analysis was also utilized to determine the likelihood of living in a household that obtain water from a safe source. The study found that there is a strong relationship between availability of domestic water and socioeconomic conditions. Economic status, household size and to a lesser extent gender of head of household were found to be strong predictors of living in a household which obtained water from a safe source. The paper recommends that needs and priorities for interventions in water provision should take into account

  5. 75 FR 52523 - Southern Nevada Water Authority; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13569-001-NV] Southern Nevada Water Authority; Notice of Availability of Environmental Assessment August 19, 2010. In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission's...

  6. Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasper, John R.; Veselka, Thomas D.; Mahalik, Matthew R.

    2014-05-19

    This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in moremore » energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.« less

  7. Ground-Water Availability in the United States

    USGS Publications Warehouse

    Reilly, Thomas E.; Dennehy, Kevin F.; Alley, William M.; Cunningham, William L.

    2008-01-01

    Ground water is among the Nation's most important natural resources. It provides half our drinking water and is essential to the vitality of agriculture and industry, as well as to the health of rivers, wetlands, and estuaries throughout the country. Large-scale development of ground-water resources with accompanying declines in ground-water levels and other effects of pumping has led to concerns about the future availability of ground water to meet domestic, agricultural, industrial, and environmental needs. The challenges in determining ground-water availability are many. This report examines what is known about the Nation's ground-water availability and outlines a program of study by the U.S. Geological Survey Ground-Water Resources Program to improve our understanding of ground-water availability in major aquifers across the Nation. The approach is designed to provide useful regional information for State and local agencies who manage ground-water resources, while providing the building blocks for a national assessment. The report is written for a wide audience interested or involved in the management, protection, and sustainable use of the Nation's water resources.

  8. Lunchtime School Water Availability and Water Consumption among California Adolescents

    PubMed Central

    Bogart, Laura M.; Babey, Susan H.; Patel, Anisha I.; Wang, Pan; Schuster, Mark A.

    2015-01-01

    Purpose To examine the potential impact of California SB1413, which required school districts to provide free, fresh drinking water during mealtimes in food service areas by July 1, 2011, on greater water consumption among California adolescents. Methods Data were drawn from the 2012 and 2013 state-representative California Health Interview Survey. A total of 2,665 adolescents aged 12-17 were interviewed regarding their water consumption and availability of free water during lunchtime at their school. Results Three-fourths reported that their school provided free water at lunchtime, mainly via fountains. In a multivariate model that controlled for age, gender, income, race/ethnicity, BMI, and school type, adolescents in schools that provided free water consumed significantly more water than adolescents who reported that water was not available, b (SE) = 0.67 (0.28), p = .02. School water access did not significantly vary across the two years. Conclusions Lunchtime school water availability was related to water consumption, but a quarter of adolescents reported that their school did not provide free water at lunch. Future research should explore what supports and inducements might facilitate provision of drinking water during school mealtimes. PMID:26552740

  9. Water Resources Availability in Kabul, Afghanistan

    NASA Astrophysics Data System (ADS)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  10. Summary of resources available to small water systems for meeting the 10 ppb arsenic drinking water limit.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumhansl, James Lee; Thomson, Bruce M.; Ziegler, Matt

    2007-01-01

    With the lowering of the EPA maximum contaminant level of arsenic from 50 parts per billion (ppb) to 10 ppb, many public water systems in the country and in New Mexico in particular, are faced with making decisions about how to bring their system into compliance. This document provides detail on the options available to the water systems and the steps they need to take to achieve compliance with this regulation. Additionally, this document provides extensive resources and reference information for additional outreach support, financing options, vendors for treatment systems, and media pilot project results.

  11. Influences of climate change on water resources availability in Jinjiang Basin, China.

    PubMed

    Sun, Wenchao; Wang, Jie; Li, Zhanjie; Yao, Xiaolei; Yu, Jingshan

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer.

  12. Influences of Climate Change on Water Resources Availability in Jinjiang Basin, China

    PubMed Central

    Wang, Jie; Li, Zhanjie; Yao, Xiaolei

    2014-01-01

    The influences of climate change on water resources availability in Jinjiang Basin, China, were assessed using the Block-wise use of the TOPmodel with the Muskingum-Cunge routing method (BTOPMC) distributed hydrological model. The ensemble average of downscaled output from sixteen GCMs (General Circulation Models) for A1B emission scenario (medium CO2 emission) in the 2050s was adopted to build regional climate change scenario. The projected precipitation and temperature data were used to drive BTOPMC for predicting hydrological changes in the 2050s. Results show that evapotranspiration will increase in most time of a year. Runoff in summer to early autumn exhibits an increasing trend, while in the rest period of a year it shows a decreasing trend, especially in spring season. From the viewpoint of water resource availability, it is indicated that it has the possibility that water resources may not be sufficient to fulfill irrigation water demand in the spring season and one possible solution is to store more water in the reservoir in previous summer. PMID:24701192

  13. Lunchtime School Water Availability and Water Consumption Among California Adolescents.

    PubMed

    Bogart, Laura M; Babey, Susan H; Patel, Anisha I; Wang, Pan; Schuster, Mark A

    2016-01-01

    To examine the potential impact of California SB 1413, which required school districts to provide free, fresh drinking water during mealtimes in food service areas by July 1, 2011, on greater water consumption among California adolescents. Data were drawn from the 2012 and 2013 state-representative California Health Interview Survey. A total of 2,665 adolescents aged 12-17 years were interviewed regarding their water consumption and availability of free water during lunchtime at their school. Three-fourths reported that their school provided free water at lunchtime, mainly via fountains. In a multivariate model that controlled for age, gender, income, race/ethnicity, body mass index, and school type, adolescents in schools that provided free water consumed significantly more water than adolescents who reported that water was not available, bivariate (standard error) = .67 (.28), p = .02. School water access did not significantly vary across the 2 years. Lunchtime school water availability was related to water consumption, but a quarter of adolescents reported that their school did not provide free water at lunch. Future research should explore what supports and inducements might facilitate provision of drinking water during school mealtimes. Copyright © 2016 Society for Adolescent Health and Medicine. All rights reserved.

  14. 76 FR 58840 - Central Valley Project Improvement Act; Refuge Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-22

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act; Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: To meet the requirements of the Central Valley Project Improvement Act of 1992 (CVPIA) and subsequent...

  15. Impacts of Potential Changes in Land Use, Climate, and Water Use on Water Availability, Coastal Carolinas Region, Southeastern United States

    NASA Astrophysics Data System (ADS)

    Gurley, L. N.; Garcia, A. M.

    2017-12-01

    Sustainable growth in coastal areas with rapidly increasing populations, such as the coastal regions of North and South Carolina, relies on an understanding of the current state of coastal natural resources coupled with the ability to assess future impacts of changing coastal communities and resources. Changes in climate, water use, population, and land use (e.g. urbanization) will place additional stress on societal and ecological systems that are already competing for water resources. The potential effects of these stressors on water availability are not fully known. To meet societal and ecological needs, water resources management and planning efforts require estimates of likely impacts of population growth, land-use, and climate. Two Soil and Water Assessment (SWAT) hydrologic models were developed to help address the challenges that water managers face in the Carolinas: the (1) Cape Fear and (2) Pee Dee drainage basins. SWAT is a basin-scale, process-based watershed model with the capability of simulating water-management scenarios. Model areas were divided into two square mile sub-basins to evaluate ecological response at headwater streams. The sub-basins were subsequently divided into smaller, discrete hydrologic response units based on land use, slope, and soil type. Monthly and annual water-use data were used for 2000 to 2014 and included estimates of municipal, industrial, agricultural, and commercial water use. Models were calibrated for 2000 to 2014 and potential future streamflows were estimated through 2060 based on a suite of scenarios that integrated land use change projections, climate projections and water-use forecasts. The approaches and new techniques developed as part of this research could be applied to other coastal areas that face similar current and future water availability demands.

  16. Regional Responses to Constrained Water Availability

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Calvin, K. V.; Hejazi, M. I.; Clarke, L.; Kim, S. H.; Patel, P.

    2017-12-01

    There have been many concerns about water as a constraint to agricultural production, electricity generation, and many other human activities in the coming decades. Nevertheless, how different countries/economies would respond to such constraints has not been explored. Here, we examine the responding mechanism of binding water availability constraints at the water basin level and across a wide range of socioeconomic, climate and energy technology scenarios. Specifically, we look at the change in water withdrawals between energy, land-use and other sectors within an integrated framework, by using the Global Change Assessment Model (GCAM) that also endogenizes water use and allocation decisions based on costs. We find that, when water is taken into account as part of the production decision-making, countries/basins in general fall into three different categories, depending on the change of water withdrawals and water re-allocation between sectors. First, water is not a constraining factor for most of the basins. Second, advancements in water-saving technologies of the electricity generation cooling systems are sufficient of reducing water withdrawals to meet binding water availability constraints, such as in China and the EU-15. Third, water-saving in the electricity sector alone is not sufficient and thus cannot make up the lowered water availability from the binding case; for example, many basins in Pakistan, Middle East and India have to largely reduce irrigated water withdrawals by either switching to rain-fed agriculture or reducing production. The dominant responding strategy for individual countries/basins is quite robust across the range of alternate scenarios that we test. The relative size of water withdrawals between energy and agriculture sectors is one of the most important factors that affect the dominant mechanism.

  17. Influence of the South-North Water Diversion Project and the mitigation projects on the water quality of Han River.

    PubMed

    Zhu, Y P; Zhang, H P; Chen, L; Zhao, J F

    2008-11-15

    Situated in the central part of China, the Han River Basin is undergoing rapid social and economic development with some human interventions to be made soon which will profoundly influence the water environment of the basin. The integrated MIKE 11 model system comprising of a rainfall-runoff model (NAM), a non-point load evaluation model (LOAD), a hydrodynamic model (MIKE 11 HD) and a water quality model (ECOLab) was applied to investigate the impact of the Middle Route of the South-North Water Diversion Project on the Han River and the effectiveness of the 2 proposed mitigation projects, the 22 wastewater treatment plants (WWTPs) and the Yangtze-Han Water Diversion Project. The study concludes that business as usual will lead to a continuing rapid deterioration of the water quality of the Han River. Implementation of the Middle Route of the South-North Water Diversion Project in 2010 will bring disastrous consequence in the form of the remarkably elevated pollution level and high risk of algae bloom in the middle and lower reaches. The proposed WWTPs will merely lower the pollution level in the reach by around 10%, while the Yangtze-Han Water Diversion Project can significantly improve the water quality in the downstream 200-km reach. The results reveal that serious water quality problem will emerge in the middle reach between Xiangfan and Qianjiang in the future. Implementation of the South-North Water Diversion Project (phase II) in 2030 will further exacerbate the problem. In order to effectively improve the water quality of the Han River, it is suggested that nutrient removal processes should be adopted in the proposed WWTPs, and the pollution load from the non-point sources, especially the load from the upstream Henan Province, should be effectively controlled.

  18. 75 FR 49518 - Northwest Area Water Supply Project, North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  19. 75 FR 48986 - Northwest Area Water Supply Project, North Dakota

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-12

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Northwest Area Water Supply Project, North Dakota... Area Water Supply Project (NAWS Project), a Federal reclamation project, located in North Dakota. A... CONTACT: Alicia Waters, Northwest Area Water Supply Project EIS, Bureau of Reclamation, Dakotas Area...

  20. Future water availability in North African dams simulated by high-resolution regional climate models

    NASA Astrophysics Data System (ADS)

    Tramblay, Yves; Jarlan, Lionel; Hanich, Lahoucine; Somot, Samuel

    2016-04-01

    In North Africa, the countries of Morocco, Algeria and Tunisia are already experiencing water scarcity and a strong interannual variability of precipitation. To better manage their existing water resources, several dams and reservoirs have been built on most large river catchments. The objective of this study is to provide quantitative scenarios of future changes in water availability for the 47 major dams and reservoirs catchments located in North Africa. An ensemble of regional climate models (RCM) with a spatial resolution of 12km, driven by different general circulation models (GCM), from the EuroCORDEX experiment have been considered to analyze the projected changes on temperature, precipitation and potential evapotranspiration (PET) for two scenarios (RCP4.5 and RCP8.5) and two time horizons (2040-2065 and 2065-2090). PET is estimated from RCM outputs either with the FAO-Penman-Monteith (PM) equation, requiring air temperature, relative humidity, net radiation and wind, or with the Hargreave Samani (HS) equation, requiring only air temperature. The water balance is analyzed by comparing the climatic demand and supply of water, considering that for most of these catchments groundwater storage is negligible over long time periods. Results indicated a future temperature increase for all catchments between +1.8° and +4.2°, depending on the emission scenario and the time period considered. Precipitation is projected to decrease between -14% to -27%, mainly in winter and spring, with a strong East to West gradient. PET computed from PM or HS formulas provided very similar estimates and projections, ranging between +7% to +18%. Changes in PET are mostly driven by rising temperatures and are greatest during dry summer months than for the wet winter season. Therefore the increased PET has a lower impact than declining precipitation on future water availability, which is expected to decrease by -19% to -33% on average.

  1. 76 FR 71967 - Marseilles Land & Water Company, IL; Notice of Availability of Environmental Assessment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13351-000] Marseilles Land & Water Company, IL; Notice of Availability of Environmental Assessment In accordance with the National Environmental Policy Act of 1969 and the Federal Energy Regulatory Commission (Commission) regulations, 18 CFR...

  2. Water transfer projects and the role of fisheries biologists

    USGS Publications Warehouse

    Meador, M.R.

    1996-01-01

    Water transfer projects are commonly considered important mechanisms for meeting increasing water demands. However, the movement of water from one area to another may have broad ecosystem effects, including on fisheries. The Southern Division of the American Fisheries Society held a symposium in 1995 at Virginia Beach, Virginia, to discuss the ecological consequences of water transfer and identify the role of fisheries biologists in such projects. Presenters outlined several case studies, including the California State Water Project, Garrison Diversion Project (North Dakota), Lake Texoma Water Transfer Project (Oklahoma-Texas), Santee-Cooper Diversion and Re-diversion projects (South Carolina), and Tri-State Comprehensive Study (Alabama-Florida-Georgia). Results from these studies suggest that fisheries biologists have provided critical information regarding potential ecological consequences of water transfer. If these professionals continue to be called for information regarding the ecological consequences of water transfer projects, developing a broader understanding of the ecological processes that affect the fish species they manage may be necessary. Although the traditional role of fisheries biologists has focused on the fishing customer base, fisheries management issues are only one component of the broad spectrum of ecosystem issues resulting from water transfer.

  3. Relative controls of natural and socio-economic drivers on water availability over India: an exploratory modelling analysis

    NASA Astrophysics Data System (ADS)

    Deshmukh, A.; Singh, R.; Kumar, R.

    2017-12-01

    India, a water stressed nation with an estimated per capita water availability of 1500m3/year/person, is projected to surpass China in population to become the most populous country by 2022. This increasing population will further exacerbate the water stress, which will also vary due to climate and land use change. Here, we quantify the relative controls on per capita water availability from climatic, non-climatic and socio-economic factors. We achieve this by using several definitions of per capita water availability and accounting for virtual water trade transfer. Our exploratory analysis employs the recently developed probabilistic Budyko framework modified to account for inter-regional virtual water trade. We find that the Indo-Gangetic plains and Southeastern parts of India emerge as vulnerable regions where a growing population will lead to a drastic reduction in per capita water availability. The proposed framework can serve as a prototype for understanding the relative importance of socio-economic interventions versus water infrastructure or demand reduction investments.

  4. Global pattern of trends in streamflow and water availability in a changing climate.

    PubMed

    Milly, P C D; Dunne, K A; Vecchia, A V

    2005-11-17

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10-40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10-30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  5. 46 CFR 76.10-3 - Water availability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Water availability. 76.10-3 Section 76.10-3 Shipping... Fire Main System, Details § 76.10-3 Water availability. (a) On all vessels on an international voyage, regardless of the date of construction, water pressure from the firemain protecting enclosed spaces shall be...

  6. 46 CFR 76.10-3 - Water availability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Water availability. 76.10-3 Section 76.10-3 Shipping... Fire Main System, Details § 76.10-3 Water availability. (a) On all vessels on an international voyage, regardless of the date of construction, water pressure from the firemain protecting enclosed spaces shall be...

  7. 46 CFR 76.10-3 - Water availability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Water availability. 76.10-3 Section 76.10-3 Shipping... Fire Main System, Details § 76.10-3 Water availability. (a) On all vessels on an international voyage, regardless of the date of construction, water pressure from the firemain protecting enclosed spaces shall be...

  8. 46 CFR 76.10-3 - Water availability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Water availability. 76.10-3 Section 76.10-3 Shipping... Fire Main System, Details § 76.10-3 Water availability. (a) On all vessels on an international voyage, regardless of the date of construction, water pressure from the firemain protecting enclosed spaces shall be...

  9. 46 CFR 76.10-3 - Water availability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Water availability. 76.10-3 Section 76.10-3 Shipping... Fire Main System, Details § 76.10-3 Water availability. (a) On all vessels on an international voyage, regardless of the date of construction, water pressure from the firemain protecting enclosed spaces shall be...

  10. Shifts in water availability mediate plant-pollinator interactions.

    PubMed

    Gallagher, M Kate; Campbell, Diane R

    2017-07-01

    Altered precipitation patterns associated with anthropogenic climate change are expected to have many effects on plants and insect pollinators, but it is unknown if effects on pollination are mediated by changes in water availability. We tested the hypothesis that impacts of climate on plant-pollinator interactions operate through changes in water availability, and specifically that such effects occur through alteration of floral attractants. We manipulated water availability in two naturally occurring Mertensia ciliata (Boraginaceae) populations using water addition, water reduction and control plots and measured effects on vegetative and floral traits, pollinator visitation and seed set. While most floral trait values, including corolla size and nectar, increased linearly with increasing water availability, in this bumblebee-pollinated species, pollinator visitation peaked at intermediate water levels. Visitation also peaked at an intermediate corolla length, while its relationship to corolla width varied across sites. Seed set, however, increased linearly with water. These results demonstrate the potential for changes in water availability to impact plant-pollinator interactions through pollinator responses to differences in floral attractants, and that the effects of water on pollinator visitation can be nonlinear. Plant responses to changes in resource availability may be an important mechanism by which climate change will affect species interactions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Project Themis: Water Visualization Study

    DTIC Science & Technology

    2011-09-15

    parameters and design space. Apparatus is discussed, including water flow loop and test section parts, as well as flow measurements, LDV, PLIF, and...release; distribution unlimited Project Themis: Water Visualization Study Allen Bishop AFRL/RZSE 15 Sept 2011 2 About Me • BS & MS Aerospace

  12. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Source Policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harto, C. B.; Schroeder, J. N.; Horner, R. M.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel–based electricity generation; however, the long-term sustainability ofmore » geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.« less

  13. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  14. An Analysis of the Second Project High Water Data

    NASA Technical Reports Server (NTRS)

    Woodbridge, David D.; Lasater, James A.; Fultz, Bennett M.; Clark, Richard E.; Wylie, Nancy

    1963-01-01

    Early in 1962 NASA established "Project High Water" to investigate the sudden release of large quantities of water into the upper atmosphere. The primary objectives of these experiments were to obtain information on the behavior of liquids released in the ionosphere and the localized effects on the ionosphere produced by the injection of large quantities of water. The data obtained in the two (2) Project High Water experiments have yielded an extensive amount of information concerning the complex phenomena associated with the sudden release of liquids in the Ionosphere. The detailed analysis of data obtained during the second Project High Water experiment (i.e., the third Saturn I vehicle test or SA-3) presented in this report demonstrates that the objectives of the Project High Water were achieved. In addition, the Project High Water has provided essential information relevant to a number of problems vital to manned explorations of space.

  15. Water use trends and demand projections in the Northwest Florida Water Management District

    USGS Publications Warehouse

    Marella, R.L.; Mokray, M.F.; Hallock-Solomon, Michael

    1998-01-01

    The Northwest Florida Water Management District is located in the western panhandle of Florida and encompasses about 11,200 square miles. In 1995, the District had an estimated population of 1.13 million, an increase of about 47 percent from the 1975 population of 0.77 million. Over 50 percent of the resident population lives within 10 miles of the coast. In addition, hundreds of thousands of visitors come to the coastal areas of the panhandle during the summer months for recreation or vacation purposes. Water withdrawn to meet demands for public supply, domestic self-supplied, commercial-industrial, agricultural irrigation, and recreational irrigation purposes in the District increased 18 percent (52 million gallons per day) between 1970 and 1995. The greatest increases were for public supply and domestic self-supplied (99 percent increase) and for agricultural irrigation (60 percent increase) between 1970 and 1995. In 1995, approximately 70 percent of the water withdrawn was from ground-water sources, with the majority of this from the Floridan aquifer system. The increasing water demands have affected water levels in the Floridan aquifer system, especially along the coastal areas. The Northwest Florida Water Management District is mandated under the Florida Statutes (Chapter 373) to protect and manage the water resources in this area of the State. The mandate requires that current and future water demands be met, while water resources and water-dependent natural systems are sustained. For this project, curve fitting and extrapolation were used to project most of the variables (population, population served by public supply, and water use) to the years 2000, 2005, 2010, 2015, and 2020. This mathematical method involves fitting a curve to historical population or water-use data and then extending this curve to arrive at future values. The population within the region is projected to reach 1,596,888 by the year 2020, an increase of 41 percent between 1995 and 2020

  16. Probabilistic Water Availability Prediction in the Rio Grande Basin using Large-scale Circulation Indices as Precursor

    NASA Astrophysics Data System (ADS)

    Khedun, C. P.; Mishra, A. K.; Giardino, J. R.; Singh, V. P.

    2011-12-01

    Hydrometeorological conditions, and therefore water availability, is affected by large-scale circulation indices. In the Rio Grande, which is a transboundary basin shared between the United States and Mexico, the Pacific Decadal Oscillation (PDO) and El Niño Southern Oscillation (ENSO) influence local hydrological conditions. Different sub-regions of the basin exhibit varying degrees of correlation, but in general, an increase (decrease) in runoff during El Niños (La Niñas) is noted. Positive PDO enhances the effect of El Niño and dampens the negative effect of La Niña, and when it is in its neutral/transition phase, La Niña dominates climatic conditions and reduces water availability. Further, lags of up to 3 months have been found between ENSO and precipitation in the basin. We hypothesize that (1) a trivariate statistical relationship can be established between the two climate indices and water availability, and (2) the relationship can be used to predict water availability based on projected PDO and ENSO conditions. We use copula to establish the dependence between climate indices and water availability. Water availability is generated from Noah land surface model (LSM), forced with the North American Land Data Assimilation System Phase 2 (NLDAS-2). The model is run within NASA GSFC's Land Information System. LSM generated runoff gives a more realistic picture of available surface water as it is not affected by anthropogenic changes, such as the construction of dams, diversions, and other land use land cover changes, which may obscure climatic influences. Marginals from climate indices and runoff are from different distribution families, thus conventional functional forms of multivariate frequency distributions cannot be employed. Copulas offer a viable alternative as marginals from different families can be combined into a joint distribution. Uncertainties in the statistical relationship can be determined and the statistical model can be used for

  17. Water on Mars - Volatile history and resource availability

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1990-01-01

    An attempt is made to define the available deposits of water in the near-surface region of Mars which will be available to human exploration missions. The Martian seasonal water cycle is reviewed, and geochemical and geological constraints on the availability of water are examined. It is concluded that the only sure source of water in amounts significant as a resource are in the polar ice deposits.

  18. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    USDA-ARS?s Scientific Manuscript database

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...

  19. Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability

    NASA Astrophysics Data System (ADS)

    Finger, D.; Hugentobler, A.; Huss, M.; Voinesco, A.; Wernli, H.; Fischer, D.; Weber, E.; Jeannin, P.-Y.; Kauzlaric, M.; Wirz, A.; Vennemann, T.; Hüsler, F.; Schädler, B.; Weingartner, R.

    2013-08-01

    Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs.

  20. Water Availability and Management of Water Resources

    EPA Science Inventory

    One of the most pressing national and global issues is the availability of freshwater due to global climate change, energy scarcity issues and the increase in world population and accompanying economic growth. Estimates of water supplies and flows through the world's hydrologic c...

  1. Water availability and management for food security

    USDA-ARS?s Scientific Manuscript database

    Food security is directly linked to water security for food production. Water availability for crop production will be dependent upon precipitation or irrigation, soil water holding capacity, and crop water demand. The linkages among these components in rainfed agricultural systems shows the impact ...

  2. Middle-term metropolitan water availability index assessment based on synergistic potentials of multi-sensor data

    NASA Astrophysics Data System (ADS)

    Chang, Ni-Bin; Yang, Y. Jeffrey; Daranpob, Ammarin

    2010-03-01

    The impact of recent drought and water pollution episodes results in an acute need to project future water availability to assist water managers in water utility infrastructure management within many metropolitan regions. Separate drought and water quality indices previously developed might not be sufficient for the purpose of such an assessment. This paper describes the development of the "Metropolitan Water Availability Index (MWAI)" and its potential applications in assessing the middle-term water availability at the watershed scale in a fast growing metropolitan region - the Manatee County near Tampa Bay, Florida, U.S.A. The MWAI framework is based on a statistical approach that seeks to reflect the continuous spatial and temporal variations of both water quantity and quality using a simple numerical index. Such a trend analysis will surely result in the final MWAI values for regional water management systems within a specified range. By using remote sensing technologies and data processing techniques, continuous monitoring of spatial and temporal distributions of key water availability variables, such as evapotranspiration (ET) and precipitation, is made achievable. These remote sensing technologies can be ground-based (e.g., radar estimates of rainfall), or based on remote sensing data gathered by aircraft or satellites. Using a middle term historical record, the MWAI was applied to the Manatee County water supplies. The findings clearly indicate that only eight out of twelve months in 2008 had positive MWAI values during the year. Such numerical findings are consistent with the observational evidence of statewide drought events in 2006-2008, which implies the time delay between the ending of severe drought period and the recovery of water availability in MWAI. It is expected that this forward-looking novel water availability forecasting platform will help provide a linkage in methodology between strategic planning, master planning, and the plant operation

  3. Global pattern of trends in streamflow and water availability in a changing climate

    USGS Publications Warehouse

    Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V.

    2005-01-01

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10–40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10–30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  4. The New Challenges of China's South to North Water Diversion Project

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2017-12-01

    Water shortage has restricted the economic and social development of Beijing during recent years. The central route of China's South to North Water Diversion Project is planned to divert water from the Danjiangkou Reservoir to Beijing. Currently, the main local surface water source for Beijing is the Miyun Reservoir. We found that annual runoffs in both of the Danjiangkou Reservoir Basin and Miyun Reservoir Basin decreased significantly from 1956 to 2015. The decrease in runoff represents a decrease in available water resources. We classified each year between 1956 and 2015 as either a wet, normal or dry year based on the Pearson-III probability distribution of annual runoff. The probability of a simultaneous dry year in the two basins was about 8.8% during 1956 to 1989, while it increased to 33.7% during 1990 to 2015. The increase in probability of a simultaneous dry year could threaten the success of the water diversion project. We suggest that urgent adaptive measures are implemented in advance to face this challenge.

  5. Sustainability of mega water diversion projects: Experience and lessons from China.

    PubMed

    Yu, Min; Wang, Chaoran; Liu, Yi; Olsson, Gustaf; Wang, Chunyan

    2018-04-01

    Water availability and water demand are not evenly distributed in time and space. Many mega water diversion projects have been launched to alleviate water shortages in China. This paper analyzes the temporal and spatial features of 59 mega water diversion projects in China using statistical analysis. The relationship between nine major basins is measured using a network analysis method, and the associated economic, environmental and social impacts are explored using an impact analysis method. The study finds the development of water diversion has experienced four stages in China, from a starting period through to a period of high-speed development. Both the length of water diversion channels and the amount of transferred water have increased significantly in the past 50years. As of 2015, over 100billionm 3 of water was transferred in China through 16,000km in channels. These projects reached over half of China's provinces. The Yangtze River Basin is now the largest source of transferred water. Through inter-basin water diversion, China gains the opportunity to increase Gross Domestic Product by 4%. However, the construction costs exceed 150 billion US dollars, larger than in any other country. The average cost per unit of transferred water has increased with time and scale but decreased from western to eastern China. Furthermore, annual total energy consumption for pumping exceeded 50billionkilowatt-hours and the related greenhouse gas emissions are estimated to be 48milliontons. It is worth noting that ecological problems caused by water diversion affect the Han River and Yellow River Basins. Over 500 thousand people have been relocated away from their homes due to water diversion. To improve the sustainability of water diversion, four kinds of innovative measures have been provided for decision makers: national diversion guidelines, integrated water basin management, economic incentives and ex-post evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 43 CFR 418.2 - How Project water may be used.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How Project water may be used. 418.2..., DEPARTMENT OF THE INTERIOR OPERATING CRITERIA AND PROCEDURES FOR THE NEWLANDS RECLAMATION PROJECT, NEVADA General Provisions § 418.2 How Project water may be used. Project water may be delivered only to serve...

  7. Olive response to water availability: yield response functions, soil water content indicators and evaluation of adaptability to climate change

    NASA Astrophysics Data System (ADS)

    Riccardi, Maria; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Menenti, Massimo; Monaco, Eugenia; De Lorenzi, Francesca

    2013-04-01

    simulation model of the water flow in the soil-plant-atmosphere system, the indicators of soil water availability were calculated for different soil units in an area of Southern Italy, traditionally cultivated with olive. Simulations were performed for two climate scenarios: reference (1961-90) and future climate (2021-50). The potentiality of the indicators RSWD, RED and RTD to describe soil water availability was evaluated using simulated and experimental data. The analysis showed that RED values were correlated to RTD. The analysis demonstrated that RTD was more effective than RED in representing crop water availability RSWD is very well correlated to RTD and the degree of correlation depends of the period of deficit considered. The probability of adaptation of each cultivar was calculated for both climatic periods by comparing the critical values (and their error distribution) with soil availability indicators. Keywords: Olea europaea, soil water deficit, water availability critical value. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008)

  8. An evaluation of the sustainability of a rural water rehabilitation project in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Hoko, Zvikomborero; Hertle, Jochen

    An estimated 70% of the national population lives in rural areas in Zimbabwe. Previous studies suggest that groundwater is consumed predominantly without treatment. This study evaluated the sustainability of a rural water point rehabilitation project that was carried out in Mwenezi (Masvingo Province), and Gwanda, Bulilima and Mangwe (Matabeleland South Province) districts by a local NGO. The study was carried out a year after the rehabilitation project. Sustainability indicators considered in the study included the reliability of the system, human capacity development, institutional arrangements, and the impact of the project on rural livelihoods. A combination of field inspections of the water points and interviews with villagers were used as study tools. It was found out that 14% of the water points were broken down in Mwenezi, 17% (Gwanda), 13% (Bulilima) and 25% (Mangwe). Water quality was satisfactory for taste for over 90% and for 62-95% of respondents for soap consumption in all districts. Trained repair personnel were available in over 50% of the cases. Awareness of the training workshops for operation and maintenance in all districts was above 75%. Water point committees existed and functioned in all districts for 50-83% of water points. For 84-93% of the responses financial contributions were made only in the event of a breakdown. The walking distance to a water point was reduced after the project according to 83-100% of respondents in all districts. Health and hygiene knowledge was deemed to have improved due to the project in 46-78% of cases. It was concluded that opportunities for sustainable water supply are there if active community involvement is enhanced, training is lengthened and water point committees strengthened. There is also need to raise the awareness of ordinary villagers. Future rehabilitation projects should consider stricter supervision and equipping the trained personnel with tools.

  9. Proposing water balance method for water availability estimation in Indonesian regional spatial planning

    NASA Astrophysics Data System (ADS)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.

    2018-01-01

    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  10. Water Availability and Use Pilot-A multiscale assessment in the U.S. Great Lakes Basin

    USGS Publications Warehouse

    Reeves, Howard W.

    2011-01-01

    Beginning in 2005, water availability and use were assessed for the U.S. part of the Great Lakes Basin through the Great Lakes Basin Pilot of a U.S. Geological Survey (USGS) national assessment of water availability and use. The goals of a national assessment of water availability and use are to clarify our understanding of water-availability status and trends and improve our ability to forecast the balance between water supply and demand for future economic and environmental uses. This report outlines possible approaches for full-scale implementation of such an assessment. As such, the focus of this study was on collecting, compiling, and analyzing a wide variety of data to define the storage and dynamics of water resources and quantify the human demands on water in the Great Lakes region. The study focused on multiple spatial and temporal scales to highlight not only the abundant regional availability of water but also the potential for local shortages or conflicts over water. Regional studies provided a framework for understanding water resources in the basin. Subregional studies directed attention to varied aspects of the water-resources system that would have been difficult to assess for the whole region because of either data limitations or time limitations for the project. The study of local issues and concerns was motivated by regional discussions that led to recent legislative action between the Great Lakes States and regional cooperation with the Canadian Great Lakes Provinces. The multiscale nature of the study findings challenges water-resource managers and the public to think about regional water resources in an integrated way and to understand how future changes to the system-driven by human uses, climate variability, or land-use change-may be accommodated by informed water-resources management.

  11. Illinois drainage water management demonstration project

    USGS Publications Warehouse

    Pitts, D.J.; Cooke, R.; Terrio, P.J.; ,

    2004-01-01

    Due to naturally high water tables and flat topography, there are approximately 4 million ha (10 million ac) of farmland artificially drained with subsurface (tile) systems in Illinois. Subsurface drainage is practiced to insure trafficable field conditions for farm equipment and to reduce crop stress from excess water within the root zone. Although drainage is essential for economic crop production, there have been some significant environmental costs. Tile drainage systems tend to intercept nutrient (nitrate) rich soil-water and shunt it to surface water. Data from numerous monitoring studies have shown that a significant amount of the total nitrate load in Illinois is being delivered to surface water from tile drainage systems. In Illinois, these drainage systems are typically installed without control mechanisms and allow the soil to drain whenever the water table is above the elevation of the tile outlet. An assessment of water quality in the tile drained areas of Illinois showed that approximately 50 percent of the nitrate load was being delivered through the tile systems during the fallow period when there was no production need for drainage to occur. In 1998, a demonstration project to introduce drainage water management to producers in Illinois was initiated by NRCS4 An initial aspect of the project was to identify producers that were willing to manage their drainage system to create a raised water table during the fallow (November-March) period. Financial assistance from two federal programs was used to assist producers in retrofitting the existing drainage systems with control structures. Growers were also provided guidance on the management of the structures for both water quality and production benefits. Some of the retrofitted systems were monitored to determine the effect of the practice on water quality. This paper provides background on the water quality impacts of tile drainage in Illinois, the status of the demonstration project, preliminary

  12. Projecting water resources changes in potential large-scale agricultural investment areas of the Kafue River Basin in Zambia

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Trainor, A. M.; Baker, T. J.

    2017-12-01

    Climate change impacts regional water availability through the spatial and temporal redistribution of available water resources. This study focuses on understanding possible response of water resources to climate change in regions where potentials for large-scale agricultural investments are planned in the upper and middle Kafue River Basin in Zambia. We used historical and projected precipitation and temperature to assess changes in water yield, using the Soil and Water Assessment Tool (SWAT) hydrological model. Some of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model outputs for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios project a temperature warming range from 1.8 - 5.7 °C over the region from 2020 to 2095. Precipitation projection patterns vary monthly but tend toward drier dry seasons with a slight increase in precipitation during the rainy season as compared to the historical time series. The best five calibrated parameter sets generated for the historical record (1965 - 2005) were applied for two future periods, 2020 - 2060 and 2055 - 2095, to project water yield change. Simulations projected that the 90th percentile water yield would be exceeded across most of the study area by up to 800% under the medium-low (RCP4.5) CO2 emission scenario, whereas the high (RCP8.5) CO2 emission scenario resulted in a more spatially varied pattern mixed with increasing (up to 500%) and decreasing (up to -54%) trends. The 10th percentile water yield indicated spatially varied pattern across the basin, increasing by as much as 500% though decreasing in some areas by 66%, with the greatest decreases during the dry season under RCP8.5. Overall, available water resources in the study area are projected to trend toward increased floods (i.e. water yields far exceeding 90th percentile) as well as increasing drought (i.e. water yield far below 10th percentile) vulnerability. Because surface water is a primary source for agriculture

  13. The Model of Lake Operation in Water Transfer Projects Based on the Theory of Water- right

    NASA Astrophysics Data System (ADS)

    Bi-peng, Yan; Chao, Liu; Fang-ping, Tang

    the lake operation is a very important content in Water Transfer Projects. The previous studies have not any related to water-right and water- price previous. In this paper, water right is divided into three parts, one is initialization waterright, another is by investment, and the third is government's water- right re-distribution. The water-right distribution model is also build. After analyzing the cost in water transfer project, a model and computation method for the capacity price as well as quantity price is proposed. The model of lake operation in water transfer projects base on the theory of water- right is also build. The simulation regulation for the lake was carried out by using historical data and Genetic Algorithms. Water supply and impoundment control line of the lake was proposed. The result can be used by south to north water transfer projects.

  14. Water Resources Research Grant Program Project Descriptions: Fiscal Year 1988

    USGS Publications Warehouse

    Lew, Melvin; McCoy, Beverly M.

    1989-01-01

    This report contains information on the 38 new projects funded by the U.S. Geological Survey's Water Resources Research Grant Program in fiscal year 1988 and on 11 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), project duration, and a project description that includes: (1) identification of water-related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, and (4) approach. The 38 projects include 14 in the area of ground-water quality problems, 10 in the science and technology of water-quality management, 4 in climate variability and the hydrologic cycle, 7 in institutional change in water-resources management, and 3 in miscellaneous water-resources management problems. For the 11 completed projects, the report gives the grant number, project title, performing organization, principal investigator(s), starting date, date of receipt of final report, and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report also contains tables showing (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization.

  15. Quantifying Impacts of Food Trade on Water Availability Considering Water Sources

    NASA Astrophysics Data System (ADS)

    Oki, T.; Yano, S.; Hanasaki, N.

    2012-12-01

    Food production requires a lot of water, and traded food potentially has external impacts on environment through reducing the water availability in the producing region. Water footprint is supposed to be an indicator to reflect the impacts of water use. However, impacts of water use on environment, resource, and sustainability are different in place and time, and according to the sources of water withdrawals. Therefore it is preferable to characterize the water withdrawals or consumptions rather than just accumulate the total amount of water use when estimating water footprint. In this study, a new methodology, global green-water equivalent method, is proposed in which regional characterization factors are determined based on the estimates of natural hydrological cycles, such as precipitation, total runoff, and sub-surface runoff, and applied for green-water, river(+reservoir) water, and non-renewable ground water uses. Water footprint of the world associated with the production of 19 major crops was estimated using an integrated hydrological and water resources modeling system (H08), with atmospheric forcing data for 1991-2000 with spatial resolution of 0.5 by 0.5 longitudinal and latitudinal degrees. The impacts is estimated to be 6 times larger than the simple summation of green and blue water uses, and reflect the climatological water scarcity conditions geographically. The results can be used to compare the possible impacts of food trade associated with various crops from various regions on environment through reducing the availability of water resources in the cropping area.

  16. Preliminary report on ground water in the Michaud Flats Project, Power County, Idaho

    USGS Publications Warehouse

    Stewart, J.W.; Nace, Raymond L.; Deutsch, Morris

    1952-01-01

    The Michaud Flats Project area, as here described, includes about 65 square miles in central Power County, south of the Snake River in the southeastern Snake River Plain of Idaho. The principal town and commercial center of the area is American Falls. The immediate purpose of work in the area by the U.S. Geological Survey was to investigate the possibility of developing substantial quantities of ground water for irrigating high and outlying lands in the proposed Michaud Flats Project area of the U.S. Bureau of Reclamation. Initial findings are sufficiently favorable to warrant comprehensive further investigation. Advanced study would assist proper utilization of ground-water resources and would aid ultimate evaluation of total water resources available in the area. About 10,000 acres of low-lying lands in the Michaud Flats project could be irrigated with water from the Snake River under a low-line distribution system involving a maximum pumping lift of about 200 feet above the river. An additional larger area of high and outlying lands is suitable for irrigation with water pumped from wells. If sufficient ground water is economically available, the expense of constructing and operating a costly highline distribution system for surface water could be saved. Reconnaissance of the ground-water geology of the area disclosed surface outcrops of late Cenozoic sedimentary, pyroclastic, and volcanic rocks. Well logs and test borings show that similar materials are present beneath the land surface in the zone of saturation. Ground water occurs under perched, unconfined, and confined (artesian) conditions, but the aquifers have not been adequately explored. Existing irrigation wells, 300 feet or less in depth, yield several hundred to 1,400 gallons of water a minute, with pumping drawdowns of 6 to 50 feet, and perhaps more. A few wells have been pumped out at rates of less than 800 gallons a minute. Scientific well-construction and development methods would lead to more

  17. 75 FR 69698 - Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-15

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The ``Criteria for Developing Refuge Water Management Plans'' (Refuge...

  18. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Treesearch

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2013-01-01

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However,...

  19. 76 FR 16818 - Central Valley Project Improvement Act, Standard Criteria for Ag and Urban Water Management Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Valley Project water conservation best management practices (BMPs) that shall develop Criteria for... project contractors using best available cost- effective technology and best management practices.'' The... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Standard...

  20. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN COMMISSION ADMINISTRATIVE MANUAL RULES OF PRACTICE AND PROCEDURE Project Review Under Section 3.8 of the...

  1. Urban water metabolism efficiency assessment: integrated analysis of available and virtual water.

    PubMed

    Huang, Chu-Long; Vause, Jonathan; Ma, Hwong-Wen; Yu, Chang-Ping

    2013-05-01

    Resolving the complex environmental problems of water pollution and shortage which occur during urbanization requires the systematic assessment of urban water metabolism efficiency (WME). While previous research has tended to focus on either available or virtual water metabolism, here we argue that the systematic problems arising during urbanization require an integrated assessment of available and virtual WME, using an indicator system based on material flow analysis (MFA) results. Future research should focus on the following areas: 1) analysis of available and virtual water flow patterns and processes through urban districts in different urbanization phases in years with varying amounts of rainfall, and their environmental effects; 2) based on the optimization of social, economic and environmental benefits, establishment of an indicator system for urban WME assessment using MFA results; 3) integrated assessment of available and virtual WME in districts with different urbanization levels, to facilitate study of the interactions between the natural and social water cycles; 4) analysis of mechanisms driving differences in WME between districts with different urbanization levels, and the selection of dominant social and economic driving indicators, especially those impacting water resource consumption. Combinations of these driving indicators could then be used to design efficient water resource metabolism solutions, and integrated management policies for reduced water consumption. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. 78 FR 63481 - Therapeutic Area Standards Initiative Project Plan; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...] Therapeutic Area Standards Initiative Project Plan; Availability AGENCY: Food and Drug Administration, HHS... Therapeutic Area Standards Initiative Project Plan. This therapeutic area (TA) Project Plan will be the primary document for guiding all major aspects of FDA's multi-year initiative to develop and implement TA...

  3. Projection pursuit water quality evaluation model based on chicken swam algorithm

    NASA Astrophysics Data System (ADS)

    Hu, Zhe

    2018-03-01

    In view of the uncertainty and ambiguity of each index in water quality evaluation, in order to solve the incompatibility of evaluation results of individual water quality indexes, a projection pursuit model based on chicken swam algorithm is proposed. The projection index function which can reflect the water quality condition is constructed, the chicken group algorithm (CSA) is introduced, the projection index function is optimized, the best projection direction of the projection index function is sought, and the best projection value is obtained to realize the water quality evaluation. The comparison between this method and other methods shows that it is reasonable and feasible to provide decision-making basis for water pollution control in the basin.

  4. Global assessment of water policy vulnerability under uncertainty in water scarcity projections

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Kahil, Taher; Satoh, Yusuke; Burek, Peter; Fischer, Günther; Tramberend, Sylvia; Byers, Edward; Flörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Langan, Simon; Wada, Yoshihide

    2017-04-01

    Water scarcity is a critical environmental issue worldwide, which has been driven by the significant increase in water extractions during the last century. In the coming decades, climate change is projected to further exacerbate water scarcity conditions in many regions around the world. At present, one important question for policy debate is the identification of water policy interventions that could address the mounting water scarcity problems. Main interventions include investing in water storage infrastructures, water transfer canals, efficient irrigation systems, and desalination plants, among many others. This type of interventions involve long-term planning, long-lived investments and some irreversibility in choices which can shape development of countries for decades. Making decisions on these water infrastructures requires anticipating the long term environmental conditions, needs and constraints under which they will function. This brings large uncertainty in the decision-making process, for instance from demographic or economic projections. But today, climate change is bringing another layer of uncertainty that make decisions even more complex. In this study, we assess in a probabilistic approach the uncertainty in global water scarcity projections following different socioeconomic pathways (SSPs) and climate scenarios (RCPs) within the first half of the 21st century. By utilizing an ensemble of 45 future water scarcity projections based on (i) three state-of-the-art global hydrological models (PCR-GLOBWB, H08, and WaterGAP), (ii) five climate models, and (iii) three water scenarios, we have assessed changes in water scarcity and the associated uncertainty distribution worldwide. The water scenarios used here are developed by IIASA's Water Futures and Solutions (WFaS) Initiative. The main objective of this study is to improve the contribution of hydro-climatic information to effective policymaking by identifying spatial and temporal policy

  5. 31 CFR 26.2 - Availability of project listings.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Availability of project listings. 26.2 Section 26.2 Money and Finance: Treasury Office of the Secretary of the Treasury ENVIRONMENTAL...-8191, not a toll-free call). (2) If a copy is not available from the BIC, members of the public may...

  6. 31 CFR 26.2 - Availability of project listings.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Availability of project listings. 26.2 Section 26.2 Money and Finance: Treasury Office of the Secretary of the Treasury ENVIRONMENTAL...-8191, not a toll-free call). (2) If a copy is not available from the BIC, members of the public may...

  7. 31 CFR 26.2 - Availability of project listings.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Availability of project listings. 26.2 Section 26.2 Money and Finance: Treasury Office of the Secretary of the Treasury ENVIRONMENTAL...-8191, not a toll-free call). (2) If a copy is not available from the BIC, members of the public may...

  8. 31 CFR 26.2 - Availability of project listings.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Availability of project listings. 26.2 Section 26.2 Money and Finance: Treasury Office of the Secretary of the Treasury ENVIRONMENTAL...-8191, not a toll-free call). (2) If a copy is not available from the BIC, members of the public may...

  9. 31 CFR 26.2 - Availability of project listings.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Availability of project listings. 26.2 Section 26.2 Money and Finance: Treasury Office of the Secretary of the Treasury ENVIRONMENTAL...-8191, not a toll-free call). (2) If a copy is not available from the BIC, members of the public may...

