Sample records for water availability tool

  1. Open Source Tools for Assessment of Global Water Availability, Demands, and Scarcity

    NASA Astrophysics Data System (ADS)

    Li, X.; Vernon, C. R.; Hejazi, M. I.; Link, R. P.; Liu, Y.; Feng, L.; Huang, Z.; Liu, L.

    2017-12-01

    Water availability and water demands are essential factors for estimating water scarcity conditions. To reproduce historical observations and to quantify future changes in water availability and water demand, two open source tools have been developed by the JGCRI (Joint Global Change Research Institute): Xanthos and GCAM-STWD. Xanthos is a gridded global hydrologic model, designed to quantify and analyze water availability in 235 river basins. Xanthos uses a runoff generation and a river routing modules to simulate both historical and future estimates of total runoff and streamflows on a monthly time step at a spatial resolution of 0.5 degrees. GCAM-STWD is a spatiotemporal water disaggregation model used with the Global Change Assessment Model (GCAM) to spatially downscale global water demands for six major enduse sectors (irrigation, domestic, electricity generation, mining, and manufacturing) from the region scale to the scale of 0.5 degrees. GCAM-STWD then temporally downscales the gridded annual global water demands to monthly results. These two tools, written in Python, can be integrated to assess global, regional or basin-scale water scarcity or water stress. Both of the tools are extensible to ensure flexibility and promote contribution from researchers that utilize GCAM and study global water use and supply.

  2. WetDATA Hub: Democratizing Access to Water Data to Accelerate Innovation through Data Visualization, Predictive Analytics and Artificial Intelligence Applications

    NASA Astrophysics Data System (ADS)

    Sarni, W.

    2017-12-01

    Water scarcity and poor quality impacts economic development, business growth, and social well-being. Water has become, in our generation, the foremost critical local, regional, and global issue of our time. Despite these needs, there is no water hub or water technology accelerator solely dedicated to water data and tools. There is a need by the public and private sectors for vastly improved data management and visualization tools. This is the WetDATA opportunity - to develop a water data tech hub dedicated to water data acquisition, analytics, and visualization tools for informed policy and business decisions. WetDATA's tools will help incubate disruptive water data technologies and accelerate adoption of current water data solutions. WetDATA is a Colorado-based (501c3), global hub for water data analytics and technology innovation. WetDATA's vision is to be a global leader in water information, data technology innovation and collaborate with other US and global water technology hubs. ROADMAP * Portal (www.wetdata.org) to provide stakeholders with tools/resources to understand related water risks. * The initial activities will provide education, awareness and tools to stakeholders to support the implementation of the Colorado State Water Plan. * Leverage the Western States Water Council Water Data Exchange database. * Development of visualization, predictive analytics and AI tools to engage with stakeholders and provide actionable data and information. TOOLS Education: Provide information on water issues and risks at the local, state, national and global scale. Visualizations: Development of data analytics and visualization tools based upon the 2030 Water Resources Group methodology to support the implementation of the Colorado State Water Plan. Predictive Analytics: Accessing publically available water databases and using machine learning to develop water availability forecasting tools, and time lapse images to support city / urban planning.

  3. Evaluating the State of Water Management in the Rio Grande/Bravo Basin

    NASA Astrophysics Data System (ADS)

    Ortiz Partida, Jose Pablo; Sandoval-Solis, Samuel; Diaz Gomez, Romina

    2017-04-01

    Water resource modeling tools have been developed for many different regions and sub-basins of the Rio Grande/Bravo (RGB). Each of these tools has specific objectives, whether it is to explore drought mitigation alternatives, conflict resolution, climate change evaluation, tradeoff and economic synergies, water allocation, reservoir operations, or collaborative planning. However, there has not been an effort to integrate different available tools, or to link models developed for specific reaches into a more holistic watershed decision-support tool. This project outlines promising next steps to meet long-term goals of improved decision support tools and modeling. We identify, describe, and synthesize water resources management practices in the RGB basin and available water resources models and decision support tools that represent the RGB and the distribution of water for human and environmental uses. The extent body of water resources modeling is examined from a perspective of environmental water needs and water resources management and thereby allows subsequent prioritization of future research and monitoring needs for the development of river system modeling tools. This work communicates the state of the RGB science to diverse stakeholders, researchers, and decision-makers. The products of this project represent a planning tool to support an integrated water resources management framework to maximize economic and social welfare without compromising vital ecosystems.

  4. User's Guide to the Water-Analysis Screening Tool (WAST): A Tool for Assessing Available Water Resources in Relation to Aquatic-Resource Uses

    USGS Publications Warehouse

    Stuckey, Marla H.; Kiesler, James L.

    2008-01-01

    A water-analysis screening tool (WAST) was developed by the U.S. Geological Survey, in partnership with the Pennsylvania Department of Environmental Protection, to provide an initial screening of areas in the state where potential problems may exist related to the availability of water resources to meet current and future water-use demands. The tool compares water-use information to an initial screening criteria of the 7-day, 10-year low-flow statistic (7Q10) resulting in a screening indicator for influences of net withdrawals (withdrawals minus discharges) on aquatic-resource uses. This report is intended to serve as a guide for using the screening tool. The WAST can display general basin characteristics, water-use information, and screening-indicator information for over 10,000 watersheds in the state. The tool includes 12 primary functions that allow the user to display watershed information, edit water-use and water-supply information, observe effects downstream from edited water-use information, reset edited values to baseline, load new water-use information, save and retrieve scenarios, and save output as a Microsoft Excel spreadsheet.

  5. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Treesearch

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  6. Water Quality Analysis Tool (WQAT) | Science Inventory | US ...

    EPA Pesticide Factsheets

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-processed and geographically gridded remotely sensed images are available. A graphical user interface (GUI), was created to enable the user to select and display imagery from a variety of remote sensing data sources. The user can select a date (or date range) and location to extract pixels from the remotely sensed imagery. The GUI is used to obtain all available pixel values (i.e. pixel from all available bands of all available satellites) for a given location on a given date and time. The resultant data set can be analyzed or saved to a file for future use. The WQAT software provides users with a way to establish algorithms between remote sensing reflectance (Rrs) and any available in situ parameters, as well as statistical and regression analysis. The combined data sets can be used to improve water quality research and studies. Satellites provide spatially synoptic data at high frequency (daily to weekly). These characteristics are desirable for supplementing existing water quality observations and for providing information for large aquatic ecosystems that are historically under-sampled by field programs. Thus, the Water Quality Assessment Tool (WQAT) software tool was developed to suppo

  7. 75 FR 27552 - Guidance for Federal Land Management in the Chesapeake Bay Watershed

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-17

    ... effective tools and practices available to reduce water pollution from a variety of nonpoint sources... describe ``proven cost-effective tools and practices that reduce water pollution'' that are appropriate to...: Katie Flahive, USEPA, Office of Water, Office of Wetlands, Oceans and Watersheds, 1200 Pennsylvania Ave...

  8. A group decision-making tool for the application of membrane technologies in different water reuse scenarios.

    PubMed

    Sadr, S M K; Saroj, D P; Kouchaki, S; Ilemobade, A A; Ouki, S K

    2015-06-01

    A global challenge of increasing concern is diminishing fresh water resources. A growing practice in many communities to supplement diminishing fresh water availability has been the reuse of water. Novel methods of treating polluted waters, such as membrane assisted technologies, have recently been developed and successfully implemented in many places. Given the diversity of membrane assisted technologies available, the current challenge is how to select a reliable alternative among numerous technologies for appropriate water reuse. In this research, a fuzzy logic based multi-criteria, group decision making tool has been developed. This tool has been employed in the selection of appropriate membrane treatment technologies for several non-potable and potable reuse scenarios. Robust criteria, covering technical, environmental, economic and socio-cultural aspects, were selected, while 10 different membrane assisted technologies were assessed in the tool. The results show this approach capable of facilitating systematic and rigorous analysis in the comparison and selection of membrane assisted technologies for advanced wastewater treatment and reuse. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Drinking Water Consequences Tools. A Literature Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqualini, Donatella

    2016-05-12

    In support of the goals of Department of Homeland Security’s (DHS) National Protection and Programs Directorate and the Federal Emergency Management Agency, the DHS Office of Science and Technology is seeking to develop and/or modify consequence assessment tools to enable drinking water systems owner/operators to estimate the societal and economic consequences of drinking water disruption due to the threats and hazards. This work will expand the breadth of consequence estimation methods and tools using the best-available data describing water distribution infrastructure, owner/assetlevel economic losses, regional-scale economic activity, and health. In addition, this project will deploy the consequence methodology and capabilitymore » within a Web-based platform. This report is intended to support DHS effort providing a review literature review of existing assessment tools of water and wastewater systems consequences to disruptions. The review includes tools that assess water systems resilience, vulnerability, and risk. This will help to understand gaps and limitations of these tools in order to plan for the development of the next-generation consequences tool for water and waste water systems disruption.« less

  10. Optimal water networks in protein cavities with GAsol and 3D-RISM.

    PubMed

    Fusani, Lucia; Wall, Ian; Palmer, David; Cortes, Alvaro

    2018-06-01

    Water molecules in protein binding sites play essential roles in biological processes. The popular 3D-RISM prediction method can calculate the solvent density distribution within minutes, but is difficult to convert it into explicit water molecules. We present GAsol, a tool that is capable of finding the network of water molecules that best fits a particular 3D-RISM density distribution in a fast and accurate manner and that outperforms other available tools by finding the globally optimal solution thanks to its genetic algorithm. https://github.com/accsc/GAsol. BSD 3-clauses license. alvaro.x.cortes@gsk.com. Supplementary data are available at Bioinformatics online.

  11. The Water Availability Tool for Environmental Resources (WATER): A Water-Budget Modeling Approach for Managing Water-Supply Resources in Kentucky - Phase I: Data Processing, Model Development, and Application to Non-Karst Areas

    USGS Publications Warehouse

    Williamson, Tanja N.; Odom, Kenneth R.; Newson, Jeremy K.; Downs, Aimee C.; Nelson, Hugh L.; Cinotto, Peter J.; Ayers, Mark A.

    2009-01-01

    The Water Availability Tool for Environmental Resources (WATER) was developed in cooperation with the Kentucky Division of Water to provide a consistent and defensible method of estimating streamflow and water availability in ungaged basins. WATER is process oriented; it is based on the TOPMODEL code and incorporates historical water-use data together with physiographic data that quantitatively describe topography and soil-water storage. The result is a user-friendly decision tool that can estimate water availability in non-karst areas of Kentucky without additional data or processing. The model runs on a daily time step, and critical source data include a historical record of daily temperature and precipitation, digital elevation models (DEMs), the Soil Survey Geographic Database (SSURGO), and historical records of water discharges and withdrawals. The model was calibrated and statistically evaluated for 12 basins by comparing the estimated discharge to that observed at U.S. Geological Survey streamflow-gaging stations. When statistically evaluated over a 2,119-day time period, the discharge estimates showed a bias of -0.29 to 0.42, a root mean square error of 1.66 to 5.06, a correlation of 0.54 to 0.85, and a Nash-Sutcliffe Efficiency of 0.26 to 0.72. The parameter and input modifications that most significantly improved the accuracy and precision of streamflow-discharge estimates were the addition of Next Generation radar (NEXRAD) precipitation data, a rooting depth of 30 centimeters, and a TOPMODEL scaling parameter (m) derived directly from SSURGO data that was multiplied by an adjustment factor of 0.10. No site-specific optimization was used.

  12. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  13. Source water monitoring and biomonitoring systems

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  14. Aqueduct: an interactive tool to empower global water risk assessment

    NASA Astrophysics Data System (ADS)

    Reig, Paul; Gassert, Francis

    2013-04-01

    The Aqueduct Water Risk Atlas (Aqueduct) is a publicly available, global database and interactive tool that maps indicators of water related risks for decision makers worldwide. Aqueduct makes use of the latest geo-statistical modeling techniques to compute a composite index and translate the most recently available hydrological data into practical information on water related risks for companies, investors, and governments alike. Twelve global indicators are grouped into a Water Risk Framework designed in response to the growing concerns from private sector actors around water scarcity, water quality, climate change, and increasing demand for freshwater. The Aqueduct framework includes indicators of water stress, variability in supply, storage, flood, drought, groundwater, water quality and social conflict, addressing both spatial and temporal variation in water hazards. It organizes indicators into three categories of risk that bring together multiple dimensions of water related risk into comprehensive aggregated scores, which allow for dynamic weighting to capture users' unique exposure to water hazards. All information is compiled into an online, open access platform, from which decision-makers can view indicators, scores, and maps, conduct global risk assessments, and export data and shape files for further analysis. Companies can use this tool to evaluate their exposure to water risks across operations and supply chains, investors to assess water-related risks in their portfolio, and public-sector actors to better understand water security. Additionally, the open nature of the data and maps allow other organizations to build off of this effort with new research, for example in the areas of water-energy or water-food relationships. This presentation will showcase the Aqueduct Water Risk Atlas online tool and the features and functionalities it offers, as well as explain how it can be used for both private and public sector applications. The session will feature a live demonstration of how the tool can be applied to evaluate exposure to water-related risks worldwide and drive change on the ground by prioritizing areas for investment to increase resilience to natural hazards.

  15. Hydrologic monitoring and selected hydrologic and environmental studies by the U.S. Geological Survey in Georgia, 2011–2013

    USGS Publications Warehouse

    Clarke, John S.; Dalton, Melinda J.

    2013-01-01

    This compendium of papers describes results of hydrologic monitoring and hydrologic and environmental studies completed by the U.S. Geological Survey (USGS) in Georgia during 2011–2013. The USGS addresses a wide variety of water issues in the State of Georgia working with local, State, and Federal partners. As the primary Federal science agency for water resource information, the USGS monitors the quantity and quality of water in the Nation’s rivers and aquifers, assesses the sources and fate of contaminants in aquatic systems, collects and analyzes data on aquatic ecosystems, develops tools to improve the application of hydrologic information, and ensures that its information and tools are available to all potential users. During 2011–2013, the USGS continued a long-term program of monitoring stream and groundwater resources, including flow, water quality, and water use. In addition, a variety of hydrologic and environmental studies were completed to assess water availability, hydrologic hazards, and the impact of development on water resources. Information on USGS activities in Georgia is available online at http://ga.water.usgs.gov/.

  16. MODSNOW-Tool: an operational tool for daily snow cover monitoring using MODIS data

    NASA Astrophysics Data System (ADS)

    Gafurov, Abror; Lüdtke, Stefan; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Schöne, Tilo; Schmidt, Sebastian; Kalashnikova, Olga; Merz, Bruno

    2017-04-01

    Spatially distributed snow cover information in mountain areas is extremely important for water storage estimations, seasonal water availability forecasting, or the assessment of snow-related hazards (e.g. enhanced snow-melt following intensive rains, or avalanche events). Moreover, spatially distributed snow cover information can be used to calibrate and/or validate hydrological models. We present the MODSNOW-Tool - an operational monitoring tool offers a user-friendly application which can be used for catchment-based operational snow cover monitoring. The application automatically downloads and processes freely available daily Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover data. The MODSNOW-Tool uses a step-wise approach for cloud removal and delivers cloud-free snow cover maps for the selected river basins including basin specific snow cover extent statistics. The accuracy of cloud-eliminated MODSNOW snow cover maps was validated for 84 almost cloud-free days in the Karadarya river basin in Central Asia, and an average accuracy of 94 % was achieved. The MODSNOW-Tool can be used in operational and non-operational mode. In the operational mode, the tool is set up as a scheduled task on a local computer allowing automatic execution without user interaction and delivers snow cover maps on a daily basis. In the non-operational mode, the tool can be used to process historical time series of snow cover maps. The MODSNOW-Tool is currently implemented and in use at the national hydrometeorological services of four Central Asian states - Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan and used for seasonal water availability forecast.

  17. Introducing W.A.T.E.R.S.: a workflow for the alignment, taxonomy, and ecology of ribosomal sequences.

    PubMed

    Hartman, Amber L; Riddle, Sean; McPhillips, Timothy; Ludäscher, Bertram; Eisen, Jonathan A

    2010-06-12

    For more than two decades microbiologists have used a highly conserved microbial gene as a phylogenetic marker for bacteria and archaea. The small-subunit ribosomal RNA gene, also known as 16 S rRNA, is encoded by ribosomal DNA, 16 S rDNA, and has provided a powerful comparative tool to microbial ecologists. Over time, the microbial ecology field has matured from small-scale studies in a select number of environments to massive collections of sequence data that are paired with dozens of corresponding collection variables. As the complexity of data and tool sets have grown, the need for flexible automation and maintenance of the core processes of 16 S rDNA sequence analysis has increased correspondingly. We present WATERS, an integrated approach for 16 S rDNA analysis that bundles a suite of publicly available 16 S rDNA analysis software tools into a single software package. The "toolkit" includes sequence alignment, chimera removal, OTU determination, taxonomy assignment, phylogentic tree construction as well as a host of ecological analysis and visualization tools. WATERS employs a flexible, collection-oriented 'workflow' approach using the open-source Kepler system as a platform. By packaging available software tools into a single automated workflow, WATERS simplifies 16 S rDNA analyses, especially for those without specialized bioinformatics, programming expertise. In addition, WATERS, like some of the newer comprehensive rRNA analysis tools, allows researchers to minimize the time dedicated to carrying out tedious informatics steps and to focus their attention instead on the biological interpretation of the results. One advantage of WATERS over other comprehensive tools is that the use of the Kepler workflow system facilitates result interpretation and reproducibility via a data provenance sub-system. Furthermore, new "actors" can be added to the workflow as desired and we see WATERS as an initial seed for a sizeable and growing repository of interoperable, easy-to-combine tools for asking increasingly complex microbial ecology questions.

  18. Development of a simplified urban water balance model (WABILA).

    PubMed

    Henrichs, M; Langner, J; Uhl, M

    2016-01-01

    During the last decade, water sensitive urban design (WSUD) has become more and more accepted. However, there is not any simple tool or option available to evaluate the influence of these measures on the local water balance. To counteract the impact of new settlements, planners focus on mitigating increases in runoff through installation of infiltration systems. This leads to an increasing non-natural groundwater recharge and decreased evapotranspiration. Simple software tools which evaluate or simulate the effect of WSUD on the local water balance are still needed. The authors developed a tool named WABILA (Wasserbilanz) that could support planners for optimal WSUD. WABILA is an easy-to-use planning tool that is based on simplified regression functions for established measures and land covers. Results show that WSUD has to be site-specific, based on climate conditions and the natural water balance.

  19. Progress on water data integration and distribution: a summary of select U.S. Geological Survey data systems

    USGS Publications Warehouse

    Blodgett, David L.; Lucido, Jessica M.; Kreft, James M.

    2016-01-01

    Critical water-resources issues ranging from flood response to water scarcity make access to integrated water information, services, tools, and models essential. Since 1995 when the first water data web pages went online, the U.S. Geological Survey has been at the forefront of water data distribution and integration. Today, real-time and historical streamflow observations are available via web pages and a variety of web service interfaces. The Survey has built partnerships with Federal and State agencies to integrate hydrologic data providing continuous observations of surface and groundwater, temporally discrete water quality data, groundwater well logs, aquatic biology data, water availability and use information, and tools to help characterize the landscape for modeling. In this paper, we summarize the status and design patterns implemented for selected data systems. We describe how these systems contribute to a U.S. Federal Open Water Data Initiative and present some gaps and lessons learned that apply to global hydroinformatics data infrastructure.

  20. Reliability-Productivity Curve, a Tool for Adaptation Measures Identification

    NASA Astrophysics Data System (ADS)

    Chávez-Jiménez, A.; Granados, A.; Garrote, L. M.

    2015-12-01

    Due to climate change effects, water scarcity problems would intensify in several regions. These problems are going to impact negatively in the water low-priority demands, since these will be reduced in favor of those with high-priority. An example would be the reduction of agriculture water resources in favor of the urban ones. Then, it is important the evaluation of adaptation measures for a better water resources management. An important tool to face this challenge is the economic valuation of the water demands' impact within a water resources system. In agriculture this valuation is usually performed through the water productivity evaluation. The water productivity evaluation requires detailed information regarding the different crops like the applied technology, the agricultural supplies management, the water availability, etc. This is a restriction for an evaluation at basin scale due to the difficulty of gathers this level of detailed information. Besides, only the water availability is taken into account, but not the period when the water is distributed (i.e. water resources reliability). Water resources reliability is one of the most important variables in water resources management. This research proposes a methodology to determine the agriculture water productivity, using as variables the crops information, the crops price, the water resources availability, and the water resources reliability, at a basin scale. This methodology would allow identifying general water resources adaptation measures, providing the basis for further detailed studies in critical regions.

  1. Tools for Interdisciplinary Data Assimilation and Sharing in Support of Hydrologic Science

    NASA Astrophysics Data System (ADS)

    Blodgett, D. L.; Walker, J.; Suftin, I.; Warren, M.; Kunicki, T.

    2013-12-01

    Information consumed and produced in hydrologic analyses is interdisciplinary and massive. These factors put a heavy information management burden on the hydrologic science community. The U.S. Geological Survey (USGS) Office of Water Information Center for Integrated Data Analytics (CIDA) seeks to assist hydrologic science investigators with all-components of their scientific data management life cycle. Ongoing data publication and software development projects will be presented demonstrating publically available data access services and manipulation tools being developed with support from two Department of the Interior initiatives. The USGS-led National Water Census seeks to provide both data and tools in support of nationally consistent water availability estimates. Newly available data include national coverages of radar-indicated precipitation, actual evapotranspiration, water use estimates aggregated by county, and South East region estimates of streamflow for 12-digit hydrologic unit code watersheds. Web services making these data available and applications to access them will be demonstrated. Web-available processing services able to provide numerous streamflow statistics for any USGS daily flow record or model result time series and other National Water Census processing tools will also be demonstrated. The National Climate Change and Wildlife Science Center is a USGS center leading DOI-funded academic global change adaptation research. It has a mission goal to ensure data used and produced by funded projects is available via web services and tools that streamline data management tasks in interdisciplinary science. For example, collections of downscaled climate projections, typically large collections of files that must be downloaded to be accessed, are being published using web services that allow access to the entire dataset via simple web-service requests and numerous processing tools. Recent progress on this front includes, data web services for Climate Model Intercomparison Phase 5 based downscaled climate projections, EPA's Integrated Climate and Land Use Scenarios projections of population and land cover metrics, and MODIS-derived land cover parameters from NASA's Land Processes Distributed Active Archive Center. These new services and ways to discover others will be presented through demonstration of a recently open-sourced project from a web-application or scripted workflow. Development and public deployment of server-based processing tools to subset and summarize these and other data is ongoing at the CIDA with partner groups such as 52 Degrees North and Unidata. The latest progress on subsetting, spatial summarization to areas of interest, and temporal summarization via common-statistical methods will be presented.

  2. Assessing the potential of economic instruments for managing drought risk at river basin scale

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, M.; Lopez-Nicolas, A.; Macian-Sorribes, H.

    2015-12-01

    Economic instruments work as incentives to adapt individual decisions to collectively agreed goals. Different types of economic instruments have been applied to manage water resources, such as water-related taxes and charges (water pricing, environmental taxes, etc.), subsidies, markets or voluntary agreements. Hydroeconomic models (HEM) provide useful insight on optimal strategies for coping with droughts by simultaneously analysing engineering, hydrology and economics of water resources management. We use HEMs for evaluating the potential of economic instruments on managing drought risk at river basin scale, considering three criteria for assessing drought risk: reliability, resilience and vulnerability. HEMs allow to calculate water scarcity costs as the economic losses due to water deliveries below the target demands, which can be used as a vulnerability descriptor of drought risk. Two generic hydroeconomic DSS tools, SIMGAMS and OPTIGAMS ( both programmed in GAMS) have been developed to evaluate water scarcity cost at river basin scale based on simulation and optimization approaches. The simulation tool SIMGAMS allocates water according to the system priorities and operating rules, and evaluate the scarcity costs using economic demand functions. The optimization tool allocates water resources for maximizing net benefits (minimizing total water scarcity plus operating cost of water use). SIMGAS allows to simulate incentive water pricing policies based on water availability in the system (scarcity pricing), while OPTIGAMS is used to simulate the effect of ideal water markets by economic optimization. These tools have been applied to the Jucar river system (Spain), highly regulated and with high share of water use for crop irrigation (greater than 80%), where water scarcity, irregular hydrology and groundwater overdraft cause droughts to have significant economic, social and environmental consequences. An econometric model was first used to explain the variation of the production value of irrigated agriculture during droughts, assessing revenue responses to varying crop prices and water availability. Hydroeconomic approaches were then used to show the potential of economic instruments in setting incentives for a more efficient management of water resources systems.

  3. Groundwater availability of the Columbia Plateau Regional Aquifer System, Washington, Oregon, and Idaho

    USGS Publications Warehouse

    Vaccaro, J.J.; Kahle, S.C.; Ely, D.M.; Burns, E.R.; Snyder, D.T.; Haynes, J.V.; Olsen, T.D.; Welch, W.B.; Morgan, D.S.

    2015-09-22

    Changes in the system from predevelopment times. The model also is a useful tool for investigating water supply, water demand, management strategies, groundwater-surface water exchanges, and potential effects of changing climate on the hydrologic system.

  4. Development of a liquefaction hazard screening tool for caltrans bridge sites

    USGS Publications Warehouse

    Knudsen, K.-L.; Bott, J.D.J.; Woods, M.O.; McGuire, T.L.

    2009-01-01

    We have developed a liquefaction hazard screening tool for the California Department of Transportation (Caltrans) that is being used to evaluate the liquefaction hazard to approximately 13,000 bridge sites in California. Because of the large number of bridge sites to be evaluated, we developed a tool that makes use of parameters not typically considered in site-specific liquefaction investigations. We assessed geologic, topographic, seismic hazard, and subsurface conditions at about 100 sites of past liquefaction in California. Among the parameters we found common to many of these sites are: (a) low elevations, (b) proximity to a water body, and (c) presence of geologically youthful deposits or artificial fill materials. The nature of the study necessitated the use of readily available data, preferably datasets that are consistent across the state. The screening tool we provided to Caltrans makes use of the following parameters: (1) proximity to a water body, (2) whether the bridge crosses a water body, (3) the age of site geologic materials and the environment in which the materials were deposited, as discerned from available digital geologic maps, (4) probabilistic shaking estimates, (5) the site elevation, (6) information from available liquefaction hazard maps [covering the 9-county San Francisco Bay Area and Ventura County] and California Geological Survey (CGS) Zones of Required Investigation. For bridge sites at which subsurface boring data were available (from CGS' existing database), we calculated Displacement Potential Index values using a methodology developed by Allison Faris and Jiaer Wu. Caltrans' staff will use this hazard-screening tool, along with other tools focused on bridges and foundations, to prioritize site-specific investigations. ?? 2009 ASCE.

  5. Helping solve Georgia's water problems - the USGS Cooperative Water Program

    USGS Publications Warehouse

    Clarke, John S.

    2006-01-01

    The U.S. Geological Survey (USGS) addresses a wide variety of water issues in the State of Georgia through the Cooperative Water Program (CWP). As the primary Federal science agency for water-resource information, the USGS monitors the quantity and quality of water in the Nation's rivers and aquifers, assesses the sources and fate of contaminants in aquatic systems, collects and analyzes data on aquatic ecosystems, develops tools to improve the application of hydrologic information, and ensures that its information and tools are available to all potential users. This broad, diverse mission cannot be accomplished effectively without the contributions of the CWP.

  6. Development of a Suite of Analytical Tools for Energy and Water Infrastructure Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Morton, A.; Piburn, J.; Stewart, R.; Chandola, V.

    2017-12-01

    Energy and water generation and delivery systems are inherently interconnected. With demand for energy growing, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic, and demographic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This also requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. To address this need, we've developed a suite of analytical tools to support an integrated data driven modeling, analysis, and visualization capability for understanding, designing, and developing efficient local and regional practices related to the energy-water nexus. This work reviews the analytical capabilities available along with a series of case studies designed to demonstrate the potential of these tools for illuminating energy-water nexus solutions and supporting strategic (federal) policy decisions.

  7. U.S. Geological Survey Combined Well-Bore Flow and Depth-Dependent Water Sampler

    USGS Publications Warehouse

    Izbicki, John A.; Christensen, Allen H.; Hanson, Randall T.; Martin, Peter; Crawford, Steven M.; Smith, Gregory A.

    1999-01-01

    The U.S. Geological Survey has developed a combined well-bore flow and depth-dependent sample collection tool. It is suitable for use in existing production wells having limited access and clearances as small as 1 inch. The combination of well-bore flow and depth-dependent water-quality data is especially effective in assessing changes in aquifer properties and water quality with depth. These are direct measures of changes in well yield and ground-water quality with depth under actual operating conditions. Combinations of other geophysical tools capable of making these measurements, such as vertical-axis current meters used with wire-line samplers, are commercially available but these tools are large and can not easily enter existing production wells.

  8. A data management and publication workflow for a large-scale, heterogeneous sensor network.

    PubMed

    Jones, Amber Spackman; Horsburgh, Jeffery S; Reeder, Stephanie L; Ramírez, Maurier; Caraballo, Juan

    2015-06-01

    It is common for hydrology researchers to collect data using in situ sensors at high frequencies, for extended durations, and with spatial distributions that produce data volumes requiring infrastructure for data storage, management, and sharing. The availability and utility of these data in addressing scientific questions related to water availability, water quality, and natural disasters relies on effective cyberinfrastructure that facilitates transformation of raw sensor data into usable data products. It also depends on the ability of researchers to share and access the data in useable formats. In this paper, we describe a data management and publication workflow and software tools for research groups and sites conducting long-term monitoring using in situ sensors. Functionality includes the ability to track monitoring equipment inventory and events related to field maintenance. Linking this information to the observational data is imperative in ensuring the quality of sensor-based data products. We present these tools in the context of a case study for the innovative Urban Transitions and Aridregion Hydrosustainability (iUTAH) sensor network. The iUTAH monitoring network includes sensors at aquatic and terrestrial sites for continuous monitoring of common meteorological variables, snow accumulation and melt, soil moisture, surface water flow, and surface water quality. We present the overall workflow we have developed for effectively transferring data from field monitoring sites to ultimate end-users and describe the software tools we have deployed for storing, managing, and sharing the sensor data. These tools are all open source and available for others to use.

  9. Remote sensing applications for sustainable agriculture in South Africa (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jarmain, Caren; Van Niekerk, Adriaan; Goudriaan, Ruben

    2016-10-01

    Agriculture contributes greatly to the economy of South Africa (SA), through job creation and produce exports. SA is classified as a semi-arid country and due to its low rainfall, fierce competition exists for the available water resources. Balancing the need for water resources on the one hand, with the importance of agricultural production on the other, is often challenging. A lot of emphasis is placed on prudent water management and enhanced crop water use efficiency. Suitable information and tools are key in empowering both water resources managers and (crop) producers for sustainable agricultural production. Information and tools available at frequent intervals throughout the production season and at a range of levels - from the field to the catchment and for the entire country - has become essential. The frequency and availability of remote sensing data, developments in algorithms to produce information related to the water cycle and crop growth and hence the actual information sets produced over time, makes for fitting solutions. Though much progress has been made over the past years to integrate these spatial data products into water management and agricultural systems, it is likely still in its infancy. In the paper, some flagship projects related to sustainable agriculture and water management - both research and applied - are showcased.

  10. Systems Measures of Water Distribution System Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements tomore » water distribution system modeling tools.« less

  11. User’s guide for the Delaware River Basin Streamflow Estimator Tool (DRB-SET)

    USGS Publications Warehouse

    Stuckey, Marla H.; Ulrich, James E.

    2016-06-09

    IntroductionThe Delaware River Basin Streamflow Estimator Tool (DRB-SET) is a tool for the simulation of streamflow at a daily time step for an ungaged stream location in the Delaware River Basin. DRB-SET was developed by the U.S. Geological Survey (USGS) and funded through WaterSMART as part of the National Water Census, a USGS research program on national water availability and use that develops new water accounting tools and assesses water availability at the regional and national scales. DRB-SET relates probability exceedances at a gaged location to those at an ungaged stream location. Once the ungaged stream location has been identified by the user, an appropriate streamgage is automatically selected in DRB-SET using streamflow correlation (map correlation method). Alternately, the user can manually select a different streamgage or use the closest streamgage. A report file is generated documenting the reference streamgage and ungaged stream location information, basin characteristics, any warnings, baseline (minimally altered) and altered (affected by regulation, diversion, mining, or other anthropogenic activities) daily mean streamflow, and the mean and median streamflow. The estimated daily flows for the ungaged stream location can be easily exported as a text file that can be used as input into a statistical software package to determine additional streamflow statistics, such as flow duration exceedance or streamflow frequency statistics.

  12. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  13. Plant water relations II: how plants manage water deficit and why it matters

    USDA-ARS?s Scientific Manuscript database

    The availability of fresh water is possibly the greatest limitation to our ability to feed the growing human population (9 billion people forecast by 2050 and 11 billion by 2100). This Teaching Tool examines why water is so critical for plant growth and particularly their food production (primarily ...

  14. Watershed Management Optimization Support Tool (WMOST) Webinar

    EPA Pesticide Factsheets

    EPA’s WMOST is a publicly available tool that can be used by state and local managers to screen a wide-range of options for cost-effective management of water resources, and it supports a broader integrated watershed management approach.

  15. Open Source GIS based integrated watershed management

    NASA Astrophysics Data System (ADS)

    Byrne, J. M.; Lindsay, J.; Berg, A. A.

    2013-12-01

    Optimal land and water management to address future and current resource stresses and allocation challenges requires the development of state-of-the-art geomatics and hydrological modelling tools. Future hydrological modelling tools should be of high resolution, process based with real-time capability to assess changing resource issues critical to short, medium and long-term enviromental management. The objective here is to merge two renowned, well published resource modeling programs to create an source toolbox for integrated land and water management applications. This work will facilitate a much increased efficiency in land and water resource security, management and planning. Following an 'open-source' philosophy, the tools will be computer platform independent with source code freely available, maximizing knowledge transfer and the global value of the proposed research. The envisioned set of water resource management tools will be housed within 'Whitebox Geospatial Analysis Tools'. Whitebox, is an open-source geographical information system (GIS) developed by Dr. John Lindsay at the University of Guelph. The emphasis of the Whitebox project has been to develop a user-friendly interface for advanced spatial analysis in environmental applications. The plugin architecture of the software is ideal for the tight-integration of spatially distributed models and spatial analysis algorithms such as those contained within the GENESYS suite. Open-source development extends knowledge and technology transfer to a broad range of end-users and builds Canadian capability to address complex resource management problems with better tools and expertise for managers in Canada and around the world. GENESYS (Generate Earth Systems Science input) is an innovative, efficient, high-resolution hydro- and agro-meteorological model for complex terrain watersheds developed under the direction of Dr. James Byrne. GENESYS is an outstanding research and applications tool to address challenging resource management issues in industry, government and nongovernmental agencies. Current research and analysis tools were developed to manage meteorological, climatological, and land and water resource data efficiently at high resolution in space and time. The deliverable for this work is a Whitebox-GENESYS open-source resource management capacity with routines for GIS based watershed management including water in agriculture and food production. We are adding urban water management routines through GENESYS in 2013-15 with an engineering PhD candidate. Both Whitebox-GAT and GENESYS are already well-established tools. The proposed research will combine these products to create an open-source geomatics based water resource management tool that is revolutionary in both capacity and availability to a wide array of Canadian and global users

  16. Utility of thermal remote sensing for evapotranspiration estimation of vineyards

    USDA-ARS?s Scientific Manuscript database

    Given the limited water availability in much of California, particularly the Central Valley where many of the crops are grown, improvements in water management of irrigated croplands is desperately needed. This requires the development of tools and technologies for monitoring water use and improving...

  17. Water budget of the Calera Aquifer in Zacatecas, Mexico

    USDA-ARS?s Scientific Manuscript database

    In the Calera Aquifer Region of the State of Zacatecas, Mexico, limited rainfall and low agricultural water use efficiency in combination with fast growing industrial and urban water demand are contributing to groundwater depletion at an unsustainable rate. Limited data and planning tools were avail...

  18. Irrigation Dynamics and Tactics - Developing a Sustainable and Profitable Irrigation Strategy for Agricultural Areas

    NASA Astrophysics Data System (ADS)

    Van Opstal, J.; Neale, C. M. U.; Lecina, S.

    2014-12-01

    Irrigation management is a dynamic process that adapts according to weather conditions and water availability, as well as socio-economic influences. The goal of water users is to adapt their management to achieve maximum profits. However, these decisions should take into account the environmental impact on the surroundings. Agricultural irrigation systems need to be viewed as a system that is an integral part of a watershed. Therefore changes in the infrastructure, operation and management of an irrigated area, has an impact on the water quantity and quality available for other water users. A strategy can be developed for decision-makers using an irrigation system modelling tool. Such a tool can simulate the impact of the infrastructure, operation and management of an irrigation area on its hydrology and agricultural productivity. This combination of factors is successfully simulated with the Ador model, which is able to reproduce on-farm irrigation and water delivery by a canal system. Model simulations for this study are supported with spatial analysis tools using GIS and remote sensing. Continuous measurements of drainage water will be added to indicate the water quality aspects. The Bear River Canal Company located in Northern Utah (U.S.A.) is used as a case study for this research. The irrigation area encompasses 26,000 ha and grows mainly alfalfa, grains, corn and onions. The model allows the simulation of different strategies related to water delivery, on-farm water use, crop rotations, and reservoirs and networks capacities under different weather and water availability conditions. Such changes in the irrigation area will have consequences for farmers in the study area regarding crop production, and for downstream users concerning both the quantity and quality of outflows. The findings from this study give insight to decision-makers and water users for changing irrigation water delivery strategies to improve the sustainability and profitability of agriculture in the future.

  19. Water Resources Risks and the Climate Resilience Toolkit: Tools, Case Studies, and Partnerships

    NASA Astrophysics Data System (ADS)

    Read, E. K.; Blodgett, D. L.; Booth, N.

    2014-12-01

    The Water Resources Risk topic of the Climate Resilience Toolkit (CRT) is designed to provide decision support, technical, and educational resources to communities, water resource managers, policy analysts, and water utilities working to increase the resilience of water resources to climate change. We highlight the partnerships (between federal and state agencies, non-governmental organizations, and private partners), tools (e.g., downscaled climate products, historical and real-time water data, and decision support) and success stories that are informing the CRT Water Resources Risks Theme content, and identify remaining needs in available resources for building resilience of water resources to climate change. The following questions will frame the content of the Water Resources Risk CRT: How are human and natural components of the hydrologic cycle changing? How can communities and water managers plan for uncertain future conditions? How will changing water resources impact food production, energy resources, ecosystems, and human health? What water resources data are of high value to society and are they easily accessible? Input on existing tools, resources, or potential partnerships that could be used to further develop content and fill gaps in the Water Resources CRT is welcome. We also invite ideas for water resources 'innovation challenges', in which technology developers work to create tools to that enhance the capacity of communities and managers to increase resilience of water resources at the local and regional scales.

  20. Use of water towing tanks for aerodynamics and hydrodynamics

    NASA Technical Reports Server (NTRS)

    Gadelhak, Mohamed

    1987-01-01

    Wind tunnels and flumes have become standard laboratory tools for modeling a variety of aerodynamic and hydrodynamic flow problems. Less available, although by no means less useful, are facilities in which a model can be towed (or propelled) through air or water. This article emphasizes the use of the water towing tank as an experimental tool for aerodynamic and hydrodynamic studies. Its advantages and disadvantages over other flow rigs are discussed, and its usefullness is illustrated through many examples of research results obtained over the past few years in a typical towing tank facility.

  1. Hydropower Research | Water Power | NREL

    Science.gov Websites

    facilities are available to support hydropower technology validation and design optimization. Photo of water optimized prior to expensive and time-consuming open-water validation. Photo of electric power lines at -machinery. Using these methodologies, tools, and direct industry data, they analyze the near- and long-term

  2. Irrigated agriculture with limited water supply:Tools for understanding and managing irrigation and crop water use efficiencies

    USDA-ARS?s Scientific Manuscript database

    Water availability for irrigated agriculture is declining in both China and the United States due to increased use for power generation, municipalities, industries and environmental protection. Persistent droughts have exacerbated the situation, leading to increases in irrigated area as farmers atte...

  3. Limitations to postfire seedling establishment: The role of seeding technology, water availability, and invasive plant abundance

    Treesearch

    Jeremy J. James; Tony Svejcar

    2010-01-01

    Seeding rangeland following wildfire is a central tool managers use to stabilize soils and inhibit the spread of invasive plants. Rates of successful seeding on arid rangeland, however, are low. The objective of this study was to determine the degree to which water availability, invasive plant abundance, and seeding technology influence postfire seedling establishment...

  4. South Australia's River Murray: Social and cultural values in water planning

    NASA Astrophysics Data System (ADS)

    Mooney, Carla; Tan, Poh-Ling

    2012-12-01

    SummaryThe South Australian River Murray is at the end of the Murray-Darling Basin which spans four Australian states, and is reliant on upstream flow. Under the Murray-Darling Basin Agreement, South Australia has an annual entitlement of 1850 GL flow. In the recent debilitating drought, the Agreement was put 'on hold' while emergency sharing arrangements provided for critical human needs, with meagre supplies for any other consumptive use. The drought also impacted on environmental values already compromised by river regulation and the high levels of water consumption. Conducted during the policy development phase of a second water allocation plan, our research trialled three tools designed to assess economic, social and cultural values for the new plan. The first was a pilot social impact study of effects of changing water availability in the Murraylands. In the second, researchers used a participatory modelling tool conjunctively with multi-criteria analysis to identify community values relevant to the prioritisation of environmental assets in the context of water scarcity. The third tool addressed Indigenous cultural values associated with water. Results of trials demonstrate that identifying public and social values in water require a number of interactive and deliberative tools in order to engage the broad community in water planning. Of the three tools, the most innovative was the second tool as it facilitated deliberation about the relative importance of the environment and helped shift individuals from entrenched interest based positions to consensus on values in wetlands.

  5. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  6. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mode...

  7. Methods and tools to simulate the effect of economic instruments in complex water resources systems. Application to the Jucar river basin.

    NASA Astrophysics Data System (ADS)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel

    2014-05-01

    The main challenge of the BLUEPRINT to safeguard Europe's water resources (EC, 2012) is to guarantee that enough good quality water is available for people's needs, the economy and the environment. In this sense, economic policy instruments such as water pricing policies and water markets can be applied to enhance efficient use of water. This paper presents a method based on hydro-economic tools to assess the effect of economic instruments on water resource systems. Hydro-economic models allow integrated analysis of water supply, demand and infrastructure operation at the river basin scale, by simultaneously combining engineering, hydrologic and economic aspects of water resources management. The method made use of the simulation and optimization hydroeconomic tools SIMGAMS and OPTIGAMS. The simulation tool SIMGAMS allocates water resources among the users according to priorities and operating rules, and evaluate economic scarcity costs of the system by using economic demand functions. The model's objective function is designed so that the system aims to meet the operational targets (ranked according to priorities) at each month while following the system operating rules. The optimization tool OPTIGAMS allocates water resources based on an economic efficiency criterion: maximize net benefits, or alternatively, minimizing the total water scarcity and operating cost of water use. SIMGAS allows to simulate incentive water pricing policies based on marginal resource opportunity costs (MROC; Pulido-Velazquez et al., 2013). Storage-dependent step pricing functions are derived from the time series of MROC values at a certain reservoir in the system. These water pricing policies are defined based on water availability in the system (scarcity pricing), so that when water storage is high, the MROC is low, while low storage (drought periods) will be associated to high MROC and therefore, high prices. We also illustrate the use of OPTIGAMS to simulate the effect of ideal water markets by economic optimization, without considering the potential effect of transaction costs. These methods and tools have been applied to the Jucar River basin (Spain). The results show the potential of economic instruments in setting incentives for a more efficient management of water resources systems. Acknowledgments: The study has been partially supported by the European Community 7th Framework Project (GENESIS project, n. 226536), SAWARES (Plan Nacional I+D+i 2008-2011, CGL2009-13238-C02-01 and C02-02), SCARCE (Consolider-Ingenio 2010 CSD2009-00065) of the Spanish Ministry of Economy and Competitiveness; and EC 7th Framework Project ENHANCE (n. 308438) Reference: Pulido-Velazquez, M., Alvarez-Mendiola, E., and Andreu, J., 2013. Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. J. Water Resour. Plann. Manage., 139(5): 583-592.

  8. Stream Flow Prediction and Flood Mapping in the Hindu Kush-Himalaya with the ICIMOD Water Resources App Portal (IWRAP)

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Ames, D. P.; Jones, N.; Souffront, M.

    2016-12-01

    Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts that are increasingly available in native as well as other derived products. The European Centre for Medium Range Weather Forecasts (ECMWF) have developed such products for global flood awareness which can be downscaled to smaller regions and used for stream flow prediction in underserved areas such as the Hindu Kush-Himalaya. Combined with digital elevation data, now available at 30 meters through the Shuttle Radar Topography Mission (SRTM) reconnaissance-level flood maps can be generated across wide regions that would otherwise not be possible and where increased information to drive higher resolution models are available the same forecasts can be used to provide forcing inflows for improved flood maps. Advances in cloud computing offer a unique opportunity to facilitate deployment of water resources models as decision-making tools in the cloud-based ICIMOD Water Resources App Portal or IWRAP. The interactive nature of web apps makes this an excellent medium for creating decision support tools that harness cutting edge modeling techniques. Thin client apps hosted in a cloud portal eliminates the need for the decision makers to procure and maintain the high performance hardware required by the models, deal with issues related to software installation and platform incompatibilities, or monitor and install software updates, a problem that is exacerbated in the Hindu Kush-Himalaya where both financial and technical capacity are limited. All that is needed to use the system is an Internet connection and a web browser. We will take advantage of these technologies to develop tools which can be centrally maintained but openly accessible. Advanced mapping and visualization will make results intuitive and information derived actionable. We will also take advantage of the emerging standards for sharing water information across the web using the OGC and WMO approved WaterML standards. This will make our tools interoperable and we will help train those we work with so that tools and data from other projects can both consume and share with the tools developed in our project.

  9. HyCAW: Hydrological Climate change Adaptation Wizard

    NASA Astrophysics Data System (ADS)

    Bagli, Stefano; Mazzoli, Paolo; Broccoli, Davide; Luzzi, Valerio

    2016-04-01

    Changes in temporal and total water availability due to hydrologic and climate change requires an efficient use of resources through the selection of the best adaptation options. HyCAW provides a novel service to users willing or needing to adapt to hydrological change, by turning available scientific information into a user friendly online wizard that lets to: • Evaluate the monthly reduction of water availability induced by climate change; • Select the best adaptation options and visualize the benefits in terms of water balance and cost reduction; • Quantify potential of water saving by improving of water use efficiency. The tool entails knowledge of the intra-annual distribution of available surface and groundwater flows at a site under present and future (climate change) scenarios. This information is extracted from long term scenario simulation by E-HYPE (European hydrological predictions for the environment) model from Swedish Meteorological and Hydrological Institute, to quantify the expected evolution in water availability (e.g. percent reduction of soil infiltration and aquifer recharge; relative seasonal shift of runoff from summer to winter in mountain areas; etc.). Users are requested to provide in input their actual water supply on a monthly basis, both from surface and groundwater sources. Appropriate decision trees and an embedded precompiled database of Water saving technology for different sectors (household, agriculture, industrial, tourisms) lead them to interactively identify good practices for water saving/recycling/harvesting that they may implement in their specific context. Thanks to this service, users are not required to have a detailed understanding neither of data nor of hydrological processes, but may benefit of scientific analysis directly for practical adaptation in a simple and user friendly way, effectively improving their adaptation capacity. The tool is being developed under a collaborative FP7 funded project called SWITCH-ON (EU FP7 project No 603587) coordinated by SMHI (http://water-switch-on.eu/) and online demo is available at www.gecosistema.com/switchon

  10. Nucleic acids-based tools for ballast water surveillance, monitoring, and research

    EPA Science Inventory

    Understanding the risks of biological invasion posed by ballast water—whether in the context of compliance testing, routine monitoring, or basic research—is fundamentally an exercise in biodiversity assessment, and as such should take advantage of the best tools avail...

  11. On the use of satellite data to implement a parsimonious ecohydrological model in the upper Ewaso Ngiro river basin

    NASA Astrophysics Data System (ADS)

    Ruiz-Pérez, G.

    2015-12-01

    Drylands are extensive, covering 30% of the Earth's land surface and 50% of Africa. Projections of the IPCC (Intergovernmental Panel on Climate Change, 2007) indicate that the extent of these regions have high probability to increase with a considerable additional impact on water resources, which should be taken into account by water management plans. In these water-controlled areas, vegetation plays a key role in the water cycle. Ecohydrological models provide a tool to investigate the relationships between vegetation and water resources. However, studies in Africa often face the problem that many ecohydrological models have quite extensive parametrical requirements, while available data are scarce. Therefore, there is a need for assessments using models whose requirements match the data availability. In that context, parsimonious models, together with available remote sensing information, can be valuable tools for ecohydrological studies. For this reason, we have focused on the use of a parsimonious model based on the amount of photosynthetically active radiation absorbed by green vegetation (APAR) and the Light Use Efficiency index (the efficiency by which that radiation is converted to plant biomass increment) in order to compute the gross primary production (GPP).This model has been calibrated using only remote sensing data (particularly, NDVI data from Modis products) in order to explore the potential of satellite information in implementing a simple distributed model. The model has been subsequently validated against stream flow data with the aim to define a tool able to account for landuse characteristics in describing water budget. Results are promising for studies aimed at the description of the consequences of ongoing land use changes on water resources.

  12. Proposing water balance method for water availability estimation in Indonesian regional spatial planning

    NASA Astrophysics Data System (ADS)

    Juniati, A. T.; Sutjiningsih, D.; Soeryantono, H.; Kusratmoko, E.

    2018-01-01

    The water availability (WA) of a region is one of important consideration in both the formulation of spatial plans and the evaluation of the effectiveness of actual land use in providing sustainable water resources. Information on land-water needs vis-a-vis their availability in a region determines the state of the surplus or deficit to inform effective land use utilization. How to calculate water availability have been described in the Guideline in Determining the Carrying Capacity of the Environment in Regional Spatial Planning. However, the method of determining the supply and demand of water on these guidelines is debatable since the determination of WA in this guideline used a rational method. The rational method is developed the basis for storm drain design practice and it is essentially a peak discharge method peak discharge calculation method. This paper review the literature in methods of water availability estimation which is described descriptively, and present arguments to claim that water balance method is a more fundamental and appropriate tool in water availability estimation. A better water availability estimation method would serve to improve the practice in preparing formulations of Regional Spatial Plan (RSP) as well as evaluating land use capacity in providing sustainable water resources.

  13. Toolkit of Available EPA Green Infrastructure Modeling Software: Watershed Management Optimization Support Tool (WMOST)

    EPA Science Inventory

    Watershed Management Optimization Support Tool (WMOST) is a software application designed tofacilitate integrated water resources management across wet and dry climate regions. It allows waterresources managers and planners to screen a wide range of practices across their watersh...

  14. Climate Change Impacts on Hydrology and Water Management of the San Juan Basin

    NASA Astrophysics Data System (ADS)

    Rich, P. M.; Weintraub, L. H.; Chen, L.; Herr, J.

    2005-12-01

    Recent climatic events, including regional drought and increased storm severity, have accentuated concerns that climatic extremes may be increasing in frequency and intensity due to global climate change. As part of the ZeroNet Water-Energy Initiative, the San Juan Decision Support System includes a basin-scale modeling tool to evaluate effects of climate change on water budgets under different climate and management scenarios. The existing Watershed Analysis Risk Management Framework (WARMF) was enhanced with iterative modeling capabilities to enable construction of climate scenarios based on historical and projected data. We applied WARMF to 42,000 km2 (16,000 mi2) of the San Juan Basin (CO, NM) to assess impacts of extended drought and increased temperature on surface water balance. Simulations showed that drought and increased temperature impact water availability for all sectors (agriculture, energy, municipal, industry), and lead to increased frequency of critical shortages. Implementation of potential management alternatives such as "shortage sharing" or degraded water usage during critical years helps improve available water supply. In the face of growing concern over climate change, limited water resources, and competing demands, integrative modeling tools can enable better understanding of complex interconnected systems, and enable better decisions.

  15. Conservation of the introgressed European water frog complex using molecular tools.

    PubMed

    Holsbeek, G; Maes, G E; De Meester, L; Volckaert, F A M

    2009-03-01

    In Belgium, the Pelophylax esculentus complex has recently been subjected to multiple introductions of non-native water frogs, increasing the occurrence of hybridisation events. In the present study, we tested the reliability of morphometric and recently developed microsatellite tools to identify introgression and to determine the origin of exotic Belgian water frogs. By analysing 150 individuals of each taxon of the P. esculentus complex and an additional 60 specimens of the introduced P. cf. bedriagae, we show that neither of the currently available tools appears to have sufficient power to reliably distinguish all Belgian water frog species. We therefore aimed at increasing the discriminatory power of a microsatellite identification tool by developing a new marker panel with additional microsatellite loci. By adding only two new microsatellite loci (RlCA5 and RlCA1b20), all taxa of the P. esculentus complex could be distinguished from each other with high confidence. Three more loci (Res3, Res5 and Res17) provided a powerful discrimination of the exotic species.

  16. A dynamic simulation based water resources education tool.

    PubMed

    Williams, Alison; Lansey, Kevin; Washburne, James

    2009-01-01

    Educational tools to assist the public in recognizing impacts of water policy in a realistic context are not generally available. This project developed systems with modeling-based educational decision support simulation tools to satisfy this need. The goal of this model is to teach undergraduate students and the general public about the implications of common water management alternatives so that they can better understand or become involved in water policy and make more knowledgeable personal or community decisions. The model is based on Powersim, a dynamic simulation software package capable of producing web-accessible, intuitive, graphic, user-friendly interfaces. Modules are included to represent residential, agricultural, industrial, and turf uses, as well as non-market values, water quality, reservoir, flow, and climate conditions. Supplementary materials emphasize important concepts and lead learners through the model, culminating in an open-ended water management project. The model is used in a University of Arizona undergraduate class and within the Arizona Master Watershed Stewards Program. Evaluation results demonstrated improved understanding of concepts and system interactions, fulfilling the project's objectives.

  17. Hydro-economic modeling of the role of forests on water resources production in Andalusia, Spain

    NASA Astrophysics Data System (ADS)

    Beguería, Santiago; Serrano-Notivoli, Roberto; Álvarez-Palomino, Alejandro; Campos, Pablo

    2014-05-01

    The development of more refined information tools is a pre-requisite for supporting decision making in the context of integrated water resources management. Among these tools, hydro-economic models are favoured because they allow integrating the ecological, hydrological, infrastructure and economic aspects into a coherent, scientifically-informed framework. We present a case study that assesses physically the water resources of forest lands of the Andalusia region in Spain and conducts an economic environmental income and asset valuation of the forest surface water yield. We show how, based on available hydrologic and economic data, we can develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is part of the larger RECAMAN project, which aims at providing a robust and easily replicable accounting tool to evaluate yearly the total income an capital generated by the forest land, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). Only a comprehensive integrated tool such as the one built within the RECAMAN project may serve as a basis for the development of integrated policies such as those internationally agreed and recommended for the management of water resources.

  18. The CatchMod toolbox: easy and guided access to ICT tools for Water Framework Directive implementation.

    PubMed

    van Griensven, A; Vanrolleghem, P A

    2006-01-01

    Web-based toolboxes are handy tools to inform experienced users of existing software in their disciplines. However, for the implementation of the Water Framework Directive, a much more diverse public (water managers, consultancy firms, scientists, etc.) will ask for a very wide diversity of Information and Communication Technology (ICT) tools. It is obvious that the users of a web-based ICT-toolbox providing all this will not be experts in all of the disciplines and that a toolbox for ICT tools for Water Framework Directive implementation should thus go beyond just making interesting web-links. To deal with this issue, expert knowledge is brought to the users through the incorporation of visitor-geared guidance (materials) in the Harmoni-CA toolbox. Small workshops of expert teams were organized to deliver documents explaining why the tools are important, when they are required and what activity they support/perform, as well as a categorization of the multitude of available tools. An integration of this information in the web-based toolbox helps the users to browse through a toolbox containing tools, reports, guidance documents and interesting links. The Harmoni-CA toolbox thus provides not only a virtual toolbox, but incorporates a virtual expert as well.

  19. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    NASA Astrophysics Data System (ADS)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also, statistics such as the number of times certain WASSI thresholds are exceeded are calculated to show the impact of expanded irrigation during times of hydrologic drought and the coincident use of water by other sectors. Also, integrated downstream impacts of irrigation are also calculated through changes in flows through the whole river systems.

  20. The Need for Regular Monitoring and Prediction of Ephemeral Water Bodies in SERVIR Regions

    NASA Technical Reports Server (NTRS)

    Anderson, Eric

    2017-01-01

    With remote sensing and modeling techniques available today it is possible to regularly identify and monitor the presence of surface water globally, for a wide range of applications. Many of the available datasets and tools, however, do not adequately resolve small or ephemeral water bodies in a timely enough fashion to make local and subnational decisions about water resources management in developing regions. This presentation introduces a specific need focused on a basin in Senegal to develop a capability to identify and disseminate timely information on small and ephemeral water bodies, and we seek feedback on methods proposed to address this need.

  1. Improving Water Management Decision Support Tools Using NASA Satellite and Modeling Data

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Arsenault, K.; Nigro, J.; Pinheiro, A.; Engman, E. T.; Triggs, J.; Cosgrove, B.; Alonge, C.; Boyle, D.; Allen, R.; Townsend, P.; Ni-Meister, W.

    2006-05-01

    One of twelve Applications of National priority within NASA's Applied Science Program, the Water Management Program Element addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools for problem solving. The Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. This paper further describes the Water Management Program with the objective of informing the applications community of the potential opportunities for using NASA science products for problem solving. We will illustrate some ongoing and application Water Management projects evaluating and benchmarking NASA data with partnering federal agencies and their decision support tools: 1) Environmental Protection Agency for water quality; 2) Bureau of Reclamation for water supply, demand and forecast; and 3) NOAA National Weather Service for improved weather prediction. Examples of the types of NASA contributions to the these agency decision support tools include: 1) satellite observations within models assist to estimate water storage, i.e., snow water equivalent, soil moisture, aquifer volumes, or reservoir storages; 2) model derived products, i.e., evapotranspiration, precipitation, runoff, ground water recharge, and other 4-dimensional data assimilation products; 3) improve water quality, assessments by using improved inputs from NASA models (precipitation, evaporation) and satellite observations (e.g., temperature, turbidity, land cover) to nonpoint source models; and 4) water (i.e., precipitation) and temperature predictions from days to decades over local, regional and global scales.

  2. Using Global Climate Data to Inform Long-Term Water Planning Decisions

    NASA Astrophysics Data System (ADS)

    Groves, D. G.; Lempert, R.

    2008-12-01

    Water managers throughout the world are working to consider climate change in their long-term water planning processes. The best available information regarding plausible future hydrologic conditions are largely derived from global circulation models and from paleoclimate data. To date there lacks a single approach for (1) utilizing these data in water management planning tools for analysis and (2) evaluating the myriad of possible adaptation options. This talk will describe several approaches being used at RAND to incorporate global projections of climate change into local, regional, and state-wide long-term water planning. It will draw on current work with the California Department of Water Resources and other local Western water agencies, and a recently completed project with the Inland Empire Utilities Agency. Work to date suggests that climate information can be assimilated into local water planning tools to help identify robust climate adaptation water management strategies.

  3. Assessment of global water security: moving beyond water scarcity assessment

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Gain, A. K.; Giupponi, C.

    2015-12-01

    Water plays an important role in underpinning equitable, stable and productive societies, and the ecosystems on which we depend. Many international river basins are likely to experience 'low water security' over the coming decades. Hence, ensuring water security along with energy and food securities has been recognised as priority goals in Sustainable Development Goals (SDGs) by the United Nations. This water security is not rooted only in the limitation of physical resources, i.e. the shortage in the availability of freshwater relative to water demand, but also on social and economic factors (e.g. flawed water planning and management approaches, institutional incapability to provide water services, unsustainable economic policies). Until recently, advanced tools and methods are available for assessment of global water scarcity. However, integrating both physical and socio-economic indicators assessment of water security at global level is not available yet. In this study, we present the first global understanding of water security using a spatial multi-criteria analysis framework that goes beyond available water scarcity assessment. For assessing water security at global scale, the term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The Water security index is calculated by aggregating the indicators using both simple additive weighting (SAW) and ordered weighted average (OWA).

  4. SEPHYDRO: An Integrated Multi-Filter Web-Based Tool for Baseflow Separation

    NASA Astrophysics Data System (ADS)

    Serban, D.; MacQuarrie, K. T. B.; Popa, A.