  10. Potential impacts of climate change on rainfall erosivity and water availability in China in the next 100 years

    Treesearch

    Ge Sun; Steven G. McNulty; Jennifer Moore; Corey Bunch; Jian Ni

    2002-01-01

    Soil erosion and water shortages threaten China’s social and economic development in the 21st century. This paper examines how projected climate change could affect soil erosion and water availability across China. We used both historical climate data (1961-1980) and the UKMO Hadley3 climate scenario (1960-2099) to drive regional hydrology and soil erosivity models....

  11. Global Change adaptation in water resources management: the Water Change project.

    PubMed

    Pouget, Laurent; Escaler, Isabel; Guiu, Roger; Mc Ennis, Suzy; Versini, Pierre-Antoine

    2012-12-01

    In recent years, water resources management has been facing new challenges due to increasing changes and their associated uncertainties, such as changes in climate, water demand or land use, which can be grouped under the term Global Change. The Water Change project (LIFE+ funding) developed a methodology and a tool to assess the Global Change impacts on water resources, thus helping river basin agencies and water companies in their long term planning and in the definition of adaptation measures. The main result of the project was the creation of a step by step methodology to assess Global Change impacts and define strategies of adaptation. This methodology was tested in the Llobregat river basin (Spain) with the objective of being applicable to any water system. It includes several steps such as setting-up the problem with a DPSIR framework, developing Global Change scenarios, running river basin models and performing a cost-benefit analysis to define optimal strategies of adaptation. This methodology was supported by the creation of a flexible modelling system, which can link a wide range of models, such as hydrological, water quality, and water management models. The tool allows users to integrate their own models to the system, which can then exchange information among them automatically. This enables to simulate the interactions among multiple components of the water cycle, and run quickly a large number of Global Change scenarios. The outcomes of this project make possible to define and test different sets of adaptation measures for the basin that can be further evaluated through cost-benefit analysis. The integration of the results contributes to an efficient decision-making on how to adapt to Global Change impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. 75 FR 26709 - Clarke County Water Supply Project, Clarke County, IA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-12

    ... Project, Clarke County, IA AGENCY: Natural Resources Conservation Service. ACTION: Notice of intent to... Conservationist for Planning, 210 Walnut Street, Room 693, Des Moines, IA 50309-2180, telephone: 515-284- 4769... available at the Iowa NRCS Web site at http://www.ia.nrcs.usda.gov . A map of the Clarke County Water Supply...

  13. Water availability in +2°C and +4°C worlds.

    PubMed

    Fung, Fai; Lopez, Ana; New, Mark

    2011-01-13

    While the parties to the UNFCCC agreed in the December 2009 Copenhagen Accord that a 2°C global warming over pre-industrial levels should be avoided, current commitments on greenhouse gas emissions reductions from these same parties will lead to a 50 : 50 chance of warming greater than 3.5°C. Here, we evaluate the differences in impacts and adaptation issues for water resources in worlds corresponding to the policy objective (+2°C) and possible reality (+4°C). We simulate the differences in impacts on surface run-off and water resource availability using a global hydrological model driven by ensembles of climate models with global temperature increases of 2°C and 4°C. We combine these with UN-based population growth scenarios to explore the relative importance of population change and climate change for water availability. We find that the projected changes in global surface run-off from the ensemble show an increase in spatial coherence and magnitude for a +4°C world compared with a +2°C one. In a +2°C world, population growth in most large river basins tends to override climate change as a driver of water stress, while in a +4°C world, climate change becomes more dominant, even compensating for population effects where climate change increases run-off. However, in some basins where climate change has positive effects, the seasonality of surface run-off becomes increasingly amplified in a +4°C climate.

  14. 76 FR 53526 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... lists the projects, described below, receiving approval for the consumptive use of water pursuant to the...

  15. 77 FR 4859 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... notice lists the projects, described below, receiving approval for the consumptive use of water pursuant...

  16. 76 FR 66117 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... notice lists the projects, described below, receiving approval for the consumptive use of water pursuant...

  17. 76 FR 42159 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... lists the projects, described below, receiving approval for the consumptive use of water pursuant to the...

  18. Water Resources Research Grant Program project descriptions, fiscal year 1987

    USGS Publications Warehouse

    ,

    1987-01-01

    This report contains information on the 34 new projects funded by the United States Geological Survey 's Water Resources Research Grant Program in fiscal year 1987 and on 3 projects completed during the year. For the new projects, the report gives the grant number, project title, performing organization, principal investigator(s), and a project description that includes: (1) identification of water related problems and problem-solution approach (2) contribution to problem solution, (3) objectives, and (4) approach. The 34 projects include 12 in the area of groundwater quality problems, 12 in the science and technology of water quality management, 1 in climate variability and the hydrologic cycle, 4 in institutional change in water resources management, and 5 in surface water management. For the three completed projects, the report furnishes the grant number; project title; performing organization; principal investor(s); starting data; data of receipt of final report; and an abstract of the final report. Each project description provides the information needed to obtain a copy of the final report. The report contains tables showing: (1) proposals received according to area of research interest, (2) grant awards and funding according to area of research interest, (3) proposals received according to type of submitting organization, and (4) awards and funding according to type of organization. (Author 's abstract)

  19. Vegetative response to water availability on the San Carlos Apache Reservation

    USGS Publications Warehouse

    Petrakis, Roy; Wu, Zhuoting; McVay, Jason; Middleton, Barry R.; Dye, Dennis G.; Vogel, John M.

    2016-01-01

    vegetation types displayed various responses to water availability, further highlighting the need for individual management plans for forest and woodland, especially considering the projected drier conditions in the Southwest U.S. and other arid or semi-arid regions around the world.

  20. Topographic, edaphic, and vegetative controls on plant-available water

    USGS Publications Warehouse

    Dymond, Salli F.; Bradford, John B.; Bolstad, Paul V.; Kolka, Randall K.; Sebestyen, Stephen D.; DeSutter, Thomas S.

    2017-01-01

    Soil moisture varies within landscapes in response to vegetative, physiographic, and climatic drivers, which makes quantifying soil moisture over time and space difficult. Nevertheless, understanding soil moisture dynamics for different ecosystems is critical, as the amount of water in a soil determines a myriad ecosystem services and processes such as net primary productivity, runoff, microbial decomposition, and soil fertility. We investigated the patterns and variability in in situ soil moisture measurements converted to plant-available water across time and space under different vegetative cover types and topographic positions at the Marcell Experimental Forest (Minnesota, USA). From 0 – 228.6 cm soil depth, plant-available water was significantly higher under the hardwoods (12%), followed by the aspen (8%) and red pine (5%) cover types. Across the same soil depth, toeslopes were wetter (mean plant-available water = 10%) than ridges and backslopes (mean plant-available water was 8%), although these differences were not statistically significant (p < 0.05). Using a mixed model of fixed and random effects, we found that cover type, soil texture, and time were related to plant-available water and that topography was not significantly related to plant-available water within this low-relief landscape. Additionally, during the three-year monitoring period, red pine and quaking aspen sites experienced plant-available water levels that may be considered limiting to plant growth and function. Given that increasing temperatures and more erratic precipitation patterns associated with climate change may result in decreased soil moisture in this region, these species may be sensitive and vulnerable to future shifts in climate.

  1. Life Cycle Energy Analysis of Reclaimed Water Reuse Projects in Beijing.

    PubMed

    Fan, Yupeng; Guo, Erhui; Zhai, Yuanzheng; Chang, Andrew C; Qiao, Qi; Kang, Peng

    2018-01-01

      To illustrate the benefits of water reuse project, the process-based life cycle analysis (LCA) could be combined with input-output LCA to evaluate the water reuse project. Energy is the only evaluation parameter used in this study. Life cycle assessment of all energy inputs (LCEA) is completed mainly by the life cycle inventory (LCI), taking into account the full life cycle including the construction, the operation, and the demolition phase of the project. Assessment of benefit from water reuse during the life cycle should focus on wastewater discharge reduction and water-saving benefits. The results of LCEA of Beijing water reuse project built in 2014 in a comprehensive way shows that the benefits obtained from the reclaimed water reuse far exceed the life cycle energy consumption. In this paper, the authors apply the LCEA model to estimate the benefits of reclaimed water reuse projects quantitatively.

  2. Predicting and mapping soil available water capacity in Korea.

    PubMed

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  3. A Framework Predicting Water Availability in a Rapidly Growing, Semi-Arid Region under Future Climate Change

    NASA Astrophysics Data System (ADS)

    Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.

    2014-12-01

    Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the

  4. Assessment of Long-term Irrigation Water Availability over Highly Managed and Economically Important Agricultural Region of the Columbia River Basin

    NASA Astrophysics Data System (ADS)

    Barik, M. G.; Rushi, B. R.; Malek, K.; Rajagopalan, K.; Hall, S.; Kruger, C. E.; Brady, M.; Stockle, C.; Adam, J. C.

    2016-12-01

    Agriculture contributes about 12% in Washington State's economy. Water diverted from the Columbia River Basin (CRB) is the major source of irrigation water in this region. Although agriculture accounts for 80% of this state's total water withdrawal, this sector is the first to be curtailed (i.e., irrigators do not receive their full water right allocation) while there is a water shortage. This snow dominated region is already threatened by climate change. A robust regional-scale analysis of water supply, demand, unmet crop water requirements and associated impacts is critical to develop sustainable water resources plans under climate change. This study uses a dynamically-coupled hydrologic and cropping systems model, VIC-CropSyst, a reservoir management model, ColSim, and a water curtailment model to simulate changes in surface water irrigation demand projecting 30 years in the future in response to various climate, management and economic scenarios. Five downscaled climate scenarios for each of the IPCC's Representative Concentration Pathway 4.5 (rcp4.5) and 8.5 (rcp8.5) are selected in a way that they capture the projected spread of temperature and precipitation changes for the area. Results show an increase in total water availability across the CRB. Water availability is predicted to shift earlier in the season due to warming-induced snowpack reductions. Agricultural water demand is projected to decrease by approximately 5.0% (±0.7%) and 6.9% (±0.7%) respectively across the entire CRB and the Washington portion of the CRB by 2035. Irrigation demand is expected to shift earlier in the season along with water availability. This shift in demand may cause higher amount of early season irrigation water curtailment in some highly managed watersheds of the CRB in Washington State. This reduction and shift in demand is due to a warmer climate and an elevated atmospheric CO2 level which are leading to a shorter but early starting growing season. This study does not

  5. Impacts of Change in Irrigation Water Availability on Food Production in the Yellow River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, Y. Y.; Tang, Q.

    2014-12-01

    Approximately 9 percent of China's population and 17 percent of its agricultural area are settled in the Yellow River Basins. Irrigation, which plays an important role in agricultural production, occupies the largest share of human consumptive water use in the basin. Given increasing water demands, the basin faces acute water scarcity. Previous studies have suggested that decrease in irrigation water availability under climate change might have an overall adverse impact on the food production of the basin. The timing and area that would face severe water stress are yet to be identified. We used a land surface hydrological model forced with the bias-corrected climatic variables from 5 climate models under 4 Representative Concentration Pathways (RCPs) to estimate total water availability in the sub-basins of the Yellow River basin. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement in the nonagricultural water use sectors. The irrigation water availability was estimated from the total water availability and nonagricultural water use, and the irrigation water demands were estimated based on the current irrigation project efficiencies. The timing and area of irrigation water shortage were shown and the implication of change in irrigation water availability on food production was assessed. The results show that the sub-basins with high population density and gross domestic product (GDP) are likely to confront severe water stress and reduction in food production earlier because irrigation water was to be appropriated by the rapid increase in nonagricultural water use sectors. The study stresses the need for adaptive management of water to balance agriculture and nonagricultural demands in northern China.

  6. Competing effects of groundwater withdrawals and climate change on water availability in semi-arid India

    NASA Astrophysics Data System (ADS)

    Sishodia, R. P.; Shukla, S.

    2017-12-01

    India, a global leader in groundwater use (250 km3/yr), is experiencing groundwater depletion. There has been a 130-fold increase in number of irrigation wells since 1960. Anticipated future increase in groundwater demand is likely to exacerbate the water availability in the semi-arid regions of India. Depending on the direction of change, future climate change may either worsen or enhance the water availability. This study uses an integrated hydrologic modeling approach (MIKE SHE MIKE 11) to compare and combine the effects of future (2040-2069) increased groundwater withdrawals and climate change on surface and groundwater flows and availability for an agricultural watershed in semi-arid south India. Modeling results showed that increased groundwater withdrawals in the future resulted in reduced surface flows (25%) and increased frequency and duration (90 days/yr) of well drying. In contrast, projected future increase in rainfall (7-43%) under the changed climate showed increased groundwater recharge (15-67%) and surface flows (9-155%). Modeling results suggest that the positive effects of climate change may enhance the water availability in this semi-arid region of India. However, in combination with increased withdrawals, climate change was shown to increase the well drying and reduce the water availability especially during dry years. A combination of management options such as flood to drip conversion, energy subsidy reductions and water storage can support increased groundwater irrigated area in the future while mitigating the well drying. A cost-benefit analysis showed that dispersed water storage and flood to drip conversion can be highly cost-effective in this semi-arid region. The study results suggest that the government and management policies need to be focused towards an integrated management of demand and supply to create a sustainable food-water-energy nexus in the region.

  7. When vegetation change alters ecosystem water availability

    USDA-ARS?s Scientific Manuscript database

    The combined effects of vegetation and climate change on biosphere-atmosphere water vapor (H2O) and carbon dioxide (CO2) exchanges are expected to vary depending, in part, on how biotic activity is controlled by and alters water availability. This is particularly important when a change in ecosystem...

  8. Cost-benefit analysis of water-reuse projects for environmental purposes: a case study for Spanish wastewater treatment plants.

    PubMed

    Molinos-Senante, M; Hernández-Sancho, F; Sala-Garrido, R

    2011-12-01

    Water reuse is an emerging and promising non-conventional water resource. Feasibility studies are essential tools in the decision making process for the implementation of water-reuse projects. However, the methods used to assess economic feasibility tend to focus on internal costs, while external impacts are relegated to unsubstantiated statements about the advantages of water reuse. Using the concept of shadow prices for undesirable outputs of water reclamation, the current study developed a theoretical methodology to assess internal and external economic impacts. The proposed methodological approach is applied to 13 wastewater treatment plants in the Valencia region of Spain that reuse effluent for environmental purposes. Internal benefit analyses indicated that only a proportion of projects were economically viable, while when external benefits are incorporated all projects were economically viable. In conclusion, the economic feasibility assessments of water-reuse projects should quantitatively evaluate economic, environmental and resource availability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Stochastic estimation of plant-available soil water under fluctuating water table depths

    NASA Astrophysics Data System (ADS)

    Or, Dani; Groeneveld, David P.

    1994-12-01

    Preservation of native valley-floor phreatophytes while pumping groundwater for export from Owens Valley, California, requires reliable predictions of plant water use. These predictions are compared with stored soil water within well field regions and serve as a basis for managing groundwater resources. Soil water measurement errors, variable recharge, unpredictable climatic conditions affecting plant water use, and modeling errors make soil water predictions uncertain and error-prone. We developed and tested a scheme based on soil water balance coupled with implementation of Kalman filtering (KF) for (1) providing physically based soil water storage predictions with prediction errors projected from the statistics of the various inputs, and (2) reducing the overall uncertainty in both estimates and predictions. The proposed KF-based scheme was tested using experimental data collected at a location on the Owens Valley floor where the water table was artificially lowered by groundwater pumping and later allowed to recover. Vegetation composition and per cent cover, climatic data, and soil water information were collected and used for developing a soil water balance. Predictions and updates of soil water storage under different types of vegetation were obtained for a period of 5 years. The main results show that: (1) the proposed predictive model provides reliable and resilient soil water estimates under a wide range of external conditions; (2) the predicted soil water storage and the error bounds provided by the model offer a realistic and rational basis for decisions such as when to curtail well field operation to ensure plant survival. The predictive model offers a practical means for accommodating simple aspects of spatial variability by considering the additional source of uncertainty as part of modeling or measurement uncertainty.

  10. Influence of landscape heterogeneity on water available to tropical forests in an Amazonian catchment and implications for modeling drought response: Water Available to Tropical Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yilin; Leung, L. Ruby; Duan, Zhuoran

    The Amazon basin experienced periodic droughts in the past, and climate models projected more intense and frequent droughts in the future. How tropical forests respond to drought may depend on water availability, which is modulated by landscape heterogeneity. Using the one-dimensional ACME Land Model (ALM) and the three-dimensional ParFlow variably saturated flow model, a series of numerical experiments were performed for the Asu catchment in central Amazon to elucidate processes that influence water available for plant use and provide insights for improving Earth system models. Results from ParFlow show that topography has a dominant influence on groundwater table and runoffmore » through lateral flow. Without any representations of lateral processes, ALM simulates very different seasonal variations in groundwater table and runoff compared to ParFlow even if it is able to reproduce the long-term spatial average groundwater table of ParFlow through simple parameter calibration. In the ParFlow simulations, the groundwater table is evidently deeper and the soil saturation is lower in the plateau compared to the valley. However, even in the plateau during the dry season in the drought year of 2005, plant transpiration is not water stressed in the ParFlow simulations as the soil saturation is still sufficient to maintain a soil matric potential for the stomata to be fully open. This finding is insensitive to uncertainty in atmospheric forcing and soil parameters, but the empirical wilting formulation used in the models is an important factor that should be addressed using observations and modeling of coupled plant hydraulics-soil hydrology processes in future studies.« less

  11. South Asia river-flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  12. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses

    NASA Astrophysics Data System (ADS)

    Malek, Keyvan; Adam, Jennifer C.; Stöckle, Claudio O.; Peters, R. Troy

    2018-06-01

    Irrigation efficiency plays an important role in agricultural productivity; it affects farm-scale water demand, and the partitioning of irrigation losses into evaporative and non-evaporative components. This partitioning determines return flow generation and thus affects water availability. Over the last two decades, hydrologic and agricultural research communities have significantly improved our understanding of the impacts of climate change on water availability and food productivity. However, the impacts of climate change on the efficiency of irrigation systems, particularly on the partitioning between evaporative and non-evaporative losses, have received little attention. In this study, we incorporated a process-based irrigation module into a coupled hydrologic/agricultural modeling framework (VIC-CropSyst). To understand how climate change may impact irrigation losses, we applied VIC-CropSyst over the Yakima River basin, an important agricultural region in Washington State, U.S. We compared the historical period of 1980-2010 to an ensemble of ten projections of climate for two future periods: 2030-2060 and 2060-2090. Results averaged over the watershed showed that a 9% increase in evaporative losses will be compensated by a reduction of non-evaporative losses. Therefore, overall changes in future efficiency are negligible (-0.4%) while the Evaporative Loss Ratio (ELR) (defined as the ratio of evaporative to non-evaporative irrigation losses) is enhanced by 10%. This higher ELR is associated with a reduction in return flows, thus negatively impacting downstream water availability. Results also indicate that the impact of climate change on irrigation losses depend on irrigation type and climate scenarios.

  13. A genetic fuzzy analytical hierarchy process based projection pursuit method for selecting schemes of water transportation projects

    NASA Astrophysics Data System (ADS)

    Jin, Juliang; Li, Lei; Wang, Wensheng; Zhang, Ming

    2006-10-01

    The optimal selection of schemes of water transportation projects is a process of choosing a relatively optimal scheme from a number of schemes of water transportation programming and management projects, which is of importance in both theory and practice in water resource systems engineering. In order to achieve consistency and eliminate the dimensions of fuzzy qualitative and fuzzy quantitative evaluation indexes, to determine the weights of the indexes objectively, and to increase the differences among the comprehensive evaluation index values of water transportation project schemes, a projection pursuit method, named FPRM-PP for short, was developed in this work for selecting the optimal water transportation project scheme based on the fuzzy preference relation matrix. The research results show that FPRM-PP is intuitive and practical, the correction range of the fuzzy preference relation matrix A it produces is relatively small, and the result obtained is both stable and accurate; therefore FPRM-PP can be widely used in the optimal selection of different multi-factor decision-making schemes.

  14. Funding Water Reuse and Conservation Projects with the Clean Water State Revolving Fund

    EPA Pesticide Factsheets

    This fact sheet demonstrates how the CWSRF provides assistance to eligible recipients for projects promoting water reuse and conservation. It highlights successful projects for these communities in California, Virginia and Texas.

  15. Water availability, use, and estimated future water demand in the upper Duck River basin, middle Tennessee

    USGS Publications Warehouse

    Hutson, S.S.

    1993-01-01

    The Duck River in Tennessee supplied about 18.9 Mgal of water/d to Tullahoma, Manchester, Lewisburg, Columbia, and other cities. Municipal water use increased to 20.9 Mgal/d in 1990; projections indicate increases in demand for the next 25 yr. Socioeconomic and water use data from the basin for 1989 were used to calibrate the water use models within the Institute for Water Resources Municipal and Industrial Needs (IWR-MAIN) System. The models were used to estimate future water use demand in the basin for the years 1995, 2000, and 2015. Projections showed demands of about 24.3 Mgal/d in 1995; 28.3 Mgal/d in 2000; and 39.0 Mgal/d in 2015. Increases in withdrawals from the Duck River downstream from Shelbyville could reduce the minimum flow at Columbia from 119 to 83.8 cu feet/s. The study also included an overview of the potential for developing groundwater resources in the area. Statistical analyses of yields to 5,938 wells showed that the highest yields are in Coffee County, but 75 percent of the wells in Coffee County produced less than 30 gal/m. However, measurements of streamflow losses along tributaries to the Duck River suggest that the potential for development of groundwater does exist at specific sites.

  16. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    of the project, water from domestic use is obtained chiefly from the sandstone beds of the Wind River formation although some is obtained from the alluvium underlying the bottom land and from the unconsolidated deposits underlying the lower terraces along the Wind River. Although adequate quantities if water for domestic use are available from the Wind River formation, there quantities are not considered to be large enough to warrant pumping of ground water for irrigation. Only a few wells are in the nonirrigated part of the area. When this new land is irrigated, a body of ground water will gradually form in the terrace deposits and the alluvial and colluvial-alluvial deposits. Eventually, the terrace deposits may yield adequate quantities of water for domestic and stock use, but only locally are the alluvial and colluvial-alluvial deposits likely to become suitable aquifers. In the Riverton irrigation project area, ground water occurs under water-table conditions near the surface and under artesian conditions in certain strata at both shallow and greater depths. Irrigation is the principal source of recharge to the shallow aquifers; the water level in wells that tap these aquifers fluctuates with irrigation. The depth to water in the shallow wells ranges from less than 1 foot to about 30 feet below the land surface, depending on the season of the year and on the length of time the land has been irrigated. The water level in the wells that tap the deep confined aquifers , which receive recharge indirectly from surface sources, fluctuates only slightly because the recharge and discharge are more constant. In most places the depth to water in wells penetrating the deep confined aquifers is mush greater than that in shallow wells. but in certain low areas water from the deep aquifers flows at the surface from wells. Ground water moves from the area of recharge in the direction of the hydraulic gradient and is discharges either by evapotranspiration; by inflow into

  17. 77 FR 21143 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-09

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  18. 78 FR 11947 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-20

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  19. 78 FR 17281 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  20. 78 FR 27471 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the approved by rule projects..., being rescinded for the consumptive use of water pursuant to the Commission's approval by rule process...

  1. 77 FR 66909 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-07

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... below, receiving approval for the consumptive use of water pursuant to the Commission's approval by rule...

  2. 78 FR 2315 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-10

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  3. 78 FR 15402 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  4. 77 FR 25010 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule... below, receiving approval for the consumptive use of water pursuant to the Commission's approval by rule...

  5. 77 FR 55892 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  6. 77 FR 55891 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  7. 77 FR 59239 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  8. 77 FR 16317 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  9. 77 FR 34455 - Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects approved by rule..., receiving approval for the consumptive use of water pursuant to the Commission's approval by rule process...

  10. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    EPA Pesticide Factsheets

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  11. Income-based projections of water footprint of food consumption in Uzbekistan

    NASA Astrophysics Data System (ADS)

    Djanibekov, Nodir; Frohberg, Klaus; Djanibekov, Utkur

    2013-11-01

    Assessing future water requirements for feeding the growing population of Central Asia can improve understanding of the projected water supply scenarios in the region. Future water requirements will be partially determined by the dietary habits of the populations, and are thus responsive to significant variation of income levels. Using Uzbekistan as an example, this study projects the water footprints of income driven changes on the population's diet in Central Asia. To reveal the influence of large income changes on dietary habits a Normalized Quadratic-Quadratic Expenditure System was calibrated and applied to data from 2009. The national water footprints of food consumption in Uzbekistan were projected until 2034 by applying the parameterized demand system to estimate the respective water footprint values. The results showed that for Uzbekistan the projected increase in the food consumption water footprint would be primarily linked to income growth rather than population growth. Due to the high water footprint of common food products, the composition of the population's diet, and responsiveness to income, economic growth is expected to put greater pressure on water resources in Uzbekistan unless proper measures are undertaken.

  12. Projections of Declining Surface-Water Availability for the Southwestern United States

    NASA Technical Reports Server (NTRS)

    Seager, Richard; Ting, Mingfang; Li, Cuihua; Naik, Naomi; Cook, Benjamin; Nakamura, Jennifer; Liu, Haibo

    2012-01-01

    bias for the Colorado headwaters as also shown in Figure S1. Here the observed runoff values are taken from simulations of the Variable Infiltration Capacity (VIC) land surface-hydrology model (3) forced by observed meteorology (5) that were conducted as part of the North American Land Data Assimilation System project phase 2 ( (NLDAS-2), http://www.emc.ncep.noaa.gov/mmb/nldas/. Runoff for California-Nevada is better simulated but there is a positive bias over Texas despite no strong precipitation bias. To check whether regional climate models better simulate P and runoff in these regions we analyzed the historical simulation with the Regional Climate Model version 3 driven by the National Centers for Environmental Prediction-Department of Energy Reanalysis 2 available from the North American Regional Climate Change Assessment Program (http://www.narccap.ucar.edu). This model configuration retained these biases in P and runoff although they were reduced in amplitude. Given these varying biases we plot P and P - E changes in actual values but apply the simplest bias correction possible to the runoff and soil moisture values and show the modeled changes in terms of percentages of the 20th Century model climatologies. A thorough assessment of the simulation of North American climate in CMIP5 models is conducted in Sheffield at al. (North American Climate in CMIP5 Experiments. Part I: Evaluation of 20th Century Continental and Regional Climatology, manuscript submit ted to J. Climate, available at http://www.climate.noaa.gov/index.jsp?pg=./cpo pa/ mapp/cmip5 publications.html). Sheffield et al. analyze the climatology of precipitation, surface air temperature, low level winds, moisture fluxes, runoff etc. and conclude that the main features of the hydrological cycle, including characteristics of the atmospheric moisture balance and its seasonality, are captured in the CMP5 models subject to biases in total precipitation amounts. We chose to use all available models instead

  13. 77 FR 59240 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects rescinded by the... rescinded for the consumptive use of water pursuant to the Commission's approval by rule process set forth...

  14. 77 FR 55893 - Projects Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects rescinded by the... the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  15. Projecting impacts of climate change on water availability using artificial neural network techniques

    USGS Publications Warehouse

    Swain, Eric D.; Gomez-Fragoso, Julieta; Torres-Gonzalez, Sigfredo

    2017-01-01

    Lago Loíza reservoir in east-central Puerto Rico is one of the primary sources of public water supply for the San Juan metropolitan area. To evaluate and predict the Lago Loíza water budget, an artificial neural network (ANN) technique is trained to predict river inflows. A method is developed to combine ANN-predicted daily flows with ANN-predicted 30-day cumulative flows to improve flow estimates. The ANN application trains well for representing 2007–2012 and the drier 1994–1997 periods. Rainfall data downscaled from global circulation model (GCM) simulations are used to predict 2050–2055 conditions. Evapotranspiration is estimated with the Hargreaves equation using minimum and maximum air temperatures from the downscaled GCM data. These simulated 2050–2055 river flows are input to a water budget formulation for the Lago Loíza reservoir for comparison with 2007–2012. The ANN scenarios require far less computational effort than a numerical model application, yet produce results with sufficient accuracy to evaluate and compare hydrologic scenarios. This hydrologic tool will be useful for future evaluations of the Lago Loíza reservoir and water supply to the San Juan metropolitan area.

  16. Water Availability for the Western United States - Key Scientific Challenges

    USGS Publications Warehouse

    Anderson, Mark Theodore; Woosley, Lloyd H.

    2005-01-01

    In the Western United States, the availability of water has become a serious concern for many communities and rural areas. Near population centers, surface-water supplies are fully appropriated, and many communities are dependent upon ground water drawn from storage, which is an unsustainable strategy. Water of acceptable quality is increasingly hard to find because local sources are allocated to prior uses, depleted by overpumping, or diminished by drought stress. Some of the inherent characteristics of the West add complexity to the task of securing water supplies. The Western States, including the arid Southwest, have the most rapid population growth in the United States. The climate varies widely in the West, but it is best known for its low precipitation, aridity, and drought. There is evidence that the climate is warming, which will have consequences for Western water supplies, such as increased minimum streamflow and earlier snowmelt events in snow-dominated basins. The potential for departures from average climatic conditions threatens to disrupt society and local to regional economies. The appropriative rights doctrine governs the management of water in most Western States, although some aspects of the riparian doctrine are being incorporated. The 'use it or lose it' provisions of Western water law discourage conservation and make the reallocation of water to instream environmental uses more difficult. The hydrologic sciences have defined the interconnectedness of ground water and surface water, yet these resources are still administered separately by most States. The definition of water availability has been expanded to include sustaining riparian ecosystems and individual endangered species, which are disproportionately represented in the Western States. Federal reserved rights, common in the West because of the large amount of Federal land, exist with quite senior priority dates whether or not water is currently being used. A major challenge for water

  17. 78 FR 27233 - Clean Water Act: Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9811-4] Clean Water Act: Availability of List Decisions... announces the availability of EPA's action identifying water quality limited segments and associated pollutants in Louisiana to be listed pursuant to Clean Water Act Section 303(d), and request for public...

  18. [Sustainability of ecological water transfer and rehabilitation project based on participatory survey].

    PubMed

    Wang, Yu; Feng, Qi; Chen, Li-Juan; Yu, Teng-Fei

    2014-01-01

    In the arid inland area of Northwest China, the ecological water transfer and rehabilitation project (EWTRP) is an important measure to restore the deteriorated ecosystem. However, the sustainability of the project is affected by many socio-economic factors. This research was based on results of the questionnaire from Ejina County's farmer households, which included the farmer households' attitude, livelihood and the efficiency of the water resource usage. The results showed that although the EWTRP had made great achievements in vegetation restoration, but the sustainability of the project was affected by the following factors: the ecologically-motivated relocated/resettled herdsmen mainly relied on the compensation from the project, causing them a hard living, and increasing the risk of maintaining the current achievement; the project didn't have a positive impact on water-saving agriculture, the efficiency of water usage was relatively low and had not yet reached the final goal; the compensation of the project only considered the loss of agriculture, but neglected the externality and publicity of eco-water. We suggest that developing education, offering job opportunity and training programs, improving the efficiency of water usage and establishing reasonable water resources compensation mechanisms are needed to be considered as main domain of environmental recovery as well as ecological water transfer and rehabilitation.

  19. Water Resources Research Grant Program project descriptions, fiscal year 1986

    USGS Publications Warehouse

    ,

    1986-01-01

    Information is presented on the 43 projects funded by the United States Geological Survey 's Water Resources Grant Program in fiscal year 1986. The report gives the grant number; project title; performing organization; principal investigator(s); dates; and a project description which includes (1) identification of the water related problems and problem-solution approach, (2) contribution to problem solution, (3) objectives, (4) approach, and (5) result users. The 43 projects include 14 in the area of groundwater management, 6 in surface-water management, 2 in systems-operating/planning, 3 in irrigation management, 8 in desalination/reuse, 6 in economic/institutional studies, and 4 in climate variability. The reports contain tables showing (1) funding according to research topic, (2) projects funded to type of submitting organization, (3) proposals received, research topic, and funding levels, and (4) submitting organization. A comparison is given to fiscal year 1985 in each case. (USGS)

  20. Jordan Water Project: an interdisciplinary evaluation of freshwater vulnerability and security

    NASA Astrophysics Data System (ADS)

    Gorelick, S.; Yoon, J.; Rajsekhar, D.; Muller, M. F.; Zhang, H.; Gawel, E.; Klauer, B.; Klassert, C. J. A.; Sigel, K.; Thilmant, A.; Avisse, N.; Lachaut, T.; Harou, J. J.; Knox, S.; Selby, P. D.; Mustafa, D.; Talozi, S.; Haddad, Y.; Shamekh, M.

    2016-12-01

    The Jordan Water Project, part of the Belmont Forum projects, is an interdisciplinary, international research effort focused on evaluation of freshwater security in Jordan, one of the most water-vulnerable countries in the world. The team covers hydrology, water resources systems analysis, economics, policy evaluation, geography, risk and remote sensing analyses, and model platform development. The entire project team communally engaged in construction of an integrated hydroeconomic model for water supply policy evaluation. To represent water demand and allocation behavior at multiple levels of decision making,the model integrates biophysical modules that simulate natural and engineered hydrologic phenomena with human behavioral modules. Hydrologic modules include spatially-distributed groundwater and surface-water models for the major aquifers and watersheds throughout Jordan. For the human modules, we adopt a multi-agent modeling approach to represent decision-making processes. The integrated model was developed in Pynsim, a new open-source, object-oriented platform in Python for network-based water resource systems. We continue to explore the impacts of future scenarios and interventions.This project had tremendous encouragement and data support from Jordan's Ministry of Water and Irrigation. Modeling technology is being transferred through a companion NSF/USAID PEER project awarded toJordan University of Science and Technology. Individual teams have also conducted a range of studies aimed at evaluating Jordanian and transboundary surface water and groundwater systems. Surveys, interviews, and econometric analyses enabled us to better understandthe behavior of urban households, farmers, private water resellers, water use pattern of the commercial sector and irrigation water user associations. We analyzed nationwide spatial and temporal statistical trends in rainfall, developed urban and national comparative metrics to quantify water supply vulnerability

  1. 18 CFR 401.36 - Water supply projects-Conservation requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... leak detection and control program; (2) Use of the best practicable water-conserving devices and... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water supply projects-Conservation requirements. 401.36 Section 401.36 Conservation of Power and Water Resources DELAWARE RIVER BASIN...

  2. Map showing general availability of ground water in the Kaiparowits coal-basin area, Utah

    USGS Publications Warehouse

    Price, Don

    1977-01-01

    This is one of a series of maps that describe the geology and related natural resources in the Kaiparowits coal-basin area. This map is based partly on records of water wells, springs, and coal and petroleum exploration holes, partly on unpublished reports of field evaluations of prospective stock-water well sites by personnel of the U.S. Geological Survey, and partly on a 6-day field reconnaissance by the writer in parts of the mapped area.Most of the data used to compile this map were collected by the U.S. Geological Survey in cooperation with State, local, and other Federal agencies. Published sources of data included Phoenix (1963), Iorns, Hembree, and Phoenix (1964), Cooley (1965), Feltis (1966), Goode (1966, 1969), and the final environmental impact statement for the proposed Kaiparowits power project (U.S. Bureau of Land Management, 1976).Few data about the availability or depth of ground water could be obtained for large areas in the Kaiparowits coal basin. In those areas, expected yields of individual wells are inferred from the geology as compiled by Stokes (1964) and Hackman and Wyant (1973), and depths of ground water in wells are inferred largely from the local topography.El Paso Natural Gas Co., Resources Co., Kaiser Engineers, and Southern California Edison Co. provided specific information regarding the availability and depth of ground water in their exploratory holes on the Kaiparowits Plateau. The cooperation of those firms is gratefully acknowledged.

  3. The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project

    NASA Technical Reports Server (NTRS)

    House, P. R.; Lapenta, W.; Schiffer, R.

    2008-01-01

    Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).

  4. Environmental management plan (EMP) for Melamchi water supply project, Nepal.

    PubMed

    Khadka, Ram B; Khanal, Anil B

    2008-11-01

    More than 1.5 million people live in the Kathmandu valley. The valley is facing an extreme shortage of water supply. At the same time the demand is escalating rapidly. To address this issue of scarcity of water, the government of Nepal has proposed a project of inter-basin transfer of water from Melamchi River located 40 km north-east of the Kathmandu valley. The project will cover two districts and three municipalities and will potentially have significant impacts on the environment. In accordance with the Environmental Protection Regulation of Nepal (1997), the Melamchi Water Supply Project (MWSP) has undergone an EIA during the feasibility study stage of the proposed project. The recommendations contained in the EIA were integrated into the project design for implementation in 2006. This paper summarizes the background of MWSP, the environmental concerns described in the EIA and the status of Environmental Management Plan (EMP) developed to address environmental compliance and other issues involving participation and support of the local people. This paper also provides some lessons to learn on the modalities of addressing the demands and grievances of the local people concerning environmental management.

  5. Interaction of the Global Energy and Water Cycle Experiment (GEWEX) Water Resources Applications Project (WRAP) and Coordinated Enhanced Observing Project (CEOP) in Support of Water Resource Management and Planning

    NASA Astrophysics Data System (ADS)

    Martz, L.

    2004-05-01

    The Water Resources Applications Project (WRAP) has been developed within the Global Energy and Water Cycle Experiment (GEWEX) to facilitate the testing of GEWEX products and their transfer to operational water managers. The WRAP activity builds upon projects within the GEWEX Continental Scale Experiments (CSEs), and facilitates dialogue between these CSEs and their local water management communities regarding their information needs and opportunities for GEWEX products to meet those needs. Participating Continental Scale Experiments are located in the United States, the Mackenzie River Basin in Canada, the Amazon River Basin in Brazil, the Baltic Sea drainage area, eastern Asia and the Murray-Darling Basin in Australia. In addition, the development of WRAP is facilitating the transfer of techniques and demonstration projects to other areas through collaboration with IAHS, UNESCO/WMO HELP, WMO Hydrology and WWAP. The initiation of CEOP presents a significant new opportunity for collaborations to support the application of global hydro-climatological scientific data and techniques to water resource management. Some important scientific and operational issues identified by water resource management professionals in earlier workshops will be reviewed, some scientific initiatives needed to address these issues will be presented, and some case study examples of the application of GEWEX knowledge to water resource problems will be presented. Against this background, the unique opportunities that CEOP provides to improve our use and management of water resources globally will be discussed.

  6. Research on evaluating water resource resilience based on projection pursuit classification model

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  7. Development of Chengdu and sustainable utilization of the ancient Dujiangyan Water-Conservancy Project

    NASA Astrophysics Data System (ADS)

    Huang, X.; You, J.; Yang, P.; Chai, X.

    2015-05-01

    The Dujiangyan Water-Conservancy Project is a great water irrigation works in Chinese cultural history, which led the Min River water to the vast Chengdu Plain, and created fertile and pretty "land of abundance". Now Chengdu is facing increased water demand stress due mainly to rapid urbanization. This paper first analyses the available water resources of Chengdu based on historical hydrological data from 1964 to 2008. The results show that the average annual water resources were 8.9 billion m3 in 1986 and 7.9 billion m3 in 2008 under various environmental conditions. The future tendency of water demand in city development planning is predicted by the Policy Dialogue Model (PODIUM). Finally, the strategies for water resources exploitation accompanying the sustainable development pattern are studied. The result illustrates that rational and careful management are required to balance the gap between water supply and demand

  8. The Climaware project: Impacts of climate change on water resources management - regional strategies and European view

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

    2014-05-01

    Climate projections produced with CMIP5 and applied by the Intergovernmental Panel on Climate Change (IPCC) in its fifth assessment report indicate that changes in precipitation and temperature are expected to occur throughout Europe in the 21th century, with a likely decrease of water availability in many regions. Besides, water demand is also expected to increase, in link with these expected climate modifications, but also due to socio-economic and demographic changes. In this respect, the use of future freshwater resources may not be sustainable from the current water management perspective. Therefore adaptation strategies will most likely be needed to cope with these evolutions. In this context, the main objective of the ClimAware project (2010-2013 - www.uni-kassel.de/fb14/wasserbau/CLIMAWARE/, a project implemented within the IWRM-NET Funding Initiative) was to analyse the impacts of climate change (CC) on freshwater resources at the continental and regional scales and to identify efficient adaptation strategies to improve water management for various socio-economic sectors. This should contribute to a more effective implementation of the Water Framework Directive (WFD) and its instruments (river basin management plans, programmes of measures). The project developed integrated measures for improved freshwater management under CC constraints. More specifically, the objectives of the ClimAware project were to: • elaborate quantitative projections of changes in river flows and consequences such as flood frequency, drought occurrence and sectorial water uses. • analyse the effect of CC on the hydromorphological reference conditions of rivers and therefore the definition of "good status". • define management rules/strategies concerning dam management and irrigation practices on different time perspectives. • investigate uncertainties in climate model - scenario combinations. The research approach considered both European and regional perspectives, to get

  9. Evaluation of globally available precipitation data products as input for water balance models

    NASA Astrophysics Data System (ADS)

    Lebrenz, H.; Bárdossy, A.

    2009-04-01

    Subject of this study is the evaluation of globally available precipitation data products, which are intended to be used as input variables for water balance models in ungauged basins. The selected data sources are a) the Global Precipitation Climatology Centre (GPCC), b) the Global Precipitation Climatology Project (GPCP) and c) the Climate Research Unit (CRU), resulting into twelve globally available data products. The data products imply different data bases, different derivation routines and varying resolutions in time and space. For validation purposes, the ground data from South Africa were screened on homogeneity and consistency by various tests and an outlier detection using multi-linear regression was performed. External Drift Kriging was subsequently applied on the ground data and the resulting precipitation arrays were compared to the different products with respect to quantity and variance.

  10. Water availability and trachoma.

    PubMed

    West, S; Lynch, M; Turner, V; Munoz, B; Rapoza, P; Mmbaga, B B; Taylor, H R

    1989-01-01

    As part of an epidemiological survey of risk factors for trachoma in 20 villages in the United Republic of Tanzania, we investigated the relationship of village water pumps, distance to water source, and quantity of household water to the risk of inflammatory trachoma. We also evaluated whether there was an association between the cleanliness of children's faces and these water variables. No association was found between the presence of a village water supply and the prevalence of trachoma. However, the risk of trachoma in the household increased with the distance to a water source--although there was no association with the estimated daily amount of water brought into the house. Likewise, children were more likely to have unclean faces if they lived more than 30 minutes from a water source, but whether they had clean faces was not associated with the daily quantity of water brought into the household. The effect of the distance to water supply on trachoma may well reflect the value placed on water within the family, and this determines the priority for its use for hygiene purposes. The results of the study suggest that changing the access to water per se may be insufficient to alter the prevalence of trachoma without also a concomitant effort to change the perception of how water should be utilized in the home.

  11. 43 CFR 418.25 - Water use for other than Newlands Project purposes.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water use for other than Newlands Project..., NEVADA Operations and Management § 418.25 Water use for other than Newlands Project purposes. The District will release sufficient water to meet the vested water rights below Sagouspe Dam as specified in...

  12. Analysis of the ecological water diversion project in Wenzhou City

    NASA Astrophysics Data System (ADS)

    Xu, Haibo; Fu, Lei; Lin, Tong

    2018-02-01

    As a developed city in China, Wenzhou City has been suffered from bad water quality for years. In order to improve the river network water quality, an ecological water diversion project was designed and executed by the regional government. In this study, an investigation and analysis of the regional ecological water diversion project is made for the purpose of examining the water quality improvements. A numerical model is also established, different water diversion flow rates and sewer interception levels are considered during the simulation. Simulation results reveal that higher flow rate and sewer interception level will greatly improve the river network water quality in Wenzhou City. The importance of the flow rate and interception level has been proved and future work will be focused on increasing the flow rate and upgrading the sewer interception level.

  13. Understorey productivity in temperate grassy woodland responds to soil water availability but not to elevated [CO2 ].

    PubMed

    Collins, Luke; Bradstock, Ross A; Resco de Dios, Victor; Duursma, Remko A; Velasco, Sabrina; Boer, Matthias M

    2018-06-01

    Rising atmospheric [CO 2 ] and associated climate change are expected to modify primary productivity across a range of ecosystems globally. Increasing aridity is predicted to reduce grassland productivity, although rising [CO 2 ] and associated increases in plant water use efficiency may partially offset the effect of drying on growth. Difficulties arise in predicting the direction and magnitude of future changes in ecosystem productivity, due to limited field experimentation investigating climate and CO 2 interactions. We use repeat near-surface digital photography to quantify the effects of water availability and experimentally manipulated elevated [CO 2 ] (eCO 2 ) on understorey live foliage cover and biomass over three growing seasons in a temperate grassy woodland in south-eastern Australia. We hypothesised that (i) understorey herbaceous productivity is dependent upon soil water availability, and (ii) that eCO 2 will increase productivity, with greatest stimulation occurring under conditions of low water availability. Soil volumetric water content (VWC) determined foliage cover and growth rates over the length of the growing season (August to March), with low VWC (<0.1 m 3  m -3 ) reducing productivity. However, eCO 2 did not increase herbaceous cover and biomass over the duration of the experiment, or mitigate the effects of low water availability on understorey growth rates and cover. Our findings suggest that projected increases in aridity in temperate woodlands are likely to lead to reduced understorey productivity, with little scope for eCO 2 to offset these changes. © 2018 John Wiley & Sons Ltd.

  14. Precipitation v. River Discharge Controls on Water Availability to Riparian Trees in the Rhône River Delta

    NASA Astrophysics Data System (ADS)

    Singer, M. B.; Sargeant, C. I.; Vallet-Coulomb, C.; Evans, C.; Bates, C. R.

    2014-12-01

    Water availability to riparian trees in lowlands is controlled through precipitation and its infiltration into floodplain soils, and through river discharge additions to the hyporheic water table. The relative contributions of both water sources to the root zone within river floodplains vary through time, depending on climatic fluctuations. There is currently limited understanding of how climatic fluctuations are expressed at local scales, especially in 'critical zone' hydrology, which is fundamental to the health and sustainability of riparian forest ecosystems. This knowledge is particularly important in water-stressed Mediterranean climate systems, considering climatic trends and projections toward hotter and drier growing seasons, which have the potential to dramatically reduce water availability to riparian forests. Our aim is to identify and quantify the relative contributions of hyporheic (discharge) water v. infiltrated precipitation to water uptake by riparian Mediterranean trees for several distinct hydrologic years, selected to isolate contrasts in water availability from these sources. Our approach includes isotopic analyses of water and tree-ring cellulose, mechanistic modeling of water uptake and wood production, and physically based modeling of subsurface hydrology. We utilize an extensive database of oxygen isotope (δ18O) measurements in surface water and precipitation alongside recent measurements of δ18O in groundwater and soil water and in tree-ring cellulose. We use a mechanistic model to back-calculate source water δ18O based on δ18O in cellulose and climate data. Finally, we test our results via 1-D hydrologic modeling of precipitation infiltration and water table rise and fall. These steps enable us to interpret hydrologic cycle variability within the 'critical zone' and their potential impact on riparian trees.

  15. Sustainable Hydro Assessment and Groundwater Recharge Projects (SHARP) in Germany - Water Balance Models

    NASA Astrophysics Data System (ADS)

    Niemand, C.; Kuhn, K.; Schwarze, R.

    2010-12-01

    SHARP is a European INTERREG IVc Program. It focuses on the exchange of innovative technologies to protect groundwater resources for future generations by considering the climate change and the different geological and geographical conditions. Regions involved are Austria, United Kingdom, Poland, Italy, Macedonia, Malta, Greece and Germany. They will exchange practical know-how and also determine know-how demands concerning SHARP’s key contents: general groundwater management tools, artificial groundwater recharge technologies, groundwater monitoring systems, strategic use of groundwater resources for drinking water, irrigation and industry, techniques to save water quality and quantity, drinking water safety plans, risk management tools and water balance models. SHARP Outputs & results will influence the regional policy in the frame of sustainable groundwater management to save and improve the quality and quantity of groundwater reservoirs for future generations. The main focus of the Saxon State Office for Environment, Agriculture and Landscape in this project is the enhancement and purposive use of water balance models. Already since 1992 scientists compare different existing water balance models on different scales and coupled with groundwater models. For example in the KLIWEP (Assessment of Impacts of Climate Change Projections on Water and Matter Balance for the Catchment of River Parthe in Saxony) project the coupled model WaSiM-ETH - PCGEOFIM® has been used to study the impact of climate change on water balance and water supplies. The project KliWES (Assessment of the Impacts of Climate Change Projections on Water and Matter Balance for Catchment Areas in Saxony) still running, comprises studies of fundamental effects of climate change on catchments in Saxony. Project objective is to assess Saxon catchments according to the vulnerability of their water resources towards climate change projections in order to derive region-specific recommendations for

  16. Coralville Reservoir Water Quality Project

    DTIC Science & Technology

    2006-05-01

    Description of the Area and Scope of the Project The Coralville flood control dam is located in Johnson County, Iowa , about three miles north of Iowa City...out of the reservoir. USGS 05453100 Iowa River at Marengo, IA USGS 05453520 Iowa River below Coralville Dam near Coralville , IA max min average...26: Pesticides in Fish. Coralville Reservoir Water Quality Pesticides in Fish Reservoir (Near Lake McBride Spillway) Downstream ( Iowa

  17. WATER INFORMATION AVAILABLE FROM THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Showen, Charles R.

    1985-01-01

    As a part of the Geological Survey's program of releasing water data to the public, two large-scale computerized systems are maintained. The National Water Data Storage and Retrieval System was developed to provide more effective and efficient management of data-releasing activities and provides for the processing, storage, and retrieval of surface-water, ground-water and water-quality data. Another service available is providing assistance to users of water data to identify, locate, and acquire needed data. This service is provided by the National Water Data Exchange, which has the mission to identify sources of water data and to provide the connection between those who acquire and those who use water data.

  18. Evaluating options for balancing the water-electricity nexus in California: part 1--securing water availability.

    PubMed

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott

    2014-11-01

    The technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions were compared. Part 1 of the study focused on determining the scale of the options required to secure water availability and compared the effectiveness of different options. A spatially and temporally resolved model of California's major surface reservoirs was developed, and its sensitivity to urban water conservation, desalination, and water reuse was examined. Potential capacities of the different options were determined. Under historical (baseline) hydrology conditions, many individual options were found to be capable of securing water availability alone. Under climate change augment conditions, a portfolio approach was necessary. The water savings from many individual options other than desalination were insufficient in the latter, however, relying on seawater desalination alone requires extreme capacity installations which have energy, brine disposal, management, and cost implications. The importance of identifying and utilizing points of leverage in the system for choosing where to deploy different options is also demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Perspective: “The Financial Impact of Alternative Water Project Delivery Models” in the Water Sector

    EPA Pesticide Factsheets

    The Water Finance Center developed this companion perspective document to a UNC EFC report on Alternative Water Project Delivery Models to broaden understanding of this alternative procurement method.

  20. Increased Extreme Hydrological Events and Decreased Water Supply Availability for the Southwestern United States Projected by Mid-Century

    NASA Astrophysics Data System (ADS)

    Pagan, B. R.; Ashfaq, M.; Rastogi, D.; Naz, B. S.; Kao, S. C.; Mei, R.; Kendall, D. R.; Pal, J. S.

    2014-12-01

    Semi-arid Southern California relies primarily on imported water originating mostly from snowpack in basins outside of the region including the San-Joaquin River, Tulare Lake, Sacramento River, Owens Valley, Mono Lake, and Colorado River basins. This study provides an integrated ensemble approach to assessing climate change impacts on the hydrologic cycle and hydrologic extremes for all water supplies to Southern California. Output from 10 global climate models is used to force a regional climate model and hydrological model resulting in high-resolution 4.17-km output for the region. Greenhouse gas concentrations are prescribed according to historical values for the present-day (1965-2005) and the IPCC Representative Concentration Pathway 8.5 for the near to mid term future (2010-2050). On the annual timescale, temperature, precipitation and evaporation increase throughout the majority of the study area. With increased temperatures, precipitation is less likely to fall as snow, decreasing snowpack and natural storage and shifting peak flows to earlier in the year. Daily annual maximum runoff and precipitation events are projected to significantly increase in intensity and frequency by mid-century. The 50-year event, for example, becomes approximately five times more likely in the Colorado River basin and twice as likely in the other basins. In densely populated coastal Southern Californian cities, extreme flood events become three to five times as likely substantially increasing the risk of overburdening flood control systems and potential widespread flooding. The escalating likelihood of the combined effects of runoff occurring earlier in the year and in significantly higher amounts poses a substantial flood control risk requiring adaptation measures such as water release from reservoirs. Significant snowpack reductions and increased flood risk will likely necessitate additional multiyear storage solutions for urban and agricultural regions in the Southwestern US.

  1. Increased Extreme Hydrological Events and Decreased Water Supply Availability for the Southwestern United States Projected by Mid-Century

    NASA Astrophysics Data System (ADS)

    Pagan, B. R.; Ashfaq, M.; Rastogi, D.; Naz, B. S.; Kao, S. C.; Mei, R.; Kendall, D. R.; Pal, J. S.

    2015-12-01

    Semi-arid Southern California relies primarily on imported water originating mostly from snowpack in basins outside of the region including the San-Joaquin River, Tulare Lake, Sacramento River, Owens Valley, Mono Lake, and Colorado River basins. This study provides an integrated ensemble approach to assessing climate change impacts on the hydrologic cycle and hydrologic extremes for all water supplies to Southern California. Output from 10 global climate models is used to force a regional climate model and hydrological model resulting in high-resolution 4.17-km output for the region. Greenhouse gas concentrations are prescribed according to historical values for the present-day (1965-2005) and the IPCC Representative Concentration Pathway 8.5 for the near to mid term future (2010-2050). On the annual timescale, temperature, precipitation and evaporation increase throughout the majority of the study area. With increased temperatures, precipitation is less likely to fall as snow, decreasing snowpack and natural storage and shifting peak flows to earlier in the year. Daily annual maximum runoff and precipitation events are projected to significantly increase in intensity and frequency by mid-century. The 50-year event, for example, becomes approximately five times more likely in the Colorado River basin and twice as likely in the other basins. In densely populated coastal Southern Californian cities, extreme flood events become three to five times as likely substantially increasing the risk of overburdening flood control systems and potential widespread flooding. The escalating likelihood of the combined effects of runoff occurring earlier in the year and in significantly higher amounts poses a substantial flood control risk requiring adaptation measures such as water release from reservoirs. Significant snowpack reductions and increased flood risk will likely necessitate additional multiyear storage solutions for urban and agricultural regions in the Southwestern US.

  2. Potential Water Availability Index (PWAI): A New Water Vulnerability Index for Africa Based on GRACE Data

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Tarhule, A.; Hong, Y.; Moore, B., III

    2016-12-01

    The critical role of water in enabling or constraining human wellbeing and socio-economic activities has led to interest in quantitatively establishing the status or index of water (in)sufficiency over time and space. Introduced in 1989, the first widely accepted index expressed the status of water resources availability in terms of vulnerability, stress, or scarcity. Since then, numerous refinements and modifications to the concept have been published but nearly all adopt the same basic formulation; water status is a function of available water resources and demand or use. However, accurately defining and assessing `available water' has proved problematic especially in data scarce regions, such as Africa. In this paper, we use Total Water Storage (TWS) estimated from NASA's Gravity Recovery and Climate Experiment (GRACE) in lieu of observational hydrologic data, to estimate the Water Scarcity Index (WSI) for Africa at country level. The monthly TWS Positive anomalies represent periods of net system recharge while negative anomalies represent net system loss due to evapotranspiration and anthropogenic withdrawals. The procedure is as follows. First, we calculated the long-term (2002-2014) Internal Water Storage (IWS) for each country using the monthly precipitation data from the Global Precipitation Climatology Centre (GPCC). Next, the yearly cumulative positive and negative anomalies were added to the long-term IWS to obtain volumetric Potential Water Storage (VPWS) per country. By dividing VPWS by population, we obtain estimates of per capita water availability which can be grouped into vulnerability classes using established thresholds. Our VPWS showed very high correlation (R2 =0.94, p=0.0001) with the values of Internal Renewable Water Resources (IRWR) estimated by AQUSTAT. Additionally, the GWSI is highly correlated (R2 =0.94, p=0.0001) with the existing WSI index from the world bank data center. The novelty and contribution of our approach is in using GRACE

  3. Progress toward establishing a national assessment of water availability and use

    USGS Publications Warehouse

    Alley, William M.; Evenson, Eric J.; Barber, Nancy L.; Bruce, Breton W.; Dennehy, Kevin F.; Freeman, Mary C.; Freeman, Ward O.; Fischer, Jeffrey M.; Hughes, William B.; Kennen, Jonathan G.; Kiang, Julie E.; Maloney, Kelly O.; Musgrove, MaryLynn; Ralston, Barbara E.; Tessler, Steven; Verdin, James P.

    2013-01-01

    The Omnibus Public Land Management Act of 2009 (Public Law 111-11) was passed into law on March 30, 2009. Subtitle F, also known as the SECURE Water Act, calls for the establishment of a "national water availability and use assessment program" within the U.S. Geological Survey (USGS). A major driver for this recommendation was that national water availability and use have not been comprehensively assessed since 1978. This report fulfills a requirement to report to Congress on progress in implementing the national water availability and use assessment program, also referred to as the National Water Census. The SECURE Water Act authorized \\$20 million for each of fiscal years (FY) 2009 through 2023 for assessment of national water availability and use. The first appropriation for this effort was \\$4 million in FY 2011, followed by an appropriation of \\$6 million in FY 2012. The National Water Census synthesizes and reports information at the regional and national scales, with an emphasis on compiling and reporting the information in a way that is useful to states and others responsible for water management and natural-resource issues. The USGS works with Federal and non-Federal agencies, universities, and other organizations to ensure that the information can be aggregated with other types of water-availability and socioeconomic information, such as data on food and energy production. To maximize the utility of the information, the USGS coordinates the design and development of the effort through the Federal Advisory Committee on Water Information. A National Water Census is a complex undertaking, particularly because there are major gaps in the information needed to conduct such an assessment. To maximize progress, the USGS engaged stakeholders in a discussion of priorities and leveraged existing studies and program activities to enhance efforts toward the development of a National Water Census.

  4. A vulnerability assessment for water availability related to the impacts of climate change in Banyuasin Valley, South Sumatra, Indonesia

    NASA Astrophysics Data System (ADS)

    Hamdani, Y.

    2018-03-01

    Banyuasin Valley region is located in lowland areas that is potentially subjected to hazard of flooding and submergence. The indication of reduction hazard in water availability is in the period of 2010 with decreasing value of Total Run Off at - 500 mm/year and in the period 2030 is the lowest decline of the region Banyuasin with a value of -100 mm/year. Tanjung Api-api port, built in this area, is feared to be vulnerable to the availability of clean water due to the impact of climate change. The vulnerability components consist of exposure, sensitivity, and adaptive capacity. The formula means vulnerability to a certain hazard is strengthened by its exposure and its sensitivity and decreased by its adaptive capacity. The results of this study showed that water availability in the baseline condition is in low vulnerability (47.91%) whereas, at the projection condition, vulnerability is in the category of moderate vulnerability (81.28%).

  5. SSWR Water Systems Project 3: Transformative Approaches and Technologies

    EPA Science Inventory

    This project aims to develop approaches and evaluate technologies that will help transform water systems towards a more sustainable future. Water systems challenged by issues such as shrinking resources, aging infrastructure, shifting demographics, and climate change need transf...

  6. 77 FR 15368 - Clean Water Act; Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-15

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9646-9] Clean Water Act; Availability of List Decisions...) proposed decision identifying water quality limited segments and associated pollutants in Oregon to be listed pursuant to section 303(d)(2) of the Clean Water Act (CWA). EPA is proposing to add 1004 water...

  7. 77 FR 54909 - Clean Water Act: Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9724-6] Clean Water Act: Availability of List Decisions... notice announces EPA's decision to identify certain water quality limited waters and the associated pollutant to be listed pursuant to the Clean Water Act Section 303(d)(2) on New York's list of impaired...

  8. Reduction of Turbidity of Water Using Locally Available Natural Coagulants

    PubMed Central

    Asrafuzzaman, Md.; Fakhruddin, A. N. M.; Hossain, Md. Alamgir

    2011-01-01

    Turbidity imparts a great problem in water treatment. Moringa oleifera, Cicer arietinum, and Dolichos lablab were used as locally available natural coagulants in this study to reduce turbidity of synthetic water. The tests were carried out, using artificial turbid water with conventional jar test apparatus. Optimum mixing intensity and duration were determined. After dosing water-soluble extracts of Moringa oleifera, Cicer arietinum, and Dolichos lablab reduced turbidity to 5.9, 3.9, and 11.1 nephelometric turbidity unit (NTU), respectively, from 100 NTU and 5, 3.3, and 9.5, NTU, respectively, after dosing and filtration. Natural coagulants worked better with high, turbid, water compare to medium, or low, turbid, water. Highest turbidity reduction efficiency (95.89%) was found with Cicer arietinum. About 89 to 96% total coliform reduction were also found with natural coagulant treatment of turbid water. Using locally available natural coagulants, suitable, easier, and environment friendly options for water treatment were observed. PMID:23724307

  9. Potential climate change impacts on water availability and cooling water demand in the Lusatian Lignite Mining Region, Central Europe

    NASA Astrophysics Data System (ADS)

    Pohle, Ina; Koch, Hagen; Gädeke, Anne; Grünewald, Uwe; Kaltofen, Michael; Redetzky, Michael

    2014-05-01

    In the catchments of the rivers Schwarze Elster, Spree and Lusatian Neisse, hydrologic and socioeconomic systems are coupled via a complex water management system in which water users, reservoirs and water transfers are included. Lignite mining and electricity production are major water users in the region: To allow for open pit lignite mining, ground water is depleted and released into the river system while cooling water is used in the thermal power plants. In order to assess potential climate change impacts on water availability in the catchments as well as on the water demand of the thermal power plants, a climate change impact assessment was performed using the hydrological model SWIM and the long term water management model WBalMo. The potential impacts of climate change were considered by using three regional climate change scenarios of the statistical regional climate model STAR assuming a further temperature increase of 0, 2 or 3 K by the year 2050 in the region respectively. Furthermore, scenarios assuming decreasing mining activities in terms of a decreasing groundwater depression cone, lower mining water discharges, and reduced cooling water demand of the thermal power plants are considered. In the standard version of the WBalMo model cooling water demand is considered as static with regard to climate variables. However, changes in the future cooling water demand over time according to the plans of the local mining and power plant operator are considered. In order to account for climate change impacts on the cooling water demand of the thermal power plants, a dynamical approach for calculating water demand was implemented in WBalMo. As this approach is based on air temperature and air humidity, the projected air temperature and air humidity of the climate scenarios at the locations of the power plants are included in the calculation. Due to increasing temperature and decreasing precipitation declining natural and managed discharges, and hence a lower

  10. Ground-water quality assessment of the central Oklahoma Aquifer, Oklahoma; project description

    USGS Publications Warehouse

    Christenson, S.C.; Parkhurst, D.L.

    1987-01-01

    In April 1986, the U.S. Geological Survey began a pilot program to assess the quality of the Nation's surface-water and ground-water resources. The program, known as the National Water-Quality Assessment (NAWQA) program, is designed to acquire and interpret information about a variety of water-quality issues. The Central Oklahoma aquifer project is one of three ground-water pilot projects that have been started. The NAWQA program also incudes four surface-water pilot projects. The Central Oklahoma aquifer project, as part of the pilot NAWQA program, will develop and test methods for performing assessments of ground-water quality. The objectives of the Central Oklahoma aquifer assessment are: (1) To investigate regional ground-water quality throughout the aquifer in the manner consistent with the other pilot ground-water projects, emphasizing the occurrence and distribution of potentially toxic substances in ground water, including trace elements, organic compounds, and radioactive constituents; (2) to describe relations between ground-water quality, land use, hydrogeology, and other pertinent factors; and (3) to provide a general description of the location, nature, and possible causes of selected prevalent water-quality problems within the study unit; and (4) to describe the potential for water-quality degradation of ground-water zones within the study unit. The Central Oklahoma aquifer, which includes in descending order the Garber Sandstone and Wellington Formation, the Chase Group, the Council Grove Group, the Admire Group, and overlying alluvium and terrace deposits, underlies about 3,000 square miles of central Oklahoma and is used extensively for municipal, industrial, commercial, and domestic water supplies. The aquifer was selected for study by the NAWQA program because it is a major source for water supplies in central Oklahoma and because it has several known or suspected water-quality problems. Known problems include concentrations of arsenic, chromium

  11. Multilayer geospatial analysis of water availability for shale resources development in Mexico

    NASA Astrophysics Data System (ADS)

    Galdeano, C.; Cook, M. A.; Webber, M. E.

    2017-08-01

    Mexico’s government enacted an energy reform in 2013 that aims to foster competitiveness and private investment throughout the energy sector value chain. As part of this reform, it is expected that extraction of oil and gas via hydraulic fracturing will increase in five shale basins (e.g. Burgos, Sabinas, Tampico, Tuxpan, and Veracruz). Because hydraulic fracturing is a water-intensive activity, it is relevant to assess the potential water availability for this activity in Mexico. This research aims to quantify the water availability for hydraulic fracturing in Mexico and identify its spatial distribution along the five shale basins. The methodology consisted of a multilayer geospatial analysis that overlays the water availability in the watersheds and aquifers with the different types of shale resources areas (e.g. oil and associated gas, wet gas and condensate, and dry gas) in the five shale basins. The aquifers and watersheds in Mexico are classified in four zones depending on average annual water availability. Three scenarios were examined based on different impact level on watersheds and aquifers from hydraulic fracturing. For the most conservative scenario analyzed, the results showed that the water available could be used to extract between 8.15 and 70.42 Quadrillion British thermal units (Quads) of energy in the typical 20-30 year lifetime of the hydraulic fracturing wells that could be supplied with the annual water availability overlaying the shale areas, with an average across estimates of around 18.05 Quads. However, geographic variation in water availability could represent a challenge for extracting the shale reserves. Most of the water available is located closer to the Gulf of Mexico, but the areas with the larger recoverable shale reserves coincide with less water availability in Northern Mexico. New water management techniques (such as recycling and re-use), more efficient fracturing methods, shifts in usage patterns, or other water sources need

  12. Culturally appropriate organization of water and sewerage projects built through public private partnerships

    PubMed Central

    2017-01-01

    This paper contributes to the pursuit of socially sustainable water and sanitation infrastructure for all people by discovering statistically robust relationships between Hofstede’s dimensions of cross-cultural comparison and the choice of contract award types, project type, and primary revenue sources. This analysis, which represents 973 projects distributed across 24 low- and middle-income nations, uses a World Bank dataset describing high capital cost water and sewerage projects funded through private investment. The results show that cultural dimensions explain variation in the choice of contract award types, project type, and primary revenue sources. These results provide empirical evidence that strategies for water and sewerage project organization are not culturally neutral. The data show, for example, that highly individualistic contexts are more likely to select competitive contract award types and to depend on user fees to provide the primary project revenue stream post-construction. By selecting more locally appropriate ways to organize projects, project stakeholders will be better able to pursue the construction of socially sustainable water and sewerage infrastructure. PMID:29200432

  13. 43 CFR 418.25 - Water use for other than Newlands Project purposes.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... will in no case exceed the portion of 1,300 acre-feet per year not supplied by return flows. This water... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water use for other than Newlands Project..., NEVADA Operations and Management § 418.25 Water use for other than Newlands Project purposes. The...

  14. Effects of soil water availability on water fluxes in winter wheat

    NASA Astrophysics Data System (ADS)

    Cai, G.; Vanderborght, J.; Langensiepen, M.; Vereecken, H.

    2014-12-01

    Quantifying soil water availability in water-limited ecosystems on plant water use continues to be a practical problem in agronomy. Transpiration which represents plant water demand is closely in relation to root water uptake in the root zone and sap flow in plant stems. However, few studies have been concentrated on influences of soil moisture on root water uptake and sap flow in crops. This study was undertaken to investigate (i) whether root water uptake and sap flow correlate with the transpiration estimated by the Penman-Monteith model for winter wheat(Triticum aestivum), and (ii) for which soil water potentials in the root zone, the root water uptake and sap flow rates in crop stems would be reduced. Therefore, we measured sap flow velocities by an improved heat-balance approach (Langensiepen et al., 2014), calculated crop transpiration by Penman-Monteith model, and simulated root water uptake by HYDRUS-1D on an hourly scale for different soil water status in winter wheat. In order to assess the effects of soil water potential on root water uptake and sap flow, an average soil water potential was calculated by weighting the soil water potential at a certain depth with the root length density. The temporal evolution of root length density was measured using horizontal rhizotubes that were installed at different depths.The results showed that root water uptake and sap flow matched well with the computed transpiration by Penman-Monteith model in winter wheat when the soil water potential was not limiting root water uptake. However, low soil water content restrained root water uptake, especially when soil water potential was lower than -90 kPa in the top soil. Sap flow in wheat was not affected by the observed soil water conditions, suggesting that stomatal conductance was not sensitive to soil water potentials. The effect of drought stress on root water uptake and sap flow in winter wheat was only investigated in a short time (after anthesis). Further research

  15. Life cycle assessment of water supply alternatives in water-receiving areas of the South-to-North Water Diversion Project in China.

    PubMed

    Li, Yi; Xiong, Wei; Zhang, Wenlong; Wang, Chao; Wang, Peifang

    2016-02-01

    To alleviate the water shortage in northern China, the Chinese government launched the world's largest water diversion project, the South-to-North Water Diversion Project (SNWDP), which delivers water from water-sufficient southern China to water-deficient northern China. However, an up-to-date study has not been conducted to determine whether the project is a favorable option to augment the water supply from an environmental perspective. The life cycle assessment (LCA) methodology integrated with a freshwater withdrawal category (FWI) was adopted to compare water supply alternatives in the water-receiving areas of the SNWDP, i.e., water diversion, wastewater reclamation and seawater desalination. Beijing, Tianjin, Jinan and Qingdao were studied as representative cities because they are the primary water-receiving areas of the SNWDP. The results revealed that the operation phase played the dominant role in all but one of the life cycle impact categories considered and contributed to more than 70% of their scores. For Beijing and Tianjin, receiving water through the SNWDP is the most sustainable option to augment the water supply. The result can be drawn in all of the water-receiving areas of the middle route of the SNWDP. For Jinan and Qingdao, the most sustainable option is the wastewater reclamation system. The seawater desalination system obtains the highest score of the standard impact indicators in all of the study areas, whereas it is the most favorable water supply option when considering the freshwater withdrawal impact. Although the most sustainable water supply alternative was recommended through an LCA analysis, multi-water resources should be integrated into the region's water supply from the perspective of water sustainability. The results of this study provide a useful recommendation on the management of water resources for China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from themore » US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.« less

  17. Water Resources Management in Turkey as a Case Study Southeastern Anatolia Project (gap)

    NASA Astrophysics Data System (ADS)

    Ačma, Bülent

    2010-05-01

    The Southeastern Anatolia Project (GAP), one of the most important projects for develop remarkable natural resources of the world, is accepted as a change for getting benefit from rich water and agricultural resources of the Southeastern Anatolia Region. The GAP Project has been considered as a regional development projects through years, but the dimensions of sustainability, protection of environment and participatory have been attached to the master of the project in recent years. When the GAP Project is completed, the Upper Mesopotomia, the centers of many civilisation, will re-again its importance as it had in the ancient times, and will be alive a center of civilisation. Moreover, when the problem of water shortage and water supplies in the world for the future is kept in mind, the importance of Southeastern Anatolia's water supplies will be doubled. For this reason, the GAP Project, developed by depending on water and natural resources of the region, will have an important place in the world. The aim of this study is to introduce the region with rich natural resources and the GAP Project. For this reason, firstly, the natural potential of the region will be introduced. Second, The GAP Project will be presented in detailes. In the third stage, the projects being processed for protecting the natural sources and environment will be analyzed. In the last stage, strategies and policies to develop and to protect the natural resources of the region in short, mid, and long terms will be proposed.

  18. Water data to answer urgent water policy questions: Monitoring design, available data, and filling data gaps for determining whether shale gas development activities contaminate surface water or groundwater in the Susquehanna River Basin

    USGS Publications Warehouse

    Betanzo, Elin A.; Hagen, Erik R.; Wilson, John T.; Reckhow, Kenneth H.; Hayes, Laura; Argue, Denise M.; Cangelosi, Allegra A.

    2016-01-01

    Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, new technologies for oil and gas development or alternative energy sources may present new risks for water resources both above and below ground. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers and whether those data are currently available. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Susquehanna River Basin, a data-rich area expected to be a best-case scenario in terms of water data availability.

  19. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    NASA Astrophysics Data System (ADS)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  20. Influence of free water availability on a desert carnivore and herbivore.

    PubMed

    Kluever, Bryan M; Gese, Eric M; Dempsey, Steven J

    2017-04-01

    Anthropogenic manipulation of finite resources on the landscape to benefit individual species or communities is commonly employed by conservation and management agencies. One such action in arid regions is the construction and maintenance of water developments (i.e., wildlife guzzlers) adding free water on the landscape to buttress local populations, influence animal movements, or affect distributions of certain species of interest. Despite their prevalence, the utility of wildlife guzzlers remains largely untested. We employed a before-after control-impact (BACI) design over a 4-year period on the US Army Dugway Proving Ground, Utah, USA, to determine whether water availability at wildlife guzzlers influenced relative abundance of black-tailed jackrabbits Lepus californicus and relative use of areas near that resource by coyotes Canis latrans , and whether coyote visitations to guzzlers would decrease following elimination of water. Eliminating water availability at guzzlers did not influence jackrabbit relative abundance. Coyote relative use was impacted by water availability, with elimination of water reducing use in areas associated with our treatment, but not with areas associated with our control. Visitations of radio-collared coyotes to guzzlers declined nearly 3-fold following elimination of water. Our study provides the first evidence of a potential direct effect of water sources on a mammalian carnivore in an arid environment, but the ecological relevance of our finding is debatable. Future investigations aimed at determining water effects on terrestrial mammals could expand on our findings by incorporating manipulations of water availability, obtaining absolute estimates of population parameters and vital rates and incorporating fine-scale spatiotemporal data.

  1. Influence of free water availability on a desert carnivore and herbivore

    PubMed Central

    Gese, Eric M.; Dempsey, Steven J.

    2017-01-01

    Abstract Anthropogenic manipulation of finite resources on the landscape to benefit individual species or communities is commonly employed by conservation and management agencies. One such action in arid regions is the construction and maintenance of water developments (i.e., wildlife guzzlers) adding free water on the landscape to buttress local populations, influence animal movements, or affect distributions of certain species of interest. Despite their prevalence, the utility of wildlife guzzlers remains largely untested. We employed a before–after control-impact (BACI) design over a 4-year period on the US Army Dugway Proving Ground, Utah, USA, to determine whether water availability at wildlife guzzlers influenced relative abundance of black-tailed jackrabbits Lepus californicus and relative use of areas near that resource by coyotes Canis latrans, and whether coyote visitations to guzzlers would decrease following elimination of water. Eliminating water availability at guzzlers did not influence jackrabbit relative abundance. Coyote relative use was impacted by water availability, with elimination of water reducing use in areas associated with our treatment, but not with areas associated with our control. Visitations of radio-collared coyotes to guzzlers declined nearly 3-fold following elimination of water. Our study provides the first evidence of a potential direct effect of water sources on a mammalian carnivore in an arid environment, but the ecological relevance of our finding is debatable. Future investigations aimed at determining water effects on terrestrial mammals could expand on our findings by incorporating manipulations of water availability, obtaining absolute estimates of population parameters and vital rates and incorporating fine-scale spatiotemporal data. PMID:29491969

  2. Optimal water management and conflict resolution: The Middle East Water Project

    NASA Astrophysics Data System (ADS)

    Fisher, Franklin M.; Arlosoroff, Shaul; Eckstein, Zvi; Haddadin, Munther; Hamati, Salem G.; Huber-Lee, Annette; Jarrar, Ammar; Jayyousi, Anan; Shamir, Uri; Wesseling, Hans

    2002-11-01

    In many situations, actual water markets will not allocate water resources optimally, largely because of the perceived social value of water. It is possible, however, to build optimizing models which, taking account of demand as well as supply considerations, can substitute for actual markets. Such models can assist the formation of water policies, taking into account user-supplied values and constraints. They provide powerful tools for the system-wide cost-benefit analysis of infrastructure; this is illustrated by an analysis of the need for desalination in Israel and the cost and benefits of adding a conveyance line. Further, the use of such models can facilitate cooperation in water, yielding gains that can be considerably greater than the value of the disputed water itself. This can turn what appear to be zero-sum games into win-win situations. The Middle East Water Project has built such a model for the Israeli-Jordanian-Palestinian region. We find that the value of the water in dispute in the region is very small and the possible gains from cooperation are relatively large. Analysis of the scarcity value of water is a crucial feature.

  3. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using

  4. Factors that affect public-supply water use in Florida, with a section on projected water use to the year 2020

    USGS Publications Warehouse

    Marella, R.L.

    1992-01-01

    Public-supply water use in Florida increased 242 percent between 1960 and 1987 from 530 Mgal/d (million gallons per day) to 1,811 Mgal/d. This change is primarily a result of increases in population and tourism since 1960. Public-supply utilities provide water to a variety of users. In 1985, 71 percent of the water used for public supply was delivered for residential uses, 15 percent for commercial uses, 9 percent for industrial uses, and the remaining 5 percent for public use or other uses. Residential use of public-supply water in Florida has increased nearly 280 Mgal/d, but has decreased in the proportion of total deliveries from 80 to 71 percent between 1975 and 1985. This trend resulted from increased tourism and related commercial services associated with population and visitors. One of several factors that influences public-supply water use in Florida is the increase in resident population, which increased from 4.95 million in 1960 to more than 12.0 million in 1987. Additionally, Florida's nonresident population increased from 18.8 million visitors in 1977, to 34.1 million visitors in 1987, and the part of Florida?s population that relies on public-supply water increased from 68 percent in 1960, to 86 percent in 1987. The public supply per capita use was multiplied by the projected populations for each county for the years 2000, 2010, and 2020 to forecast public-supply water use. Using medium projections, Florida?s population is expected to increase to nearly 16 million in the year 2000, to 18 million in the year 2010, and to almost 20 million in the year 2020, of which an estimated 13.5 million people will be supplied water from public-supply water systems in the year 2000, 15 million in 2010, and nearly 17 million by the year 2020. Public-supply water use is expected to increase to a projected (medium) 2,310 Mgal/d in the year 2000, 2,610 Mgal/d in the year 2010, and 2,890 Mgal/d in the year 2020. If the population exceeds the medium projections for the

  5. Availability of groundwater data for California, water year 2010

    USGS Publications Warehouse

    Ray, Mary; Orlando, Patricia v.P.

    2011-01-01

    The U.S. Geological Survey, in cooperation with Federal, State, and local agencies, obtains a large amount of data pertaining to the groundwater resources of California each water year (October 1-September 30). These data constitute a valuable database for developing an improved understanding of the water resources of the State. This Fact Sheet serves as an index to groundwater data for Water Year 2010. It contains a map of California showing the number of wells (by county) with available water-level or water-quality data for Water Year 2010 (fig. 1) and instructions for obtaining this and other groundwater information contained in the databases of the U.S. Geological Survey, California Water Science Center. From 1985 to 1993, data were published in the annual report "Water Resources Data for California, Volume 5. Ground-Water Data"; prior to 1985, the data were published in U.S. Geological Survey Water-Supply Papers.

  6. Metropolitan Water Availability Forecasting Methods and Applications in South Florida

    EPA Science Inventory

    The availability of adequate fresh water is fundamental to the sustainable management of water infrastructures that support both urban needs and agricultural uses in human society. Recent drought events in the U.S. have threatened drinking water supplies for communities in Maryl...

  7. Environmentally Sound Small-Scale Water Projects. Guidelines for Planning.

    ERIC Educational Resources Information Center

    Tillman, Gus

    This manual is the second volume in a series of publications on community development programs. Guidelines are suggested for small-scale water projects that would benefit segments of the world's urban or rural poor. Strategies in project planning, implementation and evaluation are presented that emphasize environmental conservation and promote…

  8. Hydrologic models and analysis of water availability in Cuyama Valley, California

    USGS Publications Warehouse

    Hanson, R.T.; Flint, Lorraine E.; Faunt, Claudia C.; Gibbs, Dennis R.; Schmid, Wolfgang

    2014-01-01

    Changes in population, agricultural development practices (including shifts to more water-intensive crops), and climate variability are placing increasingly larger demands on available water resources, particularly groundwater, in the Cuyama Valley, one of the most productive agricultural regions in Santa Barbara County. The goal of this study was to produce a model capable of being accurate at scales relevant to water management decisions that could be considered in the evaluation of the sustainable water supply. The Cuyama Valley Hydrologic Model (CUVHM) was designed to simulate the most important natural and human components of the hydrologic system, including components dependent on variations in climate, thereby providing a reliable assessment of groundwater conditions and processes that can inform water users and help to improve planning for future conditions. Model development included a revision of the conceptual model of the flow system, construction of a precipitation-runoff model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (MF-OWHM). The hydrologic models were calibrated to historical conditions of water and land use and, then, used to assess the use and movement of water throughout the Valley. These tools provide a means to understand the evolution of water use in the Valley, its availability, and the limits of sustainability. The conceptual model identified inflows and outflows that include the movement and use of water in both natural and anthropogenic systems. The groundwater flow system is characterized by a layered geologic sedimentary sequence that—in combination with the effects of groundwater pumping, natural recharge, and the application of irrigation water at the land surface—displays vertical hydraulic-head gradients. Overall, most of the agricultural demand for water in the Cuyama Valley in the initial part of the growing season is

  9. 78 FR 20912 - Clean Water Act: Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9798-8] Clean Water Act: Availability of List Decisions.... SUMMARY: The Clean Water Act requires that States periodically submit, and EPA approve or disapprove... are not stringent enough to attain or maintain State water quality standards and for which total...

  10. Guided Inquiry Learning With Sea Water Battery Project

    NASA Astrophysics Data System (ADS)

    Mashudi, A.

    2017-02-01

    Science learning process is expected to produce valuable product, innovative and real learning environment, and provide memorable learning experience. That orientation can be contained in Inquiry Based Learning. SMP N 4 Juwana is located close to the beach. That’s why, Sea Water Battery Project is very suitable to be applied in learning activity as an effort to fulfill the renewable energy based on local wisdom. This study aims to increase interest, activity and achievement of students. Learning implementation stage, namely : Constructing Sea Water Battery project, observation, group presentations, and feedback. Sea Water Battery is renewable energy battery from materials easily found around the learner. The materials used are copper plate as the anode, zinc plate as the cathode and sea water as the electrolyte. Average score of students Interest on the first cycle 76, while on the second cycle 85. Average score of students Activity on the first cycle 76 and on the second cycle 86. Average score of students achievement on the first cycle 75, while on the second cycle 84. This learning process gave nurturant effect for students to keep innovating and construct engineering technology for the future.

  11. South Asia river flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  12. Investigation of the probability of concurrent drought events between the water source and destination regions of China's water diversion project

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomang; Luo, Yuzhou; Yang, Tiantian; Liang, Kang; Zhang, Minghua; Liu, Changming

    2015-10-01

    In this study, we investigate the concurrent drought probability between the water source and destination regions of the central route of China's South to North Water Diversion Project. We find that both regions have been drying from 1960 to 2013. The estimated return period of concurrent drought events in both regions is 11 years. However, since 1997, these regions have experienced 5 years of simultaneous drought. The projection results of global climate models show that the probability of concurrent drought events is highly likely to increase during 2020 to 2050. The increasing concurrent drought events will challenge the success of the water diversion project, which is a strategic attempt to resolve the water crisis of North China Plain. The data suggest great urgency in preparing adaptive measures to ensure the long-term sustainable operation of the water diversion project.

  13. 76 FR 50536 - Projects Approved or Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects... the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  14. 75 FR 71177 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-22

    ... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of approved projects. SUMMARY: This notice... for the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18...

  15. 76 FR 20802 - Projects Approved or Rescinded for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... SUSQUEHANNA RIVER BASIN COMMISSION Projects Approved or Rescinded for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice. SUMMARY: This notice lists the projects... the consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR...

  16. Water availability and subsidence in California's Central Valley

    USGS Publications Warehouse

    Faunt, Claudia C.; Sneed, Michelle

    2015-01-01

    California’s Central Valley covers about 52,000 square kilometers (km2) and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the broad alluvial filled structural trough, with an estimated value exceeding $20 billion per year (Faunt 2009) (Figure 1). Central Valley agriculture depends on state and federal water systems that divert surface water, predominantly originating from Sierra Nevada snowmelt, to agricultural fields. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture, as it grew, developed a reliance on groundwater for irrigation.

  17. Projected effects of proposed salinity-control projects on shallow ground water; preliminary results for the upper Brazos River basin, Texas

    USGS Publications Warehouse

    Garza, Sergio

    1982-01-01

    Two-dimensional digital-computer models were developed for aquifer simulation of steady and transient conditions in which the density effects of salt water are considered. The models were used to project the effects of the 100- year impoundment of salt water in Kiowa Peak Lake and Croton Lake on the freshwater system. Rises in aquifer head of 10 to 50 feet are projected only for areas near each dan and along each lake shoreline. The maximum migration of salt water downstream from each dam is projected to be about 1 mile. The modeling efforts in this study did not include the effects of hydrodynamic dispersion nor consideration of possible changes in the hydraulic conductivity of the aquifer due to physical and chemical interactions in the salt-water and fresh-water environments.

  18. Impact of water control projects on fisheries resources in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mirza, Monirul Qader; Ericksen, Neil J.

    1996-07-01

    Bangladesh is a very flat delta built up by the Ganges—Brahmaputra—Meghna/Barak river systems. Because of its geographical location, floods cause huge destruction of lives and properties almost every year. Water control programs have been undertaken to enhance development through mitigating the threat of disasters. This structural approach to flood hazard has severely affected floodplain fisheries that supply the major share of protein to rural Bangladesh, as exemplified by the Chandpur Irrigation Project. Although the regulated environment of the Chandpur project has become favorable for closed-water cultured fish farming, the natural open-water fishery loss has been substantial. Results from research show that fish yields were better under preproject conditions. Under project conditions per capita fish consumption has dropped significantly, and the price of fish has risen beyond the means of the poor people, so that fish protein in the diet of poor people is gradually declining. Bangladesh is planning to expand water control facilities to the remaining flood-prone areas in the next 15 20 years. This will cause further loss of floodplain fisheries. If prices for closed-water fish remain beyond the buying power of the poor, alternative sources of cheap protein will be required.

  19. Norway's historical and projected water balance in TWh

    NASA Astrophysics Data System (ADS)

    Haddeland, Ingjerd; Holmqvist, Erik

    2015-04-01

    Hydroelectric power production is closely linked to the water cycle, and variations in power production numbers reflect variations in weather. The expected climate changes will influence electricity supply through changes in annual and seasonal inflow of water to hydropower reservoirs. In Norway, more than 95 percent of the electricity production is from hydroelectric plants, and industry linked to hydropower has been an important part of the society for more than a century. Reliable information on historical and future available water resources is hence of crucial importance both for short and long-term planning and adaptation purposes in the hydropower sector. Traditionally, the Multi-area Power-market Simulator (EMPS) is used for modelling hydropower production in Norway. However, due to the models' high level of details and computational demand, this model is only used for historical analyses and a limited number of climate projections. A method has been developed that transfers water fluxes (mm day-1) and states (mm) into energy units (GWh mm-1), based on hydrological modelling of a limited number of catchments representing reservoir inflow to more than 700 hydropower plants in Norway. The advantages of using the conversion factor method, compared to EMPS, are its simplicity and low computational requirements. The main disadvantages are that it does not take into account flood losses and the time lag between inflow and power production. The method is used operationally for weekly and seasonal energy forecasts, and has proven successful at the range of results obtained for reproducing historical hydropower production numbers. In hydropower energy units, mean annual precipitation for the period 1981-2010 is estimated at 154 TWh year-1. On average, 24 TWh year-1 is lost through evapotranspiration, meaning runoff equals 130 TWh year-1. There are large interannual variations, and runoff available for power production ranges from 91 to 165 TWh year-1. The snow pack

  20. 75 FR 23837 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of approved projects. SUMMARY: This notice... consumptive use of water pursuant to the Commission's approval by rule process set forth in 18 CFR 806.22(e...

  1. 75 FR 38591 - Notice of Projects Approved for Consumptive Uses of Water

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... SUSQUEHANNA RIVER BASIN COMMISSION Notice of Projects Approved for Consumptive Uses of Water AGENCY: Susquehanna River Basin Commission. ACTION: Notice of Approved Projects. SUMMARY: This notice... consumptive use of water pursuant to the Commission's approval by rule process set forth in and 18 CFR 806.22...

  2. Hindcast of water availability in regional aquifer systems using MODFLOW Farm Process

    USGS Publications Warehouse

    Schmid, Wolfgang; Hanson, Randall T.; Faunt, Claudia C.; Phillips, Steven P.

    2015-01-01

    Coupled groundwater and surface-water components of the hydrologic cycle can be simulated by the Farm Process for MODFLOW (MF-FMP) in both irrigated and non-irrigated areas and aquifer-storage and recovery systems. MF-FMP is being applied to three productive agricultural regions of different scale in the State of California, USA, to assess the availability of water and the impacts of alternative management decisions. Hindcast simulations are conducted for similar periods from the 1960s to near recent times. Historical groundwater pumpage is mostly unknown in one region (Central Valley) and is estimated by MF-FMP. In another region (Pajaro Valley), recorded pumpage is used to calibrate model-estimated pumpage. Multiple types of observations are used to estimate uncertain parameters, such as hydraulic, land-use, and farm properties. MF-FMP simulates how climate variability and water-import availability affect water demand and supply. MF-FMP can be used to predict water availability based on anticipated changes in anthropogenic or natural water demands. Keywords groundwater; surface-water; irrigation; water availability; response to climate variability/change

  3. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  4. 78 FR 45925 - Clean Water Act: Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9840-5] Clean Water Act: Availability of List Decisions... numeric water quality standards marine criterion for dissolved oxygen was not attained in these segments... 6's Web site at http://www.epa.gov/region6/water/npdes/tmdl/index.htm#303dlists , or by writing or...

  5. Impacts of fresh and aged biochars on plant available water and water use efficiency

    USDA-ARS?s Scientific Manuscript database

    The ability of soils to hold sufficient plant available water (PAW) between rainfall events is critical to crop productivity. Most studies indicate that biochar amendments decrease soil bulk density and increase soil water retention. However, limited knowledge exists regarding biochars ability to in...

  6. Assessment of water availability and demand in Lake Guiers , Senegal.

    NASA Astrophysics Data System (ADS)

    Sambou, D.; Weihrauch, D.; Hellwing, V.; Diekkrüger, B.; Höllermann, B.; Gaye, A. T.

    2015-12-01

    Assessment of water availability and demand in Lake Guiers, SenegalWater resources are critical to economic growth and social development. In most African countries, supply of drinking water to satisfy population needs is a key issue because of population growth and climate and land use change. During the last three decades, increasing population, changing patterns of water demand, and concentration of population and economic activities in urban areas has pressurize Senegal's freshwater resources. To overcome this deficit, Senegal turned, to the exploitation of the Lake Guiers. It is the sole water reservoir which can be used extensively as a stable freshwater. Its water is use for irrigating crops and sugar refinery and as a drinking water resource for urban centres, including Dakar, the capital city of Senegal, as well as for the local population and animal herds. To ensure sustainability, a greater understanding of Lake Guiers's water resources and effective management of its use will be required. In this study we developed and quantified future water situation (water availability and demand) in Lake Guiers under scenarios of climate change and population growth until 2050, using the water management model WEAP (Water Evaluation And Planning system). The results show that the pressure on Lake Guiers's water resources will increase, leading to greater competition between agriculture and municipal demand site. Decreasing inflows due to climate change will aggravate this situation. WEAP results offer basis to assister lake Guiers water resources manager for an efficient long-term planning and management. Keywords: climate change, population growth , IWRM, Lake Guiers, Senegal

  7. Projecting the Water Footprint Associated with Shale Resource Production: Eagle Ford Shale Case Study.

    PubMed

    Ikonnikova, Svetlana A; Male, Frank; Scanlon, Bridget R; Reedy, Robert C; McDaid, Guinevere

    2017-12-19

    Production of oil from shale and tight reservoirs accounted for almost 50% of 2016 total U.S. production and is projected to continue growing. The objective of our analysis was to quantify the water outlook for future shale oil development using the Eagle Ford Shale as a case study. We developed a water outlook model that projects water use for hydraulic fracturing (HF) and flowback and produced water (FP) volumes based on expected energy prices; historical oil, natural gas, and water-production decline data per well; projected well spacing; and well economics. The number of wells projected to be drilled in the Eagle Ford through 2045 is almost linearly related to oil price, ranging from 20 000 wells at $30/barrel (bbl) oil to 97 000 wells at $100/bbl oil. Projected FP water volumes range from 20% to 40% of HF across the play. Our base reference oil price of $50/bbl would result in 40 000 additional wells and related HF of 265 × 10 9 gal and FP of 85 × 10 9 gal. The presented water outlooks for HF and FP water volumes can be used to assess future water sourcing and wastewater disposal or reuse, and to inform policy discussions.