    2017-12-01

    Knowledge of baseflow contributions to streamflow is important for understanding watershed scale hydrology, including groundwater-surface water interactions, impact of geology and landforms on baseflow, estimation of groundwater recharge rates, etc. Baseflow (or hydrograph) separation methods can be used as supporting tools in many areas of environmental research, such as the assessment of the impact of agricultural practices, urbanization and climate change on surface water and groundwater. Over the past few decades various digital filtering and graphically-based methods have been developed in an attempt to improve the assessment of the dynamics of the various sources of streamflow (e.g. groundwater, surface runoff, subsurface flow); however, these methods are not available under an integrated platform and, individually, often require significant effort for implementation. Here we introduce SEPHYDRO, an open access, customizable web-based tool, which integrates 11 algorithms allowing for separation of streamflow hydrographs. The streamlined interface incorporates a reference guide as well as additional information that allows users to import their own data, customize the algorithms, and compare, visualise and export results. The tool includes one-, two- and three-parameter digital filters as well as graphical separation methods and has been successfully applied in Atlantic Canada, in studies dealing with nutrient loading to fresh water and coastal water ecosystems. Future developments include integration of additional separation algorithms as well as incorporation of geochemical separation methods. SEPHYDRO has been developed through a collaborative research effort between the Canadian Rivers Institute, University of New Brunswick (Fredericton, New Brunswick, Canada), Agriculture and Agri-Food Canada and Environment and Climate Change Canada and is currently available at http://canadianriversinstitute.com/tool/

  5. The Shoreline Management Tool - an ArcMap tool for analyzing water depth, inundated area, volume, and selected habitats, with an example for the lower Wood River Valley, Oregon

    USGS Publications Warehouse

    Snyder, Daniel T.; Haluska, Tana L.; Respini-Irwin, Darius

    2013-01-01

    The Shoreline Management Tool is a geographic information system (GIS) based program developed to assist water- and land-resource managers in assessing the benefits and effects of changes in surface-water stage on water depth, inundated area, and water volume. Additionally, the Shoreline Management Tool can be used to identify aquatic or terrestrial habitat areas where conditions may be suitable for specific plants or animals as defined by user-specified criteria including water depth, land-surface slope, and land-surface aspect. The tool can also be used to delineate areas for use in determining a variety of hydrologic budget components such as surface-water storage, precipitation, runoff, or evapotranspiration. The Shoreline Management Tool consists of two parts, a graphical user interface for use with Esri™ ArcMap™ GIS software to interact with the user to define scenarios and map results, and a spreadsheet in Microsoft® Excel® developed to display tables and graphs of the results. The graphical user interface allows the user to define a scenario consisting of an inundation level (stage), land areas (parcels), and habitats (areas meeting user-specified conditions) based on water depth, slope, and aspect criteria. The tool uses data consisting of land-surface elevation, tables of stage/volume and stage/area, and delineated parcel boundaries to produce maps (data layers) of inundated areas and areas that meet the habitat criteria. The tool can be run in a Single-Time Scenario mode or in a Time-Series Scenario mode, which uses an input file of dates and associated stages. The spreadsheet part of the tool uses a macro to process the results from the graphical user interface to create tables and graphs of inundated water volume, inundated area, dry area, and mean water depth for each land parcel based on the user-specified stage. The macro also creates tables and graphs of the area, perimeter, and number of polygons comprising the user-specified habitat areas within each parcel. The Shoreline Management Tool is highly transferable, using easily generated or readily available data. The capabilities of the tool are demonstrated using data from the lower Wood River Valley adjacent to Upper Klamath and Agency Lakes in southern Oregon.

  6. Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tengfang; Flapper, Joris; Ke, Jing

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry - including four dairy processes - cheese, fluid milk, butter, and milk powder. BEST-Dairy tool developed in this project provides three options for the user to benchmark each of the dairy product included in the tool, with each option differentiated based on specific detail level of process or plant, i.e., 1) plant level; 2) process-group level, and 3) process-step level. For each detail level, the tool accounts for differences in production and other variablesmore » affecting energy use in dairy processes. The dairy products include cheese, fluid milk, butter, milk powder, etc. The BEST-Dairy tool can be applied to a wide range of dairy facilities to provide energy and water savings estimates, which are based upon the comparisons with the best available reference cases that were established through reviewing information from international and national samples. We have performed and completed alpha- and beta-testing (field testing) of the BEST-Dairy tool, through which feedback from voluntary users in the U.S. dairy industry was gathered to validate and improve the tool's functionality. BEST-Dairy v1.2 was formally published in May 2011, and has been made available for free downloads from the internet (i.e., http://best-dairy.lbl.gov). A user's manual has been developed and published as the companion documentation for use with the BEST-Dairy tool. In addition, we also carried out technology transfer activities by engaging the dairy industry in the process of tool development and testing, including field testing, technical presentations, and technical assistance throughout the project. To date, users from more than ten countries in addition to those in the U.S. have downloaded the BEST-Dairy from the LBNL website. It is expected that the use of BEST-Dairy tool will advance understanding of energy and water usage in individual dairy plants, augment benchmarking activities in the market places, and facilitate implementation of efficiency measures and strategies to save energy and water usage in the dairy industry. Industrial adoption of this emerging tool and technology in the market is expected to benefit dairy plants, which are important customers of California utilities. Further demonstration of this benchmarking tool is recommended, for facilitating its commercialization and expansion in functions of the tool. Wider use of this BEST-Dairy tool and its continuous expansion (in functionality) will help to reduce the actual consumption of energy and water in the dairy industry sector. The outcomes comply very well with the goals set by the AB 1250 for PIER program.« less

  7. Modelling of THM formation potential and DOM removal based on drinking water catchment characteristics.

    PubMed

    Awad, John; Fisk, Claire A; Cox, Jim W; Anderson, Sharolyn J; van Leeuwen, John

    2018-09-01

    Catchment properties influence the character and concentration of dissolved organic matter (DOM). Surface and subsurface runoff from discrete catchments were collected and DOM was measured and assessed in terms of its treatability by Enhanced Coagulation and potential for disinfection by-product (trihalomethane, THMFP) formation potential. Models were developed of [1] DOM character [i.e. SUVA and SpCoL] and concentration (measured as dissolved organic carbon), [2] treatability of DOM by coagulation/flocculation processes and [3] specific THMFP based on the catchment features including: (a) surface and sub-surface soil texture (% clay: 5-25%), (b) topography (% slope: 5-15%) and (c) vegetation cover [i.e. high photosynthetic vegetation, low photosynthetic vegetation and bare soil] extracted from RapidEye satellite imagery using spectral mixture analysis. From these models, a catchment management decision support tool was designed for application by catchment managers to support decision-making of land-use and expected water quality related to water resources for drinking water supply. Data sets used for models developing presented in this paper have been published in Research Data Australia (RDA) under the title of "Impacts of catchment properties on DOM and nutrients in waters from drinking water catchments". 1 These data sets are available in open access and published in June 2017. A catchment management decision support model (CMDSM) tool was developed. Macros created using Visual Basic for Applications in Excel 2010. Excel 2010 or higher is required to open the CMDSM tool. The tool is provided by the University of South Australia (UniSA) and is not currently available on-line so please contact the corresponding author for access or further information. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  8. A streamlined sustainability assessment tool for improved decision making in the urban water industry.

    PubMed

    Schulz, Matthias; Short, Michael D; Peters, Gregory M

    2012-01-01

    Water supply is a key consideration in sustainable urban planning. Ideally, detailed quantitative sustainability assessments are undertaken during the planning stage to inform the decision-making process. In reality, however, the significant time and cost associated with undertaking such detailed environmental and economic assessments is often cited as a barrier to wider implementation of these key decision support tools, particularly for decisions made at the local or regional government level. In an attempt to overcome this barrier of complexity, 4 water service providers in Melbourne, Australia, funded the development of a publicly available streamlined Environmental Sustainability Assessment Tool, which is aimed at a wide range of decision makers to assist them in broadening the type and number of water servicing options that can be considered for greenfield or backlog developments. The Environmental Sustainability Assessment Tool consists of a simple user interface and draws on life cycle inventory data to allow for rapid estimation of the environmental and economic performance of different water servicing scenarios. Scenario options can then be further prioritized by means of an interactive multicriteria analysis. The intent of this article is to identify the key issues to be considered in a streamlined sustainability assessment tool for the urban water industry, and to demonstrate the feasibility of generating accurate life cycle assessments and life cycle costings, using such a tool. We use a real-life case study example consisting of 3 separate scenarios for a planned urban development to show that this kind of tool can emulate life cycle assessments and life cycle costings outcomes obtained through more detailed studies. This simplified approach is aimed at supporting "sustainability thinking" early in the decision-making process, thereby encouraging more sustainable water and sewerage infrastructure solutions. Copyright © 2011 SETAC.

  9. Modelling raw water quality: development of a drinking water management tool.

    PubMed

    Kübeck, Ch; van Berk, W; Bergmann, A

    2009-01-01

    Ensuring future drinking water supply requires a tough management of groundwater resources. However, recent practices of economic resource control often does not involve aspects of the hydrogeochemical and geohydraulical groundwater system. In respect of analysing the available quantity and quality of future raw water, an effective resource management requires a full understanding of the hydrogeochemical and geohydraulical processes within the aquifer. For example, the knowledge of raw water quality development within the time helps to work out strategies of water treatment as well as planning finance resources. On the other hand, the effectiveness of planed measurements reducing the infiltration of harmful substances such as nitrate can be checked and optimized by using hydrogeochemical modelling. Thus, within the framework of the InnoNet program funded by Federal Ministry of Economics and Technology, a network of research institutes and water suppliers work in close cooperation developing a planning and management tool particularly oriented on water management problems. The tool involves an innovative material flux model that calculates the hydrogeochemical processes under consideration of the dynamics in agricultural land use. The program integrated graphical data evaluation is aligned on the needs of water suppliers.

  10. Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers

    USGS Publications Warehouse

    Archfield, Stacey A.; Steeves, Peter A.; Guthrie, John D.; Ries, Kernell G.

    2013-01-01

    Streamflow information is critical for addressing any number of hydrologic problems. Often, streamflow information is needed at locations that are ungauged and, therefore, have no observations on which to base water management decisions. Furthermore, there has been increasing need for daily streamflow time series to manage rivers for both human and ecological functions. To facilitate negotiation between human and ecological demands for water, this paper presents the first publicly available, map-based, regional software tool to estimate historical, unregulated, daily streamflow time series (streamflow not affected by human alteration such as dams or water withdrawals) at any user-selected ungauged river location. The map interface allows users to locate and click on a river location, which then links to a spreadsheet-based program that computes estimates of daily streamflow for the river location selected. For a demonstration region in the northeast United States, daily streamflow was, in general, shown to be reliably estimated by the software tool. Estimating the highest and lowest streamflows that occurred in the demonstration region over the period from 1960 through 2004 also was accomplished but with more difficulty and limitations. The software tool provides a general framework that can be applied to other regions for which daily streamflow estimates are needed.

  11. THE STORM WATER MANAGEMENT MODEL (SWMM) AND RELATED WATERSHED TOOLS DEVELOPMENT

    EPA Science Inventory

    The Storm Water Management Model (SWMM) is a dynamic rainfall-runoff simulation model used for single event or long-term (continuous) simulation of runoff quantity and quality from primarily urban areas. It is the only publicly available model capable of performing a comprehensiv...

  12. HydroClimATe: hydrologic and climatic analysis toolkit

    USGS Publications Warehouse

    Dickinson, Jesse; Hanson, Randall T.; Predmore, Steven K.

    2014-01-01

    The potential consequences of climate variability and climate change have been identified as major issues for the sustainability and availability of the worldwide water resources. Unlike global climate change, climate variability represents deviations from the long-term state of the climate over periods of a few years to several decades. Currently, rich hydrologic time-series data are available, but the combination of data preparation and statistical methods developed by the U.S. Geological Survey as part of the Groundwater Resources Program is relatively unavailable to hydrologists and engineers who could benefit from estimates of climate variability and its effects on periodic recharge and water-resource availability. This report documents HydroClimATe, a computer program for assessing the relations between variable climatic and hydrologic time-series data. HydroClimATe was developed for a Windows operating system. The software includes statistical tools for (1) time-series preprocessing, (2) spectral analysis, (3) spatial and temporal analysis, (4) correlation analysis, and (5) projections. The time-series preprocessing tools include spline fitting, standardization using a normal or gamma distribution, and transformation by a cumulative departure. The spectral analysis tools include discrete Fourier transform, maximum entropy method, and singular spectrum analysis. The spatial and temporal analysis tool is empirical orthogonal function analysis. The correlation analysis tools are linear regression and lag correlation. The projection tools include autoregressive time-series modeling and generation of many realizations. These tools are demonstrated in four examples that use stream-flow discharge data, groundwater-level records, gridded time series of precipitation data, and the Multivariate ENSO Index.

  13. Exploring the Components of the Palmer Drought Indices Using the Apalachicola-Chattahoochee-Flint (ACF) River Basin as a Case Study

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Duncan, L. L.; Jacobi, J. H.; Hornberger, G.

    2012-12-01

    Water resources are vital to sustaining ecosystem services, energy and food supplies, and industrial processes. Competition for water resources is likely to intensify as the population increases, economy grows, and land develops. Drought events intensify water scarcity, and recent events in many countries, including the United States (US), Great Britain, and Sri Lanka, highlight how important it is to provide meaningful context to water planners and managers. Palmer's drought indices - Z Index, Palmer Drought Severity Index (PDSI), and Palmer Hydrological Drought Index (PHDI) - are widely used and accepted by scientists and policy makers in the US to understand drought and manage water resources. Drought index values at the climate division scale are available, but a transparent calculation tool at multiple spatial and temporal scales is not readily available. Moreover, a close look at the development of the indices reveals a number of subjective calculation methods and regionally biased factors. For researchers studying areas with overlapping climate divisions, performing international research, or working with limited, site-specific data, the ability to control and modify calculations is desired. This research presents a transparent tool for calculating Palmer's drought indices. We use the Apalachicola-Chattahoochee-Flint (ACF) River Basin, located in the southeastern US, as our case study to explore and evaluate the sensitivity of Palmer's indices to temperature and precipitation anomalies, calibration periods, and other index components. The ACF has suffered two major droughts (2007 and 2012) in the past five years and supports multiple demand-side sectors - agriculture in Georgia, public and recreational supply for the Atlanta metropolitan area, hydroelectric power in Alabama, tri-state navigation, and ecosystem services. We show how the PDSI varies in response to changes in precipitation, calibration period, and a number of other variables. The aim of the work is to make this easily used tool available to help professionals who work toward facilitating water management and reducing water conflicts in the future.

  14. A triangular fuzzy TOPSIS-based approach for the application of water technologies in different emergency water supply scenarios.

    PubMed

    Qu, Jianhua; Meng, Xianlin; Yu, Huan; You, Hong

    2016-09-01

    Because of the increasing frequency and intensity of unexpected natural disasters, providing safe drinking water for the affected population following a disaster has become a global challenge of growing concern. An onsite water supply technology that is portable, mobile, or modular is a more suitable and sustainable solution for the victims than transporting bottled water. In recent years, various water techniques, such as membrane-assisted technologies, have been proposed and successfully implemented in many places. Given the diversity of techniques available, the current challenge is how to scientifically identify the optimum options for different disaster scenarios. Hence, a fuzzy triangular-based multi-criteria, group decision-making tool was developed in this research. The approach was then applied to the selection of the most appropriate water technologies corresponding to the different emergency water supply scenarios. The results show this tool capable of facilitating scientific analysis in the evaluation and selection of emergency water technologies for enduring security drinking water supply in disaster relief.

  15. BP Spill Sampling and Monitoring Data April-September 2010 - Data Download Tool

    EPA Pesticide Factsheets

    This dataset analyzes waste from the the British Petroleum Deepwater Horizon Rig Explosion Emergency Response, providing opportunity to query data sets by metadata criteria and find resulting raw datasets in CSV format.The data query tool allows users to download air, water and sediment sampling and monitoring data that has been collected in response to the BP oil spill. All sampling and monitoring data that has been collected to date is available for download as raw structured data.The query tools enables CSV file creation to be refined based on the following search criteria: date range (between April 28, 2010 and 9/29/2010); location by zip, city, or county; media (solid waste, weathered oil, air, surface water, liquid waste, tar, sediment, water); substance categories (based on media selection) and substances (based on substance category selection).

  16. Modelling the role of forests on water provision services: a hydro-economic valuation approach

    NASA Astrophysics Data System (ADS)

    Beguería, S.; Campos, P.

    2015-12-01

    Hydro-economic models that allow integrating the ecological, hydrological, infrastructure, economic and social aspects into a coherent, scientifically- informed framework constitute preferred tools for supporting decision making in the context of integrated water resources management. We present a case study of water regulation and provision services of forests in the Andalusia region of Spain. Our model computes the physical water flows and conducts an economic environmental income and asset valuation of forest surface and underground water yield. Based on available hydrologic and economic data, we develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is integrated within a much larger project aiming at providing a robust and easily replicable accounting tool to evaluate yearly the total income and capital of forests, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). We also force our simulation with future socio-economic scenarios to quantify the physical and economic efects of expected trends or simulated public and private policies on future water resources. Only a comprehensive integrated tool may serve as a basis for the development of integrated policies, such as those internationally agreed and recommended for the management of water resources.

  17. Assessing groundwater availability in the Northern Atlantic Coastal Plain aquifer system

    USGS Publications Warehouse

    Masterson, John P.; Pope, Jason P.; Monti, Jack; Nardi, Mark R.

    2011-01-01

    The U.S. Geological Survey's Groundwater Resources Program is conducting an assessment of groundwater availability throughout the United States to gain a better understanding of the status of the Nation's groundwater resources and how changes in land use, water use, and climate may affect those resources. The goal of this National assessment is to improve our ability to forecast water availability for future economic and environmental uses. Assessments will be completed for the Nation's principal aquifer systems to help characterize how much water is currently available, how water availability is changing, and how much water we can expect to have in the future (Reilly and others, 2008). The concept of groundwater availability is more than just how much water can be pumped from any given aquifer. Groundwater availability is a function of many factors, including the quantity and quality of water and the laws, regulations, economics, and environmental factors that control its use. The primary objective of the North Atlantic Coastal Plain groundwater-availability study is to identify spatial and temporal changes in the overall water budget by more fully determining the natural and human processes that control how water enters, moves through, and leaves the groundwater system. Development of tools such as numerical models can help hydrologists gain an understanding of this groundwater system, allowing forecasts to be made about the response of this system to natural and human stresses, and water quality and ecosystem health to be analyzed, throughout the region.

  18. A vulnerability tool for adapting water and aquatic resources to climate change and extremes on the Shoshone National Forest, Wyoming

    NASA Astrophysics Data System (ADS)

    Rice, J.; Joyce, L. A.; Armel, B.; Bevenger, G.; Zubic, R.

    2011-12-01

    Climate change introduces a significant challenge for land managers and decision makers managing the natural resources that provide many benefits from forests. These benefits include water for urban and agricultural uses, wildlife habitat, erosion and climate control, aquifer recharge, stream flows regulation, water temperature regulation, and cultural services such as outdoor recreation and aesthetic enjoyment. The Forest Service has responded to this challenge by developing a national strategy for responding to climate change (the National Roadmap for Responding to Climate Change, July 2010). In concert with this national strategy, the Forest Service's Westwide Climate Initiative has conducted 4 case studies on individual Forests in the western U.S to develop climate adaptation tools. Western National Forests are particularly vulnerable to climate change as they have high-mountain topography, diversity in climate and vegetation, large areas of water limited ecosystems, and increasing urbanization. Information about the vulnerability and capacity of resources to adapt to climate change and extremes is lacking. There is an urgent need to provide customized tools and synthesized local scale information about the impacts to resources from future climate change and extremes, as well as develop science based adaptation options and strategies in National Forest management and planning. The case study on the Shoshone National Forest has aligned its objectives with management needs by developing a climate extreme vulnerability tool that guides adaptation options development. The vulnerability tool determines the likely degree to which native Yellowstone cutthroat trout and water availability are susceptible to, or unable to cope with adverse effects of climate change extremes. We spatially categorize vulnerability for water and native trout resources using exposure, sensitivity, and adaptive capacity indicators that use minimum and maximum climate and GIS data. Results show that the vulnerability of water availability may increase in areas that have less storage and become more dominated by rain instead of snow. Native trout habitat was found to improve in some areas from warmer temperatures suggesting future refugia habitat may need to be a focus of conservation efforts. The climate extreme vulnerability tool provides Forest Service resource managers science based information that guides adaptation strategy development; prioritize conservation projects; guides monitoring efforts, and helps promote more resilient ecosystems undergoing the effects of climate change.

  19. Ecophysiology and genetic variation in domestication of Sphaeralcea and Shepherdia species for the Intermountain West

    Treesearch

    Chalita Sriladda

    2011-01-01

    Low-water landscaping is an essential tool for water conservation in the arid Intermountain West (IMW) for managing limited supplies and population-driven increased demand. The IMW harbors a large number of drought-tolerant native species that have potential for use in the low-water use landscape (LWL). However, many species are not available in the nursery trade due...

  20. On the several molecules and nanostructures of water.

    PubMed

    Whitney, Cynthia Kolb

    2012-01-01

    This paper investigates the water molecule from a variety of viewpoints. Water can involve different isotopes of Hydrogen and Oxygen, it can form differently shaped isomer molecules, and, when frozen, it occupies space differently than most other substances do. The tool for conducting the investigation of all this is called 'Algebraic Chemistry'. This tool is a quantitative model for predicting the energy budget for all sorts of changes between different ionization states of atoms that are involved in chemical reactions and in changes of physical state. The model is based on consistent patterns seen in empirical data about ionization potentials, together with rational scaling laws that can interpolate and extrapolate for situations where no data are available. The results of the investigation of the water molecule include comments, both positive and negative, about technologies involving heavy water, poly water, Brown's gas, and cold fusion.

  1. On the Several Molecules and Nanostructures of Water

    PubMed Central

    Whitney, Cynthia Kolb

    2012-01-01

    This paper investigates the water molecule from a variety of viewpoints. Water can involve different isotopes of Hydrogen and Oxygen, it can form differently shaped isomer molecules, and, when frozen, it occupies space differently than most other substances do. The tool for conducting the investigation of all this is called ‘Algebraic Chemistry’. This tool is a quantitative model for predicting the energy budget for all sorts of changes between different ionization states of atoms that are involved in chemical reactions and in changes of physical state. The model is based on consistent patterns seen in empirical data about ionization potentials, together with rational scaling laws that can interpolate and extrapolate for situations where no data are available. The results of the investigation of the water molecule include comments, both positive and negative, about technologies involving heavy water, poly water, Brown’s gas, and cold fusion. PMID:22312305

  2. BASINs 4.0 Climate Assessment Tool (CAT): Supporting ...

    EPA Pesticide Factsheets

    EPA announced the availability of the report, BASINS 4.0 Climate Assessment Tool (CAT): Supporting Documentation and User's Manual. This report was prepared by the EPA's Global Change Research Program (GCRP), an assessment-oriented program, that sits within the Office of Research and Development, that focuses on assessing how potential changes in climate and other global environmental stressors may impact water quality, air quality, aquatic ecosystems, and human health in the United States. The Program’s focus on water quality is consistent with the Research Strategy of the U.S. Climate Change Research Program—the federal umbrella organization for climate change science in the U.S. government—and is responsive to U.S. EPA’s mission and responsibilities as defined by the Clean Water Act and the Safe Drinking Water Act. A central goal of the EPA GCRP is to provide EPA program offices, Regions, and other stakeholders with tools and information for assessing and responding to any potential future impacts of climate change. In 2007, the EPA Global Change Research Program (GCRP), in partnership with the EPA Office of Water, supported development of a Climate Assessment Tool (CAT) for version 4 of EPA’s BASINS modeling system. This report provides supporting documentation and user support materials for the BASINS CAT tool. The purpose of this report is to provide in a single document a variety of documentation and user support materials supporting the use

  3. Study of water supply & sanitation practices in India using geographic information systems: some design & other considerations in a village setting.

    PubMed

    Gopal, Srila; Sarkar, Rajiv; Banda, Kalyan; Govindarajan, Jeyanthi; Harijan, B B; Jeyakumar, M B; Mitta, Philip; Sadanala, M E; Selwyn, Tryphena; Suresh, C R; Thomas, V A; Devadason, Pethuru; Kumar, Ranjit; Selvapandian, David; Kang, Gagandeep; Balraj, Vinohar

    2009-03-01

    Availability of clean water and adequate sanitation facilities are of prime importance for limiting diarrhoeal diseases. We examined the water and sanitation facilities of a village in southern India using geographic information system (GIS) tools. Places of residence, water storage and distribution, sewage and places where people in the village defaecated were mapped and drinking water sources were tested for microbial contamination in Nelvoy village, Vellore district, Tamil Nadu. Water in the village was found to be microbiologically unfit for consumption. Analysis using direct observations supplemented by GIS maps revealed poor planning, poor engineering design and lack of policing of the water distribution system causing possible contamination of drinking water from sewage at multiple sites. Until appropriate engineering designs for water supply and sewage disposal to suit individual village needs are made available, point-of-use water disinfection methods could serve as an interim solution.

  4. The Massachusetts Sustainable-Yield Estimator: A decision-support tool to assess water availability at ungaged stream locations in Massachusetts

    USGS Publications Warehouse

    Archfield, Stacey A.; Vogel, Richard M.; Steeves, Peter A.; Brandt, Sara L.; Weiskel, Peter K.; Garabedian, Stephen P.

    2010-01-01

    Federal, State and local water-resource managers require a variety of data and modeling tools to better understand water resources. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a statewide, interactive decision-support tool to meet this need. The decision-support tool, referred to as the Massachusetts Sustainable-Yield Estimator (MA SYE) provides screening-level estimates of the sustainable yield of a basin, defined as the difference between the unregulated streamflow and some user-specified quantity of water that must remain in the stream to support such functions as recreational activities or aquatic habitat. The MA SYE tool was designed, in part, because the quantity of surface water available in a basin is a time-varying quantity subject to competing demands for water. To compute sustainable yield, the MA SYE tool estimates a daily time series of unregulated, daily mean streamflow for a 44-year period of record spanning October 1, 1960, through September 30, 2004. Selected streamflow quantiles from an unregulated, daily flow-duration curve are estimated by solving six regression equations that are a function of physical and climate basin characteristics at an ungaged site on a stream of interest. Streamflow is then interpolated between the estimated quantiles to obtain a continuous daily flow-duration curve. A time series of unregulated daily streamflow subsequently is created by transferring the timing of the daily streamflow at a reference streamgage to the ungaged site by equating exceedence probabilities of contemporaneous flow at the two locations. One of 66 reference streamgages is selected by kriging, a geostatistical method, which is used to map the spatial relation among correlations between the time series of the logarithm of daily streamflows at each reference streamgage and the ungaged site. Estimated unregulated, daily mean streamflows show good agreement with observed unregulated, daily mean streamflow at 18 streamgages located across southern New England. Nash-Sutcliffe efficiency goodness-of-fit values are between 0.69 and 0.98, and percent root-mean-square-error values are between 19 and 283 percent. The MA SYE tool provides an estimate of streamflow adjusted for current (2000-04) water withdrawals and discharges using a spatially referenced database of permitted groundwater and surface-water withdrawal and discharge volumes. For a user-selected basin, the database is queried to obtain the locations of water withdrawal or discharge volumes within the basin. Groundwater and surface-water withdrawals and discharges are subtracted and added, respectively, from the unregulated, daily streamflow at an ungaged site to obtain a streamflow time series that includes the effects of these withdrawals and discharges. Users also have the option of applying an analytical solution to the time-varying, groundwater withdrawal and discharge volumes that take into account the effects of the aquifer properties on the timing and magnitude of streamflow alteration. For the MA SYE tool, it is assumed that groundwater and surface-water divides are coincident. For areas of southeastern Massachusetts and Cape Cod where this assumption is known to be violated, groundwater-flow models are used to estimate average monthly streamflows at fixed locations. There are several limitations to the quality and quantity of the spatially referenced database of groundwater and surface-water withdrawals and discharges. The adjusted streamflow values do not account for the effects on streamflow of climate change, septic-system discharge, impervious area, non-public water-supply withdrawals less than 100,000 gallons per day, and impounded surface-water bodies.

  5. Implementing the 40 Gallon Challenge to Increase Water Conservation

    ERIC Educational Resources Information Center

    Sheffield, Mary Carol; Bauske, Ellen; Pugliese, Paul; Kolich, Heather; Boellstorff, Diane

    2016-01-01

    The 40 Gallon Challenge is an easy-to-use, comprehensive indoor and outdoor water conservation educational tool. It can be used nationwide and easily incorporated into existing educational programs. Promotional materials and pledge cards are available on the 40 Gallon Challenge website and can be modified by educators. The website displays data…

  6. C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations

    USDA-ARS?s Scientific Manuscript database

    The temptation to include model parameters and high resolution input data together with the availability of powerful optimization and uncertainty analysis algorithms has significantly enhanced the complexity of hydrologic and water quality modeling. However, the ability to take advantage of sophist...

  7. BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony

    2005-10-15

    Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool formore » the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.« less

  8. Techniques to Access Databases and Integrate Data for Hydrologic Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, Gene; Tenney, Nathan D.; Pelton, Mitchell A.

    2009-06-17

    This document addresses techniques to access and integrate data for defining site-specific conditions and behaviors associated with ground-water and surface-water radionuclide transport applicable to U.S. Nuclear Regulatory Commission reviews. Environmental models typically require input data from multiple internal and external sources that may include, but are not limited to, stream and rainfall gage data, meteorological data, hydrogeological data, habitat data, and biological data. These data may be retrieved from a variety of organizations (e.g., federal, state, and regional) and source types (e.g., HTTP, FTP, and databases). Available data sources relevant to hydrologic analyses for reactor licensing are identified and reviewed.more » The data sources described can be useful to define model inputs and parameters, including site features (e.g., watershed boundaries, stream locations, reservoirs, site topography), site properties (e.g., surface conditions, subsurface hydraulic properties, water quality), and site boundary conditions, input forcings, and extreme events (e.g., stream discharge, lake levels, precipitation, recharge, flood and drought characteristics). Available software tools for accessing established databases, retrieving the data, and integrating it with models were identified and reviewed. The emphasis in this review was on existing software products with minimal required modifications to enable their use with the FRAMES modeling framework. The ability of four of these tools to access and retrieve the identified data sources was reviewed. These four software tools were the Hydrologic Data Acquisition and Processing System (HDAPS), Integrated Water Resources Modeling System (IWRMS) External Data Harvester, Data for Environmental Modeling Environmental Data Download Tool (D4EM EDDT), and the FRAMES Internet Database Tools. The IWRMS External Data Harvester and the D4EM EDDT were identified as the most promising tools based on their ability to access and retrieve the required data, and their ability to integrate the data into environmental models using the FRAMES environment.« less

  9. Application of a Groundwater Modeling Tool for Managing Hydrologically Connected Area in State of Nebraska, US

    NASA Astrophysics Data System (ADS)

    Li, R.; Flyr, B.; Bradley, J.; Pun, M.; Schneider, J.; Wietjes, J.; Chinta, S.

    2014-12-01

    Determination of the nature and degree of hydrologically connected groundwater and surface water resources is of paramount importance to integrated water management within the State of Nebraska to understand the impact of water uses on available supplies, such as depletion of streams and aquifers caused by groundwater pumping. The ability to quantify effects of surface water-groundwater hydrologic connection and interactions, is regarded as one of the most important steps towards effectively managing water resources in Nebraska and provides the basis for designating management areas. Designation of management areas allows the state and other management entities to focus various efforts and resources towards those projects that have the greatest impact to water users. Nebraska Department of Natural Resources (NDNR) developed a groundwater modeling tool, Cycle Well Analysis, to determine the areas defined to have a high degree of connectivity between groundwater and surface water (in accordance with the state regulations). This tool features two graphic user interfaces to allow the analysis to be fully compatible with most MODFLOW-based numerical groundwater models currently utilized by NDNR. Case studies showed that the tool, in combination of Geographic Information Systems (GIS), can be used to quantify the degree of stream depletion and delineate the boundary of hydrologically connected areas within different political boundaries and subbasins in Nebraska. This approach may be applied to other regions with similar background and need for integrated water management.

  10. Monitoring Cyanobacteria with Satellites Webinar

    EPA Pesticide Factsheets

    real-world satellite applications can quantify cyanobacterial harmful algal blooms and related water quality parameters. Provisional satellite derived cyanobacteria data and different software tools are available to state environmental and health agencies.

  11. IASMHYN: A web tool for mapping Soil Water Budget and agro-hydrological assessment trough the integration of monitoring and remote sensing data

    NASA Astrophysics Data System (ADS)

    Bagli, Stefano; Pistocchi, Alberto; Mazzoli, Paolo; Borga, Marco; Bertoldi, Giacomo; Brenner, Johannes; Luzzi, Valerio

    2016-04-01

    Climate change, increasing pressure on farmland to satisfy the growing demand, and need to ensure environmental quality for agriculture in order to be competitive require an increasing capacity of water management. In this context, web-based for forecasting and monitoring the hydrological conditions of topsoil can be an effective means to save water, maximize crop protection and reduce soil loss and the leaching of pollutants. Such tools need to be targeted to the users and be accessible in a simple way in order to allow adequate take up in the practice. IASMHYN "Improved management of Agricultural Systems by Monitoring and Hydrological evaluation" is a web mapping service designed to provide and update on a daily basis the main water budget variables for farmland management. A beta version of the tool is available at www.gecosistema.com/iasmhyn . IASMHYN is an instrument for "second level monitoring" that takes into account accurate hydro-meteorological information's from ground stations and remote sensing sources, and turns them into practically usable decision variables for precision farming, making use of geostatistical analysis and hydrological models The main routines embedded in IASMYHN exclusively use open source libraries (R packages and Python), to perform following operations: (1) Automatic acquisition of observed data, both from ground stations and remote sensing, concerning precipitation (RADAR) and temperature (MODIS-LST) available from various sources; (2) Interpolation of acquisitions through regression kriging in order to spatially map the meteorological data; (3) Run of hydrological models to obtain spatial information of hydrological soil variables of immediate interest in agriculture. The real time results that are produced are available trough a web interface and provide the user with spatial maps and time series of the following variables, supporting decision on irrigation, soil protection from erosion, pollution risk of groundwater and streams: - Daily precipitation and its characteristics (rain, snow or hail, rain erosiveness); - Maximum, minimum and average daily temperature; - Soil Water Content (SWC); - Infiltration into the deep layers of the soil and surface runoff; - Potential loss of soil due to erosion - Residence time of a possible chemical (pesticides, fertilizers) applied to the soil. Thematic real time maps are produced give the user support decision on irrigation, soil management and pesticide/fertilizer application. The ongoing project will also lead to validation and improvement of estimates of hydrological variables from satellite imagery and radar data. The tool has been cross-validated with estimates of evapotranspiration and soil water content in agricultural sites in South Tyrol (Italy) in the framework of MONALISA project (http://www.monalisa-project.eu). A comparison with physical based models, satellite imagery and radar data will allow further generalization of the product. The ultimate goal of the tool is to make available on the market a service that is generally applicable in Europe , using commonly available data, to provide single farmers and organizations effective and up to date information for planning and programming their activities.

  12. Watershed Dynamics: Using Web-based GIS to Access Data and Study the Hydrosphere

    NASA Astrophysics Data System (ADS)

    Buzby, C. K.; Jona, K.

    2010-12-01

    The Watershed Dynamics project has developed online GIS tools and curriculum to provide high school earth science students with access to data and analysis tools to perform investigations on their local watershed. Using FieldScope web-based GIS tools from National Geographic, students investigate precipitation, stream discharge, and land cover data for the US. Students use the data to study water availability across the US and the world, human impacts on the watershed, and more. Curriculum developers at the Office of STEM Education Partnerships (OSEP) at Northwestern University and the GLOBE Program have created two complete units which scaffold students on their way to independent research using GIS. In the Water Availability unit, students work with precipitation, evaporation, and surface runoff to investigate the water cycle and how it varies regionally and seasonally. In the Human Impact unit, students analyze land cover change over time and investigate stream discharge to figure out how humans are impacting their watershed. These units can be used together or individually, but provide students progressively more research independence, leading them to ask their own questions about the watershed using GIS data. Both units have been pilot tested in high school classrooms and found to be successful at increasing student content knowledge about the water cycle. They are being modified for use at the undergraduate level. The web-based GIS interface has the functionality of desktop GIS, but allows for a simpler user-experience and direct links to relevant data. Students can use these tools to learn scientific content and as a stepping-stone for further GIS investigations.

  13. Assessment of lesser prairie-chicken use of wildlife water guzzlers

    USGS Publications Warehouse

    Boal, Clint W.; Borsdorf, Philip K.; Gicklhorn, Trevor S.

    2014-01-01

    Man-made water sources have been used as a management tool for wildlife, especially in arid regions, but the value of these water sources for wildlife populations is not well understood. In particular, the value of water as a conservation tool for Lesser Prairie-Chickens (Tympanuchus pallidicinctus) is unknown. However, this is a relevant issue due to a heightened conservation concern for the species and its occupancy of an arid landscape anticipated to experience warmer, drier springs and winters. We assessed if Lesser Prairie-Chickens would use commercially available wildlife water guzzlers and if there was any apparent selection between two design types. We confirmed that Lesser Prairie-Chickens would use bird friendly designed wildlife water guzzlers. Use was primarily during the lekking-nesting period (March–May) and the brood rearing period (June–July) and primarily by males. Although both designs were used, we found significantly greater use of a design that had a wider water trough and ramp built into the tank cover compared to a design that had a longer, narrower trough extending from the tank.Although we were unable to assess the physiological need of surface water by Lesser Prairie-Chickens, we were able to verify that they will use wildlife water guzzlers to access surface water. If it is found surface water is beneficial for Lesser Prairie-Chickens, game bird friendly designed guzzlers may be a useful conservation tool for the species.

  14. Toolkit of Available EPA Green Infrastructure Modeling ...

    EPA Pesticide Factsheets

    This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC). This webinar will present a toolkit consisting of five EPA green infrastructure models and tools, along with communication material. This toolkit can be used as a teaching and quick reference resource for use by planners and developers when making green infrastructure implementation decisions. It can also be used for low impact development design competitions. Models and tools included: Green Infrastructure Wizard (GIWiz), Watershed Management Optimization Support Tool (WMOST), Visualizing Ecosystem Land Management Assessments (VELMA) Model, Storm Water Management Model (SWMM), and the National Stormwater Calculator (SWC).

  15. Hydrological Modelling of The Guadiana Basin

    NASA Astrophysics Data System (ADS)

    Conan, C.; Bouraoui, F.; de Marsily, G.; Bidoglio, G.

    Increased anthropogenic activities such as agriculture, irrigation, industry, mining, ur- ban water supply and sewage treatment, have created significant environmental prob- lems. To ensure sustainable development of water resources, water managers need new strategies and suitable tools. In particular it is often compulsory that surface wa- ter and groundwater be managed simultaneously both in terms of quantity and quality at catchment scales. To this purpose, a model coupling SWAT (Soil and Water As- sessment Tool) and MODFLOW (Modular 3-D Flow model) was developed. SWAT is a quasi-distributed watershed model with a GIS interface that outlines the sub-basins and stream networks from a Digital Elevation Model (DEM) and calculates daily wa- ter balances from meteorological data, soil and land-use characteristics. The particular advantage of this model, compared to other fully distributed physically based mod- els, is that it requires a small amount of readily available input data. MODFLOW is a fully distributed model that calculates groundwater flow from aquifer characteris- tics. We have adapted this new coupled model SWAT-MODFLOW to a Mediterranean catchment, the Guadiana basin, and present the first results of this work. Only wa- ter quantity results are available at this stage. The validation consisted in comparing measured and predicted daily flow at the catchment and sub-catchment outlets for the period 1970-1995. The model accurately reproduced the decrease of the piezometric level, due to increased water abstraction, and the exchanges between surface water and ground-water. The sensitivity of the model to irrigation practices was evaluated. The usefulness of this model as a management tool has been illustrated through the analysis of alternative scenarios of agricultural practices and climate change.

  16. Modeling the Gila-San Francisco Basin using system dynamics in support of the 2004 Arizona Water Settlement Act.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tidwell, Vincent Carroll; Sun, Amy Cha-Tien; Peplinski, William J.

    2012-04-01

    Water resource management requires collaborative solutions that cross institutional and political boundaries. This work describes the development and use of a computer-based tool for assessing the impact of additional water allocation from the Gila River and the San Francisco River prescribed in the 2004 Arizona Water Settlements Act. Between 2005 and 2010, Sandia National Laboratories engaged concerned citizens, local water stakeholders, and key federal and state agencies to collaboratively create the Gila-San Francisco Decision Support Tool. Based on principles of system dynamics, the tool is founded on a hydrologic balance of surface water, groundwater, and their associated coupling between watermore » resources and demands. The tool is fitted with a user interface to facilitate sensitivity studies of various water supply and demand scenarios. The model also projects the consumptive use of water in the region as well as the potential CUFA (Consumptive Use and Forbearance Agreement which stipulates when and where Arizona Water Settlements Act diversions can be made) diversion over a 26-year horizon. Scenarios are selected to enhance our understanding of the potential human impacts on the rivers ecological health in New Mexico; in particular, different case studies thematic to water conservation, water rights, and minimum flow are tested using the model. The impact on potential CUFA diversions, agricultural consumptive use, and surface water availability are assessed relative to the changes imposed in the scenarios. While it has been difficult to gage the acceptance level from the stakeholders, the technical information that the model provides are valuable for facilitating dialogues in the context of the new settlement.« less

  17. Open data for water-related operational services, the SWITCH-ON approach

    NASA Astrophysics Data System (ADS)

    Mazzoli, Paolo; Bagli, Stefano; Valerio, Luzzi; Broccoli, Davide; Piccinini, Francesca

    2017-04-01

    Recently, a collaborative project started called SWITCH-ON (EU FP7 project No 603587) coordinated by SMHI (http://water-switch-on.eu/) as part of the contemporary European movement imposed by the INSPIRE directive and the Open Data Strategy. Among It's R&D activities GECOsistema develops and expands inside SWITCH-ON a set of online services to tackle major water related issues, from reservoir and irrigation supply, to hydrological change adaptation and hydropower potential mapping. Here we present major releases of APRIL, HyCAW and High-resolution European HydroPower Atlas; all of which make intense use of open data. APRIL is a tool for seasonal run-off forecasts, that takes advantage of open datasets or low-cost data and performs forecasts through calibrated machine learning algorithms. HyCAW is a wizard that supports the assessment of adaptation options to cope with change in the temporal distribution of water availability as well as in the total water quantity. EU HPA provides all relevant information necessary to appraise the feasibility of a micro-hydropower plant at a specific site, taking into account hydrological as well as technical and economic factors. All the tools share a common vision of the project to address water concerns and currently untapped potential of open data for improved water management across the EU. Users are guided through a Web GIS interface, created using open source Web Mapping Applications, Open-Layers and Map Server, to explore available hydrological information in the area of interest, plot available data, perform analysis, and get reports and statistics.

  18. 10 CFR 434.601 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... a conventional simulation tool, of the Proposed Design. A life cycle cost analysis shall be used to select the fuel source for the HVAC systems, service hot water, and process loads from available...

  19. A model for evaluating effects of climate, water availability, and water management on wetland impoundments--a case study on Bowdoin, Long Lake, and Sand Lake National Wildlife Refuges

    USGS Publications Warehouse

    Tangen, Brian A.; Gleason, Robert A.; Stamm, John F.

    2013-01-01

    Many wetland impoundments managed by the U.S. Fish and Wildlife Service (USFWS) National Wildlife Refuge System throughout the northern Great Plains rely on rivers as a primary water source. A large number of these impoundments currently are being stressed from changes in water supplies and quality, and these problems are forecast to worsen because of projected changes to climate and land use. For example, many managed wetlands in arid regions have become degraded owing to the long-term accumulation of salts and increased salinity associated with evapotranspiration. A primary goal of the USFWS is to provide aquatic habitats for a diversity of waterbirds; thus, wetland managers would benefit from a tool that facilitates evaluation of wetland habitat quality in response to current and anticipated impacts of altered hydrology and salt balances caused by factors such as climate change, water availability, and management actions. A spreadsheet model that simulates the overall water and salinity balance (WSB model) of managed wetland impoundments is presented. The WSB model depicts various habitat metrics, such as water depth, salinity, and surface areas (inundated, dry), which can be used to evaluate alternative management actions under various water-availability and climate scenarios. The WSB model uses widely available spreadsheet software, is relatively simple to use, relies on widely available inputs, and is readily adaptable to specific locations. The WSB model was validated using data from three National Wildlife Refuges with direct and indirect connections to water resources associated with rivers, and common data limitations are highlighted. The WSB model also was used to conduct simulations based on hypothetical climate and management scenarios to demonstrate the utility of the model for evaluating alternative management strategies and climate futures. The WSB model worked well across a range of National Wildlife Refuges and could be a valuable tool for USFWS staff when evaluating system state and management alternatives and establishing long-term goals and objectives.

  20. Ground-water vulnerability to nitrate contamination in the mid-atlantic region

    USGS Publications Warehouse

    Greene, Earl A.; LaMotte, Andrew E.; Cullinan, Kerri-Ann; Smith, Elizabeth R.

    2005-01-01

    The U.S. Environmental Protection Agency?s (USEPA) Regional Vulnerability Assessment (ReVA) Program has developed a set of statistical tools to support regional-scale, integrated ecological risk-assessment studies. One of these tools, developed by the U.S. Geological Survey (USGS), is used with available water-quality data obtained from USGS National Water-Quality Assessment (NAWQA) and other studies in association with land cover, geology, soils, and other geographic data to develop logistic-regression equations that predict the vulnerability of ground water to nitrate concentrations exceeding specified thresholds in the Mid-Atlantic Region. The models were developed and applied to produce spatial probability maps showing the likelihood of elevated concentrations of nitrate in the region. These maps can be used to identify areas that currently are at risk and help identify areas where ground water has been affected by human activities. This information can be used by regional and local water managers to protect water supplies and identify land-use planning solutions and monitoring programs in these vulnerable areas.

  1. Algae Biofuels Co-Location Assessment Tool for Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2011-11-29

    The Algae Biofuels Co-Location Assessment Tool for Canada uses chemical stoichiometry to estimate Nitrogen, Phosphorous, and Carbon atom availability from waste water and carbon dioxide emissions streams, and requirements for those same elements to produce a unit of algae. This information is then combined to find limiting nutrient information and estimate potential productivity associated with waste water and carbon dioxide sources. Output is visualized in terms of distributions or spatial locations. Distances are calculated between points of interest in the model using the great circle distance equation, and the smallest distances found by an exhaustive search and sort algorithm.

  2. A general framework for a collaborative water quality knowledge and information network.

    PubMed

    Dalcanale, Fernanda; Fontane, Darrell; Csapo, Jorge

    2011-03-01

    Increasing knowledge about the environment has brought about a better understanding of the complexity of the issues, and more information publicly available has resulted into a steady shift from centralized decision making to increasing levels of participatory processes. The management of that information, in turn, is becoming more complex. One of the ways to deal with the complexity is the development of tools that would allow all players, including managers, researchers, educators, stakeholders and the civil society, to be able to contribute to the information system, in any level they are inclined to do so. In this project, a search for the available technology for collaboration, methods of community filtering, and community-based review was performed and the possible implementation of these tools to create a general framework for a collaborative "Water Quality Knowledge and Information Network" was evaluated. The main goals of the network are to advance water quality education and knowledge; encourage distribution and access to data; provide networking opportunities; allow public perceptions and concerns to be collected; promote exchange of ideas; and, give general, open, and free access to information. A reference implementation was made available online and received positive feedback from the community, which also suggested some possible improvements.

  3. A General Framework for a Collaborative Water Quality Knowledge and Information Network

    NASA Astrophysics Data System (ADS)

    Dalcanale, Fernanda; Fontane, Darrell; Csapo, Jorge

    2011-03-01

    Increasing knowledge about the environment has brought about a better understanding of the complexity of the issues, and more information publicly available has resulted into a steady shift from centralized decision making to increasing levels of participatory processes. The management of that information, in turn, is becoming more complex. One of the ways to deal with the complexity is the development of tools that would allow all players, including managers, researchers, educators, stakeholders and the civil society, to be able to contribute to the information system, in any level they are inclined to do so. In this project, a search for the available technology for collaboration, methods of community filtering, and community-based review was performed and the possible implementation of these tools to create a general framework for a collaborative "Water Quality Knowledge and Information Network" was evaluated. The main goals of the network are to advance water quality education and knowledge; encourage distribution and access to data; provide networking opportunities; allow public perceptions and concerns to be collected; promote exchange of ideas; and, give general, open, and free access to information. A reference implementation was made available online and received positive feedback from the community, which also suggested some possible improvements.

  4. A statistical estimation of Snow Water Equivalent coupling ground data and MODIS images

    NASA Astrophysics Data System (ADS)

    Bavera, D.; Bocchiola, D.; de Michele, C.

    2007-12-01

    The Snow Water Equivalent (SWE) is an important component of the hydrologic balance of mountain basins and snow fed areas in general. The total cumulated snow water equivalent at the end of the accumulation season represents the water availability at melt. Here, a statistical methodology to estimate the Snow Water Equivalent, at April 1st, is developed coupling ground data (snow depth and snow density measurements) and MODIS images. The methodology is applied to the Mallero river basin (about 320 km²) located in the Central Alps, northern Italy, where are available 11 snow gauges and a lot of sparse snow density measurements. The application covers 7 years from 2001 to 2007. The analysis has identified some problems in the MODIS information due to the cloud cover and misclassification for orographic shadow. The study is performed in the framework of AWARE (A tool for monitoring and forecasting Available WAter REsource in mountain environment) EU-project, a STREP Project in the VI F.P., GMES Initiative.

  5. Balancing water resources development and environmental sustainability in Africa: a review of recent research findings and applications.

    PubMed

    McClain, Michael E

    2013-09-01

    Sustainable development in Africa is dependent on increasing use of the continent's water resources without significantly degrading ecosystem services that are also fundamental to human wellbeing. This is particularly challenging in Africa because of high spatial and temporal variability in the availability of water resources and limited amounts of total water availability across expansive semi-arid portions of the continent. The challenge is compounded by ambitious targets for increased water use and a rush of international funding to finance development activities. Balancing development with environmental sustainability requires (i) understanding the boundary conditions imposed by the continent's climate and hydrology today and into the future, (ii) estimating the magnitude and spatial distribution of water use needed to meet development goals, and (iii) understanding the environmental water requirements of affected ecosystems, their current status and potential consequences of increased water use. This article reviews recent advancements in each of these topics and highlights innovative approaches and tools available to support sustainable development. While much remains to be learned, scientific understanding and technology should not be viewed as impediments to sustainable development on the continent.

  6. Exploration of ToxCast/Tox21 bioassays as candidate bioanalytical tools for measuring groups of chemicals in water.

    PubMed

    Louisse, Jochem; Dingemans, Milou M L; Baken, Kirsten A; van Wezel, Annemarie P; Schriks, Merijn

    2018-06-14

    The present study explores the ToxCast/Tox21 database to select candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. To this aim, the ToxCast/Tox21 database was explored for bioassays that detect polycyclic aromatic hydrocarbons (PAHs), aromatic amines (AAs), (chloro)phenols ((C)Ps) and halogenated aliphatic hydrocarbons (HAliHs), which are included in the European and/or Dutch Drinking Water Directives. Based on the analysis of the availability and performance of bioassays included in the database, we concluded that several bioassays are suitable as bioanalytical tools for assessing the presence of PAHs and (C)Ps in drinking water sources. No bioassays were identified for AAs and HAliHs, due to the limited activity of these chemicals and/or the limited amount of data on these chemicals in the database. A series of bioassays was selected that measure molecular or cellular effects that are covered by bioassays currently in use for chemical water quality monitoring. Interestingly, also bioassays were selected that represent molecular or cellular effects that are not covered by bioassays currently applied. The usefulness of these newly identified bioassays as bioanalytical tools should be further evaluated in follow-up studies. Altogether, this study shows how exploration of the ToxCast/Tox21 database provides a series of candidate bioassays as bioanalytical tools for measuring groups of chemicals in water. This assessment can be performed for any group of chemicals of interest (if represented in the database), and may provide candidate bioassays that can be used to complement the currently applied bioassays for chemical water quality assessment. Copyright © 2018. Published by Elsevier Ltd.

  7. Expected increase in staple crop imports in water-scarce countries in 2050

    NASA Astrophysics Data System (ADS)

    Chouchane, Hatem; Krol, Maarten; Hoekstra, Arjen

    2017-04-01

    Water scarcity is a major challenge in the coming decades. The increasing population and the changing pattern of water availability that results from global warming reduce the potential of sufficient food production in many countries over the world. Today, two thirds of the global population are already living under conditions of severe water scarcity at least one month of the year. This rises the importance of addressing the present and future relationship between water availability and food import in water-scarce countries. The net import of staple crops (barley, cassava, maize, millet and products, oats, potatoes, rice, rye, sorghum, soybeans, sweet potatoes, wheat and yams) is analysed in relation to water availability per capita for the period 1961-2010, considering five decadal averages. The relation found is used together with the low, medium and high population growth scenarios from the United Nations to project the staple crops import in water-scarce countries for the year 2050. Additionally, we investigate the uncertainties related to the three population scenarios. Results will help countries to better understand the impact of population growth and limited water resources on their future food trade. This study will provide a valuable supporting tool for policy makers towards more sustainable and water-efficient food production as targeted with the Sustainable Development Goals. Keywords: Water Availability, Food Import, Staple Crops, Water Scarcity, Water-Use Efficiency, Sustainable Development Goals.

  8. From Analysis to Impact: Challenges and Outcomes from Google's Cloud-based Platforms for Analyzing and Leveraging Petapixels of Geospatial Data

    NASA Astrophysics Data System (ADS)

    Thau, D.

    2017-12-01

    For the past seven years, Google has made petabytes of Earth observation data, and the tools to analyze it, freely available to researchers around the world via cloud computing. These data and tools were initially available via Google Earth Engine and are increasingly available on the Google Cloud Platform. We have introduced a number of APIs for both the analysis and presentation of geospatial data that have been successfully used to create impactful datasets and web applications, including studies of global surface water availability, global tree cover change, and crop yield estimation. Each of these projects used the cloud to analyze thousands to millions of Landsat scenes. The APIs support a range of publishing options, from outputting imagery and data for inclusion in papers, to providing tools for full scale web applications that provide analysis tools of their own. Over the course of developing these tools, we have learned a number of lessons about how to build a publicly available cloud platform for geospatial analysis, and about how the characteristics of an API can affect the kinds of impacts a platform can enable. This study will present an overview of how Google Earth Engine works and how Google's geospatial capabilities are extending to Google Cloud Platform. We will provide a number of case studies describing how these platforms, and the data they host, have been leveraged to build impactful decision support tools used by governments, researchers, and other institutions, and we will describe how the available APIs have shaped (or constrained) those tools. [Image Credit: Tyler A. Erickson

  9. Neuroscience of water molecules: a salute to professor Linus Carl Pauling.

    PubMed

    Nakada, Tsutomu

    2009-04-01

    More than 35 years ago double Nobel laureate Linus Carl Pauling published a powerful model of the molecular mechanism of general anesthesia, generally referred to as the hydrate-microcrystal (aqueous-phase) theory. This hypothesis, based on the molecular behavior of water molecules, did not receive serious attention during Pauling's life time, when scientific tools for examining complex systems such as the brain were still in their infancy. The situation has since drastically changed, and, now, in the twenty first century, many scientific tools are available for examining different types of complex systems. The discovery of aquaporin-4, a subtype of water channel abundantly expressed in glial systems, further highlighted the concept that the dynamics of water molecules in the cerebral cortex play an important role in important physiological brain functions including consciousness and information processing.

  10. Selection and application of microbial source tracking tools for water-quality investigations

    USGS Publications Warehouse

    Stoeckel, Donald M.

    2005-01-01

    Microbial source tracking (MST) is a complex process that includes many decision-making steps. Once a contamination problem has been defined, the potential user of MST tools must thoroughly consider study objectives before deciding upon a source identifier, a detection method, and an analytical approach to apply to the problem. Regardless of which MST protocol is chosen, underlying assumptions can affect the results and interpretation. It is crucial to incorporate tests of those assumptions in the study quality-control plan to help validate results and facilitate interpretation. Detailed descriptions of MST objectives, protocols, and assumptions are provided in this report to assist in selection and application of MST tools for water-quality investigations. Several case studies illustrate real-world applications of MST protocols over a range of settings, spatial scales, and types of contamination. Technical details of many available source identifiers and detection methods are included as appendixes. By use of this information, researchers should be able to formulate realistic expectations for the information that MST tools can provide and, where possible, successfully execute investigations to characterize sources of fecal contamination to resource waters.

  11. Assessing the Use of Remote Sensing and a Crop Growth Model to Improve Modeled Streamflow in Central Asia

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Richey, J. E.; Tan, A.; Liu, M.; Adam, J. C.; Sokolov, V.

    2015-12-01

    Central Asia presents a perfect case study to understand the dynamic, and often conflicting, linkages between food, energy, and water in natural systems. The destruction of the Aral Sea is a well-known environmental disaster, largely driven by increased irrigation demand on the rivers that feed the endorheic sea. Continued reliance on these rivers, the Amu Darya and Syr Darya, often place available water resources at odds between hydropower demands upstream and irrigation requirements downstream. A combination of tools is required to understand these linkages and how they may change in the future as a function of climate change and population growth. In addition, the region is geopolitically complex as the former Soviet basin states develop management strategies to sustainably manage shared resources. This complexity increases the importance of relying upon publically available information sources and tools. Preliminary work has shown potential for the Variable Infiltration Capacity (VIC) model to recreate the natural water balance in the Amu Darya and Syr Darya basins by comparing results to total terrestrial water storage changes observed from NASA's Gravity Recovery and Climate Experiment (GRACE) satellite mission. Modeled streamflow is well correlated to observed streamflow at upstream gauges prior to the large-scale expansion of irrigation and hydropower. However, current modeled results are unable to capture the human influence of water use on downstream flow. This study examines the utility of a crop simulation model, CropSyst, to represent irrigation demand and GRACE to improve modeled streamflow estimates in the Amu Darya and Syr Darya basins. Specifically we determine crop water demand with CropSyst utilizing available data on irrigation schemes and cropping patterns. We determine how this demand can be met either by surface water, modeled by VIC with a reservoir operation scheme, and/or by groundwater derived from GRACE. Finally, we assess how the inclusion of CropSyst and groundwater to model and meet irrigation demand improves modeled streamflow from VIC throughout the basins. The results of this work are integrated into a decision support platform to assist the basin states in understanding water availability and the impact of management decisions on available resources.

  12. Large-scale hydrological simulations using the soil water assessment tool, protocol development, and application in the danube basin.

    PubMed

    Pagliero, Liliana; Bouraoui, Fayçal; Willems, Patrick; Diels, Jan

    2014-01-01

    The Water Framework Directive of the European Union requires member states to achieve good ecological status of all water bodies. A harmonized pan-European assessment of water resources availability and quality, as affected by various management options, is necessary for a successful implementation of European environmental legislation. In this context, we developed a methodology to predict surface water flow at the pan-European scale using available datasets. Among the hydrological models available, the Soil Water Assessment Tool was selected because its characteristics make it suitable for large-scale applications with limited data requirements. This paper presents the results for the Danube pilot basin. The Danube Basin is one of the largest European watersheds, covering approximately 803,000 km and portions of 14 countries. The modeling data used included land use and management information, a detailed soil parameters map, and high-resolution climate data. The Danube Basin was divided into 4663 subwatersheds of an average size of 179 km. A modeling protocol is proposed to cope with the problems of hydrological regionalization from gauged to ungauged watersheds and overparameterization and identifiability, which are usually present during calibration. The protocol involves a cluster analysis for the determination of hydrological regions and multiobjective calibration using a combination of manual and automated calibration. The proposed protocol was successfully implemented, with the modeled discharges capturing well the overall hydrological behavior of the basin. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. An Observation Analysis Tool for time-series analysis and sensor management in the FREEWAT GIS environment for water resources management

    NASA Astrophysics Data System (ADS)

    Cannata, Massimiliano; Neumann, Jakob; Cardoso, Mirko; Rossetto, Rudy; Foglia, Laura; Borsi, Iacopo

    2017-04-01

    In situ time-series are an important aspect of environmental modelling, especially with the advancement of numerical simulation techniques and increased model complexity. In order to make use of the increasing data available through the requirements of the EU Water Framework Directive, the FREEWAT GIS environment incorporates the newly developed Observation Analysis Tool for time-series analysis. The tool is used to import time-series data into QGIS from local CSV files, online sensors using the istSOS service, or MODFLOW model result files and enables visualisation, pre-processing of data for model development, and post-processing of model results. OAT can be used as a pre-processor for calibration observations, integrating the creation of observations for calibration directly from sensor time-series. The tool consists in an expandable Python library of processing methods and an interface integrated in the QGIS FREEWAT plug-in which includes a large number of modelling capabilities, data management tools and calibration capacity.

  14. A decision support tool to compare waterborne and foodborne infection and/or illness risks associated with climate change.