  8. Changes in Federal Water Project Repayment Policies Can Reduce Federal Costs.

    DTIC Science & Technology

    1981-08-07

    a reimburs - able purpose, the users should share in cost recovery. RECOMMENDATIONS To provide for equitable cost reimbursement on underutilized...Department of the Interior’s Bureau of Reclamation that do not ensure fair and timely recovery of water projects’ reimbursable costs. We made this...such costs for reimbursable project purposes and considering them in future water price determinations, agencies often reas- signed them to

  9. San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project

    EPA Pesticide Factsheets

    Information about the SFBWQP San Pablo Bay Tidal Marsh Enhancement and Water Quality Improvement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  10. Projections of Virtual Water Trade Under Agricultural Policy Scenarios in China

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D. L.; Rodriguez-Iturbe, I.

    2014-12-01

    China's economic growth is expected to continue into the next decades, accompanied by a sustained urbanization and industrialization. The associated increase in demand for land, water resources and rich foods will deepen the challenge to sustainably feed the population and balance environmental and agricultural policies. In previous work, Inner Mongolia was identified as a target province for trade or agricultural policies aimed at water-use efficiency improvements, due to its large production relying on particularly significant irrigation water use. In addition, water scarcity issues may arises in the greater Beijing area, which represents the largest urban area of arid Northern China. Increasing residential and industrial water demand in this region may lead to fewer available water for irrigation. For these reasons, it is important to estimate the impacts of specific policies aiming at reducing excessive water use for crop production in Inner Mongolia, as well as exploring ways to mitigate pressure on water resources in dry urban areas. In this study, we use socio-economic projections to assess the future state of China's virtual water trade (VWT) network. We then quantify the effects of agricultural policies on the national VWT system and on the efficiency of food trade in terms of water resources. This study addresses the following questions: (1) How future socio-economic changes will affect China's food trade and associated water transfers? (2) To which extent localized reductions of irrigated area can decrease agricultural water use while maintaining national food security? (3) How would these policies affect China's domestic and international VWT network and induced water resources savings (losses)?

  11. WATER SYSTEM OPERATOR TRAINING FOR THE CENTRAL ARIZONA PROJECT

    USDA-ARS?s Scientific Manuscript database

    The Central Arizona Project (CAP) is designed to bring about 1.5 million acre-feet of Colorado River water per year to Maricopa, Pima, and Pinal counties in Arizona. CAP carries water from Lake Havasu down to Tucson. The CAP canal system is a 336-mile long system of aqueducts, tunnels, pumping pla...

  12. Surface-water-quality assessment of the Yakima River basin, Washington; project description

    USGS Publications Warehouse

    McKenzie, S.W.; Rinella, J.F.

    1987-01-01

    In April 1986, the U.S. Geological Survey began the National Water Quality Assessment program to: (1) provide a nationally consistent description of the current status of water quality, (2) define water quality trends that have occurred over recent decades, and (3) relate past and present water quality conditions to relevant natural features, the history of land and water use, and land management and waste management practices. At present (1987), The National Water Quality Assessment program is in a pilot studies phase, in which assessment concepts and approaches are being tested and modified to prepare for possible full implementation of the program. Seven pilot projects (four surface water projects and three groundwater projects) have been started. The Yakima River basin in Washington is one of the pilot surface water project areas. The Yakima River basin drains in area of 6,155 sq mi and contains about 1,900 river mi of perennial streams. Major land use activities include growing and harvesting timber, dryland pasture grazing, intense farming and irrigated agriculture, and urbanization. Water quality issues that result from these land uses include potentially large concentrations of suspended sediment, bacteria, nutrients, pesticides, and trace elements that may affect water used for human consumption, fish propagation and passage, contact recreation, livestock watering, and irrigation. Data will be collected in a nine year cycle. The first three years of the cycle will be a period of concentrated data acquisition and interpretation. For the next six years, sample collection will be done at a much lower level of intensity to document the occurrence of any gross changes in water quality. This nine year cycle would then be repeated. Three types of sampling activities will be used for data acquisition: fixed location station sampling, synoptic sampling, and intensive reach studies. (Lantz-PTT)

  13. Incorporation of people's participation in planning and implementation of water resources projects

    NASA Astrophysics Data System (ADS)

    Mirghani, M. M. O.; Savenije, H. H. G.

    1995-08-01

    Although many water resources projects are technically and economically successful, they have enlarged inequality by failing to reach and to benefit the poor. More importantly, owing to lack of attention to both maintenance and operation, they fail to be sustainable in the long term. These problems may be overcome by applying the techniques of People's Participation (PP) to the planning and implementation of the project. When PP is applied to rural water resources projects, the initial emphasis should be on stakeholders' participation. This participation should not be limited to the implementation activities and the sharing of benefits, but should be considered at the very start of the project during problem identification and analysis. Maximising participation is an important element in socioeconomic development and integrated water resources management. A project is only sustainable to the extent that it has the support of a broad base of stakeholders, thereby opening up the possibilities both to strengthen local institutions and people's organisations and to develop self-reliance and confidence.

  14. Lessons Learned from a Third World Water and Sanitation Project.

    ERIC Educational Resources Information Center

    Jenkins-McLean, Terri

    1991-01-01

    The seven-step project cycle used in a water sanitation project in Belize from 1986-89 is described. The direct involvement of community organizations, village councils, family gatherings, parent-teacher organizations, political groups, Village Health Committees, and volunteer organizations is emphasized. (CW)

  15. Water availability and land subsidence in the Central Valley, California, USA

    USGS Publications Warehouse

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  16. Regional scaling of annual mean precipitation and water availability with global temperature change

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Gudmundsson, Lukas; Seneviratne, Sonia I.

    2018-03-01

    Changes in regional water availability belong to the most crucial potential impacts of anthropogenic climate change, but are highly uncertain. It is thus of key importance for stakeholders to assess the possible implications of different global temperature thresholds on these quantities. Using a subset of climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), we derive here the sensitivity of regional changes in precipitation and in precipitation minus evapotranspiration to global temperature changes. The simulations span the full range of available emission scenarios, and the sensitivities are derived using a modified pattern scaling approach. The applied approach assumes linear relationships on global temperature changes while thoroughly addressing associated uncertainties via resampling methods. This allows us to assess the full distribution of the simulations in a probabilistic sense. Northern high-latitude regions display robust responses towards wetting, while subtropical regions display a tendency towards drying but with a large range of responses. Even though both internal variability and the scenario choice play an important role in the overall spread of the simulations, the uncertainty stemming from the climate model choice usually accounts for about half of the total uncertainty in most regions. We additionally assess the implications of limiting global mean temperature warming to values below (i) 2 K or (ii) 1.5 K (as stated within the 2015 Paris Agreement). We show that opting for the 1.5 K target might just slightly influence the mean response, but could substantially reduce the risk of experiencing extreme changes in regional water availability.

  17. 14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. PROJECT PLAN, INTAKE PIER, RAW WATER CONDUITS, PUMPING STATION FORCE MAINS, TREATED WATER PIPELINES, AND FILTRATION PLANT, SHEET 1 OF 117, 1920. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA

  18. Constraints and potentials of future irrigation water availability on agricultural production under climate change.

    PubMed

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M; Folberth, Christian; Foster, Ian; Gosling, Simon N; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-03-04

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400-1,400 Pcal (8-24% of present-day total) when CO2 fertilization effects are accounted for or 1,400-2,600 Pcal (24-43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20-60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600-2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.

  19. Water availability limits tree productivity, carbon stocks, and carbon residence time in mature forests across the western US

    NASA Astrophysics Data System (ADS)

    Berner, Logan T.; Law, Beverly E.; Hudiburg, Tara W.

    2017-01-01

    Water availability constrains the structure and function of terrestrial ecosystems and is projected to change in many parts of the world over the coming century. We quantified the response of tree net primary productivity (NPP), live biomass (BIO), and mean carbon residence time (CRT = BIO / NPP) to spatial variation in water availability in the western US. We used forest inventory measurements from 1953 mature stands (> 100 years) in Washington, Oregon, and California (WAORCA) along with satellite and climate data sets covering the western US. We summarized forest structure and function in both domains along a 400 cm yr-1 hydrologic gradient, quantified with a climate moisture index (CMI) based on the difference between precipitation and reference evapotranspiration summed over the water year (October-September) and then averaged annually from 1985 to 2014 (CMIwy). Median NPP, BIO, and CRT computed at 10 cm yr-1 intervals along the CMIwy gradient increased monotonically with increasing CMIwy across both WAORCA (rs = 0.93-0.96, p < 0.001) and the western US (rs = 0.93-0.99, p < 0.001). Field measurements from WAORCA showed that median NPP increased from 2.2 to 5.6 Mg C ha-1 yr-1 between the driest and wettest 5 % of sites, while BIO increased from 26 to 281 Mg C ha-1 and CRT increased from 11 to 49 years. The satellite data sets revealed similar changes over the western US, though these data sets tended to plateau in the wettest areas, suggesting that additional efforts are needed to better quantify NPP and BIO from satellites in high-productivity, high-biomass forests. Our results illustrate that long-term average water availability is a key environmental constraint on tree productivity, carbon storage, and carbon residence time in mature forests across the western US, underscoring the need to assess potential ecosystem response to projected

  20. Global Floods and Water Availability Driven by Atmospheric Rivers

    NASA Astrophysics Data System (ADS)

    Paltan, Homero; Waliser, Duane; Lim, Wee Ho; Guan, Bin; Yamazaki, Dai; Pant, Raghav; Dadson, Simon

    2017-10-01

    While emerging regional evidence shows that atmospheric rivers (ARs) can exert strong impacts on local water availability and flooding, their role in shaping global hydrological extremes has not yet been investigated. Here we quantify the relative contribution of ARs variability to both flood hazard and water availability. We find that globally, precipitation from ARs contributes 22% of total global runoff, with a number of regions reaching 50% or more. In areas where their influence is strongest, ARs may increase the occurrence of floods by 80%, while absence of ARs may increase the occurrence of hydrological droughts events by up to 90%. We also find that 300 million people are exposed to additional floods and droughts due the occurrence of ARs. ARs provide a source of hydroclimatic variability whose beneficial or damaging effects depend on the capacity of water resources managers to predict and adapt to them.

  1. Open Source Tools for Assessment of Global Water Availability, Demands, and Scarcity

    NASA Astrophysics Data System (ADS)

    Li, X.; Vernon, C. R.; Hejazi, M. I.; Link, R. P.; Liu, Y.; Feng, L.; Huang, Z.; Liu, L.

    2017-12-01

    Water availability and water demands are essential factors for estimating water scarcity conditions. To reproduce historical observations and to quantify future changes in water availability and water demand, two open source tools have been developed by the JGCRI (Joint Global Change Research Institute): Xanthos and GCAM-STWD. Xanthos is a gridded global hydrologic model, designed to quantify and analyze water availability in 235 river basins. Xanthos uses a runoff generation and a river routing modules to simulate both historical and future estimates of total runoff and streamflows on a monthly time step at a spatial resolution of 0.5 degrees. GCAM-STWD is a spatiotemporal water disaggregation model used with the Global Change Assessment Model (GCAM) to spatially downscale global water demands for six major enduse sectors (irrigation, domestic, electricity generation, mining, and manufacturing) from the region scale to the scale of 0.5 degrees. GCAM-STWD then temporally downscales the gridded annual global water demands to monthly results. These two tools, written in Python, can be integrated to assess global, regional or basin-scale water scarcity or water stress. Both of the tools are extensible to ensure flexibility and promote contribution from researchers that utilize GCAM and study global water use and supply.

  2. Global assessment of predictability of water availability: A bivariate probabilistic Budyko analysis

    NASA Astrophysics Data System (ADS)

    Wang, Weiguang; Fu, Jianyu

    2018-02-01

    Estimating continental water availability is of great importance for water resources management, in terms of maintaining ecosystem integrity and sustaining society development. To more accurately quantify the predictability of water availability, on the basis of univariate probabilistic Budyko framework, a bivariate probabilistic Budyko approach was developed using copula-based joint distribution model for considering the dependence between parameter ω of Wang-Tang's equation and the Normalized Difference Vegetation Index (NDVI), and was applied globally. The results indicate the predictive performance in global water availability is conditional on the climatic condition. In comparison with simple univariate distribution, the bivariate one produces the lower interquartile range under the same global dataset, especially in the regions with higher NDVI values, highlighting the importance of developing the joint distribution by taking into account the dependence structure of parameter ω and NDVI, which can provide more accurate probabilistic evaluation of water availability.

  3. The water reclamation and reuse project of El Prat de Llobregat, Barcelona, Spain.

    PubMed

    Mujeriego, R; Compte, J; Cazurra, T; Gullón, M

    2008-01-01

    Water reclamation and reuse have become essential components of water resources management in the Metropolitan Area of Barcelona, by helping to develop additional water resources in the lower Llobregat River, one of its main sources of water supply. By generating a reliable flow of 300,000 m3/day of high quality reclaimed water, the options available for integrated water resources management have widely expanded to allow in-stream river water substitution, restoration of natural wetland areas, agricultural irrigation, and supply to a seawater intrusion barrier. Those management options have been possible thanks to the implementation of an extensive water distribution system that allows distribution of reclaimed water to a point 15 km upstream of the reclamation facility, and to a seawater intrusion barrier within a few kilometres of the plant. The cost of producing reclaimed water using a physico-chemical process (0.05 euro/m3) and the investment required for such a facility (0.21 euro/m3 annual capacity) are very close to those of similar large scale projects in Spain. However, higher degrees of treatment, such as demineralization for agricultural irrigation and for injection into a seawater intrusion barrier, result in considerable increases of both water reclamation cost and investment costs.

  4. 76 FR 20657 - Wells Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2149-152] Wells Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement for the Wells... of Energy Projects has reviewed the application for license for the Wells Hydroelectric Project (FERC...

  5. 78 FR 16490 - Placer County Water Agency; Notice of Authorization for Continued Project Operation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2079-000] Placer County Water Agency; Notice of Authorization for Continued Project Operation On February 23, 2011, the Placer County Water Agency, licensee for the Middle Fork American River Hydroelectric Project, filed an Application for a New License pursuant to the Federa...

  6. Give Water a Hand. Home Site Action Guide. Organizing Water Conservation and Pollution Prevention Service Projects in Your Community.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Students grades 4-8 can use this guide to explore the topics of water and water conservation within the home while conducting an environmental community service project. Youth groups, led by a group leader, work with local experts from business, government, or environmental organizations to complete the project. Nine activity sections involve…

  7. Give Water a Hand. School Site Action Guide. Organizing Water Conservation and Pollution Prevention Service Projects in Your Community.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Students grades 4-8 can use this guide to explore the topics of water, and water conservation at a school site, while conducting an environmental community service project. Youth groups, led by a group leader, work with local experts from business, government, or environmental organizations to complete the project. Nine activity sections involve…

  8. Give Water a Hand. Community Site Action Guide. Organizing Water Conservation and Pollution Prevention Service Projects in Your Community.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Students grades 4-8 can use this guide to explore the topics of water, and water conservation within a community, while conducting an environmental community service project. Youth groups, led by a group leader, work with local experts from business, government, or environmental organizations to complete the project. Nine activity sections involve…

  9. Water availability and usage on the New Mexico/Mexico border.

    PubMed

    Li, Yongmei; Arnold, Stephen D; Kozel, Charles; Forster-Cox, Sue

    2005-10-01

    New Mexico, one of four states on the U.S./Mexico border, is faced with a pressing concern--lack of water. Since the region is either arid or semiarid, it is chronically short of continually available surface-water resources. Groundwater resources are used beyond their capacity to be recharged, and most surface-water resources are used to the maximum. The quality of groundwater varies widely. As a result of nonpoint- and point-source contamination, as well as natural occurrence, water in some areas is too salty or has high levels of natural uranium, fluoride, or arsenic. To date, the New Mexico Environment Department (NMED) has recognized 1,400 cases of groundwater contamination, and 1,907 water supply wells have been affected (NMED, 2001a). Of approximate 4,000 miles of coninously flowing rivers and streams in New Mexico, 92 perent are affected by nonpoint sources of pollution (NMED, 2001b). Numerous critical water issues exist along the New Mexico/Mexico border as a result of the impending critical issue of water availability, usage, and quality, as well as the fast-growing population. Related public health problems along the New Mexico/Mexico border are indicative of the need for a holistic, concrete, and sustainable solution to meet water demands in New Mexico. In order to accomplish the goals an objectives of Border XXI, Healthy People 2010, and Heathy Border 2010, a comprehensive statewide water management plan is needed. Solutions to the water demands of the region will be addressed in a subsequent manuscript.

  10. Distinction of Concept and Discussion on Construction Idea of Smart Water Grid Project

    NASA Astrophysics Data System (ADS)

    Ye, Y.; Yizi, S., Sr.; Lili, L., Sr.; Sang, X.; Zhai, J.

    2016-12-01

    Smart water grid project includes construction of water physical grid consisting of various flow regulating infrastructures, construction of water information grid in line with the trend of intelligent technology and construction of water management grid featured by system & mechanism construction and systemization of regulation decision-making. It is the integrated platform and comprehensive carrier for water conservancy practices. Currently, there still is dispute over engineering construction idea of smart water grid which, however, represents the future development trend of water management and is increasingly emphasized. The paper, based on distinction of concept of water grid and water grid engineering, explains the concept of water grid intelligentization, actively probes into construction idea of Smart water grid project in our country and presents scientific problems to be solved as well as core technologies to be mastered for smart water grid construction.

  11. Coast salish and U.S. Geological Survey: Tribal journey water quality project

    USGS Publications Warehouse

    Akin, Sarah K.; Grossman, Eric E.; Lekanof, Debra; O'Hara, Charles J.

    2008-01-01

    The Coast Salish Peoples and U.S. Geological Survey (USGS) have commenced on a partnership to examine water quality throughout the Georgia Straits and Puget Sound, blending tradition and science, in response to this deterioration of coastal environments and loss of essential habitats and marine resources of cultural and ecological importance throughout the ancestral waters of the Salish Sea. This report describes the Coast Salish Tribal Journey Water Quality Project, its inception, the results of the 2008 Tribal Journey project, lessons learned, and recommendations for future directions.

  12. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  13. Constraints and potentials of future irrigation water availability on agricultural production under climate change

    PubMed Central

    Elliott, Joshua; Deryng, Delphine; Müller, Christoph; Frieler, Katja; Konzmann, Markus; Gerten, Dieter; Glotter, Michael; Flörke, Martina; Wada, Yoshihide; Best, Neil; Eisner, Stephanie; Fekete, Balázs M.; Folberth, Christian; Foster, Ian; Gosling, Simon N.; Haddeland, Ingjerd; Khabarov, Nikolay; Ludwig, Fulco; Masaki, Yoshimitsu; Olin, Stefan; Rosenzweig, Cynthia; Ruane, Alex C.; Satoh, Yusuke; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Wisser, Dominik

    2014-01-01

    We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–1,400 Pcal (8–24% of present-day total) when CO2 fertilization effects are accounted for or 1,400–2,600 Pcal (24–43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20–60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600–2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required. PMID:24344283

  14. Joint-operation in water resources project in Indonesia: Integrated or non-integrated

    NASA Astrophysics Data System (ADS)

    Ophiyandri, Taufika; Istijono, Bambang; Hidayat, Benny

    2017-11-01

    The construction of large water resources infrastructure project often involved a joint-operation (JO) project between two or more construction companies. The form of JO can be grouped into two categories - an integrated type and a non-integrated type. This paper investigates the reason of forming a JO project made by companies. The specific advantages and problems of JO project is also analysed in this paper. In order to achieve the objectives, three water resources infrastructure projects were selected as case studies. Data was gathered by conducting 11 semi-structured interviews to project owners, contractor managers, and project staffs. Data was analysed by means of content analysis. It was found that the most fundamental factor to form a JO is to win a competition or tender. An integrated model is in favour because it can reduce overhead costs and has a simple management system, while a non-integrated model is selected because it can avoid a sleeping partner and make contractor more responsible for their own job.

  15. Projections in donor organs available for liver transplantation in the United States: 2014-2025.

    PubMed

    Parikh, Neehar D; Hutton, David; Marrero, Wesley; Sanghani, Kunal; Xu, Yongcai; Lavieri, Mariel

    2015-06-01

    With the aging US population, demographic shifts, and obesity epidemic, there is potential for further exacerbation of the current liver donor shortage. We aimed to project the availability of liver grafts in the United States. We performed a secondary analysis of the Organ Procurement and Transplantation Network database of all adult donors from 2000 to 2012 and calculated the total number of donors available and transplanted donor livers stratified by age, race, and body mass index (BMI) group per year. We used National Health and Nutrition Examination Survey and Centers for Disease Control and Prevention historical data to stratify the general population by age, sex, race, and BMI. We then used US population age and race projections provided by the US Census Bureau and the Weldon Cooper Center for Public Service and made national and regional projections of available donors and donor liver utilization from 2014 to 2025. We performed sensitivity analyses and varied the rate of the rise in obesity, proportion of Hispanics, population growth, liver utilization rate, and donation after cardiac death (DCD) utilization. The projected adult population growth in the United States from 2014 to 2025 will be 7.1%. However, we project that there will be a 6.1% increase in the number of used liver grafts. There is marked regional heterogeneity in liver donor growth. Projections were significantly affected by changes in BMI, DCD utilization, and liver utilization rates but not by changes in the Hispanic proportion of the US population or changes in the overall population growth. Overall population growth will outpace the growth of available donor organs and thus potentially exacerbate the existing liver graft shortage. The projected growth in organs is highly heterogeneous across different United Network for Organ Sharing regions. Focused strategies to increase the liver donor pool are warranted. © 2015 American Association for the Study of Liver Diseases.

  16. 75 FR 2154 - Central Utah Project Completion Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ..., Office of the Assistant Secretary-- Water and Science. ACTION: Notice of Availability, Draft Environmental Assessment (Draft EA), Wasatch County Water Efficiency Project Recycled Water Project. SUMMARY... of the Interior and the Central Utah Water Conservancy District are evaluating the impacts of the...

  17. Cluster analysis and quality assessment of logged water at an irrigation project, eastern Saudi Arabia.

    PubMed

    Hussain, Mahbub; Ahmed, Syed Munaf; Abderrahman, Walid

    2008-01-01

    A multivariate statistical technique, cluster analysis, was used to assess the logged surface water quality at an irrigation project at Al-Fadhley, Eastern Province, Saudi Arabia. The principal idea behind using the technique was to utilize all available hydrochemical variables in the quality assessment including trace elements and other ions which are not considered in conventional techniques for water quality assessments like Stiff and Piper diagrams. Furthermore, the area belongs to an irrigation project where water contamination associated with the use of fertilizers, insecticides and pesticides is expected. This quality assessment study was carried out on a total of 34 surface/logged water samples. To gain a greater insight in terms of the seasonal variation of water quality, 17 samples were collected from both summer and winter seasons. The collected samples were analyzed for a total of 23 water quality parameters including pH, TDS, conductivity, alkalinity, sulfate, chloride, bicarbonate, nitrate, phosphate, bromide, fluoride, calcium, magnesium, sodium, potassium, arsenic, boron, copper, cobalt, iron, lithium, manganese, molybdenum, nickel, selenium, mercury and zinc. Cluster analysis in both Q and R modes was used. Q-mode analysis resulted in three distinct water types for both the summer and winter seasons. Q-mode analysis also showed the spatial as well as temporal variation in water quality. R-mode cluster analysis led to the conclusion that there are two major sources of contamination for the surface/shallow groundwater in the area: fertilizers, micronutrients, pesticides, and insecticides used in agricultural activities, and non-point natural sources.

  18. Systematic impact assessment on inter-basin water transfer projects of the Hanjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Zhou, Yanlai; Guo, Shenglian; Hong, Xingjun; Chang, Fi-John

    2017-10-01

    China's inter-basin water transfer projects have gained increasing attention in recent years. This study proposes an intelligent water allocation methodology for establishing optimal inter-basin water allocation schemes and assessing the impacts of water transfer projects on water-demanding sectors in the Hanjiang River Basin of China. We first analyze water demands for water allocation purpose, and then search optimal water allocation strategies for maximizing the water supply to water-demanding sectors and mitigating the negative impacts by using the Standard Genetic Algorithm (SGA) and Adaptive Genetic Algorithm (AGA), respectively. Lastly, the performance indexes of the water supply system are evaluated under different scenarios of inter-basin water transfer projects. The results indicate that: the AGA with adaptive crossover and mutation operators could increase the average annual water transfer from the Hanjiang River by 0.79 billion m3 (8.8%), the average annual water transfer from the Changjiang River by 0.18 billion m3 (6.5%), and the average annual hydropower generation by 0.49 billion kW h (5.4%) as well as reduce the average annual unmet water demand by 0.40 billion m3 (9.7%), as compared with the those of the SGA. We demonstrate that the proposed intelligent water allocation schemes can significantly mitigate the negative impacts of inter-basin water transfer projects on the reliability, vulnerability and resilience of water supply to the demanding sectors in water-supplying basins. This study has a direct bearing on more intelligent and effectual water allocation management under various scenarios of inter-basin water transfer projects.

  19. [Impact of water pollution risk in water transfer project based on fault tree analysis].

    PubMed

    Liu, Jian-Chang; Zhang, Wei; Wang, Li-Min; Li, Dai-Qing; Fan, Xiu-Ying; Deng, Hong-Bing

    2009-09-15

    The methods to assess water pollution risk for medium water transfer are gradually being explored. The event-nature-proportion method was developed to evaluate the probability of the single event. Fault tree analysis on the basis of calculation on single event was employed to evaluate the extent of whole water pollution risk for the channel water body. The result indicates, that the risk of pollutants from towns and villages along the line of water transfer project to the channel water body is at high level with the probability of 0.373, which will increase pollution to the channel water body at the rate of 64.53 mg/L COD, 4.57 mg/L NH4(+) -N and 0.066 mg/L volatilization hydroxybenzene, respectively. The measurement of fault probability on the basis of proportion method is proved to be useful in assessing water pollution risk under much uncertainty.

  20. 7 CFR 634.11 - Availability of funds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of funds. 634.11 Section 634.11..., DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Project Authorization and Funding § 634.11 Availability of funds. (a) The provisions of the program are subject to the appropriation of...

  1. Availability of water in Kalamazoo County, southwestern Michigan

    USGS Publications Warehouse

    Allen, William Burrows; Miller, John B.; Wood, Warren W.

    1972-01-01

    of the utmost importance. Levels at Crooked and Eagle Lakes have been maintained by pumping from lower aquifers. Diversion of water from Gourdneck Creek to West and Austin Lakes has helped in maintaining levels. Several relatively undeveloped lakes could be utilized as reservoirs whose storage could be used to augment streamflow or for water supply.Water in streams is generally of good chemical quality; however, several streams, including the Kalamazoo River downstream from Kalamazoo, have been degraded by municipal and industrial waste disposal. Water in the lakes is generally of good chemical quality with the exception of Barton Lake, which has been degraded by waste disposal. There is sufficient surface water available in Kalamazoo County to meet requirements for development of large quantities of water. The total available supply (average discharge of a stream) is about 680 mgd (million gallons per day). The dependable supply (7-day Q2, or average 7-day low flow having a recurrence interval of 2 years) is about 303 mgd. By developing artificial recharge facilities, surface runoff during winter and spring could be utilized to recharge ground-water reservoirs. Surface-water withdrawal in 1966 was about 58 mgd, of which 33 mgd was withdrawn from the Kalamazoo River. The quantity of water now being withdrawn from the ground and surface sources is small compared to the total that may be obtained in the area through full utilization of these resources. Mathematical models were used to simulate hydrologic conditions in the ground-water reservoirs and to evaluate maximum drawdowns for periods of little or no recharge. The practical limits of development as determined for the ground-water reservoirs are estimated to be at the following average withdrawal rates: Kalamazoo, 39 .mgd; Schoolcraft, 17 mgd; Kalamazoo-Portage, 24 mgd; and several small reservoirs, 67 mgd. These total 147 mgd. Further development would require additional artificial recharge facilities. Average

  2. Supplement Analysis for the Watershed Management Program EIS (DOE/EIS-0265/SA-106) - Water Entity (Trout Unlimited Montana Water Project 2003)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarde, Richard

    2003-06-13

    BPA proposes to fund several water rights acquisition projects proposed by Trout Unlimited Montana Water Project (TU). The funding will be administered by the National Fish and Wildlife Foundation, the entity administering the Columbia Basin Water Transactions Program, initiated under RPA 151 of the National Marine Fisheries Service’s 2000 Biological Opinion on the Operation of the Federal Columbia River Power System. The water rights acquired by TU will be left instream to increase flow and improve water quality. Increasing instream flow of water-limited streams benefits fish listed under the Endangered Species Act. The three projects proposed by TU include: amore » Diversion Reduction Agreement, where the landowner agrees to leave up to 4 cubic feet per second (cfs) of water in Rock Creek for the 2003 irrigation season; another Diversion Reduction Agreement for the latter part of the 2003 irrigation season, under which the landowner would agree to cease diverting 1.65 cfs on Rock Creek and between 3 to 6 cfs from the North Fork Blackfoot River; the final proposal is one piece of a larger project in conjunction with other local, federal and state entities, to install a pipeline and sprinkler system to replace a ditch and flood irrigation system, which will result in the conversion of 15.11 cfs of water rights to instream flow. TU's contribution to the proposal (and BPA’s funding) is limited to working with the landowner to convert the water rights to instream flow; all other components of the project, including the irrigation efficiency work, is being done in conjunction with other federal agencies with independent NEPA and other environmental review and consultation obligations.« less

  3. Cost Allocation of Multiagency Water Resource Projects: Game Theoretic Approaches and Case Study

    NASA Astrophysics Data System (ADS)

    Lejano, Raul P.; Davos, Climis A.

    1995-05-01

    Water resource projects are often jointly carried out by a number of communities and agencies. Participation in a joint project depends on how costs are allocated among the participants and how cost shares compare with the cost of independent projects. Cooperative N-person game theory offers approaches which yield cost allocations that satisfy rationality conditions favoring participation. A new solution concept, the normalized nucleolus, is discussed and applied to a water reuse project in southern California. Results obtained with the normalized nucleolus are compared with those derived with more traditional solution concepts, namely, the nucleolus and the Shapley value.

  4. Evaluation of Ground-Water Resources From Available Data, 1992, East Molokai Volcano, Hawaii

    USGS Publications Warehouse

    Anthony, Stephen S.

    1995-01-01

    Available ground-water data for East Molokai Volcano consist of well-construction information and records of ground-water pumpage, water levels, and chloride concentrations. Ground-water pumpage records are available for ten wells. Seventeen long-term (10 years or more) records of water-level and/or chloride concentration are available for eleven wells; however, only seven of these records are for observation wells. None of the available data show significant long-term changes in water level or chloride concentration; however, short-term changes due to variations in the quantity of water pumped, and rainfall are evident. Evaluation of the historical distribution and rates of ground-water pumpage, and variations in water levels and chloride concentrations is constrained by the scanty distribution of spatial and temporal data. Data show a range in water levels from greater than 850 feet above mean sea level in wells located in the windward valley of Waikolu to about 10 feet in wells located east of Kualapuu to 1 to 5 feet in the wells located along the south shore of East Molokai Volcano. An accurate contour map of water levels and chloride concentrations at the surface of the basal-water body cannot be constructed for any time period. Because water-level and chloride data are not collected at regular time intervals, many long-term records are incomplete. Information on the variation in chloride concentration with depth through the freshwater part of the basal-water body and into the zone of transition between freshwater and saltwater does not exist.

  5. 76 FR 20664 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9294-5] Clean Water Act Section 303(d): Availability of List... notice announces the availability of EPA's action identifying water quality limited segments and associated pollutants in Louisiana to be listed pursuant to Clean Water Act Section 303(d), and request for...

  6. 75 FR 52735 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9189-7] Clean Water Act Section 303(d): Availability of List...: This notice announces the availability of EPA's decision identifying 12 water quality limited waterbodies and associated pollutants in South Dakota to be listed pursuant to the Clean Water Act Section 303...

  7. 75 FR 68783 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-09

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9223-5] Clean Water Act Section 303(d): Availability of List Decisions AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This action announces the availability of EPA decisions identifying water quality limited segments and...

  8. 78 FR 35630 - Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 349-173] Martin Dam Hydroelectric Project; Notice of Availability of the Draft Environmental Impact Statement for the Martin Dam... the Martin Dam Hydroelectric Project (FERC No. 349), located on the Tallapoosa River in Tallapoosa...

  9. 76 FR 67178 - Wells Hydroelectric Project; Notice of Availability of the Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-31

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2149-152] Wells Hydroelectric Project; Notice of Availability of the Final Environmental Impact Statement for the Wells... application for license for the Wells Hydroelectric Project (FERC No. 2149), located on the Columbia River in...

  10. Projected effects of proposed chloride-control projects on shallow ground water; preliminary results for the Wichita River basin, Texas

    USGS Publications Warehouse

    Garza, Sergio

    1983-01-01

    Two-dimensional mathematical computer models were developed for aquifer simulation of: (1) Steady-state conditions in a fresh-water system and (2) transient conditions in a brine- fresh-water system where the density effects of the brine are considered. The main results 'of projecting the effects of the proposed Truscott Brine Lake on the fresh-water aquifer are: (1) Hydraulic head rises of 5 to 40 feet would be confined to areas near the proposed dam and along the lake shoreline, and (2) migration of salt water downstream from the dam generally would be limited to less than 1 mile and apparently would not reach equilibrium during the 100-year duration of the project. The modeling efforts did not include possible effects related to hydrodynamic dispersion in the brine- fresh-water system. Possible changes in the hydraulic conductivity of the aquifer, due to physical and chemical interactions in the brine and fresh-water environments, also were not considered.

  11. Boosting innovation in the water sector--the role and lessons learned from collaborative projects.

    PubMed

    Alegre, H; Coelho, S T; Feliciano, J F; Matos, R

    2015-01-01

    A key worldwide challenge in most sectors is to boost the effective adoption of innovation, as underpinned by the new European Union research programme Horizon 2020, which focuses on increasing innovation in Europe from 2014 to 2020. This is particularly relevant in the water sector, often perceived as conservative and averse to change. This paper discusses the role that collaborative knowledge-transfer projects can play in effectively rolling out R&D in the water industry. LNEC (Laboratório Nacional de Engenharia Civil) has designed a structured model based on a phased programme and a network of utilities and researchers. The paper presents the core principles, the rationale, the model and methods used, and the theoretical background, as well as the project's impact, outcomes and products. The discussion highlights the lessons learnt and provides a formal analysis of the advantages of focusing on middle management as an effective entry point, even if innovation is needed across the organization. Making training materials, guidelines, use cases, data and software publicly available after the project's end has proven to have a decisive multiplying effect. The paper also argues in favour of the collaborative model as a basis for R&D sustainability, and details on-going and planned developments.

  12. 34 CFR 222.192 - What local funds may be considered as available for this project?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 222.192 What local funds may be considered as available for this project? To determine the amount of... 34 Education 1 2010-07-01 2010-07-01 false What local funds may be considered as available for this project? 222.192 Section 222.192 Education Regulations of the Offices of the Department of...

  13. Geospatial application of the Water Erosion Prediction Project (WEPP) Model

    Treesearch

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2011-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...

  14. Estimated use of water in the Tennessee River watershed in 2000 and projections of water use to 2030

    USGS Publications Warehouse

    Hutson, Susan S.; Koroa, M. Carolyn; Murphree, C. Michael

    2003-01-01

    Estimates indicate that after increases in water withdrawals from 1965 to 1980 in the Tennessee River watershed, withdrawals declined from 1980 to 1985 and remained steady from 1985 to 1995. Water withdrawals in the Tennessee River watershed during 2000 averaged about 12,211 million gallons per day (Mgal/d) of freshwater for offstream uses?22 percent more than the 1995 estimate. The 2000 estimate is nearly the same as the estimate for 1980, the highest year of record, with 12,260 Mgal/d. The reuse potential of water from the Tennessee River is high because most of the water withdrawn for offstream use is returned to the river system. Besides water quality, reuse potential reflects the quantity of water available for subsequent uses and is gaged by consumptive use, which is the difference between water withdrawals and return flow. For the Tennessee River watershed, return flow was estimated to be 11,562 Mgal/d, or 95 percent of the water withdrawn during 2000. Total consumptive use accounts for the remaining 5 percent, or 649 Mgal/d. Estimates of water withdrawals by source indicate that during 2000, withdrawals from surface water accounted for 98 percent of the total withdrawals, or 11,996 Mgal/d, 23 percent more than during 1995. Total ground-water withdrawals during 2000 were 215 Mgal/d, or 17 percent less than during 1995. During 2000, thermoelectric power withdrawals were estimated to be 10,276 Mgal/d; industrial, 1,205 Mgal/d; public supply, 662 Mgal/d; and irrigation, 68.9 Mgal/d. Return flows were estimated to be: thermoelectric power, 10,244 Mgal/d; industrial, 942 Mgal/d; and public supply, 377 Mgal/d. Consumptive use was estimated to be: thermoelectric power, 32.2 Mgal/d; industrial, 263 Mgal/d; public supply, 285 Mgal/d; and irrigation, 68.9 Mgal/d. Each category of use affects the reuse potential of the return flows differently. The consumptive use in the river is comparatively small because most of the water withdrawn from the Tennessee River watershed

  15. Overview of the Texas Source Water Assessment Project

    USGS Publications Warehouse

    Ulery, Randy L.

    2000-01-01

    The 1996 Amendments to the Safe Drinking Water Act require, for the first time, that each state prepare a source water assessment for all PWS. Previously, Federal regulations focused on sampling and enforcement with emphasis on the quality of delivered water. These Amendments emphasize the importance of protecting the source water. States are required to determine the drinking-water source, the origin of contaminants monitored or the potential contaminants to be monitored, and the intrinsic susceptibility of the source water. Under the amendments to the Act, States must create SWAP Programs. The programs must include an individual source water assessment for each public water system regulated by the State. These assessments will determine whether an individual drinking water source is susceptible to contamination. During 1997?99, TNRCC and USGS staff met as subject-matter working groups to develop an approach to conducting Source Water Susceptibility Assessments (SWSA) and a draft workplan. The draft workplan was then presented to and reviewed by various stakeholder and technical advisory groups. Comments and suggestions from these groups were considered, and a final workplan was produced and presented to the EPA. After EPA approval, work formally began on the Texas SWAP Project. The project has an expected completion date of September 2002. At that time, initial SWSA of all Texas public water supplies should be complete. Ground-water supplies can be considered susceptible if a possible source of contamination (PSOC) exists in the contributing area for the public-supply well field or spring, the contaminant travel time to the well field or spring is short, and the soil zone, vadose zone, and aquifer-matrix materials are unlikely to adequately attenuate the contaminants associated with the PSOC. In addition, particular types of land use/cover within the contributing area may cause the supply to be deemed more susceptible to contamination. Finally, detection of

  16. 75 FR 7029 - Notice of Availability of the Final Environmental Assessment for Solar Roof Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-16

    ... Assessment for Solar Roof Project AGENCY: United States Geological Survey. ACTION: Notice of availability... Final Environmental Assessment for the Solar Roof Project and by this notice is announcing its... Individuals wishing to receive copies of the Environmental Assessment for the Solar Roof Project should...

  17. Hydrologic modeling for monitoring water availability in Eastern and Southern Africa

    NASA Astrophysics Data System (ADS)

    McNally, A.; Harrison, L.; Shukla, S.; Pricope, N. G.; Peters-Lidard, C. D.

    2017-12-01

    Severe droughts in 2015, 2016 and 2017 in Ethiopia, Southern Africa, and Somalia have negatively impacted agriculture and municipal water supplies resulting in food and water insecurity. Information from remotely sensed data and field reports indicated that the Famine Early Warning Systems Network (FEWS NET) Land Data Assimilation (FLDAS) accurately tracked both the anomalously low soil moisture, evapotranspiration and runoff conditions. This work presents efforts to more precisely monitor how the water balance responds to water availability deficits (i.e. drought) as estimated by the FLDAS with CHIRPS precipitation, MERRA-2 meteorological forcing and the Noah33 land surface model.Preliminary results indicate that FLDAS streamflow estimates are well correlated with observed streamflow where irrigation and other channel modifications are not present; FLDAS evapotranspiration (ET) is well correlated with ET from the Operational Simplified Surface Energy Balance model (SSEBop) in Eastern and Southern Africa. We then use these results to monitor availability, and explore trends in water supply and demand.

  18. Tapping Water from the Atmosphere: The Bureau of Reclamation's Project Skywater (Invited)

    NASA Astrophysics Data System (ADS)

    Harper, K.

    2010-12-01

    Since President Theodore Roosevelt signed the Reclamation Act on 17 June 1902—creating the forerunner of today’s Bureau of Reclamation that was established under Interior in 1907—this agency has been tasked with developing water resources in the US West. These efforts focused on building dams, reservoirs, and irrigation systems. But by the early 1960s, the federal government’s increasing interest in weather control began to attract the attention of BuRec’s leaders. Deciding that it was time to track down solid information on rainmaking techniques, the bureau called upon weather control pioneer Vincent Schaefer for assistance with its plan use weather modification as an adjunct to its water resources development portfolio. In response, Schaefer—writing to the National Science Foundation’s Earl Droessler in late 1961—declared that the Bureau’s proposed project would bring a “responsible, capable, and enthusiastic” group to represent the government and take over the engineering parts of weather modification. Enthusiastic was a bit of an understatement. BuRec was eager to use the atmosphere as a water reservoir, which could dispense moisture to watersheds feeding their earth-bound reservoirs. Contracting with universities—and working to get ahead of its nemesis, the skeptical US Weather Bureau—BuRec announced the artificial precipitation successes of its “Laboratory in the Sky” in early 1963. Although this headquarters-announced “success” was disputed by BuRec’s Denver field office, BuRec’s colorful commissioner Floyd Dominy was determined to press forward. Within months, the bureau was publishing reports indicating that the US West was a “potential future food deficit area” due to an increasing population that was outstripping the availability of ground and surface waters for agriculture. New approaches would be necessary to bring water to BuRec reservoirs for further distribution to municipalities, irrigators, and industries

  19. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a

  20. Ground-Water Availability Assessment for the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) is assessing the availability and use of the Nation's water resources to gain a clearer understanding of the status of our water resources and the land-use, water-use, and climatic trends that affect them. The goal of the National assessment is to improve our ability to forecast water availability for future economic and environmental uses. Assessments will be completed for regional aquifer systems across the Nation to help characterize how much water we have now, how water availability is changing, and how much water we can expect to have in the future (Reilly and others, 2008). Water availability is a function of many factors, including the quantity and quality of water, and the laws, regulations, economics, and environmental factors that control its use. The focus of the Columbia Plateau regional ground-water availability assessment is to improve fundamental knowledge of the ground-water balance of the region, including the flows, storage, and ground-water use by humans. An improved quantitative understanding of the region's water balance not only provides key information about water quantity, but also can serve as a fundamental basis for many analyses of water quality and ecosystem health.

  1. Ecohydrology of agroecosystems: probabilistic description of yield reduction risk under limited water availability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2013-04-01

    Supplemental irrigation represents one of the main strategies to mitigate the effects of climate variability and stabilize yields. Irrigated agriculture currently provides 40% of food production and its relevance is expected to further increase in the near future, in face of the projected alterations of rainfall patterns and increase in food, fiber, and biofuel demand. Because of the significant investments and water requirements involved in irrigation, strategic choices are needed to preserve productivity and profitability, while maintaining a sustainable water management - a nontrivial task given the unpredictability of the rainfall forcing. To facilitate decision making under uncertainty, a widely applicable probabilistic framework is proposed. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season and yields at harvest. Based on these linkages, the probability density function of yields and corresponding probability density function of required irrigation volumes, as well as the probability density function of yields under the most common case of limited water availability are obtained analytically, as a function of irrigation strategy, climate, soil and crop parameters. The full probabilistic description of the frequency of occurrence of yields and water requirements is a crucial tool for decision making under uncertainty, e.g., via expected utility analysis. Furthermore, the knowledge of the probability density function of yield allows us to quantify the yield reduction hydrologic risk. Two risk indices are defined and quantified: the long-term risk index, suitable for long-term irrigation strategy assessment and investment planning, and the real-time risk index, providing a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season in an agricultural setting. Our approach employs relatively few parameters and is thus easily and

  2. UMTRA project water sampling and analysis plan, Durango, Colorado

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.

  3. Perceptions about availability and adequacy of drinking water in a large California school district.

    PubMed

    Patel, Anisha I; Bogart, Laura M; Uyeda, Kimberly E; Rabin, Alexa; Schuster, Mark A

    2010-03-01

    Concerns about the influence of sugar-sweetened beverage consumption on obesity have led experts to recommend that water be freely available in schools. We explored perceptions about the adequacy of drinking water provision in a large California school district to develop policies and programs to encourage student water consumption. From March to September 2007, we used semistructured interviews to ask 26 California key stakeholders - including school administrators and staff, health and nutrition agency representatives, and families - about school drinking water accessibility; attitudes about, facilitators of, and barriers to drinking water provision; and ideas for increasing water consumption. Interviews were analyzed to determine common themes. Although stakeholders said that water was available from school drinking fountains, they expressed concerns about the appeal, taste, appearance, and safety of fountain water and worried about the affordability and environmental effect of bottled water sold in schools. Stakeholders supported efforts to improve free drinking water availability in schools, but perceived barriers (eg, cost) and mistaken beliefs that regulations and beverage contracts prohibit serving free water may prevent schools from doing so. Some schools provide water through cold-filtered water dispensers and self-serve water coolers. This is the first study to explore stakeholder perceptions about the adequacy of drinking water in US schools. Although limited in scope, our study suggests that water available in at least some schools may be inadequate. Collaborative efforts among schools, communities, and policy makers are needed to improve school drinking water provision.

  4. Water Systems Project 1: Current Systems and Regulatory Support

    EPA Science Inventory

    Water Systems Project 1 objectives: 1) Supply research results to support federal regulations and guidance; 2) provide strategies to regions, states, and communities for improved regulatory compliance, and 3) provide rapid and effective emergency response where appropriate (e.g. ...