    PubMed

    Schijven, Jack; Bouwknegt, Martijn; de Roda Husman, Ana Maria; Rutjes, Saskia; Sudre, Bertrand; Suk, Jonathan E; Semenza, Jan C

    2013-12-01

    Climate change may impact waterborne and foodborne infectious disease, but to what extent is uncertain. Estimating climate-change-associated relative infection risks from exposure to viruses, bacteria, or parasites in water or food is critical for guiding adaptation measures. We present a computational tool for strategic decision making that describes the behavior of pathogens using location-specific input data under current and projected climate conditions. Pathogen-pathway combinations are available for exposure to norovirus, Campylobacter, Cryptosporidium, and noncholera Vibrio species via drinking water, bathing water, oysters, or chicken fillets. Infection risk outcomes generated by the tool under current climate conditions correspond with those published in the literature. The tool demonstrates that increasing temperatures lead to increasing risks for infection with Campylobacter from consuming raw/undercooked chicken fillet and for Vibrio from water exposure. Increasing frequencies of drought generally lead to an elevated infection risk of exposure to persistent pathogens such as norovirus and Cryptosporidium, but decreasing risk of exposure to rapidly inactivating pathogens, like Campylobacter. The opposite is the case with increasing annual precipitation; an upsurge of heavy rainfall events leads to more peaks in infection risks in all cases. The interdisciplinary tool presented here can be used to guide climate change adaptation strategies focused on infectious diseases. © 2013 Society for Risk Analysis.

  15. Bibliography of Freshwater Awareness Materials = Documentation sur la sensibilisation a l'eau douce. Bibliographie.

    ERIC Educational Resources Information Center

    Environment Canada, Ottawa (Ontario).

    The importance of educating Canadians about their water resources is the mandate of many government and non-government agencies and groups. The aim of this bibliography is to outline what is presently available in this area in order to identify gaps in the development of water education programs and products. This educational tool has been…

  16. Techniques Used by Bearded Capuchin Monkeys (Sapajus libidinosus) to Access Water in a Semi-Arid Environment of North-Eastern Brazil.

    PubMed

    Castro, Shalana Cássia do Nascimento; Souto, Antonio da Silva; Schiel, Nicola; Biondi, Luiz Matos; Caselli, Christini B

    2017-01-01

    The exploratory behaviour and the ability of capuchin monkeys to use tools allows them to thrive at times and places of limited food and water abundance, such as in semi-arid environments. Here, we report the behaviours employed by individuals belonging to a wild group of bearded capuchin monkeys (Sapajus libidinosus) to access natural water sources in a dry forest of north-eastern Brazil. An adult female employed a twig as a tool and her tail to gain access to accumulated rainwater in a tree hole, and other individuals used their hands and mouth to manipulate orchids' pseudobulbs and the liquid endosperm of palm nuts. The behaviour of wild Sapajus to access water from non-food sources may enable them to circumvent the risk of dehydration in environments with reduced availability of fleshy fruits and with ephemeral and rare water sources. Our findings contribute to the still scarce but accumulating reports on primate drinking behaviour and to the knowledge of tool use in wild populations of capuchin monkeys, enriching our understanding of primate strategies to gain access to a vital resource under challenging conditions. © 2017 S. Karger AG, Basel.

  17. Development and use of mathematical models and software frameworks for integrated analysis of agricultural systems and associated water use impacts

    USGS Publications Warehouse

    Fowler, K. R.; Jenkins, E.W.; Parno, M.; Chrispell, J.C.; Colón, A. I.; Hanson, Randall T.

    2016-01-01

    The development of appropriate water management strategies requires, in part, a methodology for quantifying and evaluating the impact of water policy decisions on regional stakeholders. In this work, we describe the framework we are developing to enhance the body of resources available to policy makers, farmers, and other community members in their e orts to understand, quantify, and assess the often competing objectives water consumers have with respect to usage. The foundation for the framework is the construction of a simulation-based optimization software tool using two existing software packages. In particular, we couple a robust optimization software suite (DAKOTA) with the USGS MF-OWHM water management simulation tool to provide a flexible software environment that will enable the evaluation of one or multiple (possibly competing) user-defined (or stakeholder) objectives. We introduce the individual software components and outline the communication strategy we defined for the coupled development. We present numerical results for case studies related to crop portfolio management with several defined objectives. The objectives are not optimally satisfied for any single user class, demonstrating the capability of the software tool to aid in the evaluation of a variety of competing interests.

  18. Leveraging Earth Observations to Improve Data Resolution and Tracking of Sustainable Development Goals in Water Resources and Public Health

    NASA Astrophysics Data System (ADS)

    Akanda, A. S.; Nusrat, F.; Hasan, M. A.; Fallatah, O.

    2017-12-01

    Water scarcity affects more than 40 per cent of the world population and is projected to rise substantially, affecting safe water and sanitation access globally. The recently released WHO/UNICEF Joint Monitoring Programme (JMP) 2017 report on global water and sanitation access paints a grim picture across the planet; approximately 30% people worldwide, or 2.1 billion, still lack access to safe, readily available clean water, and 60% people worldwide, or 4.5 billion ppl, lack safely managed sanitation. Meanwhile, demand for water and competition for water resources are sharply rising amid growing uncertainty of climate change and its impacts on water resources. The United Nations Agenda 2030 Sustainable Development Goals (SDGs) call for substantially increasing water-use efficiency across all sectors and ensuring sustainable withdrawals and supply of freshwater to address water scarcity, providing clean water and sanitation for all, increasing international cooperation over transboundary surface and groundwater resources (under Goal 6), as well as ending preventable deaths of newborns and children under 5 years of age, and end the epidemics of neglected tropical and water-borne diseases (under Goal 3). Data availability in developing regions, especially at the appropriate resolution in both space and time, has been a recurring problem for various technological and institutional reasons. Earth observation techniques provide the most cost-effective and encompassing tool to monitor these regions, large transboundary river basins and aquifer systems, and water resources vulnerabilities to climate change around the globe. University of Rhode Island, with US and international collaborators, is using earth observations to develop tools to analyze, monitor and support decision-makers to track their progress towards SDGs with better data resolution and accuracy. Here, we provide case studies on 1) providing safe water and sanitation access South Asia through safe water resources mapping, 2) identifying groundwater depletion rates in transboundary aquifer systems and emerging hotspots in arid Middle East, and 3) monitoring changes in hydrologic regimes of High Mountain Asia and impact on water availability in downstream riparian countries.

  19. Effect of climate change on environmental flow indicators in the narew basin, poland.

    PubMed

    Piniewski, Mikołaj; Laizé, Cédric L R; Acreman, Michael C; Okruszko, Tomasz; Schneider, Christof

    2014-01-01

    Environmental flows-the quantity of water required to maintain a river ecosystem in its desired state-are of particular importance in areas of high natural value. Water-dependent ecosystems are exposed to the risk of climate change through altered precipitation and evaporation. Rivers in the Narew basin in northeastern Poland are known for their valuable river and wetland ecosystems, many of them in pristine or near-pristine condition. The objective of this study was to assess changes in the environmental flow regime of the Narew river system, caused by climate change, as simulated by hydrological models with different degrees of physical characterization and spatial aggregation. Two models were assessed: the river basin scale model Soil and Water Assessment Tool (SWAT) and the continental model of water availability and use WaterGAP. Future climate change scenarios were provided by two general circulation models coupled with the A2 emission scenario: IPSL-CM4 and MIROC3.2. To assess the impact of climate change on environmental flows, a method based conceptually on the "range of variability" approach was used. The results indicate that the environmental flow regime in the Narew basin is subject to climate change risk, whose magnitude and spatial variability varies with climate model and hydrological modeling scale. Most of the analyzed sites experienced moderate impacts for the Generic Environmental Flow Indicator (GEFI), the Floodplain Inundation Indicator, and the River Habitat Availability Indicator. The consistency between SWAT and WaterGAP for GEFI was medium: in 55 to 66% of analyzed sites, the models suggested the same level of impact. Hence, we suggest that state-of-the-art, high-resolution, global- or continental-scale models, such as WaterGAP, could be useful tools for water management decision-makers and wetland conservation practitioners, whereas models such as SWAT should serve as a complementary tool for more specific, smaller-scale, local assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Mainstreaming Climate Change: Recent and Ongoing Efforts to Understand, Improve, and Expand Consideration of Climate Change in Federal Water Resources Planning

    NASA Astrophysics Data System (ADS)

    Ferguson, I. M.; McGuire, M.; Broman, D.; Gangopadhyay, S.

    2017-12-01

    The Bureau of Reclamation is a Federal agency tasked with developing and managing water supply and hydropower projects in the Western U.S. Climate and hydrologic variability and change significantly impact management actions and outcomes across Reclamation's programs and initiatives, including water resource planning and operations, infrastructure design and maintenance, hydropower generation, and ecosystem restoration, among others. Planning, design, and implementation of these programs therefore requires consideration of future climate and hydrologic conditions will impact program objectives. Over the past decade, Reclamation and other Federal agencies have adopted new guidelines, directives, and mandates that require consideration of climate change in water resources planning and decision making. Meanwhile, the scientific community has developed a large number of climate projections, along with an array of models, methods, and tools to facilitate consideration of climate projections in planning and decision making. However, water resources engineers, planners, and decision makers continue to face challenges regarding how best to use the available data and tools to support major decisions, including decisions regarding infrastructure investments and long-term operating criteria. This presentation will discuss recent and ongoing research towards understanding, improving, and expanding consideration of climate projections and related uncertainties in Federal water resources planning and decision making. These research efforts address a variety of challenges, including: How to choose between available climate projection datasets and related methods, models, and tools—many of which are considered experimental or research tools? How to select an appropriate decision framework when design or operating alternatives may differ between climate scenarios? How to effectively communicate results of a climate impacts analysis to decision makers? And, how to improve robustness and resilience of water resources systems in the face of significant uncertainty? Discussion will focus on the intersection between technical challenges and decision making paradigms and the need for improved scientist-decision maker engagement through the lens of this Federal water management agency.

  1. Multi-stage ranking of emergency technology alternatives for water source pollution accidents using a fuzzy group decision making tool.

    PubMed

    Qu, Jianhua; Meng, Xianlin; You, Hong

    2016-06-05

    Due to the increasing number of unexpected water source pollution events, selection of the most appropriate disposal technology for a specific pollution scenario is of crucial importance to the security of urban water supplies. However, the formulation of the optimum option is considerably difficult owing to the substantial uncertainty of such accidents. In this research, a multi-stage technical screening and evaluation tool is proposed to determine the optimal technique scheme, considering the areas of pollutant elimination both in drinking water sources and water treatment plants. In stage 1, a CBR-based group decision tool was developed to screen available technologies for different scenarios. Then, the threat degree caused by the pollution was estimated in stage 2 using a threat evaluation system and was partitioned into four levels. For each threat level, a corresponding set of technique evaluation criteria weights was obtained using Group-G1. To identify the optimization alternatives corresponding to the different threat levels, an extension of TOPSIS, a multi-criteria interval-valued trapezoidal fuzzy decision making technique containing the four arrays of criteria weights, to a group decision environment was investigated in stage 3. The effectiveness of the developed tool was elaborated by two actual thallium-contaminated scenarios associated with different threat levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Assessment of correlations and models for the prediction of CHF in water subcooled flow boiling

    NASA Astrophysics Data System (ADS)

    Celata, G. P.; Cumo, M.; Mariani, A.

    1994-01-01

    The present paper provides an analysis of available correlations and models for the prediction of Critical Heat Flux (CHF) in subcooled flow boiling in the range of interest of fusion reactors thermal-hydraulic conditions, i.e. high inlet liquid subcooling and velocity and small channel diameter and length. The aim of the study was to establish the limits of validity of present predictive tools (most of them were proposed with reference to light water reactors (LWR) thermal-hydraulic studies) in the above conditions. The reference dataset represents almost all available data (1865 data points) covering wide ranges of operating conditions in the frame of present interest (0.1 less than p less than 8.4 MPa; 0.3 less than D less than 25.4 mm; 0.1 less than L less than 0.61 m; 2 less than G less than 90.0 Mg/sq m/s; 90 less than delta T(sub sub,in) less than 230 K). Among the tens of predictive tools available in literature four correlations (Levy, Westinghouse, modified-Tong and Tong-75) and three models (Weisman and Ileslamlou, Lee and Mudawar and Katto) were selected. The modified-Tong correlation and the Katto model seem to be reliable predictive tools for the calculation of the CHF in subcooled flow boiling.

  3. Understanding handpump sustainability: Determinants of rural water source functionality in the Greater Afram Plains region of Ghana.

    PubMed

    Fisher, Michael B; Shields, Katherine F; Chan, Terence U; Christenson, Elizabeth; Cronk, Ryan D; Leker, Hannah; Samani, Destina; Apoya, Patrick; Lutz, Alexandra; Bartram, Jamie

    2015-10-01

    Safe drinking water is critical to human health and development. In rural sub-Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross-sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access.

  4. CORAL REEF BIOCRITERIA

    EPA Science Inventory

    Coral reefs worldwide are experiencing the greatest decline of their known existence and few tools are available to offset the growing impacts of human coastal and watershed activities. Biocriteria are a potentially effective means to evaluate and restore impaired waters, but are...

  5. Development of a decision support tool for water and resource management using biotic, abiotic, and hydrological assessments of Topock Marsh, Arizona

    USGS Publications Warehouse

    Holmquist-Johnson, Christopher; Hanson, Leanne; Daniels, Joan; Talbert, Colin; Haegele, Jeanette

    2016-05-23

    Topock Marsh is a large wetland adjacent to the Colorado River and the main feature of Havasu National Wildlife Refuge (Havasu NWR) in southern Arizona. In 2010, the U.S. Fish and Wildlife Service (FWS) and Bureau of Reclamation began a project to improve water management capabilities at Topock Marsh and protect habitats and species. Initial construction required a drawdown, which caused below-average inflows and water depths in 2010–11. U.S. Geological Survey Fort Collins Science Center (FORT) scientists collected an assemblage of biotic, abiotic, and hydrologic data from Topock Marsh during the drawdown and immediately after, thus obtaining valuable information needed by FWS.Building upon that work, FORT developed a decision support system (DSS) to better understand ecosystem health and function of Topock Marsh under various hydrologic conditions. The DSS was developed using a spatially explicit geographic information system package of historical data, habitat indices, and analytical tools to synthesize outputs for hydrologic time periods. Deliverables include high-resolution orthorectified imagery of Topock Marsh; a DSS tool that can be used by Havasu NWR to compare habitat availability associated with three hydrologic scenarios (dry, average, wet years); and this final report which details study results. This project, therefore, has addressed critical FWS management questions by integrating ecologic and hydrologic information into a DSS framework. This DSS will assist refuge management to make better informed decisions about refuge operations and better understand the ecological results of those decisions by providing tools to identify the effects of water operations on species-specific habitat and ecological processes. While this approach was developed to help FWS use the best available science to determine more effective water management strategies at Havasu NWR, technologies used in this study could be applied elsewhere within the region.

  6. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities

    USGS Publications Warehouse

    Williamson, Tanja N.; Lant, Jeremiah G.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  7. Construction of estimated flow- and load-duration curves for Kentucky using the Water Availability Tool for Environmental Resources (WATER)

    USGS Publications Warehouse

    Unthank, Michael D.; Newson, Jeremy K.; Williamson, Tanja N.; Nelson, Hugh L.

    2012-01-01

    Flow- and load-duration curves were constructed from the model outputs of the U.S. Geological Survey's Water Availability Tool for Environmental Resources (WATER) application for streams in Kentucky. The WATER application was designed to access multiple geospatial datasets to generate more than 60 years of statistically based streamflow data for Kentucky. The WATER application enables a user to graphically select a site on a stream and generate an estimated hydrograph and flow-duration curve for the watershed upstream of that point. The flow-duration curves are constructed by calculating the exceedance probability of the modeled daily streamflows. User-defined water-quality criteria and (or) sampling results can be loaded into the WATER application to construct load-duration curves that are based on the modeled streamflow results. Estimates of flow and streamflow statistics were derived from TOPographically Based Hydrological MODEL (TOPMODEL) simulations in the WATER application. A modified TOPMODEL code, SDP-TOPMODEL (Sinkhole Drainage Process-TOPMODEL) was used to simulate daily mean discharges over the period of record for 5 karst and 5 non-karst watersheds in Kentucky in order to verify the calibrated model. A statistical evaluation of the model's verification simulations show that calibration criteria, established by previous WATER application reports, were met thus insuring the model's ability to provide acceptably accurate estimates of discharge at gaged and ungaged sites throughout Kentucky. Flow-duration curves are constructed in the WATER application by calculating the exceedence probability of the modeled daily flow values. The flow-duration intervals are expressed as a percentage, with zero corresponding to the highest stream discharge in the streamflow record. Load-duration curves are constructed by applying the loading equation (Load = Flow*Water-quality criterion) at each flow interval.

  8. Towards risk-based drought management in the Netherlands: making water supply levels transparent to water users

    NASA Astrophysics Data System (ADS)

    Maat Judith, Ter; Marjolein, Mens; Vuren Saskia, Van; der Vat Marnix, Van

    2016-04-01

    To prepare the Dutch Delta for future droughts and water scarcity, a nation-wide 4-year project, called Delta Programme, assessed the impact of climate change and socio-economic development, and explored strategies to deal with these impacts. The Programme initiated a joint approach to water supply management with stakeholders and developed a national adaptation plan that is able to adapt to future uncertain conditions. The adaptation plan consists of a set of preferred policy pathways - sequences of possible actions and measures through time - to achieve targets while responding in a flexible manner to uncertain developments over time, allowing room to respond to new opportunities and insights. With regard to fresh water allocation, the Delta Programme stated that supplying water of sufficient quality is a shared responsibility that requires cohesive efforts among users in the main and regional water system. The national and local authorities and water users involved agreed that the water availability and, where relevant, the water quality should be as transparent and predictable as possible under normal, dry and extremely dry conditions. They therefore introduced the concept of "water supply service levels", which should describe water availability and quality that can be delivered with a certain return period, for all regions and all relevant water users in the Netherlands. The service levels form an addition to the present policy and should be decided on by 2021. At present water allocation during periods of (expected) water shortage occurs according to a prearranged ranking system (a water hierarchy scheme based on a list of priorities), if water availability drops below a critical low level. The aim is to have supply levels available that are based on the probability of occurrence and economic impact of water shortage, and that are transparent for all water users in the regional water systems and the main water system. As part of the European project Improving Predictions and Management of Hydrological Extremes (IMPREX), running from 2016-2019, a consortium of the Dutch research institute Deltares and the Dutch water management consultant HKV will design and build a tool to support quantitative risk-informed decision-making for fresh water management for the Netherlands, in particular the decision on water supply service levels. The research will be conducted in collaboration with the Dutch Ministry for Infrastructure and Environment, the Freshwater Supply Programme Office, the Dutch governmental organisation responsible for water management (Rijkswaterstaat), the Foundation for Applied Water Research, (STOWA, knowledge centre of the water boards) and a number of water boards. In the session we will present the conceptual framework for a risk-based approach for water shortage management and share thoughts on how the proposed tool can be applied in the Dutch water management context.

  9. BP Spill Sampling and Monitoring Data

    EPA Pesticide Factsheets

    This dataset analyzes waste from the the British Petroleum Deepwater Horizon Rig Explosion Emergency Response, providing opportunity to query data sets by metadata criteria and find resulting raw datasets in CSV format.The data query tool allows users to download EPA's air, water and sediment sampling and monitoring data that has been collected in response to the BP oil spill. All sampling and monitoring data that has been collected to date is available for download as raw structured data.The query tools enables CSV file creation to be refined based on the following search criteria: date range (between April 28, 2010 and 9/29/2010); location by zip, city, or county; media (solid waste, weathered oil, air, surface water, liquid waste, tar, sediment, water); substance categories (based on media selection) and substances (based on substance category selection).

  10. Water cooler towers and other man-made aquatic systems as environmental collection systems for agents of concern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brigmon, Robin; Kingsley, Mark T.

    An apparatus and process of using existing process water sources such as cooling towers, fountains, and waterfalls is provided in which the water sources are utilized as monitoring system for the detection of environmental agents which may be present in the environment. The process water is associated with structures and have an inherent filtering or absorbing capability available in the materials and therefore can be used as a rapid screening tool for quality and quantitative assessment of environmental agents.

  11. Domestic applications for aerospace waste and water management technologies

    NASA Technical Reports Server (NTRS)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  12. An online tool for tracking soil nitrogen

    NASA Astrophysics Data System (ADS)

    Wang, J.; Umar, M.; Banger, K.; Pittelkow, C. M.; Nafziger, E. D.

    2016-12-01

    Near real-time crop models can be useful tools for optimizing agricultural management practices. For example, model simulations can potentially provide current estimates of nitrogen availability in soil, helping growers decide whether more nitrogen needs to be applied in a given season. Traditionally, crop models have been used at point locations (i.e. single fields) with homogenous soil, climate and initial conditions. However, nitrogen availability across fields with varied weather and soil conditions at a regional or national level is necessary to guide better management decisions. This study presents the development of a publicly available, online tool that automates the integration of high-spatial-resolution forecast and past weather and soil data in DSSAT to estimate nitrogen availability for individual fields in Illinois. The model has been calibrated with field experiments from past year at six research corn fields across Illinois. These sites were treated with applications of different N fertilizer timings and amounts. The tool requires minimal management information from growers and yet has the capability to simulate nitrogen-water-crop interactions with calibrated parameters that are more appropriate for Illinois. The results from the tool will be combined with incoming field experiment data from 2016 for model validation and further improvement of model's predictive accuracy. The tool has the potential to help guide better nitrogen management practices to maximize economic and environmental benefits.

  13. Water, sanitation and hygiene in Jordan's healthcare facilities.

    PubMed

    Khader, Yousef Saleh

    2017-08-14

    Purpose The purpose of this paper is to determine water availability, sanitation and hygiene (WSH) services, and healthcare waste management in Jordan healthcare facilities. Design/methodology/approach In total, 19 hospitals (15 public and four private) were selected. The WSH services were assessed in hospitals using the WSH in health facilities assessment tool developed for this purpose. Findings All hospitals (100 percent) had a safe water source and most (84.2 percent) had functional water sources to provide enough water for users' needs. All hospitals had appropriate and sufficient gender separated toilets in the wards and 84.2 percent had the same in outpatient settings. Overall, 84.2 percent had sufficient and functioning handwashing basins with soap and water, and 79.0 percent had sufficient showers. Healthcare waste management was appropriately practiced in all hospitals. Practical implications Jordan hospital managers achieved major achievements providing access to drinking water and improved sanitation. However, there are still areas that need improvements, such as providing toilets for patients with special needs, establishing handwashing basins with water and soap near toilets, toilet maintenance and providing sufficient trolleys for collecting hazardous waste. Efforts are needed to integrate WSH service policies with existing national policies on environmental health in health facilities, establish national standards and targets for the various healthcare facilities to increase access and improve services. Originality/value There are limited WSH data on healthcare facilities and targets for basic coverage in healthcare facilities are also lacking. A new assessment tool was developed to generate core WSH indicators and to assess WSH services in Jordan's healthcare facilities. This tool can be used by a non-WSH specialist to quickly assess healthcare facility-related WSH services and sanitary hazards in other countries. This tool identified some areas that need improvements.

  14. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  15. Development and validation of quasi-steady-state heat pump water heater model having stratified water tank and wrapped-tank condenser

    DOE PAGES

    Shen, Bo; Nawaz, Kashif; Baxter, Van D.; ...

    2017-10-31

    Heat pump water heater systems (HPWH) introduce new challenges for design and modeling tools, because they require vapor compression system balanced with a water storage tank. In addition, a wrapped-tank condenser coil has strong coupling with a stratified water tank, which leads HPWH simulation to a transient process. To tackle these challenges and deliver an effective, hardware-based HPWH equipment design tool, a quasi-steady-state HPWH model was developed based on the DOE/ORNL Heat Pump Design Model (HPDM). Two new component models were added via this study. One is a one-dimensional stratified water tank model, an improvement to the open-source EnergyPlus watermore » tank model, by introducing a calibration factor to account for bulk mixing effect due to water draws, circulations, etc. The other is a wrapped-tank condenser coil model, using a segment-to-segment modeling approach. In conclusion, the HPWH system model was validated against available experimental data. After that, the model was used for parametric simulations to determine the effects of various design factors.« less

  16. Assessing Groundwater Availability in the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Qi, Sharon L.; Christenson, Scott

    2010-01-01

    The U.S. Geological Survey's Groundwater Resources Program is conducting an assessment of groundwater availability to gain a clearer understanding of the status of the Nation's groundwater resources and the natural and human factors that can affect those resources. The goals of this national effort are to define the current status and improve understanding of the Nation's groundwater resources, to better estimate availability and suitability of those resources for use in the future, and to provide tools to estimate the future availability of ground-water for its various uses. Assessments will be completed for regional aquifer systems across the Nation to help characterize how much water we have, where groundwater resources are most stressed, how groundwater availability is changing, and where groundwater resources are most available for future use.

  17. Modeling Hydrological Processes in New Mexico-Texas-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Samimi, M.; Jahan, N. T.; Mirchi, A.

    2017-12-01

    Efficient allocation of limited water resources to competing use sectors is becoming increasingly critical for water-scarce regions. Understanding natural and anthropogenic processes affecting hydrological processes is key for efficient water management. We used Soil and Water Assessment Tool (SWAT) to model governing hydrologic processes in New Mexico-Texas-Mexico border region. Our study area includes the Elephant Butte Irrigation District (EBID), which manages water resources to support irrigated agriculture. The region is facing water resources challenges associated with chronic water scarcity, over-allocation, diminishing water supply, and growing water demand. Agricultural activities rely on conjunctive use of Rio Grande River water supply and groundwater withdrawal. The model is calibrated and validated under baseline conditions in the arid and semi-arid climate in order to evaluate potential impacts of climate change on the agricultural sector and regional water availability. We highlight the importance of calibrating the crop growth parameters, evapotranspiration, and groundwater recharge to provide a realistic representation of the hydrological processes and water availability in the region. Furthermore, limitations of the model and its utility to inform stakeholders will be discussed.

  18. Estimating national water use associated with unconventional oil and gas development

    USGS Publications Warehouse

    Carter, Janet M.; Macek-Rowland, Kathleen M.; Thamke, Joanna N.; Delzer, Gregory C.

    2016-05-18

    The U.S. Geological Survey’s (USGS) Water Availability and Use Science Program (WAUSP) goals are to provide a more accurate assessment of the status of the water resources of the United States and assist in the determination of the quantity and quality of water that is available for beneficial uses. These assessments would identify long-term trends or changes in water availability since the 1950s in the United States and help to develop the basis for an improved ability to forecast water avail- ability for future economic, energy-production, and environmental uses. The National Water Census (http://water.usgs.gov/watercensus/), a research program of the WAUSP, supports studies to develop new water accounting tools and assess water availability at the regional and national scales. Studies supported by this program target focus areas with identified water availability concerns and topical science themes related to the use of water within a specific type of environmental setting. The topical study described in this fact sheet will focus on understanding the relation between production of unconventional oil and gas (UOG) for energy and the water needed to produce and sustain this type of energy development. This relation applies to the life-cycle of renewable and nonrenewable forms of UOG energy and includes extraction, production, refinement, delivery, and disposal of waste byproducts. Water-use data and models derived from this topical study will be applied to other similar oil and gas plays within the United States to help resource managers assess and account for water used or needed in these areas. Additionally, the results from this topical study will be used to further refine the methods used in compiling water-use data for selected categories (for example, mining, domestic self-supplied, public supply, and wastewater) in the USGS’s 5-year national water-use estimates reports (http://water.usgs.gov/watuse/).

  19. Metabolomic response of Calotropis procera growing in the desert to changes in water availability.

    PubMed

    Ramadan, Ahmed; Sabir, Jamal S M; Alakilli, Saleha Y M; Shokry, Ahmed M; Gadalla, Nour O; Edris, Sherif; Al-Kordy, Magdy A; Al-Zahrani, Hassan S; El-Domyati, Fotouh M; Bahieldin, Ahmed; Baker, Neil R; Willmitzer, Lothar; Irgang, Susann

    2014-01-01

    Water availability is a major limitation for agricultural productivity. Plants growing in severe arid climates such as deserts provide tools for studying plant growth and performance under extreme drought conditions. The perennial species Calotropis procera used in this study is a shrub growing in many arid areas which has an exceptional ability to adapt and be productive in severe arid conditions. We describe the results of studying the metabolomic response of wild C procera plants growing in the desert to a one time water supply. Leaves of C. procera plants were taken at three time points before and 1 hour, 6 hours and 12 hours after watering and subjected to a metabolomics and lipidomics analysis. Analysis of the data reveals that within one hour after watering C. procera has already responded on the metabolic level to the sudden water availability as evidenced by major changes such as increased levels of most amino acids, a decrease in sucrose, raffinose and maltitol, a decrease in storage lipids (triacylglycerols) and an increase in membrane lipids including photosynthetic membranes. These changes still prevail at the 6 hour time point after watering however 12 hours after watering the metabolomics data are essentially indistinguishable from the prewatering state thus demonstrating not only a rapid response to water availability but also a rapid response to loss of water. Taken together these data suggest that the ability of C. procera to survive under the very harsh drought conditions prevailing in the desert might be associated with its rapid adjustments to water availability and losses.

  20. Metabolomic Response of Calotropis procera Growing in the Desert to Changes in Water Availability

    PubMed Central

    Ramadan, Ahmed; Sabir, Jamal S. M.; Alakilli, Saleha Y. M.; Shokry, Ahmed M.; Gadalla, Nour O.; Edris, Sherif; Al-Kordy, Magdy A.; Al-Zahrani, Hassan S.; El-Domyati, Fotouh M.; Bahieldin, Ahmed; Baker, Neil R.; Willmitzer, Lothar; Irgang, Susann

    2014-01-01

    Water availability is a major limitation for agricultural productivity. Plants growing in severe arid climates such as deserts provide tools for studying plant growth and performance under extreme drought conditions. The perennial species Calotropis procera used in this study is a shrub growing in many arid areas which has an exceptional ability to adapt and be productive in severe arid conditions. We describe the results of studying the metabolomic response of wild C procera plants growing in the desert to a one time water supply. Leaves of C. procera plants were taken at three time points before and 1 hour, 6 hours and 12 hours after watering and subjected to a metabolomics and lipidomics analysis. Analysis of the data reveals that within one hour after watering C. procera has already responded on the metabolic level to the sudden water availability as evidenced by major changes such as increased levels of most amino acids, a decrease in sucrose, raffinose and maltitol, a decrease in storage lipids (triacylglycerols) and an increase in membrane lipids including photosynthetic membranes. These changes still prevail at the 6 hour time point after watering however 12 hours after watering the metabolomics data are essentially indistinguishable from the prewatering state thus demonstrating not only a rapid response to water availability but also a rapid response to loss of water. Taken together these data suggest that the ability of C. procera to survive under the very harsh drought conditions prevailing in the desert might be associated with its rapid adjustments to water availability and losses. PMID:24520340

  1. Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas region, Argentina.

    PubMed

    Romagnoli, Martín; Portapila, Margarita; Rigalli, Alfredo; Maydana, Gisela; Burgués, Martín; García, Carlos M

    2017-10-15

    Argentina has been among the world leaders in the production and export of agricultural products since the 1990s. The Carcarañá River Lower Basin (CRLB), a cropland of the Pampas region supplied by extensive rainfall, is located in an area with few streamgauging and other hydrologic/water-quality stations. Therefore, limited hydrologic data are available resulting in limited water-resources assessment. This work explores the application of Soil and Water Assessment Tool (SWAT) model to the CRLB in the Santa Fe province of the Pampas region. The analysis of field and remote-sensing data characterizing hydrology, water quality, soil types, land use/land cover, management practices, and crop yield, guarantee a comprehensive SWAT modeling approach. A combined manual and automated calibration and validation process incorporating sensitivity and uncertainty analysis is performed using information concerning interior watershed processes. Eleven N/P fertilizer rates are selected to simulate the impact of N fertilizer on crop yield, plant uptake, as well as runoff and leaching losses. Different indices (partial factor productivity, agronomic efficiency, apparent crop recovery efficiency of applied nutrient, internal utilization efficiency, and physiological efficiency) are considered to assess nitrogen-use efficiency. The overall quality of the fit is satisfactory considering the input data limitations. This work provides, for the first time in Argentina, a reliable tool to simulate yield response to soil quality and water availability capable to meet defined environmental targets to support decision making on planning public policies and private activities on the Pampas region. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Assimilation of AATSR, MERIS and MODIS Data in the Snowmelt Runoff Model (SRM) on the Upper Rio Grande (USA)

    NASA Astrophysics Data System (ADS)

    Bleiweiss, M. P.; Rampini, A.; Pepe, M.; Rango, A.; Steele, C.; Stein, W. L.; Schmugge, T.

    2008-12-01

    Current efforts for simulating or forecasting snowmelt are time-consuming and laborious; the AWARE project (A tool for monitoring and forecasting Available WAter REsource in mountain environments) has been motivated by the urgent need to facilitate the prediction of medium-term flows from snowmelt for an effective and sustainable water resources management. Its main goal is to provide innovative tools for monitoring and predicting water availability and distribution in drainage basins where snowmelt is a major component of the annual water balance. The particular objective of the effort reported here is to compare results obtained from the MODIS sensor on NASA Terra and Aqua satellite and next generation sensors AATSR and MERIS on board ESA Envisat satellite. The vehicle for this comparison is the AWARE Geoportal (http://www.aware- eu.info/eng/home.htm) which is a WWW implementation of the Snowmelt Runoff Model (SRM). The river basin chosen for analysis is the Upper Rio Grande of North America. The time period for analysis encompasses the Water Years 2005, 2006, and 2007 (October 2004 - September 2007). The reason for this is to ensure that data from all three sensors are available for use and to investigate variable climate conditions. A successful comparison between the various sensors will help demonstrate that the AWARE approach will facilitate future processing of several years' worth of snow cover data from a variety of sensors that covers large extremes in climate variability. This will allow greater success in developing forecasts and understanding of longer term climate change impacts.

  3. Economic Impact of Water Allocation on Agriculture in the Lower Chattahoochee River Basin

    NASA Technical Reports Server (NTRS)

    Limaye, Ashutosh S.; Paudel, Krishna P.; Musleh, Fuad; Cruise, James F.; Hatch, L. Upton

    2004-01-01

    The relative value of irrigation water was assessed for three important crops (corn, cotton, and peanuts) grown in the southeastern United States. A decision tool was developed with the objective of allocating limited available water among competing crops in a manner that would maximize the economic returns to the producers. The methodology was developed and tested for a hypothetical farm located in Henry County, Alabama in the Chattahoochee river basin. Crop yield - soil moisture response functions were developed using Monte Carlo simulated data for cotton, corn, and peanuts. A hydrologic model was employed to simulate runoff over the period of observed rainfall the county to provide inflows to storage facilities that could be used as constraints for the optimal allocation of the available water in the face of the uncertainty of future rainfall and runoff. Irrigation decisions were made on a weekly basis during the critical water deficit period in the region. An economic optimization model was employed with the crop responses, and soil moisture functions to determine the optimum amount of water place on each crop subject to the amount of irrigation water availability and climatic uncertainty. The results indicated even small amounts of irrigation could significantly benefit farmers in the region if applied judiciously. A weekly irrigation sequence was developed that maintained the available water on the crops that exhibited the most significant combination of water sensitivity and cash value.

  4. Growth and yield considerations and implications for alternative density management objectives and approaches

    Treesearch

    David Marshall

    2013-01-01

    Density management through thinning is the most important tool foresters have to aff ect stand development and stand structure of existing stands. Reducing stand density by thinning increases the growing space and resource availability (e.g., light, water, and nutrients) for the remaining trees. Th is can result in increased average tree growth. More available site...

  5. Hydrological Modeling and WEB-GIS for the Water Resource Management

    NASA Astrophysics Data System (ADS)

    Pierleoni, A.; Bellezza, M.; Casadei, S.; Manciola, P.

    2006-12-01

    Water resources are a strategically natural resource although they can be extremely susceptible to degradation. As a matter of fact the increasing demand from multipurpose uses, which often are in competition amongst themselves, seems to affect the concept of sustainability per se', thus highlighting phenomena of quality-quantity degradation of water resources. In this context, the issue of water resource management rises to a more important role, especially when, other then the traditional uses for civil, industrial and agronomic purposes, environmental demands are taken into consideration. In particular, for environmental demands we mean: to preserve minimal flows, to conserve ecosystems and biodiversities, to protect and improve the environment and finally also the recreational facilities. In the present work, two software tools are presented; they combine the scientific aspect of the issues with a feasible and widely accessible application of the mathematical modeling in techno-operative fields within a sustainable management policy of the water resource at the basin scale. The first evaluation model of the available superficial water resource bases its algorithms upon regionalization procedures of flow parameters deduced from the geomorphologic features of the soil of the basin (BFI, Area) and presents, as output, a set of duration curves (DC) of the natural, measurable (natural after withdrawal), and residual (discharge usable for dissipative use) flow. The hydrological modeling combined with a GIS engine allows to process the dataset and regionalize the information of each section of the hydrographic network, in order to attain information about the effect of upriver withdrawals, in terms of evaluation parameters (measurable DC) to maintain an optimal water supply all along the entire downstream network. This model, projected with a WEB interface developed in PERL and connected to a MySQL database, has also been tested at the basin and sub-basin scale as an effective decision support system (DSS). The second software tool is a simulation model of a managed water resource for multipurpose uses. The algorithm is based on a topological sketch of the hydrographic network in terms of "Nodes" and "Links" combined with computation procedures for managing the water resource of big reservoirs. The peculiar feature of this method is that it performs a preliminary budget between the total available amount and the demand over a time span longer than the simulation step (week, month). During the managing phase, four different allocation methods are available: proportional, percentage, priority and balanced priority, hence this tool becomes flexible and allows to simulate many different management policies. This project was developed in JAVA and as a workstation product. Both software tools will be handled in a single system that, combined with a GIS map engine, is an integrated model for managing the water resource at the basin scale. The final aim of this project is to be able to share these scientific tools and hydrological data among many institutional uses. For this purpose, a WEB-based system, under the control of an administrator, provides on the one hand the possibility to easily keep the database up-to-date and on the other, the possibility to share data and retrieve the results of the procedures optimized for managing superficial water resources at the basin scale.

  6. Assessment of water management tools for the geothermal reservoir Waiwera (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Altmannsberger, Charlotte

    2016-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a Water Management Plan was deployed. The "Auckland Regional Water Board" today "Auckland Regional Council" established guidelines to enable a sustainable management [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. The minimum water level was observed beginning of the 1980s with -1.25 m and the maximum recently with 1.6 m. The higher the production rates from the field, the lower the water level in the observation well. Highest abstraction rates reached almost 1,500 m3/day and lowest were just above 500 m3/day. Several models of varying complexity where used from purely data driven statistical to fully coupled process simulation models. In all cases the available data were used for calibration and the models were then applied for predictive purposes. We used the Nash-Sutcliffe efficiency index to quantify their predictive ability. The recommendation for the full implementation of the water management plan is the regular revision of an existing multivariate regression model which is based on the Theis well equation. Further, we suggest improving the underlying geological model of the process simulations to provide a more flexible tool for future and prospective scenarios which are not covered by data driven models [3]. [1] Kühn M, Stöfen H (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeology Journal 13, 606-626, doi: 10.1007/s10040-004-0377-6 [2] Rose JL, Zemansky G (2013) Updated Hydrogeological Evaluation of the Waiwera Geothermal Aquifer. GNS Scientific Consultancy Report 2013/67, GNS Institute of Geological & Nuclear Science, Wellington, New Zealand [3] Altmannsberger C (2015) Assessment of water management tools for the geothermal reservoir Waiwera (New Zealand). BSc Thesis, University of Potsdam, Earth and Environmental Sciences (in German, unpublished)

  7. Water Accounting Priorities in the American West

    NASA Astrophysics Data System (ADS)

    Hanak, E.

    2017-12-01

    In regions facing water scarcity, understanding the water balance sheet—how much there is, who has claims to it, and what is actually being "spent"—is key to effectively managing supplies to meet a wide range of societal goals. This is a common challenge across the American West, a region needing to balance the water demands of large irrigated agricultural sectors, growing urban populations, and declining aquatic ecosystems—in a context of increasingly variable, and in some cases diminishing, water supplies. Many local urban water utilities, and some irrigation water suppliers, have developed sophisticated data systems for tracking water availability and use within their systems. But there are still major gaps in essential metrics at the scale of watersheds and river basins. On the supply side, key issues include understanding groundwater availability and surface-groundwater interactions. On the demand side, the biggest challenges relate to understanding groundwater use and return flows—the water that is returned to rivers or aquifers and is available for reuse. In addition, most states lack consistent accounting and data standards for sharing water availability, claims, and use information—and transparent systems for reporting information to users in ways that facilitates oversight and flexible tools such as water trading. Drawing on a detailed study of water accounting in 12 western states and 2 countries with similar water challenges (Escriva Bou et al. 2016, Accounting for Water in Dry Regions: A Comparative Review, Public Policy Institute of California), this talk provides insights on best practices that can help fill critical water accounting gaps.

  8. Coral Reef Biological Criteria

    EPA Science Inventory

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  9. A new software tool for computing Earth's atmospheric transmission of near- and far-infrared radiation

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.

    1992-01-01

    This report describes a new software tool, ATRAN, which computes the transmittance of Earth's atmosphere at near- and far-infrared wavelengths. We compare the capabilities of this program with others currently available and demonstrate its utility for observational data calibration and reduction. The program employs current water-vapor and ozone models to produce fast and accurate transmittance spectra for wavelengths ranging from 0.8 microns to 10 mm.

  10. Water availability and land subsidence in the Central Valley, California, USA

    NASA Astrophysics Data System (ADS)

    Faunt, Claudia C.; Sneed, Michelle; Traum, Jon; Brandt, Justin T.

    2016-05-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007-2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  11. Water availability and land subsidence in the Central Valley, California, USA

    USGS Publications Warehouse

    Faunt, Claudia; Sneed, Michelle; Traum, Jonathan A.; Brandt, Justin

    2016-01-01

    The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  12. A Novel Application of Agent-based Modeling: Projecting Water Access and Availability Using a Coupled Hydrologic Agent-based Model in the Nzoia Basin, Kenya

    NASA Astrophysics Data System (ADS)

    Le, A.; Pricope, N. G.

    2015-12-01

    Projections indicate that increasing population density, food production, and urbanization in conjunction with changing climate conditions will place stress on water resource availability. As a result, a holistic understanding of current and future water resource distribution is necessary for creating strategies to identify the most sustainable means of accessing this resource. Currently, most water resource management strategies rely on the application of global climate predictions to physically based hydrologic models to understand potential changes in water availability. However, the need to focus on understanding community-level social behaviors that determine individual water usage is becoming increasingly evident, as predictions derived only from hydrologic models cannot accurately represent the coevolution of basin hydrology and human water and land usage. Models that are better equipped to represent the complexity and heterogeneity of human systems and satellite-derived products in place of or in conjunction with historic data significantly improve preexisting hydrologic model accuracy and application outcomes. We used a novel agent-based sociotechnical model that combines the Soil and Water Assessment Tool (SWAT) and Agent Analyst and applied it in the Nzoia Basin, an area in western Kenya that is becoming rapidly urbanized and industrialized. Informed by a combination of satellite-derived products and over 150 household surveys, the combined sociotechnical model provided unique insight into how populations self-organize and make decisions based on water availability. In addition, the model depicted how population organization and current management alter water availability currently and in the future.

  13. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  14. Hydrogeology, hydrologic effects of development, and simulation of groundwater flow in the Borrego Valley, San Diego County, California

    USGS Publications Warehouse

    Faunt, Claudia C.; Stamos, Christina L.; Flint, Lorraine E.; Wright, Michael T.; Burgess, Matthew K.; Sneed, Michelle; Brandt, Justin; Martin, Peter; Coes, Alissa L.

    2015-11-24

    This report documents and presents (1) an analysis of the conceptual model, (2) a description of the hydrologic features, (3) a compilation and analysis of water-quality data, (4) the measurement and analysis of land subsidence by using geophysical and remote sensing techniques, (5) the development and calibration of a two-dimensional borehole-groundwater-flow model to estimate aquifer hydraulic conductivities, (6) the development and calibration of a three-dimensional (3-D) integrated hydrologic flow model, (7) a water-availability analysis with respect to current climate variability and land use, and (8) potential future management scenarios. The integrated hydrologic model, referred to here as the “Borrego Valley Hydrologic Model” (BVHM), is a tool that can provide results with the accuracy needed for making water-management decisions, although potential future refinements and enhancements could further improve the level of spatial and temporal resolution and model accuracy. Because the model incorporates time-varying inflows and outflows, this tool can be used to evaluate the effects of temporal changes in recharge and pumping and to compare the relative effects of different water-management scenarios on the aquifer system. Overall, the development of the hydrogeologic and hydrologic models, data networks, and hydrologic analysis provides a basis for assessing surface and groundwater availability and potential water-resource management guidelines.

  15. Giving sustainable agriculture really good odds through innovative rainfall index insurance

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, C. P.; Muneepeerakul, R.

    2017-12-01

    Population growth, increasing demands for food, and increasingly uncertain and limited water availability amidst competing demands for water by other users and the environment call for a novel approach to manage water in food production systems to be developed now. Tapping into broad popularity of crop insurance as a risk management intervention, we propose an innovative rainfall index insurance program as a novel systems approach that addresses water conservation in food production systems by exploiting two common currencies that tie the food production systems and others together, namely water and money. Our novel methodology allows for optimizing diverse farm and financial strategies together, revealing strategy portfolios that result in greater water use efficiency and higher incomes at a lower level of water use. Furthermore, it allows targeted interventions to achieve reduction in irrigation water, while providing financial protection to farmers against the increasing uncertainty in water availability. Not only would such a tool result in efficiently less use of water, it would also encourage diversification in farm practices, which reduces the farm's vulnerability against crop price volatility and pest or disease outbreaks and contributes to more sustainable agriculture.

  16. Scenario Tools For Efficient Eutrophication Management

    NASA Astrophysics Data System (ADS)

    Arheimer, B.; Vastra SP3 Team

    Several possible measures are available to reduce diffuse (non-point source) nutri- ent load to surface water and thereby reduce eutrophication. Such measures include changed arable practices and constructions of wetlands and buffer zones in the land- scape, as well as managing lake ecosystems. In some cases, such as for wetlands, there is an intense debate regarding the efficiency of their nutrient reducing capability. In ad- dition, the combined effect of several measures in a catchment is not necessarily equal to their sum. It is therefore important to apply a holistic and integrated catchment approach when applying and evaluating different management strategies. To facili- tate such catchment analyses, the Swedish water management research programme (VASTRA) develop modelling tools addressing both phosphorus (P) and nitrogen (N) dynamics in catchments. During the last three years decision support tools for N man- agement in rivers and lakes have been developed (e.g., HBV-N, BIOLA) and applied in scenarios to demonstrate the effect of various reducing measures. At present, similar tools for P are under development. This presentation will demonstrate the VASTRA tool-box and its applications for efficient eutrophication management.

  17. A method to assess how interactive water simulation tools influence transdisciplinary decision-making processes in water management

    NASA Astrophysics Data System (ADS)

    Leskens, Johannes

    2015-04-01

    In modern water management, often transdisciplinary work sessions are organized in which various stakeholders participate to jointly define problems, choose measures and divide responsibilities to take actions. Involved stakeholders are for example policy analysts or decision-makers from municipalities, water boards or provinces, representatives of pressure groups and researchers from knowledge institutes. Parallel to this increasing attention for transdisciplinary work sessions, we see a growing availability of interactive IT-tools that can be applied during these sessions. For example, dynamic flood risk maps have become recently available that allow users during a work sessions to instantaneously assess the impact of storm surges or dam breaches, displayed on digital maps. Other examples are serious games, realistic visualizations and participatory simulations. However, the question is if and how these interactive IT-tools contribute to better decision-making. To assess this, we take the process of knowledge construction during a work session as a measure for the quality of decision-making. Knowledge construction can be defined as the process in which ideas, perspectives and opinions of different stakeholders, all having their own expertise and experience, are confronted with each other and new shared meanings towards water management issues are created. We present an assessment method to monitor the process of knowledge construction during work sessions in water management in which interactive IT tools are being used. The assessment method is based on a literature review, focusing on studies in which knowledge construction was monitored in other contexts that water management. To test the applicability of the assessment method, we applied it during a multi-stakeholder work session in Westland, located in the southwest of the Netherlands. The discussions during the work session were observed by camera. All statements, expressed by the various members of a stakeholder session, were classified according to our assessment method. We can draw the following preliminary conclusions. First, the case study showed that the method was useful to show the knowledge construction process over time, in terms of content and cognitive level of statements and interaction, attention and response between stakeholders. It was observed that the various aspects of knowledge construction all were influenced by the use of the 3Di model. The model focused discussions on technical issues of flood risk management, non-flood specialists were able to participate in discussions and in suggesting solutions and more topics could be evaluated in respect to non-interactive flood maps. Second, the method is considered useful as a benchmark for different interactive IT tools. The method is also considered useful to gain insight in how to optimally set-up multi-stakeholder meetings in which interactive IT-tools are being used. Further, the method can provide model developers insight in how to better meet the technical requirements of interactive IT tools to support the knowledge construction process during multi-stakeholder meeting

  18. Water availability predicts forest canopy height at the global scale.

    PubMed

    Klein, Tamir; Randin, Christophe; Körner, Christian

    2015-12-01

    The tendency of trees to grow taller with increasing water availability is common knowledge. Yet a robust, universal relationship between the spatial distribution of water availability and forest canopy height (H) is lacking. Here, we created a global water availability map by calculating an annual budget as the difference between precipitation (P) and potential evapotranspiration (PET) at a 1-km spatial resolution, and in turn correlated it with a global H map of the same resolution. Across forested areas over the globe, Hmean increased with P-PET, roughly: Hmean (m) = 19.3 + 0.077*(P-PET). Maximum forest canopy height also increased gradually from ~ 5 to ~ 50 m, saturating at ~ 45 m for P-PET > 500 mm. Forests were far from their maximum height potential in cold, boreal regions and in disturbed areas. The strong association between forest height and P-PET provides a useful tool when studying future forest dynamics under climate change, and in quantifying anthropogenic forest disturbance. © 2015 John Wiley & Sons Ltd/CNRS.

  19. Water Pollutant Loading Tool Modernization | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  20. NASA Tools for Climate Impacts on Water Resources

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Brad

    2010-01-01

    Climate and environmental change are expected to fundamentally alter the nation's hydrological cycle and water availability. Satellites provide global or near-global coverage using instruments, allowing for consistent, well-calibrated, and equivalent-quality data of the Earth system. A major goal for NASA climate and environmental change research is to create multi-instrument data sets to span the multi-decadal time scales of climate change and to combine these data with those from modeling and surface-based observing systems to improve process understanding and predictions. NASA and Earth science data and analyses will ultimately enable more accurate climate prediction, and characterization of uncertainties. NASA's Applied Sciences Program works with other groups, including other federal agencies, to transition demonstrated observational capabilities to operational capabilities. A summary of some of NASA tools for improved water resources management will be presented.

  1. Improving conservation of Florida manatees (Trichechus manatus latirostris): conceptualization and contributions toward a regional warm-water network management strategy for sustainable winter habitat.

    PubMed

    Flamm, Richard Owen; Reynolds, John Elliot; Harmak, Craig

    2013-01-01

    We used southwestern Florida as a case study to lay the groundwork for an intended and organized decision-making process for managing warm-water habitat needed by endangered manatees to survive winters in Florida. Scientists and managers have prioritized (a) projecting how the network of warm-water sites will change over the next 50 years as warmed industrial discharges may expire and as flows of natural springs are reduced through redirection of water for human uses, and (b) mitigating such changes to prevent undue consequences to manatees. Given the complexities introduced by manatee ecology; agency organizational structure; shifting public demands; fluctuating resource availability; and managing within interacting cultural, social, political, and environmental contexts, it was clear that a structured decision process was needed. To help promote such a process, we collected information relevant to future decisions including maps of known and suspected warm-water sites and prototyped a characterization of sites and networks. We propose steps that would lead to models that might serve as core tools in manatee/warm-water decision-making, and we summarized topics relevant for informed decision-making (e.g., manatee spatial cognition, risk of cold-stress morbidity and mortality, and human dimensions). A major impetus behind this effort is to ensure proactively that robust modeling tools are available well in advance of the anticipated need for a critical management decision.

  2. Summary of hydrologic modeling for the Delaware River Basin using the Water Availability Tool for Environmental Resources (WATER)

    USGS Publications Warehouse

    Williamson, Tanja N.; Lant, Jeremiah G.; Claggett, Peter; Nystrom, Elizabeth A.; Milly, Paul C.D.; Nelson, Hugh L.; Hoffman, Scott A.; Colarullo, Susan J.; Fischer, Jeffrey M.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system for the nontidal part of the Delaware River Basin that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. In order to quantify the uncertainty associated with these simulations, however, streamflow and the associated hydroclimatic variables of potential evapotranspiration, actual evapotranspiration, and snow accumulation and snowmelt must be simulated and compared to long-term, daily observations from sites. This report details model development and optimization, statistical evaluation of simulations for 57 basins ranging from 2 to 930 km2 and 11.0 to 99.5 percent forested cover, and how this statistical evaluation of daily streamflow relates to simulating environmental changes and management decisions that are best examined at monthly time steps normalized over multiple decades. The decision support system provides a database of historical spatial and climatic data for simulating streamflow for 2001–11, in addition to land-cover and general circulation model forecasts that focus on 2030 and 2060. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that were parameterized by using three hydrologic response units: forested, agricultural, and developed land cover. This integration enables the regional hydrologic modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model.

  3. Understanding handpump sustainability: Determinants of rural water source functionality in the Greater Afram Plains region of Ghana†

    PubMed Central

    Shields, Katherine F.; Chan, Terence U.; Christenson, Elizabeth; Cronk, Ryan D.; Leker, Hannah; Samani, Destina; Apoya, Patrick; Lutz, Alexandra

    2015-01-01

    Abstract Safe drinking water is critical to human health and development. In rural sub‐Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross‐sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access. PMID:27667863

  4. Understanding handpump sustainability: Determinants of rural water source functionality in the Greater Afram Plains region of Ghana

    NASA Astrophysics Data System (ADS)

    Fisher, Michael B.; Shields, Katherine F.; Chan, Terence U.; Christenson, Elizabeth; Cronk, Ryan D.; Leker, Hannah; Samani, Destina; Apoya, Patrick; Lutz, Alexandra; Bartram, Jamie

    2015-10-01

    Safe drinking water is critical to human health and development. In rural sub-Saharan Africa, most improved water sources are boreholes with handpumps; studies suggest that up to one third of these handpumps are nonfunctional at any given time. This work presents findings from a secondary analysis of cross-sectional data from 1509 water sources in 570 communities in the rural Greater Afram Plains (GAP) region of Ghana; one of the largest studies of its kind. 79.4% of enumerated water sources were functional when visited; in multivariable regressions, functionality depended on source age, management, tariff collection, the number of other sources in the community, and the district. A Bayesian network (BN) model developed using the same data set found strong dependencies of functionality on implementer, pump type, management, and the availability of tools, with synergistic effects from management determinants on functionality, increasing the likelihood of a source being functional from a baseline of 72% to more than 97% with optimal management and available tools. We suggest that functionality may be a dynamic equilibrium between regular breakdowns and repairs, with management a key determinant of repair rate. Management variables may interact synergistically in ways better captured by BN analysis than by logistic regressions. These qualitative findings may prove generalizable beyond the study area, and may offer new approaches to understanding and increasing handpump functionality and safe water access. This article was corrected on 11 Nov 2015. See the end of the full text for details.

  5. Improving Conservation of Florida Manatees ( Trichechus manatus latirostris): Conceptualization and Contributions Toward a Regional Warm-Water Network Management Strategy for Sustainable Winter Habitat

    NASA Astrophysics Data System (ADS)

    Flamm, Richard Owen; Reynolds, John Elliot; Harmak, Craig

    2013-01-01

    We used southwestern Florida as a case study to lay the groundwork for an intended and organized decision-making process for managing warm-water habitat needed by endangered manatees to survive winters in Florida. Scientists and managers have prioritized (a) projecting how the network of warm-water sites will change over the next 50 years as warmed industrial discharges may expire and as flows of natural springs are reduced through redirection of water for human uses, and (b) mitigating such changes to prevent undue consequences to manatees. Given the complexities introduced by manatee ecology; agency organizational structure; shifting public demands; fluctuating resource availability; and managing within interacting cultural, social, political, and environmental contexts, it was clear that a structured decision process was needed. To help promote such a process, we collected information relevant to future decisions including maps of known and suspected warm-water sites and prototyped a characterization of sites and networks. We propose steps that would lead to models that might serve as core tools in manatee/warm-water decision-making, and we summarized topics relevant for informed decision-making (e.g., manatee spatial cognition, risk of cold-stress morbidity and mortality, and human dimensions). A major impetus behind this effort is to ensure proactively that robust modeling tools are available well in advance of the anticipated need for a critical management decision.

  6. Transboundary Water: Improving Methodologies and Developing Integrated Tools to Support Water Security

    NASA Technical Reports Server (NTRS)

    Hakimdavar, Raha; Wood, Danielle; Eylander, John; Peters-Lidard, Christa; Smith, Jane; Doorn, Brad; Green, David; Hummel, Corey; Moore, Thomas C.

    2018-01-01

    River basins for which transboundary coordination and governance is a factor are of concern to US national security, yet there is often a lack of sufficient data-driven information available at the needed time horizons to inform transboundary water decision-making for the intelligence, defense, and foreign policy communities. To address this need, a two-day workshop entitled Transboundary Water: Improving Methodologies and Developing Integrated Tools to Support Global Water Security was held in August 2017 in Maryland. The committee that organized and convened the workshop (the Organizing Committee) included representatives from the National Aeronautics and Space Administration (NASA), the US Army Corps of Engineers Engineer Research and Development Center (ERDC), and the US Air Force. The primary goal of the workshop was to advance knowledge on the current US Government and partners' technical information needs and gaps to support national security interests in relation to transboundary water. The workshop also aimed to identify avenues for greater communication and collaboration among the scientific, intelligence, defense, and foreign policy communities. The discussion around transboundary water was considered in the context of the greater global water challenges facing US national security.

  7. Development, application, and sensitivity analysis of a water quality index for drinking water management in small systems.

    PubMed

    Scheili, A; Rodriguez, Manuel J; Sadiq, R

    2015-11-01

    The aim of this study was to produce a drinking water assessment tool for operators of small distribution systems. A drinking water quality index (DWQI) was developed and applied to small systems based on the water quality index of the Canadian Council of Ministers of Environment. The drinking water quality index was adapted to specific needs by creating four drinking water quality scenarios. First, the temporal and spatial dimensions of drinking water quality variability were taken into account. The DWQI was designed to express global drinking water quality according to different monitoring frequencies. Daily, monthly, and seasonal assessment was also considered. With the data made available, it was possible to use the index as a spatial monitoring tool and express water quality in different points in the distribution system. Moreover, adjustments were made to prioritize the type of contaminant to monitor. For instance, monitoring contaminants with acute health effects led to a scenario based on daily measures, including easily accessible and affordable water quality parameters. On the other hand, contaminants with chronic effects, especially disinfection by-products, were considered in a seasonal monitoring scenario where disinfection by-product reference values were redefined according to their seasonal variability. A sensitivity analysis was also carried out to validate the index. Globally, the DWQI developed is adapted to the needs of small systems. In fact, expressing drinking water quality using the DWQI contributes to the identification of problematic periods and segments in the distribution system. Further work may include this index in the development of a customized decision-making tool for small-system operators and managers.

  8. Quantification of Soil Redoximorphic Features by Standardized Color Identification

    USDA-ARS?s Scientific Manuscript database

    Photography has been a welcome tool in assisting to document and convey qualitative soil information. Greater availability of digital cameras with increased information storage capabilities has promoted novel uses of this technology in investigations of water movement patterns, organic matter conte...

  9. REACTIVE MINERALS IN AQUIFERS: FORMATION PROCESSES AND QUANTITATIVE ANALYSIS

    EPA Science Inventory

    The presentation will focus on the occurrence, form, and characterization of reactive iron minerals in aquifers and soils. The potential for abiotic reductive transformations of contaminants at the mineral-water interface will be discussed along with available tools for site min...

  10. Surface-water quality in agricultural watersheds of the North Carolina Coastal Plain associated with concentrated animal feeding operations

    USGS Publications Warehouse

    Harden, Stephen L.

    2015-01-01

    A classification tree model was developed to examine relations of watershed environmental attributes among the study sites with and without CAFO manure effects. Model results indicated that variations in swine barn density, percentage of wetlands, and total acres available for applying swine-waste manures had an important influence on those watersheds where CAFO effects on water quality were either evident or mitigated. Measurable effects of CAFO waste manures on stream water quality were most evident in those SW and SP watersheds having lower percentages of wetlands combined with higher swine barn densities and (or) higher total acres available for applying waste manure at the swine CAFOs. Stream water quality was similar to background agricultural conditions in SW and SP watersheds with lower swine barn densities coupled with higher percentages of wetlands or lower acres available for swine manure applications. The model provides a useful tool for exploring and identifying similar, unmonitored watersheds in the North Carolina Coastal Plain with potential CAFO manure influences on water quality that might warrant further examination.

  11. A pilot study of solar water disinfection in the wilderness setting.

    PubMed

    Tedeschi, Christopher M; Barsi, Christopher; Peterson, Shane E; Carey, Kevin M

    2014-09-01

    Solar disinfection of water has been shown to be an effective treatment method in the developing world, but not specifically in a wilderness or survival setting. The current study sought to evaluate the technique using materials typically available in a wilderness or backcountry environment. Untreated surface water from a stream in rural Costa Rica was disinfected using the solar disinfection (SODIS) method, using both standard containers as well as containers and materials more readily available to a wilderness traveler. Posttreatment samples using polyethylene terephthalate (PET) bottles, as well as Nalgene and Platypus water containers, showed similarly decreased levels of Escherichia coli and total coliforms. The SODIS technique may be applicable in the wilderness setting using tools commonly available in the backcountry. In this limited trial, specific types of containers common in wilderness settings demonstrated similar performance to the standard containers. With further study, solar disinfection in appropriate conditions may be included as a viable treatment option for wilderness water disinfection. Copyright © 2014 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  12. Hydrological Scenario Using Tools and Applications Available in enviroGRIDS Portal

    NASA Astrophysics Data System (ADS)

    Bacu, V.; Mihon, D.; Stefanut, T.; Rodila, D.; Cau, P.; Manca, S.; Soru, C.; Gorgan, D.

    2012-04-01

    Nowadays the decision makers but also citizens are concerning with the sustainability and vulnerability of land management practices on various aspects and in particular on water quality and quantity in complex watersheds. The Black Sea Catchment is an important watershed in the Central and East Europe. In the FP7 project enviroGRIDS [1] was developed a Web Portal that incorporates different tools and applications focused on geospatial data management, hydrologic model calibration, execution and visualization and training activities. This presentation highlights, from the end-user point of view, the scenario related with hydrological models using the tools and applications available in the enviroGRIDS Web Portal [2]. The development of SWAT (Soil Water Assessment Tool) hydrological models is a well known procedure for the hydrological specialists [3]. Starting from the primary data (information related to weather, soil properties, topography, vegetation, and land management practices of the particular watershed) that are used to develop SWAT hydrological models, to specific reports, about the water quality in the studied watershed, the hydrological specialist will use different applications available in the enviroGRIDS portal. The tools and applications available through the enviroGRIDS portal are not dealing with the building up of the SWAT hydrological models. They are mainly focused on: calibration procedure (gSWAT [4]) - uses the GRID computational infrastructure to speed-up the calibration process; development of specific scenarios (BASHYT [5]) - starts from an already calibrated SWAT hydrological model and defines new scenarios; execution of scenarios (gSWATSim [6]) - executes the scenarios exported from BASHYT; visualization (BASHYT) - displays charts, tables and maps. Each application is built-up as a stack of functional layers. We combine different layers of applications by vertical interoperability in order to build the desired complex functionality. On the other hand, the applications can collaborate at the same architectural levels, which represent the horizontal interoperability. Both the horizontal and vertical interoperability is accomplished by services and by exchanging data. The calibration procedure requires huge computational resources, which are provided by the Grid infrastructure. On the other hand the scenario development through BASHYT requires a flexible way of interaction with the SWAT model in order to easily change the input model. The large user community of SWAT from the enviroGRIDS consortium or outside may greatly benefit from tools and applications related with the calibration process, scenario development and execution from the enviroGRIDS portal. [1]. enviroGRIDS project, http://envirogrids.net/ [2]. Gorgan D., Abbaspour K., Cau P., Bacu V., Mihon D., Giuliani G., Ray N., Lehmann A., Grid Based Data Processing Tools and Applications for Black Sea Catchment Basin. IDAACS 2011 - The 6th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications 15-17 September 2011, Prague. IEEE Computer Press, pp. 223 - 228 (2011). [3]. Soil and Water Assessment Tool, http://www.brc.tamus.edu/swat/index.html [4]. Bacu V., Mihon D., Rodila D., Stefanut T., Gorgan D., Grid Based Architectural Components for SWAT Model Calibration. HPCS 2011 - International Conference on High Performance Computing and Simulation, 4-8 July, Istanbul, Turkey, ISBN 978-1-61284-381-0, doi: 10.1109/HPCSim.2011.5999824, pp. 193-198 (2011). [5]. Manca S., Soru C., Cau P., Meloni G., Fiori M., A multi model and multiscale, GIS oriented Web framework based on the SWAT model to face issues of water and soil resource vulnerability. Presentation at the 5th International SWAT Conference, August 3-7, 2009, http://www.brc.tamus.edu/swat/4thswatconf/docs/rooma/session5/Cau-Bashyt.pdf [6]. Bacu V., Mihon D., Stefanut T., Rodila D., Gorgan D., Cau P., Manca S., Grid Based Services and Tools for Hydrological Model Processing and Visualization. SYNASC 2011 - 13 International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (in press).

  13. WaveAR: A software tool for calculating parameters for water waves with incident and reflected components

    NASA Astrophysics Data System (ADS)

    Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.

    2012-09-01

    The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.

  14. New tools for linking human and earth system models: The Toolbox for Human-Earth System Interaction & Scaling (THESIS)

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Kauffman, B.; Lawrence, P.

    2016-12-01

    Integrated analysis of questions regarding land, water, and energy resources often requires integration of models of different types. One type of integration is between human and earth system models, since both societal and physical processes influence these resources. For example, human processes such as changes in population, economic conditions, and policies govern the demand for land, water and energy, while the interactions of these resources with physical systems determine their availability and environmental consequences. We have begun to develop and use a toolkit for linking human and earth system models called the Toolbox for Human-Earth System Integration and Scaling (THESIS). THESIS consists of models and software tools to translate, scale, and synthesize information from and between human system models and earth system models (ESMs), with initial application to linking the NCAR integrated assessment model, iPETS, with the NCAR earth system model, CESM. Initial development is focused on urban areas and agriculture, sectors that are both explicitly represented in both CESM and iPETS. Tools are being made available to the community as they are completed (see https://www2.cgd.ucar.edu/sections/tss/iam/THESIS_tools). We discuss four general types of functions that THESIS tools serve (Spatial Distribution, Spatial Properties, Consistency, and Outcome Evaluation). Tools are designed to be modular and can be combined in order to carry out more complex analyses. We illustrate their application to both the exposure of population to climate extremes and to the evaluation of climate impacts on the agriculture sector. For example, projecting exposure to climate extremes involves use of THESIS tools for spatial population, spatial urban land cover, the characteristics of both, and a tool to bring urban climate information together with spatial population information. Development of THESIS tools is continuing and open to the research community.

  15. Implementing a Global Tool for Mercy Corps Based on Spatially Continuous Precipitation Analysis for Resiliency Monitoring and Measuring at the Community-Scale

    NASA Astrophysics Data System (ADS)

    Tomlin, J. N.; El-Behaedi, R.; McCartney, S.; Lingo, R.; Thieme, A.

    2017-12-01

    Global water resources are important for societies, economies, and the environment. In Niger, limited water resources restrict the expansion of agriculture and communities. Mercy Corps currently works in over 40 countries around the world to address a variety of stresses which include water resources and building long-term food resilience. As Mercy Corps seeks to integrate the use of Earth observations, NASA has established a partnership to help facilitate this effort incorporating Tropical Rainfall Measuring Mission (TRMM), Global Precipitation Measurement (GPM), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) data to create a standardized precipitation index that highlights low and high rainfall from 1981 - 2016. The team created a Google Earth Engine tool that combines precipitation data with other metrics of stress in Niger. The system is designed to be able to incorporate groundwater storage data as it becomes available. This tool allows for near real-time updates of trends in precipitation and improves Mercy Corps' ability to spatially evaluate changes in resiliency by monitoring shocks and stressors.

  16. Measuring Global Water Security Towards Sustainable Development Goals

    NASA Technical Reports Server (NTRS)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-01-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience 'low water security' over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated-physical and socio-economic-approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term 'security' is conceptualized as a function of 'availability', 'accessibility to services', 'safety and quality', and 'management'. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  17. A decision support tool for simulating the effects of alternative policies affecting water resources: an application at the European scale

    NASA Astrophysics Data System (ADS)

    Fassio, A.; Giupponi, C.; Hiederer, R.; Simota, C.

    2005-03-01

    This paper presents the methodology applied and results obtained from testing the Decision Support System 'mDSS' developed by the MULINO Project (Multi-sectoral, integrated and operational decision support system for the sustainable use of water resources at the catchment scale), for assessing alternative measures for the reduction of nitrogen pressure from agriculture on water resources at European level. The European policy background is set by the EU Nitrates Directive (91/676/EEC) and the Water Framework Directive (2000/60/EC). The nature of the research is exploratory. It is aimed in particular at testing the usefulness of available official statistics for ex ante evaluations of alternative policy measures at the European scale, and the feasibility of such operations within the newly released mDSS software. Alternative measures for reducing N-pressure and spatial targets were designed and simulated in a GIS environment based on raster maps of 1 km resolution. The geographic extent of the present work is defined as the agricultural land of EU15. Data deriving from official statistics were used to calculate a simplified nitrogen balance, in which the sources of nitrogen are separated into organic (livestock manure) and mineral fertilisers, to distinguish the potential contribution of livestock and crop productions to water pollution at the river basin scale. Spatial indicators and evaluation indices were defined within a conceptual framework. For the study the DPSIR approach (Driving force, Pressure, State, Impact, Response), proposed by the European Environmental Agency, was adopted. The approach was subsequently elaborated by means of the multi-criteria functionality provided by mDSS. The results of this application test at the regional scale highlight the potential of the tool for evaluating the effects of policy measures targeted at different spatial implementation strategies through the application of simple screening models and using available data covering the EU15. The paper also contributes to identifying current strengths and weaknesses of available information, of the adopted methodology and the DSS tool.

  18. Representative Elementary Area Determinations through Digital Photography, Image Analysis, and Soil Color

    USDA-ARS?s Scientific Manuscript database

    Photography has been a welcome tool in assisting to document and convey qualitative soil information. Greater availability of digital cameras with increased information storage capabilities has promoted novel uses of this technology in investigations of water movement patterns, organic matter conte...

  19. ATS displays: A reasoning visualization tool for expert systems

    NASA Technical Reports Server (NTRS)

    Selig, William John; Johannes, James D.

    1990-01-01

    Reasoning visualization is a useful tool that can help users better understand the inherently non-sequential logic of an expert system. While this is desirable in most all expert system applications, it is especially so for such critical systems as those destined for space-based operations. A hierarchical view of the expert system reasoning process and some characteristics of these various levels is presented. Also presented are Abstract Time Slice (ATS) displays, a tool to visualize the plethora of interrelated information available at the host inferencing language level of reasoning. The usefulness of this tool is illustrated with some examples from a prototype potable water expert system for possible use aboard Space Station Freedom.

  20. The Challenge of Access: Using Road Construction as a Tool in Counterinsurgency

    DTIC Science & Technology

    2011-06-10

    northward, as shown in figure 9. Built by the United States in the 1950s, the dam and its downstream channels provide water for irrigation across the...12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for Public Release; Distribution is Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This...consolidated Russian control. It also brought Russia closer to an overriding strategic objective, the procurement of a warm water port from which to project

  1. Science to support the understanding of Ohio's water resources, 2014-15

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie P.

    2014-01-01

    The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decision makers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2014) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  2. Integrated Hydrographical Basin Management. Study Case - Crasna River Basin

    NASA Astrophysics Data System (ADS)

    Visescu, Mircea; Beilicci, Erika; Beilicci, Robert

    2017-10-01

    Hydrographical basins are important from hydrological, economic and ecological points of view. They receive and channel the runoff from rainfall and snowmelt which, when adequate managed, can provide fresh water necessary for water supply, irrigation, food industry, animal husbandry, hydrotechnical arrangements and recreation. Hydrographical basin planning and management follows the efficient use of available water resources in order to satisfy environmental, economic and social necessities and constraints. This can be facilitated by a decision support system that links hydrological, meteorological, engineering, water quality, agriculture, environmental, and other information in an integrated framework. In the last few decades different modelling tools for resolving problems regarding water quantity and quality were developed, respectively water resources management. Watershed models have been developed to the understanding of water cycle and pollution dynamics, and used to evaluate the impacts of hydrotechnical arrangements and land use management options on water quantity, quality, mitigation measures and possible global changes. Models have been used for planning monitoring network and to develop plans for intervention in case of hydrological disasters: floods, flash floods, drought and pollution. MIKE HYDRO Basin is a multi-purpose, map-centric decision support tool for integrated hydrographical basin analysis, planning and management. MIKE HYDRO Basin is designed for analyzing water sharing issues at international, national and local hydrographical basin level. MIKE HYDRO Basin uses a simplified mathematical representation of the hydrographical basin including the configuration of river and reservoir systems, catchment hydrology and existing and potential water user schemes with their various demands including a rigorous irrigation scheme module. This paper analyzes the importance and principles of integrated hydrographical basin management and develop a case study for Crasna river basin, with the use of MIKE HYDRO Basin advanced hydroinformatic tool for integrated hydrographical basin analysis, planning and management.

  3. Assessing Water Level Changes in Lake, Reservoir, Wetland, and River Systems with Remote Sensing Tools and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Ricko, M.; Birkett, C. M.; Beckley, B. D.

    2017-12-01

    The NASA/USDA Global Reservoir and Lake Monitor (G-REALM) offers multi-mission satellite radar altimetry derived surface water level products for a subset of large reservoirs, lakes, and wetlands. These products complement the in situ networks by providing stage information at un-gauged locations, and filling existing data gaps. The availability of both satellite-based rainfall (e.g., TRMM, GPCP) and surface water level products offers great opportunities to estimate and monitor additional hydrologic properties of the lake/reservoir systems. A simple water balance model relating the net freshwater flux over a catchment basin to the lake/reservoir level has been previously utilized (Ricko et al., 2011). The applicability of this approach enables the construction of a longer record of surface water level, i.e. improving the climate data record. As instrument technology and data availability evolve, this method can be used to estimate the water level of a greater number of water bodies, and a greater number of much smaller targets. In addition, such information can improve water balance estimation in different lake, reservoir, wetland, and river systems, and be very useful for assessment of improved prediction of surface water availability. Connections to climatic variations on inter-annual to inter-decadal time-scales are explored here, with a focus on a future ability to predict changes in storage volume for water resources or natural hazards concerns.

  4. How Investment in #GovTech Tools Helped with USGS Disaster Response During Hurricane Harvey

    NASA Astrophysics Data System (ADS)

    Shah, S.; Pearson, D. K.

    2017-12-01

    Hurricane Harvey was an unprecedented storm event that not only included a challenge to decision-makers, but also the scientific community to provide clear and rapid dissemination of changing streamflow conditions and potential flooding concerns. Of primary importance to the U.S. Geological Survey (USGS) Texas Water Science Center was to focus on the availability of accessible data and scientific communication of rapidly changing water conditions across Texas with regards to heavy rainfall rates, rising rivers, streams, and lake elevations where USGS has monitoring stations. Infrastructure modernization leading to advanced GovTech practices and data visualization was key to the USGS role in providing data during Hurricane Harvey. In the last two years, USGS has released two web applications, "Texas Water Dashboard" and "Water-On-The-Go", which were heavily utilized by partners, local media, and municipal government officials. These tools provided the backbone for data distribution through both desktop and mobile applications as decision support during flood events. The combination of Texas Water Science Center web tools and the USGS National Water Information System handled more than 5-million data requests over the course of the storm. On the ground local information near Buffalo Bayou and Addicks/Barker Dams, as well as statewide support of USGS real-time scientific data, were delivered to the National Weather Service, U.S. Army Corps of Engineers, FEMA, Harris County Flood Control District, the general public, and others. This presentation will provide an overview of GovTech solutions used during Hurricane Harvey, including the history of USGS tool development, discussion on the public response, and future applications for helping provide scientific communications to the public.

  5. Technical-financial evaluation of rainwater harvesting systems in commercial buildings-case ase studies from Sonae Sierra in Portugal and Brazil.

    PubMed

    Sousa, Vitor; Silva, Cristina Matos; Meireles, Inês C

    2017-11-10

    Water is an essential and increasingly scarce resource that should be preserved. The evolution of the human population and communities has contributed to the global decrease of potable water availability and the reduction of its consumption is now compulsory. Rainwater harvesting systems (RWHS) are emerging as a viable alternative source for water consumption in non-potable uses. The present study aims to contribute to the promotion of water efficiency, focusing on the application of rainwater harvesting systems in commercial buildings, and comprises four stages: (i) development of a technical evaluation tool to aid the design of RWHS and support their financial evaluation; (ii) validation of the tool using operational data from an existing RWHS installed at Colombo Shopping Center, in Lisbon, Portugal; (iii) assessment of the sensibility of the technical evaluation tool results to the variation of the inputs, namely the precipitation and consumption, through a parametric analysis for the Colombo Shopping Center; and (iv) comparison of the performance and financial feasibility of hypothetical RWHS in two existing commercial buildings. The technical tool was applied to two Sonae Sierra's shopping centers, one in Portugal and one in Brazil. The installation of a 200-m 3 tank is advised for the first case study, allowing non-potable water savings of 60% but a payback period of about 19 years. In the Brazilian shopping, the implementation of a tank with a capacity ranging from 100 to 400 m 3 leads to non-potable savings between 20 and 50%, but with smaller payback period, under 2 years, due to the relatively lower investment costs and higher water fees.

  6. Does the scientific underpinning of regulatory tools to estimate bioavailability of nickel in freshwaters matter? The European-wide environmental quality standard for nickel.

    PubMed

    Peters, Adam; Schlekat, Christian E; Merrington, Graham

    2016-10-01

    A bioavailability-based environmental quality standard (EQS) was established for nickel in freshwaters under the European Union's Water Framework Directive. Bioavailability correction based on pH, water hardness, and dissolved organic carbon is a demonstrable improvement on existing hardness-based quality standards, which may be underprotective in high-hardness waters. The present study compares several simplified bioavailability tools developed to implement the Ni EQS (biomet, M-BAT, and PNECPro) against the full bioavailability normalization procedure on which the EQS was based. Generally, all tools correctly distinguished sensitive waters from insensitive waters, although with varying degrees of accuracy compared with full normalization. Biomet and M-BAT predictions were consistent with, but less accurate than, full bioavailability normalization results, whereas PNECpro results were generally more conservative. The comparisons revealed important differences in tools in development, which results in differences in the predictions. Importantly, the models used for the development of PNECpro use a different ecotoxicity dataset, and a different bioavailability normalization approach using fewer biotic ligand models (BLMs) than that used for the derivation of the Ni EQS. The failure to include all of the available toxicity data, and all of the appropriate NiBLMs, has led to some significant differences between the predictions provided by PNECpro and those calculated using the process agreed to in Europe under the Water Framework Directive and other chemicals management programs (such as REACH). These considerable differences mean that PNECpro does not reflect the behavior, fate, and ecotoxicity of nickel, and raises concerns about its applicability for checking compliance against the Ni EQS. Environ Toxicol Chem 2016;35:2397-2404. © 2016 SETAC. © 2016 SETAC.

  7. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Sangam; Shrestha, Manish; Babel, Mukand S.

    2017-04-01

    This paper analyzes the climate change impact on water diversion plan of Melamchi Water Supply Project (MWSP) in Nepal. The MWSP is an interbasin water transfer project aimed at diverting water from the Melamchi River of the Indrawati River basin to Kathmandu Valley for drinking water purpose. Future temperature and precipitation of the basin were predicted using the outputs of two regional climate models (RCMs) and two general circulation models (GCMs) under two representative concentration pathway (RCP) scenarios which were then used as inputs to Soil and Water Assessment Tool (SWAT) to predict the water availability and evaluate the water diversion strategies in the future. The average temperature of the basin is projected to increase by 2.35 to 4.25 °C under RCP 4.5 and RCP 8.5, respectively, by 2085s. The average precipitation in the basin is projected to increase by 6-18 % in the future. The annual water availability is projected to increase in the future; however, the variability is observed in monthly water availability in the basin. The water supply and demand scenarios of Kathmandu Valley was also examined by considering the population increase, unaccounted for water and water diversion from MWSP in the future. It is observed that even with the additional supply of water from MWSP and reduction of unaccounted for water, the Kathmandu Valley will be still under water scarcity in the future. The findings of this study can be helpful to formulate water supply and demand management strategies in Kathmandu Valley in the context of climate change in the future.

  8. Water resources assessment in a poorly gauged mountainous catchment using a geographical information system and remote sensing

    NASA Astrophysics Data System (ADS)

    Shrestha, Roshan; Takara, Kaoru; Tachikawa, Yasuto; Jha, Raghu N.

    2004-11-01

    Water resources assessment, which is an essential task in making development plans managing water resources, is considerably difficult to do in a data-poor region. In this study, we attempted to conduct a quantitative water resources assessment in a poorly gauged mountainous catchment, i.e. the River Indrawati catchment (1233 km2) in Nepal. This catchment is facing problems such as dry-season water scarcity and water use conflicts. However, the region lacks the basic data that this study needs. The data needed are supplemented from field surveys and global data (e.g. GTOPO30 DEM data, LandsatTM data and MODIS NDVI data). The global data have significantly helped us to draw out the information needed for a number of water-use scenarios. These data helped us determine that the available water quantity is enough at present to address the dry-season problems. The situation is not much worse for the immediate future; however, the threat of drought is noticed in a future scenario in which resources are consumed extensively. The study uses a geographical information system and remotely sensed data analysis tools extensively. Utilization of modern tools and global data is found effective for investigating practical problems and for detecting important features of water resources, even though the catchment is poorly gauged.

  9. Managed Aquifer Recharge: from Local Research and Experiences to Regional Aquifer Storage and Recovery

    NASA Astrophysics Data System (ADS)

    Hendriks, D.; Faneca, M.; Oude Essink, G.; van Baaren, E.; Stuurman, R.; Delsman, J. R.; van Kempen, C.; de Louw, P.

    2016-12-01

    Many areas in the world experience periodic water shortages due to meteorological drought, salt water intrusion or over-exploitation of the water resources. Recently, it was established that the depletion of aquifers in many areas of the world is in an advanced state (Gleeson et al, 2012). This poses enormous challenges as 2.5 billion people and many companies depend on groundwater now and in the future (UN, 2015; ESG, 2016). A solution to increase robustness of water systems and prevent water shortage is subsurface storage of water during wet periods using Managed Aquifer Research (MAR). In addition to mitigation of water shortage, MAR can also reduce the occurrence and degree of flooding. Here, we present an overview of Deltares MAR expertise and available tools for up-scaling MAR. Deltares has experience with both research and implementation of MAR in different parts of the world under various hydro(geo)logical, climatic and socio-economic conditions. Various MAR techniques were assessed/tested in coastal areas of the Netherlands, Spain, New York, New Orleans and in Bangladesh. In some of these areas specific groundwater shortage related issues occur, such as salt water intrusion or subsidence. In Singapore, monitoring campaigns and modeling were done to design MAR by infiltration of water in over-exploited aquifers. In Abu Dhabi, geophysical methods were used to detect the optimal conditions for MAR systems. To effectively increase the robustness of groundwater systems up-scaling of MAR is required. For this purpose, Deltares developed tools that provide insight in the potential demand, possibilities and effectiveness of MAR at larger scales. The Quick scan tool for Fresh Groundwater Buffering provides insight on regional to national scale and is based on GIS-information of water demand, water resources, and subsurface properties. This quick scan tool has been applied for Mozambique, Kenya, India and Bangladesh. The Fresh Water Optimizer assesses the effectiveness and side effects of small scale techniques, and assesses up-scaling based on spatial information of the geohydrology and socio-economic situation.

  10. Operational Management System for Regulated Water Systems

    NASA Astrophysics Data System (ADS)

    van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

    2012-04-01

    Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

  11. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  12. Methodological approaches for studying the microbial ecology of drinking water distribution systems.

    PubMed

    Douterelo, Isabel; Boxall, Joby B; Deines, Peter; Sekar, Raju; Fish, Katherine E; Biggs, Catherine A

    2014-11-15

    The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. ECOUL: an interactive computer tool to study hydraulic behavior of swelling and rigid soils

    NASA Astrophysics Data System (ADS)

    Perrier, Edith; Garnier, Patricia; Leclerc, Christian

    2002-11-01

    ECOUL is an interactive, didactic software package which simulates vertical water flow in unsaturated soils. End-users are given an easily-used tool to predict the evolution of the soil water profile, with a large range of possible boundary conditions, through a classical numerical solution scheme for the Richards equation. Soils must be characterized by water retention curves and hydraulic conductivity curves, the form of which can be chosen among different analytical expressions from the literature. When the parameters are unknown, an inverse method is provided to estimate them from available experimental flow data. A significant original feature of the software is to include recent algorithms extending the water flow model to deal with deforming porous media: widespread swelling soils, the volume of which varies as a function of water content, must be described by a third hydraulic characteristic property, the deformation curve. Again, estimation of the parameters by means of inverse procedures and visualization facilities enable exploration, understanding and then prediction of soil hydraulic behavior under various experimental conditions.

  14. A suite of R packages for web-enabled modeling and analysis of surface waters

    NASA Astrophysics Data System (ADS)

    Read, J. S.; Winslow, L. A.; Nüst, D.; De Cicco, L.; Walker, J. I.

    2014-12-01

    Researchers often create redundant methods for downloading, manipulating, and analyzing data from online resources. Moreover, the reproducibility of science can be hampered by complicated and voluminous data, lack of time for documentation and long-term maintenance of software, and fear of exposing programming skills. The combination of these factors can encourage unshared one-off programmatic solutions instead of openly provided reusable methods. Federal and academic researchers in the water resources and informatics domains have collaborated to address these issues. The result of this collaboration is a suite of modular R packages that can be used independently or as elements in reproducible analytical workflows. These documented and freely available R packages were designed to fill basic needs for the effective use of water data: the retrieval of time-series and spatial data from web resources (dataRetrieval, geoknife), performing quality assurance and quality control checks of these data with robust statistical methods (sensorQC), the creation of useful data derivatives (including physically- and biologically-relevant indices; GDopp, LakeMetabolizer), and the execution and evaluation of models (glmtools, rLakeAnalyzer). Here, we share details and recommendations for the collaborative coding process, and highlight the benefits of an open-source tool development pattern with a popular programming language in the water resources discipline (such as R). We provide examples of reproducible science driven by large volumes of web-available data using these tools, explore benefits of accessing packages as standardized web processing services (WPS) and present a working platform that allows domain experts to publish scientific algorithms in a service-oriented architecture (WPS4R). We assert that in the era of open data, tools that leverage these data should also be freely shared, transparent, and developed in an open innovation environment.

  15. Web-phreeq: a WWW instructional tool for modeling the distribution of chemical species in water

    NASA Astrophysics Data System (ADS)

    Saini-Eidukat, Bernhardt; Yahin, Andrew

    1999-05-01

    A WWW-based tool, WEB-PHREEQ, was developed for classroom teaching and for routine calculation of low temperature aqueous speciation. Accessible with any computer that has an internet-connected forms-capable WWW-browser, WEB-PHREEQ provides user interface and other support for modeling, creates a properly formatted input file, passes it to the public domain program PHREEQC and returns the output to the WWW browser. Users can calculate the equilibrium speciation of a solution over a range of temperatures or can react solid minerals or gases with a particular water and examine the resulting chemistry. WEB-PHREEQ is one of a number of interactive distributed-computing programs available on the WWW that are of interest to geoscientists.

  16. Sustainable uses of FGD gypsum in agricultural systems

    USDA-ARS?s Scientific Manuscript database

    Interest in using gypsum as a management tool to improve crop yields and soil/water quality has recently increased. Abundant supply and availability of flue gas desulfurization (FGD) gypsum, a by-product of scrubbing sulfur (S) from combustion gases at coal-fired power plants, in major agricultural...

  17. Drought, Land-Use Change, and Water Availability in California's Central Valley

    NASA Astrophysics Data System (ADS)

    Faunt, C. C.; Sneed, M.; Traum, J.

    2015-12-01

    The Central Valley is a broad alluvial-filled structural trough that covers about 52,000 square kilometers and is one of the most productive agricultural regions in the world. Because the valley is semi-arid and the availability of surface water varies substantially from year to year, season to season, and from north to south, agriculture developed a reliance on groundwater for irrigation. During recent drought periods (2007-09 and 2012-present), groundwater pumping has increased due to a combination of factors including drought and land-use changes. In response, groundwater levels have declined to levels approaching or below historical low levels. In the San Joaquin Valley, the southern two thirds of the Central Valley, the extensive groundwater pumpage has caused aquifer system compaction, resulting in land subsidence and permanent loss of groundwater storage capacity. The magnitude and rate of subsidence varies based on geologic materials, consolidation history, and historical water levels. Spatially-variable subsidence has changed the land-surface slope, causing operational, maintenance, and construction-design problems for surface-water infrastructure. It is important for water agencies to plan for the effects of continued water-level declines, storage losses, and/or land subsidence. To combat these effects, excess surface water, when available, is artificially recharged. As surface-water availability, land use, and artificial recharge continue to vary, long-term groundwater-level and land-subsidence monitoring and modelling are critical to understanding the dynamics of the aquifer system. Modeling tools, such as the Central Valley Hydrologic Model, can be used in the analysis and evaluation of management strategies to mitigate adverse impacts due to subsidence, while also optimizing water availability. These analyses will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.

  18. Decision Support System for Aquifer Recharge (AR) and ...

    EPA Pesticide Factsheets

    Aquifer recharge (AR) is a technical method being utilized to enhance groundwater resources through man-made replenishment means, such as infiltration basins and injections wells. Aquifer storage and recovery (ASR) furthers the AR techniques by withdrawal of stored groundwater at a later time for beneficial use. It is a viable adaptation technique for water availability problems. Variants of the water storage practices include recharge through urban green infrastructure and the subsurface injection of reclaimed water, i.e., wastewater, which has been treated to remove solids and impurities. In addition to a general overview of ASR variations, this report focuses on the principles and technical basis for an ASR decision support system (DSS), with the necessary technical references provided. The DSS consists of three levels of tools and methods for ASR system planning and assessment, design, and evaluation. Level 1 of the system is focused on ASR feasibility, for which four types of data and technical information are organized around: 1) ASR regulations and permitting needs, 2) Water demand projections, 3) Climate change and water availability, and 4) ASR sites and technical information. These technical resources are integrated to quantify water availability gaps and the feasibility of using ASR to meet the volume and timing of the water resource shortages. A systemic analysis of water resources was conducted for sustainable water supplies in Las Vegas, Nevada f

  19. Assessing the ecological status in the context of the European Water Framework Directive: where do we go now?

    PubMed

    Reyjol, Yorick; Argillier, Christine; Bonne, Wendy; Borja, Angel; Buijse, Anthonie D; Cardoso, Ana Cristina; Daufresne, Martin; Kernan, Martin; Ferreira, Maria Teresa; Poikane, Sandra; Prat, Narcís; Solheim, Anne-Lyche; Stroffek, Stéphane; Usseglio-Polatera, Philippe; Villeneuve, Bertrand; van de Bund, Wouter

    2014-11-01

    The Water Framework Directive (WFD) is now well established as the key management imperative in river basins across Europe. However, there remain significant concerns with the way WFD is implemented and there is now a need for water managers and scientists to communicate better in order to find solutions to these concerns. To address this, a Science-Policy Interface (SPI) activity was launched in 2010 led by Directorate-General for Research and Innovation and Onema (the French national agency for water and aquatic ecosystems), which provided an interactive forum to connect scientists and WFD end-users. One major aim of the SPI activity was to establish a list of the most crucial research and development needs for enhancing WFD implementation. This paper synthesises the recommendations from this event highlighting 10 priority issues relating to ecological status. For lakes, temporary streams and transitional and coastal waters, WFD implementation still suffers from a lack of WFD-compliant bioassessment methods. For rivers, special attention is required to assess the ecological impacts of hydromorphological alterations on biological communities, notably those affecting river continuity and riparian covering. Spatial extrapolation tools are needed in order to evaluate ecological status for water bodies for which no data are available. The need for more functional bioassessment tools as complements to usual WFD-compliant tools, and to connect clearly good ecological state, biodiversity and ecosystem services when implementing WFD were also identified as crucial issues. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. New insight into California’s drought through open data

    USGS Publications Warehouse

    Read, Emily K.; Bucknell, Mary; Hines, Megan K.; Kreft, James M.; Lucido, Jessica M.; Read, Jordan S.; Schroedl, Carl; Sibley, David M.; Stephan, Shirley; Suftin, Ivan; Thongsavanh, Phethala; Van Den Hoek, Jamon; Walker, Jordan I.; Wernimont, Martin R; Winslow, Luke A.; Yan, Andrew N.

    2015-01-01

    Historically unprecedented drought in California has brought water issues to the forefront of the nation’s attention. Crucial investigations that concern water policy, management, and research, in turn, require extensive information about the quality and quantity of California’s water. Unfortunately, key sources of pertinent data are unevenly distributed and frequently hard to find. Thankfully, the vital importance of integrating water data across federal, state, and tribal, academic, and private entities, has recently been recognized and addressed through federal initiatives such as the Climate Data Initiative of President Obama’s Climate Action Plan and the Advisory Committee on Water Information’sOpen Water Data Initiative. Here, we demonstrate an application of integrated open water data, visualized and made available online using open source software, for the purpose of exploring the impact of the current California drought. Our collaborative approach and technical tools enabled a rapid, distributed development process. Many positive outcomes have resulted: the application received recognition within and outside of the Federal Government, inspired others to visualize open water data, spurred new collaborations for our group, and strengthened the collaborative relationships within the team of developers. In this article, we describe the technical tools and collaborative process that enabled the success of the application. 

  1. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database and CUAHSI-Supported Data Tools

    NASA Astrophysics Data System (ADS)

    Brazil, L.

    2017-12-01

    The Shale Network's extensive database of water quality observations enables educational experiences about the potential impacts of resource extraction with real data. Through open source tools that are developed and maintained by the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), researchers, educators, and citizens can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through collection efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. Thus far, CUAHSI-supported data tools have been used to engage high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in developing educational material, and the resources available to learn more.

  2. Indicators, Metric and Tools for Informing the Science and Vision of Gulf Coast Ecosystem Restoration

    EPA Science Inventory

    The Gulf Coast Ecosystem Restoration Council will oversee restoration efforts the under the recently passed RESTORE Act in response to the historic Deep Water Horizon oil spill in the Gulf of Mexico. The Council will develop a Comprehensive Restoration Plan using best available ...

  3. DOTAGWA: A CASE STUDY IN WEB-BASED ARCHITECTURES FOR CONNECTING SURFACE WATER MODELS TO SPATIALLY ENABLED WEB APPLICATIONS

    EPA Science Inventory

    The Automated Geospatial Watershed Assessment (AGWA) tool is a desktop application that uses widely available standardized spatial datasets to derive inputs for multi-scale hydrologic models (Miller et al., 2007). The required data sets include topography (DEM data), soils, clima...

  4. A Reverse Transcription-PCR Assay to Distinguish the Four Genogroups of Male-Specific (F+) RNA Coliphages

    EPA Science Inventory

    Goals of reducing fecal contamination in recreational, drinking, shellfishing and other waters and accurately assessing risk from exposure can best be attained if tools to distinguish between sources of pollution are available. The male-specific RNA coliphage (FRNA) genogroups h...

  5. Surprises and insights from long-term aquatic datasets and experiments

    Treesearch

    Walter K. Dodds; Christopher T. Robinson; Evelyn E. Gaiser; Gretchen J.A. Hansen; Heather Powell; Joseph M. Smith; Nathaniel B. Morse; Sherri L. Johnson; Stanley V. Gregory; Tisza Bell; Timothy K. Kratz; William H. McDowell

    2012-01-01

    Long-term research on freshwater ecosystems provides insights that can be difficult to obtain from other approaches. Widespread monitoring of ecologically relevant water-quality parameters spanning decades can facilitate important tests of ecological principles. Unique long-term data sets and analytical tools are increasingly available, allowing for powerful and...

  6. Are drought vulnerability indices useful tools in order to evaluate the state of a water supply system?

    NASA Astrophysics Data System (ADS)

    Preziosi, E.; Del Bon, A.; Romano, E.; Petrangeli, A. B.; Casadei, S.

    2012-04-01

    Water resources availability is affected both by anthropic drivers (increasing demand, modification in the uses) and natural ones such as precipitation decrease related to global climate changes. Water managers and water policy makers are more and more aware that they are facing a changing climate in which the availability of water is claimed to be decreasing in many parts of the world. The possibility that droughts will be more frequent and severe in the next decades is getting a real possibility and a wise manager should know in advance how to face this new reality. Hence new tools and, more important, a methodology to assess the weakest points of a complex water supply system to water scarcity scenarios, are necessary. The importance of simulation models to assess in advance the impacts of possible conditions of severe water shortage and the effects of feasible mitigation options on water supply systems is well known. Vulnerability is commonly used to characterize the performance of water supply systems, and it can be a helpful indicator in the evaluation of the most likely failures in a complex system in ordinary as well as in more severe climatic conditions. However a common procedure about the exploitation of modeling results is not established yet. In this research the water supply network of a case study area in Central Italy was modeled under different climatic and management hypothesis. In this area both ground water resources (well fields in alluvial aquifers and Apennine springs) and surface water resources stored in two large reservoirs, are exploited mainly for drinking water supply and irrigation. Climate scenarios were drawn based on three simplistic hypothesis: firstly a progressive reduction of precipitation in 55 years, secondly an increase in its variance during time, lastly a combination of the two. The model results were elaborated to calculate different indices, in order to analyze the variation of vulnerability of the water supply system to drought, in time and space. For our case study the model results show that the safety of the water supply system mainly relies on the reservoirs capacity and that the foreseen exploitation of the Apennine springs for drinking water supply could be seriously limited by the discharge natural decrease in fall. A decrease of the water system vulnerability to drought determined by a hypothetical but feasible mitigation option (augmentation of the total reservoir capacity with small reservoirs) was positively tested by the model. As a conclusion, vulnerability indices as well as synoptic risk maps, appear to be useful tools in order to analyze model results. Additionally they could provide scientific based scenarios to be used in a decision making framework considering negotiating among the main users.

  7. Large-scale hydrological modeling for calculating water stress indices: implications of improved spatiotemporal resolution, surface-groundwater differentiation, and uncertainty characterization.

    PubMed

    Scherer, Laura; Venkatesh, Aranya; Karuppiah, Ramkumar; Pfister, Stephan

    2015-04-21

    Physical water scarcities can be described by water stress indices. These are often determined at an annual scale and a watershed level; however, such scales mask seasonal fluctuations and spatial heterogeneity within a watershed. In order to account for this level of detail, first and foremost, water availability estimates must be improved and refined. State-of-the-art global hydrological models such as WaterGAP and UNH/GRDC have previously been unable to reliably reflect water availability at the subbasin scale. In this study, the Soil and Water Assessment Tool (SWAT) was tested as an alternative to global models, using the case study of the Mississippi watershed. While SWAT clearly outperformed the global models at the scale of a large watershed, it was judged to be unsuitable for global scale simulations due to the high calibration efforts required. The results obtained in this study show that global assessments miss out on key aspects related to upstream/downstream relations and monthly fluctuations, which are important both for the characterization of water scarcity in the Mississippi watershed and for water footprints. Especially in arid regions, where scarcity is high, these models provide unsatisfying results.

  8. Droughts and water scarcity: facing challenges

    NASA Astrophysics Data System (ADS)

    Pereira, Luis S.

    2014-05-01

    Water scarcity characterizes large portions of the world, particularly the Mediterranean area. It is due to natural causes - climate aridity, which is permanent, and droughts, that are temporary - and to human causes - long term desertification and short term water shortages. Droughts aggravate water scarcity. Knowledge has well developed relative to all processes but management tools still are insufficient as well as the tools required to support appropriate planning and management. Particularly, new approaches on tools for assessing related impacts in agriculture and other economic and social activities are required. Droughts occur in all climates but their characteristics largely differ among regions both in terms frequency, duration and intensity. Research has already produced a large number of tools that allow appropriate monitoring of droughts occurrence and intensity, including dynamics of drought occurrence and time evolution. Advances in drought prediction already are available but we still are far from knowing when a drought will start, how it will evolve and when it dissipates. New developments using teleconnections and GCM are being considered. Climate change is a fact. Are droughts occurrence and severity changing with global change? Opinions are divided about this subject since driving factors and processes are varied and tools for the corresponding analysis are also various. Particularly, weather data series are often too short for obtaining appropriate answers. In a domain where research is producing improved knowledge and innovative approaches, research faces however a variety of challenges. The main ones, dealt in this keynote, refer to concepts and definitions, use of monitoring indices, prediction of drought initiation and evolution, improved assessment of drought impacts, and possible influence of climate change on drought occurrence and severity.

  9. Effects of water-supply reservoirs on streamflow in Massachusetts

    USGS Publications Warehouse

    Levin, Sara B.

    2016-10-06

    State and local water-resource managers need modeling tools to help them manage and protect water-supply resources for both human consumption and ecological needs. The U.S. Geological Survey, in cooperation with the Massachusetts Department of Environmental Protection, has developed a decision-support tool to estimate the effects of reservoirs on natural streamflow. The Massachusetts Reservoir Simulation Tool is a model that simulates the daily water balance of a reservoir. The reservoir simulation tool provides estimates of daily outflows from reservoirs and compares the frequency, duration, and magnitude of the volume of outflows from reservoirs with estimates of the unaltered streamflow that would occur if no dam were present. This tool will help environmental managers understand the complex interactions and tradeoffs between water withdrawals, reservoir operational practices, and reservoir outflows needed for aquatic habitats.A sensitivity analysis of the daily water balance equation was performed to identify physical and operational features of reservoirs that could have the greatest effect on reservoir outflows. For the purpose of this report, uncontrolled releases of water (spills or spillage) over the reservoir spillway were considered to be a proxy for reservoir outflows directly below the dam. The ratio of average withdrawals to the average inflows had the largest effect on spillage patterns, with the highest withdrawals leading to the lowest spillage. The size of the surface area relative to the drainage area of the reservoir also had an effect on spillage; reservoirs with large surface areas have high evaporation rates during the summer, which can contribute to frequent and long periods without spillage, even in the absence of water withdrawals. Other reservoir characteristics, such as variability of inflows, groundwater interactions, and seasonal demand patterns, had low to moderate effects on the frequency, duration, and magnitude of spillage. The reservoir simulation tool was used to simulate 35 single- and multiple-reservoir systems in Massachusetts over a 44-year period (water years 1961 to 2004) under two water-use scenarios. The no-pumping scenario assumes no water withdrawal pumping, and the pumping scenario incorporates average annual pumping rates from 2000 to 2004. By comparing the results of the two scenarios, the total streamflow alteration can be parsed into the portion of streamflow alteration caused by the presence of a reservoir and the additional streamflow alteration caused by the level of water use of the system.For each reservoir system, the following metrics were computed to characterize the frequency, duration, and magnitude of reservoir outflow volumes compared with unaltered streamflow conditions: (1) the median number of days per year in which the reservoir did not spill, (2) the median duration of the longest consecutive period of no-spill days per year, and (3) the lowest annual flow duration exceedance probability at which the outflows are significantly different from estimated unaltered streamflow at the 95-percent confidence level. Most reservoirs in the study do not spill during the summer months even under no-pumping conditions. The median number of days during which there was no spillage was less than 365 for all reservoirs in the study, indicating that, even under reported pumping conditions, the reservoirs refill to full volume and spill at least once during nondrought years, typically in the spring.Thirteen multiple-reservoir systems consisting of two or three hydrologically connected reservoirs were included in the study. Because operating rules used to manage multiple-reservoir systems are not available, these systems were simulated under two pumping scenarios, one in which water transfers between reservoirs are minimal and one in which reservoirs continually transferred water to intermediate or terminal reservoirs. These two scenarios provided upper and lower estimates of spillage under average pumping conditions from 2000 to 2004.For sites with insufficient data to simulate daily water balances, a proxy method to estimate the three spillage metrics was developed. A series of 4,000 Monte Carlo simulations of the reservoir water balance were run. In each simulation, streamflow, physical reservoir characteristics, and daily climate inputs were randomly varied. Tobit regression equations that quantify the relation between streamflow alteration and physical and operational characteristics of reservoirs were developed from the results of the Monte Carlo simulations and can be used to estimate each of the three spillage metrics using only the withdrawal ratio and the ratio of the surface area to the drainage area, which are available statewide for all reservoirs.A graphical user-interface for the Massachusetts Reservoir Simulation Tool was developed in a Microsoft Access environment. The simulation tool contains information for 70 reservoirs in Massachusetts and allows for simulation of additional scenarios than the ones considered in this report, including controlled releases, dam seepage and leakage, demand management plans, and alternative water withdrawal and transfer rules.

  10. Meeting multiple demands: Water transaction opportunities for environmental benefits promoting adaptation to climate change

    NASA Astrophysics Data System (ADS)

    McCoy, Amy

    2015-04-01

    In arid regions, the challenge of balancing water use among a diversity of sectors expands in lock step with conditions of water stress that are exacerbated by climate variability, prolonged drought, and growing water-use demands. The elusiveness of achieving a sustainable balance under conditions of environmental change in the southwestern United States is evidenced by reductions in both overall water availability and freshwater ecosystem health, as well as by recent projections of shortages on the Colorado River within the next five years. The water sustainability challenge in this region, as well as drylands throughout the world, can therefore be viewed through the lens of water stress, a condition wherein demands on land and water -- including the needs of freshwater ecosystems -- exceed reliable supplies, and the full range of water needs cannot be met without tradeoffs across multiple uses. Water stress influences not only ecosystems, but a region's economy, land management, quality of life, and cultural heritage -- each of which requires water to thrive. With respect to promoting successful adaptation to climate change, achieving full water sustainability would allow for water to be successfully divided among water users -- including municipalities, agriculture, and freshwater ecosystems -- at a level that meets the goals of water users and the governing body. Over the last ten to fifteen years, the use of transactional approaches in the western U.S., Mexico, and Australia has proven to be a viable management tool for achieving stream flow and shallow aquifer restoration. By broad definition, environmental water transactions are an equitable and adaptable tool that brings diverse stakeholders to the table to facilitate a fair-market exchange of rights to use water in a manner that benefits both water users and the environment. This talk will present a basic framework of necessary stakeholder engagement, hydrologic conditions, enabling laws and policies, pertinent tools and techniques, and potential ecological outcomes that are essential components of environmental water transactions in the western United States. The overarching goal of the presentation seeks to explore ways in which environmental transactions can contribute to the protection and restoration of streams and shallow aquifers in arid and semi-arid regions across the globe.

  11. System Life Cycle Evaluation(SM) (SLiCE): harmonizing water treatment systems with implementers' needs.

    PubMed

    Goodman, Joseph; Caravati, Kevin; Foote, Andrew; Nelson, Molly; Woods, Emily

    2013-06-01

    One of the methods proposed to improve access to clean drinking water is the mobile packaged water treatment system (MPWTS). The lack of published system performance comparisons combined with the diversity of technology available and intended operating conditions make it difficult for stakeholders to choose the system best suited for their application. MPWTS are often deployed in emergency situations, making selection of the appropriate system crucial to avoiding wasted resources and loss of life. Measurable critical-to-quality characteristics (CTQs) and a system selection tool for MPWTS were developed by utilizing relevant literature, including field studies, and implementing and comparing seven different MPWTS. The proposed System Life Cycle Evaluation (SLiCE) method uses these CTQs to evaluate the diversity in system performance and harmonize relevant performance with stakeholder preference via a selection tool. Agencies and field workers can use SLiCE results to inform and drive decision-making. The evaluation and selection tool also serves as a catalyst for communicating system performance, common design flaws, and stakeholder needs to system manufacturers. The SLiCE framework can be adopted into other emerging system technologies to communicate system performance over the life cycle of use.

  12. TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Jones, N.; Ames, D. P.

    2015-12-01

    Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.

  13. On constraining pilot point calibration with regularization in PEST

    USGS Publications Warehouse

    Fienen, M.N.; Muffels, C.T.; Hunt, R.J.

    2009-01-01

    Ground water model calibration has made great advances in recent years with practical tools such as PEST being instrumental for making the latest techniques available to practitioners. As models and calibration tools get more sophisticated, however, the power of these tools can be misapplied, resulting in poor parameter estimates and/or nonoptimally calibrated models that do not suit their intended purpose. Here, we focus on an increasingly common technique for calibrating highly parameterized numerical models - pilot point parameterization with Tikhonov regularization. Pilot points are a popular method for spatially parameterizing complex hydrogeologic systems; however, additional flexibility offered by pilot points can become problematic if not constrained by Tikhonov regularization. The objective of this work is to explain and illustrate the specific roles played by control variables in the PEST software for Tikhonov regularization applied to pilot points. A recent study encountered difficulties implementing this approach, but through examination of that analysis, insight into underlying sources of potential misapplication can be gained and some guidelines for overcoming them developed. ?? 2009 National Ground Water Association.

  14. “Live” Formulations of International Association for the properties of Water and Steam (IAPWS)

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Orlov, K. A.; Gurke, S.

    2017-11-01

    Online publication of IAPWS formulations for calculation of the properties of water and steam is reviewed. The advantages of electronic delivery via Internet over traditional publication on paper are examined. Online calculation can be used with or without formulas or equations printed in traditional publications. Online calculations should preferably free of charge and compatible across multiple platforms (Windows, Android, Linux). Other requirements include availability of multilingual interface, traditional math operators and functions, 2D and 3D graphic capabilities, animation, numerical and symbolic math, tools for solving equation systems, local functions, etc. Using of online visualization tools for verification of functions for calculating thermophysical properties of substances is reviewed. Specific examples are provided of tools for the modeling of the properties of chemical substances, including desktop and online calculation software, downloadable online calculations, and calculations that use server technologies such as Mathcad Calculation Server (see the site of National Research University “Moscow Power Engineering Institute”) and SMath (see the site of Knovel, an Elsevier company).

  15. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database

    NASA Astrophysics Data System (ADS)

    Brantley, S.; Brazil, L.

    2017-12-01

    The Shale Network's extensive database of water quality observations enables educational experiences about the potential impacts of resource extraction with real data. Through tools that are open source and free to use, researchers, educators, and citizens can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. Thus far, these tools and data have been used to engage high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in developing lesson plans, and the resources available to learn more.

  16. Land use and hydromechanical heterogeneities in marshland soils.

    NASA Astrophysics Data System (ADS)

    Tojo Radimy, Raymond; Dupont, Jean-Paul; Dudoignon, Patrick

    2017-04-01

    In the interpretation of soil moisture profiles, mechanical properties were most often considered homogeneous. The structural heterogeneities of the soil are knows to be at the origin of the distribution and the availability of water in the vadose zone. The soils study is located in the French Atlantic coastal marshlands, characterized by the succession polderization/desiccation/consolidation and maturation. The work is carried out within the framework of the farming of old salt marshes with two concerns in the farmers: the salinity of the soil and the distribution of the available water capacity of the soils according to the crop growth. The present work shows the knowledge of the soil storage transfers during seasonal cycles on drained corn field and undrained grassland. We analyze the vertical water profiles observed to reveal the hydromechanical heterogeneities in the soils depending the porosity and gravity water parameter. This approach is based on mechanical tests between the compaction pathways carried out in the laboratory using materials taken in situ. Comparing to grasslands profiles, we highlight the influence of agricultural practices and the establishment of drainage in the marshland. However, the vertical homogenization of hydromechanical structures, desalination has been taken into account for the estimation of water in crop. The concept of a homogeneous structure is not adapted to real vertical profile. Finally, the authors conclude by discussing the notion of the mechanical availability of water in terms of porosity and gravity water. These parameters are good tools to the sustainable management of marshland soils. Keywords: hydromechanics, vadose zone, soil structure, land use, available water capacity

  17. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin; Anderson, Molly

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  18. 77 FR 63603 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Cumberland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... materials received, as well as supporting documentation used in preparing this final rule, are available for... Tennessee Fish and Wildlife Office (see FOR FURTHER INFORMATION CONTACT). Any additional tools or supporting... discount rate. Primarily these costs are associated with consultation for water quality management...

  19. Cost of areal reduction of gulf hypoxia through agricultural practice

    USDA-ARS?s Scientific Manuscript database

    A major share of the area of hypoxic growth in the Northern Gulf of Mexico has been attributed to nutrient run-off from agricultural fields, but no estimate is available for the cost of reducing Gulf hypoxic area using agricultural conservation practices. We apply the Soil and Water Assessment Tool ...

  20. Neglected waterborne parasitic protozoa and their detection in water.

    PubMed

    Plutzer, Judit; Karanis, Panagiotis

    2016-09-15

    Outbreak incidents raise the question of whether the less frequent aetiological agents of outbreaks are really less frequent in water. Alternatively, waterborne transmission could be relevant, but the lack of attention and rapid, sensitive methods to recover and detect the exogenous stages in water may keep them under-recognized. High quality information on the prevalence and detection of less frequent waterborne protozoa, such as Cyclospora cayetanensis, Toxoplasma gondii, Isospora belli, Balantidium coli, Blastocystis hominis, Entamoeba histolytica and other free-living amoebae (FLA), are not available. This present paper discusses the detection tools applied for the water surveillance of the neglected waterborne protozoa mentioned above and provides future perspectives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Python tools for rapid development, calibration, and analysis of generalized groundwater-flow models

    NASA Astrophysics Data System (ADS)

    Starn, J. J.; Belitz, K.

    2014-12-01

    National-scale water-quality data sets for the United States have been available for several decades; however, groundwater models to interpret these data are available for only a small percentage of the country. Generalized models may be adequate to explain and project groundwater-quality trends at the national scale by using regional scale models (defined as watersheds at or between the HUC-6 and HUC-8 levels). Coast-to-coast data such as the National Hydrologic Dataset Plus (NHD+) make it possible to extract the basic building blocks for a model anywhere in the country. IPython notebooks have been developed to automate the creation of generalized groundwater-flow models from the NHD+. The notebook format allows rapid testing of methods for model creation, calibration, and analysis. Capabilities within the Python ecosystem greatly speed up the development and testing of algorithms. GeoPandas is used for very efficient geospatial processing. Raster processing includes the Geospatial Data Abstraction Library and image processing tools. Model creation is made possible through Flopy, a versatile input and output writer for several MODFLOW-based flow and transport model codes. Interpolation, integration, and map plotting included in the standard Python tool stack also are used, making the notebook a comprehensive platform within on to build and evaluate general models. Models with alternative boundary conditions, number of layers, and cell spacing can be tested against one another and evaluated by using water-quality data. Novel calibration criteria were developed by comparing modeled heads to land-surface and surface-water elevations. Information, such as predicted age distributions, can be extracted from general models and tested for its ability to explain water-quality trends. Groundwater ages then can be correlated with horizontal and vertical hydrologic position, a relation that can be used for statistical assessment of likely groundwater-quality conditions. Convolution with age distributions can be used to quickly ascertain likely future water-quality conditions. Although these models are admittedly very general and are still being tested, the hope is that they will be useful for answering questions related to water quality at the regional scale.

  2. Satellite-Based Drought Reporting on the Navajo Nation

    NASA Technical Reports Server (NTRS)

    McCullum, Amber; Schmidt, Cynthia; Ly, Vickie; Green, Rachel; McClellan, Carlee

    2017-01-01

    The Navajo Nation (NN) is the largest reservation in the US, and faces challenges related to water management during long-term and widespread drought episodes. The Navajo Nation is a federally recognized tribe, which has boundaries within Arizona, New Mexico, and Utah. The Navajo Nation has a land area of over 70,000 square kilometers. The Navajo Nation Department of Water Resources (NNDWR) reports on drought and climatic conditions through the use of regional Standardized Precipitation Index (SPI) values and a network of in-situ rainfall, streamflow, and climate data. However, these data sources lack the spatial detail and consistent measurements needed to provide a coherent understanding of the drought regime within the Nation's regional boundaries. This project, as part of NASA's Western Water Applications Office (WWAO), improves upon the recently developed Drought Severity Assessment Tool (DSAT) to ingest satellite-based precipitation data to generate SPI values for specific administrative boundaries within the reservation. The tool aims to: (1) generate SPI values and summary statistics for regions of interest on various timescales, (2) to visualize SPI values within a web-map application, and (3) produce maps and comparative statistical outputs in the format required for annual drought reporting. The co-development of the DSAT with NN partners is integral to increasing the sustained use of Earth Observations for water management applications. This tool will provide data to support the NN in allocation of drought contingency dollars to the regions most adversely impacted by declines in water availability.

  3. Satellite-based Drought Reporting on the Navajo Nation

    NASA Astrophysics Data System (ADS)

    McCullum, A. J. K.; Schmidt, C.; Ly, V.; Green, R.; McClellan, C.

    2017-12-01

    The Navajo Nation (NN) is the largest reservation in the US, and faces challenges related to water management during long-term and widespread drought episodes. The Navajo Nation is a federally recognized tribe, which has boundaries within Arizona, New Mexico, and Utah. The Navajo Nation has a land area of over 70,000 square kilometers. The Navajo Nation Department of Water Resources (NNDWR) reports on drought and climatic conditions through the use of regional Standardized Precipitation Index (SPI) values and a network of in-situ rainfall, streamflow, and climate data. However, these data sources lack the spatial detail and consistent measurements needed to provide a coherent understanding of the drought regime within the Nation's regional boundaries. This project, as part of NASA's Western Water Applications Office (WWAO), improves upon the recently developed Drought Severity Assessment Tool (DSAT) to ingest satellite-based precipitation data to generate SPI values for specific administrative boundaries within the reservation. The tool aims to: (1) generate SPI values and summary statistics for regions of interest on various timescales, (2) to visualize SPI values within a web-map application, and (3) produce maps and comparative statistical outputs in the format required for annual drought reporting. The co-development of the DSAT with NN partners is integral to increasing the sustained use of Earth Observations for water management applications. This tool will provide data to support the NN in allocation of drought contingency dollars to the regions most adversely impacted by declines in water availability.

  4. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  5. Nutrient availability at Mer Bleue bog measured by PRSTM probes

    NASA Astrophysics Data System (ADS)

    Wang, M.; Moore, T. R.; Talbot, J.

    2015-12-01

    Bogs, covering ~0.7 million km2 in Canada, store a large amount of C and N. As nutrient deficient ecosystems, it's critical to examine the nutrient availabilities and seasonal dynamics. We used Plant Root Simulators (PRSTM) at Mer Bleue bog to provide some baseline data on nutrient availability and its variability. In particular, we focused on ammonium, nitrate, phosphate, calcium, magnesium and potassium, iron, sulphate and aluminum. We placed PRS probes at a depth of 5 - 15 cm in pristine plots and plots with long term N, P and K fertilization for 4 weeks and determined the availability of these nutrients, from spring through to fall. Probes were also placed beneath the water table in hummock and hollow microtopography and along a transect including part of the bog which had been drained through the creation of a ditch 80 years ago. The result showed that there was limited available ammonium, nitrate and phosphate in the bog, the seasonal variation of nutrient availabilities probably due to mineralization, an increase in the availability of some nutrients between different water table depths or as a result of drainage, and the relative availability of nutrients compared to the input from fertilization. We suggest that PRS probes could be a useful tool to examine nutrient availability and dynamics in wetlands, with careful consideration of installing condition, for example, proper exposure period, depth relative to water table etc.

  6. Phytoforensics, dendrochemistry, and phytoscreening: New green tools for delineating contaminants from past and present

    USGS Publications Warehouse

    Burken, J.G.; Vroblesky, D.A.; Balouet, J.-C.

    2011-01-01

    As plants evolved to be extremely proficient in mass transfer with their surroundings and survive as earth's dominant biomass, they also accumulate and store some contaminants from surroundings, acting as passive samplers. Novel applications and analytical methods have been utilized to gain information about a wide range of contaminants in the biosphere soil, water, and air, with information available on both past (dendrochemistry) and present (phytoscreening). Collectively these sampling approaches provide rapid, cheap, ecologically friendly, and overall "green" tools termed "Phytoforensics". ?? 2011 American Chemical Society.