  5. The potential impacts of biomass feedstock production on water resource availability.

    PubMed

    Stone, K C; Hunt, P G; Cantrell, K B; Ro, K S

    2010-03-01

    Biofuels are a major topic of global interest and technology development. Whereas bioenergy crop production is highly dependent on water, bioenergy development requires effective allocation and management of water. The objectives of this investigation were to assess the bioenergy production relative to the impacts on water resource related factors: (1) climate and weather impact on water supplies for biomass production; (2) water use for major bioenergy crop production; and (3) potential alternatives to improve water supplies for bioenergy. Shifts to alternative bioenergy crops with greater water demand may produce unintended consequences for both water resources and energy feedstocks. Sugarcane and corn require 458 and 2036 m(3) water/m(3) ethanol produced, respectively. The water requirements for corn grain production to meet the US-DOE Billion-Ton Vision may increase approximately 6-fold from 8.6 to 50.1 km(3). Furthermore, climate change is impacting water resources throughout the world. In the western US, runoff from snowmelt is occurring earlier altering the timing of water availability. Weather extremes, both drought and flooding, have occurred more frequently over the last 30 years than the previous 100 years. All of these weather events impact bioenergy crop production. These events may be partially mitigated by alternative water management systems that offer potential for more effective water use and conservation. A few potential alternatives include controlled drainage and new next-generation livestock waste treatment systems. Controlled drainage can increase water available to plants and simultaneously improve water quality. New livestock waste treatments systems offer the potential to utilize treated wastewater to produce bioenergy crops. New technologies for cellulosic biomass conversion via thermochemical conversion offer the potential for using more diverse feedstocks with dramatically reduced water requirements. The development of bioenergy

  6. Contribution potential of glaciers to water availability in different climate regimes

    PubMed Central

    Kaser, Georg; Großhauser, Martin; Marzeion, Ben

    2010-01-01

    Although reliable figures are often missing, considerable detrimental changes due to shrinking glaciers are universally expected for water availability in river systems under the influence of ongoing global climate change. We estimate the contribution potential of seasonally delayed glacier melt water to total water availability in large river systems. We find that the seasonally delayed glacier contribution is largest where rivers enter seasonally arid regions and negligible in the lowlands of river basins governed by monsoon climates. By comparing monthly glacier melt contributions with population densities in different altitude bands within each river basin, we demonstrate that strong human dependence on glacier melt is not collocated with highest population densities in most basins. PMID:21059938

  7. On the New Concept of the Available Water Climatology and Its Application

    NASA Astrophysics Data System (ADS)

    Byun, H. R.; Kim, D. W.; Choi, K. S.; Deo, R. C.; Lee, S. M.; Park, C. K.; Kwon, S. H.; Kim, G. B.; Kwon, H. N.

    2014-12-01

    We propose a new concept of climatology called the Available Water Climate (AWC). Available water is 'the remained water usable in every moment' that is calculated regardless of any time intervals or the amounts of precipitation. With this concept, the Available Water Resources Index (AWRI) has been digitized following the earlier work of Byun and Lee (2002). The applicability of AWRI not only to the assessment and prediction of water related disasters but also to the academic researches has been tested. Resulted merits are as follows. Firstly, the threshold value of AWRI for the occurrence of all water related disasters like flood, drought, inundation landslide, and drought each region became clear, therefore the assessment and the prediction of them became much more precise than before. It became clear that the more extreme the AWRI value is, the severer the related disasters become. As example, all disasters caused by heavy rains, even though a small inundation, became predictable at the time step of heavy rain warning with the help of the Long-term remained water index(LWI). As another example, the drought intensity and its dates on start and end are defined with more reasonably and precisely than any other drought indexes with help of the Effective drought index (EDI) using sliding time scale. Secondly, the spatiotemporal distribution of water environment were digitized clearly and objectively using AWRI and new concepts of the Water Abundant Season (WAS) and the Little Water Season (LIWAS), their dates on start and end, and their strength were defined, which is very beneficial for agriculture, forestry, and all other water controls. Also, the differences of water environments among regions were clearly digitized and the improvement of the climate classification by Köppen etc. became possible. Thirdly, other merits will be found continuously afterwards.

  8. Offshore Sand Resource Needs, Data Availability and Revaluation, and Beach Nourishment Projects in North Carolina

    NASA Astrophysics Data System (ADS)

    Conery, I.; Walsh, J. P.

    2016-12-01

    Storms and sea-level rise continue to impact the dynamic coastlines of North Carolina. Since the coastal region is economically critical to the state and yields numerous ecosystem services, many towns have planned beach nourishment projects. However, offshore sands compatible for nourishment are limited, and project costs fluctuate with borrow source proximity to the shoreline. Hurricane Sandy (2012) caused high water levels and waves resulting in localized overwash and erosion in the northeastern part of NC. In response, to effectively meet the rising nourishment demands for recovery after future storm events and for long-term resiliency, the Bureau of Ocean Energy Management (BOEM) recognized the need to compile and consolidate all geophysical and geologic information in federal waters (3-8 nm) along the East Coast states. A GIS database was created for NC using bathymetric, seismic reflection, sediment and other relevant data from federal, state and private entities. Information will be accessible to the public, coastal planners and managers to allow for informed decision-making and cost-effective project planning. Priority regions for seismic and core collection were determined based on data gaps and needs across the state. In addition, potential sand resource thickness and volume in northeastern NC were revaluated using comparisons of several overlapping datasets. Shoreline volume losses were calculated using long-term erosion rates and compared to historic and future nourishment projects. Finally, tourism-based revenue by town was evaluated and related to short and long-term nourishment costs.

  9. Engaging the public in hydrological observations - first experiences from the CrowdWater project

    NASA Astrophysics Data System (ADS)

    Seibert, Jan; Strobl, Barbara; Etter, Simon; Vis, Marc; Ewen, Tracy; (Ilja) van Meerveld, H. J.

    2017-04-01

    The project CrowdWater (www.crowdwater.ch) explores opportunities for citizen scientists in hydrological observations. For data collection in CrowdWater, we use a "geocaching" type approach with the help of a smartphone app. Citizens can participate in the collection of hydrological data using the smartphone app, which allows both the submission of observations for existing sites and to set up new sites. A crucial challenge in any citizen science project is finding ways to connect to enough people who want to participate and to keep them motivation to contribute to the project. Here, we present the approaches that will be used in the CrowdWater project and discuss our first experiences. To connect to the public and recruit participants we use publications in traditional media, social media and a MOOC (massive open online course). In order to keep participant motivated the collected data is immediately shown in the app and online and gamification elements are used in the app.

  10. Evaluation of the ground-water resources of coastal Georgia: preliminary report of the data available as of July 1983

    USGS Publications Warehouse

    Krause, Richard E.

    1984-01-01

    A compilation of ground-water data that have been collected for nearly 100 years in the coastal area of Georgia is presented in this report. The compilation of pertinent data indicates what information is available for use in the evaluation of the ground-water resources of the 13 counties of coastal Georgia. Also included in this report is a fairly complete discussion of previous and ongoing investigations and monitoring networks, and an extensive list of references. Maps at 1:24,000 and 1:1,000,000 scales contain well locations and identifiers for all wells in the Ground Water Site Inventory (GWSI) data base of the National Water Data Storage and retrieval System (WATSTORE). Tabular summaries of selected site information from GWSI, including well identifiers and names, latitude-longitude location, depth of well, altitude of land surface, and use of water are presented. Water-use data from the National Water Use Data System, and water use for irrigation from the University of Georgia, Department of Agriculture survey, also are tabulated. Also included are pertinent information on geophysical surveys and data obtained, and proposed project activities, particularly test-monitor well drilling. The data in this report were collected and compiled as part of the cooperative activities between the U.S. Geological Survey and other agencies.

  11. Evaluation of the ground-water resources of coastal Georgia; preliminary report on the data available as of July 1983

    USGS Publications Warehouse

    Krause, Richard E.; Matthews, Sharon E.; Gill, Harold E.

    1984-01-01

    A compilation of ground-water data that have been collected for nearly 100 years in the coastal area of Georgia as part of cooperative activities between the U.S. Geological Survey and other agencies is presented in this report. The compilation of pertinent data indicates that information is available for use in the evaluation of the ground-water resources of the 13 counties of coastal Georgia. Included in this report is a fairly complete discussion of previous and ongoing investigations and monitoring networks, and an extensive list of references. Maps at 1:24,000, 1:100,000; and 1:1000,000 scales contain well locations and identifers for all wells in the Ground Water Site Inventory (GWSI) data base of the National Water Data Storage and Retrieval System (WATSTORE). Tabular summaries of selected site information from GWSI, including well identifiers and names , latitude-longitude location, depth of well, altitude of land surface, and use of water are presented. Water-use data from the National Water Use Data System, and water use for irrigation from the University of Georgia, Department of Agriculture survey , are tabulated. Also included are pertinent information on geophysical surveys and data obtained, and proposed project activities, particularly test-monitor well drilling.

  12. Compounding Impacts of Climate Change and Increased Human Water Withdrawal on Urmia Lake Water Availability

    NASA Astrophysics Data System (ADS)

    Alborzi, A.; Moftakhari, H.; Azaranfar, A.; Mallakpour, I.; Ashraf, B.; AghaKouchak, A.

    2017-12-01

    In recent decades, climate change and increase in human water withdrawal, combined, have caused ecological degradation in several terminal lakes worldwide. Among them, the shallow and hyper-saline Urmia Lake in Iran has experienced about 6 meters drawdown in lake level and 80% reduction in surface area. Here, we assess the imposed stress on Urmia Basin's water availability and Lake's ecological condition in response to coupled climate change and human-induced water withdrawal. A generalized river basin decision support system model consisting network flow is developed to simulate the basin-lake interactions under a wide range of scenarios. This model explicitly includes water management infrastructure, reservoirs, and irrigation and municipal water use. Studied scenarios represent a wide range of historic climate and water use scenarios including a historical baseline, future increase in water demand, and also improved water efficiency. In this presentation, we show the lake's water level, as a measure of lake's ecological health, under the compounding effects of the climate condition (top-down) and water use (bottom-up) scenarios. This method illustrates what combinations lead to failure in meeting the lake's ecological level.

  13. Ground water security and drought in Africa: linking availability, access, and demand.

    PubMed

    Calow, Roger C; Macdonald, Alan M; Nicol, Alan L; Robins, Nick S

    2010-01-01

    Drought in Africa has been extensively researched, particularly from meteorological, agricultural, and food security perspectives. However, the impact of drought on water security, particularly ground water dependent rural water supplies, has received much less attention. Policy responses have concentrated on food needs, and it has often been difficult to mobilize resources for water interventions, despite evidence that access to safe water is a serious and interrelated concern. Studies carried out in Ghana, Malawi, South Africa, and Ethiopia highlight how rural livelihoods are affected by seasonal stress and longer-term drought. Declining access to food and water is a common and interrelated problem. Although ground water plays a vital role in buffering the effects of rainfall variability, water shortages and difficulties in accessing water that is available can affect domestic and productive water uses, with knock-on effects on food consumption and production. Total depletion of available ground water resources is rarely the main concern. A more common scenario is a spiral of water insecurity as shallow water sources fail, additional demands are put on remaining sources, and mechanical failures increase. These problems can be planned for within normal development programs. Water security mapping can help identify vulnerable areas, and changes to monitoring systems can ensure early detection of problems. Above all, increasing the coverage of ground water-based rural water supplies, and ensuring that the design and siting of water points is informed by an understanding of hydrogeological conditions and user demand, can significantly increase the resilience of rural communities to climate variability.

  14. Give Water a Hand. Farm and Ranch Site Action Guide. Organizing Water Conservation and Pollution Prevention Service Projects in Your Community.

    ERIC Educational Resources Information Center

    Wisconsin Univ., Madison. Coll. of Agricultural and Life Sciences.

    Students grades 4-8 can use this guide to explore the topics of water, and water conservation on a farm or ranch, while conducting an environmental community service project. Youth groups, led by a group leader, work with local experts from business, government, or environmental organizations to complete the project. Nine activity sections involve…

  15. Growth is required for perception of water availability to pattern root branches in plants.

    PubMed

    Robbins, Neil E; Dinneny, José R

    2018-01-23

    Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a "sense-by-growth" mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement. Copyright © 2018 the Author(s). Published by PNAS.

  16. Growth is required for perception of water availability to pattern root branches in plants

    PubMed Central

    2018-01-01

    Water availability is a potent regulator of plant development and induces root branching through a process termed hydropatterning. Hydropatterning enables roots to position lateral branches toward regions of high water availability, such as wet soil or agar media, while preventing their emergence where water is less available, such as in air. The mechanism by which roots perceive the spatial distribution of water during hydropatterning is unknown. Using primary roots of Zea mays (maize) we reveal that developmental competence for hydropatterning is limited to the growth zone of the root tip. Past work has shown that growth generates gradients in water potential across an organ when asymmetries exist in the distribution of available water. Using mathematical modeling, we predict that substantial growth-sustained water potential gradients are also generated in the hydropatterning competent zone and that such biophysical cues inform the patterning of lateral roots. Using diverse chemical and environmental treatments we experimentally demonstrate that growth is necessary for normal hydropatterning of lateral roots. Transcriptomic characterization of the local response of tissues to a moist surface or air revealed extensive regulation of signaling and physiological pathways, some of which we show are growth-dependent. Our work supports a “sense-by-growth” mechanism governing hydropatterning, by which water availability cues are rendered interpretable through growth-sustained water movement. PMID:29317538

  17. Influence of the South-to-North Water Transfer and the Yangtze River Mitigation Projects on the water quality of Han River, China

    NASA Astrophysics Data System (ADS)

    Liu, W.; Kuo, Y. M.

    2016-12-01

    The Middle Route of China's South-to-North Water Transfer (MSNW) and Yangtze-Han River Water Diversion (YHWD) Projects have been operated since 2014, which may deteriorate water quality in Han River. The 11 water sampling sites distributed from the middle and down streams of Han River watershed were monitored monthly between July 2014 and December 2015. Factor analysis and cluster analysis were applied to investigate the major pollution types and main variables influencing water quality in Han River. The factor analysis distinguishes three main pollution types (agricultural nonpoint source, organic, and phosphorus point source pollution) affecting water quality of Han River. Cluster analysis classified all sampling sites into four groups and determined their pollution source for both Dry and Wet seasons. The sites located at central city receive point source pollution in both seasons. The water quality in downstream Han River (excluding central city sites) was influenced by nonpoint source pollution from Jianghan Plain. Variations of water qualities are associated with hydrological conditions varied from operations of engineering projects and seasonal variability especially in Dry season. Good water quality as Class III mainly occurred when flow rate is greater than 800 cms in Dry season. The low average flow rate below 583 cms will degrade water quality as Class V at almost all sites. Elevating the flow rate discharged from MSNW and YHWD Projects to Han River can avoid degrading water quality especially in low flow conditions and may decrease the probability of algal bloom occurrence in Han River. Increasing the flow rate from 400 cms to 700 cms in main Han River can obviously improve the water quality of Han River. The investigation of relationships between water quality and flow rate in both projects can provide management strategies of water quality for various flow conditions.

  18. Analysis of the Development of Available Soil Water Storage in the Nitra River Catchment

    NASA Astrophysics Data System (ADS)

    Tárník, Andrej; Leitmanová, Mária

    2017-10-01

    World is changing dramatically. Every sphere of our life is influenced by global climate changes, including agriculture sector. Rising air temperature and temporal variability of rainfall are crucial outcomes of climate changes for agricultural activities. Main impact of these outcomes on agriculture is the change of soil water amount. Soil water is an exclusive resource of water for plants. Changes of soil water storage are sensed very sensitively by farmers. Development of soil water storage was analysed in this paper. The Nitra River catchment is covered by nets of hydrological and meteorological stations of Department of Biometeorology and Hydrology, Slovak University of Agriculture in Nitra. Quantity of available soil water storage for plants was calculated every month in the years from 2013 to 2016. Calculations were done based on real measurements for soil horizon 0-30 cm. Ratio between a real available soil water storage and a potential available soil water storage was specified. Amount of potential available soil water storage was derived by retention curves of soil samples. Map of risk areas was created in GIS in pursuance of these calculations. We can see the negative trends of available soil water storage in years 2015 and 2016. Main addition of this paper is a selection of areas where soil moisture is a limiting factor of agriculture. In these areas, it is necessary to do the mitigation measures for sustainable development of agricultural activities.

  19. The Imo State (Nigeria) Drinking Water Supply and Sanitation Project, 2. Impact on dracunculiasis, diarrhoea and nutritional status.

    PubMed

    Huttly, S R; Blum, D; Kirkwood, B R; Emeh, R N; Okeke, N; Ajala, M; Smith, G S; Carson, D C; Dosunmu-Ogunbi, O; Feachem, R G

    1990-01-01

    Morbidity due to dracunculiasis (guinea worm disease) and diarrhoea in persons of all ages, and nutritional status of young children, were used as health impact indicators in the evaluation of the Imo State Drinking Water Supply and Sanitation Project in south-eastern Nigeria. Data were collected using repeated cross-sectional surveys and longitudinal follow-up. The study area was found to have a low level of endemicity of dracunculiasis. While no impact could be demonstrated on overall period or point prevalence rates in the cross-sectional surveys, a prospective longitudinal survey showed a significant reduction in the percentage of person-fortnights positive for dracunculiasis in areas served by the project, while the control areas showed no such change. In the cross-sectional surveys it was found that, in the project villages, those persons drinking only borehole water had significantly lower period prevalence rates one year later than others. Moreover, those living further from the nearest borehole had higher rates of dracunculiasis. An impact of the project on diarrhoea morbidity was found only in limited sub-groups of the population. A greater association with water availability rather than quality was suggested for rates in young children. The prevalence of wasting (less than 80% weight-for-height) among children aged less than 3 years decreased significantly over time in all 3 intervention villages; there was no such decline in the control villages.

  20. Impact analysis of government investment on water projects in the arid Gansu Province of China

    NASA Astrophysics Data System (ADS)

    Wang, Zhan; Deng, Xiangzheng; Li, Xiubin; Zhou, Qing; Yan, Haiming

    In this paper, we introduced three-nested Constant Elasticity of Substitution (CES) production function into a static Computable General Equilibrium (CGE) Model. Through four levels of factor productivity, we constructed three nested production function of land use productivity in the conceptual modeling frameworks. The first level of factor productivity is generated by the basic value-added land. On the second level, factor productivity in each sector is generated by human activities that presents human intervention to the first level of factor productivity. On the third level of factor productivity, water allocation reshapes the non-linear structure of transaction among first and second levels. From the perspective of resource utilization, we examined the economic efficiency of water allocation. The scenario-based empirical analysis results show that the three-nested CES production function within CGE model is well-behaved to present the economy system of the case study area. Firstly, water scarcity harmed economic production. Government investment on water projects in Gansu thereby had impacts on economic outcomes. Secondly, huge governmental financing on water projects bring depreciation of present value of social welfare. Moreover, water use for environment adaptation pressures on water supply. The theoretical water price can be sharply increased due to the increasing costs of factor inputs. Thirdly, water use efficiency can be improved by water projects, typically can be benefited from the expansion of water-saving irrigation areas even in those expanding dry area in Gansu. Therefore, increasing governmental financing on water projects can depreciate present value of social welfare but benefit economic efficiency for future generation.

  1. Water Erosion Prediction Project (WEPP) model status and updates

    USDA-ARS?s Scientific Manuscript database

    This presentation will provide current information on the USDA-ARS Water Erosion Prediction Project (WEPP) model, and its implementation by the USDA-Forest Service (FS), USDA-Natural Resources Conservation Service (NRCS), and other agencies and universities. Most recently, the USDA-NRCS has begun ef...

  2. Global monthly water scarcity: blue water footprints versus blue water availability.

    PubMed

    Hoekstra, Arjen Y; Mekonnen, Mesfin M; Chapagain, Ashok K; Mathews, Ruth E; Richter, Brian D

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996-2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity--as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins--can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption.

  3. A model for evaluating effects of climate, water availability, and water management on wetland impoundments--a case study on Bowdoin, Long Lake, and Sand Lake National Wildlife Refuges

    USGS Publications Warehouse

    Tangen, Brian A.; Gleason, Robert A.; Stamm, John F.

    2013-01-01

    Many wetland impoundments managed by the U.S. Fish and Wildlife Service (USFWS) National Wildlife Refuge System throughout the northern Great Plains rely on rivers as a primary water source. A large number of these impoundments currently are being stressed from changes in water supplies and quality, and these problems are forecast to worsen because of projected changes to climate and land use. For example, many managed wetlands in arid regions have become degraded owing to the long-term accumulation of salts and increased salinity associated with evapotranspiration. A primary goal of the USFWS is to provide aquatic habitats for a diversity of waterbirds; thus, wetland managers would benefit from a tool that facilitates evaluation of wetland habitat quality in response to current and anticipated impacts of altered hydrology and salt balances caused by factors such as climate change, water availability, and management actions. A spreadsheet model that simulates the overall water and salinity balance (WSB model) of managed wetland impoundments is presented. The WSB model depicts various habitat metrics, such as water depth, salinity, and surface areas (inundated, dry), which can be used to evaluate alternative management actions under various water-availability and climate scenarios. The WSB model uses widely available spreadsheet software, is relatively simple to use, relies on widely available inputs, and is readily adaptable to specific locations. The WSB model was validated using data from three National Wildlife Refuges with direct and indirect connections to water resources associated with rivers, and common data limitations are highlighted. The WSB model also was used to conduct simulations based on hypothetical climate and management scenarios to demonstrate the utility of the model for evaluating alternative management strategies and climate futures. The WSB model worked well across a range of National Wildlife Refuges and could be a valuable tool for USFWS

  4. Future Availability of Water Supply from Karstic Springs under Probable Climate Change. The case of Aravissos, Central Macedonia, Greece.

    NASA Astrophysics Data System (ADS)

    Vafeiadis, M.; Spachos, Th.; Zampetoglou, K.; Soupilas, Th.

    2012-04-01

    The test site of Aravissos is located at 70 Km to the West (W-NW) of Thessaloniki at the south banks of mount Païko, in the north part of Central Macedonia The karstic Aravissos springs supply 40% of total volume needed for the water supply of Thessaloniki, Greece. As the water is of excellent quality, it is feed directly in the distribution network without any previous treatment. The availability of this source is therefore of high importance for the sustainable water supply of this area with almost 1000000 inhabitants. The water system of Aravissos is developed in a karstic limestone with an age of about Late Cretaceous that covers almost the entire western part of the big-anticline of Païko Mountain. The climate in this area and the water consumption area, Thessaloniki, is a typical Mediterranean climate with mild and humid winters and hot and dry summers. The total annual number of rainy days is around 110. The production of the Aravissos springs depends mostly from the annual precipitations. As the feeding catchement and the karst aquifer are not well defined, a practical empirical balance model, that contains only well known relevant terms, is applied for the simulation of the operation of the springs under normal water extraction for water supply in present time. The estimation of future weather conditions are based on GCM and RCM simulation data and the extension of trend lines of the actual data. The future evolution of the availability of adequate water quantities from the springs is finally estimated from the balance model and the simulated future climatic data. This study has been realised within the project CC-WaterS, funded by the SEE program of the European Regional Development Fund (http://www.ccwaters.eu/).

  5. A model-based assessment of the effects of projected climate change on the water resources of Jordan.

    PubMed

    Wade, A J; Black, E; Brayshaw, D J; El-Bastawesy, M; Holmes, P A C; Butterfield, D; Nuimat, S; Jamjoum, K

    2010-11-28

    This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.

  6. Sustainable Urban Waters: Opportunities to Integrate Environmental Protection in Multi-objective Projects

    EPA Science Inventory

    Abstract: Nonpoint source pollution is an ongoing challenge for environmental agencies who seek to protect waters of the U.S. Urban stream and waterfront redevelopment projects present opportunities to achieve integrated environmental, economic, and social benefits in urban water...

  7. Availability of drinking water in US public school cafeterias.

    PubMed

    Hood, Nancy E; Turner, Lindsey; Colabianchi, Natalie; Chaloupka, Frank J; Johnston, Lloyd D

    2014-09-01

    This study examined the availability of free drinking water during lunchtime in US public schools, as required by federal legislation beginning in the 2011-2012 school year. Data were collected by mail-back surveys in nationally representative samples of US public elementary, middle, and high schools from 2009-2010 to 2011-2012. Overall, 86.4%, 87.4%, and 89.4% of students attended elementary, middle, and high schools, respectively, that met the drinking water requirement. Most students attended schools with existing cafeteria drinking fountains and about one fourth attended schools with water dispensers. In middle and high schools, respondents were asked to indicate whether drinking fountains were clean, and whether they were aware of any water-quality problems at the school. The vast majority of middle and high school students (92.6% and 90.4%, respectively) attended schools where the respondent perceived drinking fountains to be clean or very clean. Approximately one in four middle and high school students attended a school where the survey respondent indicated that there were water-quality issues affecting drinking fountains. Although most schools have implemented the requirement to provide free drinking water at lunchtime, additional work is needed to promote implementation at all schools. School nutrition staff at the district and school levels can play an important role in ensuring that schools implement the drinking water requirement, as well as promote education and behavior-change strategies to increase student consumption of water at school. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  8. Global Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability

    PubMed Central

    Hoekstra, Arjen Y.; Mekonnen, Mesfin M.; Chapagain, Ashok K.; Mathews, Ruth E.; Richter, Brian D.

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996–2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity – as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins – can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption. PMID:22393438

  9. The reliability evaluation of reclaimed water reused in power plant project

    NASA Astrophysics Data System (ADS)

    Yang, Jie; Jia, Ru-sheng; Gao, Yu-lan; Wang, Wan-fen; Cao, Peng-qiang

    2017-12-01

    The reuse of reclaimed water has become one of the important measures to solve the shortage of water resources in many cities, But there is no unified way to evaluate the engineering. Concerning this issue, it took Wanneng power plant project in Huai city as a example, analyzed the reliability of wastewater reuse from the aspects of quality in reclaimed water, water quality of sewage plant, the present sewage quantity in the city and forecast of reclaimed water yield, in particular, it was necessary to make a correction to the actual operation flow rate of the sewage plant. the results showed that on the context of the fluctuation of inlet water quality, the outlet water quality of sewage treatment plants is basically stable, and it can meet the requirement of circulating cooling water, but suspended solids(SS) and total hardness in boiler water exceed the limit, and some advanced treatment should be carried out. In addition, the total sewage discharge will reach 13.91×104m3/d and 14.21×104m3/d respectively in the two planning level years of the project. They are greater than the normal collection capacity of the sewage system which is 12.0×104 m3/d, and the reclaimed water yield can reach 10.74×104m3/d, which is greater than the actual needed quantity 8.25×104m3/d of the power plant, so the wastewater reuse of this sewage plant are feasible and reliable to the power plant in view of engineering.

  10. The Benefits of Past and Current Regional Hydroclimate Projects to the Third Pole Environment (TPE) Water and Energy Exchanges Studies

    NASA Astrophysics Data System (ADS)

    Benedict, Sam; van Oevelen, Peter

    2014-05-01

    To improve understanding of the various processes at work on spatial and temporal scales from regional to global the Regional Hydroclimate Projects (RHP's) are established as part of the Global Energy and Water Exchanges (GEWEX)Project to link the regional observations and process understanding to the global scale. This is done through exchange of observations, data, modeling, transferability studies etc. In this presentation the series of RHP's that were underway over North and South America, Europe and Asia continuously from the early 1990's up to the present will be examined, the reasons they were established, how they evolved and how they are evolving or are likely to evolve in the future, with an emphasis on where they can and should benefit similar work proposed for the TPE. The results will be presented in the context of the World Climate Research Programme (WCRP) Grand Challenge related to the development of a water strategy that addresses the issue of past and future changes in Water, in general, and the GEWEX science question on global water resource systems, in particular. This material will address issues associated with how changes in land surface and hydrology influence past and future changes in water availability and security, how new observations lead to improvements in water management and how models become better in global and regional climate predictions and projections of precipitation and how these outcomes relate to the TPE Water and Energy Exchanges Studies.

  11. 7 CFR 634.11 - Availability of funds.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Availability of funds. 634.11 Section 634.11 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Project Authorization and Funding...

  12. 7 CFR 634.11 - Availability of funds.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of funds. 634.11 Section 634.11 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Project Authorization and Funding...

  13. 7 CFR 634.11 - Availability of funds.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 6 2011-01-01 2011-01-01 false Availability of funds. 634.11 Section 634.11 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Project Authorization and Funding...

  14. 7 CFR 634.11 - Availability of funds.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of funds. 634.11 Section 634.11 Agriculture Regulations of the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Project Authorization and Funding...

  15. High sensitivity of northeastern broadleaf forest trees to water availability

    NASA Astrophysics Data System (ADS)

    Levesque, M.; Pederson, N.; Andreu-Hayles, L.

    2015-12-01

    Temperate deciduous forests of eastern US provide goods and services to millions of people and play a vital role in the terrestrial carbon and hydrological cycles. However, ongoing climate change and increased in CO2 concentration in the atmosphere (ca) are expected to alter growth and gas exchange of trees, and ultimately forest productivity. Still, the magnitude of these effects is unclear. A better comprehension of the species-specific responses to environmental changes will better inform models and managers on the vulnerability and resiliency of these forests. Tree-ring analysis was combined with δ¹³C and δ18O measurements to investigate growth and physiological responses of red oak (Quercus rubra L.) and tulip poplar (Liriodendron tulipifera L.) in northeastern US to changes in water availability and ca for the period 1950-2014. We found very strong correlations between summer climatic water balance (June-August) and isotopic tree-ring series for δ¹³C (r = -0.65 and -0.73), and δ18O (r = -0.59 and -0.70), for red oak and tulip poplar, respectively. In contrast, tree-ring width was less sensitive to summer water availability (r = 0.33-0.39). Prior to the mid 1980s, low water availability resulted in low stomatal conductance, photosynthesis, and growth. Since that period, pluvial conditions occurring in northeastern US have increased stomatal conductance, carbon uptake, and growth of both species. These findings demonstrate that broadleaf trees in this region could be more sensitive to drought than expected. This appears especially true since much of the calibration period looks wet in a multi-centennial perspective. Further, stronger spatial correlations were found between climate data with tree-ring isotopes than with tree-ring width and the geographical area of the observed δ18O-precipitation response (i.e. the area over which correlations are > 0.5) covers most of the northeastern US. Given the good fit between the isotopic time series and water

  16. Water availability limits tolerance of apical damage in the Chilean tarweed Madia sativa

    NASA Astrophysics Data System (ADS)

    Gonzáles, Wilfredo L.; Suárez, Lorena H.; Molina-Montenegro, Marco A.; Gianoli, Ernesto

    2008-07-01

    Plant tolerance is the ability to reduce the negative impact of herbivory on plant fitness. Numerous studies have shown that plant tolerance is affected by nutrient availability, but the effect of soil moisture has received less attention. We evaluated tolerance of apical damage (clipping that mimicked insect damage) under two watering regimes (control watering and drought) in the tarweed Madia sativa (Asteraceae). We recorded number of heads with seeds and total number of heads as traits related to fitness. Net photosynthetic rate, water use efficiency, number of branches, shoot biomass, and the root:shoot biomass ratio were measured as traits potentially related to tolerance via compensatory responses to damage. In the drought treatment, damaged plants showed ≈43% reduction in reproductive fitness components in comparison with undamaged plants. In contrast, there was no significant difference in reproductive fitness between undamaged and damaged plants in the control watering treatment. Shoot biomass was not affected by apical damage. The number of branches increased after damage in both water treatments but this increase was limited by drought stress. Net photosynthetic rate increased in damaged plants only in the control watering treatment. Water use efficiency increased with drought stress and, in plants regularly watered, also increased after damage. Root:shoot ratio was higher in the low water treatment and damaged plants tended to reduce root:shoot ratio only in this water treatment. It is concluded that water availability limits tolerance to apical damage in M. sativa, and that putative compensatory mechanisms are differentially affected by water availability.

  17. Applying Water-Level Difference Control to Central Arizona Project

    USDA-ARS?s Scientific Manuscript database

    The Central Arizona Project (CAP) has been supplying Colorado River water to Central Arizona for roughly 25 years. The CAP canal is operated remotely with a Supervisory Control and Data Acquisition (SCADA) System. Gate position changes are made either manually or through the use of automatic control...

  18. 78 FR 48713 - Notice of Availability of the Draft Environmental Impact Statement for the Ochoa Mine Project in...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ...] Notice of Availability of the Draft Environmental Impact Statement for the Ochoa Mine Project in Lea County, New Mexico AGENCY: Bureau of Land Management, Interior. ACTION: Notice of availability. SUMMARY... Draft Environmental Impact Statement (EIS) for the Ochoa Mine Project (Project) and by this notice is...

  19. Cross sectoral impacts on water availability at +2 °C and +3 °C for east Mediterranean island states: The case of Crete

    NASA Astrophysics Data System (ADS)

    Koutroulis, A. G.; Grillakis, M. G.; Daliakopoulos, I. N.; Tsanis, I. K.; Jacob, D.

    2016-01-01

    Ensemble pan-European projections under a 2 °C global warming relative to the preindustrial period reveal a more intense warming in south Eastern Europe by up to +3 °C, thus indicating that impacts of climate change will be disproportionately high for certain regions. The Mediterranean is projected as one of the most vulnerable areas to climatic and anthropogenic changes with decreasing rainfall trends and a continuous gradual warming causing a progressive decline of average stream flow. Many Mediterranean regions are currently experiencing high to severe water stress induced by human and climate drivers. Changes in average climate conditions will increase this stress notably because of a 10-30% decline in freshwater resources. For small island states, where accessibility to freshwater resources is limited the impact will be more pronounced. Here we use a generalized cross-sectoral framework to assess the impact of climatic and socioeconomic futures on the water resources of an Eastern Mediterranean island. A set of representative regional climate models simulations from the EURO-CORDEX initiative driven by different RCP2.6, RCP4.5, and RCP8.5 GCMs are used to form a comparable set of results and a useful basis for the assessment of uncertainties related to impacts of 2° warming and above. A generalized framework of a cross-sectoral water resources analysis was developed in collaboration with the local water authority exploring and costing adaptation measures associated with a set of socioeconomic pathways (SSPs). Transient hydrological modeling was performed to describe the projected hydro-climatological regime and water availability for each warming level. The robust signal of less precipitation and higher temperatures that is projected by climate simulations results to a severe decrease of local water resources which can be mitigated by a number of actions. Awareness of the practical implications of plausible hydro-climatic and socio-economic scenarios in the

  20. 43 CFR 404.58 - Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the enactment of the Rural Water Supply Act of 2006 have to comply with the requirements in this rule... RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Miscellaneous § 404.58 Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006 have to comply with...

  1. Water availability predicts forest canopy height at the global scale.

    PubMed

    Klein, Tamir; Randin, Christophe; Körner, Christian

    2015-12-01

    The tendency of trees to grow taller with increasing water availability is common knowledge. Yet a robust, universal relationship between the spatial distribution of water availability and forest canopy height (H) is lacking. Here, we created a global water availability map by calculating an annual budget as the difference between precipitation (P) and potential evapotranspiration (PET) at a 1-km spatial resolution, and in turn correlated it with a global H map of the same resolution. Across forested areas over the globe, Hmean increased with P-PET, roughly: Hmean (m) = 19.3 + 0.077*(P-PET). Maximum forest canopy height also increased gradually from ~ 5 to ~ 50 m, saturating at ~ 45 m for P-PET > 500 mm. Forests were far from their maximum height potential in cold, boreal regions and in disturbed areas. The strong association between forest height and P-PET provides a useful tool when studying future forest dynamics under climate change, and in quantifying anthropogenic forest disturbance. © 2015 John Wiley & Sons Ltd/CNRS.

  2. Predicting Plant Invasions Following China's Water Diversion Project.

    PubMed

    Liu, Dasheng; Wang, Rui; Gordon, Doria R; Sun, Xihua; Chen, Lu; Wang, Yanwen

    2017-02-07

    China's South to North Water Diversion (SNWD) project connects portions of the Yangtze River in the south to the Yellow River system in the north, overcoming biogeographic barriers to water movement. The diversion will supply potable water to over 110 million people and provide multiple other socioeconomic benefits. However, an inadvertent negative impact of this connection includes creation of conduits for species invasions. Alligator weed (Alternanthera philoxeroides), water hyacinth (Eichhornia crassipes), and water lettuce (Pistia stratiotes) are the only aquatic plant species on China's shortlists for special control. These species are mainly invasive in the Yangtze River basin. If these species are able to invade the SNWD and further spread via the SNWD, they have the potential to alter water supply, including water quantity and quality, as well as local ecology and agriculture, threatening the goals of the diversion. Understanding the full potential for these species to invade northern China is critical to early management decisions to avoid costly negative impacts. We used Maxent modeling to evaluate the probability that each of these species might become invasive in the receiving water regions. The models predict that all three species will be able to expand their ranges northward, with alligator weed and water hyacinth having the greatest potential for range expansion. These results suggest the need for prevention, monitoring, and management strategies for these species to reduce the risk and costs of impacts.

  3. Nashville Solar-Water-Heater Demonstration Project. Monitoring-data analysis

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Field monitoring data which were collected for the Nashville Solar Water Heater Demonstration Project from September through November of 1981 are presented. Twenty-six solar domestic water heaters were monitored during September, 35 during October, and 37 during November. Homeowners were audited to assure adequate solar access, and each selected a solar water heating system from an approved list. Two tank and one tank systems are included. The monitoring sample technique and monitoring system are described. Data are analyzed by computer to produce daily and monthly total summaries for each site. The performance of each site was assessed to compare total energy saved by the solar system, solar system savings percentage, and the energy multiplier.

  4. Project Zoom IN, Citizen Perspectives on Climate and Water Resources

    NASA Astrophysics Data System (ADS)

    Glaser, J. P.

    2012-12-01

    Perspective on climate and water resources can come from the top, scientists sharing invaluable data and findings about how climate dynamics function or quantifications of systems in flux. However, citizens are endowed with an equally as powerful tool for insight: ground zero experience. Project Zoom In is a nascent project undertaken by Global Media Forge to empower youth, educators and scientists with tools to reach the media with locale-specific imagery and perspective of climate dynamics and evidence of anecdotal resource management of liquid gold: fresh water. Zoom In is taking root in Colorado but is designed for national/international scaling. This effort has three limbs: (1) student, scientist and educator workshops teaching invaluable video production skills (2) engaging Colorado school systems to stimulate submission of clips to full video productions to our database, and (3) embedding the findings on a taxonomic GIS interface on-line. The website will be invaluable in classrooms and link network media to individuals with firsthand viewpoints on change.; Climate and Water Resources

  5. Stover removal effects on seasonal soil water availability under full and deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Removing corn (Zea mays L.) stover for livestock feed or bioenergy feedstock may impact water availability in the soil profile to support crop growth. The role of stover in affecting soil profile water availability will depend on annual rainfall inputs as well as irrigation level. To assess how res...

  6. Mediterranean shrub vegetation: soil protection vs. water availability

    NASA Astrophysics Data System (ADS)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  7. New era / new solutions: The role of alternative tariff structures in water supply projects.

    PubMed

    Pinto, F Silva; Marques, R Cunha

    2017-12-01

    Water utilities face different challenges that may force them to seek prioritized objectives. When doing so, particular projects may have to be developed, being important to understand their impact on water tariffs, and thus, on customers. Such consequences may bear an increased relevance in cases stressed with, e.g., resource scarcity, poverty, and the need for infrastructure investments. The resulting cost and revenue variability demand a comprehensive study. If the first may require a stochastic modeling (in major cost components) in order to consider its inherent uncertainty, the second needs to be modeled following context-specific objectives set by the relevant stakeholders. The solutions achieved will likely promote distinct revenue sources, as well as diversified water tariff structures. A multi-objective optimization model (i.e., a Framework for Suitable Prices) is built to deal with those diversified requirements (e.g., stochastic energy costs, affordability, cost recovery, or administrative simplicity). The model is solved through achievement scalarizing functions with several weighting coefficients for a reference point, so as to provide a significant perception of possible revenue options (and their impact) to the decision makers. The proposed method is applied to a case study, Boa Vista Island in Cabo Verde, in which the background characteristics, namely water sources availability (e.g., the adoption of desalination technologies), economic development and other contextual factors were considered. The key role of tariff structure selection is displayed, instead of assuming it a priori, giving important insights regarding project feasibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Freshwater Aquatic Nuisance Species Impacts and Management Costs and Benefits at Federal Water Resources Projects

    DTIC Science & Technology

    2006-09-01

    ERDC/TN ANSRP-06-3 September 2006 Freshwater Aquatic Nuisance Species Impacts and Management Costs and Benefits at Federal Water Resources...Cole, R. A. (2006). “ Freshwater aquatic nuisance species impacts and management costs and benefits at Federal Water resources projects,” ANSRP...Projects1 by Richard A. Cole THE ISSUE: A small fraction of the species that inhabit the nation’s fresh waters become aquatic nuisance species (ANS

  9. Successful Rural Water Supply Projects and the Concerns of Women. Women in Development.

    ERIC Educational Resources Information Center

    Roark, Paula

    As the traditional water carriers and water managers, third world women are crucial to the success of rural water supply projects whose short term goal is increased water quality and quantity and whose long term goal is improved family health. Change depends on the utilization of local learning systems of the society and women are most often the…

  10. Water Resources Improvement Study, Buttermilk Bay Channel, Bourne, Massachusetts; Small Navigation Project, Detailed Project Report, and Environmental Assessment.

    DTIC Science & Technology

    1982-12-01

    Disposal Alternatives 31 Open Water Disposal 31 Land Disposal Alternative 32 No Action Alternative 32 ENVIRONM4ENTAL SETTING 33 General 33 Fisheries 33...involve open water disposal of dredged sand and gravel at the Buzzards Bay dump site, located 9.8 miles south of the project site, southeast of...towed 9.8 miles south to the Buzzards Bay dunip site for open water disposal. The present character of the Buzzards day dump site would not be

  11. Triangle area water supply monitoring project, October 1988 through September 2001, North Carolina -- description of the water-quality network, sampling and analysis methods, and quality-assurance practices

    USGS Publications Warehouse

    Oblinger, Carolyn J.

    2004-01-01

    The Triangle Area Water Supply Monitoring Project was initiated in October 1988 to provide long-term water-quality data for six area water-supply reservoirs and their tributaries. In addition, the project provides data that can be used to determine the effectiveness of large-scale changes in water-resource management practices, document differences in water quality among water-supply types (large multiuse reservoir, small reservoir, run-of-river), and tributary-loading and in-lake data for water-quality modeling of Falls and Jordan Lakes. By September 2001, the project had progressed in four phases and included as many as 34 sites (in 1991). Most sites were sampled and analyzed by the U.S. Geological Survey. Some sites were already a part of the North Carolina Division of Water Quality statewide ambient water-quality monitoring network and were sampled by the Division of Water Quality. The network has provided data on streamflow, physical properties, and concentrations of nutrients, major ions, metals, trace elements, chlorophyll, total organic carbon, suspended sediment, and selected synthetic organic compounds. Project quality-assurance activities include written procedures for sample collection, record management and archive, collection of field quality-control samples (blank samples and replicate samples), and monitoring the quality of field supplies. In addition to project quality-assurance activities, the quality of laboratory analyses was assessed through laboratory quality-assurance practices and an independent laboratory quality-control assessment provided by the U.S. Geological Survey Branch of Quality Systems through the Blind Inorganic Sample Project and the Organic Blind Sample Project.

  12. 75 FR 71431 - Clean Water Act Section 303(d): Availability of List Decisions Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9230-1] Clean Water Act Section 303(d): Availability of List... Availability. SUMMARY: This action corrects a Federal Register notice that published on November 9, 2010 at 75 FR 68783 announcing the availability of EPA decisions identifying water quality limited segments and...

  13. Energy availabilities for state and local development: projected energy patterns for 1985 and 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, D. P.; Rice, P. L.; Corey, T. A.

    1979-11-01

    This report (one of a series) presents projections of the energy supply, demand, and net imports of seven fuel types (gasoline, distillates, residual oil, crude, natural gas, coal, electricity) and four final consuming sectors. To facilitate detailed regional analysis these projections have been prepared for Bureau of Economic Analysis (BEA) areas, states, census regions, and the nation for 1985 and 1990. The data are formatted to present regional energy availability from primary extraction, as well as from energy-transformation processes. The tables depict energy balances between availability and use for each specific fuel. The objective of this series is to providemore » a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration of regional growth issues that may be influenced by the regional energy system. However, for analysis of specific regions, this basic data should be supplemented by additional information which only the local policy analyst can bring to bear in his or her assessment of the energy conditions that characterize the region. Earlier volumes in this series have proved useful for both specific and general analysis of this type, and it is hoped that the current volume will prove equally so. This volume presents an updated benchmark projection series, which captures recent developments in the business as usual projections of energy supply and consumption due to national policy developments since the 1976 National Energy Outlook projection series were prepared.« less

  14. Viability of commercially available bleach for water treatment in developing countries.

    PubMed

    Lantagne, Daniele S

    2009-11-01

    Treating household water with low-cost, widely available commercial bleach is recommended by some organizations to improve water quality and reduce disease in developing countries. I analyzed the chlorine concentration of 32 bleaches from 12 developing countries; the average error between advertised and measured concentration was 35% (range = -45%-100%; standard deviation = 40%). Because of disparities between advertised and actual concentration, the use of commercial bleach for water treatment in developing countries is not recommended without ongoing quality control testing.

  15. The Coupling of Ecosystem Productivity and Water Availability in Dryland Regions

    NASA Astrophysics Data System (ADS)

    Scott, R. L.; Biederman, J. A.; Barron-Gafford, G.

    2014-12-01

    Land cover and climatic change will alter biosphere-atmosphere exchanges of water vapor and carbon dioxide depending, in part, on feedbacks between biotic activity and water availability. Eddy covariance observations allow us to estimate ecosystem-scale productivity and respiration, and these datasets are now becoming sufficiently mature to advance understanding of these ecohydrological interactions. Here we use a network of sites in semiarid western North America representing gradients of water availability and functional plant type. We examine how precipitation (P) controls evapotranspiration (ET), net ecosystem production (NEP), and its component fluxes of ecosystem respiration (Reco) and gross ecosystem production (GEP). Despite the high variability in seasonal and annual precipitation timing and amounts that we expect to influence ecosystem function, we find persistent overall relationships between P or ET and the fluxes of NEP, Reco and GEP across the network, indicating a commonality and resilience in ecosystem soil and plant response to water availability. But we also observe several important site differences such as prior seasonal legacy effects on subsequent fluxes which vary depending on dominant plant functional type. For example, multiyear droughts, episodic cool-season droughts, and hard winter freezes seem to affect the herbaceous species differently than the woody ones. Nevertheless, the overall, strong coupling between hydrologic and ecologic processes at these sites bolsters our ability to predict the response of dryland ecosystems to future precipitation change.

  16. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska: analysis of available water-quality data through 1986

    USGS Publications Warehouse

    Jordan, P.R.; Stamer, J.K.

    1991-01-01

    Beginning in 1986, the U.S. Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of the full-scale program are to: (1) provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify, describe, and explain, insofar as possible, the major factors that affect current conditions and trends in water quality. This information, obtained on a continuing basis, will be made available to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water-quality-management programs and for predicting the likely effects of contemplated changes in land-and water-management practices. At present (1990), the assessment program is in a pilot phase in seven areas that represent diverse hydrologic environments and water-quality conditions.This report completes one of the first activities undertaken as part of the lower Kansas River basin pilot study, which was to compile, screen, and interpret available water-quality data for the study unit through 1986. The report includes information on the sources and types of water-quality data available, the utility of available water-quality data for assessment purposes, and a description of current water-quality conditions and trends and their relation to natural and human factors.

  17. Water use, availability, and net demand in the Tennessee River watershed within Alabama, 2005

    USGS Publications Warehouse

    Gill, Amy C.; Harper, Michael J.; Littlepage, Thomas M.

    2013-01-01

    The U.S. Geological Survey worked in cooperation with the Alabama Department of Economic and Community Affairs—Office of Water Resources to estimate water use and water availability for 2005 for the portion of the Tennessee River watershed contained within the borders of the State of Alabama. Estimates of water use and availability are an important part of planning for population and economic growth in the Tennessee River watershed in Alabama. Total water use for the region in 2005 was 5,197 million gallons per day (Mgal/d). Total surface-water withdrawals were 5,139 Mgal/d, and total groundwater withdrawals were about 58 Mgal/d. About 92 percent of the total water withdrawn was surface water used for once-through cooling for thermoelectric power generation. Self-supplied industrial and public-supply water uses accounted for the next greatest uses of water, constituting approximately 49 and 42 percent, respectively, of the total water use excluding thermoelectric power use. Summaries of water use by county and subbasin indicated the areas of greatest water withdrawals and use within the Tennessee River watershed. Limestone (2,012 Mgal/d), Jackson (1,498 Mgal/d), and Colbert (1,363 Mgal/d) Counties were the counties with the greatest total water use in 2005 and had large amounts of water withdrawn for thermoelectric power generation. When water use from thermoelectric power generation was not considered, the counties with the greatest withdrawals were Morgan (124 Mgal/d), Madison (72 Mgal/d), Colbert (69 Mgal/d), and Lawrence (67 Mgal/d). The subbasin with the greatest total water use was Wheeler Lake (2,260 Mgal/d) in the Middle Tennessee—Elk subregion. Wheeler Lake subbasin also had the greatest public-supply, irrigation, industrial, mining, and thermoelectric withdrawals of any subbasin in the Tennessee River watershed within Alabama. Total water availability for the Tennessee River watershed within Alabama was estimated to be 34,567 Mgal/d by the Geological

  18. 77 FR 38823 - Notice of Availability of the Alta East Wind Project Draft Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-29

    ..., LVRWB11B4520] Notice of Availability of the Alta East Wind Project Draft Environmental Impact Statement... California Desert Conservation Area (CDCA) Plan Amendment (PA) for the Alta East Wind Project (AEWP), and by.../en/fo/ridgecrest/alta_east_wind_project.html . Email: [email protected] . Fax: 951 697-5299. Mail...

  19. Water availability and vulnerability of 225 large cities in the United States

    NASA Astrophysics Data System (ADS)

    Padowski, Julie C.; Jawitz, James W.

    2012-12-01

    This study presents a quantitative national assessment of urban water availability and vulnerability for 225 U.S. cities with population greater than 100,000. Here, the urban assessments account for not only renewable water flows, but also the extracted, imported, and stored water that urban systems access through constructed infrastructure. These sources represent important hydraulic components of the urban water supply, yet are typically excluded from water scarcity assessments. Results from this hydraulic-based assessment were compared to those obtained using a more conventional method that estimates scarcity solely based on local renewable flows. The inclusion of hydraulic components increased the mean availability to cities, leading to a significantly lower portion of the total U.S. population considered "at risk" for water scarcity (17%) than that obtained from the runoff method (47%). Water vulnerability was determined based on low-flow conditions, and smaller differences were found for this metric between at-risk populations using the runoff (66%) and hydraulic-based (54%) methods. The large increase in the susceptible population between the scarcity measures evaluated using the hydraulic method may better reconcile the seeming contradiction in the United States between perceptions of natural water abundance and widespread water scarcity. Additionally, urban vulnerability measures developed here were validated using a media text analysis. Vulnerability assessments that included hydraulic components were found to correlate with the frequency of urban water scarcity reports in the popular press while runoff-based measures showed no significant correlation, suggesting that hydraulic-based assessments provide better context for understanding the nature and severity of urban water scarcity issues.

  20. Enhanced monitoring of the temporal and spatial relationships between water demand and water availability

    NASA Astrophysics Data System (ADS)

    Schneider, C. A.; Aggett, G. R.; Hattendorf, M. J.

    2007-12-01

    Better information on evapotranspiration (ET) is essential to better understanding of consumptive use of water by crops. RTi is using NASA Earth-sun System research results and METRIC (Mapping ET at high Resolution with Internalized Calibration) to increase the repeatability and accuracy of consumptive use estimates. METRIC, an image-processing model for calculating ET as a residual of the surface energy balance, utilizes the thermal band on various satellite remote sensors. Calculating actual ET from satellites can avoid many of the assumptions driving other methods of calculating ET over a large area. Because it is physically based and does not rely on explicit knowledge of crop type in the field, a large potential source of error should be eliminated. This paper assesses sources of error in current operational estimates of ET for an area of the South Platte irrigated lands of Colorado, and benchmarks potential improvements in the accuracy of ET estimates gained using METRIC, as well as the processing efficiency of consumptive use demand for large irrigated lands. Examples highlighting how better water planning decisions and water management can be achieved via enhanced monitoring of the temporal and spatial relationships between water demand and water availability are provided.

  1. Viability of Commercially Available Bleach for Water Treatment in Developing Countries

    PubMed Central

    2009-01-01

    Treating household water with low-cost, widely available commercial bleach is recommended by some organizations to improve water quality and reduce disease in developing countries. I analyzed the chlorine concentration of 32 bleaches from 12 developing countries; the average error between advertised and measured concentration was 35% (range = –45%–100%; standard deviation = 40%). Because of disparities between advertised and actual concentration, the use of commercial bleach for water treatment in developing countries is not recommended without ongoing quality control testing. PMID:19762657

  2. Ground-water investigations of the Project Gnome area, Eddy and Lea Counties, New Mexico

    USGS Publications Warehouse

    Cooper, J.B.

    1962-01-01

    The U.S. Atomic Energy Commission, through the Office of Test Operations, Albuquerque Operations Office, plans to detonate a nuclear device in a massive salt bed 1,200 feet beneath the land surface. The project, known as Project Gnome, is an element of the Plowshare program--a study of peacetime applications of nuclear fission. The location of the proposed underground shot is in a sparsely-populated area in southeastern Eddy County, N. Mex., east of the Pecos River and about 25 miles southeast of the city of Carlsbad. The area is arid to Semiarid and ground water is a vital factor in the economic utilization of the land, which is primarily used for stock raising. An investigation of the Project Gnome site and surrounding area for the purposes of evaluating the ground-water resources and the possible effect upon them from the detonation of the nuclear shot was desired by the Commission. This report describes work done by the U.S. Geological Survey on behalf of the Commission and presents results of the investigation of the ground-water resources and geology of the area. The most intensive investigations were made within a 15-mile radius of the site of Project Gnome and mainly on the east side of the Pecos River. The total area of study of over 1,200 square miles includes parts of Eddy and Lea Counties, N. Mex. The Project Gnome site is in the sedimentary Delaware Basin. It is underlain by about 18,000 feet of sedimentary rocks ranging in age from Ordovician to Recent. Upper Permian evaporitic rocks, which contain the principal source of potash available in the United States, are worked in nearby mines. The potash minerals are found in a massive salt bed about 1,400 feet thick in the Salado Formation of Permian age. The land surface of the area is covered mostly by a wind-blown sand and caliche; however, rocks of the Rustler Formation of Permian age and younger rocks of Permian, Triassic, Pleistocene(?) and Recent age crop out at several localities. Solution by

  3. Demonstration of the Water Erosion Prediction Project (WEPP) internet interface and services

    USDA-ARS?s Scientific Manuscript database

    The Water Erosion Prediction Project (WEPP) model is a process-based FORTRAN computer simulation program for prediction of runoff and soil erosion by water at hillslope profile, field, and small watershed scales. To effectively run the WEPP model and interpret results additional software has been de...

  4. Long term growth responses of loblolly pine to optimal nutrient and water resource availability

    Treesearch

    Timothy J. Albaugh; H. Lee Allen; Phillip M. Dougherty; Kurt H. Johnsen

    2004-01-01

    A factorial combination of four treatments (control (CW), optimal growing season water availability (IW), optimum nutrient availability (FW), and combined optimum water and nutrient availability (FIW)) in four replications were initiated in an 8-year- old Pinus taeda stand growing on a droughty, nutrient-poor, sandy site in Scotland County, NC and...

  5. Water availability and environmental temperature correlate with geographic variation in water balance in common lizards.

    PubMed

    Dupoué, Andréaz; Rutschmann, Alexis; Le Galliard, Jean François; Miles, Donald B; Clobert, Jean; DeNardo, Dale F; Brusch, George A; Meylan, Sandrine

    2017-12-01

    Water conservation strategies are well documented in species living in water-limited environments, but physiological adaptations to water availability in temperate climate environments are still relatively overlooked. Yet, temperate species are facing more frequent and intense droughts as a result of climate change. Here, we examined variation in field hydration state (plasma osmolality) and standardized evaporative water loss rate (SEWL) of adult male and pregnant female common lizards (Zootoca vivipara) from 13 natural populations with contrasting air temperature, air humidity, and access to water. We found different patterns of geographic variation between sexes. Overall, males were more dehydrated (i.e. higher osmolality) than pregnant females, which likely comes from differences in field behaviour and water intake since the rate of SEWL was similar between sexes. Plasma osmolality and SEWL rate were positively correlated with environmental temperature in males, while plasma osmolality in pregnant females did not correlate with environmental conditions, reproductive stage or reproductive effort. The SEWL rate was significantly lower in populations without access to free standing water, suggesting that lizards can adapt or adjust physiology to cope with habitat dryness. Environmental humidity did not explain variation in water balance. We suggest that geographic variation in water balance physiology and behaviour should be taken account to better understand species range limits and sensitivity to climate change.

  6. Metabolomic response of Calotropis procera growing in the desert to changes in water availability.

    PubMed

    Ramadan, Ahmed; Sabir, Jamal S M; Alakilli, Saleha Y M; Shokry, Ahmed M; Gadalla, Nour O; Edris, Sherif; Al-Kordy, Magdy A; Al-Zahrani, Hassan S; El-Domyati, Fotouh M; Bahieldin, Ahmed; Baker, Neil R; Willmitzer, Lothar; Irgang, Susann

    2014-01-01

    Water availability is a major limitation for agricultural productivity. Plants growing in severe arid climates such as deserts provide tools for studying plant growth and performance under extreme drought conditions. The perennial species Calotropis procera used in this study is a shrub growing in many arid areas which has an exceptional ability to adapt and be productive in severe arid conditions. We describe the results of studying the metabolomic response of wild C procera plants growing in the desert to a one time water supply. Leaves of C. procera plants were taken at three time points before and 1 hour, 6 hours and 12 hours after watering and subjected to a metabolomics and lipidomics analysis. Analysis of the data reveals that within one hour after watering C. procera has already responded on the metabolic level to the sudden water availability as evidenced by major changes such as increased levels of most amino acids, a decrease in sucrose, raffinose and maltitol, a decrease in storage lipids (triacylglycerols) and an increase in membrane lipids including photosynthetic membranes. These changes still prevail at the 6 hour time point after watering however 12 hours after watering the metabolomics data are essentially indistinguishable from the prewatering state thus demonstrating not only a rapid response to water availability but also a rapid response to loss of water. Taken together these data suggest that the ability of C. procera to survive under the very harsh drought conditions prevailing in the desert might be associated with its rapid adjustments to water availability and losses.

  7. Metabolomic Response of Calotropis procera Growing in the Desert to Changes in Water Availability

    PubMed Central

    Ramadan, Ahmed; Sabir, Jamal S. M.; Alakilli, Saleha Y. M.; Shokry, Ahmed M.; Gadalla, Nour O.; Edris, Sherif; Al-Kordy, Magdy A.; Al-Zahrani, Hassan S.; El-Domyati, Fotouh M.; Bahieldin, Ahmed; Baker, Neil R.; Willmitzer, Lothar; Irgang, Susann

    2014-01-01

    Water availability is a major limitation for agricultural productivity. Plants growing in severe arid climates such as deserts provide tools for studying plant growth and performance under extreme drought conditions. The perennial species Calotropis procera used in this study is a shrub growing in many arid areas which has an exceptional ability to adapt and be productive in severe arid conditions. We describe the results of studying the metabolomic response of wild C procera plants growing in the desert to a one time water supply. Leaves of C. procera plants were taken at three time points before and 1 hour, 6 hours and 12 hours after watering and subjected to a metabolomics and lipidomics analysis. Analysis of the data reveals that within one hour after watering C. procera has already responded on the metabolic level to the sudden water availability as evidenced by major changes such as increased levels of most amino acids, a decrease in sucrose, raffinose and maltitol, a decrease in storage lipids (triacylglycerols) and an increase in membrane lipids including photosynthetic membranes. These changes still prevail at the 6 hour time point after watering however 12 hours after watering the metabolomics data are essentially indistinguishable from the prewatering state thus demonstrating not only a rapid response to water availability but also a rapid response to loss of water. Taken together these data suggest that the ability of C. procera to survive under the very harsh drought conditions prevailing in the desert might be associated with its rapid adjustments to water availability and losses. PMID:24520340

  8. Modeling impacts of climate change on freshwater availability in Africa

    NASA Astrophysics Data System (ADS)

    Faramarzi, Monireh; Abbaspour, Karim C.; Ashraf Vaghefi, Saeid; Farzaneh, Mohammad Reza; Zehnder, Alexander J. B.; Srinivasan, Raghavan; Yang, Hong

    2013-02-01

    SummaryThis study analyzes the impact of climate change on freshwater availability in Africa at the subbasin level for the period of 2020-2040. Future climate projections from five global circulation models (GCMs) under the four IPCC emission scenarios were fed into an existing SWAT hydrological model to project the impact on different components of water resources across the African continent. The GCMs have been downscaled based on observed data of Climate Research Unit to represent local climate conditions at 0.5° grid spatial resolution. The results show that for Africa as a whole, the mean total quantity of water resources is likely to increase. For individual subbasins and countries, variations are substantial. Although uncertainties are high in the simulated results, we found that in many regions/countries, most of the climate scenarios projected the same direction of changes in water resources, suggesting a relatively high confidence in the projections. The assessment of the number of dry days and the frequency of their occurrences suggests an increase in the drought events and their duration in the future. Overall, the dry regions have higher uncertainties than the wet regions in the projected impacts on water resources. This poses additional challenge to the agriculture in dry regions where water shortage is already severe while irrigation is expected to become more important to stabilize and increase food production.

  9. Water Availability for Synthetic Fuels: An Assessment of Current Studies

    DOT National Transportation Integrated Search

    1982-10-01

    The objective of this study is to describe and analyze the hydrologic, institutional, legal, and economic issues involved in assessing and interpreting estimates of water availability for synfuels development in four major river basins: (1) Upper Mis...

  10. Water availability and genetic effects on wood properties of loblolly pine (Pinus taeda)

    Treesearch

    C. A. Gonzalez-Benecke; T. A. Martin; Alexander Clark; G. F. Peter

    2010-01-01

    We studied the effect of water availability on basal area growth and wood properties of 11-year-old loblolly pine (Pinus taeda L.) trees from contrasting Florida (FL) (a mix of half-sib families) and South Carolina coastal plain (SC) (a single, half-sib family) genetic material. Increasing soil water availability via irrigation increased average wholecore specific...

  11. Exploring the Influence of Smallholders' Perceptions Regarding Water Availability on Crop Choice and Water Allocation Through Socio-Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Kuil, L.; Evans, T.; McCord, P. F.; Salinas, J. L.; Blöschl, G.

    2018-04-01

    While it is known that farmers adopt different decision-making behaviors to cope with stresses, it remains challenging to capture this diversity in formal model frameworks that are used to advance theory and inform policy. Guided by cognitive theory and the theory of bounded rationality, this research develops a novel, socio-hydrological model framework that can explore how a farmer's perception of water availability impacts crop choice and water allocation. The model is informed by a rich empirical data set at the household level collected during 2013 in Kenya's Upper Ewaso Ng'iro basin that shows that the crop type cultivated is correlated with water availability. The model is able to simulate this pattern and shows that near-optimal or "satisficing" crop patterns can emerge also when farmers were to make use of simple decision rules and have diverse perceptions on water availability. By focusing on farmer decision making it also captures the rebound effect, i.e., as additional water becomes available through the improvement of crop efficiencies it will be reallocated on the farm instead of flowing downstream, as a farmer will adjust his (her) water allocation and crop pattern to the new water conditions. This study is valuable as it is consistent with the theory of bounded rationality, and thus offers an alternative, descriptive model in addition to normative models. The framework can be used to understand the potential impact of climate change on the socio-hydrological system, to simulate and test various assumptions regarding farmer behavior and to evaluate policy interventions.

  12. Projecting Future Water Levels of the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    Bennington, V.; Notaro, M.; Holman, K.

    2013-12-01

    The Laurentian Great Lakes are the largest freshwater system on Earth, containing 84% of North America's freshwater. The lakes are a valuable economic and recreational resource, valued at over 62 billion in annual wages and supporting a 7 billion fishery. Shipping, recreation, and coastal property values are significantly impacted by water level variability, with large economic consequences. Great Lakes water levels fluctuate both seasonally and long-term, responding to natural and anthropogenic climate changes. Due to the integrated nature of water levels, a prolonged small change in any one of the net basin supply components: over-lake precipitation, watershed runoff, or evaporation from the lake surface, may result in important trends in water levels. We utilize the Abdus Salam International Centre for Theoretical Physics's Regional Climate Model Version 4.5.6 to dynamically downscale three global global climate models that represent a spread of potential future climate change for the region to determine whether the climate models suggest a robust response of the Laurentian Great Lakes to anthropogenic climate change. The Model for Interdisciplinary Research on Climate Version 5 (MIROC5), the National Centre for Meteorological Research Earth system model (CNRM-CM5), and the Community Climate System Model Version 4 (CCSM4) project different regional temperature increases and precipitation change over the next century and are used as lateral boundary conditions. We simulate the historical (1980-2000) and late-century periods (2080-2100). Upon model evaluation we will present dynamically downscaled projections of net basin supply changes for each of the Laurentian Great Lakes.

  13. 75 FR 22128 - Notice of Availability of “Award of Special Appropriations Act Project Grants Authorized by the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ... provides budget authority for funding identified water, wastewater and groundwater infrastructure projects... . Dated: April 16, 2010. James A. Hanlon, Director, Office of Wastewater Management. [FR Doc. 2010-9758...

  14. Geolocation Support for Water Supply and Sewerage Projects in Azerbaijan

    NASA Astrophysics Data System (ADS)

    Qocamanov, M. H.; Gurbanov, Ch. Z.

    2016-10-01

    Drinking water supply and sewerage system designing and reconstruction projects are being extensively conducted in Azerbaijan Republic. During implementation of such projects, collecting large amount of information about the area and detailed investigations are crucial. Joint use of the aerospace monitoring and GIS play an essential role for the studies of the impact of environmental factors, development of the analytical information systems and others, while achieving the reliable performance of the existing and designed major water supply pipelines, as well as construction and exploitation of the technical installations. With our participation the GIS has been created in "Azersu" OJSC that includes systematic database of the drinking water supply and sewerage system, and rain water networks to carry out necessary geo information analysis. GIScreated based on "Microstation" platform and aerospace data. Should be mentioned that, in the country, specifically in large cities (i.e. Baku, Ganja, Sumqait, etc.,) drinking water supply pipelines cross regions with different physico-geographical conditions, geo-morphological compositions and seismotectonics.Mains water supply lines in many accidents occur during the operation, it also creates problems with drinking water consumers. In some cases the damage is caused by large-scale accidents. Long-term experience gives reason to say that the elimination of the consequences of accidents is a major cost. Therefore, to avoid such events and to prevent their exploitation and geodetic monitoring system to improve the rules on key issues. Therefore, constant control of the plan-height positioning, geodetic measurements for the detailed examination of the dynamics, repetition of the geodetic measurements for certain time intervals, or in other words regular monitoring is very important. During geodetic monitoring using the GIS has special significance. Given that, collecting geodetic monitoring measurements of the main pipelines

  15. 76 FR 18780 - Integrated Water Resource Management Plan, Yakima River Basin Water Enhancement Project, Benton...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... Enhancement Project. The Washington State Department of Ecology (Ecology) will be a joint lead agency with..., most of these water right uncertainties have been addressed. In 2003, Reclamation and Ecology initiated... with comments on the Draft PR/EIS prompted Ecology to separate from the National Environmental Policy...

  16. Lake-level variability and water availability in the Great Lakes

    USGS Publications Warehouse

    Wilcox, Douglas A.; Thompson, Todd A.; Booth, Robert K.; Nicholas, J.R.

    2007-01-01

    In this report, we present recorded and reconstructed (pre-historical) changes in water levels in the Great Lakes, relate them to climate changes of the past, and highlight major water-availability implications for storage, coastal ecosystems, and human activities. 'Water availability,' as conceptualized herein, includes a recognition that water must be available for human and natural uses, but the balancing of how much should be set aside for which use is not discussed. The Great Lakes Basin covers a large area of North America. The lakes capture and store great volumes of water that are critical in maintaining human activities and natural ecosystems. Water enters the lakes mostly in the form of precipitation and streamflow. Although flow through the connecting channels is a primary output from the lakes, evaporation is also a major output. Water levels in the lakes vary naturally on timescales that range from hours to millennia; storage of water in the lakes changes at the seasonal to millennial scales in response to lake-level changes. Short-term changes result from storm surges and seiches and do not affect storage. Seasonal changes are driven by differences in net basin supply during the year related to snowmelt, precipitation, and evaporation. Annual to millennial changes are driven by subtle to major climatic changes affecting both precipitation (and resulting streamflow) and evaporation. Rebounding of the Earth's surface in response to loss of the weight of melted glaciers has differentially affected water levels. Rebound rates have not been uniform across the basin, causing the hydrologic outlet of each lake to rise in elevation more rapidly than some parts of the coastlines. The result is a long-term change in lake level with respect to shoreline features that differs from site to site. The reconstructed water-level history of Lake Michigan-Huron over the past 4,700 years shows three major high phases from 2,300 to 3,300, 1,100 to 2,000, and 0 to 800

  17. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    USGS Publications Warehouse

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  18. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    PubMed

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  19. 7 CFR 1778.7 - Project priority.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...

  20. 7 CFR 1778.7 - Project priority.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...

  1. 7 CFR 1778.7 - Project priority.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Project priority. 1778.7 Section 1778.7 Agriculture... (CONTINUED) EMERGENCY AND IMMINENT COMMUNITY WATER ASSISTANCE GRANTS § 1778.7 Project priority. Paragraph (d... to determine the proposed project's priority for available funds. (b) State Office review. All...

  2. Reassessment of Ground-Water Recharge and Simulated Ground-Water Availability for the Hawi Area of North Kohala, Hawaii

    USGS Publications Warehouse

    Oki, Delwyn S.

    2002-01-01

    An estimate of ground-water availability in the Hawi area of north Kohala, Hawaii, is needed to determine whether ground-water resources are adequate to meet future demand within the area and other areas to the south. For the Hawi area, estimated average annual recharge from infiltration of rainfall, fog drip, and irrigation is 37.5 million gallons per day from a daily water budget. Low and high annual recharge estimates for the Hawi area that incorporate estimated uncertainty are 19.9 and 55.4 million gallons per day, respectively. The recharge estimates from this study are lower than the recharge of 68.4 million gallons per day previously estimated from a monthly water budget. Three ground-water models, using the low, intermediate, and high recharge estimates (19.9, 37.5, and 55.4 million gallons per day, respectively), were developed for the Hawi area to simulate ground-water levels and discharges for the 1990?s. To assess potential ground-water availability, the numerical ground-water flow models were used to simulate the response of the freshwater-lens system to withdrawals at rates in excess of the average 1990?s withdrawal rates. Because of uncertainty in the recharge estimate, estimates of ground-water availability also are uncertain. Results from numerical simulations indicate that for appropriate well sites, depths, and withdrawal rates (1) for the low recharge estimate (19.9 million gallons per day) it may be possible to develop an additional 10 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 160 feet near the withdrawal sites, (2) for the intermediate recharge estimate (37.5 million gallons per day) it may be possible to develop an additional 15 million gallons per day of fresh ground water from the Hawi area and maintain a freshwater-lens thickness of 190 feet near the withdrawal sites, and (3) for the high recharge estimate (55.4 million gallons per day) it may be possible to develop at

  3. When vegetation change alters ecosystem water availability.

    PubMed

    Scott, Russell L; Huxman, Travis E; Barron-Gafford, Greg A; Darrel Jenerette, G; Young, Jessica M; Hamerlynck, Erik P

    2014-07-01

    The combined effects of vegetation and climate change on biosphere-atmosphere water vapor (H2 O) and carbon dioxide (CO2 ) exchanges are expected to vary depending, in part, on how biotic activity is controlled by and alters water availability. This is particularly important when a change in ecosystem composition alters the fractional covers of bare soil, grass, and woody plants so as to influence the accessibility of shallower vs. deeper soil water pools. To study this, we compared 5 years of eddy covariance measurements of H2 O and CO2 fluxes over a riparian grassland, shrubland, and woodland. In comparison with the surrounding upland region, groundwater access at the riparian sites increased net carbon uptake (NEP) and evapotranspiration (ET), which were sustained over more of the year. Among the sites, the grassland used less of the stable groundwater resource, and increasing woody plant density decoupled NEP and ET from incident precipitation (P), resulting in greater exchange rates that were less variable year to year. Despite similar gross patterns, how groundwater accessibility affected NEP was more complex than ET. The grassland had higher respiration (Reco ) costs. Thus, while it had similar ET and gross carbon uptake (GEP) to the shrubland, grassland NEP was substantially less. Also, grassland carbon fluxes were more variable due to occasional flooding at the site, which both stimulated and inhibited NEP depending upon phenology. Woodland NEP was large, but surprisingly similar to the less mature, sparse shrubland, even while having much greater GEP. Woodland Reco was greater than the shrubland and responded strongly and positively to P, which resulted in a surprising negative NEP response to P. This is likely due to the large accumulation of carbon aboveground and in the surface soil. These long-term observations support the strong role that water accessibility can play when determining the consequences of ecosystem vegetation change. © 2013 John Wiley

  4. NEWS Climatology Project: The State of the Water Cycle at Continental to Global Scales

    NASA Technical Reports Server (NTRS)

    Rodell, Matthew; LEcuyer, Tristan; Beaudoing, Hiroko Kato; Olson, Bill

    2011-01-01

    NASA's Energy and Water Cycle Study (NEWS) program fosters collaborative research towards improved quantification and prediction of water and energy cycle consequences of climate change. In order to measure change, it is first necessary to describe current conditions. The goal of the NEWS Water and Energy Cycle Climatology project is to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. The project is a multiinstitutional collaboration with more than 20 active contributors. This presentation will describe results of the first stage of the water budget analysis, whose goal was to characterize the current state of the water cycle on mean monthly, continental scales. We examine our success in closing the water budget within the expected uncertainty range and the effects of forcing budget closure as a method for refining individual flux estimates.

  5. Estimating plant available water content from remotely sensed evapotranspiration

    NASA Astrophysics Data System (ADS)

    van Dijk, A. I. J. M.; Warren, G.; Doody, T.

    2012-04-01

    Plant available water content (PAWC) is an emergent soil property that is a critical variable in hydrological modelling. PAWC determines the active soil water storage and, in water-limited environments, is the main cause of different ecohydrological behaviour between (deep-rooted) perennial vegetation and (shallow-rooted) seasonal vegetation. Conventionally, PAWC is estimated for a combination of soil and vegetation from three variables: maximum rooting depth and the volumetric water content at field capacity and permanent wilting point, respectively. Without elaborate local field observation, large uncertainties in PAWC occur due to the assumptions associated with each of the three variables. We developed an alternative, observation-based method to estimate PAWC from precipitation observations and CSIRO MODIS Reflectance-based Evapotranspiration (CMRSET) estimates. Processing steps include (1) removing residual systematic bias in the CMRSET estimates, (2) making spatially appropriate assumptions about local water inputs and surface runoff losses, (3) using mean seasonal patterns in precipitation and CMRSET to estimate the seasonal pattern in soil water storage changes, (4) from these, calculating the mean seasonal storage range, which can be treated as an estimate of PAWC. We evaluate the resulting PAWC estimates against those determined in field experiments for 180 sites across Australia. We show that the method produces better estimates of PAWC than conventional techniques. In addition, the method provides detailed information with full continental coverage at moderate resolution (250 m) scale. The resulting maps can be used to identify likely groundwater dependent ecosystems and to derive PAWC distributions for each combination of soil and vegetation type.

  6. 77 FR 27770 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-11

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9670-5] Clean Water Act Section 303(d): Availability of List...: This notice announces EPA's decision identifying certain water quality limited waterbodies, and the associated pollutant, in Utah to be listed pursuant to the Clean Water Act Section 303(d)(2), and requests...

  7. Is the available cropland and water enough for food demand? A global perspective of the Land-Water-Food nexus

    NASA Astrophysics Data System (ADS)

    Ibarrola-Rivas, M. J.; Granados-Ramírez, R.; Nonhebel, S.

    2017-12-01

    Land and water are essential local resources for food production but are limited. The main drivers of increasing food demand are population growth and dietary changes, which depend on the socioeconomic situation of the population. These two factors affect the availability of local resources: population growth reduces the land and water per person; and adoption of affluent diets increases the demand for land and water per person. This study shows potentials of global food supply by linking food demand drivers with national land and water availability. Whether the available land and water is enough to meet national food demand was calculated for 187 countries. The calculations were performed for the past situation (1960 and 2010) and to assess four future scenarios (2050) to discuss different paths of diets, population numbers and agricultural expansion. Inclusion of the demand perspective in the analysis has shown stronger challenges for future global food supply than have other studies. The results show that with the "business as usual" scenario, 40% of the global population in 2050 will live in countries with not enough land nor water to meet the demands of their population. Restriction to basic diets will be the most effective in lowering both land and water constraints. Our results identify both food production and food demand factors, and the regions that may experience the strongest challenges in 2050.

  8. 43 CFR 404.11 - What type of assistance is available under the program?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.11 What type of assistance is available under the program? Under the Reclamation Rural Water Supply... rural water supply project for you, with your cooperation; (b) Request funding through a grant or...

  9. Water Availability Indices – A Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hui; Wu, May M.

    Fresh water is a critical resource for humanity and the ecosystem. In general, water resources can be partitioned into two major categories: blue water and green water (Falkenmark and Rockström 2006). Precipitation that runs off or percolates into the deep aquifer is defined as blue water, and precipitation that filtrates into soil, which eventually returns to the atmosphere as evaporation, is called green water (Hoekstra et al. 2011). For human purposes, green water is almost exclusively used for agricultural production, but blue water can be used for multiple competing sectors, such as irrigation and municipal water.

  10. FREEWAT: an HORIZON 2020 project to build open source tools for water management.

    NASA Astrophysics Data System (ADS)

    Rossetto, Rudy; Borsi, Iacopo; Foglia, Laura

    2015-04-01

    FREEWAT is an HORIZON 2020 project financed by the EU Commission under the call WATER INNOVATION: BOOSTING ITS VALUE FOR EUROPE. FREEWAT main result will be an open source and public domain GIS integrated modelling environment for the simulation of water quantity and quality in surface water and groundwater with an integrated water management and planning module. FREEWAT aims at promoting water resource management by simplifying the application of the Water Framework Directive and other EU water related Directives. Specific objectives of the FREEWAT project are: to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT and to support the FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (in primis policy and decision makers) in designing scenarios for the proper application of water policies. The open source characteristics of the platform allow to consider this an initiative "ad includendum" (looking for inclusion of other entities), as further research institutions, private developers etc. may contribute to the platform development. The core of the FREEWAT platform will be the SID&GRID framework in its version ported to the QGIS desktop. SID&GRID (GIS integrated physically-based distributed numerical hydrological model based on a modified version of MODFLOW 2005; Rossetto et al. 2013) is an open source and public domain modelling platform firstly developed within the EU-POR FSE 2007-2013 Regione Toscana - Italy and then ported to the QGIS desktop through a dedicated fund by Regione Toscana. SID&GRID will be complemented by June 2015 with solute transport (also density dependent) capabilities in aquifers within the MARSOL (2014) EU FPVII project. Activities will be mainly carried out on two branches: (i) integration of modules, so that the software will fit the end-users requirements, including

  11. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system.

    PubMed

    Zeng, Qinghui; Qin, Lihuan; Li, Xuyong

    2015-12-01

    Any inter-basin water transfer project would cause complex physical, chemical, hydrological and biological changes to the receiving system. The primary channel of the middle route of the South-to-North Water Transfer Project has a total length of 1267 km. There is a significant difference between the physical, chemical and biological characteristics of the originating and receiving drinking water conservation districts. To predict the impacts of this long-distance inter-basin water transfer project on the N&P (nitrogen and phosphorus) concentrations and eutrophication risk of the receiving system, an environmental fluid dynamics code (EFDC) model was applied. The calibrated model accurately reproduced the hydrodynamic, water quality and the entire algal bloom process. Thirteen scenarios were defined to fully understand the N&P and chlorophyll a (Chl a) variation among different hydrological years, different quantity and timing of water transfer, and different inflows of N&P concentrations. The results showed the following: (a) The water transfer project would not result in a substantial difference to the trophic state of the Miyun reservoir in any of the hydrological years. (b) The area affected by the water transfer did not involve the entire reservoir. To minimize the impact of water transfer on N&P nutrients and Chl a, water should be transferred as uniform as possible with small discharge. (c) The variation in Chl a was more sensitive to an increase in P than an increase in N for the transferred water. The increased percentages of the average Chl a concentration when water was transferred in the spring, summer and autumn were 7.76%, 16.67% and 16.45%. Our findings imply that special attention should be given to prevent P increment of the transferred water from May to October to prevent algal blooms. The results provide useful information for decision makers about the quantity and timing of water transfers. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Is the Pungwe water supply project a solution to water accessibility and sanitation problems for the households of Sakubva, Zimbabwe?

    NASA Astrophysics Data System (ADS)

    Mukheli, Azwidowi; Mosupye, Gilbert; Swatuk, Larry A.

    Following the severe drought of 1991-92, the City of Mutare embarked upon a concerted search for a secure water supply. This search culminated in the decision to transfer water from the Pungwe River via pipeline to the City of Mutare. This project was heralded as bringing 'purity, security, and prosperity' to the people of Mutare. Once again, and as is typical of Southern Africa today, a new 'supply' was presented as the 'solution' to the city's water problems. In this paper, we challenge this claim by presenting the case of Sakubva, a low income, and high-density suburb of Mutare, Zimbabwe. Residents of Sakubva face many problems relating to water supply and sanitation. Has the Pungwe-Mutare Water Project 'solved' these problems? In short, we argue that while the Pungwe project has ensured a steady supply of clean water to Sakubva, this water inadvertently worsens many of Sakubva's extant water and sanitation problems. In the absence of appropriate water demand management measures, supply alone is as much burden as it is blessing. In terms of methodology, between July 2000 and July 2001, members of the research team made several visits to the study area. This included a two-week home stay for two of the researchers-one in a private home in New Dangare, one in a shack in Muchena. Aside from direct participation and informal observation, a variety of methods were used: formal, semi-/structured interviews with key informants; informal, semi-structured interviews and focus group discussions with a cross-section of residents in Sakubva; transect walks where interviews were carried out both on formal and informal bases. Two peer educators from the Voices of Concerned Youth, City Health Department, Mutare assisted researchers. In addition, primary and secondary data were consulted.

  13. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective.

    PubMed

    Sjerps, Rosa M A; Ter Laak, Thomas L; Zwolsman, Gertjan J J G

    2017-12-01

    Low river discharges of the rivers Rhine and Meuse are expected to occur more often and more prolonged in a changing climate. During these dry periods the dilution of point sources such as sewage effluents is reduced leading to a decline in chemical water quality. This study projects chemical water quality of the rivers Rhine and Meuse in the year 2050, based on projections of chemical emissions and two climate scenarios: moderate and fast climate change. It focuses on specific compounds known to be relevant to drinking water production, i.e. four pharmaceuticals, a herbicide and its metabolite and an artificial sweetener. Hydrological variability, climate change, and increased emission show a significant influence on the water quality in the Rhine and Meuse. The combined effect of changing future emissions of these compounds and reduced dilution due to climate change has leaded to increasing (peak) concentrations in the river water by a factor of two to four. Current water treatment efficiencies in the Netherlands are not sufficient to reduce these projected concentrations in drinking water produced from surface water below precautionary water target values. If future emissions are not sufficiently reduced or treatment efficiencies are not improved, these compounds will increasingly be found in drinking water, albeit at levels which pose no threat to human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Availability of ground water in the lower Pawcatuck River basin, Rhode Island

    USGS Publications Warehouse

    Gonthier, Joseph B.; Johnston, Herbert E.; Malmberg, Glenn T.

    1974-01-01

    The lower Pawcatuck River basin in southwestern Rhode Island is an area of about 169 square miles underlain by crystalline bedrock over which lies a relatively thin mantle of glacial till and stratified drift. Stratified drift, consisting dominantly of sand and gravel, occurs in irregularly shaped linear deposits that are generally less than a mile wide and less than 125 feet thick; these deposits are found along the Pawcatuck River, its tributaries, and abandoned preglacial channels. Deposits of stratified sand and gravel constitute the principal aquifer in the lower Pawcatuck basin and the only one capable of sustaining yields of 100 gallons per minute or more to individual wells. Water available for development in this aquifer consists of water in storage--potential ground-water runoff to streams--plus infiltration that can be induced from streams. Minimum annual ground-water runoff from the sand and gravel aquifer is calculated to be at least 1.17 cubic feet per second per square mile, or 0.76 million gallons per day per square mile. Potential recharge by induced infiltration is estimated to range from about 250 to 600 gallons per day per linear foot of streambed for the principal streams. In most areas, induced infiltration from streams constitutes the major source of water potentially available for development by wells. Because subsurface hydraulic connection in the sand and gravel aquifer is poor in several places, the deposits are conveniently divisible into several ground-water reservoirs. The potential yield from five of the most promising ground-water reservoirs is evaluated by means of mathematical models. Results indicate that continuous withdrawals ranging from 1.3 to 10.3 million gallons per day, and totaling 31 million gallons per day, are obtainable from these reservoirs. Larger yields may be recovered by different well placement, spacing, construction and development, pumping practice, and so forth. Withdrawals at the rates indicated will reduce

  15. Distribution and Availability of State and Areawide Water Quality Reports in Oklahoma Libraries.

    ERIC Educational Resources Information Center

    McClure, Charles R.; Million, Anne

    This report examines the distribution and availability of water quality reports in the state of Oklahoma. Based on legislation from the Clean Water Act and regulations from the Environmental Protection Agency's "Public Participation Handbook for Water Quality Management," depository libraries must be established to provide citizen access to…

  16. Rio Grande transboundary integrated hydrologic model and water-availability analysis, New Mexico and Texas, United States, and Northern Chihuahua, Mexico

    USGS Publications Warehouse

    Hanson, Randall T.; Ritchie, Andre; Boyce, Scott E.; Ferguson, Ian; Galanter, Amy; Flint, Lorraine E.; Henson, Wesley

    2018-05-31

    Changes in population, agricultural development and practices (including shifts to more water-intensive crops), and climate variability are increasing demands on available water resources, particularly groundwater, in one of the most productive agricultural regions in the Southwest—the Rincon and Mesilla Valley parts of Rio Grande Valley, Doña Ana and Sierra Counties, New Mexico, and El Paso County, Texas. The goal of this study was to produce an integrated hydrological simulation model to help evaluate water-management strategies, including conjunctive use of surface water and groundwater for historical conditions, and to support long-term planning for the Rio Grande Project. This report describes model construction and applications by the U.S. Geological Survey, working in cooperation and collaboration with the Bureau of Reclamation.This model, the Rio Grande Transboundary Integrated Hydrologic Model, simulates the most important natural and human components of the hydrologic system, including selected components related to variations in climate, thereby providing a reliable assessment of surface-water and groundwater conditions and processes that can inform water users and help improve planning for future conditions and sustained operations of the Rio Grande Project (RGP) by the Bureau of Reclamation. Model development included a revision of the conceptual model of the flow system, construction of a Transboundary Rio Grande Watershed Model (TRGWM) water-balance model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (referred to as One Water). The hydrologic models were developed for and calibrated to historical conditions of water and land use, and parameters were adjusted so that simulated values closely matched available measurements (calibration). The calibrated model was then used to assess the use and movement of water in the Rincon Valley, Mesilla Basin

  17. Rio Grande Transboundary Integrated Hydrologic Model and Water-Availability Analysis, New Mexico and Texas, United States, and Northern Chihuahua, Mexico

    USGS Publications Warehouse

    Hanson, R.T.; Ritchie, Andre; Boyce, Scott E.; Galanter, Amy E.; Ferguson, Ian A.; Flint, Lorraine E.; Henson, Wesley R.

    2018-05-31

    Changes in population, agricultural development and practices (including shifts to more water-intensive crops), and climate variability are increasing demands on available water resources, particularly groundwater, in one of the most productive agricultural regions in the Southwest—the Rincon and Mesilla Valley parts of Rio Grande Valley, Doña Ana and Sierra Counties, New Mexico, and El Paso County, Texas. The goal of this study was to produce an integrated hydrological simulation model to help evaluate water-management strategies, including conjunctive use of surface water and groundwater for historical conditions, and to support long-term planning for the Rio Grande Project. This report describes model construction and applications by the U.S. Geological Survey, working in cooperation and collaboration with the Bureau of Reclamation.This model, the Rio Grande Transboundary Integrated Hydrologic Model, simulates the most important natural and human components of the hydrologic system, including selected components related to variations in climate, thereby providing a reliable assessment of surface-water and groundwater conditions and processes that can inform water users and help improve planning for future conditions and sustained operations of the Rio Grande Project (RGP) by the Bureau of Reclamation. Model development included a revision of the conceptual model of the flow system, construction of a Transboundary Rio Grande Watershed Model (TRGWM) water-balance model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (referred to as One Water). The hydrologic models were developed for and calibrated to historical conditions of water and land use, and parameters were adjusted so that simulated values closely matched available measurements (calibration). The calibrated model was then used to assess the use and movement of water in the Rincon Valley, Mesilla Basin

  18. 78 FR 45268 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-26

    ... decommission the Ocotillo Sol Solar Project, a solar photovoltaic (PV) power plant facility, on approximately... Applicant's Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Final Environmental...

  19. Modeling of Soil Water Availability for Agricultural Planning at Pelaga Village, Badung Regency, Bali, Indonesia

    NASA Astrophysics Data System (ADS)

    Suyarto, R.; Sunarta, I. N.; Wiyanti; Padmayani, N. K. H.

    2017-12-01

    Pelaga Village is located in Badung regency which has the advantage in agriculture with the cultivation of coffee plants, oranges, carrots, cabbage, and chili. The physical condition of Pelaga Village which has high rainfall, bumpy areas, and sandy-sandy ground texture causes air to air to be available for plants. Based on these questions then conducted a study to determine the comparison between the available water and water requirement for agriculture. Available water was difference field capacity and permanent wilting point method and crop water requirement was using Blaney-Criddle method. The results from this research was deficit between available air and crop water requirements. Available water was 12,12% and crop water requirement in initial stage, dev. Stage, mid-season stage, and late season stage respectively, coffee 11.28%, 24.19%, 35.49%, 29.04%; cabbage 19.58%, 19.58%, 33.10%, 27.74%: carrot 14.82%, 28.61%, 28.61%, 27.95%: Orange 14.82%, 28.61%, 28.61%, 27.23%; chili, 17.37%,17.37%, 34.80%, 30.46%. Soil management that must be done is by short-term land management by sprinkling long-term soil management by means of organic material valuation, irrigation making, and terracing making.

  20. Improving water quality through California's Clean Beach Initiative: an assessment of 17 projects.

    PubMed

    Dorsey, John H

    2010-07-01

    California's Clean Beach Initiative (CBI) funds projects to reduce loads of fecal indicator bacteria (FIB) impacting beaches, thus providing an opportunity to judge the effectiveness of various CBI water pollution control strategies. Seventeen initial projects were selected for assessment to determine their effectiveness on reducing FIB in the receiving waters along beaches nearest to the projects. Control strategies included low-flow diversions, sterilization facilities, sewer improvements, pier best management practices (BMPs), vegetative swales, and enclosed beach BMPs. Assessments were based on statistical changes in pre- and postproject mean densities of FIB at shoreline monitoring stations targeted by the projects. Most low-flow diversions and the wetland swale project were effective in removing all contaminated runoff from beaches. UV sterilization was effective when coupled with pretreatment filtration and where effluent was released within a few hundred meters of the beach to avoid FIB regrowth. Other BMPs were less effective because they treated only a portion of contaminant sources impacting their target beach. These findings should be useful to other coastal states and agencies faced with similar pollution control problems.

  1. Water data to answer urgent water policy questions: Monitoring design, available data and filling data gaps for determining the effectiveness of agricultural management practices for reducing tributary nutrient loads to Lake Erie

    USGS Publications Warehouse

    Bentanzo, Elin A.; Choquette, Anne F.; Reckhow, Kenneth H.; Hayes, Laura; Hagan, Erik R; Argue, Denise M.; Cangelosi, A.A.

    2015-01-01

    Throughout its history, the United States has made major investments in assessing natural resources, such as soils, timber, oil and gas, and water. These investments allow policy makers, the private sector and the American public to make informed decisions about cultivating, harvesting or conserving these resources to maximize their value for public welfare, environmental conservation and the economy. As policy issues evolve, new priorities and challenges arise for natural resource assessment, and new approaches to monitoring are needed. For example, informed conservation and use of the nation’s finite fresh water resources in the context of increasingly intensive land development is a priority for today’s policy decisionmakers. There is a need to evaluate whether today’s water monitoring programs are generating the information needed to answer questions surrounding these new policy priorities. The Northeast-Midwest Institute (NEMWI), in cooperation with the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program, initiated this project to explore the types and amounts of water data needed to address water-quality related policy questions of critical concern to today’s policy makers. The collaborating entities identified two urgent water policy questions and conducted case studies in the Northeast-Midwest region to determine the water data needed, water data available, and the best ways to fill the data gaps relative to those questions. This report details the output from one case study and focuses on the Lake Erie drainage basin, a data-rich area expected to be a best-case scenario in terms of water data availability.

  2. Cellular identification of water gustatory receptor neurons and their central projection pattern in Drosophila

    PubMed Central

    Inoshita, Tsuyoshi; Tanimura, Teiichi

    2006-01-01

    Water perception is important for insects, because they are particularly vulnerable to water loss because their body size is small. In Drosophila, gustatory receptor neurons are located at the base of the taste sensilla on the labellum, tarsi, and wing margins. One of the gustatory receptor neurons in typical sensilla is known to respond to water. To reveal the neural mechanisms of water perception in Drosophila, it is necessary to identify water receptor neurons and their projection patterns. We used a Gal4 enhancer trap strain in which GAL4 is expressed in a single gustatory receptor neuron in each sensillum on the labellum. We investigated the function of these neurons by expressing the upstream activating sequence transgenes, shibirets1, tetanus toxin light chain, or diphtheria toxin A chain. Results from the proboscis extension reflex test and electrophysiological recordings indicated that the GAL4-expressing neurons respond to water. We show here that the water receptor neurons project to a specific region in the subesophageal ganglion, thus revealing the water taste sensory map in Drosophila. PMID:16415164

  3. Inefficiencies in water project design and operation in the third world: An economic perspective

    NASA Astrophysics Data System (ADS)

    Howe, Charles W.; Dixon, John A.