  7. Applying standards to ICT models, tools and data in Europe to improve river basin networks and spread innovation on water sector

    NASA Astrophysics Data System (ADS)

    Pesquer, Lluís; Jirka, Simon; van de Giesen, Nick; Masó, Joan; Stasch, Christoph; Van Nooyen, Ronald; Prat, Ester; Pons, Xavier

    2015-04-01

    This work describes the strategy of the European Horizon 2020 project WaterInnEU. Its vision is to enhance the exploitation of EU funded ICT models, tools, protocols and policy briefs related to the water sector and to establish suitable conditions for new market opportunities based on these offerings. The main goals are: • Connect the research results and developments of previous EU funded activities with the already existing data available on European level and also with to the companies that are able to offer products and services based on these tools and data. • Offer an independent marketplace platform complemented by technical and commercial expertise as a service for users to allow the access to products and services best fitting their priorities, capabilities and procurement processes. One of the pillars of WaterInnEU is to stimulate and prioritize the application of international standards into ICT tools and policy briefs. The standardization of formats, services and processes will allow for a harmonized water management between different sectors, fragmented areas and scales (local, regional or international) approaches. Several levels of interoperability will be addressed: • Syntactic: Connecting system and tools together: Syntactic interoperability allows for client and service tools to automatically discover, access, and process data and information (query and exchange parts of a database) and to connect each other in process chains. The discovery of water related data is achieved using metadata cataloguing standards and, in particular, the one adopted by the INSPIRE directive: OGC Catalogue Service for the Web (CSW). • Semantic: Sharing a pan-European conceptual framework This is the ability of computer systems to exchange data with unambiguous, shared meaning. The project therefore addresses not only the packaging of data (syntax), but also the simultaneous transmission of the meaning with the data (semantics). This is accomplished by linking each data element to a controlled, shared vocabulary. In Europe, INSPIRE defines a shared vocabulary and its associated links to an ontology. For hydrographical information this can be used as a baseline. • Organizational: Harmonizing policy aspects This level of interoperability deals with operational methodologies and procedures that organizations use to administrate their own data and processing capabilities and to share those capabilities with others. This layer is addressed by the adoption of common policy briefs that facilitate both robust protocols and flexibility to interact with others. • Data visualization: Making data easy to see The WMS and WMTS standards are the most commonly used geographic information visualization standards for sharing information in web portals. Our solution will incorporate a quality extension of these standards for visualizing data quality as nested layers linked to the different data sets. In the presented approach, the use of standards can be seen twofold: the tools and products should leverage standards wherever possible to ensure interoperability between solution providers, and the platform itself must utilize standards as much as possible, to allow for example the integration with other systems through open APIs or the description of available items.

  8. Measuring global water security towards sustainable development goals

    NASA Astrophysics Data System (ADS)

    Gain, Animesh K.; Giupponi, Carlo; Wada, Yoshihide

    2016-12-01

    Water plays an important role in underpinning equitable, stable and productive societies and ecosystems. Hence, United Nations recognized ensuring water security as one (Goal 6) of the seventeen sustainable development goals (SDGs). Many international river basins are likely to experience ‘low water security’ over the coming decades. Water security is rooted not only in the physical availability of freshwater resources relative to water demand, but also on social and economic factors (e.g. sound water planning and management approaches, institutional capacity to provide water services, sustainable economic policies). Until recently, advanced tools and methods are available for the assessment of water scarcity. However, quantitative and integrated—physical and socio-economic—approaches for spatial analysis of water security at global level are not available yet. In this study, we present a spatial multi-criteria analysis framework to provide a global assessment of water security. The selected indicators are based on Goal 6 of SDGs. The term ‘security’ is conceptualized as a function of ‘availability’, ‘accessibility to services’, ‘safety and quality’, and ‘management’. The proposed global water security index (GWSI) is calculated by aggregating indicator values on a pixel-by-pixel basis, using the ordered weighted average method, which allows for the exploration of the sensitivity of final maps to different attitudes of hypothetical policy makers. Our assessment suggests that countries of Africa, South Asia and Middle East experience very low water security. Other areas of high water scarcity, such as some parts of United States, Australia and Southern Europe, show better GWSI values, due to good performance of management, safety and quality, and accessibility. The GWSI maps show the areas of the world in which integrated strategies are needed to achieve water related targets of the SDGs particularly in the African and Asian continents.

  9. Statistical prediction of seasonal discharge in Central Asia for water resources management: development of a generic (pre-)operational modeling tool

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Baimaganbetov, Azamat; Kalashnikova, Olga; Gavrilenko, Nadejda; Abdykerimova, Zharkinay; Agalhanova, Marina; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2017-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydromet services, this study aims at the development of a generic tool for deriving statistical forecast models of seasonal river discharge. The generic model is kept as simple as possible in order to be driven by available hydrological and meteorological data, and be applicable for all catchments with their often limited data availability in the region. As snowmelt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature as recorded by climatological stations in the catchments. These data sets are accompanied by snow cover predictors derived from the operational ModSnow tool, which provides cloud free snow cover data for the selected catchments based on MODIS satellite images. In addition to the meteorological data antecedent streamflow is used as a predictor variable. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to 3 or 4 predictors. A user selectable number of best models according to pre-defined performance criteria is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross validation. Based on the cross validation the predictive uncertainty was quantified for every prediction model. According to the official procedures of the hydromet services forecasts of the mean seasonal discharge of the period April to September are derived every month starting from January until June. The application of the model for several catchments in Central Asia - ranging from small to the largest rivers - for the period 2000-2015 provided skillful forecasts for most catchments already in January. The skill of the prediction increased every month, with R2 values often in the range 0.8 - 0.9 in April just before the prediction period. The forecasts further improve in the following months, most likely due to the integration of spring precipitation, which is not included in the predictors before May, or spring discharge, which contains indicative information for the overall seasonal discharge. In summary, the proposed generic automatic forecast model development tool provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in the upcoming years, with the vision of eventual operational implementation.

  10. Nucleic acids-based tools for ballast water surveillance, monitoring, and research

    NASA Astrophysics Data System (ADS)

    Darling, John A.; Frederick, Raymond M.

    2018-03-01

    Understanding the risks of biological invasion posed by ballast water-whether in the context of compliance testing, routine monitoring, or basic research-is fundamentally an exercise in biodiversity assessment, and as such should take advantage of the best tools available for tackling that problem. The past several decades have seen growing application of genetic methods for the study of biodiversity, driven in large part by dramatic technological advances in nucleic acids analysis. Monitoring approaches based on such methods have the potential to increase dramatically sampling throughput for biodiversity assessments, and to improve on the sensitivity, specificity, and taxonomic accuracy of traditional approaches. The application of targeted detection tools (largely focused on PCR but increasingly incorporating novel probe-based methodologies) has led to a paradigm shift in rare species monitoring, and such tools have already been applied for early detection in the context of ballast water surveillance. Rapid improvements in community profiling approaches based on high throughput sequencing (HTS) could similarly impact broader efforts to catalogue biodiversity present in ballast tanks, and could provide novel opportunities to better understand the risks of biotic exchange posed by ballast water transport-and the effectiveness of attempts to mitigate those risks. These various approaches still face considerable challenges to effective implementation, depending on particular management or research needs. Compliance testing, for instance, remains dependent on accurate quantification of viable target organisms; while tools based on RNA detection show promise in this context, the demands of such testing require considerable additional investment in methods development. In general surveillance and research contexts, both targeted and community-based approaches are still limited by various factors: quantification remains a challenge (especially for taxa in larger size classes), gaps in nucleic acids reference databases are still considerable, uncertainties in taxonomic assignment methods persist, and many applications have not yet matured sufficiently to offer standardized methods capable of meeting rigorous quality assurance standards. Nevertheless, the potential value of these tools, their growing utilization in biodiversity monitoring, and the rapid methodological advances over the past decade all suggest that they should be seriously considered for inclusion in the ballast water surveillance toolkit.

  11. Development of Tier 1 screening tool for soil and groundwater vulnerability assessment in Korea using classification algorithm in a neural network

    NASA Astrophysics Data System (ADS)

    Shin, K. H.; Kim, K. H.; Ki, S. J.; Lee, H. G.

    2017-12-01

    The vulnerability assessment tool at a Tier 1 level, although not often used for regulatory purposes, helps establish pollution prevention and management strategies in the areas of potential environmental concern such as soil and ground water. In this study, the Neural Network Pattern Recognition Tool embedded in MATLAB was used to allow the initial screening of soil and groundwater pollution based on data compiled across about 1000 previously contaminated sites in Korea. The input variables included a series of parameters which were tightly related to downward movement of water and contaminants through soil and ground water, whereas multiple classes were assigned to the sum of concentrations of major pollutants detected. Results showed that in accordance with diverse pollution indices for soil and ground water, pollution levels in both media were strongly modulated by site-specific characteristics such as intrinsic soil and other geologic properties, in addition to pollution sources and rainfall. However, classification accuracy was very sensitive to the number of classes defined as well as the types of the variables incorporated, requiring careful selection of input variables and output categories. Therefore, we believe that the proposed methodology is used not only to modify existing pollution indices so that they are more suitable for addressing local vulnerability, but also to develop a unique assessment tool to support decision making based on locally or nationally available data. This study was funded by a grant from the GAIA project(2016000560002), Korea Environmental Industry & Technology Institute, Republic of Korea.

  12. The urban harvest approach as framework and planning tool for improved water and resource cycles.

    PubMed

    Leusbrock, I; Nanninga, T A; Lieberg, K; Agudelo-Vera, C M; Keesman, K J; Zeeman, G; Rijnaarts, H H M

    2015-01-01

    Water and resource availability in sufficient quantity and quality for anthropogenic needs represents one of the main challenges in the coming decades. To prepare for upcoming challenges such as increased urbanization and climate change related consequences, innovative and improved resource management concepts are indispensable. In recent years we have developed and applied the urban harvest approach (UHA). The UHA aims to model and quantify the urban water cycle on different temporal and spatial scales. This approach allowed us to quantify the impact of the implementation of water saving measures and new water treatment concepts in cities. In this paper we will introduce the UHA and its application for urban water cycles. Furthermore, we will show first results for an extension to energy cycles and highlight future research items (e.g. nutrients, water-energy-nexus).

  13. Impact of Drought on Groundwater and Soil Moisture - A Geospatial Tool for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    For many decades, recurring droughts in different regions in the US have been negatively impacting ecosystems and economic sectors. Oklahoma and Texas have been suffering from exceptional and extreme droughts in 2011-2014, with almost 95% of the state areas being affected (Drought Monitor, 2015). Accordingly, in 2011 alone, around 1.6 billion were lost in the agricultural sector alone as a result of drought in Oklahoma (Stotts 2011), and 7.6 billion in Texas agriculture (Fannin 2012). While surface water is among the instant indicators of drought conditions, it does not translate directly to groundwater resources that are the main source of irrigation water. Both surface water and groundwater are susceptible to drought, while groundwater depletion is a long-term process and might not show immediately. However, understanding groundwater availability is crucial for designing water management strategies and sustainable water use in the agricultural sector and other economic sectors. This paper presents an interactive geospatially weighted evaluation model and a tool at the same time to analyze groundwater resources that can be used for decision support in water management. The tool combines both groundwater and soil moisture changes in Oklahoma and Texas in 2003-2014, thus representing the most important indicators of agricultural and hydrological drought. The model allows for analyzing temporal and geospatial long-term drought at the county level. It can be expanded to other regions in the US and the world. The model has been validated with the Palmer Drought Index Severity Index to account for other indicators of meteorological drought. It can serve as a basis for an upcoming socio-economic and environmental analysis of drought events in the short and long-term in different geographic regions.

  14. Influence of water-miscible cutting fluid on tool wear behavior of various coated high-speed steel tools in hobbing

    NASA Astrophysics Data System (ADS)

    Sato, Yuta; Matsuoka, Hironori; Kubo, Akio; Ono, Hajime; Ryu, Takahiro; Qiu, Hua; Nakae, Takashi; Shuto, Shuichi; Watanabe, Suguru; Anan, Ruito

    2017-04-01

    This paper deals with the influence of water-miscible cutting fluid on tool life (flank wear) compared with that with dry cutting and water-insoluble cutting oil in hobbing. Experiments were conducted by simulating hobbing by fly tool cutting on a milling machine. The following results were clarified. (1) The water-miscible cutting fluid used in the test prolongs the tool life for TiN-, TiAlN-, TiSiN- and AlCrSiN-coated tools in comparison with that obtained by dry cutting and water-insoluble cutting oil. (2) It was presumed that the tool wear decreases and the tool life is improved by the lubrication effect of the synthetic lubrication additive, mineral oil and sulfuric EP additive contained in the water-miscible cutting fluid, and also by the cooling effect.

  15. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    USGS Publications Warehouse

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  16. Using 3-D Numerical Weather Data in Piloted Simulations

    NASA Technical Reports Server (NTRS)

    Daniels, Taumi S.

    2016-01-01

    This report describes the process of acquiring and using 3-D numerical model weather data sets in NASA Langley's Research Flight Deck (RFD). A set of software tools implement the process and can be used for other purposes as well. Given time and location information of a weather phenomenon of interest, the user can download associated numerical weather model data. These data are created by the National Oceanic and Atmospheric Administration (NOAA) High Resolution Rapid Refresh (HRRR) model, and are then processed using a set of Mathworks' Matlab(TradeMark) scripts to create the usable 3-D weather data sets. Each data set includes radar re ectivity, water vapor, component winds, temperature, supercooled liquid water, turbulence, pressure, altitude, land elevation, relative humidity, and water phases. An open-source data processing program, wgrib2, is available from NOAA online, and is used along with Matlab scripts. These scripts are described with sucient detail to make future modi cations. These software tools have been used to generate 3-D weather data for various RFD experiments.

  17. Summary of hydrogeology and simulation of ground-water flow and land-surface subsidence in the northern part of the Gulf Coast aquifer system, Texas

    USGS Publications Warehouse

    Kasmarek, Mark C.; Robinson, James L.

    2004-01-01

    The northern part of the Gulf Coast aquifer system in Texas, which includes the Chicot, Evangeline, and Jasper aquifers, supplies most of the water used for industrial, municipal, agricultural, and commercial purposes for an approximately 25,000- square-mile (mi2) area that includes the Beaumont and Houston metropolitan areas. The area has an abundant amount of potable ground water, but withdrawals of large quantities of ground water have resulted in potentiometric-surface declines in the Chicot, Evangeline, and Jasper aquifers and land-surface subsidence from depressurization and compaction of clay layers interbedded in the aquifer sediments. This fact sheet summarizes a study done in cooperation with the Texas Water Development Board (TWDB) and the Harris-Galveston Coastal Subsidence District (HGCSD) as a part of the TWDB Ground-Water Availability Modeling (or Model) (GAM) program. The study was designed to develop and test a ground-water-flow model of the northern part of the Gulf Coast aquifer system in the GAM area (fig. 1) that waterresource managers can use as a tool to address future groundwater- availability issues.

  18. Evaluating the electricity intensity of evolving water supply mixes: the case of California’s water network

    NASA Astrophysics Data System (ADS)

    Stokes-Draut, Jennifer; Taptich, Michael; Kavvada, Olga; Horvath, Arpad

    2017-11-01

    Climate change is making water supply less predictable, even unreliable, in parts of the world. Urban water providers, especially in already arid areas, will need to diversify their water resources by switching to alternative sources and negotiating trading agreements to create more resilient and interdependent networks. The increasing complexity of these networks will likely require more operational electricity. The ability to document, visualize, and analyze water-energy relationships will be critical to future water planning, especially as data needed to conduct the analyses become increasingly available. We have developed a network model and decision-support tool, WESTNet, to perform these tasks. Herein, WESTNet was used to analyze a model of California’s 2010 urban water network as well as the projected system for 2020 and 2030. Results for California’s ten hydrologic regions show that the average number of water sources per utility and total electricity consumption for supplying water will increase in spite of decreasing per-capita water consumption. Electricity intensity (kWh m-3) will increase in arid regions of the state due to shifts to alternative water sources such as indirect potable water reuse, desalination, and water transfers. In wetter, typically less populated, regions, reduced water demand for electricity-intensive supplies will decrease the electricity intensity of the water supply mix, though total electricity consumption will increase due to urban population growth. The results of this study provide a baseline for comparing current and potential innovations to California’s water system. The WESTNet tool can be applied to diverse water systems in any geographic region at a variety of scales to evaluate an array of network-dependent water-energy parameters.

  19. Scenario-based Water Resources Management Using the Water Value Concept

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed VWRS model will account for the blue water component of the system (water taken from the rivers and reservoirs) as well as the green water (soil water used by agriculture), and track water-dependent products and services (energy, mining, crops, and industrial products). The system dynamics approach is used as a simulation environment for constructing the VWRS model due to its ability to accommodate hydrological and non-hydrological variables in one modeling platform. A set of scenarios representing various levels of water availability, combined with a set of various priorities of water uses, will be considered and tested. The scenarios will be evaluated with regard to the overall value of water use. The findings will be used to develop water value-based allocation priorities and reservoir operating rules. This novel modeling tool and concept promotes and allows for a paradigm shift from studying traditional water budgets to quantifying virtual and value-based water budgets; i.e., balance of water and water-dependent commodities and services. In this paper, the first and tentative version of the VWRS model is presented and applied to the Saskatchewan portion of the SSRB. Various scenarios of changes of the inflows from Alberta to Saskatchewan will be considered and tested to validate the VWRS model.

  20. An operational ensemble prediction system for catchment rainfall over eastern Africa spanning multiple temporal and spatial scales

    NASA Astrophysics Data System (ADS)

    Riddle, E. E.; Hopson, T. M.; Gebremichael, M.; Boehnert, J.; Broman, D.; Sampson, K. M.; Rostkier-Edelstein, D.; Collins, D. C.; Harshadeep, N. R.; Burke, E.; Havens, K.

    2017-12-01

    While it is not yet certain how precipitation patterns will change over Africa in the future, it is clear that effectively managing the available water resources is going to be crucial in order to mitigate the effects of water shortages and floods that are likely to occur in a changing climate. One component of effective water management is the availability of state-of-the-art and easy to use rainfall forecasts across multiple spatial and temporal scales. We present a web-based system for displaying and disseminating ensemble forecast and observed precipitation data over central and eastern Africa. The system provides multi-model rainfall forecasts integrated to relevant hydrological catchments for timescales ranging from one day to three months. A zoom-in features is available to access high resolution forecasts for small-scale catchments. Time series plots and data downloads with forecasts, recent rainfall observations and climatological data are available by clicking on individual catchments. The forecasts are calibrated using a quantile regression technique and an optimal multi-model forecast is provided at each timescale. The forecast skill at the various spatial and temporal scales will discussed, as will current applications of this tool for managing water resources in Sudan and optimizing hydropower operations in Ethiopia and Tanzania.

  1. Integrative sensing and prediction of urban water for sustainable cities (iSPUW)

    NASA Astrophysics Data System (ADS)

    Seo, D. J.; Fang, N. Z.; Yu, X.; Zink, M.; Gao, J.; Kerkez, B.

    2014-12-01

    We describe a newly launched project in the Dallas-Fort Worth Metroplex (DFW) area to develop a cyber-physical prototype system that integrates advanced sensing, modeling and prediction of urban water, to support its early adoption by a spectrum of users and stakeholders, and to educate a new generation of future sustainability scientists and engineers. The project utilizes the very high-resolution precipitation and other sensing capabilities uniquely available in DFW as well as crowdsourcing and cloud computing to advance understanding of the urban water cycle and to improve urban sustainability from transient shocks of heavy-to-extreme precipitation under climate change and urbanization. All available water information from observations and models will be fused objectively via advanced data assimilation to produce the best estimate of the state of the uncertain system. Modeling, prediction and decision support tools will be developed in the ensemble framework to increase the information content of the analysis and prediction and to support risk-based decision making.

  2. Metabolic modelling to support long term strategic decisions on water supply systems

    NASA Astrophysics Data System (ADS)

    Ciriello, Valentina; Felisa, Giada; Lauriola, Ilaria; Pomanti, Flavio; Di Federico, Vittorio

    2017-04-01

    Water resources are essential for the economic development and sustenance of anthropic activities belonging to the civil, agricultural and industrial sectors. Nevertheless, availability of water resources is not uniformly distributed in space and time. Moreover, the increasing water demand, mainly due to population growth and expansion of agricultural crops, may cause increasing water stress conditions, if combined with the effects of climate change. Under these circumstances, it is necessary to improve the resilience of water supply systems both in terms of infrastructures and environmental compliance. Metabolic modelling approaches represent a flexible tool able to provide support to decision making in the long term, based on sustainability criteria. These approaches mimic the water supply network through a set of material and energy fluxes that interact and influence each other. By analyzing these fluxes, a suite of key performance indicators is evaluated in order to identify which kind of interventions may be applied to increase the sustainability of the system. Here, we adopt these concepts to analyze the water supply network of Reggio-Emilia (Italy) which is supported by water withdrawals from both surface water and groundwater bodies. We analyze different scenarios, including possible reduction of water withdrawals from one of the different sources as a consequence of a decrease in water availability under present and future scenarios. On these basis, we identify preventive strategies for a dynamic management of the water supply system.

  3. Pairing top-down and bottom-up approaches to analyze catchment scale management of water quality and quantity

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Band, L. E.

    2016-12-01

    Watershed management requires information on the hydrologic impacts of local to regional land use, land cover and infrastructure conditions. Management of runoff volumes, storm flows, and water quality can benefit from large scale, "top-down" screening tools, using readily available information, as well as more detailed, "bottom-up" process-based models that explicitly track local runoff production and routing from sources to receiving water bodies. Regional scale data, available nationwide through the NHD+, and top-down models based on aggregated catchment information provide useful tools for estimating regional patterns of peak flows, volumes and nutrient loads at the catchment level. Management impacts can be estimated with these models, but have limited ability to resolve impacts beyond simple changes to land cover proportions. Alternatively, distributed process-based models provide more flexibility in modeling management impacts by resolving spatial patterns of nutrient source, runoff generation, and uptake. This bottom-up approach can incorporate explicit patterns of land cover, drainage connectivity, and vegetation extent, but are typically applied over smaller areas. Here, we first model peak flood flows and nitrogen loads across North Carolina's 70,000 NHD+ catchments using USGS regional streamflow regression equations and the SPARROW model. We also estimate management impact by altering aggregated sources in each of these models. To address the missing spatial implications of the top-down approach, we further explore the demand for riparian buffers as a management strategy, simulating the accumulation of nutrient sources along flow paths and the potential mitigation of these sources through forested buffers. We use the Regional Hydro-Ecological Simulation System (RHESSys) to model changes across several basins in North Carolina's Piedmont and Blue Ridge regions, ranging in size from 15 - 1,130 km2. The two approaches provide a complementary set of tools for large area screening, followed by smaller, more process based assessment and design tools.

  4. Integrated Decision Tools for Sustainable Watershed/Ground Water and Crop Health using Predictive Weather, Remote Sensing, and Irrigation Decision Tools

    NASA Astrophysics Data System (ADS)

    Jones, A. S.; Andales, A.; McGovern, C.; Smith, G. E. B.; David, O.; Fletcher, S. J.

    2017-12-01

    US agricultural and Govt. lands have a unique co-dependent relationship, particularly in the Western US. More than 30% of all irrigated US agricultural output comes from lands sustained by the Ogallala Aquifer in the western Great Plains. Six US Forest Service National Grasslands reside within the aquifer region, consisting of over 375,000 ha (3,759 km2) of USFS managed lands. Likewise, National Forest lands are the headwaters to many intensive agricultural regions. Our Ogallala Aquifer team is enhancing crop irrigation decision tools with predictive weather and remote sensing data to better manage water for irrigated crops within these regions. An integrated multi-model software framework is used to link irrigation decision tools, resulting in positive management benefits on natural water resources. Teams and teams-of-teams can build upon these multi-disciplinary multi-faceted modeling capabilities. For example, the CSU Catalyst for Innovative Partnerships program has formed a new multidisciplinary team that will address "Rural Wealth Creation" focusing on the many integrated links between economic, agricultural production and management, natural resource availabilities, and key social aspects of govt. policy recommendations. By enhancing tools like these with predictive weather and other related data (like in situ measurements, hydrologic models, remotely sensed data sets, and (in the near future) linking to agro-economic and life cycle assessment models) this work demonstrates an integrated data-driven future vision of inter-meshed dynamic systems that can address challenging multi-system problems. We will present the present state of the work and opportunities for future involvement.

  5. Science to support the understanding of Ohio's water resources, 2016-17

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie P.; Shaffer, Kimberly; Kula, Stephanie P.

    2016-12-19

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. Although rainfall in normal years can support these activities and needs, occasional floods and droughts can disrupt streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie; it has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all of the rural population obtains drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policy makers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of the use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2016) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  6. Science to support the understanding of Ohio's water resources

    USGS Publications Warehouse

    Shaffer, Kimberly; Kula, Stephanie; Bambach, Phil; Runkle, Donna

    2012-01-01

    Ohio’s water resources support a complex web of human activities and nature—clean and abundant water is needed for drinking, recreation, farming, and industry, as well as for fish and wildlife needs. The distribution of rainfall can cause floods and droughts, which affects streamflow, groundwater, water availability, water quality, recreation, and aquatic habitats. Ohio is bordered by the Ohio River and Lake Erie and has over 44,000 miles of streams and more than 60,000 lakes and ponds (State of Ohio, 1994). Nearly all the rural population obtain drinking water from groundwater sources. The U.S. Geological Survey (USGS) works in cooperation with local, State, and other Federal agencies, as well as universities, to furnish decisionmakers, policymakers, USGS scientists, and the general public with reliable scientific information and tools to assist them in management, stewardship, and use of Ohio’s natural resources. The diversity of scientific expertise among USGS personnel enables them to carry out large- and small-scale multidisciplinary studies. The USGS is unique among government organizations because it has neither regulatory nor developmental authority—its sole product is reliable, impartial, credible, relevant, and timely scientific information, equally accessible and available to everyone. The USGS Ohio Water Science Center provides reliable hydrologic and water-related ecological information to aid in the understanding of use and management of the Nation’s water resources, in general, and Ohio’s water resources, in particular. This fact sheet provides an overview of current (2012) or recently completed USGS studies and data activities pertaining to water resources in Ohio. More information regarding projects of the USGS Ohio Water Science Center is available at http://oh.water.usgs.gov/.

  7. Web-Based Geospatial Tools to Address Hazard Mitigation, Natural Resource Management, and Other Societal Issues

    USGS Publications Warehouse

    Hearn,, Paul P.

    2009-01-01

    Federal, State, and local government agencies in the United States face a broad range of issues on a daily basis. Among these are natural hazard mitigation, homeland security, emergency response, economic and community development, water supply, and health and safety services. The U.S. Geological Survey (USGS) helps decision makers address these issues by providing natural hazard assessments, information on energy, mineral, water and biological resources, maps, and other geospatial information. Increasingly, decision makers at all levels are challenged not by the lack of information, but by the absence of effective tools to synthesize the large volume of data available, and to utilize the data to frame policy options in a straightforward and understandable manner. While geographic information system (GIS) technology has been widely applied to this end, systems with the necessary analytical power have been usable only by trained operators. The USGS is addressing the need for more accessible, manageable data tools by developing a suite of Web-based geospatial applications that will incorporate USGS and cooperating partner data into the decision making process for a variety of critical issues. Examples of Web-based geospatial tools being used to address societal issues follow.

  8. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake.

    PubMed

    Hepworth, Christopher; Doheny-Adams, Timothy; Hunt, Lee; Cameron, Duncan D; Gray, Julie E

    2015-10-01

    Manipulation of stomatal density was investigated as a potential tool for enhancing drought tolerance or nutrient uptake. Drought tolerance and soil water retention were assessed using Arabidopsis epidermal patterning factor mutants manipulated to have increased or decreased stomatal density. Root nutrient uptake via mass flow was monitored under differing plant watering regimes using nitrogen-15 ((15) N) isotope and mass spectrometry. Plants with less than half of their normal complement of stomata, and correspondingly reduced levels of transpiration, conserve soil moisture and are highly drought tolerant but show little or no reduction in shoot nitrogen concentrations especially when water availability is restricted. By contrast, plants with over twice the normal density of stomata have a greater capacity for nitrogen uptake, except when water availability is restricted. We demonstrate the possibility of producing plants with reduced transpiration which have increased drought tolerance, with little or no loss of nutrient uptake. We demonstrate that increasing transpiration can enhance nutrient uptake when water is plentiful. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  9. Tool-use for drinking water by immature chimpanzees of Mahale: prevalence of an unessential behavior.

    PubMed

    Matsusaka, Takahisa; Nishie, Hitonaru; Shimada, Masaki; Kutsukake, Nobuyuki; Zamma, Koichiro; Nakamura, Michio; Nishida, Toshisada

    2006-04-01

    Use of leaves or sticks for drinking water has only rarely been observed during long-term study of wild chimpanzees (Pan troglodytes schweinfurthii) at Mahale. Recently, however, we observed 42 episodes of tool-use for drinking water (73 tools and two cases of using "tool-sets") between 1999 and 2004. Interestingly, all of the performers were immature chimpanzees aged from 2 to 10 years. Immature chimpanzees sometimes observed the tool-using performance of others and subsequently reproduced the behavior, while adults usually paid no attention to the performance. This tool-use did not seem to occur out of necessity: (1) chimpanzees often used tools along streams where they could drink water without tools, (2) they used tools for drinking water from tree holes during the wet season when they could easily obtain water from many streams, and (3) the tool-using performance sometimes contained playful aspects. Between-site comparisons revealed that chimpanzees at drier habitats used tools for drinking water more frequently and in a more "conventional" manner. However, some variations could not be explained by ecological conditions. Such variations and the increase in this tool-use in recent years at Mahale strongly suggest that social learning plays an important role in the process of acquiring the behavior. We should note here that such behaviors that lack obvious benefits or necessity can be prevalent in a group.

  10. Application of Geographic Information System Methods to Identify Areas Yielding Water that will be Replaced by Water from the Colorado River in the Vidal and Chemehuevi Areas, California, and the Mohave Mesa Area, Arizona

    USGS Publications Warehouse

    Spangler, Lawrence E.; Angeroth, Cory E.; Walton, Sarah J.

    2008-01-01

    Relations between the elevation of the static water level in wells and the elevation of the accounting surface within the Colorado River aquifer in the vicinity of Vidal, California, the Chemehuevi Indian Reservation, California, and on Mohave Mesa, Arizona, were used to determine which wells outside the flood plain of the Colorado River are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation equal to or below the elevation of the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Geographic Information System (GIS) interpolation tools were used to produce maps of areas where water levels are above, below, and near (within ? 0.84 foot) the accounting surface. Calculated water-level elevations and interpolated accounting-surface elevations were determined for 33 wells in the vicinity of Vidal, 16 wells in the Chemehuevi area, and 35 wells on Mohave Mesa. Water-level measurements generally were taken in the last 10 years with steel and electrical tapes accurate to within hundredths of a foot. A Differential Global Positioning System (DGPS) was used to determine land-surface elevations to within an operational accuracy of ? 0.43 foot, resulting in calculated water-level elevations having a 95-percent confidence interval of ? 0.84 foot. In the Vidal area, differences in elevation between the accounting surface and measured water levels range from -2.7 feet below to as much as 17.6 feet above the accounting surface. Relative differences between the elevation of the water level and the elevation of the accounting surface decrease from west to east and from north to south. In the Chemehuevi area, differences in elevation range from -3.7 feet below to as much as 8.7 feet above the accounting surface, which is established at 449.6 feet in the vicinity of Lake Havasu. In all of the Mohave Mesa area, the water-level elevation is near or below the elevation of the accounting surface. Differences in elevation between water levels and the accounting surface range from -0.2 to -11.3 feet, with most values exceeding -7.0 feet. In general, the ArcGIS Triangulated Irregular Network (TIN) Contour and Natural Neighbor tools reasonably represent areas where the elevation of water levels in wells is above, below, and near (within ? 0.84 foot) the elevation of the accounting surface in the Vidal and Chemehuevi study areas and accurately delineate areas around outlying wells and where anomalies exist. The TIN Contour tool provides a strict linear interpolation while the Natural Neighbor tool provides a smoothed interpolation. Using the default options in ArcGIS, the Inverse Distance Weighted (IDW) and Spline tools also reasonably represent areas above, below, and near the accounting surface in the Vidal and Chemehuevi areas. However, spatial extent of and boundaries between areas above, below, and near the accounting surface vary among the GIS methods, which results largely from the fundamentally different mathematical approaches used by these tools. The limited number and spatial distribution of wells in comparison to the size of the areas, and the locations and relative differences in elevation between water levels and the accounting surface of wells with anomalous water levels also influence the contouring by each of these methods. Qualitatively, the Natural Neighbor tool appears to provide the best representation of the difference between water-level and accounting-surface elevations in the study areas, on the basis of available well data.

  11. Simulating dryland water availability and spring wheat production under various management practices in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    Agricultural system models are useful tools to synthesize field experimental data and to extrapolate the results to longer periods of weather and other cropping systems. The objectives of this study were: 1) to quantify the effects of planting date, seeding rate, and tillage on spring wheat producti...

  12. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  13. Global water dynamics: issues for the 21st century.

    PubMed

    Simonovic, Slobodan P

    2002-01-01

    The WorldWater system dynamics model has been developed for modeling the global world water balance and capturing the dynamic character of the main variables affecting water availability and use in the future. Despite not being a novel approach, system dynamics offers a new way of addressing complex systems. WorldWater simulations are clearly demonstrating the strong feedback relation between water availability and different aspects of world development. Results of numerous simulations are contradictory to the assumption made by many global modelers that water is not an issue on the global scale. Two major observations can be made from early simulations: (a) the use of clean water for dilution and transport of wastewater, if not dealt with in other ways, imposes a major stress on the global world water balance; and (b) water use by different sectors is demonstrating quite different dynamics than predicted by classical forecasting tools and other water-models. Inherent linkages between water quantity and quality sectors with food, industry, persistent pollution, technology, and non-renewable resources sectors of the model create shoot and collapse behavior in water use dynamics. This paper discusses a number of different water-related scenarios and their implications on the global water balance. In particular, two extreme scenarios (business as usual - named "Chaos", and unlimited desalination - named "Ocean") are presented in the paper. Based on the conclusions derived from these two extreme cases a set of more moderate and realistic scenarios (named "Conservation") is proposed and their consequences on the global water balance are evaluated.

  14. Low-Cost, Robust, and Field Portable Smartphone Platform Photometric Sensor for Fluoride Level Detection in Drinking Water.

    PubMed

    Hussain, Iftak; Ahamad, Kamal Uddin; Nath, Pabitra

    2017-01-03

    Groundwater is the major source of drinking water for people living in rural areas of India. Pollutants such as fluoride in groundwater may be present in much higher concentration than the permissible limit. Fluoride does not give any visible coloration to water, and hence, no effort is made to remove or reduce the concentration of this chemical present in drinking water. This may lead to a serious health hazard for those people taking groundwater as their primary source of drinking water. Sophisticated laboratory grade tools such as ion selective electrodes (ISE) and portable spectrophotometers are commercially available for in-field detection of fluoride level in drinking water. However, such tools are generally expensive and require expertise to handle. In this paper, we demonstrate the working of a low cost, robust, and field portable smartphone platform fluoride sensor that can detect and analyze fluoride concentration level in drinking water. For development of the proposed sensor, we utilize the ambient light sensor (ALS) of the smartphone as light intensity detector and its LED flash light as an optical source. An android application "FSense" has been developed which can detect and analyze the fluoride concentration level in water samples. The custom developed application can be used for sharing of in-field sensing data from any remote location to the central water quality monitoring station. We envision that the proposed sensing technique could be useful for initiating a fluoride removal program undertaken by governmental and nongovernmental organizations here in India.

  15. Water-saving interventions assessment framework: an application for the Urmia Lake Restoration Program

    NASA Astrophysics Data System (ADS)

    Shadkam, Somayeh; Oel, Pieter; Kabat, Pavel; Ludwig, Fulco

    2017-04-01

    Increasing water demand often results in unsustainable water use leaving insufficient amounts of water for sustaining natural environments. Therefore, to save natural resources water-saving interventions have been introduced to the environmental policy agenda in many (semi)-arid regions. Many policies, however, have failed reaching their objectives to increase water availability for the environment. This calls for a comprehensive tool to assess water-saving policies. Therefore, this study introduces a constructive framework to assess the policies by estimating five components: 1) Total water demand under socio-economic scenarios, 2) Water supply under climate change scenarios, 3) Water withdrawal for different sectors, 4) Water depletion and 5) Environmental flow. The framework, was applied to assess Urmia Lake Restoration Program (ULRP), which aims to restore the drying Urmia Lake in north-western Iran by increasing the lake inflow by 3.1×106m3yr-1. Results suggest that although the ULRP helps to increase inflow by up to 57% it is unlikely to fully reach its target. The analysis shows that there are three main reasons for the potential poor performance. The first reason is decreasing return flows due to increasing irrigation efficiency. This means that the expected increase in lake inflow volume is smaller than the volume saved by increasing irrigation efficiency. The second reason is increased depletion which is due to neglecting the fact that agricultural water demand is currently higher than available water for agriculture. As a result, increasing water use efficiency may result in increased water depletion. The third reason is ignoring the potential impact of climate change, which might decrease future water availability by 3% to 15%. Our analysis suggests that to reach the intervention target, measures need to focus on reducing Water demand and Water depletion rather than on reducing Water withdrawals. The assessment framework can be used to comprehensively assess water-saving intervention plans, particularly in water-stressed basins.

  16. A new and integrated hydro-economic accounting and analytical framework for water resources: a case study for North China.

    PubMed

    Guan, Dabo; Hubacek, Klaus

    2008-09-01

    Water is a critical issue in China for a variety of reasons. China is poor of water resources with 2,300 m(3) of per capita availability, which is less than 13 of the world average. This is exacerbated by regional differences; e.g. North China's water availability is only about 271 m(3) of per capita value, which is only 125 of the world's average. Furthermore, pollution contributes to water scarcity and is a major source for diseases, particularly for the poor. The Ministry of Hydrology [1997. China's Regional Water Bullets. Water Resource and Hydro-power Publishing House, Beijing, China] reports that about 65-80% of rivers in North China no longer support any economic activities. Previous studies have emphasized the amount of water withdrawn but rarely take water quality into consideration. The quality of the return flows usually changes; the water quality being lower than the water flows that entered the production process initially. It is especially important to measure the impacts of wastewater to the hydro-ecosystem. Thus, water consumption should not only account for the amount of water inputs but also the amount of water contaminated in the hydro-ecosystem by the discharged wastewater. In this paper we present a new accounting and analytical approach based on economic input-output modelling combined with a mass balanced hydrological model that links interactions in the economic system with interactions in the hydrological system. We thus follow the tradition of integrated economic-ecologic input-output modelling. Our hydro-economic accounting framework and analysis tool allows tracking water consumption on the input side, water pollution leaving the economic system and water flows passing through the hydrological system thus enabling us to deal with water resources of different qualities. Following this method, the results illustrate that North China requires 96% of its annual available water, including both water inputs for the economy and contaminated water that is ineligible for any uses.

  17. Water2Invest: Global facility for calculating investments needed to bridge the climate-induced water gap

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Droogers, Peter; Brandsma, Jairus; Buytaert, Wouter; Karssenberg, Derek; Meijer, Karen; van Aalst, Maaike; van Beek, Rens; Wada, Yoshihide; Bierkens, Marc

    2013-04-01

    Decision makers responsible for climate change adaptation investments are confronted with large uncertainties regarding future water availability and water demand, as well as the investment cost required to reduce the water gap. Moreover, scientists have worked hard to increase fundamental knowledge on climate change and its impacts (climate services), while practical use of this knowledge is limited due to a lack of tools for decision support under uncertain long term future scenarios (decision services). The Water2Invest project aims are to (i) assess the joint impact of climate change and socioeconomic change on water scarcity, (ii) integrate impact and potential adaptation in one flow, (iii) prioritize adaptation options to counteract water scarcity on their financial, regional socio-economic and environmental implications, and (iv) deliver all this information in an integrated user-friendly web-based service. Global water availability is computed between 2006 and 2100 using the PCR-GLOBWB water resources model at a 6 minute spatial resolution. Climate change scenarios are based on the fifth Assessment Report (AR5) of the IPCC Coupled Model Intercomparison Project (CMIP5) that defines four CO2 emission scenarios as representative concentration pathways. Water demand is computed for agriculture, industry, domestic, and environmental requirements based on socio-economic scenarios of increase in population and gross domestic product. Using a linear programming algorithm, water is allocated on a monthly basis over the four sectors. Based on these assessments, the user can evaluate various technological and infrastructural adaptation measures to assess the investments needed to bridge the future water gap. Regional environmental and socioeconomic effects of these investments are evaluated, such as environmental flows or downstream effects. A scheme is developed to evaluate the strategies on robustness and flexibility under climate change and scenario uncertainty, and each measure is linked to possibilities for investment and financing mechanisms. The tool can be used by consultants, water authorities, non-governmental and commercial investors alike to test investment strategies, but could also be used by companies as a vehicle for advertisement water saving or crop water productivity technologies that can be evaluated on their effectiveness on the spot. We show initial results based on a preliminary study on the Middle East and North African region.

  18. Screening tool to evaluate the vulnerability of down-gradient receptors to groundwater contaminants from uncapped landfills

    USGS Publications Warehouse

    Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony R.; Romanok, Kristin M.; Wengrowski, Edward W

    2015-01-01

    A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenico Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.

  19. Climate Impact and GIS Education Using Realistic Applications of Data.gov Thematic Datasets in a Structured Lesson-Based Workbook

    NASA Astrophysics Data System (ADS)

    Amirazodi, S.; Griffin, R.; Bugbee, K.; Ramachandran, R.; Weigel, A. M.

    2016-12-01

    This project created a workbook which teaches Earth Science education undergraduate and graduate students through guided in-class activities and take-home assignments organized around climate topics which use GIS to teach key geospatial analysis techniques and cartography skills. The workbook is structured to the White House's Data.gov climate change themes, which include Coastal Flooding, Ecosystem Vulnerability, Energy Infrastructure, Arctic, Food Resilience, Human Health, Transportation, Tribal Nations, Water. Each theme provides access to framing questions, associated data, interactive tools, and further reading (e.g. the US Climate Resilience Toolkit and National Climate Assessment). Lessons make use of the respective theme's available resources. The structured thematic approach is designed to encourage independent exploration. The goal is to teach climate concepts and concerns, GIS techniques and approaches, and effective cartographic representation and communication of results; and foster a greater awareness of publically available resources and datasets. To reach more audiences more effectively, a two level approach was used. Level 1 serves as an introductory study and relies on only freely available interactive tools to reach audiences with fewer resources and less familiarity. Level 2 presents a more advanced case study, and focuses on supporting common commercially available tool use and real-world analysis techniques.

  20. Climate Impact and GIS Education Using Realistic Applications of Data.gov Thematic Datasets in a Structured Lesson-Based Workbook

    NASA Technical Reports Server (NTRS)

    Amirazodi, Sara; Griffin, Robert; Bugbee, Kaylin; Ramachandran, Rahul; Weigel, Amanda

    2016-01-01

    This project created a workbook which teaches Earth Science to undergraduate and graduate students through guided in-class activities and take-home assignments organized around climate topics which use GIS to teach key geospatial analysis techniques and cartography skills. The workbook is structured to the White House's Data.gov climate change themes, which include Coastal Flooding, Ecosystem Vulnerability, Energy Infrastructure, Arctic, Food Resilience, Human Health, Transportation, Tribal Nations, and Water. Each theme provides access to framing questions, associated data, interactive tools, and further reading (e.g. The US Climate Resilience Toolkit and National Climate Assessment). Lessons make use of the respective theme's available resources. The structured thematic approach is designed to encourage independent exploration. The goal is to teach climate concepts and concerns, GIS techniques and approaches, and effective cartographic representation and communication results; and foster a greater awareness of publicly available resources and datasets. To reach more audiences more effectively, a two level approach was used. Level 1 serves as an introductory study and relies on only freely available interactive tools to reach audiences with fewer resources and less familiarity. Level 2 presents a more advanced case study, and focuses on supporting common commercially available tool use and real-world analysis techniques.

  1. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.

    PubMed

    Fereidoon, Majid; Koch, Manfred

    2018-07-15

    Agriculture is one of the environmental/economic sectors that may adversely be affected by climate change, especially, in already nowadays water-scarce regions, like the Middle East. One way to cope with future changes in absolute as well as seasonal (irrigation) water amounts can be the adaptation of the agricultural crop pattern in a region, i.e. by planting crops which still provide high yields and so economic benefits to farmers under such varying climate conditions. To do this properly, the whole cascade starting from climate change, effects on hydrology and surface water availability, subsequent effects on crop yield, agricultural areas available, and, finally, economic value of a multi-crop cultivation pattern must be known. To that avail, a complex coupled simulation-optimization tool SWAT-LINGO-MODSIM-PSO (SLMP) has been developed here and used to find the future optimum cultivation area of crops for the maximization of the economic benefits in five irrigation-fed agricultural plains in the south of the Karkheh River Basin (KRB) southwest Iran. Starting with the SWAT distributed hydrological model, the KR-streamflow as well as the inflow into the Karkheh-reservoir, as the major storage of irrigation water, is calibrated and validated, based on 1985-2004 observed discharge data. In the subsequent step, the SWAT-predicted streamflow is fed into the MODSIM river basin Decision Support System to simulate and optimize the water allocation between different water users (agricultural, environmental, municipal and industrial) under standard operating policy (SOP) rules. The final step is the maximization of the economic benefit in the five agricultural plains through constrained PSO (particle swarm optimization) by adjusting the cultivation areas (decision variables) of different crops (wheat, barley, maize and "others"), taking into account their specific prizes and optimal crop yields under water deficiency, with the latter computed in the LINGO-sub-optimization module embedded in the SLMP-tool. For the optimization of the agricultural benefits in the KRB in the near future (2038-2060), quantile-mapping (QM) bias-corrected downscaled predictors for daily precipitation and temperatures of the HadGEM2-ES GCM-model under RCP4.5- and RCP8.5-emission scenarios are used as climate drivers in the streamflow- and crop yield simulations of the SWAT-model, leading to corresponding changes in the final outcome (economic benefit) of the SLMP-tool. In fact, whereas for the historical period (1985-2004) a total annual benefit of 94.2 million US$ for all multi-crop areas in KRB is computed, there is a decrease to 88.3 million US$ and 72.1 million US$ for RCP4.5 and RCP8.5, respectively, in the near future (2038-2060) prediction period. In fact, this future income decrease is due to a substantial shift from cultivation areas devoted nowadays to high-price wheat and barley in the winter season to low-price maize-covered areas in the future summers, owing to a future seasonal change of SWAT-predicted irrigation water available, i.e. less in the winter and more in the summer. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Aqueduct: a methodology to measure and communicate global water risks

    NASA Astrophysics Data System (ADS)

    Gassert, Francis; Reig, Paul

    2013-04-01

    The Aqueduct Water Risk Atlas (Aqueduct) is a publicly available, global database and interactive tool that maps indicators of water related risks for decision makers worldwide. Aqueduct makes use of the latest geo-statistical modeling techniques to compute a composite index and translate the most recently available hydrological data into practical information on water related risks for companies, investors, and governments alike. Twelve global indicators are grouped into a Water Risk Framework designed in response to the growing concerns from private sector actors around water scarcity, water quality, climate change, and increasing demand for freshwater. The Aqueduct framework organizes indicators into three categories of risk that bring together multiple dimensions of water related risk into comprehensive aggregated scores and includes indicators of water stress, variability in supply, storage, flood, drought, groundwater, water quality and social conflict, addressing both spatial and temporal variation in water hazards. Indicators are selected based on relevance to water users, availability and robustness of global data sources, and expert consultation, and are collected from existing datasets or derived from a Global Land Data Assimilation System (GLDAS) based integrated water balance model. Indicators are normalized using a threshold approach, and composite scores are computed using a linear aggregation scheme that allows for dynamic weighting to capture users' unique exposure to water hazards. By providing consistent scores across the globe, the Aqueduct Water Risk Atlas enables rapid comparison across diverse aspects of water risk. Companies can use this information to prioritize actions, investors to leverage financial interest to improve water management, and governments to engage with the private sector to seek solutions for more equitable and sustainable water governance. The Aqueduct Water Risk Atlas enables practical applications of scientific data, helping non-expert audiences better understand and evaluate risks facing water users. This presentation will discuss the methodology used to combine the indicator values into aggregated risk scores and lessons learned from working with diverse audiences in academia, development institutions, and the public and private sectors.

  3. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    USGS Publications Warehouse

    Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.

    2015-01-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  4. Which species? A decision-support tool to guide plant selection in stormwater biofilters

    NASA Astrophysics Data System (ADS)

    Payne, Emily G. I.; Pham, Tracey; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.; Fletcher, Tim D.

    2018-03-01

    Plant species are diverse in form, function and environmental response. This provides enormous potential for designing nature-based stormwater treatment technologies, such as biofiltration systems. However, species can vary dramatically in their pollutant-removal performance, particularly for nitrogen removal. Currently, there is a lack of information on how to efficiently select from the vast palette of species. This study aimed to identify plant traits beneficial to performance and create a decision-support tool to screen species for further testing. A laboratory experiment using 220 biofilter columns paired plant morphological characteristics with nitrogen removal and water loss for 20 Australian native species and two lawn grasses. Testing was undertaken during wet and dry conditions, for two biofilter designs (saturated zone and free-draining). An extensive root system and high total biomass were critical to the effective removal of total nitrogen (TN) and nitrate (NO3-), driven by high nitrogen assimilation. The same characteristics were key to performance under dry conditions, and were associated with high water use for Australian native plants; linking assimilation and transpiration. The decision-support tool uses these scientific relationships and readily-available information to identify the morphology, natural distribution and stress tolerances likely to be good predictors of plant nitrogen and water uptake.

  5. Distributed modelling of water resources in the Lower Jordan River Basin - from present day variability to suitability for new water sources

    NASA Astrophysics Data System (ADS)

    Gunkel, Anne; Lange, Jens

    2010-05-01

    The Middle East is characterized by a high temporal and spatial variability of rainfall. As a result, water resources are not reliable and severe drought events are frequent, worsening the natural water scarcity. Single high magnitude events may dominate the water balance of entire seasons - a fact that is poorly represented in the assessments of available water resources that are normally based on long term averages. Therefore, a distributed hydrological model with a high temporal and spatial resolution is applied to the Lower Jordan River basin (LJRB). The focus is hereby to capture the variability of rainfall and to investigate how this signal is amplified in the hydrological cycle in this arid and semi arid environment. Rainfall variability is addressed through a volume scanning rainfall radar providing precipitation data with a resolution of 5 minutes for entire seasons that serves as input to a conceptual hydrological model. The raw radar data recorded by a C-Band system was pre-corrected by a multiple regression approach prior to regionalization to the LJRB, ground truthing with rainfall station data and conditional merging. Despite certain uncertainties, the data documents the accentuated rainfall variability in the entire LJRB. In order to include the full range of present rainfall variability, one average and two extreme seasons (wet and dry) are studied. Hydrological modelling is undertaken with a new modelling tool created by coupling two hydrological models, TRAIN and ZIN, complementing each other in respect to the addressed processes and water fluxes. The resulting modelling tool enables conceptual modelling of the processes relevant for semi-arid / arid environments with a high temporal and spatial resolution. The model is applied to the large scale LJRB (16,000 km²) in order to simulate all components of the water balance for three rainy seasons representing the present climate variability. Under given conditions of low data availability, the results give a basin wide view on the availability of surface water resources without human intervention with a high resolution in time (5 min) and space (up to 250 x 250 m²). The scarcity of water resources in many areas within the region is illustrated and detailed maps of the water balance components reveal spatial pattern of water availability characterizing the different potentials of regions or sub basins for water management options. Moreover, comparing different climate conditions provides valuable information for water management, including insights into the relation between green and blue water. For instance, runoff generation and percolation react stronger to changes in precipitation than evapotranspiration and the changes in runoff and percolation are considerably higher than the differences in rainfall between the three years. This amplification of rainfall variability by the hydrological cycle is significant for water management. Based on the results for current conditions, the impact of different scenarios and management options is analyzed, e.g. the effect of land use changes or the suitability of different regions for rainwater harvesting, one of the urgently needed new water sources.

  6. Challenges for creating a site-specific groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010

    NASA Astrophysics Data System (ADS)

    Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott; Westerman, Drew A.; Clark, Brian R.

    2017-09-01

    Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.

  7. Challenges for creating a site-specific groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010

    USGS Publications Warehouse

    Knierim, Katherine J.; Nottmeier, Anna M.; Worland, Scott C.; Westerman, Drew A.; Clark, Brian R.

    2017-01-01

    Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.

  8. Experimental study on internal cooling system in hard turning of HCWCI using CBN tools

    NASA Astrophysics Data System (ADS)

    Ravi, A. M.; Murigendrappa, S. M.

    2018-04-01

    In recent times, hard turning became most emerging technique in manufacturing processes, especially to cut high hard materials like high chrome white cast iron (HCWCI). Use of Cubic boron nitride (CBN), pCBN and Carbide tools are most appropriate to shear the metals but are uneconomical. Since hard turning carried out in dry condition, lowering the tool wear by minimizing tool temperature is the only solution. Study reveals, no effective cooling systems are available so for in order to enhance the tool life of the cutting tools and to improve machinability characteristics. The detrimental effect of cutting parameters on cutting temperature is generally controlled by proper selections. The objective of this paper is to develop a new cooling system to control tool tip temperature, thereby minimizing the cutting forces and the tool wear rates. The materials chosen for this work was HCWCI and cutting tools are CBN inserts. Intricate cavities were made on the periphery of the tool holder for easy flow of cold water. Taguchi techniques were adopted to carry out the experimentations. The experimental results confirm considerable reduction in the cutting forces and tool wear rates.

  9. Integrating three tools for the environmental assessment of the Pardo River, Brazil.

    PubMed

    Machado, Carolina S; Alves, Renato I S; Fregonesi, Brisa M; Beda, Cassio F; Suzuki, Meire N; Trevilato, Rudison B; Nadal, Martí; Domingo, José L; Segura-Muñoz, Susana I

    2015-09-01

    There is a growing need for strategic assessment of environmental conditions in river basins around the world. In spite of the considerable water resources, Brazil has been suffering from water quality decrease in recent years. Pardo River runs through Minas Gerais and São Paulo, two of the most economically important states in Brazil, and is being currently promoted as a future drinking water source. This study aimed at integrating three different tools to conduct a hydromorphological assessment focused on the spatial complexity, connectivity, and dynamism of the Pardo River, Brazil. Twelve sampling stretches were evaluated in four sampling campaigns, in dry and rainy seasons. In each stretch, permanent preservation areas (PPAs), hydromorphological integrity by rapid assessment protocol (RAP), and physicochemical parameters were qualified. The kappa coefficient was used to assess statistical agreement among monitoring tools. The PPA analysis showed that in all stretches, the vegetation was modified. RAP results revealed environmental deterioration in stretches located near human activities and less variability of substrates available for aquatic fauna and sediment deposition as well. Low values for dissolved oxygen in the river mouth were noted in the rainy season. Electrical conductivity was higher in stretches near sugarcane crops. The poor agreement (k<0.35) between the RAP and physicochemical parameters indicates that the tools generate different and complementary information, while they are not replaceable. Potential changes of the hydromorphological characteristics and variations in physicochemical indicators must be related to extensive PPA modification.

  10. Statistical prediction of seasonal discharge in the Naryn basin for water resources planning in Central Asia

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Gafurov, Abror; Gerlitz, Lars; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Merkushkin, Aleksandr; Merz, Bruno

    2016-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien-Shan and Pamirs. During the summer months the snow and glacier melt water of the rivers originating in the mountains provides the only water resource available for agricultural production but also for water collection in reservoirs for energy production in winter months. Thus a reliable seasonal forecast of the water resources is crucial for a sustainable management and planning of water resources.. In fact, seasonal forecasts are mandatory tasks of national hydro-meteorological services in the region. Thus this study aims at a statistical forecast of the seasonal water availability, whereas the focus is put on the usage of freely available data in order to facilitate an operational use without data access limitations. The study takes the Naryn basin as a test case, at which outlet the Toktogul reservoir stores the discharge of the Naryn River. As most of the water originates form snow and glacier melt, a statistical forecast model should use data sets that can serve as proxy data for the snow masses and snow water equivalent in late spring, which essentially determines the bulk of the seasonal discharge. CRU climate data describing the precipitation and temperature in the basin during winter and spring was used as base information, which was complemented by MODIS snow cover data processed through ModSnow tool, discharge during the spring and also GRACE gravimetry anomalies. For the construction of linear forecast models monthly as well as multi-monthly means over the period January to April were used to predict the seasonal mean discharge of May-September at the station Uchterek. An automatic model selection was performed in multiple steps, whereas the best models were selected according to several performance measures and their robustness in a leave-one-out cross validation. It could be shown that the seasonal discharge can be predicted with exceptionally high skill reaching explained variances of 86% in the cross validation using ModSnow processed snow cover data and CRU temperature and precipitation data, i.e. freely available data only. Using antecedent discharge information from the Uchterek station over the period January to April the skill can be improved even further. Also the addition of latest EGSIEM GRACE products can improve this skill to > 90% explained variance by replacing the CRU temperature data in the forecast model. From all variables the ModSnow processed MODIS snow cover data proved to be the most important predictor. However, although the prediction models proved to be robust in the cross validation, it has to be mentioned that the models are based on a limited time spanning the period 2000-2012 only. Nevertheless it is believed that the models are reliable, as this time period shows a high variability in seasonal water availability spanning from exceptionally dry to wet years. In summary, the developed forecast model may be a valuable complementary tool for the seasonal discharge prediction in Central Asia for water resources planning, that does not suffer from limited data access required for other forecast methods.

  11. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model

    NASA Astrophysics Data System (ADS)

    Abbaspour, K. C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B.

    2015-05-01

    A combination of driving forces are increasing pressure on local, national, and regional water supplies needed for irrigation, energy production, industrial uses, domestic purposes, and the environment. In many parts of Europe groundwater quantity, and in particular quality, have come under sever degradation and water levels have decreased resulting in negative environmental impacts. Rapid improvements in the economy of the eastern European block of countries and uncertainties with regard to freshwater availability create challenges for water managers. At the same time, climate change adds a new level of uncertainty with regard to freshwater supplies. In this research we build and calibrate an integrated hydrological model of Europe using the Soil and Water Assessment Tool (SWAT) program. Different components of water resources are simulated and crop yield and water quality are considered at the Hydrological Response Unit (HRU) level. The water resources are quantified at subbasin level with monthly time intervals. Leaching of nitrate into groundwater is also simulated at a finer spatial level (HRU). The use of large-scale, high-resolution water resources models enables consistent and comprehensive examination of integrated system behavior through physically-based, data-driven simulation. In this article we discuss issues with data availability, calibration of large-scale distributed models, and outline procedures for model calibration and uncertainty analysis. The calibrated model and results provide information support to the European Water Framework Directive and lay the basis for further assessment of the impact of climate change on water availability and quality. The approach and methods developed are general and can be applied to any large region around the world.

  12. Citizen Science: Participatory Monitoring of Water Resources Management in Mustang District, Nepal

    NASA Astrophysics Data System (ADS)

    Regmi, S.; Bhusal, J.; Gurung, P.; Ochoa-Tocachi, B. F.; Buytaert, W.

    2016-12-01

    Abstract The Mustang region of the Himalayas has unique geographical and climatic features. This region is characterized by a cold-arid climate with total annual precipitation of less than 300mm. Agriculture and livestock grazing lands are the major ecosystem services, which support directly the livelihoods of local populations yet, are strongly determined by low water availability. As a result, optimizing water resources management is paramount to support local development, but this is severely complicated by the lack of information about water availability. This problem is further aggravated by increasing pressure on the social, physical and climatic environments. In order to support the management of scarce water in irrigation and domestic uses, stream flow and precipitation monitoring networks were established using a participatory approach under the principle of citizen science. Data collection, and the following interpretation and application of the co-generated knowledge relies on local users, whereas the establishment of the system, knowledge co-generation, and development of application tools particularly is part of a collaboration of members of the general public with professional scientists. We show how the resulting data enable local users to quantify the water balance in the area and reduce the uncertainty associated to data-scarcity, which leads to the generation of useable information about water availability for irrigation, livestock grazing, and domestic demand. We contrast the current scenario of water use, under different conditions of natural variability and environmental change, with an optimized water management strategy generated and agreed with local users. This approach contributes to an optimal use of water, to an improvement in ecosystem services supporting to livelihood development and economic progress of local populations. Key words: ecosystem services, climate change, water balance, knowledge generation, irrigation

  13. Pelagic habitat visualization: the need for a third (and fourth) dimension: HabitatSpace

    USGS Publications Warehouse

    Beegle-Krause, C; Vance, Tiffany; Reusser, Debbie; Stuebe, David; Howlett, Eoin

    2009-01-01

    Habitat in open water is not simply a 2-D to 2.5-D surface such as the ocean bottom or the air-water interface. Rather, pelagic habitat is a 3-D volume of water that can change over time, leading us to the term habitat space. Visualization and analysis in 2-D is well supported with GIS tools, but a new tool was needed for visualization and analysis in four dimensions. Observational data (cruise profiles (xo, yo, z, to)), numerical circulation model fields (x,y,z,t), and trajectories (larval fish, 4-D line) need to be merged together in a meaningful way for visualization and analysis. As a first step toward this new framework, UNIDATA’s Integrated Data Viewer (IDV) has been used to create a set of tools for habitat analysis in 4-D. IDV was designed for 3-D+time geospatial data in the meteorological community. NetCDF JavaTM libraries allow the tool to read many file formats including remotely located data (e.g. data available via OPeNDAP ). With this project, IDV has been adapted for use in delineating habitat space for multiple fish species in the ocean. The ability to define and visualize boundaries of a water mass, which meets specific biologically relevant criteria (e.g., volume, connectedness, and inter-annual variability) based on model results and observational data, will allow managers to investigate the survival of individual year classes of commercially important fisheries. Better understanding of the survival of these year classes will lead to improved forecasting of fisheries recruitment.

  14. Intelligent Chemistry Management System (ICMS)--A new approach to steam generator chemistry control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barto, R.J.; Farrell, D.M.; Noto, F.A.

    1986-04-01

    The Intelligent Chemistry Management System (ICMS) is a new tool which assists in steam generator chemistry control. Utilizing diagnostic capabilities, the ICMS will provide utility and industrial boiler operators, system chemists, and plant engineers with a tool for monitoring, diagnosing, and controlling steam generator system chemistry. By reducing the number of forced outages through early identification of potentially detrimental conditions, suggestion of possible causes, and execution of corrective actions, improvements in unit availability and reliability will result. The system monitors water and steam quality at a number of critical locations in the plant.

  15. Investigating the Potential Impacts of Energy Production in the Marcellus Shale Region Using the Shale Network Database

    NASA Astrophysics Data System (ADS)

    Brantley, S.; Pollak, J.

    2016-12-01

    The Shale Network's extensive database of water quality observations in the Marcellus Shale region enables educational experiences about the potential impacts of resource extraction and energy production with real data. Through tools that are open source and free to use, interested parties can access and analyze the very same data that the Shale Network team has used in peer-reviewed publications about the potential impacts of hydraulic fracturing on water. The development of the Shale Network database has been made possible through efforts led by an academic team and involving numerous individuals from government agencies, citizen science organizations, and private industry. With these tools and data, the Shale Network team has engaged high school students, university undergraduate and graduate students, as well as citizens so that all can discover how energy production impacts the Marcellus Shale region, which includes Pennsylvania and other nearby states. This presentation will describe these data tools, how the Shale Network has used them in educational settings, and the resources available to learn more.

  16. Development plan for the External Hazards Experimental Group. Light Water Reactor Sustainability Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Justin Leigh; Smith, Curtis Lee; Burns, Douglas Edward

    This report describes the development plan for a new multi-partner External Hazards Experimental Group (EHEG) coordinated by Idaho National Laboratory (INL) within the Risk-Informed Safety Margin Characterization (RISMC) technical pathway of the Light Water Reactor Sustainability Program. Currently, there is limited data available for development and validation of the tools and methods being developed in the RISMC Toolkit. The EHEG is being developed to obtain high-quality, small- and large-scale experimental data validation of RISMC tools and methods in a timely and cost-effective way. The group of universities and national laboratories that will eventually form the EHEG (which is ultimately expectedmore » to include both the initial participants and other universities and national laboratories that have been identified) have the expertise and experimental capabilities needed to both obtain and compile existing data archives and perform additional seismic and flooding experiments. The data developed by EHEG will be stored in databases for use within RISMC. These databases will be used to validate the advanced external hazard tools and methods.« less

  17. Micro electrical discharge milling using deionized water as a dielectric fluid

    NASA Astrophysics Data System (ADS)

    Chung, Do Kwan; Kim, Bo Hyun; Chu, Chong Nam

    2007-05-01

    In electrical discharge machining, dielectric fluid is an important factor affecting machining characteristics. Generally, kerosene and deionized water have been used as dielectric fluids. In micro electrical discharge milling, which uses a micro electrode as a tool, the wear of the tool electrode decreases the machining accuracy. However, the use of deionized water instead of kerosene can reduce the tool wear and increase the machining speed. This paper investigates micro electrical discharge milling using deionized water. Deionized water with high resistivity was used to minimize the machining gap. Machining characteristics such as the tool wear, machining gap and machining rate were investigated according to resistivity of deionized water. As the resistivity of deionized water decreased, the tool wear was reduced, but the machining gap increased due to electrochemical dissolution. Micro hemispheres were machined for the purpose of investigating machining efficiency between dielectric fluids, kerosene and deionized water.

  18. Publishing and sharing of hydrologic models through WaterHUB

    NASA Astrophysics Data System (ADS)

    Merwade, V.; Ruddell, B. L.; Song, C.; Zhao, L.; Kim, J.; Assi, A.

    2011-12-01

    Most hydrologists use hydrologic models to simulate the hydrologic processes to understand hydrologic pathways and fluxes for research, decision making and engineering design. Once these tasks are complete including publication of results, the models generally are not published or made available to the public for further use and improvement. Although publication or sharing of models is not required for journal publications, sharing of models may open doors for new collaborations, and avoids duplication of efforts if other researchers are interested in simulating a particular watershed for which a model already exists. For researchers, who are interested in sharing models, there are limited avenues to publishing their models to the wider community. Towards filling this gap, a prototype cyberinfrastructure (CI), called WaterHUB, is developed for sharing hydrologic data and modeling tools in an interactive environment. To test the utility of WaterHUB for sharing hydrologic models, a system to publish and share SWAT (Soil Water Assessment Tool) is developed. Users can utilize WaterHUB to search and download existing SWAT models, and also upload new SWAT models. Metadata such as the name of the watershed, name of the person or agency who developed the model, simulation period, time step, and list of calibrated parameters also published with individual model.

  19. International Watershed Technology: Improving Water Quality and Quantity at the Local, Basin, and Regional Scales

    USGS Publications Warehouse

    Tollner, Ernest W.; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the five papers in the “International Watershed Technology” collection. These papers were selected from 60 technical presentations at the fifth biennial ASABE 21st Century Watershed Technology Conference and Workshop: Improving the Quality of Water Resources at Local, Basin, and Regional Scales, held in Quito, Ecuador, on 3-9 December 2016. The conference focused on solving spatial and temporal water quality and quantity problems and addressed topics such as watershed management in developing countries, aquatic ecology and ecohydrology, ecosystem services, climate change mitigation strategies, flood forecasting, remote sensing, and water resource policy and management. While diverse, the presentation topics reflected the continuing evolution of the “data mining” and “big data” themes of past conferences related to geospatial data applications, with increasing emphasis on practical solutions. The papers selected for this collection represent applications of spatial data analyses toward practical ends with a theme of “tools and techniques for sustainability.” The papers address a range of topics, including the matching of crops with water availability, and assessing the environmental impacts of agricultural production. The papers identify some of the latest tools and techniques for improving sustainability in watershed resource management that are relevant to both developing and developed countries.

  20. Streamflow Prediction in Ungauged, Irrigated Basins

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Thompson, S. E.

    2016-12-01

    The international "predictions in ungauged basins" or "PUB" effort has broadened and improved the tools available to support water resources management in sparsely observed regions. These tools have, however, been primarily focused on regions with limited diversion of surface or shallow groundwater resources. Incorporating anthropogenic activity into PUB methods is essential given the high level of development of many basins. We extended an existing stochastic framework used to predict the flow duration curve to explore the effects of irrigation on streamflow dynamics. Four canonical scenarios were considered in which irrigation water was (i) primarily sourced from water imports, (ii) primarily sourced from direct in-channel diversions, (iii) sourced from shallow groundwater with direct connectivity to stream channels, or (iv) sourced from deep groundwater that is indirectly connected to surface flow via a shallow aquifer. By comparing the predicted flow duration curves to those predicted by accounting for climate and geomorphic factors in isolation, specific "fingerprints" of human water withdrawals could be identified for the different irrigation scenarios, and shown to be sensitive to irrigation volumes and scheduling. The results provide a first insight into PUB methodologies that could be employed in heavily managed basins.

  1. Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2012-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  2. Chesapeake Bay Program Water Quality Database

    EPA Pesticide Factsheets

    The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

  3. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users

    PubMed Central

    Calera, Alfonso; Campos, Isidro; Osann, Anna; D’Urso, Guido; Menenti, Massimo

    2017-01-01

    The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools. PMID:28492515

  4. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users.

    PubMed

    Calera, Alfonso; Campos, Isidro; Osann, Anna; D'Urso, Guido; Menenti, Massimo

    2017-05-11

    The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies). This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools.

  5. Model Hosting for continuous updating and transparent Water Resources Management

    NASA Astrophysics Data System (ADS)

    Jódar, Jorge; Almolda, Xavier; Batlle, Francisco; Carrera, Jesús

    2013-04-01

    Numerical models have become a standard tool for water resources management. They are required for water volume bookkeeping and help in decision making. Nevertheless, numerical models are complex and they can be used only by highly qualified technicians, which are often far from the decision makers. Moreover, they need to be maintained. That is, they require updating of their state, by assimilation of measurements, natural and anthropic actions (e.g., pumping and weather data), and model parameters. Worst, their very complexity implies that are they viewed as obscure and far, which hinders transparency and governance. We propose internet model hosting as an alternative to overcome these limitations. The basic idea is to keep the model hosted in the cloud. The model is updated as new data (measurements and external forcing) becomes available, which ensures continuous maintenance, with a minimal human cost (only required to address modelling problems). Internet access facilitates model use not only by modellers, but also by people responsible for data gathering and by water managers. As a result, the model becomes an institutional tool shared by water agencies to help them not only in decision making for sustainable management of water resources, but also in generating a common discussion platform. By promoting intra-agency sharing, the model becomes the common official position of the agency, which facilitates commitment in their adopted decisions regarding water management. Moreover, by facilitating access to stakeholders and the general public, the state of the aquifer and the impacts of alternative decisions become transparent. We have developed a tool (GAC, Global Aquifer Control) to address the above requirements. The application has been developed using Cloud Computing technologies, which facilitates the above operations. That is, GAC automatically updates the numerical models with the new available measurements, and then simulates numerous management options as required. To this end the application generates as many computing virtual machines as needed, customizing their size (CPU, memory…) accounting for all the particular requirements of every numerical model. Results are presented from a quantitative point of view (i.e. groundwater as a resource), and also from a qualitative perspective (i.e. the use of solute concentrations in groundwater as an environmental vector). In both cases detailed mass balances time series are obtained which can be used jointly with all the input and output model data to solve water conflicts between the different actors using and/or affecting the groundwater of the aquifer.

  6. Surrogate analysis and index developer (SAID) tool and real-time data dissemination utilities

    USGS Publications Warehouse

    Domanski, Marian M.; Straub, Timothy D.; Wood, Molly S.; Landers, Mark N.; Wall, Gary R.; Brady, Steven J.

    2015-01-01

    The use of acoustic and other parameters as surrogates for suspended-sediment concentrations (SSC) in rivers has been successful in multiple applications across the Nation. Critical to advancing the operational use of surrogates are tools to process and evaluate the data along with the subsequent development of regression models from which real-time sediment concentrations can be made available to the public. Recent developments in both areas are having an immediate impact on surrogate research, and on surrogate monitoring sites currently in operation. The Surrogate Analysis and Index Developer (SAID) standalone tool, under development by the U.S. Geological Survey (USGS), assists in the creation of regression models that relate response and explanatory variables by providing visual and quantitative diagnostics to the user. SAID also processes acoustic parameters to be used as explanatory variables for suspended-sediment concentrations. The sediment acoustic method utilizes acoustic parameters from fixed-mount stationary equipment. The background theory and method used by the tool have been described in recent publications, and the tool also serves to support sediment-acoustic-index methods being drafted by the multi-agency Sediment Acoustic Leadership Team (SALT), and other surrogate guidelines like USGS Techniques and Methods 3-C4 for turbidity and SSC. The regression models in SAID can be used in utilities that have been developed to work with the USGS National Water Information System (NWIS) and for the USGS National Real-Time Water Quality (NRTWQ) Web site. The real-time dissemination of predicted SSC and prediction intervals for each time step has substantial potential to improve understanding of sediment-related water-quality and associated engineering and ecological management decisions.

  7. Growing ethanol sector drives corn supply chain shift for the last decade

    NASA Astrophysics Data System (ADS)

    Kim, T.; Schmitt, J.; Brauman, K. A.; Smith, T. M.; Suh, K.

    2017-12-01

    The US is the largest producer in the world, 89% of corn production uses in domestic demands in 2012. Carbon emission and irrigated water usage in the corn farming stage are hot-spot in the meat production sectors, comprise 37% of all US corn demand. The annual capacity of the ethanol sector increases from 6.5 billion gallons to 15.3 billion gallons for the last decade. The growth of corn demand in ethanol sector makes corn supply chain shift. Most of the ethanol plants located in the Mid-west where is the top 12 corn producing states. Therefore animal feeds take more supply from the other states. The purpose of this study is to estimate environmental impacts and water scarcity associated embedded corn by the temporal and spatial corn supply chain model based on a cost minimization. We use publicly available county-level data on corn production, feed demands, aggregative carbon emission and irrigated water usage in farming state, and a water depletion index as a metric for determining water scarcity. The water stressed counties produce 23.3% of US total corn production in 2012, and the irrigated corn is 14.2%. We simulated the corn supply chain using linear programming and developed the web-based visualization tools called FoodS3 (Food Systems Supply-chain Sustainability tool, http://foods3.org).

  8. 3D Extended Logging for Geothermal Resources: Field Trials with the Geo-Bilt System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallan, R; Wilt, M; Kirkendall, B

    2002-05-29

    Geo-BILT (Geothermal Borehole Induction Logging Tool) is an extended induction logging tool designed for 3D resistivity imaging around a single borehole. The tool was developed for deployment in high temperature geothermal wells under a joint program funded by the California Energy Commission, Electromagnetic Instruments (EMI) and the U.S. Department of Energy. EM1 was responsible for tool design and manufacture, and numerical modeling efforts were being addressed at Lawrence Livermore Laboratory (LLNL) and other contractors. The field deployment was done by EM1 and LLNL. The tool operates at frequencies from 2 to 42 kHz, and its design features a series ofmore » three-component magnetic sensors offset at 2 and 5 meters from a three-component magnetic source. The combined package makes it possible to do 3D resistivity imaging, deep into the formation, from a single well. The manufacture and testing of the tool was completed in spring of 2001, and the initial deployment of Geo-BILT occurred in May 2001 at the Lost Hills oil field in southern California at leases operated by Chevron USA. This site was chosen for the initial field test because of the favorable geological conditions and the availability of a number of wells suitable for tool deployment. The second deployment occurred in April 2002 at the Dixie Valley geothermal field, operated by Caithness Power LLC, in central Nevada. This constituted the first test in a high temperature environment. The Chevron site features a fiberglass-cased observation well in the vicinity of a water injector. The injected water, which is used for pressure maintenance and for secondary sweep of the heavy oil formation, has a much lower resistivity than the oil bearing formation. This, in addition to the non-uniform flow of this water, creates a 3D resistivity structure, which is analogous to conditions produced from flowing fractures adjacent to geothermal boreholes. Therefore, it is an excellent site for testing the 3D capability of the tool in a low risk environment. The Dixie Valley site offered an environment where the tool could locate near-well fractures associated with steam development. The Lost Hills field measurements yielded a data set suitable for 3D imaging. The Geo-BLT data corresponded to existing conventional logging data and showed clear indications, in several depth intervals, of near-well 3D structure. Subsequent 3D inversion of these data produced a model consistent with non-planar water flow in specific layers. The Dixie Valley measurements identified structures associated with dike intrusions and water inflow at particular depths. Preliminary analysis suggests these structures are steeply dipping, which is consistent with the geology.« less

  9. Landscape Water Budget Tool

    EPA Pesticide Factsheets

    WaterSense created the Water Budget Tool as one option to help builders, landscape professionals, and irrigation professionals certified by a WaterSense labeled program meet the criteria specified in the WaterSense New Home Specification.

  10. [Development and Use of Hidrosig

    NASA Technical Reports Server (NTRS)

    Gupta, Vijay K.; Milne, Bruce T.

    2003-01-01

    The NASA portion of this joint NSF-NASA grant consists of objective 2 and a part of objective 3. A major effort was made on objective 2, and it consisted of developing a numerical GIs environment called Hidrosig. This major research tool is being developed by the University of Colorado for conducting river-network-based scaling analyses of coupled water-energy-landform-vegetation interactions including water and energy balances, and floods and droughts, at multiple space-time scales.Objective 2: To analyze the relevant remotely sensed products from satellites, radars and ground measurements to compute the transported water mass for each complete Strahler stream using an 'assimilated water balance equation' at daily and other appropriate time scales. This objective requires analysis of concurrent data sets for Precipitation (PPT), Evapotranspiration (ET) and stream flows (Q) on river networks. To solve this major problem, our decision was to develop Hidrosig, a new Open-Source GIs software. A research group in Colombia, South America, developed the first version of Hidrosig, and Ricardo Mantilla was part of this effort as an undergraduate student before joining the graduate program at the University of Colorado in 2001. Hydrosig automatically extracts river networks from large DEMs and creates a "link-based" data structure, which is required to conduct a variety of analyses under objective 2. It is programmed in Java, which is a multi-platform programming language freely distributed by SUN under a GPL license. Some existent commercial tools like Arc-Info, RiverTools and others are not suitable for our purpose for two reasons. First, the source code is not available that is needed to build on the network data structure. Second, these tools use different programming languages that are not most versatile for our purposes. For example, RiverTools uses an IDL platform that is not very efficient for organizing diverse data sets on river networks. Hidrosig establishes a clear data organization framework that allows a simultaneous analysis of spatial fields along river network structures involving Horton- Strahler framework. Software tools for network extraction from DEMs and network-based analysis of geomorphologic and topologic variables were developed during the first year and a part of second year.

  11. Development and Evaluation of a Riparian Buffer Mapping Tool

    USGS Publications Warehouse

    Milheim, Lesley E.; Claggett, Peter

    2008-01-01

    Land use and land cover within riparian areas greatly affect the conditions of adjacent water features. In particular, riparian forests provide many environmental benefits, including nutrient uptake, bank stabilization, steam shading, sediment trapping, aquatic and terrestrial habitat, and stream organic matter. In contrast, residential and commercial development and associated transportation infrastructure increase pollutant and nutrient loading and change the hydrologic characteristics of the landscape, thereby affecting both water quality and habitat. Restoring riparian areas is a popular and cost effective restoration technique to improve and protect water quality. Recognizing this, the Chesapeake Executive Council committed to restoring 10,000 miles of riparian forest buffers throughout the Chesapeake Bay watershed by the year 2010. In 2006, the Chesapeake Executive Council further committed to 'using the best available...tools to identify areas where retention and expansion of forests is most needed to protect water quality'. The Chesapeake Bay watershed encompasses 64,000 square miles, including portions of six States and Washington, D.C. Therefore, the interpretation of remotely sensed imagery provides the only effective technique for comprehensively evaluating riparian forest protection and restoration opportunities throughout the watershed. Although 30-meter-resolution land use and land cover data have proved useful on a regional scale, they have not been equally successful at providing the detail required for local-scale assessment of riparian area characteristics. Use of high-resolution imagery (HRI) provides sufficient detail for local-scale assessments, although at greater cost owing to the cost of the imagery and the skill and time required to process the data. To facilitate the use of HRI for monitoring the extent of riparian forest buffers, the U.S. Forest Service and the U.S. Geological Survey Eastern Geographic Science Center funded the development of a prototype semiautomated image classification tool, RBMapper, that is designed for use by technicians with limited image processing training. This document provides an overview of the RBMapper tool, includes instructions on how to obtain the RBMapper tool and tutorial datasets, and contains a summary evaluation of the tool

  12. Beverage and water intake of healthy adults in some European countries.

    PubMed

    Nissensohn, Mariela; Castro-Quezada, Itandehui; Serra-Majem, Lluis

    2013-11-01

    Nutritional surveys frequently collect some data of consumption of beverages; however, information from different sources and different methodologies raises issues of comparability. The main objective of this review was to examine the available techniques used for assessing beverage intake in European epidemiological studies and to describe the most frequent method applied to assess it. Information of beverage intake available from European surveys and nutritional epidemiological investigations was obtained from gray literature. Twelve articles were included and relevant data were extracted. The studies were carried out on healthy adults by different types of assessments. The most frequent tool used was a 7-d dietary record. Only Germany used a specific beverage assessment tool (Beverage Dietary History). From the limited data available and the diversity of the methodology used, the results show that consumption of beverages is different between countries. Current epidemiological studies in Europe focusing on beverage intake are scarce. Further research is needed to clarify the amount of beverage intake in European population.

  13. Assessment of surface water vulnerability to pesticide contamination using the modeling tool PegOpera: Application in North Tunisia

    NASA Astrophysics Data System (ADS)

    Boukari, Amira; Habaieb, Hamadi; Deliège, Jean-François

    2017-04-01

    Tunisia is a country in which three quarters of the territory is arid to semi-arid with limited water resources. Decreasing water scarcity and water pollution constitute a big challenge for water stakeholders particularly in rural areas and poor communities. The main factors influencing water availability in this Mediterranean country is, among others, overexploitation of non-renewable resources and diffuse pollution. Due to intensive agriculture in proximity of rivers and continuous use of pesticides, there is a potential risk for contamination of waterbodies by the agrochemicals used. This could have a negative impact on agricultural production as well as human health and threaten in priority the north part of the country where 82% of surface water is available. Despite this situation, no catchment monitoring program is currently put in place since it is expensive and require large investment. In this study, we established a methodology using the PegOpera modeling tool to assess the potential risk of pesticides contamination of surface water at the scale of a rural catchment situated in the northwestern part of Tunisia, the Joumine basin, draining an area of 418 km2 and devoted to agriculture, mainly rainfed cereal crops. In the downstream part of the basin, the Joumine dam was built in 1984 to provide water for irrigation and drinking purposes. We performed a survey with catchment farmers to report management practices in the area as well as spatial and temporal information about pesticide compounds, timing and application rate from which we identified the most used pesticide molecules. The SIRIS method (System of Integration of Risk with Interactions of Scores) was applied to classify compounds used according to the risk that they present to the aquatic environment and therefore to identify those chemicals that should be monitored (Guerbet et al., 2002; Le Gall et al., 2007). According to the results of this classification, we selected 6 molecules to study in priority. We carried on a monitoring program in 2016 by collecting water samples from the Joumine River and its main tributaries from December to May. Analysis results showed high levels of pesticide molecules in the river, in particular, measured concentrations of the herbicide simazine and the fungicides carbendazim, tebuconazole and chlortoluron at different monitoring stations. To better understand the fate and transport of these substances at the catchment scale with their routes of entry to Joumine River and the long term potential risk, we will use a modeling approach involving the "planning and management of water treatment" Tool (PEGASE), which is an appropriate simulation tool to evaluate the quality of watercourses developed by the R&D unit of the Aquapôle of the University of Liège. It will make possible to calculate in a deterministic way the water quality of a network of rivers (15 for the Joumine basin) according to pollutant releases, for non-stationary hydrological situations (Deliège et al., 2009, Grard et al. 2014). We prepared a complete database which includes (i) a geographical database (the digital elevation model, the river network, the land use map generated from Landsat 8 LOI imagery, livestock and administrative reference frame), (ii) the hydrometeorological data were provided by the Tunisian National Institute of Meteorology and (iii) data related to human activities and releases was also built in order to implement the model on the Joumine Basin. Non-available parameters, mainly gaps in daily discharge and soil data, were estimated with the Soil and Water Assessment Tool (SWAT) and coupled with the PegOpera Tool. Keywords: Surface water, Pesticides, PEGASE model, Joumine River. Acknowledgments: The authors are grateful to the "Institut Scientifique de Service Public" (ISSeP) for their support in realizing chromatographic analysis in water sample. We are also grateful to "Laboratoire de Phytophamacie de l'INAT" for their support in performing solid phase extraction (SPE). References: Deliège J.F., Everbecq E., Grard A., Bourouag T., Magermans P., Blockx C., (2009). PEGASE : un modèle intégré bassin hydrographique/ rivières pour la directive cadre européenne. 9es Journées Internationales de Limnologie, Luxembourg, 6-9 avril 2009 Grard A., Everbecq E., Magermans P., Bourouag M., Deliège J.F. (2014). Transnational modelling of the Meuse District with PEGOPERA simulation software. International Association for Hydro-Environment Engineering and Research, 12, pp. 251-263 Guerbet M. and Jouany J. M. (2002). Value of the SIRIS method for the classification of a series of 90 chemicals according to risk for the aquatic environment. Environmental Impact Assessment Review 22, (4), 377-391. Le Gall A. C., Morot, A., Jouglet, P., Chatelier J.-Y. (2007). Mise à jour et amélioration de la méthode SIRIS et développement d'un outil informatique pour son application; Rapport de l'étape 1 du projet, Rep. No. DRC-07- 73770-04644A. INERIS, 122 p

  14. Developing an Environmental Decision Support System for Stream Management: the STREAMES Experience

    NASA Astrophysics Data System (ADS)

    Riera, J.; Argerich, A.; Comas, J.; Llorens, E.; Martí, E.; Godé, L.; Pargament, D.; Puig, M.; Sabater, F.

    2005-05-01

    Transferring research knowledge to stream managers is crucial for scientifically sound management. Environmental decision support systems are advocated as an effective means to accomplish this. STREAMES (STream REAach Management: an Expert System) is a decision tree based EDSS prototype developed within the context of an European project as a tool to assist water managers in the diagnosis of problems, detection of causes, and selection of management strategies for coping with stream degradation issues related mostly to excess nutrient availability. STREAMES was developed by a team of scientists, water managers, and experts in knowledge engineering. Although the tool focuses on management at the stream reach scale, it also incorporates a mass-balance catchment nutrient emission model and a simple GIS module. We will briefly present the prototype and share our experience in its development. Emphasis will be placed on the process of knowledge acquisition, the design process, the pitfalls and benefits of the communication between scientists and managers, and the potential for future development of STREAMES, particularly in the context of the EU Water Framework Directive.

  15. Development of Hydro-Informatic Modelling System and its Application

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Liu, C.; Zheng, H.; Zhang, L.; Wu, X.

    2009-12-01

    The understanding of hydrological cycle is the core of hydrology and the scientific base of water resources management. Meanwhile, simulation of hydrological cycle has long been regarded as an important tool for the assessment, utilization and protection of water resources. In this paper, a new tool named Hydro-Informatic Modelling System (HIMS) has been developed and introduced with case studies in the Yellow River Basin in China and 331 catchments in Australia. The case studies showed that HIMS can be employed as an integrated platform for hydrological simulation in different regions. HIMS is a modular based framework of hydrological model designed for different utilization such as flood forecasting, water resources planning and evaluating hydrological impacts of climate change and human activities. The unique of HIMS is its flexibility in providing alternative modules in the simulation of hydrological cycle, which successfully overcome the difficulties in the availability of input data, the uncertainty of parameters, and the difference of rainfall-runoff processes. The modular based structure of HIMS makes it possible for developing new hydrological models by the users.

  16. USGS cold-water coral geographic database-Gulf of Mexico and western North Atlantic Ocean, version 1.0

    USGS Publications Warehouse

    Scanlon, Kathryn M.; Waller, Rhian G.; Sirotek, Alexander R.; Knisel, Julia M.; O'Malley, John; Alesandrini, Stian

    2010-01-01

    The USGS Cold-Water Coral Geographic Database (CoWCoG) provides a tool for researchers and managers interested in studying, protecting, and/or utilizing cold-water coral habitats in the Gulf of Mexico and western North Atlantic Ocean.  The database makes information about the locations and taxonomy of cold-water corals available to the public in an easy-to-access form while preserving the scientific integrity of the data.  The database includes over 1700 entries, mostly from published scientific literature, museum collections, and other databases.  The CoWCoG database is easy to search in a variety of ways, and data can be quickly displayed in table form and on a map by using only the software included with this publication.  Subsets of the database can be selected on the basis of geographic location, taxonomy, or other criteria and exported to one of several available file formats.  Future versions of the database are being planned to cover a larger geographic area and additional taxa.

  17. Isolation and molecular characterization of a Naegleria strain from a recreational water fountain in Tenerife, Canary Islands, Spain.

    PubMed

    Reyes-Batlle, María; Wagner, Carolina; López-Arencibia, Atteneri; Sifaoui, Ines; Martínez-Carretero, Enrique; Valladares, Basilio; Piñero, Jose E; Lorenzo-Morales, Jacob

    2017-06-01

    Free-Living Amoebae (FLA) are widely distributed protozoa in the environment and have been isolated from many sources such as dust, soil and water. Among the pathogenic genera included in this group Acanthamoeba spp., Naegleria fowleri and Balamuthia mandrillaris have been reported to be causative agents of lethal encephalitis, disseminated infections and keratitis. Naegleria fowleri is a pathogenic FLA species which causes Primary Amoebic Meningoencephalitis (PAM). At present there are not many available data on the distribution of Naegleria species in Spain from environmental sources. Therefore, the aim of this study was to evaluate the presence of this genus in recreational water sources in the island of Tenerife, Canary Islands, Spain. In this study, ten samples collected from recreational water fountains were checked for the presence of Naegleria spp. using morphological and molecular identification tools. From the analysed samples, only one sample (seawater fountain) was positive for Naegleria spp. interestingly, not many reports of Naegleria spp. in seawater are available in the literature and thus awareness should be raised among the environmental and public health professionals.

  18. Dynamic Management of Releases for the Delaware River Basin using NYC's Operations Support Tool

    NASA Astrophysics Data System (ADS)

    Weiss, W.; Wang, L.; Murphy, T.; Muralidhar, D.; Tarrier, B.

    2011-12-01

    The New York City Department of Environmental Protection (DEP) has initiated design of an Operations Support Tool (OST), a state-of-the-art decision support system to provide computational and predictive support for water supply operations and planning. Using an interim version of OST, DEP and the New York State Department of Environmental Conservation (DEC) have developed a provisional, one-year Delaware River Basin reservoir release program to succeed the existing Flexible Flow Management Program (FFMP) which expired on May 31, 2011. The FFMP grew out of the Good Faith Agreement of 1983 among the four Basin states (New York, New Jersey, Pennsylvania, and Delaware) that established modified diversions and flow targets during drought conditions. It provided a set of release schedules as a framework for managing diversions and releases from New York City's Delaware Basin reservoirs in order to support multiple objectives, including water supply, drought mitigation, flood mitigation, tailwaters fisheries, main stem habitat, recreation, and salinity repulsion. The provisional program (OST-FFMP) defines available water based on current Upper Delaware reservoir conditions and probabilistic forecasts of reservoir inflow. Releases are then set based on a set of release schedules keyed to the water availability. Additionally, OST-FFMP attempts to provide enhanced downstream flood protection by making spill mitigation releases to keep the Delaware System reservoirs at a seasonally varying conditional storage objective. The OST-FFMP approach represents a more robust way of managing downstream releases, accounting for predicted future hydrologic conditions by making more water available for release when conditions are forecasted to be wet and protecting water supply reliability when conditions are forecasted to be dry. Further, the dynamic nature of the program allows the release decision to be adjusted as hydrologic conditions change. OST simulations predict that this program can provide substantial benefits for downstream stakeholders while protecting DEP's ability to ensure a reliable water supply for 9 million customers in NYC and the surrounding communities. The one-year nature of the program will allow for DEP and the Decree Parties to evaluate and improve the program in the future. This paper will describe the OST-FFMP program and discuss preliminary observations on its performance based on key NYC and downstream stakeholder performance metrics.

  19. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  20. Development of an Integrated Agricultural Planning Model Considering Climate Change

    NASA Astrophysics Data System (ADS)

    Santikayasa, I. P.

    2016-01-01

    The goal of this study is to develop an agriculture planning model in order to sustain the future water use under the estimation of crop water requirement, water availability and future climate projection. For this purpose, the Citarum river basin which is located in West Java - Indonesia is selected as the study area. Two emission scenarios A2 and B2 were selected. For the crop water requirement estimation, the output of HadCM3 AOGCM is statistically downscale using SDSM and used as the input for WEAP model developed by SEI (Stockholm Environmental Institute). The reliability of water uses is assessed by comparing the irrigation water demand and the water allocation for the irrigation area. The water supply resources are assessed using the water planning tool. This study shows that temperature and precipitation over the study area are projected to increase in the future. The water availability was projected to increase under both A2 and B2 emission scenarios in the future. The irrigation water requirement is expected to decrease in the future under A2 and B2 scenarios. By comparing the irrigation water demand and water allocation for irrigation, the reliability of agriculture water use is expected to change in the period of 2050s and 2080s while the reliability will not change in 2020s. The reliability under A2 scenario is expected to be higher than B2 scenario. The combination of WEAP and SDSM is significance to use in assessing and allocating the water resources in the region.

  1. Hydrologic and geochemical characterization of the Santa Rosa Plain watershed, Sonoma County, California

    USGS Publications Warehouse

    Nishikawa, Tracy

    2013-01-01

    The Santa Rosa Plain is home to approximately half of the population of Sonoma County, California, and faces growth in population and demand for water. Water managers are confronted with the challenge of meeting the increasing water demand with a combination of water sources, including local groundwater, whose future availability could be uncertain. To meet this challenge, water managers are seeking to acquire the knowledge and tools needed to understand the likely effects of future groundwater development in the Santa Rosa Plain and to identify efficient strategies for surface- and groundwater management that will ensure the long-term viability of the water supply. The U.S. Geological Survey, in cooperation with the Sonoma County Water Agency and other stakeholders in the area (cities of Cotati, Rohnert Park, Santa Rosa, and Sebastopol, town of Windsor, Cal-American Water Company, and the County of Sonoma), undertook this study to characterize the hydrology of the Santa Rosa Plain and to develop tools to better understand and manage the groundwater system. The objectives of the study are: (1) to develop an updated assessment of the hydrogeology and geochemistry of the Santa Rosa Plain; (2) to develop a fully coupled surface-water and groundwater-flow model for the Santa Rosa Plain watershed; and (3) to evaluate the potential hydrologic effects of alternative groundwater-management strategies for the basin. The purpose of this report is to describe the surface-water and groundwater hydrology, hydrogeology, and water-quality characteristics of the Santa Rosa Plain watershed and to develop a conceptual model of the hydrologic system in support of the first objective. The results from completing the second and third objectives will be described in a separate report.

  2. Understanding Long-Term Variations in an Elephant Piosphere Effect to Manage Impacts

    PubMed Central

    Landman, Marietjie; Schoeman, David S.; Hall-Martin, Anthony J.; Kerley, Graham I. H.

    2012-01-01

    Surface water availability is a key driver of elephant impacts on biological diversity. Thus, understanding the spatio-temporal variations of these impacts in relation to water is critical to their management. However, elephant piosphere effects (i.e. the radial pattern of attenuating impact) are poorly described, with few long-term quantitative studies. Our understanding is further confounded by the complexity of systems with elephant (i.e. fenced, multiple water points, seasonal water availability, varying population densities) that likely limit the use of conceptual models to predict these impacts. Using 31 years of data on shrub structure in the succulent thickets of the Addo Elephant National Park, South Africa, we tested elephant effects at a single water point. Shrub structure showed a clear sigmoid response with distance from water, declining at both the upper and lower limits of sampling. Adjacent to water, this decline caused a roughly 300-m radial expansion of the grass-dominated habitats that replace shrub communities. Despite the clear relationship between shrub structure and ecological functioning in thicket, the extent of elephant effects varied between these features with distance from water. Moreover, these patterns co-varied with other confounding variables (e.g. the location of neighboring water points), which limits our ability to predict such effects in the absence of long-term data. We predict that elephant have the ability to cause severe transformation in succulent thicket habitats with abundant water supply and elevated elephant numbers. However, these piosphere effects are complex, suggesting that a more integrated understanding of elephant impacts on ecological heterogeneity may be required before water availability is used as a tool to manage impacts. We caution against the establishment of water points in novel succulent thicket habitats, and advocate a significant reduction in water provisioning at our study site, albeit with greater impacts at each water point. PMID:23028942

  3. Understanding long-term variations in an elephant piosphere effect to manage impacts.

    PubMed

    Landman, Marietjie; Schoeman, David S; Hall-Martin, Anthony J; Kerley, Graham I H

    2012-01-01

    Surface water availability is a key driver of elephant impacts on biological diversity. Thus, understanding the spatio-temporal variations of these impacts in relation to water is critical to their management. However, elephant piosphere effects (i.e. the radial pattern of attenuating impact) are poorly described, with few long-term quantitative studies. Our understanding is further confounded by the complexity of systems with elephant (i.e. fenced, multiple water points, seasonal water availability, varying population densities) that likely limit the use of conceptual models to predict these impacts. Using 31 years of data on shrub structure in the succulent thickets of the Addo Elephant National Park, South Africa, we tested elephant effects at a single water point. Shrub structure showed a clear sigmoid response with distance from water, declining at both the upper and lower limits of sampling. Adjacent to water, this decline caused a roughly 300-m radial expansion of the grass-dominated habitats that replace shrub communities. Despite the clear relationship between shrub structure and ecological functioning in thicket, the extent of elephant effects varied between these features with distance from water. Moreover, these patterns co-varied with other confounding variables (e.g. the location of neighboring water points), which limits our ability to predict such effects in the absence of long-term data. We predict that elephant have the ability to cause severe transformation in succulent thicket habitats with abundant water supply and elevated elephant numbers. However, these piosphere effects are complex, suggesting that a more integrated understanding of elephant impacts on ecological heterogeneity may be required before water availability is used as a tool to manage impacts. We caution against the establishment of water points in novel succulent thicket habitats, and advocate a significant reduction in water provisioning at our study site, albeit with greater impacts at each water point.

  4. Using open source software for the supervision and management of the water resources system of Athens

    NASA Astrophysics Data System (ADS)

    Kozanis, S.; Christofides, A.; Efstratiadis, A.; Koukouvinos, A.; Karavokiros, G.; Mamassis, N.; Koutsoyiannis, D.; Nikolopoulos, D.

    2012-04-01

    The water supply of Athens, Greece, is implemented through a complex water resource system, extending over an area of around 4 000 km2 and including surface water and groundwater resources. It incorporates four reservoirs, 350 km of main aqueducts, 15 pumping stations, more than 100 boreholes and 5 small hydropower plants. The system is run by the Athens Water Supply and Sewerage Company (EYDAP) Over more than 10 years we have developed, information technology tools such as GIS, database and decision support systems, to assist the management of the system. Among the software components, "Enhydris", a web application for the visualization and management of geographical and hydrometeorological data, and "Hydrognomon", a data analysis and processing tool, are now free software. Enhydris is entirely based on free software technologies such as Python, Django, PostgreSQL, and JQuery. We also created http://openmeteo.org/, a web site hosting our free software products as well as a free database system devoted to the dissemination of free data. In particular, "Enhydris" is used for the management of the hydrometeorological stations and the major hydraulic structures (aqueducts, reservoirs, boreholes, etc.), as well as for the retrieval of time series, online graphs etc. For the specific needs of EYDAP, additional GIS functionality was introduced for the display and monitoring of the water supply network. This functionality is also implemented as free software and can be reused in similar projects. Except for "Hydrognomon" and "Enhydris", we have developed a number of advanced modeling applications, which are also generic-purpose tools that have been used for a long time to provide decision support for the water resource system of Athens. These are "Hydronomeas", which optimizes the operation of complex water resource systems, based on a stochastic simulation framework, "Castalia", which implements the generation of synthetic time series, and "Hydrogeios", which employs conjunctive hydrological and hydrogeological simulation, with emphasis to human-modified river basins. These tools are currently available as executable files that are free for download though the ITIA web site (http://itia.ntua.gr/). Currently, we are working towards releasing their source code as well, through making them free software, after some licensing issues are resolved.

  5. Significance of exchanging SSURGO and STATSGO data when modeling hydrology in diverse physiographic terranes

    USGS Publications Warehouse

    Williamson, Tanja N.; Taylor, Charles J.; Newson, Jeremy K.

    2013-01-01

    The Water Availability Tool for Environmental Resources (WATER) is a TOPMODEL-based hydrologic model that depends on spatially accurate soils data to function in diverse terranes. In Kentucky, this includes mountainous regions, karstic plateau, and alluvial plains. Soils data are critical because they quantify the space to store water, as well as how water moves through the soil to the stream during storm events. We compared how the model performs using two different sources of soils data--Soil Survey Geographic Database (SSURGO) and State Soil Geographic Database laboratory data (STATSGO)--for 21 basins ranging in size from 17 to 1564 km2. Model results were consistently better when SSURGO data were used, likely due to the higher field capacity, porosity, and available-water holding capacity, which cause the model to store more soil-water in the landscape and improve streamflow estimates for both low- and high-flow conditions. In addition, there were significant differences in the conductivity multiplier and scaling parameter values that describe how water moves vertically and laterally, respectively, as quantified by TOPMODEL. We also evaluated whether partitioning areas that drain to streams via sinkholes in karstic basins as separate hydrologic modeling units (HMUs) improved model performance. There were significant differences between HMUs in properties that control soil-water storage in the model, although the effect of partitioning these HMUs on streamflow simulation was inconclusive.

  6. Valuation of irrigation water in South-western Iran using a hedonic pricing model

    NASA Astrophysics Data System (ADS)

    Esmaeili, Abdoulkarim; Shahsavari, Zahra

    2011-12-01

    Population growth, improved socioeconomic conditions, increased demand for various types of water use, and a reduction in water supply has created more competition for scarce water supplies leveling many countries. Efficient allocation of water supplies between different economic sectors is therefore very important. Water valuation is a useful tool to determine water price. Water pricing can play a major part in improving water allocation by encouraging users to conserve scarce water resources, and promoting improvements in productivity. We used a hedonic pricing method to reveal the implicit value of irrigation water by analyzing agricultural land values in farms under the Doroodzan dam in South-western Iran. The method was applied to farms in which irrigation water came from wells and canals. The availability of irrigation water was one of the most important factors influencing land prices. The value of irrigation water in the farms investigated was estimated to be 0.046 per cubic meter. The estimated price for water was clearly higher than the price farmers currently pay for water in the area of study. Efficient water pricing could help the sustainability of the water resources. Farmers must therefore be informed of the real value of irrigation water used on their land.

  7. Convergence of tree water use within an arid-zone woodland.

    PubMed

    O'Grady, A P; Cook, P G; Eamus, D; Duguid, A; Wischusen, J D H; Fass, T; Worldege, D

    2009-07-01

    We examined spatial and temporal patterns of tree water use and aspects of hydraulic architecture in four common tree species of central Australia--Corymbia opaca, Eucalyptus victrix, E. camaldulensis and Acacia aneura--to better understand processes that constrain water use in these environments. These four widely distributed species occupy contrasting niches within arid environments including woodlands, floodplains and riparian environments. Measurements of tree water use and leaf water potential were made at two sites with contrasting water table depths during a period of high soil water availability following summer rainfall and during a period of low soil water availability following 7 months of very little rainfall during 2007. There were significant differences in specific leaf area (SLA), sapwood area to leaf area ratios and sapwood density between species. Sapwood to leaf area ratio increased in all species from April to November indicating a decline in leaf area per unit sapwood area. Despite very little rainfall in the intervening period three species, C. opaca, E. victrix and E. camaldulensis maintained high leaf water potentials and tree water use during both periods. In contrast, leaf water potential and water use in the A. aneura were significantly reduced in November compared to April. Despite contrasting morphology and water use strategies, we observed considerable convergence in water use among the four species. Wood density in particular was strongly related to SLA, sapwood area to leaf area ratios and soil to leaf conductance, with all four species converging on a common relationship. Identifying convergence in hydraulic traits can potentially provide powerful tools for scaling physiological processes in natural ecosystems.

  8. Agricultural Model for the Nile Basin Decision Support System

    NASA Astrophysics Data System (ADS)

    van der Bolt, Frank; Seid, Abdulkarim

    2014-05-01

    To analyze options for increasing food supply in the Nile basin the Nile Agricultural Model (AM) was developed. The AM includes state-of-the-art descriptions of biophysical, hydrological and economic processes and realizes a coherent and consistent integration of hydrology, agronomy and economics. The AM covers both the agro-ecological domain (water, crop productivity) and the economic domain (food supply, demand, and trade) and allows to evaluate the macro-economic and hydrological impacts of scenarios for agricultural development. Starting with the hydrological information from the NileBasin-DSS the AM calculates the available water for agriculture, the crop production and irrigation requirements with the FAO-model AquaCrop. With the global commodity trade model MAGNET scenarios for land development and conversion are evaluated. The AM predicts consequences for trade, food security and development based on soil and water availability, crop allocation, food demand and food policy. The model will be used as a decision support tool to contribute to more productive and sustainable agriculture in individual Nile countries and the whole region.

  9. Assessment and Monitoring of Nutrient Management in Irrigated Agriculture for Groundwater Quality Protection

    NASA Astrophysics Data System (ADS)

    Harter, T.; Davis, R.; Smart, D. R.; Brown, P. H.; Dzurella, K.; Bell, A.; Kourakos, G.

    2017-12-01

    Nutrient fluxes to groundwater have been subject to regulatory assessment and control only in a limited number of countries, including those in the European Union, where the Water Framework Directive requires member countries to manage groundwater basis toward achieving "good status", and California, where irrigated lands will be subject to permitting, stringent nutrient monitoring requirements, and development of practices that are protective of groundwater. However, research activities to rigorously assess agricultural practices for their impact on groundwater have been limited and instead focused on surface water protection. For groundwater-related assessment of agricultural practices, a wide range of modeling tools has been employed: vulnerability studies, nitrogen mass balance assessments, crop-soil-system models, and various statistical tools. These tools are predominantly used to identify high risk regions, practices, or crops. Here we present the development of a field site for rigorous in-situ evaluation of water and nutrient management practices in an irrigated agricultural setting. Integrating groundwater monitoring into agricultural practice assessment requires large research plots (on the order of 10s to 100s of hectares) and multi-year research time-frames - much larger than typical agricultural field research plots. Almonds are among the most common crops in California with intensive use of nitrogen fertilizer and were selected for their high water quality improvement potential. Availability of an orchard site with relatively vulnerable groundwater conditions (sandy soils, water table depth less than 10 m) was also important in site selection. Initial results show that shallow groundwater concentrations are commensurate with nitrogen leaching estimates obtained by considering historical, long-term field nitrogen mass balance and groundwater dynamics.

  10. Multiobjective optimization of hybrid regenerative life support technologies. Topic D: Technology Assessment

    NASA Technical Reports Server (NTRS)

    Manousiouthakis, Vasilios

    1995-01-01

    We developed simple mathematical models for many of the technologies constituting the water reclamation system in a space station. These models were employed for subsystem optimization and for the evaluation of the performance of individual water reclamation technologies, by quantifying their operational 'cost' as a linear function of weight, volume, and power consumption. Then we performed preliminary investigations on the performance improvements attainable by simple hybrid systems involving parallel combinations of technologies. We are developing a software tool for synthesizing a hybrid water recovery system (WRS) for long term space missions. As conceptual framework, we are employing the state space approach. Given a number of available technologies and the mission specifications, the state space approach would help design flowsheets featuring optimal process configurations, including those that feature stream connections in parallel, series, or recycles. We visualize this software tool to function as follows: given the mission duration, the crew size, water quality specifications, and the cost coefficients, the software will synthesize a water recovery system for the space station. It should require minimal user intervention. The following tasks need to be solved for achieving this goal: (1) formulate a problem statement that will be used to evaluate the advantages of a hybrid WRS over a single technology WBS; (2) model several WRS technologies that can be employed in the space station; (3) propose a recycling network design methodology (since the WRS synthesis task is a recycling network design problem, it is essential to employ a systematic method in synthesizing this network); (4) develop a software implementation for this design methodology, design a hybrid system using this software, and compare the resulting WRS with a base-case WRS; and (5) create a user-friendly interface for this software tool.

  11. A Monthly Water-Balance Model Driven By a Graphical User Interface

    USGS Publications Warehouse

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  12. About Loading Tool Data | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  13. Developing relations between soil erodibilty factors in two different soil erosion prediction models (USLE/RUSLE and wWEPP) and fludization bed technique for mechanical soil cohesion

    USDA-ARS?s Scientific Manuscript database

    Soil erosion models are valuable analysis tools that scientists and engineers use to examine observed data sets and predict the effects of possible future soil loss. In the area of water erosion, a variety of modeling technologies are available, ranging from solely qualitative models, to merely quan...

  14. Towards a climate impact assessment of the Tarim River, NW China: integrated hydrological modelling using SWIM

    NASA Astrophysics Data System (ADS)

    Wortmann, Michel

    2014-05-01

    The Tarim River is the principle water source of the Xinjiang Uyghur Autonomous Region, NW China and the country's largest endorheic river, terminating in the Taklamakan desert. The vast majority of discharge is generated in the glaciated mountain ranges to the north (Tian Shan), south (Kunlun Shan/Tibetan Plateau) and west (Pamir Mountains) of the Taklamakan desert. The main water user is the intensive irrigation agriculture for mostly cotton and fruit production in linear river oases of the middle and lower reaches as well as a population of 10 Mil. people. Over the past 40 years, an increase in river discharge was reported, assumed to be caused by enhanced glacier melt due to a warming climate. Rapid population growth and economic development have led to a significant expansion of area under irrigation, resulting in water shortages for downstream users and the floodplain vegetation. Water resource planning and management of the Tarim require integrated assessment tools to examine changes under future climate change, land use and irrigation scenarios. The development of such tools, however, is challenged by sparse climate and discharge data as well as available data on water abstractions and diversions. The semi-distributed, process-based hydrological model SWIM (Soil and Water Integrated Model) was implemented for the headwater and middle reaches that generate over 90% of discharge, including the Aksu, Hotan and Yarkant rivers. It includes the representation of snow and glacier melt as well as irrigation abstractions. Once calibrated and validated to river discharge, the model is used to analyse future climate scenarios provided by one physically-based and one statistical regional climate model (RCM). Preliminary results of the model calibration and validation indicate that SWIM is able simulate river discharge adequately, despite poor data conditions. Snow and glacier melt account for the largest share in river discharge. The modelling results will devise sustainable management options for given climate change scenarios with the aim to balance water availability and water use for the basin as a whole and specifically for the riparian ecology.

  15. Preparing for Future Water Resources Conflicts through Climate Change Adaptation Planning: A Case Study in Eastern Europe and Central Asia

    NASA Astrophysics Data System (ADS)

    Boehlert, B. B.; Neumann, J. E.; Strzepek, K.; Sutton, W.; Srivastava, J.

    2011-12-01

    Uncertainties posed by climate change and rapidly rising global water demand suggest that existing conflicts over water resources are likely to be exacerbated and new conflicts will appear where little or no conflict occurs today. Successfully planning for and preventing conflicts first requires a sound scientific understanding of the timing, location, and magnitude of water resource shortfalls, identification of the most appropriate climate adaptation options based on multiple criteria, and development of broad, multi-level consensus within the affected community. We recently applied this approach in a World Bank-funded adaptation assessment for the agricultural sectors of four countries in Eastern Europe and Central Asia-Albania, Macedonia, Moldova, and Uzbekistan. For each major basin, we first used a hydrological model to project changes in water availability through 2050 under country-specific high, medium, and low climate impact scenarios. Next, under the three climate scenarios, we projected changes in agricultural water demand using a crop model (i.e., AquaCrop and DSSAT), and changes in water demand in other sectors based on population projections and sectoral forecasts of changes in per capita use. We incorporated these water availability and demand projections-along with other characteristics of the water system such as water supply priorities, environmental and transboundary flow requirements, irrigation efficiency, and reservoir locations and volumes-into a monthly integrated water resource planning tool (the Water Evaluation And Planning tool, or WEAP) to generate projected unmet water demand under each climate scenario and to each sector through 2050. The findings suggest that the agricultural sector in each country (except the relatively water-rich Albania) would experience significant unmet water demands, up to 52 percent in the Syr Darya and Amu Darya River basins of Uzbekistan. Potential adaptation responses to address unmet water demands-such as improving farm and basin-level irrigation efficiency -were evaluated using multiple approaches, including participatory farmer consultations, modeling of net economic benefits, and expert assessment. Recommendations were further refined through consensus building discussions among stakeholders at National Conferences. By using sound analytical approaches to evaluate the impacts of climate change, and by consulting government ministries, in-country scientific and academic institutions, and farmers, the final sets of recommendations have gained wide support within the countries and have become strong candidates for multilateral investment. The work also provides a starting point for resolving transboundary conflicts between countries, including the existing disputes over the Amu Darya River between Uzbekistan and upstream Tajikistan, and between Macedonia and downstream Greece over the Vardar-Axios River.

  16. Water Budget Tool

    EPA Pesticide Factsheets

    If you're designing a new landscape or rethinking your current one, the WaterSense Water Budget Tool will tell you if you have designed a landscape that will use an appropriate amount of water for your climate.

  17. Identifying Cost-Effective Water Resources Management Strategies: Watershed Management Optimization Support Tool (WMOST)

    EPA Science Inventory

    The Watershed Management Optimization Support Tool (WMOST) is a public-domain software application designed to aid decision makers with integrated water resources management. The tool allows water resource managers and planners to screen a wide-range of management practices for c...

  18. Moving sociohydrology forward: a synthesis across studies

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Konar, M.; Srinivasan, V.; Thompson, S.

    2015-03-01

    Sociohydrology is the study of coupled human-water systems with the premise that water and human systems co-evolve, often with two-way coupling. A recent special issue in HESS/ESD, "Predictions under change: water, earth, and biota in the Anthropocene", includes a number of sociohydrologic publications that allow for a survey of the current state of understanding of sociohydrology and the coupled system dynamics and feedbacks, the research methodologies available, and the norms and ethics involved in studying sociohydrologic systems. Although sociohydrology is concerned with coupled human-water systems, it is critical to consider the sociohydrologic system as embedded in a larger, complex social-ecological system through which human-water feedbacks can occur and from which the sociohydrologic system cannot be isolated. As such, sociohydrology can draw on tools developed in the social-ecological and complex systems literature to further our sociohydrologic knowledge, and this is identified as a ripe area of future research.

  19. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  20. Water Conservation Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ian Metzger, Jesse Dean

    2010-12-31

    This software requires inputs of simple water fixture inventory information and calculates the water/energy and cost benefits of various retrofit opportunities. This tool includes water conservation measures for: Low-flow Toilets, Low-flow Urinals, Low-flow Faucets, and Low-flow Showheads. This tool calculates water savings, energy savings, demand reduction, cost savings, and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.

  1. A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study

    DOE PAGES

    Klise, Katherine A.; Bynum, Michael; Moriarty, Dylan; ...

    2017-07-07

    Water utilities are vulnerable to a wide variety of human-caused and natural disasters. The Water Network Tool for Resilience (WNTR) is a new open source PythonTM package designed to help water utilities investigate resilience of water distribution systems to hazards and evaluate resilience-enhancing actions. In this paper, the WNTR modeling framework is presented and a case study is described that uses WNTR to simulate the effects of an earthquake on a water distribution system. The case study illustrates that the severity of damage is not only a function of system integrity and earthquake magnitude, but also of the available resourcesmore » and repair strategies used to return the system to normal operating conditions. While earthquakes are particularly concerning since buried water distribution pipelines are highly susceptible to damage, the software framework can be applied to other types of hazards, including power outages and contamination incidents.« less

  2. A software framework for assessing the resilience of drinking water systems to disasters with an example earthquake case study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Bynum, Michael; Moriarty, Dylan

    Water utilities are vulnerable to a wide variety of human-caused and natural disasters. The Water Network Tool for Resilience (WNTR) is a new open source PythonTM package designed to help water utilities investigate resilience of water distribution systems to hazards and evaluate resilience-enhancing actions. In this paper, the WNTR modeling framework is presented and a case study is described that uses WNTR to simulate the effects of an earthquake on a water distribution system. The case study illustrates that the severity of damage is not only a function of system integrity and earthquake magnitude, but also of the available resourcesmore » and repair strategies used to return the system to normal operating conditions. While earthquakes are particularly concerning since buried water distribution pipelines are highly susceptible to damage, the software framework can be applied to other types of hazards, including power outages and contamination incidents.« less

  3. Cost-benefit analysis of water-reuse projects for environmental purposes: a case study for Spanish wastewater treatment plants.

    PubMed

    Molinos-Senante, M; Hernández-Sancho, F; Sala-Garrido, R

    2011-12-01

    Water reuse is an emerging and promising non-conventional water resource. Feasibility studies are essential tools in the decision making process for the implementation of water-reuse projects. However, the methods used to assess economic feasibility tend to focus on internal costs, while external impacts are relegated to unsubstantiated statements about the advantages of water reuse. Using the concept of shadow prices for undesirable outputs of water reclamation, the current study developed a theoretical methodology to assess internal and external economic impacts. The proposed methodological approach is applied to 13 wastewater treatment plants in the Valencia region of Spain that reuse effluent for environmental purposes. Internal benefit analyses indicated that only a proportion of projects were economically viable, while when external benefits are incorporated all projects were economically viable. In conclusion, the economic feasibility assessments of water-reuse projects should quantitatively evaluate economic, environmental and resource availability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. NATIONAL CONFERENCE ON TOOLS FOR URBAN WATER RESOURCE MANAGEMENT AND PROTECTION: PROCEEDINGS, CHICAGO, IL, FEBRUARY 7-10, 2000

    EPA Science Inventory

    A wide array of effective water quality management and protection tools have been developed for urban environments, but implementation is hindered by a shortage of technology transfer opportunities. This National Conference on Tools for Urban Water Resource Management and Protec...

  5. Use of computer models to assess exposure to agricultural chemicals via drinking water.

    PubMed

    Gustafson, D I

    1995-10-27

    Surveys of drinking water quality throughout the agricultural regions of the world have revealed the tendency of certain crop protection chemicals to enter water supplies. Fortunately, the trace concentrations that have been detected are generally well below the levels thought to have any negative impact on human health or the environment. However, the public expects drinking water to be pristine and seems willing to bear the costs involved in further regulating agricultural chemical use in such a way so as to eliminate the potential for such materials to occur at any detectable level. Of all the tools available to assess exposure to agricultural chemicals via drinking water, computer models are one of the most cost-effective. Although not sufficiently predictive to be used in the absence of any field data, such computer programs can be used with some degree of certainty to perform quantitative extrapolations and thereby quantify regional exposure from field-scale monitoring information. Specific models and modeling techniques will be discussed for performing such exposure analyses. Improvements in computer technology have recently made it practical to use Monte Carlo and other probabilistic techniques as a routine tool for estimating human exposure. Such methods make it possible, at least in principle, to prepare exposure estimates with known confidence intervals and sufficient statistical validity to be used in the regulatory management of agricultural chemicals.

  6. Modelling the urban water cycle as an integrated part of the city: a review.

    PubMed

    Urich, Christian; Rauch, Wolfgang

    2014-01-01

    In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.

  7. Assessment of impacts of climate change on surface water availability using coupled SWAT and WEAP models: case of upper Pangani River Basin, Tanzania

    NASA Astrophysics Data System (ADS)

    Kishiwa, Peter; Nobert, Joel; Kongo, Victor; Ndomba, Preksedis

    2018-05-01

    This study was designed to investigate the dynamics of current and future surface water availability for different water users in the upper Pangani River Basin under changing climate. A multi-tier modeling technique was used in the study, by coupling the Soil and Water Assessment Tool (SWAT) and Water Evaluation And Planning (WEAP) models, to simulate streamflows under climate change and assess scenarios of future water availability to different socio-economic activities by year 2060. Six common Global Circulation Models (GCMs) from WCRP-CMIP3 with emissions Scenario A2 were selected. These are HadCM3, HadGEM1, ECHAM5, MIROC3.2MED, GFDLCM2.1 and CSIROMK3. They were downscaled by using LARS-WG to station scale. The SWAT model was calibrated with observed data and utilized the LARS-WG outputs to generate future streamflows before being used as input to WEAP model to assess future water availability to different socio-economic activities. GCMs results show future rainfall increase in upper Pangani River Basin between 16-18 % in 2050s relative to 1980-1999 periods. Temperature is projected to increase by an average of 2 °C in 2050s, relative to baseline period. Long-term mean streamflows is expected to increase by approximately 10 %. However, future peak flows are estimated to be lower than the prevailing average peak flows. Nevertheless, the overall annual water demand in Pangani basin will increase from 1879.73 Mm3 at present (2011) to 3249.69 Mm3 in the future (2060s), resulting to unmet demand of 1673.8 Mm3 (51.5 %). The impact of future shortage will be more severe in irrigation where 71.12 % of its future demand will be unmet. Future water demands of Hydropower and Livestock will be unmet by 27.47 and 1.41 % respectively. However, future domestic water use will have no shortage. This calls for planning of current and future surface water use in the upper Pangani River Basin.

  8. A Framework Predicting Water Availability in a Rapidly Growing, Semi-Arid Region under Future Climate Change

    NASA Astrophysics Data System (ADS)

    Han, B.; Benner, S. G.; Glenn, N. F.; Lindquist, E.; Dahal, K. R.; Bolte, J.; Vache, K. B.; Flores, A. N.