    1993-07-01

    Water projects in less developed countries (LDCs) frequently are poorly operated and maintained. As a result, project benefits and development impacts fall short of plans. The problems begin in the project identification, design, and construction stages: donor and host country biases lead to inappropriate projects, unsustainable technologies, and shoddy construction. Later operation and maintenance are then difficult or impossible. Causal factors include donor desire to build monuments and sell technology, provision of excessive capital to favored sectors or institutions, and an unwillingness to require a reasonable quid pro quo from the host country. Host country factors include excessive administrative centralization, lack of rewards for good operation and maintenance, and widespread corruption in forms that seriously distort allocative efficiency. Until individual actors on both sides can be motivated to pursue the long-run good of the LDC, Third World water projects will continue to have low or negative net payoffs.

  4. 76 FR 62061 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9475-4] Clean Water Act Section 303(d): Availability of List... three waterbodies. These three waterbodies were added by EPA because the applicable numeric water... be obtained at EPA Region 6's Web site at http://www.epa.gov/region6/water/npdes/tmdl/index.htm...

  5. Challenge theme 2: assuring water availability and quality in the 21st century: Chapter 4 in United States-Mexican Borderlands: Facing tomorrow's challenges through USGS science

    USGS Publications Warehouse

    Callegary, James; Langeman, Jeff; Leenhouts, Jim; Martin, Peter

    2013-01-01

    Along the United States–Mexican border, the health of communities, economies, and ecosystems is inextricably intertwined with the availability and quality of water, but effective water management in the Borderlands is complicated. Water users compete for resources, and their needs are increasing. Managers are faced with issues such as finding a balance between agriculture and rapidly growing cities or maintaining public supplies while ensuring sufficient resources for aquatic ecosystems. In addition to human factors, the dry climate of the Borderlands, as compared to more temperate regions, also increases the challenge of balancing water supplies between humans and ecosystems. Warmer, drier, and more variable conditions across the southwestern United States—the projected results of climate change (Seager and others, 2007)—would further stress water supplies.

  6. Ozone risk assessment in three oak species as affected by soil water availability.

    PubMed

    Hoshika, Yasutomo; Moura, Barbara; Paoletti, Elena

    2018-03-01

    To derive ozone (O 3 ) dose-response relationships for three European oak species (Quercus ilex, Quercus pubescens, and Quercus robur) under a range of soil water availability, an experiment was carried out with 2-year-old potted seedlings exposed to three levels of water availability in the soil and three levels of O 3 pollution for one growing season in an ozone free-air controlled exposure (FACE) facility. Total biomass losses were estimated relative to a hypothetical clean air at the pre-industrial age, i.e., at 10 ppb as daily average (M24). A stomatal conductance model was parameterized with inputs from the three species for calculating the stomatal O 3 flux. Exposure-based (M24, W126, and AOT40) and flux-based (phytotoxic O 3 dose (POD) 0-3 ) dose-response relationships were estimated and critical levels (CL) were calculated for a 5% decline of total biomass. Results show that water availability can significantly affect O 3 risk assessment. In fact, dose-response relationships calculated per individual species at each water availability level resulted in very different CLs and best metrics. In a simplified approach where species were aggregated on the basis of their O 3 sensitivity, the best metric was POD 0.5 , with a CL of 6.8 mmol m -2 for the less O 3 -sensitive species Q. ilex and Q. pubescens and of 3.5 mmol m -2 for the more O 3 -sensitive species Q. robur. The performance of POD 0 , however, was very similar to that of POD 0.5 , and thus a CL of 6.9 mmol m -2 POD 0 and 3.6 mmol m -2 POD 0 for the less and more O 3 -sensitive oak species may be also recommended. These CLs can be applied to oak ecosystems at variable water availability in the soil. We conclude that POD y is able to reconcile the effects of O 3 and soil water availability on species-specific oak productivity.

  7. Concepts for national assessment of water availability and use

    USGS Publications Warehouse

    ,

    2002-01-01

    In response to a directive from Congress to the U.S. Geological Survey to 'prepare a report describing the scope and magnitude of the efforts needed to provide periodic assessments of the status and trends in the availability and use of freshwater resources,' of the United States, a program is proposed to develop and report on indicators of the status and trends in storage volume, flow rates, and uses of water nationwide. This program would be analogous to the task of other Federal statistical programs that produce and regularly update indicator variables that describe economic, demographic, and health conditions of the Nation. The assessment also would provide regional estimates of recharge, evapotranspiration, interbasin transfers, and other components of the water cycle.

  8. 77 FR 28618 - Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... project, a solar photovoltaic (PV) power plant facility, on approximately 115 acres of BLM-administered... Proposed Project to construct, operate, maintain, and decommission a 100-acre solar PV facility on BLM...] Notice of Availability of the San Diego Gas & Electric Ocotillo Sol Solar Project Draft Environmental...

  9. Water cycle research associated with the CaPE hydrometeorology project (CHymP

    NASA Technical Reports Server (NTRS)

    Duchon, Claude E.

    1993-01-01

    One outgrowth of the Convection and Precipitation/Electrification (CaPE) experiment that took place in central Florida during July and August 1991 was the creation of the CaPE Hydrometeorology Project (CHymP). The principal goal of this project is to investigate the daily water cycle of the CaPE experimental area by analyzing the numerous land and atmosphere in situ and remotely sensed data sets that were generated during the 40-days of observations. The water cycle comprises the atmospheric branch. In turn, the atmospheric branch comprises precipitation leaving the base of the atmospheric volume under study, evaporation and transpiration entering the base, the net horizontal fluxes of water vapor and cloud water through the volume and the conversion of water vapor to cloud water and vice-versa. The sum of these components results in a time rate of change in the water and liquid water (or ice) content of the atmospheric volume. The components of the land branch are precipitation input to and evaporation and transpiration output from the surface, net horizontal fluxes of surface and subsurface water, the sum of which results in a time rate of change in surface and subsurface water mass. The objective of CHymP is to estimate these components in order to determine the daily water budget for a selected area within the CaPE domain. This work began in earnest in the summer of 1992 and continues. Even estimating all the budget components for one day is a complex and time consuming task. The discussions below provides a short summary of the rainfall quality assessment procedures followed by a plan for estimating the horizontal moisture flux.

  10. Dynamic aspects of soil water availability for isohydric plants: Focus on root hydraulic resistances

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Vanderborght, J.; Draye, X.; Javaux, M.

    2014-11-01

    Soil water availability for plant transpiration is a key concept in agronomy. The objective of this study is to revisit this concept and discuss how it may be affected by processes locally influencing root hydraulic properties. A physical limitation to soil water availability in terms of maximal flow rate available to plant leaves (Qavail) is defined. It is expressed for isohydric plants, in terms of plant-centered variables and properties (the equivalent soil water potential sensed by the plant, ψs eq; the root system equivalent conductance, Krs; and a threshold leaf water potential, ψleaf lim). The resulting limitation to plant transpiration is compared to commonly used empirical stress functions. Similarities suggest that the slope of empirical functions might correspond to the ratio of Krs to the plant potential transpiration rate. The sensitivity of Qavail to local changes of root hydraulic conductances in response to soil matric potential is investigated using model simulations. A decrease of radial conductances when the soil dries induces earlier water stress, but allows maintaining higher night plant water potentials and higher Qavail during the last week of a simulated 1 month drought. In opposition, an increase of radial conductances during soil drying provokes an increase of hydraulic redistribution and Qavail at short term. This study offers a first insight on the effect of dynamic local root hydraulic properties on soil water availability. By better understanding complex interactions between hydraulic processes involved in soil-plant hydrodynamics, better prospects on how root hydraulic traits mitigate plant water stress might be achieved.

  11. An analysis of eco-environmental impacts of the south-to-north water transfer project on the receiving areas

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Gan, Hong; Xiao, Yuquan; You, Jinjun

    2010-05-01

    The receiving areas of the Phase I projects of the eastern and central routes of the South-to-North Water Transfer Project cover 41 administrative regions at and above the prefecture level in the provincial level administrative regions of Beijing, Tianjin, Hebei, Shandong and Henan, and have a carrying capacity of water resources most unadaptive to the needs by the economic and social development. Those areas have densely distributed population, farmland and agricultural and industrial activities and are experiencing rapid urbanization, but suffer from high scarcity of water resources, with all the cities in the areas seeing water shortage to a varying extent. Most of the cities are relying on abstracting deep groundwater and occupying agricultural water for urban water supply. In December 2002, the State Council officially approved the General Plan on the South-to-North Water Transfer Project, which provides multiple measures to reduce groundwater over-abstraction and improve and gradually restore the eco-environment in the receiving areas by using transferred water to replace the agricultural water occupied by urban water supply and the eco-environmental water occupied by cities and agriculture. What changes have occurred to the eco-environment and urban water use in the receiving areas in recent years ? How much water can be returned from the cities to agriculture and ecology after the objectives of water supply are met? What can be achieved in the control of groundwater abstraction? What level of guarantee can the water transfer provide for agricultural water use in a dry year? All of those issues have been at the focus of public attention. In this paper, statistical analysis is made on the eco-environmental status and urban water use of 72 cities in the receiving areas of the Phase I projects since year 2000 and a conclusion is drawn that the renewal capacity of the eco-environment and groundwater in the receiving areas is deteriorating. Then the water

  12. Aggregating available soil water holding capacity data for crop yield models

    NASA Technical Reports Server (NTRS)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  13. Energy availabilities for state and local development: projected energy patterns for 1980 and 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogt, D. P.; Rice, P. L.; Pai, V. P.

    1978-06-01

    This report presents projections of the supply, demand, and net imports of seven fuel types and four final consuming sectors for BEAs, states, census regions, and the nation for 1980 and 1985. The data are formatted to present regional energy availability from primary extraction, as well as from regional transformation processes. As constructed, the tables depict energy balances between availability and use for each of the specific fuels. The objective of the program is to provide a consistent base of historic and projected energy information within a standard format. Such a framework should aid regional policymakers in their consideration ofmore » regional growth issues that may be influenced by the regional energy system. This basic data must be supplemented by region-specific information which only the local policy analyst can bring to bear in his assessment of the energy conditions which characterize each region. The energy data, coupled with specific knowledge of projected economic growth and employment patterns, can assist EDA in developing its grant-in-aid investment strategy.« less

  14. Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The performance of a Solar Hot Water System at a laundry in Fresno, California is described. The system features an integrated wastewater heat recovery subsystem and a solar preheating system designed to supply a part of the hot water requirements. Performance data for a six month period are projected to an annual savings of $18,703.

  15. 75 FR 10806 - Training Program for Regulatory Project Managers; Information Available to Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2010-N-0108] Training Program for Regulatory Project Managers; Information Available to Industry AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) Center for Drug Evaluation...

  16. 78 FR 8544 - Training Program for Regulatory Project Managers; Information Available to Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-06

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2003-N-0453] Training Program for Regulatory Project Managers; Information Available to Industry AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration's (FDA's) Center for Drug...

  17. Balancing global water availability and use at basin scale in an integrated assessment model

    DOE PAGES

    Kim, Son H.; Hejazi, Mohamad; Liu, Lu; ...

    2016-01-22

    Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less

  18. Balancing global water availability and use at basin scale in an integrated assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Son H.; Hejazi, Mohamad; Liu, Lu

    Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land, and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater and desalinated water sources —across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. Lastly, this study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in integrated assessment models and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less

  19. Availability of water affects renewal of tissues in migratory blackcaps during stopover.

    PubMed

    Mizrahy, Ortal; Bauchinger, Ulf; Aamidor, Sarah E; McWilliams, Scott R; Pinshow, Berry

    2011-09-01

    Migrating blackcaps (Sylvia atricapilla) were used to test the predictions that (1) the rebuilding of the digestive tract, as reflected by mass-specific consumption of food on the first 2-3 days of a stopover, is faster in birds with access to drinking water than in birds without, and (2) that adipose tissue and pectoral muscles grow faster and to a greater extent in birds with unlimited access to water. We simulated migratory stopover in two experiments. In Experiment I, each of 31 birds was randomly assigned to one of three experimental groups for 6 days. Along with mealworms (∼64% water) ad libitum, Group 1 received drinking water ad libitum; Group 2 had 0.5 h/day access to water; and Group 3 had no access to water. In Experiment II, 30 birds were offered a mixed diet for insectivorous birds (∼33% water) ad libitum for 6 days, while randomly assigned to two groups: (1) Water ad libitum-control; and (2) 30 min access to water twice a day. We measured lean mass and fat mass using dual energy X-ray absorptiometry, as well as body mass (m(b)), pectoral muscle index (PMI), and daily intake of food and water. Mean daily water intake was significantly different among the groups in both experiments. However, the availability of drinking water positively affected the rates of gain of lean and fat mass only in birds fed with the mixed, relatively dry diet. Furthermore, mass-specific daily food intake was affected by the availability of drinking water only in the mixed diet experiment, in which birds with unlimited access to drinking water reached an asymptote, 1 day earlier than birds in the water-restricted group. We suggest that in birds consuming diets with low water content, the lack of sufficient drinking water may result in slower rebuilding of the digestive tract, or may influence biochemical processes in the gut that result in slower growth of tissue. Although blackcaps obtained sufficient water from preformed and metabolic water to renew lost tissues when

  20. 43 CFR 404.12 - Can Reclamation provide assistance with the construction of a rural water supply project under...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the construction of a rural water supply project under this program? 404.12 Section 404.12 Public... RECLAMATION RURAL WATER SUPPLY PROGRAM Overview § 404.12 Can Reclamation provide assistance with the construction of a rural water supply project under this program? Reclamation may provide assistance with the...

  1. 77 FR 67662 - Notice of Availability of the Desert Harvest Solar Project Final Environmental Impact Statement...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... decommission a solar photovoltaic electricity generating facility with a proposed output of 150 megawatts and a... CACA 49491] Notice of Availability of the Desert Harvest Solar Project Final Environmental Impact...) Plan Amendment and Final Environmental Impact Statement (EIS) for the Desert Harvest Solar Project and...

  2. The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts

    NASA Technical Reports Server (NTRS)

    Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah

    2012-01-01

    As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and

  3. Plant roots use a patterning mechanism to position lateral root branches toward available water.

    PubMed

    Bao, Yun; Aggarwal, Pooja; Robbins, Neil E; Sturrock, Craig J; Thompson, Mark C; Tan, Han Qi; Tham, Cliff; Duan, Lina; Rodriguez, Pedro L; Vernoux, Teva; Mooney, Sacha J; Bennett, Malcolm J; Dinneny, José R

    2014-06-24

    The architecture of the branched root system of plants is a major determinant of vigor. Water availability is known to impact root physiology and growth; however, the spatial scale at which this stimulus influences root architecture is poorly understood. Here we reveal that differences in the availability of water across the circumferential axis of the root create spatial cues that determine the position of lateral root branches. We show that roots of several plant species can distinguish between a wet surface and air environments and that this also impacts the patterning of root hairs, anthocyanins, and aerenchyma in a phenomenon we describe as hydropatterning. This environmental response is distinct from a touch response and requires available water to induce lateral roots along a contacted surface. X-ray microscale computed tomography and 3D reconstruction of soil-grown root systems demonstrate that such responses also occur under physiologically relevant conditions. Using early-stage lateral root markers, we show that hydropatterning acts before the initiation stage and likely determines the circumferential position at which lateral root founder cells are specified. Hydropatterning is independent of endogenous abscisic acid signaling, distinguishing it from a classic water-stress response. Higher water availability induces the biosynthesis and transport of the lateral root-inductive signal auxin through local regulation of tryptophan aminotransferase of Arabidopsis 1 and PIN-formed 3, both of which are necessary for normal hydropatterning. Our work suggests that water availability is sensed and interpreted at the suborgan level and locally patterns a wide variety of developmental processes in the root.

  4. Development of integrated scenarios to assess future conditions of aquatic ecosystems under water scarcity in the Mediterranean - perspectives from the GLOBAQUA project

    NASA Astrophysics Data System (ADS)

    Huber-Garcia, Verena; Akinsete, Ebun; Gampe, David; Ker Rault, Philippe; Kok, Kasper; Koundouri, Phoebe; Luttik, Joke; Nikulin, Grigory; Pistocchi, Alberto; Souliotis, Ioannis; Ludwig, Ralf

    2017-04-01

    Water and water-related services are major components of the human wellbeing, and as such are major factors of socio-economic development; yet freshwater systems are under threat by a variety of stressors (organic and inorganic pollution, geomorphological alterations, land cover change, water abstraction, invasive species and pathogens). Water scarcity is most commonly associated with inappropriate water management and resulting river flow reductions. It has become one of the most important drivers of change in freshwater ecosystems. Conjoint occurrence of a myriad of stressors (chemical, geomorphological, biological) under water scarcity will produce novel and unfamiliar synergies and most likely very pronounced effects. Stressors are hierarchically arranged in terms of intensity, frequency and scale, and their effects can be predicted to be from transient to irreversible. Most ecosystems are simulta¬neously exposed to multiple-stress situations. Within the scope of the GLOBAQUA project the effects of multiple stressors on aquatic ecosystems in selected river basins across Europe with a focus on areas suffering from water scarcity are analyzed. In addition, management strategies are improved and adapted with the aim of inhibiting adverse effects on aquatic ecosystems and ensuring the supply with water for all purposes in the study areas also in the future. Policy relevant implications will be given to ensure a best possible status of these aquatic ecosystems also under future conditions. In this context, land use and land cover as well as the meteorological conditions can be seen as two main stressors for the quality and quantity of surface and subsurface water. These factors considerably affect the use and availability of water, especially in regions which already experience water scarcity. If the problem is not addressed correctly, negative effects on biodiversity, water supply as well as important economic consequences may arise. In Europe, many fresh water

  5. Ecological effects and potential risks of the water diversion project in the Heihe River Basin.

    PubMed

    Zhang, Mengmeng; Wang, Shuai; Fu, Bojie; Gao, Guangyao; Shen, Qin

    2018-04-01

    To curb the severe ecological deterioration in the lower Heihe River Basin (HRB) in northwest China, a water diversion project was initiated in 2000. A comprehensive analysis of the ecological effects and potential risks associated with the project is needed. We assessed the hydrological and ecological achievements, and also analyzed the potential problems after the project was completed. We found that since the project began the hydrological regime has changed, with more than 57.82% of the upstream water being discharged to the lower reaches on average. As a result, the groundwater level in the lower reaches has risen; the terminal lake has gradually expanded to a maximum area in excess of 50km 2 since 2010, and there has been a significant recovery of vegetation in the riparian zone and the Ejin core oases, which represents the initial rehabilitation of the degraded downstream environment. Additionally, the economy of Ejin has developed spectacularly, with an annual growth rate of 28.06%. However, in the middle reaches, the average groundwater level has continuously declined by a total of 5.8m and significant degradation of the vegetation has occurred along the river course. The discrepancy in the water allocation between the middle and lower reaches has intensified. This highlights the inability of the current water diversion scheme to realize further ecological restoration and achieve sustainable development throughout the whole basin. In future water management programs, we recommend that water allocation is coordinated by considering the basin as an integrated entity and to scientifically determine the size of the midstream farmland and downstream oasis; restrict non-ecological water use in the lower reaches, and jointly dispatch the surface water and groundwater. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Balancing global water availability and use at basin scale in an integrated assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Son H.; Hejazi, Mohamad; Liu, Lu

    Water is essential for the world’s food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions of the world and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide for a larger and more prosperous human population. Numerous studies have pointed to growing pressures on the world’s scarce fresh water resources from population and economic growth, and climate change. This study goes further. We use the Global Change Assessment Model to analyze interactions between population, economicmore » growth, energy, land and water resources simultaneously in a dynamically evolving system where competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater sources and desalinated water—across 14 geopolitical regions, 151 agriculture-ecological zones, and 235 major river basins. We find that previous estimates of global water withdrawal projections are overestimated. Model simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. This study highlights the importance of accounting for water as a binding factor in agriculture, energy and land use decisions in IAMs and implications for global responses to water scarcity, particularly in the trade of agricultural commodities and land-use decisions.« less

  7. 78 FR 4435 - Notice of Availability of the Restoration Design Energy Project Record of Decision/Approved...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-22

    ... Project (RDEP) Record of Decision (ROD)/approved Resource Management Plan (RMP) amendments for BLM... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLAZ910000.L13400000.DT0000.LXSS058A0000] Notice of Availability of the Restoration Design Energy Project Record of Decision/Approved Resource...

  8. Polder effects on sediment-to-soil conversion: water table, residual available water capacity, and salt stress interdependence.

    PubMed

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields.

  9. Root-zone temperature and water availability affect early root growth of planted longleaf pine

    Treesearch

    M.A. Sword

    1995-01-01

    Longleaf pine seedlings from three seed sources were exposed to three root-zone temperatures and three levels of water availability for 28 days. Root growth declined as temperature and water availability decreased. Root growth differed by seed source. Results suggest that subtle changes in the regeneration environment may influence early root growth of longleaf pine...

  10. 76 FR 18213 - Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2778-062] Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project and Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission and is available...

  11. 76 FR 18214 - Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2055-087] Idaho Power; Notice of Availability of Land Management Plan Update for the Shoshone Falls Project and Soliciting Comments, Motions To Intervene, and Protests Take notice that the following hydroelectric application has been filed with the Commission and is available...

  12. Assessment of the terrestrial water balance using the global water availability and use model WaterGAP - status and challenges

    NASA Astrophysics Data System (ADS)

    Müller Schmied, Hannes; Döll, Petra

    2017-04-01

    main reason for differing Q is varying precipitation (P, 111 600 km3 yr-1 vs. 110 900 km3 yr-1). The sensitivity of water balance components to alternative climate forcing data is high. Applying 5 state-of-the-art climate forcing data sets, long term average P differs globally by 8000 km3 yr-1, mainly due to different handling of precipitation undercatch correction (or neglecting it). AET differs by 5500 km3 yr-1 whereas Q varies by 3000 km3 yr-1. The sensitivity of human water consumption to alternative climate input data is only about 5%. WaterGAP's calibration approach forces simulated long-term river discharge to be approximately equal to observed values at 1319 gauging stations during the time period selected for calibration. This scheme greatly reduces the impact of uncertain climate input on simulated Q data in these upstream drainage basins (as well as downstream). In calibration areas, the Q variation among the climate input data is much lower (1.6%) than in non-calibrated areas (18.5%). However, variation of Q at the grid cell-level is still high (an average of 37% for Q in grid cells in calibration areas vs. 74% outside). Due to the closed water balance, variation of AET is higher in calibrated areas than in non-calibrated areas. Main challenges in assessing the world's water resources by GHMs like WaterGAP are 1) the need of consistent long-term climate forcing input data sets, especial considering a suitable handling of P undercatch, 2) the accessibility of in-situ data for river discharge or alternative calibration data for currently non-calibrated areas, and 3) an improved simulation in semi-arid and arid river basins. As an outlook, a multi-model, multi-forcing study of global water balance components within the frame of the Inter-Sectoral Impact Model Intercomparison Project is proposed.

  13. Asynchronous Amazon forest canopy phenology indicates adaptation to both water and light availability

    NASA Astrophysics Data System (ADS)

    Jones, Matthew O.; Kimball, John S.; Nemani, Ramakrishna R.

    2014-12-01

    Amazon forests represent nearly half of all tropical vegetation biomass and, through photosynthesis and respiration, annually process more than twice the amount of estimated carbon (CO2) from fossil fuel emissions. Yet the seasonality of Amazon canopy cover, and the extent to which seasonal fluctuations in water availability and photosynthetically available radiation influence these processes, is still poorly understood. Implementing six remotely sensed data sets spanning nine years (2003-2011), with reported field and flux tower data, we show that southern equatorial Amazon forests exhibit a distinctive seasonal signal. Seasonal timing of water availability, canopy biomass growth and net leaf flush are asynchronous in regions with short dry seasons and become more synchronous across a west-to-east longitudinal moisture gradient of increasing dry season. Forest cover is responsive to seasonal disparities in both water and solar radiation availability, temporally adjusting net leaf flush to maximize use of these generally abundant resources, while reducing drought susceptibility. An accurate characterization of this asynchronous behavior allows for improved understanding of canopy phenology across contiguous tropical forests and their sensitivity to climate variability and drought.

  14. 77 FR 20020 - Clean Water Act Section 303(d): Availability of List Decisions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-03

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9655-2] Clean Water Act Section 303(d): Availability of List Decisions AGENCY: Environmental Protection Agency. ACTION: Notice of availability. SUMMARY: This notice announces the availability of EPA's Responsiveness Summary Concerning EPA's November 30, 2011, Public Notice...

  15. Efficient management of municipal water: water scarcity in Taiz City, Yemen - issues and options

    NASA Astrophysics Data System (ADS)

    Noaman, A.; Al-Sharjabe, A. W.

    2015-04-01

    The city of Taiz is the third largest city in Yemen, located about 250 km south of Sana'a and about 90 km inland from the Red Sea. Taiz is situated on the foothills and slopes of the Jabal Saber Mountain at elevations between 1100 and 1600 m a.s.l. Its population is rapidly increasing and is expected to grow from about 580 000 in 2012 to over 1 000 000 in 2020. Water supply is the most pressing problem in the city of Taiz today due to the significant shortages of supply (the average consumption is 23 L/d) caused by the depletion of existing water resources and the lack of a clear direction in dealing with the problem. This forces frequent service interruptions (30-40 days) and the service is rarely extended to new users (only 57% of the population are covered). Sanitation is another daunting problem. The (poorly maintained) sewerage network covers only 44% of the population. In several unsewered areas to the north, east and west of the city, raw sewage is disposed of directly into wadis, which causes a health hazard and threatens to contaminate groundwater resources. The proper computation of demand and supply is based on the various fields. It was performed under this study with a particular model: the Water Evaluation and Planning System (WEAP) developed by the Stockholm Environment Institute (SEI). WEAP is supported by a geographical information system (GIS). The available and relevant data on poverty and social indicators, water use and sources, surface runoff, surface and groundwater availability, groundwater depletion and management, crop production areas, soil cover, maps, and meteorological information were gathered from a number of sources. There are only two ways to decrease the water deficit: by increasing water supply or decreasing the water demand. Any adaptation project aims at one of the two. Six projects are proposed, with three in each category (1, 2 and 3 to decrease demand, and 4, 5 and 6 to increase supply): - Project 1: Improvement of

  16. Meeting the challenge of policy-relevant science: lessons from a water resource project

    USGS Publications Warehouse

    Lamb, Berton L.

    1986-01-01

    Water resource scientists face complex tasks in evaluating aspects of water projects, but relatively few assessment procedures have been applied and accepted as standard applications. Decision-makers often rely on environmental assessments to evaluate the value and operation of projects. There is often confusion about scientists' role in policy decisions. The scientist can affect policy-making as an expert withess, an advocate or a surrogate. By understanding the policy process, scientists can make their work more “policy relevant.” Using the Terror Lake hydro project in Alaska as a guide, three lessons are discussed: (1) not all problems are able to be solved with technology; (2) policy-relevant technology is rarely imposed on a problem; and (3) the scientist need not just react to the policy process, but can have an impact on how that process unfolds.

  17. Meeting the challenge of policy-relevant science: lessons from a water resource project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamb, B.L.

    Water resources scientists face complex tasks in evaluating aspects of water projects, but relatively few assessment procedures have been applied and accepted as standards applications. Decision-makers often rely on environmental assessments to evaluate the value and operation of projects. There is often confusion about scientists' role in policy decisions. The scientist can affect policy-making as an expert witness, an advocate or a surrogate. By understanding the policy process, scientists can make their work more policy relevant. Using the Terror Lake hydro project in Alaska as a guide, three lessons are discussed: (1) not all problems are able to be solvedmore » with technology; (2) policy-relevant technology is rarely imposed on a problem; and (3) the scientist need not just to react to the policy process, but can have an impact on how that process unfolds.« less

  18. Storing Water in California's Hidden Reservoirs

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Rohde, M. M.; Szeptycki, L.; Freyberg, D. L.

    2014-12-01

    California is experiencing one of its worst droughts in history; in early 2014, the Governor released the Water Action Plan outlining opportunities to secure reliable water supplies. Groundwater recharge and storage is suggested as an alternative to surface storage, but little research has been conducted to see if groundwater recharge is a competitive alternative to other water-supply infrastructure projects. Although groundwater recharge and storage data are not readily available, several voter-approved bonds have helped finance groundwater recharge and storage projects and can be used as a proxy for costs, geographic distribution, and interest in such projects. We mined and analyzed available grant applications submitted to the Department of Water Resources that include groundwater recharge and storage elements. We found that artificial recharge can be cheaper than other water-supply infrastructure, but the cost was dependent on the source of water, the availability and accessibility of infrastructure used to capture and convey water, and the method of recharge. Bond applications and funding awards were concentrated in the Central Valley and southern California - both are regions of high water demand. With less than 60% of proposals funded, there are opportunities for groundwater recharge and storage to play a bigger role in securing California's water supplies.

  19. Catchment Area Treatment (CAT) Plan and Crop Area Optimization for Integrated Management in a Water Resource Project

    NASA Astrophysics Data System (ADS)

    Jaiswal, R. K.; Thomas, T.; Galkate, R. V.; Ghosh, N. C.; Singh, S.

    2013-09-01

    A scientifically developed catchment area treatment (CAT) plan and optimized pattern of crop areas may be the key for sustainable development of water resource, profitability in agriculture and improvement of overall economy in drought affected Bundelkhand region of Madhya Pradesh (India). In this study, an attempt has been made to develop a CAT plan using spatial variation of geology, geomorphology, soil, drainage, land use in geographical information system for selection of soil and water conservation measures and crop area optimization using linear programming for maximization of return considering water availability, area affinity, fertilizers, social and market constraints in Benisagar reservoir project of Chhatarpur district (M.P.). The scientifically developed CAT plan based on overlaying of spatial information consists of 58 mechanical measure (49 boulder bunds, 1 check dam, 7 cully plug and 1 percolation tank), 2.60 km2 land for agro forestry, 2.08 km2 land for afforestation in Benisagar dam and 67 mechanical measures (45 boulder bunds and 22 gully plugs), 7.79 km2 land for agro forestry, 5.24 km2 land for afforestation in Beniganj weir catchment with various agronomic measures for agriculture areas. The linear programming has been used for optimization of crop areas in Benisagar command for sustainable development considering various scenarios of water availability, efficiencies, affinity and fertilizers availability in the command. Considering present supply condition of water, fertilizers, area affinity and making command self sufficient in most of crops, the net benefit can be increase to Rs. 1.93 crores from 41.70 km2 irrigable area in Benisagar command by optimizing cropping pattern and reducing losses during conveyance and application of water.

  20. Water availability at hospitals in low- and middle-income countries: implications for improving access to safe surgical care.

    PubMed

    Chawla, Sagar S; Gupta, Shailvi; Onchiri, Frankline M; Habermann, Elizabeth B; Kushner, Adam L; Stewart, Barclay T

    2016-09-01

    Although two billion people now have access to clean water, many hospitals in low- and middle-income countries (LMICs) do not. Lack of water availability at hospitals hinders safe surgical care. We aimed to review the surgical capacity literature and document the availability of water at health facilities and develop a predictive model of water availability at health facilities globally to inform targeted capacity improvements. Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, a systematic search for surgical capacity assessments in LMICs in MEDLINE, PubMed, and World Health Organization Global Health Library was performed. Data regarding water availability were extracted. Data from these assessments and national indicator data from the World Bank (e.g., gross domestic product, total health expenditure, and percent of population with improved access to water) were used to create a predictive model for water availability in LMICs globally. Of the 72 records identified, 19 reported water availability representing 430 hospitals. A total of 66% of hospitals assessed had water availability (283 of 430 hospitals). Using these data, estimated percent of water availability in LMICs more broadly ranged from under 20% (Liberia) to over 90% (Bangladesh, Ghana). Less than two-thirds of hospitals providing surgical care in 19 LMICs had a reliable water source. Governments and nongovernmental organizations should increase efforts to improve water infrastructure at hospitals, which might aid in the provision of safe essential surgical care. Future research is needed to measure the effect of water availability on surgical care and patient outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. 75 FR 78231 - Management of Energy and Water Efficiency in Federal Buildings: Availability of Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-15

    ... Buildings) is available at: http://www1.eere.energy.gov/femp/pdfs/draft_EISA_project_guidance.pdf DATES... at: http://www1.eere.energy.gov/femp/pdfs/draft_EISA_project_guidance.pdf . DOE will accept comments...

  2. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California's Central Valley.

    PubMed

    Matchett, Elliott L; Fleskes, Joseph P

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006-2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the "existing" landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  3. City of Flagstaff Project: Ground Water Resource Evaluation, Remote Sensing Component

    USGS Publications Warehouse

    Chavez, Pat S.; Velasco, Miguel G.; Bowell, Jo-Ann; Sides, Stuart C.; Gonzalez, Rosendo R.; Soltesz, Deborah L.

    1996-01-01

    (that is, vegetation and/or soil type). The spatial information gives the distribution, variation, and topographic relief of the cover types from pixel to pixel. Therefore, the main characteristics that determine a pixel's brightness/reflectance and, consequently, the digital number (DN) assigned to the pixel, are the physical properties of the surface and near surface, the cover type, and the topographic slope. In this application, the ability to detect and map lineaments, especially those related to fractures and faults, is critical. Therefore, the extraction of spatial information from the digital images was of prime interest in this project. The spatial information varies among the different spectral bands available; in particular, a near infrared spectral band is better than a visible band when extracting spatial information in highly vegetated areas. In this study, both visible and near infrared bands were analyzed and used to extract the desired spatial information from the images. The wide swath coverage of remotely sensed satellite digital images makes them ideal for regional analysis and mapping. Since locating and mapping highly fractured and faulted areas is a major requirement for ground water resource evaluation and exploration this aspect of satellite images was considered critical; it allowed us to stand back (actually up about 440 miles), look at, and map the regional structural setting of the area. The main focus of the remote sensing and digital image processing component of this project was to use both remotely sensed digital satellite images and a Digital Elevation Model (DEM) to extract spatial information related to the structural and topographic patterns in the area. The data types used were digital satellite images collected by the United States' Landsat Thematic Mapper (TM) and French Systeme Probatoire d'Observation de laTerre (SPOT) imaging systems, along with a DEM of the Flagstaff region. The USGS Mini Image Processing Sy

  4. PROCESS WATER BUILDING, TRA605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PROCESS WATER BUILDING, TRA-605. FLASH EVAPORATOR, CONDENSER (PROJECT FROM EVAPORATOR), AND STEAM EJECTOR (ALONG REAR WALL). INL NEGATIVE NO. 4377. M.H. Bartz, Photographer, 3/5/1952 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE BOTTLED DRINKING WATER IN BANGKOK, THAILAND.

    PubMed

    Rirattanapong, Praphasri; Rirattanapong, Opas

    2016-09-01

    The use of bottled drinking water may be a source of fluoride and could be a risk factor for fluorosis among infants and young children. The aim of this study was to evaluate the fluoride content of commercially available bottled drinking water in Bangkok, Thailand. Forty-five water samples (15 samples of plain water and 30 samples of mineral water) were purchased from several supermarkets in Bangkok, Thailand. Three bottles of each water sample were purchased, and the fluoride content of each sample was measured twice using a combination fluoride-ion selective electrode. The average reading for each sample was then calculated. Data were analyzed by descriptive statistics. Differences between mineral and plain water samples were determined by Student’s t-test. The mean (±SD) fluoride content for all the water samples was 0.17 (±0.17) mg F/l (range: 0.01-0.89 mg F/l). Six brands (13%) tested stated the fluoride content on the label. The actual fluoride content in each of their brands varied little from the label. Eight samples (18%) had a fluoride content >0.3 mg F/l and two samples (4%) had a fluoride content >0.6 mg F/l. The mean mineral water fluoride concentration was significantly higher than the mean fluoride concentration of plain water (p=0.001). We found commercially sold bottled drinking water in Bangkok, Thailand contained varying concentrations of fluoride; some with high concentrations of fluoride. Health professions need to be aware this varying fluoride content of bottled drinking water and educate the parents of infants and small children about this when prescribing fluoride supplements. Consideration should be made to have fluoride content put on the label of bottled water especially among brands with a content >0.3 mg F/l.

  6. Implementation of channel-routing routines in the Water Erosion Prediction Project (WEPP) model

    Treesearch

    Li Wang; Joan Q. Wu; William J. Elliott; Shuhui Dun; Sergey Lapin; Fritz R. Fiedler; Dennis C. Flanagan

    2010-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based, continuous-simulation, watershed hydrology and erosion model. It is an important tool for water erosion simulation owing to its unique functionality in representing diverse landuse and management conditions. Its applicability is limited to relatively small watersheds since its current version does...

  7. Potential effects of the Hawaii Geothermal Project on ground-water resources on the island of Hawaii

    USGS Publications Warehouse

    Sorey, M.L.; Colvard, E.M.

    1994-01-01

    In 1990, the State of Hawaii proposed the Hawaii Geothermal Project for the development of as much as 500 MW of electric power from the geothermal system in the East Rift Zone of Kilauea Volcano. This report uses data from 31 wells and 8 springs to describe the properties of the ground-water system in and adjacent to the East Rift Zone. Potential effects of this project on ground-water resources are also discussed. Data show differences in ground-water chemistry and heads within the study area that appear to be related to mixing of waters of different origins and ground-water impoundment by volcanic dikes. East of Pahoa, the ground-water system within the rift is highly transmissive and receives abundant recharge from precipitation; therefore, the pumping of freshwater to support geothermal development in that part of the rift zone would have a minimal effect on ground-water levels. To the southwest of Pahoa, dike impoundment reduces the transmissivity of the ground-water system to such an extent that wells might not be capable of supplying sufficient fresh water to support geothermal operations. Contamination of ground-water resources by accidental release of geothermal fluids into shallow aquifers is possible because of corrosive conditions in the geothermal wells, potential well blowouts, and high ground-water velocities in parts of the region. Hydrologic monitoring of water level, temperature, and chemistry in observation wells should continue throughout development of geothermal resources for the Hawaii Geothermal Project for early detection of leakage and migration of geothermal fluids within the groundwater system.

  8. Coast Salish and U.S. Geological Survey 2009 Tribal Journey water quality project

    USGS Publications Warehouse

    Akin, Sarah K.; Grossman, Eric E.

    2010-01-01

    The Salish Sea, contained within the United States and British Columbia, Canada, is the homeland of the Coast Salish Peoples and contains a diverse array of marine resources unique to this area that have sustained Coast Salish cultures and traditions for millennia. In July 2009, the Coast Salish People and U.S. Geological Survey conducted a second water quality study of the Salish Sea to examine spatial and temporal variability of environmental conditions of these surface waters as part of the annual Tribal Journey. Six canoes of approximately 100 towed multi parameter water-quality sondes as the Salish People traveled their ancestral waters during the middle of summer. Sea surface temperature, salinity, pH, dissolved oxygen, and turbidity were measured simultaneously at ten-second intervals, and more than 54,000 data points spanning 1,300 kilometers of the Salish Sea were collected. The project also synthesized Coast Salish ecological knowledge and culture with scientific monitoring to better understand and predict the response of coastal habitats and marine resources. Comparisons with data collected in 2008 reveal significantly higher mean surface-water temperatures in most subbasins in 2009 linked to record air temperatures that affected the Pacific Northwest in July 2009. Through large-scale spatial measurements collected each summer, the project helps to identify patterns in summer water quality, areas of water-quality impairment, and trends occurring through time.

  9. Polder Effects on Sediment-to-Soil Conversion: Water Table, Residual Available Water Capacity, and Salt Stress Interdependence

    PubMed Central

    Radimy, Raymond Tojo; Dudoignon, Patrick; Hillaireau, Jean Michel; Deboute, Elise

    2013-01-01

    The French Atlantic marshlands, reclaimed since the Middle Age, have been successively used for extensive grazing and more recently for cereal cultivation from 1970. The soils have acquired specific properties which have been induced by the successive reclaiming and drainage works and by the response of the clay dominant primary sediments, that is, structure, moisture, and salinity profiles. Based on the whole survey of the Marais Poitevin and Marais de Rochefort and in order to explain the mechanisms of marsh soil behavior, the work focuses on two typical spots: an undrained grassland since at least 1964 and a drained cereal cultivated field. The structure-hydromechanical profiles relationships have been established thanks to the clay matrix shrinkage curve. They are confronted to the hydraulic functioning including the fresh-to-salt water transfers and to the recording of tensiometer profiles. The CE1/5 profiles supply the water geochemical and geophysical data by their better accuracy. Associated to the available water capacity calculation they allow the representation of the parallel evolution of the residual available water capacity profiles and salinity profiles according to the plant growing and rooting from the mesophile systems of grassland to the hygrophile systems of drained fields. PMID:23990758

  10. Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe.

    PubMed

    Zhang, Xiaolin; Tan, Yulian; Li, Ang; Ren, Tingting; Chen, Shiping; Wang, Lixin; Huang, Jianhui

    2015-10-23

    Both water and nitrogen (N) availability have significant effects on ecosystem CO2 exchange (ECE), which includes net ecosystem productivity (NEP), ecosystem respiration (ER) and gross ecosystem photosynthesis (GEP). How water and N availability influence ECE in arid and semiarid grasslands is still uncertain. A manipulative experiment with additions of rainfall, snow and N was conducted to test their effects on ECE in a semiarid temperate steppe of northern China for three consecutive years with contrasting natural precipitation. ECE increased with annual precipitation but approached peak values at different precipitation amount. Water addition, especially summer water addition, had significantly positive effects on ECE in years when the natural precipitation was normal or below normal, but showed trivial effect on GEP when the natural precipitation was above normal as effects on ER and NEP offset one another. Nitrogen addition exerted non-significant or negative effects on ECE when precipitation was low but switched to a positive effect when precipitation was high, indicating N effect triggered by water availability. Our results indicate that both water and N availability control ECE and the effects of future precipitation changes and increasing N deposition will depend on how they can change collaboratively in this semiarid steppe ecosystem.

  11. Assessment of impacts of climate change on surface water availability using coupled SWAT and WEAP models: case of upper Pangani River Basin, Tanzania

    NASA Astrophysics Data System (ADS)

    Kishiwa, Peter; Nobert, Joel; Kongo, Victor; Ndomba, Preksedis

    2018-05-01

    This study was designed to investigate the dynamics of current and future surface water availability for different water users in the upper Pangani River Basin under changing climate. A multi-tier modeling technique was used in the study, by coupling the Soil and Water Assessment Tool (SWAT) and Water Evaluation And Planning (WEAP) models, to simulate streamflows under climate change and assess scenarios of future water availability to different socio-economic activities by year 2060. Six common Global Circulation Models (GCMs) from WCRP-CMIP3 with emissions Scenario A2 were selected. These are HadCM3, HadGEM1, ECHAM5, MIROC3.2MED, GFDLCM2.1 and CSIROMK3. They were downscaled by using LARS-WG to station scale. The SWAT model was calibrated with observed data and utilized the LARS-WG outputs to generate future streamflows before being used as input to WEAP model to assess future water availability to different socio-economic activities. GCMs results show future rainfall increase in upper Pangani River Basin between 16-18 % in 2050s relative to 1980-1999 periods. Temperature is projected to increase by an average of 2 °C in 2050s, relative to baseline period. Long-term mean streamflows is expected to increase by approximately 10 %. However, future peak flows are estimated to be lower than the prevailing average peak flows. Nevertheless, the overall annual water demand in Pangani basin will increase from 1879.73 Mm3 at present (2011) to 3249.69 Mm3 in the future (2060s), resulting to unmet demand of 1673.8 Mm3 (51.5 %). The impact of future shortage will be more severe in irrigation where 71.12 % of its future demand will be unmet. Future water demands of Hydropower and Livestock will be unmet by 27.47 and 1.41 % respectively. However, future domestic water use will have no shortage. This calls for planning of current and future surface water use in the upper Pangani River Basin.

  12. Relevance of Regional Hydro-Climatic Projection Data for Hydrodynamics and Water Quality Modelling of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Goldenberg, R.; Vigouroux, G.; Chen, Y.; Bring, A.; Kalantari, Z.; Prieto, C.; Destouni, G.

    2017-12-01

    The Baltic Sea, located in Northern Europe, is one of the world's largest body of brackish water, enclosed and surrounded by nine different countries. The magnitude of climate change may be particularly large in northern regions, and identifying its impacts on vulnerable inland waters and their runoff and nutrient loading to the Baltic Sea is an important and complex task. Exploration of such hydro-climatic impacts is needed to understand potential future changes in physical, ecological and water quality conditions in the regional coastal and marine waters. In this study, we investigate hydro-climatic changes and impacts on the Baltic Sea by synthesizing multi-model climate projection data from the CORDEX regional downscaling initiative (EURO- and Arctic- CORDEX domains, http://www.cordex.org/). We identify key hydro-climatic variable outputs of these models and assess model performance with regard to their projected temporal and spatial change behavior and impacts on different scales and coastal-marine parts, up to the whole Baltic Sea. Model spreading, robustness and impact implications for the Baltic Sea system are investigated for and through further use in simulations of coastal-marine hydrodynamics and water quality based on these key output variables and their change projections. Climate model robustness in this context is assessed by inter-model spreading analysis and observation data comparisons, while projected change implications are assessed by forcing of linked hydrodynamic and water quality modeling of the Baltic Sea based on relevant hydro-climatic outputs for inland water runoff and waterborne nutrient loading to the Baltic sea, as well as for conditions in the sea itself. This focused synthesis and analysis of hydro-climatically relevant output data of regional climate models facilitates assessment of reliability and uncertainty in projections of driver-impact changes of key importance for Baltic Sea physical, water quality and ecological

  13. Water Resources Research Grant Program project descriptions, fiscal year 1985

    USGS Publications Warehouse

    ,

    1985-01-01

    Information on each of the 24 projects funded by the U.S. Geological Survey in FY 1985 under section 105 of Public Law 93-242 (the Water Resources Research Act of 1984) is presented, including the grant number, organization, the period of performance, and a brief description of the work to be carried out. (Lantz-PTT)

  14. Water transfer and major environmental provisions of the Central Valley Project Improvement Act: A preliminary economic evaluation

    NASA Astrophysics Data System (ADS)

    Loomis, John B.