    2014-12-01

    Climate change can lead to dramatic variations in hydrologic regime, affecting both surface water and groundwater supply. This effect is most significant in populated semi-arid regions where water availability are highly sensitive to climate-induced outcomes. However, predicting water availability at regional scales, while resolving some of the key internal variability and structure in semi-arid regions is difficult due to the highly non-linearity relationship between rainfall and runoff. In this study, we describe the development of a modeling framework to evaluate future water availability that captures elements of the coupled response of the biophysical system to climate change and human systems. The framework is built under the Envision multi-agent simulation tool, characterizing the spatial patterns of water demand in the semi-arid Treasure Valley area of Southwest Idaho - a rapidly developing socio-ecological system where urban growth is displacing agricultural production. The semi-conceptual HBV model, a population growth and allocation model (Target), a vegetation state and transition model (SSTM), and a statistically based fire disturbance model (SpatialAllocator) are integrated to simulate hydrology, population and land use. Six alternative scenarios are composed by combining two climate change scenarios (RCP4.5 and RCP8.5) with three population growth and allocation scenarios (Status Quo, Managed Growth, and Unconstrained Growth). Five-year calibration and validation performances are assessed with Nash-Sutcliffe efficiency. Irrigation activities are simulated using local water rights. Results show that in all scenarios, annual mean stream flow decreases as the projected rainfall increases because the projected warmer climate also enhances water losses to evapotranspiration. Seasonal maximum stream flow tends to occur earlier than in current conditions due to the earlier peak of snow melting. The aridity index and water deficit generally increase in the irrigated area. The most sensitive area is along the Boise Foothill which is the transitioning zone from water deficit to water abundant. However, these trends vary significantly between scenarios in space and time. The outcome of the study will serve as a reference for local stakeholders to make decisions on future land use.

  9. Introducing Simple Detection of Bioavailable Arsenic at Rafaela (Santa Fe Province, Argentina) Using the ARSOlux Biosensor.

    PubMed

    Siegfried, Konrad; Hahn-Tomer, Sonja; Koelsch, Andreas; Osterwalder, Eva; Mattusch, Juergen; Staerk, Hans-Joachim; Meichtry, Jorge M; De Seta, Graciela E; Reina, Fernando D; Panigatti, Cecilia; Litter, Marta I; Harms, Hauke

    2015-05-21

    Numerous articles have reported the occurrence of arsenic in drinking water in Argentina, and the resulting health effects in severely affected regions of the country. Arsenic in drinking water in Argentina is largely naturally occurring due to elevated background content of the metalloid in volcanic sediments, although, in some regions, mining can contribute. While the origin of arsenic release has been discussed extensively, the problem of drinking water contamination has not yet been solved. One key step in progress towards mitigation of problems related with the consumption of As-containing water is the availability of simple detection tools. A chemical test kit and the ARSOlux biosensor were evaluated as simple analytical tools for field measurements of arsenic in the groundwater of Rafaela (Santa Fe, Argentina), and the results were compared with ICP-MS and HPLC-ICP-MS measurements. A survey of the groundwater chemistry was performed to evaluate possible interferences with the field tests. The results showed that the ARSOlux biosensor performed better than the chemical field test, that the predominant species of arsenic in the study area was arsenate and that arsenic concentration in the studied samples had a positive correlation with fluoride and vanadium, and a negative one with calcium and iron.

  10. Hydric potential of the river basin: Prądnik, Polish Highlands

    NASA Astrophysics Data System (ADS)

    Lepeška, Tomáš; Radecki-Pawlik, Artur; Wojkowski, Jakub; Walega, Andrzej

    2017-12-01

    Human society deals with floods, drought and water pollution. Facing those problems, the question how to prevent or at least to minimalize the adverse effects of water-related issues is asked of the landscape managers. In this way, any help given to landscape managers seems to be an additional useful tool. Within this paper, an approach leading to mitigation of water-related problems is presented that relates the retention of precipitation and the use of ecosystems as a tool for improving the quality, quantity of water resources and availability throughout the region. One approach is the determination of the landscape's hydric potential (LHP). This study examines one example of using this method within the conditions of Poland. The results of the research show that national data are entirely appropriate for implementation of the LHP method. Further, this approach revealed the classes of the hydric potential of the Prądnik river basin which was selected as the experimental territory. LHP results reflect the ecosystem attributes of the model river basin; areas of average LHP cover 63.26%, areas of high and limited hydric potential cover approximately 18.3% each. The spatial distribution of LHP means the results of this study provide a baseline for management of the river basin.

  11. Introducing Simple Detection of Bioavailable Arsenic at Rafaela (Santa Fe Province, Argentina) Using the ARSOlux Biosensor

    PubMed Central

    Siegfried, Konrad; Hahn-Tomer, Sonja; Koelsch, Andreas; Osterwalder, Eva; Mattusch, Juergen; Staerk, Hans-Joachim; Meichtry, Jorge M.; De Seta, Graciela E.; Reina, Fernando D.; Panigatti, Cecilia; Litter, Marta I.; Harms, Hauke

    2015-01-01

    Numerous articles have reported the occurrence of arsenic in drinking water in Argentina, and the resulting health effects in severely affected regions of the country. Arsenic in drinking water in Argentina is largely naturally occurring due to elevated background content of the metalloid in volcanic sediments, although, in some regions, mining can contribute. While the origin of arsenic release has been discussed extensively, the problem of drinking water contamination has not yet been solved. One key step in progress towards mitigation of problems related with the consumption of As-containing water is the availability of simple detection tools. A chemical test kit and the ARSOlux biosensor were evaluated as simple analytical tools for field measurements of arsenic in the groundwater of Rafaela (Santa Fe, Argentina), and the results were compared with ICP-MS and HPLC-ICP-MS measurements. A survey of the groundwater chemistry was performed to evaluate possible interferences with the field tests. The results showed that the ARSOlux biosensor performed better than the chemical field test, that the predominant species of arsenic in the study area was arsenate and that arsenic concentration in the studied samples had a positive correlation with fluoride and vanadium, and a negative one with calcium and iron. PMID:26006123

  12. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control

    NASA Astrophysics Data System (ADS)

    Maringanti, Chetan; Chaubey, Indrajeet; Popp, Jennie

    2009-06-01

    Best management practices (BMPs) are effective in reducing the transport of agricultural nonpoint source pollutants to receiving water bodies. However, selection of BMPs for placement in a watershed requires optimization of the available resources to obtain maximum possible pollution reduction. In this study, an optimization methodology is developed to select and place BMPs in a watershed to provide solutions that are both economically and ecologically effective. This novel approach develops and utilizes a BMP tool, a database that stores the pollution reduction and cost information of different BMPs under consideration. The BMP tool replaces the dynamic linkage of the distributed parameter watershed model during optimization and therefore reduces the computation time considerably. Total pollutant load from the watershed, and net cost increase from the baseline, were the two objective functions minimized during the optimization process. The optimization model, consisting of a multiobjective genetic algorithm (NSGA-II) in combination with a watershed simulation tool (Soil Water and Assessment Tool (SWAT)), was developed and tested for nonpoint source pollution control in the L'Anguille River watershed located in eastern Arkansas. The optimized solutions provided a trade-off between the two objective functions for sediment, phosphorus, and nitrogen reduction. The results indicated that buffer strips were very effective in controlling the nonpoint source pollutants from leaving the croplands. The optimized BMP plans resulted in potential reductions of 33%, 32%, and 13% in sediment, phosphorus, and nitrogen loads, respectively, from the watershed.

  13. Integrating geographically isolated wetlands into land ...

    EPA Pesticide Factsheets

    Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed-scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support. In a nutshell: Wetlands in general receive insufficient protection and this is particularly true for geographically isolated wetlands (GIWs), which are completely surrounded by upland areas GIWs have recently gained policy attention because they provide important ecosystem services, but like most wetlands, their loss and degradation continues Knowledge of the hydrologic connections of GIWs to downstream waters is necessary for th

  14. Voluntary Management of Residential Water Demand in Low and Middle-Low Income Households: Case Study of Soacha (colombia)

    NASA Astrophysics Data System (ADS)

    Acosta, R.; Rodriguez, J. P.

    2016-12-01

    Water resources availability is a global concern due to increasing demands, decreasing quality and uncertain spatio-temporal variability (United Nations, 2009). In urban contexts research on efficient water use is a priority to cope with the future vulnerability of water supplies as a result of the impacts of climate change (Bates et al, 2008). Following the proposed methodologies of He and Kua (2013) for implementing programs to promote sustainable energy consumption, we focused on the use of educational strategies to promote a voluntary rationalization of residential water demand. We collaborated with three schools in Soacha (Colombia) where students ranging from 12 to 15 years participated in the project as promoters of educational campaigns inside their families, covering 120 low and middle-low income households. Three intervention or treatment strategies (i.e. e-learning, in-person active learning activities and graphical learning tools) were carried out over a period of 5 months. We analyzed the effects of the treatments strategies in reducing water consumption rates and the dependence of this variable on socio-demographic, economic, environmental, and life quality factors by using personal interviews and self reported water saving technics. The results showed that educational campaigns have a positive effect on reducing consumption in the households. Graphical learning tools accounted for the highest reduction in water consumption. Moreover, the results of the study suggests that socio-economic factors such as type of house, social level, income, and life quality variables significantly affect the variability in water consumption, which is an important fact to consider in similar cases where communities face difficult socio-economic conditions, displacement or high rates of urban growth.

  15. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    PubMed

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Fault tree analysis for integrated and probabilistic risk analysis of drinking water systems.

    PubMed

    Lindhe, Andreas; Rosén, Lars; Norberg, Tommy; Bergstedt, Olof

    2009-04-01

    Drinking water systems are vulnerable and subject to a wide range of risks. To avoid sub-optimisation of risk-reduction options, risk analyses need to include the entire drinking water system, from source to tap. Such an integrated approach demands tools that are able to model interactions between different events. Fault tree analysis is a risk estimation tool with the ability to model interactions between events. Using fault tree analysis on an integrated level, a probabilistic risk analysis of a large drinking water system in Sweden was carried out. The primary aims of the study were: (1) to develop a method for integrated and probabilistic risk analysis of entire drinking water systems; and (2) to evaluate the applicability of Customer Minutes Lost (CML) as a measure of risk. The analysis included situations where no water is delivered to the consumer (quantity failure) and situations where water is delivered but does not comply with water quality standards (quality failure). Hard data as well as expert judgements were used to estimate probabilities of events and uncertainties in the estimates. The calculations were performed using Monte Carlo simulations. CML is shown to be a useful measure of risks associated with drinking water systems. The method presented provides information on risk levels, probabilities of failure, failure rates and downtimes of the system. This information is available for the entire system as well as its different sub-systems. Furthermore, the method enables comparison of the results with performance targets and acceptable levels of risk. The method thus facilitates integrated risk analysis and consequently helps decision-makers to minimise sub-optimisation of risk-reduction options.

  17. Water resource monitoring in Iran using satellite altimetry and satellite gravimetry (GRACE)

    NASA Astrophysics Data System (ADS)

    Khaki, Mehdi; Sneeuw, Nico

    2015-04-01

    Human civilization has always been in evolution by having direct access to water resources throughout history. Water, with its qualitative and quantitative effects, plays an important role in economic and social developments. Iran with an arid and semi-arid geographic specification is located in Southwest Asia. Water crisis has appeared in Iran as a serious problem. In this study we're going to use various data sources including satellite radar altimetry and satellite gravimetry to monitor and investigate water resources in Iran. Radar altimeters are an invaluable tool to retrieve from space vital hydrological information such as water level, volume and discharge, in particular from regions where the in situ data collection is difficult. Besides, Gravity Recovery and Climate Experiment (GRACE) provide global high resolution observations of the time variable gravity field of the Earth. This information is used to derive spatio-temporal changes of the terrestrial water storage body. This study isolates the anthropogenic perturbations to available water supplies in order to quantify human water use as compared to available resources. Long-term monitor of water resources in Iran is contain of observing freshwaters, lakes and rivers as well as exploring ground water bodies. For these purposes, several algorithms are developed to quantitatively monitor the water resources in Iran. The algorithms contain preprocessing on datasets, eliminating biases and atmospheric corrections, establishing water level time series and estimating terrestrial water storage considering impacts of biases and leakage on GRACE data. Our primary goal in this effort is to use the combination of satellite radar altimetry and GRACE data to study on water resources as well as methods to dealing with error sources include cross over errors and atmospheric impacts.

  18. The identification of sustainable yield for hot spring regarding water level and temperature

    NASA Astrophysics Data System (ADS)

    Ke, Kai-Yuan; Tan, Yih-Chi

    2017-04-01

    In order to sustainably manage and utilize the limited hot spring resource, the cool-hot water exchange model is established by combination of Soil and Water Assessment Tool(SWAT) and SHEMAT. Hot spring in Ziaoxi, Taiwan, is chosen as study area. With data of geography, weather, land use and soil texture, SWAT can simulate precipitation induced infiltration and recharge for SHEMAT. Then SHEMAT is calibrated and verified with in-situ observation data of hot spring temperature and water level. The relation among precipitation, pumping, change of water temperature and water level is thus investigated. The effect of point well pumping, which dramatically lower the water level and temperature, due to prosperous development of hot spring building and industry is also considered for better model calibration. In addition, by employing a modified Hill's method, the sustainable yield is identified. Unlike traditional Hill's method, the modified Hill's method could account for not only the change of water level but also the temperature. As a result, the estimated sustainable yield provide a reasonable availability of hot spring resources without further decline of the water level and temperature.

  19. Food Web Bioaccumulation Model for Resident Killer Whales from the Northeastern Pacific Ocean as a Tool for the Derivation of PBDE-Sediment Quality Guidelines.

    PubMed

    Alava, Juan José; Ross, Peter S; Gobas, Frank A P C

    2016-01-01

    Resident killer whale populations in the NE Pacific Ocean are at risk due to the accumulation of pollutants, including polybrominated diphenyl ethers (PBDEs). To assess the impact of PBDEs in water and sediments in killer whale critical habitat, we developed a food web bioaccumulation model. The model was designed to estimate PBDE concentrations in killer whales based on PBDE concentrations in sediments and the water column throughout a lifetime of exposure. Calculated and observed PBDE concentrations exceeded the only toxicity reference value available for PBDEs in marine mammals (1500 μg/kg lipid) in southern resident killer whales but not in northern resident killer whales. Temporal trends (1993-2006) for PBDEs observed in southern resident killer whales showed a doubling time of ≈5 years. If current sediment quality guidelines available in Canada for polychlorinated biphenyls are applied to PBDEs, it can be expected that PBDE concentrations in killer whales will exceed available toxicity reference values by a large margin. Model calculations suggest that a PBDE concentration in sediments of approximately 1.0 μg/kg dw produces PBDE concentrations in resident killer whales that are below the current toxicity reference value for 95 % of the population, with this value serving as a precautionary benchmark for a management-based approach to reducing PBDE health risks to killer whales. The food web bioaccumulation model may be a useful risk management tool in support of regulatory protection for killer whales.

  20. DMR Loading Tool Frequently Asked Questions | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  1. Overview of Loading Tool Architecture | ECHO | US EPA

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  2. Glossary of Frequent Terms in the Loading Tool | ECHO | US ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  3. Linking DMR and TRI Data in the DMR Pollutant Loading Tool ...

    EPA Pesticide Factsheets

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available.

  4. Using prediction uncertainty analysis to design hydrologic monitoring networks: Example applications from the Great Lakes water availability pilot project

    USGS Publications Warehouse

    Fienen, Michael N.; Doherty, John E.; Hunt, Randall J.; Reeves, Howard W.

    2010-01-01

    The importance of monitoring networks for resource-management decisions is becoming more recognized, in both theory and application. Quantitative computer models provide a science-based framework to evaluate the efficacy and efficiency of existing and possible future monitoring networks. In the study described herein, two suites of tools were used to evaluate the worth of new data for specific predictions, which in turn can support efficient use of resources needed to construct a monitoring network. The approach evaluates the uncertainty of a model prediction and, by using linear propagation of uncertainty, estimates how much uncertainty could be reduced if the model were calibrated with addition information (increased a priori knowledge of parameter values or new observations). The theoretical underpinnings of the two suites of tools addressing this technique are compared, and their application to a hypothetical model based on a local model inset into the Great Lakes Water Availability Pilot model are described. Results show that meaningful guidance for monitoring network design can be obtained by using the methods explored. The validity of this guidance depends substantially on the parameterization as well; hence, parameterization must be considered not only when designing the parameter-estimation paradigm but also-importantly-when designing the prediction-uncertainty paradigm.

  5. An Overview of the NASA Energy and Water cycle Study (NEWS) and the North American Water Program (NAWP)

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2014-12-01

    NEWS: 10 years ago, NASA established the NASA Energy and Water-cycle Study (NEWS), whose long-term grand challenge is to document and enable improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. The NEWS program builds upon existing NASA-supported basic research in atmospheric physics and dynamics, radiation, climate modeling, and terrestrial hydrology. While these NASA programs fund research activities that address individual aspects of the global energy and water cycles, they are not specifically designed to generate a coordinated result. NEWS developed the first coordinated attempt to describe the complete global energy and water cycle using existing and forthcoming satellite and ground based observations, and laying the foundation for essential NEWS developments in model representations of atmospheric energy and water exchange processes. This comprehensive energy and water data analysis program exploited crucial datasets, some requiring complete re-processing, and new satellite measurements. NAWP: Dramatically changing climates has had an indelible impact on North America's water crisis. To decisively address these challenges, we recommend that NAWP coalesce an interdisciplinary, international and interagency effort to make significant contributions to continental- to decision-scale hydroclimate science and solutions. By entraining, integrating and coordinating the vast array of interdisciplinary observational and prediction resources available, NAWP will significantly advance skill in predicting, assessing and managing variability and changes in North American water resources. We adopt three challenges to organize NAWP efforts. The first deals with developing a scientific basis and tools for mitigating and adapting to changes in the water supply-demand balance. The second challenge is benchmarking; to use incomplete and uncertain observations to assess water storage and quality dynamics, and to characterize the information content of water cycle predictions in a way that allows for model improvement. The final challenge is to establish clear pathways to inform water managers, practitioners and decision makers about newly developed tools, observations and research results.

  6. Micropollutants in urban watersheds : substance flow analysis as management tool

    NASA Astrophysics Data System (ADS)

    Rossi, L.; Copin, P. J.; Barry, A. D.; Bader, H.-P.; Scheidegger, R.; Chèvre, N.

    2009-04-01

    Micropollutants released by cities into water are of increasing concern as they are suspected of inducing long-term effects on both aquatic organisms and humans (eg., hormonally active substances). Substances found in the urban water cycle have different sources in the urban area and different fates in this cycle. For example, the pollutants emitted from traffic, like copper or PAHs get to surface water during rain events often without any treatment. Pharmaceuticals resulting from human medical treatments get to surface water mainly through wastewater treatment plants, where they are only partly treated and eliminated. One other source of contamination in urban areas for these compounds are combined sewer overflows (CSOs). Once in the receiving waters (lakes, rivers, groundwater), these substances may re-enter the cycle through drinking water. It is therefore crucial to study the behaviour of micropollutants in the urban water cycle and to get flexible tools for urban water management. Substance flow analysis (SFA) has recently been proposed as instrument for water pollution management in urban water systems. This kind of analysis is an extension of material flow analysis (MFA) originally developed in the economic sector and later adapted to regional investigations. In this study, we propose to test the application of SFA for a large number of classes of micropollutants to evaluate its use for urban water management. We chose the city of Lausanne as case study since the receiving water of this city (Lake Geneva) is an important source of drinking water for the surrounding population. Moreover a profound system-knowledge and many data were available, both on the sewer system and the water quality. We focus our study on one heavy metal (copper) and four pharmaceuticals (diclofenac, ibuprofen, carbamazepine and naproxen). Results conducted on copper reveals that around 1500 kg of copper enter the aquatic compartment yearly. This amount contributes to sediment enrichment, which may pose a long-term risk for the benthic organisms. The major sources (total of 73%) of copper in receiving surface water are roofs and contact lines of trolleybuses. Thus technical solutions have to be found to manage this specific source of contamination. Application of SFA approach to four pharmaceuticals reveals that CSOs represent an important source of contamination: Between 14% (carbamazepine) and 61% (ibuprofen) of the total annual loads of Lausanne city to the Lake are due to CSOs. These results will help in defining the best management strategy to limit Lake Geneva contamination. SFA is thus a promising tool for integrated urban water management.

  7. Plaster core washout tool

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Keir, A. R.; Teramura, K.

    1977-01-01

    Tool powered by pressurized water or air removes water soluble plaster lining from Kevlar/epoxy duct. Rotating plastic cutterhead with sealed end fitting connects flexible shaft that allows tool to be used with curved ducts.

  8. BASINs and WEPP Climate Assessment Tools (CAT): Case ...

    EPA Pesticide Factsheets

    EPA announced the release of the final report, BASINs and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications. This report supports application of two recently developed water modeling tools, the Better Assessment Science Integrating point & Non-point Sources (BASINS) and the Water Erosion Prediction Project Climate Assessment Tool (WEPPCAT). The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential effects of climate change on streamflow and water quality. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.

  9. Ecohydrology of agroecosystems: probabilistic description of yield reduction risk under limited water availability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2013-04-01

    Supplemental irrigation represents one of the main strategies to mitigate the effects of climate variability and stabilize yields. Irrigated agriculture currently provides 40% of food production and its relevance is expected to further increase in the near future, in face of the projected alterations of rainfall patterns and increase in food, fiber, and biofuel demand. Because of the significant investments and water requirements involved in irrigation, strategic choices are needed to preserve productivity and profitability, while maintaining a sustainable water management - a nontrivial task given the unpredictability of the rainfall forcing. To facilitate decision making under uncertainty, a widely applicable probabilistic framework is proposed. The occurrence of rainfall events and irrigation applications are linked probabilistically to crop development during the growing season and yields at harvest. Based on these linkages, the probability density function of yields and corresponding probability density function of required irrigation volumes, as well as the probability density function of yields under the most common case of limited water availability are obtained analytically, as a function of irrigation strategy, climate, soil and crop parameters. The full probabilistic description of the frequency of occurrence of yields and water requirements is a crucial tool for decision making under uncertainty, e.g., via expected utility analysis. Furthermore, the knowledge of the probability density function of yield allows us to quantify the yield reduction hydrologic risk. Two risk indices are defined and quantified: the long-term risk index, suitable for long-term irrigation strategy assessment and investment planning, and the real-time risk index, providing a rigorous probabilistic quantification of the emergence of drought conditions during a single growing season in an agricultural setting. Our approach employs relatively few parameters and is thus easily and broadly applicable to different crops and sites, under current and future climate scenarios. Hence, the proposed probabilistic framework provides a quantitative tool to assess the impact of irrigation strategy and water allocation on the risk of not meeting a certain target yield, thus guiding the optimal allocation of water resources for human and environmental needs.

  10. Water, Energy, and Food Nexus: Modeling of Inter-Basin Resources Trading

    NASA Astrophysics Data System (ADS)

    KIm, T. W.; Kang, D.; Wicaksono, A.; Jeong, G.; Jang, B. J.; Ahn, J.

    2016-12-01

    The water, energy, and food (WEF) nexus is an emerging issue in the concern of fulfilling the human requirements with a lack of available resources. The WEF nexus concept arises to develop a sustainable resources planning and management. In the concept, the three valuable resources (i.e. water, energy, and food) are inevitably interconnected thus it becomes a challenge for researchers to understand the complicated interdependency. A few studies have been committed for interpreting and implementing the WEF nexus using a computer based simulation model. Some of them mentioned that a trade-off is one alternative solution that can be taken to secure the available resources. Taking a concept of inter-basin water transfer, this study attempts to introduce an idea to develop a WEF nexus model for inter-basin resources trading simulation. Using the trading option among regions (e.g., cities, basins, or even countries), the model provides an opportunity to increase overall resources availability without draining local resources. The proposed model adopted the calculation process of an amount of water, energy, and food from a nation-wide model, with additional input and analysis process to simulate the resources trading between regions. The proposed model is applied for a hypothetic test area in South Korea for demonstration purposes. It is anticipated that the developed model can be a decision tool for efficient resources allocation for sustainable resources management. Acknowledgements This study was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of the Korean government.

  11. Water Saving for Development

    NASA Astrophysics Data System (ADS)

    Zacharias, Ierotheos

    2013-04-01

    The project "Water Saving for Development (WaS4D)" is financed by European Territorial Cooperational Programme, Greece-Italy 2007-2013, and aims at developing issues on water saving related to improvement of individual behaviors and implementing innovative actions and facilities in order to harmonize policies and start concrete actions for a sustainable water management, making also people and stakeholders awake to water as a vital resource, strategic for quality of life and territory competitiveness. Drinkable water saving culture & behavior, limited water resources, water supply optimization, water resources and demand management, water e-service & educational e-tools are the key words of WaS4D. In this frame the project objectives are: • Definition of water need for domestic and other than domestic purposes: regional and territorial hydro-balance; • promotion of locally available resources not currently being used - water recycling or reuse and rainwater harvesting; • scientific data implementation into Informative Territorial System and publication of geo-referred maps into the institutional web sites, to share information for water protection; • participated review of the regulatory framework for the promotion of water-efficient devices and practices by means of the definition of Action Plans, with defined targets up to brief (2015) and medium (2020) term; • building up water e-services, front-office for all the water issues in building agricultural, industrial and touristic sectors, to share information, procedures and instruments for the water management; • creation and publication of a user friendly software, a game, to promote sustainability for houses also addressed to young people; • creation of water info point into physical spaces called "Water House" to promote education, training, events and new advisory services to assist professionals involved in water uses and consumers; • implementation of participatory approach & networking for a permanent cooperation among Public Bodies and Institutions, with the creation of a transferable model of best practices. WaS4D will carry out initiatives and advisory services aimed to encourage a behavior change, influencing citizens' demand and support consumers who wish to take action to reduce drinking water use: for the civil use, from literature, it's possible to reduce drinkable water consumption up to 50% using simple and economic tools, with a large environmental positive impact. WaS4D mainly focuses on the needs to define a participatory approach to enhance water-saving culture at urban level, encouraging a shift from supply-driven policies to management policies and from a sectorial to an integrated approach. The innovative character of the project is referred to the integrated approach as well as to the creation of new web services & tools.

  12. Economic feasibility study for improving drinking water quality: a case study of arsenic contamination in rural Argentina.

    PubMed

    Molinos-Senante, María; Perez Carrera, Alejo; Hernández-Sancho, Francesc; Fernández-Cirelli, Alicia; Sala-Garrido, Ramón

    2014-12-01

    Economic studies are essential in evaluating the potential external investment support and/or internal tariffs available to improve drinking water quality. Cost-benefit analysis (CBA) is a useful tool to assess the economic feasibility of such interventions, i.e. to take some form of action to improve the drinking water quality. CBA should involve the market and non-market effects associated with the intervention. An economic framework was proposed in this study, which estimated the health avoided costs and the environmental benefits for the net present value of reducing the pollutant concentrations in drinking water. We conducted an empirical application to assess the economic feasibility of removing arsenic from water in a rural area of Argentina. Four small-scale methods were evaluated in our study. The results indicated that the inclusion of non-market benefits was integral to supporting investment projects. In addition, the application of the proposed framework will provide water authorities with more complete information for the decision-making process.

  13. Central Asia Water (CAWa) - A visualization platform for hydro-meteorological sensor data

    NASA Astrophysics Data System (ADS)

    Stender, Vivien; Schroeder, Matthias; Wächter, Joachim

    2014-05-01

    Water is an indispensable necessity of life for people in the whole world. In central Asia, water is the key factor for economic development, but is already a narrow resource in this region. In fact of climate change, the water problem handling will be a big challenge for the future. The regional research Network "Central Asia Water" (CAWa) aims at providing a scientific basis for transnational water resources management for the five Central Asia States Kyrgyzstan, Uzbekistan, Tajikistan, Turkmenistan and Kazakhstan. CAWa is part of the Central Asia Water Initiative (also known as the Berlin Process) which was launched by the Federal Foreign Office on 1 April 2008 at the "Water Unites" conference in Berlin. To produce future scenarios and strategies for sustainable water management, data on water reserves and the use of water in Central Asia must therefore be collected consistently across the region. Hydro-meteorological stations equipped with sophisticated sensors are installed in Central Asia and send their data via real-time satellite communication to the operation centre of the monitoring network and to the participating National Hydro-meteorological Services.[1] The challenge for CAWa is to integrate the whole aspects of data management, data workflows, data modeling and visualizations in a proper design of a monitoring infrastructure. The use of standardized interfaces to support data transfer and interoperability is essential in CAWa. An uniform treatment of sensor data can be realized by the OGC Sensor Web Enablement (SWE) , which makes a number of standards and interface definitions available: Observation & Measurement (O&M) model for the description of observations and measurements, Sensor Model Language (SensorML) for the description of sensor systems, Sensor Observation Service (SOS) for obtaining sensor observations, Sensor Planning Service (SPS) for tasking sensors, Web Notification Service (WNS) for asynchronous dialogues and Sensor Alert Service (SAS) for sending alerts. An OpenSource web-platform bundles the data, provided by the SWE web services of the hydro-meteorological stations, and provides tools for data visualization and data access. The visualization tool was implemented by using OpenSource tools like GeoExt/ExtJS and OpenLayers. Using the application the user can query the relevant sensor data, select parameter and time period, visualize and finally download the data. [1] http://www.cawa-project.net

  14. A comprehensive surface-groundwater flow model

    NASA Astrophysics Data System (ADS)

    Arnold, Jeffrey G.; Allen, Peter M.; Bernhardt, Gilbert

    1993-02-01

    In this study, a simple groundwater flow and height model was added to an existing basin-scale surface water model. The linked model is: (1) watershed scale, allowing the basin to be subdivided; (2) designed to accept readily available inputs to allow general use over large regions; (3) continuous in time to allow simulation of land management, including such factors as climate and vegetation changes, pond and reservoir management, groundwater withdrawals, and stream and reservoir withdrawals. The model is described, and is validated on a 471 km 2 watershed near Waco, Texas. This linked model should provide a comprehensive tool for water resource managers in development and planning.

  15. Simulating and mapping the spatial and seasonal effects of future climate and land -use changes on ecosystem services in the Yanhe watershed, China.

    PubMed

    Chen, Dengshuai; Li, Jing; Zhou, Zixiang; Liu, Yan; Li, Ting; Liu, Jingya

    2018-01-01

    Effective information about ecosystem services is essential to help optimize and prioritize activities that support conservation planning in the face of land use and climate changes. This study shows an approach that integrates several dissimilar models for assessing water-related ecosystem services to predict values in 2050 under three land use scenarios in the Yanhe watershed. The simulated output variables pertaining to water yield and sediment yield were used as indicators for two ecosystem-regulating services, i.e., water flow regulation and erosion regulation, which were quantified using the soil and water assessment tool (SWAT) model. The model results were translated into a relative ecosystem service valuation scale, which facilitated the analysis of spatial and seasonal changes and served as the basis for the applied mapping approach. The simulated results indicate that higher water-related regulation services were concentrated in the middle and lower reaches of rivers with high water yield and low sediment erosion. The highest water flow regulation services occurred in summer; nevertheless, this was when erosion regulation services were the lowest compared to other periods in 2050. A comparison of the three land use scenarios showed differences in the water-related regulation services. Scenario 1, with high forest coverage, had the highest erosion regulation services, but the water flow regulation services were the lowest. Scenario 3 showed the reverse pattern. Scenario 2 had intermediate water flow regulation and erosion regulation. Increasing vegetation cover in the watershed is conducive to controlling water and soil erosion but could lead to a decline in available water resources. Spatial mapping is a powerful tool for displaying the spatiotemporal differences in the water-related regulation services delivered by ecosystems and can help decision makers optimize land use in the future, with the goal of maximizing the benefits offered by ecological services in the Yanhe watershed.

  16. Water Availability in Indus River at the Upper Indus Basin under Different Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2015-04-01

    The last decade of the 20th century and the first decade of the 21st century showed that climate change or global warming is happening and the latter one is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C on May 26, 2010. The changing climate has impact on various areas including agriculture, water, health, among others. There are two main forces which have central role in changing climate: one is natural variability and the other one is human evoked changes, increasing the density of green house gases. The elements in the bunch of Energy-Food-Water are interlinked with one another and among them water plays a crucial role for the existence of the other two parts. This nexus is the central environmental issue around the globe generally, and is of particular importance in the developing countries. The study evaluated the importance and the availability of water in Indus River under different emission scenarios. Four emission scenarios are included, that is, the A2, B2, RCP4.5 and RCP8.5. One way coupling of regional climate models (RCMs) and Hydrological model have been implemented in this study. The PRECIS (Providing Regional Climate for Impact Studies) and CCAM (Conformal-Cubic Atmospheric Model) climate models and UBCWM (University of British Columbia Watershed Model) hydrological model are used for this purpose. It is observed that Indus River contributes 80 % of the hydro-power generation and contributes 44 % to available water annually in Pakistan. It is further investigated whether sufficient water will be available in the Indus River under climate change scenarios. Toward this goal, Tarbela Reservoir is used as a measurement tool using the parameters of the reservoir like maximum operating storage, dead level storage, discharge capacity of tunnels and spillways. The results of this study are extremely important for the economy of Pakistan in various key areas like agriculture, energy, industries and ecosystem. The analyses show that there will be much more water available in future under the considered emission scenarios but in some months there will be scarcity of water. However, by proper management and optimum utilization of the available water, the scarcity of water can be minimized considerably. Finally, a meta-analysis has been performed to present a combined picture of all scenarios considered in this study. One way to avoid water scarcity is to upgrade and install new reservoirs and water storage capacities to reserve the extra water during high river flow in Indus River, which will then be utilized during low river flow. __________________________________________________________________________________ KEY WORDS: Agriculture, Climate Change, Hydro-power, Indus River, Tarbela Reservoir, Upper Indus Basin, Meta-analysis, Hydrological model.

  17. North American water availability under stress and duress: building understanding from simulations, observations and data products

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  18. Programmatic Perspectives on Using `Rapid Prototyping Capability' for Water Management Applications Using NASA Products

    NASA Astrophysics Data System (ADS)

    Toll, D.; Friedl, L.; Entin, J.; Engman, E.

    2006-12-01

    The NASA Water Management Program addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools (DSTs) for problem solving. The goal of the NASA Rapid Prototyping Capability (RPC) is to speed the evaluation of these NASA products and technologies to improve current and future DSTs by reducing the time to access, configure, and assess the effectiveness of NASA products and technologies. The NASA Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. Currently, the NASA Water Management Program oversees eight application projects. However, water management is a very broad descriptor of a much larger number of activities that are carried out to insure safe and plentiful water supply for humans, industry and agriculture, promote environmental stewardship, and mitigate disaster such as floods and droughts. The goal of this presentation is to summarize how the RPC may further enhance the effectiveness of using NASA products for water management applications.

  19. Sparse Bayesian learning machine for real-time management of reservoir releases

    NASA Astrophysics Data System (ADS)

    Khalil, Abedalrazq; McKee, Mac; Kemblowski, Mariush; Asefa, Tirusew

    2005-11-01

    Water scarcity and uncertainties in forecasting future water availabilities present serious problems for basin-scale water management. These problems create a need for intelligent prediction models that learn and adapt to their environment in order to provide water managers with decision-relevant information related to the operation of river systems. This manuscript presents examples of state-of-the-art techniques for forecasting that combine excellent generalization properties and sparse representation within a Bayesian paradigm. The techniques are demonstrated as decision tools to enhance real-time water management. A relevance vector machine, which is a probabilistic model, has been used in an online fashion to provide confident forecasts given knowledge of some state and exogenous conditions. In practical applications, online algorithms should recognize changes in the input space and account for drift in system behavior. Support vectors machines lend themselves particularly well to the detection of drift and hence to the initiation of adaptation in response to a recognized shift in system structure. The resulting model will normally have a structure and parameterization that suits the information content of the available data. The utility and practicality of this proposed approach have been demonstrated with an application in a real case study involving real-time operation of a reservoir in a river basin in southern Utah.

  20. Effects of ionic strength on the antimicrobial photodynamic efficiency of methylene blue.

    PubMed

    Núñez, Silvia Cristina; Garcez, Aguinaldo Silva; Kato, Ilka Tiemy; Yoshimura, Tania Mateus; Gomes, Laércio; Baptista, Maurício Silva; Ribeiro, Martha Simões

    2014-03-01

    Antimicrobial photodynamic therapy (APDT) may become a useful clinical tool to treat microbial infections, and methylene blue (MB) is a well-known photosensitizer constantly employed in APDT studies, and although MB presents good efficiency in antimicrobial studies, some of the MB photochemical characteristics still have to be evaluated in terms of APDT. This work aimed to evaluate the role of MB solvent's ionic strength regarding dimerization, photochemistry, and photodynamic antimicrobial efficiency. Microbiological survival fraction assays on Escherichia coli were employed to verify the solution's influence on MB antimicrobial activity. MB was evaluated in deionized water and 0.9% saline solution through optical absorption spectroscopy; the solutions were also analysed via dissolved oxygen availability and reactive oxygen species (ROS) production. Our results show that bacterial reduction was increased in deionized water. Also we demonstrated that saline solution presents less oxygen availability than water, the dimer/monomer ratio for MB in saline is smaller than in water and MB presented a higher production of ROS in water than in 0.9% saline. Together, our results indicate the importance of the ionic strength in the photodynamic effectiveness and point out that this variable must be taken into account to design antimicrobial studies and to evaluate similar studies that might present conflicting results.

  1. An Evaluation Tool for CONUS-Scale Estimates of Components of the Water Balance

    NASA Astrophysics Data System (ADS)

    Saxe, S.; Hay, L.; Farmer, W. H.; Markstrom, S. L.; Kiang, J. E.

    2016-12-01

    Numerous research groups are independently developing data products to represent various components of the water balance (e.g. runoff, evapotranspiration, recharge, snow water equivalent, soil moisture, and climate) at the scale of the conterminous United States. These data products are derived from a range of sources, including direct measurement, remotely-sensed measurement, and statistical and deterministic model simulations. An evaluation tool is needed to compare these data products and the components of the water balance they contain in order to identify the gaps in the understanding and representation of continental-scale hydrologic processes. An ideal tool will be an objective, universally agreed upon, framework to address questions related to closing the water balance. This type of generic, model agnostic evaluation tool would facilitate collaboration amongst different hydrologic research groups and improve modeling capabilities with respect to continental-scale water resources. By adopting a comprehensive framework to consider hydrologic modeling in the context of a complete water balance, it is possible to identify weaknesses in process modeling, data product representation and regional hydrologic variation. As part of its National Water Census initiative, the U.S. Geological survey is facilitating this dialogue to developing prototype evaluation tools.

  2. REACH-ER: a tool to evaluate river basin remediation measures for contaminants at the catchment scale

    NASA Astrophysics Data System (ADS)

    van Griensven, Ann; Haest, Pieter Jan; Broekx, Steven; Seuntjens, Piet; Campling, Paul; Ducos, Geraldine; Blaha, Ludek; Slobodnik, Jaroslav

    2010-05-01

    The European Union (EU) adopted the Water Framework Directive (WFD) in 2000 ensuring that all aquatic ecosystems meet ‘good status' by 2015. However, it is a major challenge for river basin managers to meet this requirement in river basins with a high population density as well as intensive agricultural and industrial activities. The EU financed AQUAREHAB project (FP7) specifically examines the ecological and economic impact of innovative rehabilitation technologies for multi-pressured degraded water bodies. For this purpose, a generic collaborative management tool ‘REACH-ER' is being developed that can be used by stakeholders, citizens and water managers to evaluate the ecological and economical effects of different remedial actions on waterbodies. The tool is built using databases from large scale models simulating the hydrological dynamics of the river basing and sub-basins, the costs of the measures and the effectiveness of the measures in terms of ecological impact. Knowledge rules are used to describe the relationships between these data in order to compute the flux concentrations or to compute the effectiveness of measures. The management tool specifically addresses nitrate pollution and pollution by organic micropollutants. Detailed models are also used to predict the effectiveness of site remedial technologies using readily available global data. Rules describing ecological impacts are derived from ecotoxicological data for (mixtures of) specific contaminants (msPAF) and ecological indices relating effects to the presence of certain contaminants. Rules describing the cost-effectiveness of measures are derived from linear programming models identifying the least-cost combination of abatement measures to satisfy multi-pollutant reduction targets and from multi-criteria analysis.

  3. Community-Driven Support in the Hydrologic Sciences through Data, Education and Outreach

    NASA Astrophysics Data System (ADS)

    Clark, E.

    2015-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is a non-profit funded by the National Science Foundation to support water science research and education. As outlined in the CUAHSI Education and Outreach Strategy, our objectives are: 1) helping the member institutions communicate water science; 2) cross-disciplinary water education; 3) dissemination of research; 4) place-based water education using data services; and 5) broadening participation. Through the CUAHSI Water Data Center, online tools and resources are available to discover, download, and analyze multiple time-series water datasets across various parameters. CUAHSI supports novel graduate student research through the Pathfinder Fellowship program which has enhanced the interdisciplinary breadth of early-career research. Public outreach through the Let's Talk About Water film symposium and cyberseminar programs have proven effective in distributing research, leading to more recent development of virtual training workshops. By refining and building upon CUAHSI's existing programs, new training opportunities, collaborative projects, and community-building activities for the hydrologic sciences have come to fruition, such as the recent National Flood Interoperability Experiment with the NOAA's National Water Center.

  4. Community-Driven Support in the Hydrologic Sciences through Data, Education and Outreach

    NASA Astrophysics Data System (ADS)

    Cox, P. R.

    2014-12-01

    The Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) is a non-profit funded by the National Science Foundation to support water science research and education. As outlined in the CUAHSI Education and Outreach Strategy, our objectives are: 1) helping the member institutions communicate water science; 2) cross-disciplinary water education; 3) dissemination of research; 4) place-based water education using data services; and 5) broadening participation. Through the CUAHSI Water Data Center, online tools and resources are available to discover, download, and analyze multiple time-series water datasets across various parameters. CUAHSI supports novel graduate student research through the Pathfinder Fellowship program which has enhanced the interdisciplinary breadth of early-career research. Public outreach through the Let's Talk About Water film symposium and cyberseminar programs have proven effective in distributing research, leading to more recent development of virtual training workshops. By refining and building upon CUAHSI's existing programs, new training opportunities, collaborative projects, and community-building activities for the hydrologic sciences have come to fruition, such as the recent National Flood Interoperability Experiment with the NOAA's National Water Center.

  5. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    USGS Publications Warehouse

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables automatic delineation of a simulation basin of any size (area) and having any level of stream-network complexity. WATER then automatically identifies the presence of sinkholes catchments within the simulation basin boundaries; extracts and compiles the necessary climatic, topographic, and basin characteristics datasets; and runs the SDP-TOPMODEL approach to estimate daily mean discharges (streamflow).

  6. Drought Assessment over the Four Major River Basins of India using GRACE-based estimates of Water Availability

    NASA Astrophysics Data System (ADS)

    Sinha, D.; Syed, T. H.

    2017-12-01

    Drought is a natural disaster that has mutilating consequences over agriculture, ecosystems, economy and the society. Over the past few decades, drought related catastrophe, associated with global climate change, has escalated all across the world. Identification and analysis of drought utilizing individual hydrologic variables may be inadequate owing to the multitude of factors that are associated with the phenomenon. Therefore it is crucial to develop techniques that warrant comprehensive monitoring and assessment of droughts. In this study we propose a novel drought index (Water Availability Index (WAI)) that comprehends all the aspects of meteorologic, agricultural and hydrologic droughts. The proposed framework underscores the conceptualization and utilization of water availability, quantified as an integrated estimate of land water storage, using Gravity Recovery and Climate Experiment (GRACE) observations, and precipitation. The methodology is employed over four major river basins of India (i.e. Ganga, Krishna, Godavari and Mahanadi) for a period of 155 months (April 2002 to February 2015). Results exhibit the potential of the propounded index (WAI) to recognize drought events and impart insightful quantification of drought severity. WAI also demonstrates enhanced outcomes in comparison to other commonly used drought indices like PDSI, SPI, SPEI and SRI. In general there are at least three major drought periods with intensities ranging from moderate to severe in almost all river basins. The longest drought period, extending for 27 months, from September 2008 to November 2010, is observed in the Mahanadi basin. Results from this study confirm the potential of this technique as an effective tool for the characterization of drought at large spatial scales, which will only excel with better quantification and extended availability of terrestrial water storage observations from the GRACE-Follow On mission.

  7. Time-Of-Travel Tool Protects Drinking Water

    EPA Pesticide Factsheets

    The Lower Susquehanna Source Water Protection (SWP) Partnership utilizes the Incident Command Tool for Drinking Water Protection (ICWater) to support the Pennsylvania Department of Environmental Protection (PADEP) with real-time spill tracking information.

  8. Water Network Tool for Resilience (WNTR) User Manual

    EPA Science Inventory

    The Water Network Tool for Resilience (WNTR) is a new Python package designed to simulate and analyze resilience of water distribution networks to a variety of disaster scenarios. WNTR can help water utilities to explore the capacity of their systems to handle disasters and gui...

  9. A Comparison of Predictive Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected Traditional Chemical Warfare Agents and Simulants II: COSMO RS and COSMOTherm

    DTIC Science & Technology

    2017-04-01

    A COMPARISON OF PREDICTIVE THERMO AND WATER SOLVATION PROPERTY PREDICTION TOOLS AND EXPERIMENTAL DATA FOR...4. TITLE AND SUBTITLE A Comparison of Predictive Thermo and Water Solvation Property Prediction Tools and Experimental Data for Selected...1  2.  EXPERIMENTAL PROCEDURE

  10. Reconstruction of an aquatic food web: Viking Haithabu vs. Medieval Schleswig.

    PubMed

    von Steinsdorff, Katja; Grupe, Gisela

    2006-09-01

    In the last two decades, the analysis of stable isotopes of carbonate and collagen from archaeological bone finds became a useful tool in the reconstruction of ancient food webs. Nevertheless there is still only little information available about aquatic food webs, in particular concerning brackish water ecosystems. The Schlei Fjord in Schleswig-Holstein, Germany, is such an ecosystem and was investigated to determine stable isotopic values for nitrogen, carbon and oxygen from bone collagen and carbonate in archaeological bone finds. Wild birds, mammals and fish bones from the Viking settlement Haithabu and the medieval town of Schleswig have been analyzed in this study to determine stable isotope values for marine and limnic species and to investigate possible isotopic gradients for mixing fresh water and salt water ecosystems.

  11. Remote sensing: Snow monitoring tool for today and tomorrow

    NASA Technical Reports Server (NTRS)

    Rango, A.

    1977-01-01

    Various types of remote sensing are now available or will be in the future for snowpack monitoring. Aircraft reconnaissance is now used in a conventional manner by various water resources agencies to obtain information on snowlines, depth, and melting of the snowpack for forecasting purposes. The use of earth resources satellites for mapping snowcovered area, snowlines, and changes in snowcover during the spring has increased during the last five years. Gamma ray aircraft flights, although confined to an extremely low altitude, provide a means for obtaining valuable information on snow water equivalent. The most recently developed remote sensing technology for snow, namely, microwave monitoring, has provided initial results that may eventually allow us to infer snow water equivalent or depth, snow wetness, and the hydrologic condition of the underlying soil.

  12. Visual Inspection of Water Leakage from Ground Penetrating Radar Radargram

    NASA Astrophysics Data System (ADS)

    Halimshah, N. N.; Yusup, A.; Mat Amin, Z.; Ghazalli, M. D.

    2015-10-01

    Water loss in town and suburban is currently a significant issue which reflect the performance of water supply management in Malaysia. Consequently, water supply distribution system has to be maintained in order to prevent shortage of water supply in an area. Various techniques for detecting a mains water leaks are available but mostly are time-consuming, disruptive and expensive. In this paper, the potential of Ground Penetrating Radar (GPR) as a non-destructive method to correctly and efficiently detect mains water leaks has been examined. Several experiments were designed and conducted to prove that GPR can be used as tool for water leakage detection. These include instrument validation test and soil compaction test to clarify the maximum dry density (MDD) of soil and simulation studies on water leakage at a test bed consisting of PVC pipe burying in sand to a depth of 40 cm. Data from GPR detection are processed using the Reflex 2D software. Identification of water leakage was visually inspected from the anomalies in the radargram based on GPR reflection coefficients. The results have ascertained the capability and effectiveness of the GPR in detecting water leakage which could help avoiding difficulties with other leak detection methods.

  13. Cryptosporidium species in Australian wildlife and domestic animals.

    PubMed

    Ryan, Una; Power, Michelle

    2012-11-01

    Cryptosporidium is an important enteric parasite that is transmitted via the fecal-oral route, water and food. Humans, wildlife and domestic livestock all potentially contribute Cryptosporidium to surface waters. Most species of Cryptosporidium are morphologically indistinguishable and can only be identified using molecular tools. Over 24 species have been identified and of these, 7 Cryptosporidium species/genotypes are responsible for most human cryptosporidiosis cases. In Australia, relatively few genotyping studies have been conducted. Six Cryptosporidium species (C. hominis, C. parvum, C. meleagridis, C. fayeri, C. andersoni and C. bovis) have been identified in humans in Australia. However, little is known about the contribution of animal hosts to human pathogenic strains of Cryptosporidium in drinking water catchments. In this review, we focus on the available genotyping data for native, feral and domestic animals inhabiting drinking water catchments in Australia to provide an improved understanding of the public health implications and to identify key research gaps.

  14. Sampling and analysis for radon-222 dissolved in ground water and surface water

    USGS Publications Warehouse

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  15. Development of a chemical source apportionment decision support framework for lake catchment management.

    PubMed

    Comber, Sean D W; Smith, Russell; Daldorph, Peter; Gardner, Michael J; Constantino, Carlos; Ellor, Brian

    2018-05-01

    Increasing pressures on natural resources has led to the adoption of water quality standards to protect ecological and human health. Lakes and reservoirs are particularly vulnerable to pressure on water quality owing to long residence times compared with rivers. This has raised the question of how to determine and to quantify the sources of priority chemicals (e.g. nutrients, persistent organic pollutants and metals) so that suitable measures can be taken to address failures to comply with regulatory standards. Contaminants enter lakes waters from a range of diffuse and point sources. Decision support tools and models are essential to assess the relative magnitudes of these sources and to estimate the impacts of any programmes of measures. This paper describes the development and testing of the Source Apportionment Geographical Information System (SAGIS) for future management of 763 lakes in England and Wales. The model uses readily available national data sets to estimate contributions of a number of key chemicals including nutrients (nitrogen and phosphorus), metals (copper, zinc, cadmium, lead, mercury and nickel) and organic chemicals (Polynuclear Aromatic Hydrocarbons) from multiple sector sources. Lake-specific sources are included (groundbait from angling and bird faeces) and hydrology associated with pumped inputs and abstraction. Validation data confirms the efficacy of the model to successfully predicted seasonal patterns of all types of contaminant concentrations under a number of hydrological scenarios. Such a tool has not been available on a national scale previously for such a wide range of chemicals and is currently being used to assist with future river basin planning. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Recent social and biogeophysical changes in the Ganges-Brahmaputra-Meghna, Mekong, and Amazon deltas as inputs into evolutionary policy-making.

    NASA Astrophysics Data System (ADS)

    de Araujo Barbosa, C. C.; Hossain, S.; Szabo, S.; Matthews, Z.; Heard, S.; Dearing, J.

    2014-12-01

    Policy-making in social-ecological systems increasingly looks to iterative, evolutionary approaches that can address the inherent complexity of interactions between human wellbeing, agricultural and aquacultural production, and ecosystem services. Here we show how an analysis of available time-series in delta regions over past decades can provide important insight into the social-ecological system dynamics that result from the complexity. The presentation summarises the recent changes for major elements of each social-ecological system, for example demography, economy, health, climate, food, and water. Time-series data from official statistics, monitoring programmes and sequential satellite imagery are analysed to define the range of trends, the presence of change points, slow and fast variables, and the significant drivers of change. For example, in the Bangladesh delta zone, increasing gross domestic product and per capita income levels since the 1980s mirror rising levels of food and inland fish production. In contrast, non-food ecosystem services such as water availability, water quality and land stability have deteriorated. As a result, poverty alleviation is associated with environmental degradation. Trends in indicators of human wellbeing and ecosystem services point to widespread non-stationary dynamics governed by slowly changing variables with increased probability of systemic threshold changes/tipping points in the near future. We conclude by examining how the findings could feed into new management tools, such as system dynamic models and assessments of safe operating spaces. Such tools have the potential to help create policies that deliver alternative and sustainable paths for land management while accommodating social and environmental change.

  17. Screening tool to evaluate the vulnerability of down-gradient receptors to groundwater contaminants from uncapped landfills

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Ronald J.; Reilly, Timothy J.; Lopez, Anthony

    2015-09-15

    Highlights: • A spreadsheet-based risk screening tool for groundwater affected by landfills is presented. • Domenico solute transport equations are used to estimate downgradient contaminant concentrations. • Landfills are categorized as presenting high, moderate or low risks. • Analysis of parameter sensitivity and examples of the method’s application are given. • The method has value to regulators and those considering redeveloping closed landfills. - Abstract: A screening tool for quantifying levels of concern for contaminants detected in monitoring wells on or near landfills to down-gradient receptors (streams, wetlands and residential lots) was developed and evaluated. The tool uses Quick Domenicomore » Multi-scenario (QDM), a spreadsheet implementation of Domenico-based solute transport, to estimate concentrations of contaminants reaching receptors under steady-state conditions from a constant-strength source. Unlike most other available Domenico-based model applications, QDM calculates the time for down-gradient contaminant concentrations to approach steady state and appropriate dispersivity values, and allows for up to fifty simulations on a single spreadsheet. Sensitivity of QDM solutions to critical model parameters was quantified. The screening tool uses QDM results to categorize landfills as having high, moderate and low levels of concern, based on contaminant concentrations reaching receptors relative to regulatory concentrations. The application of this tool was demonstrated by assessing levels of concern (as defined by the New Jersey Pinelands Commission) for thirty closed, uncapped landfills in the New Jersey Pinelands National Reserve, using historic water-quality data from monitoring wells on and near landfills and hydraulic parameters from regional flow models. Twelve of these landfills are categorized as having high levels of concern, indicating a need for further assessment. This tool is not a replacement for conventional numerically-based transport model or other available Domenico-based applications, but is suitable for quickly assessing the level of concern posed by a landfill or other contaminant point source before expensive and lengthy monitoring or remediation measures are taken. In addition to quantifying the level of concern using historic groundwater-monitoring data, the tool allows for archiving model scenarios and adding refinements as new data become available.« less

  18. A web tool for STORET/WQX water quality data retrieval and Best Management Practice scenario suggestion.

    PubMed

    Park, Youn Shik; Engel, Bernie A; Kim, Jonggun; Theller, Larry; Chaubey, Indrajeet; Merwade, Venkatesh; Lim, Kyoung Jae

    2015-03-01

    Total Maximum Daily Load is a water quality standard to regulate water quality of streams, rivers and lakes. A wide range of approaches are used currently to develop TMDLs for impaired streams and rivers. Flow and load duration curves (FDC and LDC) have been used in many states to evaluate the relationship between flow and pollutant loading along with other models and approaches. A web-based LDC Tool was developed to facilitate development of FDC and LDC as well as to support other hydrologic analyses. In this study, the FDC and LDC tool was enhanced to allow collection of water quality data via the web and to assist in establishing cost-effective Best Management Practice (BMP) implementations. The enhanced web-based tool provides use of water quality data not only from the US Geological Survey but also from the Water Quality Portal for the U.S. via web access. Moreover, the web-based tool identifies required pollutant reductions to meet standard loads and suggests a BMP scenario based on ability of BMPs to reduce pollutant loads, BMP establishment and maintenance costs. In the study, flow and water quality data were collected via web access to develop LDC and to identify the required reduction. The suggested BMP scenario from the web-based tool was evaluated using the EPA Spreadsheet Tool for the Estimation of Pollutant Load model to attain the required pollutant reduction at least cost. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Establishment of the TREECS Platform: A Survey of Existing Tools, Portals, and Frameworks

    DTIC Science & Technology

    2009-12-01

    advanced analysis tiers may require the user to download analysis components that will need to be run on his/her system. TREECS initially focuses on...location, water, economy, quality of life , and infrastructure (Jenicek and Goran 2005). Potential indicators for measuring regional resources within...County Quality of Life Sustainability QL1 Crime rate National Archive of Criminal Justice Data (NACJD) County QL2 Housing availability US Census

  20. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    DTIC Science & Technology

    2015-09-30

    seas within and in the waters adjoining MIZs, using a conservative, multiple wave scattering approach in a medium with random geometrical properties...relating to wave-ice interactions have been collected since the MIZEX campaign of the 1980s, aside from a small number of ad hoc field experiments. This...from the better technology and analysis tools now available, including those related to the field experiments supported by an intensive remote sensing

  1. Master Middle Ware: A Tool to Integrate Water Resources and Fish Population Dynamics Models

    NASA Astrophysics Data System (ADS)

    Yi, S.; Sandoval Solis, S.; Thompson, L. C.; Kilduff, D. P.

    2017-12-01

    Linking models that investigate separate components of ecosystem processes has the potential to unify messages regarding management decisions by evaluating potential trade-offs in a cohesive framework. This project aimed to improve the ability of riparian resource managers to forecast future water availability conditions and resultant fish habitat suitability, in order to better inform their management decisions. To accomplish this goal, we developed a middleware tool that is capable of linking and overseeing the operations of two existing models, a water resource planning tool Water Evaluation and Planning (WEAP) model and a habitat-based fish population dynamics model (WEAPhish). First, we designed the Master Middle Ware (MMW) software in Visual Basic for Application® in one Excel® file that provided a familiar framework for both data input and output Second, MMW was used to link and jointly operate WEAP and WEAPhish, using Visual Basic Application (VBA) macros to implement system level calls to run the models. To demonstrate the utility of this approach, hydrological, biological, and middleware model components were developed for the Butte Creek basin. This tributary of the Sacramento River, California is managed for both hydropower and the persistence of a threatened population of spring-run Chinook salmon (Oncorhynchus tschawytscha). While we have demonstrated the use of MMW for a particular watershed and fish population, MMW can be customized for use with different rivers and fish populations, assuming basic data requirements are met. This model integration improves on ad hoc linkages for managing data transfer between software programs by providing a consistent, user-friendly, and familiar interface across different model implementations. Furthermore, the data-viewing capabilities of MMW facilitate the rapid interpretation of model results by hydrologists, fisheries biologists, and resource managers, in order to accelerate learning and management decision making.

  2. A Satellite View of Global Water and Energy Cycling

    NASA Astrophysics Data System (ADS)

    Houser, P. R.

    2012-12-01

    The global water cycle describes liquid, solid and vapor water dynamics as it moves through the atmosphere, oceans and land. Life exists because of water, and civilization depends on adapting to the constraints imposed by water availability. The carbon, water and energy cycles are strongly interdependent - energy is moved through evaporation and condensation, and photosynthesis is closely related to transpiration. There are significant knowledge gaps about water storage, fluxes and dynamics - we currently do not really know how much water is stored in snowpacks, groundwater or reservoirs. The view from space offers a vision for water science advancement. This vision includes observation, understanding, and prediction advancements that will improve water management and to inform water-related infrastructure that planning to provide for human needs and to protect the natural environment. The water cycle science challenge is to deploy a series of coordinated earth observation satellites, and to integrate in situ and space-borne observations to quantify the key water-cycle state variables and fluxes. The accompanying societal challenge is to integrate this information along with water cycle physics, and ecosystems and societal considerations as a basis for enlightened water resource management and to protect life and property from effects of water cycle extremes. Better regional to global scale water-cycle observations and predictions need to be readily available to reduce loss of life and property caused by water-related hazards. To this end, the NASA Energy and Water cycle Study (NEWS) has been documenting the satellite view of the water cycle with a goal of enabling improved, observationally based, predictions of water and energy cycle consequences of Earth system variability and change. NEWS has fostered broad interdisciplinary collaborations to study experimental and operational satellite observations and has developed analysis tools for characterizing air/sea fluxes, ocean circulation, atmospheric states, radiative balances, land surface states, sub-surface hydrology, snow and ice. This presentation will feature an overview of recent progress towards this challenge, and lay out the plan for coordination with complementary international efforts.

  3. Agroclimate.Org: Tools and Information for a Climate Resilient Agriculture in the Southeast USA

    NASA Astrophysics Data System (ADS)

    Fraisse, C.

    2014-12-01

    AgroClimate (http://agroclimate.org) is a web-based system developed to help the agricultural industry in the southeastern USA reduce risks associated with climate variability and change. It includes climate related information and dynamic application tools that interact with a climate and crop database system. Information available includes climate monitoring and forecasts combined with information about crop management practices that help increase the resiliency of the agricultural industry in the region. Recently we have included smartphone apps in the AgroClimate suite of tools, including irrigation management and crop disease alert systems. Decision support tools available in AgroClimate include: (a) Climate risk: expected (probabilistic) and historical climate information and freeze risk; (b) Crop yield risk: expected yield based on soil type, planting date, and basic management practices for selected commodities and historical county yield databases; (c) Crop diseases: disease risk monitoring and forecasting for strawberry and citrus; (d) Crop development: monitoring and forecasting of growing degree-days and chill accumulation; (e) Drought: monitoring and forecasting of selected drought indices, (f) Footprints: Carbon and water footprint calculators. The system also provides background information about the main drivers of climate variability and basic information about climate change in the Southeast USA. AgroClimate has been widely used as an educational tool by the Cooperative Extension Services in the region and also by producers. It is now being replicated internationally with version implemented in Mozambique and Paraguay.