    1994-06-01

    Increasing block water pricing, water transfer, and wildlife refuge water supply provisions of the Central Valley Project (CVP) Improvement Act are analyzed in terms of likely farmer response and economic efficiency of these provisions. Based on a simplified partial equilibrium analysis, we estimate small, but significant water conservation savings due to pricing reform, the potential for substantial water transfers to non-CVP customers in severe drought years when the water price exceeds 110 per acre foot (1 acre foot equals 1.234 × 103 m3) and positive net benefits for implementation of the wildlife refuge water supply provisions. The high threshold water price is partly a result of requiring farmers to pay full cost on transferred water plus a surcharge of 25 per acre foot if the water is transferred to a non-CVP user. The act also sets an important precedent for water pricing reform, water transfer provisions, and environmental surcharges on water users that may find their way to other Bureau of Reclamation projects.

  15. Extreme Water Levels in Bangladesh: Past Trends, Future Projections and their Impact on Mortality

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, I.; Burkart, K.; Hopson, T. M.; Simmer, C.

    2014-12-01

    Climate change is expected to have an impact on meteorological and therefore hydrological extremes, thereby possibly altering the vulnerability of exposed populations. Our study focuses on Bangladesh, which is particularly vulnerable to changes in extremes due to both the large population at risk, as well as geographical characteristics such as the low-rising slope of the country through which the outflow of the combined catchments of the Ganges, Brahmaputra and Meghna rivers (GBM, ~1.75 million km2) is channeled.Time series of daily discharge and water level data for the past 100 years were analyzed with respect to trends in frequency, magnitude and duration, focusing on rare but particularly high-risk events using extreme-value theory. Mortality data is available for a five-year period (2003-2007), with a distributed lag non-linear model used to examine possible connections between extreme water levels and mortality. Then, using output from the Community Climate System Model CCSM4, projections were made regarding future flooding due to changes in precipitation intensity and frequency, while also accounting for the backwater effect of sea-level rise. For this, the upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow were taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP 2.6, 4.5, 6.0 and 8.5.Results show that while e.g. the mean water level did not significantly rise during the past 100 years, a change in extreme water levels can be detected. In addition, annual minimum water levels have decreased, which is of particular importance as there is a significant connection to an increase in mortality for low water levels. While mortality does not seem to increase significantly due to extreme floods, our results indicate that return levels projected for the future shift progressively, with the effect being strongest for RCP 8

  16. Making YOHKOH SXT Images Available to the Public: The YOHKOH Public Outreach Project

    NASA Astrophysics Data System (ADS)

    Larson, M. B.; McKenzie, D.; Slater, T.; Acton, L.; Alexander, D.; Freeland, S.; Lemen, J.; Metcalf, T.

    1999-05-01

    The NASA funded Yohkoh Public Outreach Project (YPOP) provides public access to high quality Yohkoh SXT data via the World Wide Web. The products of this effort are available to the scientific research community, K-12 schools, and informal education centers including planetaria, museums, and libraries. The project utilizes the intrinsic excitement of the SXT data, and in particular the SXT movies, to develop science learning tools and classroom activities. The WWW site at URL: http://solar.physics.montana.edu/YPOP/ uses a movie theater theme to highlight available Yohkoh movies in a format that is entertaining and inviting to non-scientists. The site features informational tours of the Sun as a star, the solar magnetic field, the internal structure and the Sun's general features. The on-line Solar Classroom has proven very popular, showcasing hand-on activities about image filtering, the solar cycle, satellite orbits, image processing, construction of a model Yohkoh satellite, solar rotation, measuring sunspots and building a portable sundial. The YPOP Guestbook has been helpful in evaluating the usefulness of the site with over 300 detailed comments to date.

  17. Hydrologic modeling for monitoring water availability in Africa and the Middle East

    NASA Astrophysics Data System (ADS)

    McNally, A.; Getirana, A.; Arsenault, K. R.; Peters-Lidard, C. D.; Verdin, J. P.

    2015-12-01

    Drought impacts water resources required by crops and communities, in turn threatening lives and livelihoods. Early warning systems, which rely on inputs from hydro-climate models, are used to help manage risk and provide humanitarian assistance to the right place at the right time. However, translating advancements in hydro-climate science into action is a persistent and time-consuming challenge: scientists and decision-makers need to work together to enhance the salience, credibility, and legitimacy of the hydrological data products being produced. One organization that tackles this challenge is the Famine Early Warning Systems Network (FEWS NET), which has been using evidence-based approaches to address food security since the 1980s.In this presentation, we describe the FEWS NET Land Data Assimilation System (FLDAS), developed by FEWS NET and NASA hydrologic scientists to maximize the use of limited hydro-climatic observations for humanitarian applications. The FLDAS, an instance of the NASA Land Information System (LIS), is comprised of land surface models driven by satellite rainfall inputs already familiar to FEWS NET food security analysts. First, we evaluate the quality of model outputs over parts of the Middle East and Africa using remotely sensed soil moisture and vegetation indices. We then describe derived water availability indices that have been identified by analysts as potentially useful sources of information. Specifically, we demonstrate how the Baseline Water Stress and Drought Severity Index detect recent water availability crisis events in the Tigris-Euphrates Basin and the Gaborone Reservoir, Botswana. Finally we discuss ongoing work to deliver this information to FEWS NET analysts in a timely and user-friendly manner, with the ultimate goal of integrating these water availability metrics into regular decision-making activities.

  18. Comparisons of Simulated Hydrodynamics and Water Quality for Projected Demands in 2046, Pueblo Reservoir, Southeastern Colorado

    USGS Publications Warehouse

    Ortiz, Roderick F.; Galloway, Joel M.; Miller, Lisa D.; Mau, David P.

    2008-01-01

    Pueblo Reservoir is one of southeastern Colorado's most valuable water resources. The reservoir provides irrigation, municipal, and industrial water to various entities throughout the region. The reservoir also provides flood control, recreational activities, sport fishing, and wildlife enhancement to the region. The Bureau of Reclamation is working to meet its goal to issue a Final Environmental Impact Statement (EIS) on the Southern Delivery System project (SDS). SDS is a regional water-delivery project that has been proposed to provide a safe, reliable, and sustainable water supply through the foreseeable future (2046) for Colorado Springs, Fountain, Security, and Pueblo West. Discussions with the Bureau of Reclamation and the U.S. Geological Survey led to a cooperative agreement to simulate the hydrodynamics and water quality of Pueblo Reservoir. This work has been completed and described in a previously published report, U.S. Geological Survey Scientific Investigations Report 2008-5056. Additionally, there was a need to make comparisons of simulated hydrodynamics and water quality for projected demands associated with the various EIS alternatives and plans by Pueblo West to discharge treated water into the reservoir. Plans by Pueblo West are fully independent of the SDS project. This report compares simulated hydrodynamics and water quality for projected demands in Pueblo Reservoir resulting from changes in inflow and water quality entering the reservoir, and from changes to withdrawals from the reservoir as projected for the year 2046. Four of the seven EIS alternatives were selected for scenario simulations. The four U.S. Geological Survey simulation scenarios were the No Action scenario (EIS Alternative 1), the Downstream Diversion scenario (EIS Alternative 2), the Upstream Return-Flow scenario (EIS Alternative 4), and the Upstream Diversion scenario (EIS Alternative 7). Additionally, the results of an Existing Conditions scenario (water years 2000 through

  19. Cell and tissue dynamics of olive endocarp sclerification vary according to water availability.

    PubMed

    Hammami, Sofiene B M; Costagli, Giacomo; Rapoport, Hava F

    2013-12-01

    Endocarp developmental timing in drupe-type fruits, involving tissue expansion and sclerification processes, is increasingly used as marker for biological studies and crop management. In spite of its wide application, however, little is known regarding how these morphogenetic processes unfold or the factors that modify it. This study evaluates endocarp expansion and sclerification of olive (Olea europaea) fruits, used as an example of drupe-type fruits, from trees growing under different water regimes: full irrigated, deficit irrigated (moderate reduction of water availability) and rainfed (severe reduction of water availability). Fruits were sampled weekly until pit hardening, and fruit and endocarp areas were evaluated in histological preparations. An image analysis process was tested and adjusted to quantify sclerified area and distribution within the endocarp. Individual stone cells differentiated independently but distribution and timing indicated the overall coordination of endocarp tissue sclerification. Increase in sclerified area was initially gradual, accelerated abruptly the week prior to the end of endocarp expansion and then continued at an intermediate rate. These results suggest that the end of the expansion period is driven by sclerification and the morphogenetic signals involved act first on sclerification rather than endocarp size. Intensification of sclerification and the end of expansive growth occurred first with lowest water supply. Moderate and severe reductions in water availability proportionately decreased endocarp expansion and prolonged the sclerification, delaying the date of physically perceived hardening but not affecting the final degree of endocarp sclerification. © 2013 Scandinavian Plant Physiology Society.

  20. Quality Assurance Project Plan - Modeling the Impact of Hydraulic Fracturing on Water Resources Based on Water Acquisition Scenarios

    EPA Pesticide Factsheets

    This planning document describes the quality assurance/quality control activities and technical requirements that will be used during the research study. The goal of this project is to evaluate the potential impacts of large volume water withdrawals.

  1. Green Project Reserve Guidance for the Clean Water State Revolving Fund (CWSRF)

    EPA Pesticide Factsheets

    The American Recovery Act of 2009 (ARRA) requires all CWSRF programs to use a portion of their federal grant for projects that address green infrastructure, water and energy efficiency, or other environmentally innovative activities.

  2. EPA Provides State of Vermont $14.7 Million for Water Infrastructure Projects

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency has awarded $14.7 million to the State of Vermont to help finance improvements to water infrastructure projects that are essential to protecting public health and the environment.

  3. 75 FR 77896 - Notice of Availability: Tamiami Trail Modifications: Next Steps Project, Final Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... DEPARTMENT OF THE INTERIOR National Park Service [5284-TT02-371] Notice of Availability: Tamiami..., Florida AGENCY: National Park Service, Interior. ACTION: Notice of Availability. The Notice of Intent (NOI... crown elevation to 12.3 feet, the minimum required based on the design high water of 9.7 feet and the...

  4. 43 CFR 404.56 - If a financial assistance agreement is entered into for a rural water supply project that...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... entered into for a rural water supply project that benefits more than one Indian tribe, is the approval of... Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION RURAL WATER SUPPLY PROGRAM Miscellaneous § 404.56 If a financial assistance agreement is entered into for a rural water supply project that...

  5. The IAHR project CCHE-Climate Change impact on the Hydrological cycle, water management and Engineering: an overview and preliminary results

    NASA Astrophysics Data System (ADS)

    Ranzi, Roberto; Kojiri, T.; Mynett, A.; Barontini, S.; van de Giesen, N.; Kolokytha, E.; Ngo, L. A.; Oreamuno, R.; Renard, B.; Sighomnou, D.; Vizina, A.

    2010-05-01

    IAHR, the International Association for Hydro-Environment Engineering and Research launched a research Project called Climate Change impact on the Hydrological cycle, water management and Engineering (IAHR CCHE Project). It was motivated by the fact that, although it is now well accepted that, in the light of the recent IPCC reports the vast majority of members of the scientific community are convinced that the climate is changing or at least will experience a significant fluctuation already during the current century, it is perceived that some hydrologists, water experts and hydraulic engineers are not yet ready to incorporate climate change scenarios in their designs for such projects as: - flood protection and river training, - dam rehabilitation, - water resources management under water scarcity and changes in the hydrological regimes. The objective of the project is to encourage a close co-operation between the scientific and engineering communities in taking appropriate and timely action in response to the impact of climate change on the hydrological regime and on water resource projects. The project aims at reporting on (a) the current state of knowledge as regards the impact of projected climate change on the hydrological regime in different regions of the world, where these regions are defined not just in geographic terms but also on the basis of their level of economic and water resources development; (b) the extent to which these impacts are recognized and taken into account by national water authorities, engineering organizations and other regulating bodies in setting their standard practices and procedures for the planning, design and operation of water works. These adaptation measures will include both "hard" responses, such as the construction or enlargement of engineering structures, and "soft" responses, such as changes in legislation or the operating rules of existing structures. An overview of the project and preliminary results extracted from of

  6. SEE HYDROPOWER Project, targeted to improve water resource management for a growing renewable energy production

    NASA Astrophysics Data System (ADS)

    Peviani, Maximo; Alterach, Julio; Danelli, Andrea

    2010-05-01

    The three years SEE HYDROPOWER project started on June 2009, financed by the South-East Transnational Cooperation Programme (EU), aims to a sustainable exploitation of water concerning hydropower production in SEE countries, looking up to renewable energy sources development, preserving environmental quality and preventing flood risk. Hydropower is the most important renewable resource for energy production in the SEE countries but creates ecological impacts on a local scale. If on one hand, hydroelectric production has to be maintained and likely increased following the demand trend and RES-e Directive, on the other hand, hydropower utilisation often involves severe hydrological changes, damages the connectivity of water bodies and injures river ecosystems. The project gives a strong contribution to the integration between the Water Frame and the RES-e Directives in the involved countries. The SEE HYDROPOWER project promotes the optimal use of water, as multiple natural resources, in order to face the increasing regional electrical-energy demand. Furthermore, SEE HYDROPOWER defines specific needs and test methodologies & tools, in order to help public bodies to take decisions about planning and management of water and hydropower concessions, considering all multi-purposes uses, taking into account the environmental sustainability of natural resources and flooding risks. Investigations is carried on to define common strategies & methods for preserving river with particular concerns to aquatic ecosystems, considering the required Minimum Environmental Flow, macro-habitat quality, migratory fishes and related environmental issues. Other problem addressed by the Project is the contrast between Public Administration and Environmental associations on one side and the Hydropower producers on the other side, for the exploitation of water bodies. Competition between water users (for drinking, irrigation, industrial processes, power generation, etc.) is becoming a serious

  7. Estimated water use and availability in the East Narragansett Bay study area, Rhode Island, 1995-99

    USGS Publications Warehouse

    Wild, Emily C.

    2007-01-01

    Water availability became a concern in Rhode Island during a drought in 1999, and further investigation was needed to assess the current demands on the hydrologic system from withdrawals during periods of little to no precipitation. The low ground-water levels and streamflows measured in Rhode Island prompted initiation of a series of studies on water use and availability in each major drainage area in Rhode Island for the period 1995–99. The investigation of the East Narragansett Bay area is the last of these studies. The East Narragansett Bay study area (130.9 square miles) includes small sections of the Ten Mile and Westport River Basins in Rhode Island. The area was divided into three regions (islands and contiguous land areas separated by the bay) within each of which the freshwater water use and availability were assessed. During the study period from 1995 through 1999, three major public water suppliers in the study area withdrew 7.601 million gallons per day (Mgal/d) from ground-water and surface-water reservoirs. The estimated water withdrawals by minor public water suppliers during the study period were 0.063 Mgal/d. Total self-supply domestic, industrial, commercial, and agricultural withdrawals from the study area averaged 1.891 Mgal/d. Total water use in the study area averaged 16.48 Mgal/d, of which about 8.750 Mgal/d was imported from other basins. The average return flow to freshwater within the basin was 2.591 Mgal/d, which included effluent from permitted facilities and septic systems. The average return flow to saltwater (Narragansett Bay) outside of the basin was about 45.21 Mgal/d and included discharges by permitted facilities (wastewater-treatment plants and Rhode Island Pollutant Discharge Elimination Systems). The PART program, a computerized hydrographseparation application, was used for the data collected at two selected index stream-gaging stations in the East Narragansett Bay study area to determine water availability on the basis of

  8. Reconnaissance of the geology and ground-water hydrology of the Belle Fourche irrigation project, South Dakota

    USGS Publications Warehouse

    Rosier, Arthur J.

    1952-01-01

    The Belle Fourche irrigation project is in western South Dakota on the plains adjacent to the northeastern edge of the Black Hills. The project is drained by the Belle Fourche River and is characterized generally by broad shallow valleys that lie between hills with gentle slopes. The climate is semiarid. Most of the area is mantled by residual clay, terrace deposits, and alluvium. The terrace deposits contain much water and are the most permeable deposits in the project area. The alluvial deposits of the Belle Fourche River and of the creeks south of the river contain much sand and gravel and are relatively permeable. The alluvium of the creeks north of the river is predominantly clay and is only slightly permeable; it greatly resembles the residual clay of the weathered bedrock formations, which are mostly shale in this area. Although relatively abundant ground water is found in the unconsolidated materials above the bedrock formations, the ground water from the clayey deposits generally contains too great a concentration of objectionable salts to be fit for human or livestock consumption. The ground water in the more coarse materials is of better quality and in some small areas is satisfactory for domestic use. Most of the water for domestic use is hauled from deep artesian wells within the area. The chief source of ground water is seepage from irrigation canals in the terrace and alluvial deposits. When this water moves to areas of lower permeability a correspondingly greater rise of the water table compensates for the lower permeability and results in the waterlogging of many areas. Open drainage ditches have been constructed in all large areas that are affected by high ground-water levels. Except in those areas that are underlain predominantly by clayey materials, these ditches usually have proven to be satisfactory for the control of ground-water levels. However, lining the canals seems to be a more satisfactory method of preventing the seepage that causes

  9. Water Pollution. Project COMPSEP.

    ERIC Educational Resources Information Center

    Lantz, H. B., Jr.

    This is an introductory program on water pollution. Examined are the cause and effect relationships of water pollution, sources of water pollution, and possible alternatives to effect solutions from our water pollution problems. Included is background information on water pollution, a glossary of pollution terminology, a script for a slide script…

  10. 43 CFR 404.58 - Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006 have to comply with the requirements in this rule? 404.58 Section 404.58 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION...

  11. 43 CFR 404.58 - Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006 have to comply with the requirements in this rule? 404.58 Section 404.58 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION...

  12. 43 CFR 404.58 - Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006 have to comply with the requirements in this rule? 404.58 Section 404.58 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION...

  13. 43 CFR 404.58 - Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Do rural water projects authorized before the enactment of the Rural Water Supply Act of 2006 have to comply with the requirements in this rule? 404.58 Section 404.58 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR RECLAMATION...

  14. Recharging California's Groundwater: Crop Suitability and Surface Water Availability for Agricultural Groundwater Banking

    NASA Astrophysics Data System (ADS)

    Dahlke, H. E.; Kocis, T. N.; Brown, A.

    2016-12-01

    Groundwater banking, the intentional recharge of groundwater from surface water for storage and recovery, is an important conjunctive use strategy for water management in California (CA). A largely unexplored approach to groundwater banking, agricultural groundwater banking (ag-GB), utilizes flood flows and agricultural lands (alfalfa/pasture) for recharging groundwater. Understanding soil suitability for ag-GB, crop health and flooding tolerance, leaching of soil nitrate and salts, the availability of surface water for recharge, and the economic costs and benefits of ag-GB is fundamental to assessing the feasibility of local-scale implementation of ag-GB. The study presented here considers both the availability of excess streamflow (e.g., the magnitude, frequency, timing, and duration of winter flood flow) for ag-GB and the risks and benefits associated with using alfalfa fields as spreading grounds for ag-GB. The availability of surface water for winter (Nov to Apr) ag-GB were estimated based on daily streamflow records for 93 stream gauges within the Central Valley, CA. Analysis focused on high-magnitude (>90thpercentile) flows because most lower flows are likely legally allocated in CA. Results based >50 years of data indicate that an average winter/spring (Nov. - Apr.) in the Sacramento River Basin could provide 7 million acre-feet (AF) (8.6 km3) of water for ag-GB from flows above the 90th percentile. These flows originate from few storm events (5-7 events) and occur on average for 25-30 days between November and April. Wintertime on-farm recharge experiments were conducted on a 9-yr old, 15-acre alfalfa field in the Scott Valley, CA, where 135 AF and 107 AF of water were recharged during the winters of 2015 and 2016, respectively. Biomass data collected indicates that pulsed application of 6-10 ft of water on dormant alfalfa results in minimal yield loss (0.5 ton/acre reduction), short-duration saturated conditions in the root-zone, and high recharge

  15. Advanced investigation on the change in the streamflow into the water source of the middle route of China's water diversion project

    NASA Astrophysics Data System (ADS)

    She, Dunxian; Xia, Jun; Shao, Quanxi; Taylor, John A.; Zhang, Liping; Zhang, Xiang; Zhang, Yanjun; Gu, Huanghe

    2017-07-01

    To alleviate water shortage in northern China, the middle route of the South to North Water Diversion Project (MRP) was constructed by the Chinese government. A dramatic reduction in the annual streamflow into Danjiangkou Reservoir (ASDR), the water source of MRP, during 1990 has raised some concerns on the MRP's operation. This paper employed an advanced segmented regression model with more recent data to have a clear picture and understand the changing pattern of the ASDR. Our study first revealed a zigzag changing pattern (decreasing-increasing-decreasing-increasing) of ASDR during 1960-2013, which was supported by statistical criteria compared with a monotonic or single abrupt change. Particularly, the significantly decreasing trend from 1990s was reversed after 2000, and such change may relieve the concern about the water availability in the future. Sensitivity analysis showed that changes in streamflow were largely influenced by the combined effects of precipitation (P) and potential evapotranspiration (ET0) and were more sensitive to P than ET0. As ET0 is estimated from other primary variables, further analysis was conducted to understand the sensitivities of ET0 to its primary driving variables (wind speed, actual vapor pressure, temperature, and sunshine duration) and indicated that ET0 is mostly sensitive to actual vapor pressure during 1960-2013. The findings will assist the MRP's operation and management. Moreover, the results in this study also indicate that an adaptive water diversion plan, rather than the current plan with a constant annual amount of diversion water, might be a better option in the MRP's operation.

  16. Recalibration of a ground-water flow model of the Mississippi River Valley alluvial aquifer of northeastern Arkansas, 1918-1998, with simulations of water levels caused by projected ground-water withdrawals through 2049

    USGS Publications Warehouse

    Reed, Thomas B.

    2003-01-01

    A digital model of the Mississippi River Valley alluvial aquifer in eastern Arkansas was used to simulate ground-water flow for the period from 1918 to 2049. The model results were used to evaluate effects on water levels caused by demand for ground water from the alluvial aquifer, which has increased steadily for the last 40 years. The model results showed that water currently (1998) is being withdrawn from the aquifer at rates greater than what can be sustained for the long term. The saturated thickness of the alluvial aquifer has been reduced in some areas resulting in dry wells, degraded water quality, decreased water availability, increased pumping costs, and lower well yields. The model simulated the aquifer from a line just north of the Arkansas-Missouri border to south of the Arkansas River and on the east from the Mississippi River westward to the less permeable geologic units of Paleozoic age. The model consists of 2 layers, a grid of 184 rows by 156 columns, and comprises 14,118 active cells each measuring 1 mile on a side. It simulates time periods from 1918 to 1998 along with further time periods to 2049 testing different pumping scenarios. Model flux boundary conditions were specified for rivers, general head boundaries along parts of the western side of the model and parts of Crowleys Ridge, and a specified head boundary across the aquifer further north in Missouri. Model calibration was conducted for observed water levels for the years 1972, 1982, 1992, and 1998. The average absolute residual was 4.69 feet and the root-mean square error was 6.04 feet for the hydraulic head observations for 1998. Hydraulic-conductivity values obtained during the calibration process were 230 feet per day for the upper layer and ranged from 230 to 730 feet per day for the lower layer with the maximum mean for the combined aquifer of 480 feet per day. Specific yield values were 0.30 throughout the model and specific storage values were 0.000001 inverse-feet throughout

  17. Ground-water resources of the Paintrock irrigation project, Wyoming, with a section on the quality of the water

    USGS Publications Warehouse

    Swenson, Frank Albert; Bach, W. Kenneth; Swenson, Herbert A.

    1951-01-01

    The ground-water conditions of the area covered by the Paintrock irrigation project, in north-central Wyoming, were investigated during the summer of 1947. The purpose of the study was to obtain a general evaluation of ground-water recharge, discharge, and storage in the area now irrigated and in the adjacent areas where additional lands are to be irrigated.Much of the area covered by this report consists of flat to gently sloping stream terraces and alluvial-bottoms along Nowood, Paintrock, and Medicine Lodge Creeks. The stream-terrace materials consist of fluviatile sand, clay, and gravel. The alluvium is very fine grained and in general has low permeability. The materials underlying the stream terraces and the bottomlands became progressively finer grained and less permeable downstream.The bedrock formations underlying the area studied range from the Madison limestone of Mississippian age to the Fort Union formation of Paleocene age. Beds have been folded into several prominent structures which trend northwest-southeast across the area. Several of the formations exposed in the area serve as aquifers and yield water to domestic and stock wells. The most important bedrock aquifers are the Fort Union, Lance, Meeteetee, Mesaverde, Frontier, Cloverly and Morrison formations , the Tensleep sandstone, the Amsden formation, and the Madison limestone. More than 7,000 feet of strata are exposed in the area, the older beds being exposed on the western flank of the Big Horn Range near the eastern end of the area.The quality of the water in the project ranges within wide limits. The concentration of dissolved solids in seven samples of ground water ranges from 279 parts per million for a water in the Tensleep sandstone to 4,590 parts per million for a water in the Morrison formation. The hardness as calcium carbonate (CaCO3) ranges from 13 to 1,680 parts per million. Limited data on the quality of water in Nowood and Paintrock Creeks indicate that these waters are suitable

  18. Relevance of hydro-climatic change projection and monitoring for assessment of water cycle changes in the Arctic.

    PubMed

    Bring, Arvid; Destouni, Georgia

    2011-06-01

    Rapid changes to the Arctic hydrological cycle challenge both our process understanding and our ability to find appropriate adaptation strategies. We have investigated the relevance and accuracy development of climate change projections for assessment of water cycle changes in major Arctic drainage basins. Results show relatively good agreement of climate model projections with observed temperature changes, but high model inaccuracy relative to available observation data for precipitation changes. Direct observations further show systematically larger (smaller) runoff than precipitation increases (decreases). This result is partly attributable to uncertainties and systematic bias in precipitation observations, but still indicates that some of the observed increase in Arctic river runoff is due to water storage changes, for example melting permafrost and/or groundwater storage changes, within the drainage basins. Such causes of runoff change affect sea level, in addition to ocean salinity, and inland water resources, ecosystems, and infrastructure. Process-based hydrological modeling and observations, which can resolve changes in evapotranspiration, and groundwater and permafrost storage at and below river basin scales, are needed in order to accurately interpret and translate climate-driven precipitation changes to changes in freshwater cycling and runoff. In contrast to this need, our results show that the density of Arctic runoff monitoring has become increasingly biased and less relevant by decreasing most and being lowest in river basins with the largest expected climatic changes.

  19. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities

    USGS Publications Warehouse

    Williamson, Tanja N.; Lant, Jeremiah G.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  20. 75 FR 28602 - Bully Camp Gas Storage Project; Notice of Availability of the Environmental Assessment for the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP10-40-000] Bully Camp Gas Storage Project; Notice of Availability of the Environmental Assessment for the Proposed Bully Camp Gas...) has prepared an environmental assessment (EA) for the Bully Camp Gas Storage Project proposed by BCR...

  1. 75 FR 62853 - Notice of Availability of the Record of Decision for the Imperial Valley Solar Project and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ..., LVRAB109AA01] Notice of Availability of the Record of Decision for the Imperial Valley Solar Project and...) application CACA-47740 for the proposed SES Solar Two Project. After merging with Tessera Solar, the applicant changed its name to Imperial Valley Solar, LLC, and changed the name of the project to the Imperial Valley...

  2. The Water Reuse project: Sustainable waste water re-use technologies for irrigated land in NIS and southern European states; project overview and results.

    NASA Astrophysics Data System (ADS)

    van den Elsen, E.; Doerr, S.; Ritsema, C. J.

    2009-04-01

    In irrigated areas in the New Independent States (NIS) and southern European States, inefficient use of conventional water resources occurs through incomplete wetting of soils, which causes accelerated runoff and preferential flow, and also through excessive evaporation associated with unhindered capillary rise. Furthermore, a largely unexploited potential exists to save conventional irrigation water by supplementation with organic-rich waste water, which, if used appropriately, can also lead to improvements to soil physical properties and soil nutrient and organic matter content. This project aims to (a) reduce irrigation water losses by developing, evaluating and promoting techniques that improve the wetting properties of soils, and (b) investigate the use of organic-rich waste water as a non-conventional water resource in irrigation and, in addition, as a tool in improving soil physical properties and soil nutrient and organic matter content. Key activities include (i) identifying, for the NIS and southern European partner countries, the soil type/land use combinations, for which the above approaches are expected to be most effective and their implementation most feasible, using physical and socio-economic research methods, and (ii) examining the water saving potential, physical, biological and chemical effects on soils of the above approaches, and also their impact on performance. Expected outputs include techniques for sustainable improvements in soil wettability management as a novel approach in water saving, detailed evaluation of the prospects and effects of using supplemental organic-rich waste waters in irrigation, an advanced process-based numerical hydrological model, fully adapted to quantify and upscale resulting water savings and nutrient and potential contaminant fluxes for irrigated areas, and identification of suitable areas in the NIS and Mediterranean (in soil, land use, legislative and socio-economic terms) for implementation.

  3. Water-quality data for selected North Carolina streams and reservoirs in the Triangle Area Water Supply Monitoring Project, 1988-92

    USGS Publications Warehouse

    Garrett, Ronald G.; Taylor, John E.; Middleton, Terry L.

    1994-01-01

    The Triangle Area Water Supply Monitoring Project was developed to assess regional water-quality characteristics in drinking-water supplies and to provide a basis for determining trends in water quality for the Research Triangle area, which is one of the fastest growing areas in North Carolina. The study area is in the upper Neuse River Basin and the upper Cape Fear River Basin in the north-central Piedmont Province of the State. Hydrologic data were collected at 21 reservoir sites and 30 stream sites from October 1988 through September 1992 to define water-quality characteristics. The data collected at these sites include streamflow data and approximately 275 physical properties and chemical characteristics of surface water.

  4. Water use and availability in the West Narragansett Bay area, coastal Rhode Island, 1995-99

    USGS Publications Warehouse

    Nimiroski, Mark T.; Wild, Emily C.

    2006-01-01

    During the 1999 drought in Rhode Island, belowaverage precipitation caused a drop in ground-water levels and streamflow was below long-term averages. The low water levels prompted the U. S. Geological Survey and the Rhode Island Water Resources Board to conduct a series of cooperative water-use studies. The purpose of these studies is to collect and analyze water-use and water-availability data in each drainage area in the State of Rhode Island. The West Narragansett Bay study area, which covers 118 square miles in part or all of 14 towns in coastal Rhode Island, is one of nine areas investigated as part of this effort. The study area includes the western part of Narragansett Bay and Conanicut Island, which is the town of Jamestown. The area was divided into six subbasins for the assessment of water-use data. In the calculation of hydrologic budget and water availability, the Hunt, Annaquatucket, and Pettaquamscutt River Basins were combined into one subbasin because they are hydraulically connected. Eleven major water suppliers served customers in the study area, and they supplied an average of 19.301 million gallons per day during 1995–99. The withdrawals from the only minor supplier, which was in the town of East Greenwich in the Hunt River Basin, averaged 0.002 million gallons per day. The remaining withdrawals were estimated as 1.186 million gallons per day from self-supplied domestic, commercial, industrial, and agricultural users. Return flows from self-disposed water (individual sewage-disposal systems) and permitted discharges accounted for 5.623 million gallons per day. Most publicly disposed water (13.711 million gallons per day) was collected by the Rhode Island Economic Development Corporation, and by the East Greenwich, Fields Point, Jamestown, Narragansett, and Scarborough wastewater-treatment facilities. This wastewater was disposed in Narragansett Bay outside of the study area. The PART program, a computerized hydrograph-separation application

  5. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species

    Treesearch

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Maria E. Arce

    2009-01-01

    We studied the water economy of nine woody species differing in rooting depth in a Patagonian shrub steppe from southern Argentina to understand how soil water availability and rooting depth determine their hydraulic architecture. Soil water content and potentials, leaf water potentials (Leaf) hydraulic conductivity, wood density (Pw), rooting depth, and specific leaf...

  6. Water availability and use pilot; methods development for a regional assessment of groundwater availability, southwest alluvial basins, Arizona

    USGS Publications Warehouse

    Tillman, Fred D.; Cordova, Jeffrey T.; Leake, Stanley A.; Thomas, Blakemore E.; Callegary, James B.

    2011-01-01

    Executive Summary: Arizona is located in an arid to semiarid region in the southwestern United States and is one of the fastest growing States in the country. Population in Arizona surpassed 6.5 million people in 2008, an increase of 140 percent since 1980, when the last regional U.S. Geological Survey (USGS) groundwater study was done as part of the Regional Aquifer System Analysis (RASA) program. The alluvial basins of Arizona are part of the Basin and Range Physiographic Province and cover more than 73,000 mi2, 65 percent of the State's total land area. More than 85 percent of the State's population resides within this area, accounting for more than 95 percent of the State's groundwater use. Groundwater supplies in the area are expected to undergo further stress as an increasing population vies with the State's important agricultural sector for access to these limited resources. To provide updated information to stakeholders addressing issues surrounding limited groundwater supplies and projected increases in groundwater use, the USGS Groundwater Resources Program instituted the Southwest Alluvial Basins Groundwater Availability and Use Pilot Program to evaluate the availability of groundwater resources in the alluvial basins of Arizona. The principal products of this evaluation of groundwater resources are updated groundwater budget information for the study area and a proof-of-concept groundwater-flow model incorporating several interconnected groundwater basins. This effort builds on previous research on the assessment and mapping of groundwater conditions in the alluvial basins of Arizona, also supported by the USGS Groundwater Resources Program. Regional Groundwater Budget: The Southwest Alluvial Basins-Regional Aquifer System Analysis (SWAB-RASA) study produced semiquantitative groundwater budgets for each of the alluvial basins in the SWAB-RASA study area. The pilot program documented in this report developed new quantitative estimates of groundwater

  7. 78 FR 57173 - Notice of Availability of the Record of Decision for the Mohave County Wind Farm Project, Mohave...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-17

    ... generated by the Project. The approved Project includes up to 243 wind turbine generators and associated..., operation, maintenance, and decommissioning of the Project to BP Wind Energy; and for the BLM to issue a ROW...; AZA32315AA] Notice of Availability of the Record of Decision for the Mohave County Wind Farm Project, Mohave...

  8. Use and availability of continuous streamflow records in Wyoming

    USGS Publications Warehouse

    Schuetz, J.R.

    1986-01-01

    This report documents a survey that identifies local, State, and Federal uses of data from 139 continuous-record, surface-water stations, presently (1984) operated by the Wyoming District of the U. S. Geological Survey; identifies sources of funding pertaining to collections of streamflow data; and presents frequency of data availability. Uses of data from the 139 stations are categorized into seven classes: Regional Hydrology, Hydrology Systems, Legal Obligations, Planning and Design, Project Operation, Hydrologic Forecasts, and Water Quality Monitoring. Sufficient use of surface water data collected from the stations justifies the continued operation of all stations. (USGS)

  9. Town of Chino Valley Municipal Water System Improvement Project FONSI and EA

    EPA Pesticide Factsheets

    EPA Region 9 has prepared an Environmental Assessment (EA) describing the potential environmental impacts associated with, and the alternatives to, the proposed Water System Improvement Project in the town of China Valley, Arizona. This Finding of No Signi

  10. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California’s Central Valley

    PubMed Central

    Fleskes, Joseph P.

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  11. Projected impacts of climate, urbanization, water management, and wetland restoration on waterbird habitat in California’s Central Valley

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph

    2017-01-01

    The Central Valley of California is one of the most important regions for wintering waterbirds in North America despite extensive anthropogenic landscape modification and decline of historical wetlands there. Like many other mediterranean-climate ecosystems across the globe, the Central Valley has been subject to a burgeoning human population and expansion and intensification of agricultural and urban development that have impacted wildlife habitats. Future effects of urban development, changes in water supply management, and precipitation and air temperature related to global climate change on area of waterbird habitat in the Central Valley are uncertain, yet potentially substantial. Therefore, we modeled area of waterbird habitats for 17 climate, urbanization, water supply management, and wetland restoration scenarios for years 2006–2099 using a water resources and scenario modeling framework. Planned wetland restoration largely compensated for adverse effects of climate, urbanization, and water supply management changes on habitat areas through 2065, but fell short thereafter for all except one scenario. Projected habitat reductions due to climate models were more frequent and greater than under the recent historical climate and their magnitude increased through time. After 2065, area of waterbird habitat in all scenarios that included severe warmer, drier climate was projected to be >15% less than in the “existing” landscape most years. The greatest reduction in waterbird habitat occurred in scenarios that combined warmer, drier climate and plausible water supply management options affecting priority and delivery of water available for waterbird habitats. This scenario modeling addresses the complexity and uncertainties in the Central Valley landscape, use and management of related water supplies, and climate to inform waterbird habitat conservation and other resource management planning. Results indicate that increased wetland restoration and additional

  12. The Great Lakes Water Balance: Data availability and annotated bibliography of selected references

    USGS Publications Warehouse

    Neff, Brian P.; Killian, Jason R.

    2003-01-01

    Water balance calculations for the Great Lakes have been made for several decades and are a key component of Great Lakes water management. Despite the importance of the water balance, little has been done to inventory and describe the data available for use in water balance calculations. This report provides a catalog and brief description of major datasets that are used to calculate the Great Lakes water balance. Several additional datasets are identified that could be used to calculate parts of the water balance but currently are not being used. Individual offices and web pages that are useful for attaining these datasets are included. Four specific data gaps are also identified. An annotated bibliography of important publications dealing with the Great Lakes water balance is included. The findings of this investigation permit resource managers and scientists to access data more easily, assess shortcomings of current datasets, and identify which data are not currently being utilized in water balance calculations.

  13. Water-quality and lake-stage data for Wisconsin Lakes, water year 2003

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Olson, D.L.; Robertson, Dale M.

    2004-01-01

    Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin District's home page is at http://wi.water.usgs.gov/. Information on the Wisconsin District's Lakes Program is found at wi.water.usgs.gov/lake/index.html and wi.water.usgs.gov/projects/ index.html.

  14. Water on Mars: Volatile history and resource availability

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1991-01-01

    The existence of water on Mars is undisputed today. Measurements of atmospheric water vapor have shown that the abundance varies with location and season in a systematic way which depends on processes of exchange with the polar caps, regolith, and atmosphere. Channels, which give the appearance of having been carved by water or of having had water involved in their formation, appear in various locations on the surface; some were formed by catastrophic outflow of water from beneath the surface, while others form valley networks which give the appearance of having formed over long periods of time primarily early in the planet's history. The north polar residual cap consists of water ice, possibly containing an amount of water equivalent to a global layer several tens of meters thick. Finally, water is observed within the regolith, as adsorbed water or as water of hydration.

  15. Urban growth, climate change, and freshwater availability

    PubMed Central

    McDonald, Robert I.; Green, Pamela; Balk, Deborah; Fekete, Balazs M.; Revenga, Carmen; Todd, Megan; Montgomery, Mark

    2011-01-01

    Nearly 3 billion additional urban dwellers are forecasted by 2050, an unprecedented wave of urban growth. While cities struggle to provide water to these new residents, they will also face equally unprecedented hydrologic changes due to global climate change. Here we use a detailed hydrologic model, demographic projections, and climate change scenarios to estimate per-capita water availability for major cities in the developing world, where urban growth is the fastest. We estimate the amount of water physically available near cities and do not account for problems with adequate water delivery or quality. Modeled results show that currently 150 million people live in cities with perennial water shortage, defined as having less than 100 L per person per day of sustainable surface and groundwater flow within their urban extent. By 2050, demographic growth will increase this figure to almost 1 billion people. Climate change will cause water shortage for an additional 100 million urbanites. Freshwater ecosystems in river basins with large populations of urbanites with insufficient water will likely experience flows insufficient to maintain ecological process. Freshwater fish populations will likely be impacted, an issue of special importance in regions such as India's Western Ghats, where there is both rapid urbanization and high levels of fish endemism. Cities in certain regions will struggle to find enough water for the needs of their residents and will need significant investment if they are to secure adequate water supplies and safeguard functioning freshwater ecosystems for future generations. PMID:21444797

  16. Large-scale water projects in the developing world: Revisiting the past and looking to the future

    NASA Astrophysics Data System (ADS)

    Sivakumar, Bellie; Chen, Ji

    2014-05-01

    During the past half a century or so, the developing world has been witnessing a significant increase in freshwater demands due to a combination of factors, including population growth, increased food demand, improved living standards, and water quality degradation. Since there exists significant variability in rainfall and river flow in both space and time, large-scale storage and distribution of water has become a key means to meet these increasing demands. In this regard, large dams and water transfer schemes (including river-linking schemes and virtual water trades) have been playing a key role. While the benefits of such large-scale projects in supplying water for domestic, irrigation, industrial, hydropower, recreational, and other uses both in the countries of their development and in other countries are undeniable, concerns on their negative impacts, such as high initial costs and damages to our ecosystems (e.g. river environment and species) and socio-economic fabric (e.g. relocation and socio-economic changes of affected people) have also been increasing in recent years. These have led to serious debates on the role of large-scale water projects in the developing world and on their future, but the often one-sided nature of such debates have inevitably failed to yield fruitful outcomes thus far. The present study aims to offer a far more balanced perspective on this issue. First, it recognizes and emphasizes the need for still additional large-scale water structures in the developing world in the future, due to the continuing increase in water demands, inefficiency in water use (especially in the agricultural sector), and absence of equivalent and reliable alternatives. Next, it reviews a few important success and failure stories of large-scale water projects in the developing world (and in the developed world), in an effort to arrive at a balanced view on the future role of such projects. Then, it discusses some major challenges in future water planning

  17. Feasibility of ground-water features of the alternate plan for the Mountain Home project, Idaho

    USGS Publications Warehouse

    Nace, Raymond L.; West, S.W.; Mowder, R.W.

    1957-01-01

    miles of surface drains. Successful operation of the alternate plan would depend, not only on providing adequate water to replace that exported from the Boise Valley, but also on satisfactory drainage of waterlogged land. That is, water management in the valley would have to couple economical pumping of irrigation water with effective drainage by pumping. The average of recorded yearly diversions from the Boise River is 1,280,000 acre-feet of live water (natural flow in a stream) and 201,000 acre-feet cf recycled water. Gross diversions of record in some recent single years of ample water supply reportedly exceeded 1,800,000 acre-feet. Ground water, on the other hand is used on a relatively small scale, yearly pumpage being only about 150,000 acre-feet. The feasibility of exporting 600,000 acre-feet of Boise River water would depend on the availability of replacement water in the Boise Valley and on the availability of the required surface water in the South Fork of the Boise River at the proposed point of diversion to the Mountain Home project. In 6 of the 20 years, 1931-50, recorded diversions of live and return water from th2 Boise River exceeded the live flow at the Boise Diversion Dam by 3,865 to 107,640 acre-feet. Moreover, although the average residual discharge in the river post Notus was 701,000 acre-feet, in most years some river reaches above Notus were dry at times, owing to diversion of all water from the river. Much of the flow past Notus is surface waste and effluent ground water, which averages about 422,000 acre-feet a year. The total of potential yearly ground water recharge in the Boise Valley, derived from precipitation, incoming underflow, and infiltration of irrigation water, is about 554,000 acre-feet in the feasible exchange-pumping area and areas tributary thereto. Identified and estimated consumptive depletion of ground water in the valley is about 230,000 acre-feet a year, but not all that depletion is within the exchange are

  18. Fusion of multisource and multiscale remote sensing data for water availability assessment in a metropolitan region

    NASA Astrophysics Data System (ADS)

    Chang, N. B.; Yang, Y. J.; Daranpob, A.

    2009-09-01

    Recent extreme hydroclimatic events in the United States alone include, but are not limited to, the droughts in Maryland and the Chesapeake Bay area in 2001 through September 2002; Lake Mead in Las Vegas in 2000 through 2004; the Peace River and Lake Okeechobee in South Florida in 2006; and Lake Lanier in Atlanta, Georgia in 2007 that affected the water resources distribution in three states - Alabama, Florida and Georgia. This paper provides evidence from previous work and elaborates on the future perspectives that will collectively employ remote sensing and in-situ observations to support the implementation of the water availability assessment in a metropolitan region. Within the hydrological cycle, precipitation, soil moisture, and evapotranspiration can be monitored by using WSR-88D/NEXRAD data, RADARSAT-1 images, and GEOS images collectively to address the spatiotemporal variations of quantitative availability of waters whereas the MODIS images may be used to track down the qualitative availability of waters in terms of turbidity, Chlorophyll-a and other constitutes of concern. Tampa Bay in Florida was selected as a study site in this analysis, where the water supply infrastructure covers groundwater, desalination plant, and surface water at the same time. Research findings show that through the proper fusion of multi-source and multi-scale remote sensing data for water availability assessment in metropolitan region, a new insight of water infrastructure assessment can be gained to support sustainable planning region wide.

  19. Do changes in climate and land use pose a risk to the future water availability of Mediterranean Lakes?

    NASA Astrophysics Data System (ADS)

    Bucak, T.; Trolle, D.; Andersen, H. E.; Thodsen, H.; Erdoğan, Ş.; Levi, E. E.; Filiz, N.; Jeppesen, E.; Beklioğlu, M.

    2016-12-01

    Inter- and intra-annual water level fluctuations and change in water flow regime are intrinsic characteristics of Mediterranean lakes. However, considering the climate change projections for the water-limited Mediterranean region where potential evapotranspiration exceeds precipitation and with increased air temperatures and decreased precipitation, more dramatic water level declines in lakes and severe water scarcity problems are expected to occur in the future. Our study lake, Lake Beyşehir, the largest freshwater lake in the Mediterranean basin, is - like other Mediterranean lakes - under pressure due to water abstraction for irrigated crop farming and climatic changes, and integrated water level management is therefore required. We used an integrated modeling approach to predict the future lake water level of Lake Beyşehir in response to the future changes in both climate and, potentially, land use by linking the catchment model Soil and Water Assessment Tool (SWAT) with a Support Vector Machine Regression model (ɛ-SVR). We found that climate change projections caused enhanced potential evapotranspiration and reduced total runoff, whereas the effects of various land use scenarios within the catchment were comparatively minor. In all climate scenarios applied in the ɛ-SVR model, changes in hydrological processes caused a water level reduction, predicting that the lake may dry out already in the 2040s with the current outflow regulation considering the most pessimistic scenario. Based on model runs with optimum outflow management, a 9-60% reduction in outflow withdrawal is needed to prevent the lake from drying out by the end of this century. Our results indicate that shallow Mediterranean lakes may face a severe risk of drying out and loss of ecosystem value in near future if the current intense water abstraction is maintained. Therefore, we conclude that outflow management in water-limited regions in a warmer and drier future and sustainable use of water

  20. 77 FR 74882 - STP Nuclear Operating Company, South Texas Project; Notice of Availability of Draft Supplement 48...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 50-498 and 50-499; NRC-2010-0375] STP Nuclear Operating Company, South Texas Project; Notice of Availability of Draft Supplement 48 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants and Public Meetings for the License Renewal of South Texas Project Notice is hereby...