  4. Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Moorhead, J.; Brauer, D. K.

    2017-12-01

    Evapotranspiration (ET) is a major component of the hydrologic cycle. ET data are used for a variety of water management and research purposes such as irrigation scheduling, water and crop modeling, streamflow, water availability, and many more. Remote sensing products have been widely used to create spatially representative ET data sets which provide important information from field to regional scales. As UAV capabilities increase, remote sensing use is likely to also increase. For that purpose, scientists at the USDA-ARS research laboratory in Bushland, TX developed the Bushland Evapotranspiration and Agricultural Remote Sensing System (BEARS) software. The BEARS software is a Java based software that allows users to process remote sensing data to generate ET outputs using predefined models, or enter custom equations and models. The capability to define new equations and build new models expands the applicability of the BEARS software beyond ET mapping to any remote sensing application. The software also includes an image viewing tool that allows users to visualize outputs, as well as draw an area of interest using various shapes. This software is freely available from the USDA-ARS Conservation and Production Research Laboratory website.

  5. Joint Ecosystem Modeling (JEM) ecological model documentation volume 1: Estuarine prey fish biomass availability v1.0.0

    USGS Publications Warehouse

    Romañach, Stephanie S.; Conzelmann, Craig; Daugherty, Adam; Lorenz, Jerome L.; Hunnicutt, Christina; Mazzotti, Frank J.

    2011-01-01

    Estuarine fish serve as an important prey base in the Greater Everglades ecosystem for key fauna such as wading birds, crocodiles, alligators, and piscivorous fishes. Human-made changes to freshwater flow across the Greater Everglades have resulted in less freshwater flow into the fringing estuaries and coasts. These changes in freshwater input have altered salinity patterns and negatively affected primary production of the estuarine fish prey base. Planned restoration projects should affect salinity and water depth both spatially and temporally and result in an increase in appropriate water conditions in areas occupied by estuarine fish. To assist in restoration planning, an ecological model of estuarine prey fish biomass availability was developed as an evaluation tool to aid in the determination of acceptable ranges of salinity and water depth. Comparisons of model output to field data indicate that the model accurately predicts prey biomass in the estuarine regions of the model domain. This model can be used to compare alternative restoration plans and select those that provide suitable conditions.

  6. Adding the human dimension to drought: an example from Chile

    NASA Astrophysics Data System (ADS)

    Rangecroft, Sally; Van Loon, Anne; Maureira, Héctor; Rojas, Pablo; Alejandro Gutiérrez Valdés, Sergio; Verbist, Koen

    2016-04-01

    Drought and water scarcity are important hazards and can lead to severe socio-economic impacts in many regions of the world. Given the interlinked interactions and feedbacks of hydrological droughts and their impacts and management, we need tools to evaluate these complexities and effects on the availability of water resources. Here we use a real-world case study of the Huasco basin (Northern Chile) in which we quantify the influence of human activities on hydrological drought signals. In this arid region, Andean snowmelt provides water essential for users, with agriculture acting as the main water consumer (85% of total). An increasing water demand from different water sectors (agriculture, mining, and domestic water usage) has increased pressure on available water and its management. Consequently, the Santa Juana dam was built by 1995 to increase irrigation security for downstream users, and recent management and restrictions have been established with the objective to limit impacts of hydrological droughts across the basin. The feedbacks between water availability and water management are explored for this water stressed region in Chile. Hydro-meteorological (e.g. precipitation, temperature, streamflow, reservoir levels) variables have been analysed to assess trends and drought patterns. Data over the past three decades has indicated a decrease in surface water supply, with the basin entering a situation of water scarcity during the recent multiyear drought (2007 - to-date), partly caused by meteorological drought and partly by abstraction. During this period, water supply failed to meet the demands of water users, resulting in the implementation of water restrictions. As well as the necessary continuous hydro-meteorological data, here we used information on human water users and scenario modeling, allowing for the analysis and quantification of feedbacks. This work highlights the importance of local knowledge, especially in understanding water laws, rights, regulations and therefore interpretation of the data and results. We will repeat the analysis done in Chile in a diverse series of case studies across the world to reflect different natural and human influences on the water cycle. This will enable an increased understanding of our influence on water resources and the feedbacks involved, which may be both positive and negative. Ultimately, this research will develop a methodology for identifying and quantifying human activities and use this information in combination with water management modeling and forecasting for effective drought early warning and risk management.

  7. Integrating a distributed hydrological model and SEEA-Water for improving water account and water allocation management under a climate change context.

    NASA Astrophysics Data System (ADS)

    Jauch, Eduardo; Almeida, Carina; Simionesei, Lucian; Ramos, Tiago; Neves, Ramiro

    2015-04-01

    The crescent demand and situations of water scarcity and droughts are a difficult problem to solve by water managers, with big repercussions in the entire society. The complexity of this question is increased by trans-boundary river issues and the environmental impacts of the usual adopted solutions to store water, like reservoirs. To be able to answer to the society requirements regarding water allocation in a sustainable way, the managers must have a complete and clear picture of the present situation, as well as being able to understand the changes in the water dynamics both in the short and long time period. One of the available tools for the managers is the System of Environmental-Economic Accounts for Water (SEEA-Water), a subsystem of SEEA with focus on water accounts, developed by the United Nations Statistical Division (UNSD) in collaboration with the London Group on Environmental Accounting, This system provides, between other things, with a set of tables and accounts for water and water related emissions, organizing statistical data making possible the derivation of indicators that can be used to assess the relations between economy and environment. One of the main issues with the SEEA-Water framework seems to be the requirement of large amounts of data, including field measurements of water availability in rivers/lakes/reservoirs, soil and groundwater, as also precipitation, irrigation and other water sources and uses. While this is an incentive to collecting and using data, it diminishes the usefulness of the system on countries where this data is not yet available or is incomplete, as it can lead to a poor understanding of the water availability and uses. Distributed hydrological models can be used to fill missing data required by the SEEA-Water framework. They also make it easier to assess different scenarios (usually soil use, water demand and climate changes) for a better planning of water allocation. In the context of the DURERO project (www.durero.eu), the hydrological model MOHID LAND (www.mohid.com) was used to model the Douro river basin providing information to the SEEA-Water system for the Portuguese side of the basin. The model was also used to model the Tâmega river watershed, a sub-basin of the Douro basin, with different climate change scenarios, using the results to build the SEEA-Water accounts for this pilot river basin. The aim of the present work was to understand the potential of the integration of a distributed hydrological model with the SEEA-Water framework and how this can help improving water allocation management and water account under a climate change context.

  8. Demonstrating the Value of Fine-resolution Optical Data for Minimising Aliasing Impacts on Biogeochemical Models of Surface Waters

    NASA Astrophysics Data System (ADS)

    Chappell, N. A.; Jones, T.; Young, P.; Krishnaswamy, J.

    2015-12-01

    There is increasing awareness that under-sampling may have resulted in the omission of important physicochemical information present in water quality signatures of surface waters - thereby affecting interpretation of biogeochemical processes. For dissolved organic carbon (DOC) and nitrogen this under-sampling can now be avoided using UV-visible spectroscopy measured in-situ and continuously at a fine-resolution e.g. 15 minutes ("real time"). Few methods are available to extract biogeochemical process information directly from such high-frequency data. Jones, Chappell & Tych (2014 Environ Sci Technol: 13289-97) developed one such method using optically-derived DOC data based upon a sophisticated time-series modelling tool. Within this presentation we extend the methodology to quantify the minimum sampling interval required to avoid distortion of model structures and parameters that describe fundamental biogeochemical processes. This shifting of parameters which results from under-sampling is called "aliasing". We demonstrate that storm dynamics at a variety of sites dominate over diurnal and seasonal changes and that these must be characterised by sampling that may be sub-hourly to avoid aliasing. This is considerably shorter than that used by other water quality studies examining aliasing (e.g. Kirchner 2005 Phys Rev: 069902). The modelling approach presented is being developed into a generic tool to calculate the minimum sampling for water quality monitoring in systems driven primarily by hydrology. This is illustrated with fine-resolution, optical data from watersheds in temperate Europe through to the humid tropics.

  9. Advancing Water Science through Improved Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Koch, B. J.; Miles, B.; Rai, A.; Ahalt, S.; Band, L. E.; Minsker, B.; Palmer, M.; Williams, M. R.; Idaszak, R.; Whitton, M. C.

    2012-12-01

    Major scientific advances are needed to help address impacts of climate change and increasing human-mediated environmental modification on the water cycle at global and local scales. However, such advances within the water sciences are limited in part by inadequate information infrastructures. For example, cyberinfrastructure (CI) includes the integrated computer hardware, software, networks, sensors, data, and human capital that enable scientific workflows to be carried out within and among individual research efforts and across varied disciplines. A coordinated transformation of existing CI and development of new CI could accelerate the productivity of water science by enabling greater discovery, access, and interoperability of data and models, and by freeing scientists to do science rather than create and manage technological tools. To elucidate specific ways in which improved CI could advance water science, three challenges confronting the water science community were evaluated: 1) How does ecohydrologic patch structure affect nitrogen transport and fate in watersheds?, 2) How can human-modified environments emulate natural water and nutrient cycling to enhance both human and ecosystem well-being?, 3) How do changes in climate affect water availability to support biodiversity and human needs? We assessed the approaches used by researchers to address components of these challenges, identified barriers imposed by limitations of current CI, and interviewed leaders in various water science subdisciplines to determine the most recent CI tools employed. Our preliminary findings revealed four areas where CI improvements are likely to stimulate scientific advances: 1) sensor networks, 2) data quality assurance/quality control, 3) data and modeling standards, 4) high performance computing. In addition, the full potential of a re-envisioned water science CI cannot be realized without a substantial training component. In light of these findings, we suggest that CI industry-proven practices such as open-source community architecture, agile development methodologies, and sound software engineering methods offer a promising pathway to a transformed water science CI capable of meeting the demands of both individual scientists and community-wide research initiatives.

  10. Assimilation of Remotely-Sensed Snow information to improve streamflow predictions in the Southwestern US

    NASA Astrophysics Data System (ADS)

    López-Burgos, V.; Rajagopal, S.; Martinez Baquero, G. F.; Gupta, H. V.

    2009-12-01

    Rapidly growing population in the southwestern US is leading to increasing demand and decreasing availability of water, requiring a detailed quantification of hydrological processes. The integration of detailed spatial information of water fluxes from remote sensing platforms, and hydrological models coupled with ground based data is an important step towards this goal. This project is exploring the use of Snow Water Equivalent (SWE) estimates to update the snow component of the Variable Infiltration Capacity model (VIC). SWE estimates are obtained by combining SNOTEL data with MODIS Snow Cover Area (SCA) information. Because, cloud cover corrupts the estimates of SCA, a rule-based method is used to clean up the remotely sensed images. The rules include a time interpolation method, and the probability of a pixel for been covered with snow based on the relationships between elevation, temperature, lapse rate, aspect and topographic shading. The approach is used to improve streamflow predictions on two rivers managed by the Salt River Project, a water and energy supplier in central Arizona. This solution will help improve the management of reservoirs in the Salt and Verde River in Phoenix, Arizona (tributaries of the lower Colorado River basin), by incorporating physically based distributed models and remote sensing observations into their Decision Support Tools and planning tools. This research seeks to increase the knowledge base used to manage reservoirs and groundwater resources in a region affected by a long-term drought. It will be applicable and relevant for other water utility companies facing the challenges of climate change and decreasing water resources.

  11. The Ozark Highlands

    USGS Publications Warehouse

    Ethridge, Max

    2009-01-01

    The Ozark Highlands include diverse topographic, geologic, soil, and hydrologic conditions that support a broad range of habitat types. The landscape features rugged uplands - some peaks higher than 2,500 feet above sea level - with exposed rock and varying soil depths and includes extensive areas of karst terrain. The Highlands are characterized by extreme biological diversity and high endemism (uniqueness of species). Vegetation communities are dominated by open oak-hickory and shortleaf pine woodlands and forests. Included in this vegetation matrix is an assemblage of various types of fens, forests, wetlands, fluvial features, and carbonate and siliceous glades. An ever-growing human population in the Ozark Highlands has become very dependent on reservoirs constructed on major rivers in the region and, in some cases, groundwater for household and public water supply. Because of human population growth in the Highlands and increases in industrial and agricultural activities, not only is adequate water quantity an issue, but maintaining good water quality is also a challenge. Point and nonpoint sources of excessive nutrients are an issue. U.S. Geological Survey (USGS) partnership programs to monitor water quality and develop simulation tools to help stakeholders better understand strategies to protect the quality of water and the environment are extremely important. The USGS collects relevant data, conducts interpretive studies, and develops simulation tools to help stakeholders understand resource availability and sustainability issues. Stakeholders dependent on these resources are interested in and benefit greatly from evolving these simulation tools (models) into decision support systems that can be used for adaptive management of water and ecological resources. The interaction of unique and high-quality biological and hydrologic resources and the effects of stresses from human activities can be evaluated best by using a multidisciplinary approach that the USGS can provide. Information varying from defining baseline resource conditions to developing simulation models will help resource managers and users understand the human impact on resource sustainability. Varied expertise and experience in biological and water-resources activities across the entire Highlands make the USGS a valued collaborator in studies of Ozark ecosystems, streams, reservoirs, and groundwater. A large part of future success will depend on the involvement and active participation of key partners.

  12. Water Quality Projects Summary for the Mid-Columbia and Cumberland River Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, Kevin M.; Witt, Adam M.; Hadjerioua, Boualem

    Scheduling and operational control of hydropower systems is accompanied with a keen awareness of the management of water use, environmental effects, and policy, especially within the context of strict water rights policy and generation maximization. This is a multi-objective problem for many hydropower systems, including the Cumberland and Mid-Columbia river systems. Though each of these two systems have distinct operational philosophies, hydrologic characteristics, and system dynamics, they both share a responsibility to effectively manage hydropower and the environment, which requires state-of-the art improvements in the approaches and applications for water quality modeling. The Department of Energy and Oak Ridge Nationalmore » Laboratory have developed tools for total dissolved gas (TDG) prediction on the Mid-Columbia River and a decision-support system used for hydropower generation and environmental optimization on the Cumberland River. In conjunction with IIHR - Hydroscience & Engineering, The University of Iowa and University of Colorado s Center for Advanced Decision Support for Water and Environmental Systems (CADSWES), ORNL has managed the development of a TDG predictive methodology at seven dams along the Mid-Columbia River and has enabled the ability to utilize this methodology for optimization of operations at these projects with the commercially available software package Riverware. ORNL has also managed the collaboration with Vanderbilt University and Lipscomb University to develop a state-of-the art method for reducing high-fidelity water quality modeling results into surrogate models which can be used effectively within the context of optimization efforts to maximize generation for a reservoir system based on environmental and policy constraints. The novel contribution of these efforts is the ability to predict water quality conditions with simplified methodologies at the same level of accuracy as more complex and resource intensive computing methods. These efforts were designed to incorporate well into existing hydropower and reservoir system scheduling models, with runtimes that are comparable to existing software tools. In addition, the transferability of these tools to assess other systems is enhanced due the use of simplistic and easily attainable values for inputs, straight-forward calibration of predictive equation coefficients, and standardized comparison of traditionally familiar outputs.« less

  13. Water quality, isoscapes and stoichioscapes of seagrasses indicate general P limitation and unique N cycling in shallow water benthos of Bermuda

    NASA Astrophysics Data System (ADS)

    Fourqurean, J. W.; Manuel, S. A.; Coates, K. A.; Kenworthy, W. J.; Boyer, J. N.

    2015-07-01

    Striking spatial patterns in stable isotope ratios (isoscapes) and elemental ratios (stoichioscapes) of seagrass leaves and the water column nutrients indicate general P-limitation of both water column and benthic primary productivity on the Bermuda Platform, and they highlight the role of the Bermuda Islands as a source of N and P. We found consistent differences among the four seagrass species (Syringodium filiforme, Thalassia testudinum, Halodule sp. and Halophila decipiens) in the N, P, δ13C and δ15N of leaf tissues. The δ15N of seagrass leaves was especially variable, with values from -10.1 to 8.8‰, greatly expanding the reported range of values for all seagrass species globally. Spatial patterns from both the water column and the seagrass leaves indicated that P availability was higher near shore, and δ15N values suggest this was likely a result of human waste disposal. Spatially-contiguous areas of extremely depleted seagrass δ15N suggest unique N sources and cycling compared to other seagrass-dominated environments. Seagrass N : P values were not as far from the stoichiometric balance between N and P availability as in the water column, and there were no strong relationships between the water column N : P and the seagrass N : P. Such isoscapes and stoichioscapes provide valuable ecogeochemical tools to infer ecosystem processes as well as provide information that can inform food web and animal movement studies.

  14. Water quality, isoscapes and stoichioscapes of seagrasses indicate general P limitation and unique N cycling in shallow water benthos of Bermuda

    NASA Astrophysics Data System (ADS)

    Fourqurean, J. W.; Manuel, S. A.; Coates, K. A.; Kenworthy, W. J.; Boyer, J. N.

    2015-10-01

    Striking spatial patterns in stable isotope ratios (isoscapes) and elemental ratios (stoichioscapes) of seagrass leaves and the water column nutrients indicate general P-limitation of both water column and benthic primary productivity on the Bermuda Platform, and they highlight the role of the Bermuda Islands as a source of N and P. We found consistent differences among the four seagrass species (Syringodium filiforme, Thalassia testudinum, Halodule sp. and Halophila decipiens) in the N, P, δ13C and δ15N of leaf tissues. The δ15N of seagrass leaves was especially variable, with values from -10.1 to 8.8 ‰, greatly expanding the reported range of values for all seagrass species globally. Spatial patterns from both the water column and the seagrass leaves indicated that P availability was higher near shore, and δ15N values suggest this was likely a result of human waste disposal. Spatially contiguous areas of extremely depleted seagrass 15N suggest unique N sources and cycling compared to other seagrass-dominated environments. Seagrass N : P values were not as far from the stoichiometric balance between N and P availability as in the water column, and there were no strong relationships between the water column N : P and the seagrass N : P. Such isoscapes and stoichioscapes provide valuable ecogeochemical tools to infer ecosystem processes as well as provide information that can inform food web and animal movement studies.

  15. Using a System Model for Irrigation Management

    NASA Astrophysics Data System (ADS)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  16. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base.

    PubMed

    Oliver, David M; Hanley, Nick D; van Niekerk, Melanie; Kay, David; Heathwaite, A Louise; Rabinovici, Sharyl J M; Kinzelman, Julie L; Fleming, Lora E; Porter, Jonathan; Shaikh, Sabina; Fish, Rob; Chilton, Sue; Hewitt, Julie; Connolly, Elaine; Cummins, Andy; Glenk, Klaus; McPhail, Calum; McRory, Eric; McVittie, Alistair; Giles, Amanna; Roberts, Suzanne; Simpson, Katherine; Tinch, Dugald; Thairs, Ted; Avery, Lisa M; Vinten, Andy J A; Watts, Bill D; Quilliam, Richard S

    2016-02-01

    The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.

  17. BASINS and WEPP Climate Assessment Tools (CAT): Case ...

    EPA Pesticide Factsheets

    This draft report supports application of two recently developed water modeling tools, the BASINS and WEPP climate assessment tools. The report presents a series of short case studies designed to illustrate the capabilities of these tools for conducting scenario based assessments of the potential future effects of climate change on water resources. This report presents a series of short, illustrative case studies using the BASINS and WEPP climate assessment tools.

  18. Management Strategies to Sustain Irrigated Agriculture with Combination of Remote Sensing, Weather Monitoring & Forecasting and SWAP Modeling

    NASA Astrophysics Data System (ADS)

    Ermolaeva, Olga; Zeyliger, Anatoly

    2017-04-01

    Today world's water systems face formidable threats due to climate change and increasing water withdraw for agriculture, industry and domestic use. Projected in many parts of the earth increases in temperature, evaporation, and drought frequency shrunk water availability and magnify water scarcity. Declining irrigation water supplies threaten the sustainability of irrigated agricultural production which plays a critical role in meeting global food needs. In irrigated agriculture there is a strong call for deep efforts in order on the one hand to improve water efficiency use and on the other to maximize yields. The aim of this research is to provide tool to optimize water application with crop irrigation by sprinkling in order to sustain irrigated agriculture under limited water supply by increasing net returns per unit of water. For this aim some field experimental results of 2012 year growing season of alfalfa, corn and soya irrigated by sprinkling machines crops at left bank of Volga River at Saratov Region of Russia. Additionally a combination of data sets was used which includes MODIS images, local meteorological station and results of SWAP (Soil-Water-Atmosphere-Plant) modeling. This combination was used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. By this way it was determined the effect of applied irrigation scheduling and water application depths on evapotranspiration, crop productivity and water stress coefficient. Aggregation of actual values of crop water stress and biomass data predicted by SWAP agrohydrological model with weather forecasting and irrigation scheduling was used to indicate of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. The authors would like to express their gratitude to the Russian Foundation of Basic Research for providing financial support of the project 16-05-01097

  19. Critical insights for a sustainability framework to address integrated community water services: Technical metrics and approaches.

    PubMed

    Xue, Xiaobo; Schoen, Mary E; Ma, Xin Cissy; Hawkins, Troy R; Ashbolt, Nicholas J; Cashdollar, Jennifer; Garland, Jay

    2015-06-15

    Planning for sustainable community water systems requires a comprehensive understanding and assessment of the integrated source-drinking-wastewater systems over their life-cycles. Although traditional life cycle assessment and similar tools (e.g. footprints and emergy) have been applied to elements of these water services (i.e. water resources, drinking water, stormwater or wastewater treatment alone), we argue for the importance of developing and combining the system-based tools and metrics in order to holistically evaluate the complete water service system based on the concept of integrated resource management. We analyzed the strengths and weaknesses of key system-based tools and metrics, and discuss future directions to identify more sustainable municipal water services. Such efforts may include the need for novel metrics that address system adaptability to future changes and infrastructure robustness. Caution is also necessary when coupling fundamentally different tools so to avoid misunderstanding and consequently misleading decision-making. Published by Elsevier Ltd.

  20. MAPGEN : mixed initiative planning and scheduling for the Mars '03 MER mission

    NASA Technical Reports Server (NTRS)

    Ai-Chang, Mitchell; Bresina, John; Charest, Len; Jonsson, Ari; Hsu, Jennifer; Kanefsky, Bob; Maldague, Pierre; Morris, Paul; Rajan, Kanna; Yglesias, Jeffrey

    2003-01-01

    The Mars Exploration Rovers Mars '03 mission is one of NASA's most ambitious science missions to date. The rovers will be launched in the summer of 2003 with each rover carrying instruments to conduct remote and in-situ observation to elucidate the planet's past climate, water activity, and habitability. Science is the primary driver of MER and, as a consequence, making best use of the scientific instruments, within the available resources, is a crucial aspect of the mission. To address this critically, the MER project has selected MAPGEN (Mixed-Initiative Activity Plan GENerator) as an activity planning tool. MAPGEN combines two exiting systems, each with a strong heritage: APGEN the Activity Planning tool from the Jet Propulsion Laboratory and the Europs Planning/Scheduling system from NASA Ames Research Center. This paper discusses the issues arising from combining these tools in the context of this mission.

  1. Integrating geographically isolated wetlands into land management decisions

    USGS Publications Warehouse

    Golden, Heather E.; Creed, Irena F.; Ali, Genevieve; Basu, Nandita; Neff, Brian; Rains, Mark C.; McLaughlin, Daniel L.; Alexander, Laurie C.; Ameli, Ali A.; Christensen, Jay R.; Evenson, Grey R.; Jones, Charles N.; Lane, Charles R.; Lang, Megan

    2017-01-01

    Wetlands across the globe provide extensive ecosystem services. However, many wetlands – especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) – remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed‐scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support.

  2. An Atlas of annotations of Hydra vulgaris transcriptome.

    PubMed

    Evangelista, Daniela; Tripathi, Kumar Parijat; Guarracino, Mario Rosario

    2016-09-22

    RNA sequencing takes advantage of the Next Generation Sequencing (NGS) technologies for analyzing RNA transcript counts with an excellent accuracy. Trying to interpret this huge amount of data in biological information is still a key issue, reason for which the creation of web-resources useful for their analysis is highly desiderable. Starting from a previous work, Transcriptator, we present the Atlas of Hydra's vulgaris, an extensible web tool in which its complete transcriptome is annotated. In order to provide to the users an advantageous resource that include the whole functional annotated transcriptome of Hydra vulgaris water polyp, we implemented the Atlas web-tool contains 31.988 accesible and downloadable transcripts of this non-reference model organism. Atlas, as a freely available resource, can be considered a valuable tool to rapidly retrieve functional annotation for transcripts differentially expressed in Hydra vulgaris exposed to the distinct experimental treatments. WEB RESOURCE URL: http://www-labgtp.na.icar.cnr.it/Atlas .

  3. Water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region

    NASA Astrophysics Data System (ADS)

    Smajgl, A.; Larson, S.; Hug, B.; De Freitas, D. M.

    2010-12-01

    SummaryThis paper presents a tool for documenting and monitoring water use benefits in the Great Barrier Reef catchments that allows temporal and spatial comparison along the region. Water, water use benefits and water allocations are currently receiving much attention from Australian policy makers and conservation practitioners. Because of the inherent complexity and variability in water quality, it is essential that scientific information is presented in a meaningful way to policy makers, managers and ultimately, to the general public who have to live with the consequences of the decisions. We developed an inexpensively populated and easily understandable water use benefit index as a tool for community-based monitoring of water related trends in the Great Barrier Reef region. The index is developed based on a comparative list of selected water-related indices integrating attributes across physico-chemical, economic, social, and ecological domains currently used in the assessment of water quality, water quantity and water use benefits in Australia. Our findings indicate that the proposed index allows the identification of water performance indicators by temporal and spatial comparisons. Benefits for decision makers and conservation practitioners include a flexible way of prioritization towards the domain with highest concern. The broader community benefits from a comprehensive and user-friendly tool, communicating changes in water quality trends more effectively.

  4. LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    USGS Publications Warehouse

    Winslow, Luke; Zwart, Jacob A.; Batt, Ryan D.; Dugan, Hilary; Woolway, R. Iestyn; Corman, Jessica; Hanson, Paul C.; Read, Jordan S.

    2016-01-01

    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems.

  5. SlugIn 1.0: A Free Tool for Automated Slug Test Analysis.

    PubMed

    Martos-Rosillo, Sergio; Guardiola-Albert, Carolina; Padilla Benítez, Alberto; Delgado Pastor, Joaquín; Azcón González, Antonio; Durán Valsero, Juan José

    2018-05-01

    The correct characterization of aquifer parameters is essential for water-supply and water-quality investigations. Slug tests are widely used for these purposes. While free software is available to interpret slug tests, some codes are not user-friendly, or do not include a wide range of methods to interpret the results, or do not include automatic, inverse solutions to the test data. The private sector has also generated several good programs to interpret slug test data, but they are not free of charge. The computer program SlugIn 1.0 is available online for free download, and is demonstrated to aid in the analysis of slug tests to estimate hydraulic parameters. The program provides an easy-to-use Graphical User Interface. SlugIn 1.0 incorporates automated parameter estimation and facilitates the visualization of several interpretations of the same test. It incorporates solutions for confined and unconfined aquifers, partially penetrating wells, skin effects, shape factor, anisotropy, high hydraulic conductivity formations and the Mace test for large-diameter wells. It is available in English and Spanish and can be downloaded from the web site of the Geological Survey of Spain. Two field examples are presented to illustrate how the software operates. © 2018, National Ground Water Association.

  6. Biodesalination: A Case Study for Applications of Photosynthetic Bacteria in Water Treatment1[C

    PubMed Central

    Amezaga, Jaime M.; Amtmann, Anna; Biggs, Catherine A.; Bond, Tom; Gandy, Catherine J.; Honsbein, Annegret; Karunakaran, Esther; Lawton, Linda; Madsen, Mary Ann; Minas, Konstantinos; Templeton, Michael R.

    2014-01-01

    Shortage of freshwater is a serious problem in many regions worldwide, and is expected to become even more urgent over the next decades as a result of increased demand for food production and adverse effects of climate change. Vast water resources in the oceans can only be tapped into if sustainable, energy-efficient technologies for desalination are developed. Energization of desalination by sunlight through photosynthetic organisms offers a potential opportunity to exploit biological processes for this purpose. Cyanobacterial cultures in particular can generate a large biomass in brackish and seawater, thereby forming a low-salt reservoir within the saline water. The latter could be used as an ion exchanger through manipulation of transport proteins in the cell membrane. In this article, we use the example of biodesalination as a vehicle to review the availability of tools and methods for the exploitation of cyanobacteria in water biotechnology. Issues discussed relate to strain selection, environmental factors, genetic manipulation, ion transport, cell-water separation, process design, safety, and public acceptance. PMID:24610748

  7. Groundwater availability of the Central Valley Aquifer, California

    USGS Publications Warehouse

    Faunt, Claudia C.

    2009-01-01

    California's Central Valley covers about 20,000 square miles and is one of the most productive agricultural regions in the world. More than 250 different crops are grown in the Central Valley with an estimated value of $17 billion per year. This irrigated agriculture relies heavily on surface-water diversions and groundwater pumpage. Approximately one-sixth of the Nation's irrigated land is in the Central Valley, and about one-fifth of the Nation's groundwater demand is supplied from its aquifers. The Central Valley also is rapidly becoming an important area for California's expanding urban population. Since 1980, the population of the Central Valley has nearly doubled from 2 million to 3.8 million people. The Census Bureau projects that the Central Valley's population will increase to 6 million people by 2020. This surge in population has increased the competition for water resources within the Central Valley and statewide, which likely will be exacerbated by anticipated reductions in deliveries of Colorado River water to southern California. In response to this competition for water, a number of water-related issues have gained prominence: conservation of agricultural land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and effects of climate variability. To provide information to stakeholders addressing these issues, the USGS Groundwater Resources Program made a detailed assessment of groundwater availability of the Central Valley aquifer system, that includes: (1) the present status of groundwater resources; (2) how these resources have changed over time; and (3) tools to assess system responses to stresses from future human uses and climate variability and change. This effort builds on previous investigations, such as the USGS Central Valley Regional Aquifer System and Analysis (CV-RASA) project and several other groundwater studies in the Valley completed by Federal, State and local agencies at differing scales. The principal product of this new assessment is a tool referred to as the Central Valley Hydrologic Model (CVHM) that accounts for integrated, variable water supply and demand, and simulates surface-water and groundwater-flow across the entire Central Valley system. The development of the CVHM comprised four major elements: (1) a comprehensive Geographic Information System (GIS) to compile, analyze and visualize data; (2) a texture model to characterize the aquifer system;(3) estimates of water-budget components by numerically modeling the hydrologic system with the Farm Process (FMP); and (4) simulations to assess and quantify hydrologic conditions.

  8. A protocol for assessing the effectiveness of oil spill dispersants in stimulating the biodegradation of oil.

    PubMed

    Prince, Roger C; Butler, Josh D

    2014-01-01

    Dispersants are important tools in oil spill response. Taking advantage of the energy in even small waves, they disperse floating oil slicks into tiny droplets (<70 μm) that entrain in the water column and drift apart so that they do not re-agglomerate to re-form a floating slick. The dramatically increased surface area allows microbial access to much more of the oil, and diffusion and dilution lead to oil concentrations where natural background levels of biologically available oxygen, nitrogen, and phosphorus are sufficient for microbial growth and oil consumption. Dispersants are only used on substantial spills in relatively deep water (usually >10 m), conditions that are impossible to replicate in the laboratory. To date, laboratory experiments aimed at following the biodegradation of dispersed oil usually show only minimal stimulation of the rate of biodegradation, but principally because the oil in these experiments disperses fairly effectively without dispersant. What is needed is a test protocol that allows comparison between an untreated slick that remains on the water surface during the entire biodegradation study and dispersant-treated oil that remains in the water column as small dispersed oil droplets. We show here that when this is accomplished, the rate of biodegradation is dramatically stimulated by an effective dispersant, Corexit 9500. Further development of this approach might result in a useful tool for comparing the full benefits of different dispersants.

  9. Using SAS functions and high-resolution isotope data to unravel travel time distributions in headwater catchments

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Soulsby, Chris; Birkel, Christian; Tetzlaff, Doerthe; Botter, Gianluca; Rinaldo, Andrea

    2017-03-01

    We use high-resolution tracer data from an experimental site to test theoretical approaches that integrate catchment-scale flow and transport processes in a unified framework centered on selective age sampling by streamflow and evapotranspiration fluxes. Transport processes operating at the catchment scale are reflected in the evolving residence time distribution of the catchment water storage and in the age selection operated by out-fluxes. Such processes are described here through StorAge Selection (SAS) functions parameterized as power laws of the normalized rank storage. Such functions are computed through appropriate solution of the master equation defining formally the evolution of residence and travel times. By representing the way in which catchment storage generates outflows composed by water of different ages, the main mechanism regulating the tracer composition of runoff is clearly identified and detailed comparison with empirical data sets are possible. Properly calibrated numerical tools provide simulations that convincingly reproduce complex measured signals of daily deuterium content in stream waters during wet and dry periods. Results for the catchment under consideration are consistent with other recent studies indicating a tendency for natural catchments to preferentially release younger available water. The study shows that power law SAS functions prove a powerful tool to explain catchment-scale transport processes that also has potential in less intensively monitored sites.

  10. Vegetative response to water availability on the San Carlos Apache Reservation

    USGS Publications Warehouse

    Petrakis, Roy; Wu, Zhuoting; McVay, Jason; Middleton, Barry R.; Dye, Dennis G.; Vogel, John M.

    2016-01-01

    On the San Carlos Apache Reservation in east-central Arizona, U.S.A., vegetation types such as ponderosa pine forests, pinyon-juniper woodlands, and grasslands have significant ecological, cultural, and economic value for the Tribe. This value extends beyond the tribal lands and across the Western United States. Vegetation across the Southwestern United States is susceptible to drought conditions and fluctuating water availability. Remotely sensed vegetation indices can be used to measure and monitor spatial and temporal vegetative response to fluctuating water availability conditions. We used the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived Modified Soil Adjusted Vegetation Index II (MSAVI2) to measure the condition of three dominant vegetation types (ponderosa pine forest, woodland, and grassland) in response to two fluctuating environmental variables: precipitation and the Standardized Precipitation Evapotranspiration Index (SPEI). The study period covered 2002 through 2014 and focused on a region within the San Carlos Apache Reservation. We determined that grassland and woodland had a similar moderate to strong, year-round, positive relationship with precipitation as well as with summer SPEI. This suggests that these vegetation types respond negatively to drought conditions and are more susceptible to initial precipitation deficits. Ponderosa pine forest had a comparatively weaker relationship with monthly precipitation and summer SPEI, indicating that it is more buffered against short-term drought conditions. This research highlights the response of multiple, dominant vegetation types to seasonal and inter-annual water availability. This research demonstrates that multi-temporal remote sensing imagery can be an effective tool for the large scale detection of vegetation response to adverse impacts from climate change and support potential management practices such as increased monitoring and management of drought-affected areas. Different vegetation types displayed various responses to water availability, further highlighting the need for individual management plans for forest and woodland, especially considering the projected drier conditions in the Southwest U.S. and other arid or semi-arid regions around the world.

  11. Integration and Value of Earth Observations Data for Water Management Decision-Making in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Larsen, S. G.; Willardson, T.

    2017-12-01

    Some exciting new science and tools are under development for water management decision-making in the Western U.S. This session will highlight a number of examples where remotely-sensed observation data has been directly beneficial to water resource stakeholders, and discuss the steps needed between receipt of the data and their delivery as a finished data product or tool. We will explore case studies of how NASA scientists and researchers have worked with together with western state water agencies and other stakeholders as a team, to develop and interpret remotely-sensed data observations, implement easy-to-use software and tools, train team-members on their operation, and transition those tools into the insititution's workflows. The benefits of integrating these tools into stakeholder, agency, and end-user operations can be seen on-the-ground, when water is optimally managed for the decision-maker's objectives. These cases also point to the importance of building relationships and conduits for communication between researchers and their institutional counterparts.

  12. Integration and Value of Earth Observations Data for Water Management Decision-Making in the Western U.S.

    NASA Astrophysics Data System (ADS)

    Larsen, S. G.; Willardson, T.

    2016-12-01

    Some exciting new science and tools are under development for water management decision-making in the Western U.S. This session will highlight a number of examples where remotely-sensed observation data has been directly beneficial to water resource stakeholders, and discuss the steps needed between receipt of the data and their delivery as a finished data product or tool. We will explore case studies of how NASA scientists and researchers have worked with together with western state water agencies and other stakeholders as a team, to develop and interpret remotely-sensed data observations, implement easy-to-use software and tools, train team-members on their operation, and transition those tools into the insititution's workflows. The benefits of integrating these tools into stakeholder, agency, and end-user operations can be seen on-the-ground, when water is optimally managed for the decision-maker's objectives. These cases also point to the importance of building relationships and conduits for communication between researchers and their institutional counterparts.

  13. Development of a simulation of the surficial groundwater system for the CONUS

    NASA Astrophysics Data System (ADS)

    Zell, W.; Sanford, W. E.

    2016-12-01

    Water resource and environmental managers across the country face a variety of questions involving groundwater availability and/or groundwater transport pathways. Emerging management questions require prediction of groundwater response to changing climate regimes (e.g., how drought-induced water-table recession may degrade near-stream vegetation and result in increased wildfire risks), while existing questions can require identification of current groundwater contributions to surface water (e.g., groundwater linkages between landscape contaminant inputs and receiving streams may help explain in-stream phenomena such as fish intersex). At present, few national-coverage simulation tools exist to help characterize groundwater contributions to receiving streams and predict potential changes in base-flow regimes under changing climate conditions. We will describe the Phase 1 development of a simulation of the water table and shallow groundwater system for the entire CONUS. We use national-scale datasets such as the National Recharge Map and the Map Database for Surficial Materials in the CONUS to develop groundwater flow (MODFLOW) and transport (MODPATH) models that are calibrated against groundwater level and stream elevation data from NWIS and NHD, respectively. Phase 1 includes the development of a national transmissivity map for the surficial groundwater system and examines the impact of model-grid resolution on the simulated steady-state discharge network (and associated recharge areas) and base-flow travel time distributions for different HUC scales. In the course of developing the transmissivity map we show that transmissivity in fractured bedrock systems is dependent on depth to water. Subsequent phases of this work will simulate water table changes at a monthly time step (using MODIS-dependent recharge estimates) and serve as a critical complement to surface-water-focused USGS efforts to provide national coverage hydrologic modeling tools.

  14. A revisitation of TRIX for trophic status assessment in the light of the European Water Framework Directive: application to Italian coastal waters.

    PubMed

    Pettine, Maurizio; Casentini, Barbara; Fazi, Stefano; Giovanardi, Franco; Pagnotta, Romano

    2007-09-01

    The trophic status classification of coastal waters at the European scale requires the availability of harmonised indicators and procedures. The composite trophic status index (TRIX) provides useful metrics for the assessment of the trophic status of coastal waters. It was originally developed for Italian coastal waters and then applied in many European seas (Adriatic, Tyrrhenian, Baltic, Black and Northern seas). The TRIX index does not fulfil the classification procedure suggested by the WFD for two reasons: (a) it is based on an absolute trophic scale without any normalization to type-specific reference conditions; (b) it makes an ex ante aggregation of biological (Chl-a) and physico-chemical (oxygen, nutrients) quality elements, instead of an ex post integration of separate evaluations of biological and subsequent chemical quality elements. A revisitation of the TRIX index in the light of the European Water Framework Directive (WFD, 2000/60/EC) and new TRIX derived tools are presented in this paper. A number of Italian coastal sites were grouped into different types based on a thorough analysis of their hydro-morphological conditions, and type-specific reference sites were selected. Unscaled TRIX values (UNTRIX) for reference and impacted sites have been calculated and two alternative UNTRIX-based classification procedures are discussed. The proposed procedures, to be validated on a broader scale, provide users with simple tools that give an integrated view of nutrient enrichment and its effects on algal biomass (Chl-a) and on oxygen levels. This trophic evaluation along with phytoplankton indicator species and algal blooms contribute to the comprehensive assessment of phytoplankton, one of the biological quality elements in coastal waters.

  15. A spatial ammonia emission inventory for pig farming

    NASA Astrophysics Data System (ADS)

    Rebolledo, Boris; Gil, Antonia; Pallarés, Javier

    2013-01-01

    Atmospheric emissions of ammonia (NH3) from the agricultural sector have become a significant environmental and public concern as they have impacts on human health and ecosystems. This work proposes an improved methodology in order to identify administrative regions with high NH3 emissions from pig farming and calculates an ammonia density map (kg NH3-N ha-1), based on the number of pigs and available agricultural land, terrain slopes, groundwater bodies, soil permeability, zones sensitive to nitrate pollution and surface water buffer zones. The methodology has been used to construct a general tool for locating ammonia emissions from pig farming when detailed information of livestock farms is not available.

  16. A framework for modeling anthropogenic impacts on waterbird habitats: addressing future uncertainty in conservation planning

    USGS Publications Warehouse

    Matchett, Elliott L.; Fleskes, Joseph P.; Young, Charles A.; Purkey, David R.

    2015-01-01

    The amount and quality of natural resources available for terrestrial and aquatic wildlife habitats are expected to decrease throughout the world in areas that are intensively managed for urban and agricultural uses. Changes in climate and management of increasingly limited water supplies may further impact water resources essential for sustaining habitats. In this report, we document adapting a Water Evaluation and Planning (WEAP) system model for the Central Valley of California. We demonstrate using this adapted model (WEAP-CVwh) to evaluate impacts produced from plausible future scenarios on agricultural and wetland habitats used by waterbirds and other wildlife. Processed output from WEAP-CVwh indicated varying levels of impact caused by projected climate, urbanization, and water supply management in scenarios used to exemplify this approach. Among scenarios, the NCAR-CCSM3 A2 climate projection had a greater impact than the CNRM-CM3 B1 climate projection, whereas expansive urbanization had a greater impact than strategic urbanization, on annual availability of waterbird habitat. Scenarios including extensive rice-idling or substantial instream flow requirements on important water supply sources produced large impacts on annual availability of waterbird habitat. In the year corresponding with the greatest habitat reduction for each scenario, the scenario including instream flow requirements resulted in the greatest decrease in habitats throughout all months of the wintering period relative to other scenarios. This approach provides a new and useful tool for habitat conservation planning in the Central Valley and a model to guide similar research investigations aiming to inform conservation, management, and restoration of important wildlife habitats.

  17. Assessing the impact of nutrient enrichment in estuaries: susceptibility to eutrophication.

    PubMed

    Painting, S J; Devlin, M J; Malcolm, S J; Parker, E R; Mills, D K; Mills, C; Tett, P; Wither, A; Burt, J; Jones, R; Winpenny, K

    2007-01-01

    The main aim of this study was to develop a generic tool for assessing risks and impacts of nutrient enrichment in estuaries. A simple model was developed to predict the magnitude of primary production by phytoplankton in different estuaries from nutrient input (total available nitrogen and/or phosphorus) and to determine likely trophic status. In the model, primary production is strongly influenced by water residence times and relative light regimes. The model indicates that estuaries with low and moderate light levels are the least likely to show a biological response to nutrient inputs. Estuaries with a good light regime are likely to be sensitive to nutrient enrichment, and to show similar responses, mediated only by site-specific geomorphological features. Nixon's scale was used to describe the relative trophic status of estuaries, and to set nutrient and chlorophyll thresholds for assessing trophic status. Estuaries identified as being eutrophic may not show any signs of eutrophication. Additional attributes need to be considered to assess negative impacts. Here, likely detriment to the oxygen regime was considered, but is most applicable to areas of restricted exchange. Factors which limit phytoplankton growth under high nutrient conditions (water residence times and/or light availability) may favour the growth of other primary producers, such as macrophytes, which may have a negative impact on other biological communities. The assessment tool was developed for estuaries in England and Wales, based on a simple 3-category typology determined by geomorphology and relative light levels. Nixon's scale needs to be validated for estuaries in England and Wales, once more data are available on light levels and primary production.

  18. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    PubMed

    Ross, Gregory A; Morris, Garrett M; Biggin, Philip C

    2012-01-01

    Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  19. Developing an Integrated Understanding of the Relationship Between Urban Wastewater Flows and Downstream Reuse in Irrigated Agriculture: A Global Perspective

    NASA Astrophysics Data System (ADS)

    Thebo, A.; Nelson, K.; Drechsel, P.; Lambin, E.

    2015-12-01

    Globally, less than ten percent of collected wastewater receives any form of treatment. This untreated wastewater is discharged to surface waters where it is diluted and reused by farmers and municipalities downstream. Without proper safeguards, the use of these waters can present health risks. However, these same waters also provide a reliable and nutrient rich water source for farmers, often in regions where water is already physically or economically scarce. Case studies show the prevalence and diversity of motivations for indirect reuse, but are difficult to interpret in aggregate at the global scale. This study quantifies the global extent and characteristics of the reuse of wastewater in irrigated agriculture through three main components: Quantifying the global extent of urban and peri-urban irrigated and rainfed croplands; Evaluating the contribution of urban wastewater production to available blue water at the catchment scale; Developing an irrigation water quality indicator and classifying irrigated croplands downstream of cities on the basis of this indicator. Each of these components integrates several global scale spatial datasets including MIRCA2000 (irrigated croplands); GDBD (stream channels and catchments); and compilations of water use, sewerage and wastewater treatment data. All analyses were conducted using spatial analysis tools in ArcGIS and Python. This analysis found that 60 percent of all irrigated croplands (130 Mha) were within 20 km of cities. Urban irrigated croplands were found to be farmed with greater cropping intensity (1.48) as compared to non-urban irrigated croplands. Ten percent of the global catchment area is in catchments where domestic wastewater constitutes greater than five percent of available blue water. In contrast, 25 percent of irrigated croplands are located in catchments where domestic wastewater exceeds five percent of available blue water. Particularly in the water scarce regions of North Africa and East Asia, a strong correlation between the volume of urban wastewater production and the area of peri-urban irrigated croplands was found. A better understanding of global reliance on the indirect reuse of untreated wastewater in irrigated agriculture can provide valuable insights for large-scale water allocation planning and risk mitigation efforts.

  20. Image analysis of corrosion pit initiation on ASTM type A240 stainless steel and ASTM type A 1008 carbon steel

    NASA Astrophysics Data System (ADS)

    Nine, H. M. Zulker

    The adversity of metallic corrosion is of growing concern to industrial engineers and scientists. Corrosion attacks metal surface and causes structural as well as direct and indirect economic losses. Multiple corrosion monitoring tools are available although those are time-consuming and costly. Due to the availability of image capturing devices in today's world, image based corrosion control technique is a unique innovation. By setting up stainless steel SS 304 and low carbon steel QD 1008 panels in distilled water, half-saturated sodium chloride and saturated sodium chloride solutions and subsequent RGB image analysis in Matlab, in this research, a simple and cost-effective corrosion measurement tool has identified and investigated. Additionally, the open circuit potential and electrochemical impedance spectroscopy results have been compared with RGB analysis to gratify the corrosion. Additionally, to understand the importance of ambiguity in crisis communication, the communication process between Union Carbide and Indian Government regarding the Bhopal incident in 1984 was analyzed.

  1. Rapid Identification of a Cooling Tower-Associated Legionnaires' Disease Outbreak Supported by Polymerase Chain Reaction Testing of Environmental Samples, New York City, 2014-2015.

    PubMed

    Benowitz, Isaac; Fitzhenry, Robert; Boyd, Christopher; Dickinson, Michelle; Levy, Michael; Lin, Ying; Nazarian, Elizabeth; Ostrowsky, Belinda; Passaretti, Teresa; Rakeman, Jennifer; Saylors, Amy; Shamoonian, Elena; Smith, Terry-Ann; Balter, Sharon

    2018-04-01

    We investigated an outbreak of eight Legionnaires' disease cases among persons living in an urban residential community of 60,000 people. Possible environmental sources included two active cooling towers (air-conditioning units for large buildings) <1 km from patient residences, a market misting system, a community-wide water system used for heating and cooling, and potable water. To support a timely public health response, we used real-time polymerase chain reaction (PCR) to identify Legionella DNA in environmental samples within hours of specimen collection. We detected L. pneumophila serogroup 1 DNA only at a power plant cooling tower, supporting the decision to order remediation before culture results were available. An isolate from a power plant cooling tower sample was indistinguishable from a patient isolate by pulsed-field gel electrophoresis, suggesting the cooling tower was the outbreak source. PCR results were available <1 day after sample collection, and culture results were available as early as 5 days after plating. PCR is a valuable tool for identifying Legionella DNA in environmental samples in outbreak settings.

  2. Excel Spreadsheet Tools for Analyzing Groundwater Level Records and Displaying Information in ArcMap

    USGS Publications Warehouse

    Tillman, Fred D.

    2009-01-01

    When beginning hydrologic investigations, a first action is often to gather existing sources of well information, compile this information into a single dataset, and visualize this information in a geographic information system (GIS) environment. This report presents tools (macros) developed using Visual Basic for Applications (VBA) for Microsoft Excel 2007 to assist in these tasks. One tool combines multiple datasets into a single worksheet and formats the resulting data for use by the other tools. A second tool produces summary information about the dataset, such as a list of unique site identification numbers, the number of water-level observations for each, and a table of the number of sites with a listed number of water-level observations. A third tool creates subsets of the original dataset based on user-specified options and produces a worksheet with water-level information for each well in the subset, including the average and standard deviation of water-level observations and maximum decline and rise in water levels between any two observations, among other information. This water-level information worksheet can be imported directly into ESRI ArcMap as an 'XY Data' file, and each of the fields of summary well information can be used for custom display. A separate set of VBA tools distributed in an additional Excel workbook creates hydrograph charts of each of the wells in the data subset produced by the aforementioned tools and produces portable document format (PDF) versions of the hydrograph charts. These PDF hydrographs can be hyperlinked to well locations in ArcMap or other GIS applications.

  3. Forecasted Flood Depth Grids Providing Early Situational Awareness to FEMA during the 2017 Atlantic Hurricane Season

    NASA Astrophysics Data System (ADS)

    Jones, M.; Longenecker, H. E., III

    2017-12-01

    The 2017 hurricane season brought the unprecedented landfall of three Category 4 hurricanes (Harvey, Irma and Maria). FEMA is responsible for coordinating the federal response and recovery efforts for large disasters such as these. FEMA depends on timely and accurate depth grids to estimate hazard exposure, model damage assessments, plan flight paths for imagery acquisition, and prioritize response efforts. In order to produce riverine or coastal depth grids based on observed flooding, the methodology requires peak crest water levels at stream gauges, tide gauges, high water marks, and best-available elevation data. Because peak crest data isn't available until the apex of a flooding event and high water marks may take up to several weeks for field teams to collect for a large-scale flooding event, final observed depth grids are not available to FEMA until several days after a flood has begun to subside. Within the last decade NOAA's National Weather Service (NWS) has implemented the Advanced Hydrologic Prediction Service (AHPS), a web-based suite of accurate forecast products that provide hydrograph forecasts at over 3,500 stream gauge locations across the United States. These forecasts have been newly implemented into an automated depth grid script tool, using predicted instead of observed water levels, allowing FEMA access to flood hazard information up to 3 days prior to a flooding event. Water depths are calculated from the AHPS predicted flood stages and are interpolated at 100m spacing along NHD hydrolines within the basin of interest. A water surface elevation raster is generated from these water depths using an Inverse Distance Weighted interpolation. Then, elevation (USGS NED 30m) is subtracted from the water surface elevation raster so that the remaining values represent the depth of predicted flooding above the ground surface. This automated process requires minimal user input and produced forecasted depth grids that were comparable to post-event observed depth grids and remote sensing-derived flood extents for the 2017 hurricane season. These newly available forecasted models were used for pre-event response planning and early estimated hazard exposure counts, allowing FEMA to plan for and stand up operations several days sooner than previously possible.

  4. Hydrological and thermal effects of hydropeaking on early life stages of salmonids: A modelling approach for implementing mitigation strategies.

    PubMed

    Casas-Mulet, Roser; Saltveit, Svein Jakob; Alfredsen, Knut Tore

    2016-12-15

    Alterations in hydrological and thermal regimes can potentially affect salmonid early life stages development and survival. The dewatering of salmon spawning redds due to hydropeaking can lead to mortality in early life stages, with higher impact on the alevins as they have lower tolerance to dewatering than the eggs. Flow-related mitigation measures can reduce early life stage mortality. We present a set of modelling tools to assess impacts and mitigation options to minimise the risk of mortality in early life stages in hydropeaking rivers. We successfully modelled long-term hydrological and thermal alterations and consequences for development rates. We estimated the risk of early life stages mortality and assessed the cost-effectiveness of implementing three release-related mitigation options (A,B,C). The economic cost of mitigation was low and ranged between 0.7% and 2.6% of the annual hydropower production. Options reducing the flow during spawning (B and C) in addition to only release minimum flows during development (A) were considered more effective for egg and alevin survival. Options B and C were however constraint by water availability in the system for certain years, and therefore only option A was always feasible. The set of modelling tools used in this study were satisfactory and their applications can be useful especially in systems where little field data is available. Targeted measures built on well-informed modelling tools can be tested on their effectiveness to mitigate dewatering effects vs. the hydropower system capacity to release or conserve water for power production. Environmental flow releases targeting specific ecological objectives can provide better cost-effective options than conventional operational rules complying with general legislation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The environmental vegetation index: A tool potentially useful for arid land management. [Texas and Mexico, plant growth stress due to water deficits

    NASA Technical Reports Server (NTRS)

    Gray, T. I., Jr.; Mccrary, D. G. (Principal Investigator)

    1981-01-01

    The NOAA-6 AVHRR data sets acquired over South Texas and Mexico during the spring of 1980 and after Hurricane Allen passed inland are analyzed. These data were processed to produce the Gray-McCrary Index (GMI's) for each pixel location over the selected area, which area contained rangeland and cropland, both irrigated and nonirrigated. The variations in the GMI's appear to reflect well the availability of water for vegetation. The GMI area maps are shown to delineate and to aid in defining the duration of drought; suggesting the possibility that time changes over a selected area could be useful for irrigation management.

  6. First stable isotope analysis of Asiatic wild ass tail hair from the Mongolian Gobi.

    PubMed

    Horacek, Micha; Sturm, Martina Burnik; Kaczensky, Petra

    Stable isotope analysis has become a powerful tool to study feeding ecology, water use or movement pattern in contemporary, historic and ancient species. Certain hair and teeth grow continuously, and when sampled longitudinally can provide temporally explicit information on dietary regime and movement pattern. In an initial trial, we analysed a tail sample of an Asiatic wild ass ( Equus hemionus ) from the Mongolian Gobi. We found seasonal variations in H, C and N isotope patterns, likely being the result of temporal variations in available feeds, water supply and possibly physiological status. Thus stable isotope analysis shows promise to study the comparative ecology of the three autochthonous equid species in the Mongolian Gobi.

  7. A review of biophysical and socio-economic effects of unconventional oil and gas extraction - Implications for South Africa.

    PubMed

    Esterhuyse, Surina; Avenant, Marinda; Redelinghuys, Nola; Kijko, Andrzej; Glazewski, Jan; Plit, Lisa; Kemp, Marthie; Smit, Ansie; Vos, A Tascha; Williamson, Richard

    2016-12-15

    The impacts associated with unconventional oil and gas (UOG) extraction will be cumulative in nature and will most likely occur on a regional scale, highlighting the importance of using strategic decision-making and management tools. Managing possible impacts responsibly is extremely important in a water scarce country such as South Africa, versus countries where more water may be available for UOG extraction activities. This review article explains the possible biophysical and socio-economic impacts associated with UOG extraction within the South African context and how these complex impacts interlink. Relevant policy and governance frameworks to manage these impacts are also highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 33 CFR 101.510 - Assessment tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Assessment tools. 101.510 Section 101.510 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY MARITIME SECURITY MARITIME SECURITY: GENERAL Other Provisions § 101.510 Assessment tools. Ports, vessels, and facilities...

  9. Subtask 1.18 - A Decision Tool for Watershed-Based Effluent Trading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xixi Wang; Bethany A. Kurz; Marc D. Kurz

    2006-11-30

    Handling produced water in an economical and environmentally sound manner is vital to coalbed methane (CBM) development, which is expected to increase up to 60% in the next 10-15 years as the demand for natural gas increases. Current produced water-handling methods (e.g., shallow reinjection and infiltration impoundments) are too costly when implemented on a well-by-well basis. A watershed-based effluent credit trading approach may be a means of managing produced water at reduced cost while meeting or surpassing water quality regulations. This market-based approach allows for improved water quality management by enabling industrial, agricultural, and municipal discharge facilities to meet watermore » quality permit requirements by purchasing pollutant reduction credits from other entities within the same watershed. An evaluation of this concept was conducted for the Powder River Basin (PRB) of Montana and Wyoming by the Energy & Environmental Research Center (EERC). To conduct this assessment, the EERC collected and evaluated existing water quality information and developed the appropriate tools needed to assess the environmental and economic feasibility of specific trading scenarios. The accomplishments of this study include (1) an exploration of the available PRB water quantity and quality data using advanced statistical techniques, (2) development of an integrated water quality model that predicts the impacts of CBM produced water on stream salinity and sodicity, (3) development of an economic model that estimates costs and benefits from implementing potential trading options, (4) evaluation of hypothetical trading scenarios between select watersheds of the PRB, and (5) communication of the project concept and results to key state and federal agencies, industry representatives, and stakeholders of the PRB. The preliminary results of a basinwide assessment indicate that up to $684 million could be saved basinwide without compromising water quality as a result of implementing a watershed-based credit-trading approach.« less

  10. An evaluation of the sustainability of a rural water rehabilitation project in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Hoko, Zvikomborero; Hertle, Jochen

    An estimated 70% of the national population lives in rural areas in Zimbabwe. Previous studies suggest that groundwater is consumed predominantly without treatment. This study evaluated the sustainability of a rural water point rehabilitation project that was carried out in Mwenezi (Masvingo Province), and Gwanda, Bulilima and Mangwe (Matabeleland South Province) districts by a local NGO. The study was carried out a year after the rehabilitation project. Sustainability indicators considered in the study included the reliability of the system, human capacity development, institutional arrangements, and the impact of the project on rural livelihoods. A combination of field inspections of the water points and interviews with villagers were used as study tools. It was found out that 14% of the water points were broken down in Mwenezi, 17% (Gwanda), 13% (Bulilima) and 25% (Mangwe). Water quality was satisfactory for taste for over 90% and for 62-95% of respondents for soap consumption in all districts. Trained repair personnel were available in over 50% of the cases. Awareness of the training workshops for operation and maintenance in all districts was above 75%. Water point committees existed and functioned in all districts for 50-83% of water points. For 84-93% of the responses financial contributions were made only in the event of a breakdown. The walking distance to a water point was reduced after the project according to 83-100% of respondents in all districts. Health and hygiene knowledge was deemed to have improved due to the project in 46-78% of cases. It was concluded that opportunities for sustainable water supply are there if active community involvement is enhanced, training is lengthened and water point committees strengthened. There is also need to raise the awareness of ordinary villagers. Future rehabilitation projects should consider stricter supervision and equipping the trained personnel with tools.

  11. Low flows and reservoir management for the Durance River basin (Southern France) in the 2050s

    NASA Astrophysics Data System (ADS)

    Sauquet, Eric

    2015-04-01

    The Durance River is one of the major rivers located in the Southern part of France. Water resources are under high pressure due to significant water abstractions for human uses within and out of the natural boundaries of the river basin through an extended open channel network. Water demands are related to irrigation, hydropower, drinking water, industries and more recently water management has included water needs for recreational uses as well as for preserving ecological services. Water is crucial for all these activities and for the socio-economic development of South Eastern France. Both socio-economic development and population evolution will probably modify needs for water supply, irrigation, energy consumption, tourism, industry, etc. In addition the Durance river basin will have to face climate change and its impact on water availability that may question the sustainability of the current rules for water allocation. The research project R²D²-2050 "Risk, water Resources and sustainable Development within the Durance river basin in 2050" aims at assessing future water availability and risks of water shortage in the 2050s by taking into account changes in both climate and water management. R²D²-2050 is partially funded by the French Ministry in charge of Ecology and the Rhône-Méditerranée Water Agency. This multidisciplinary project (2010-2014) involves Irstea, Electricité de France (EDF), the University Pierre et Marie Curie (Paris), LTHE (CNRS), the Société du Canal de Provence (SCP) and the research and consultancy company ACTeon. A set of models have been developed to simulate climate at regional scale (given by 330 projections obtained by applying three downscaling methods), water resources (provided by seven rainfall-runoff models forced by a subset of 330 climate projections), water demand for agriculture and drinking water, for different sub basins of the Durance River basin upstream of Mallemort under present day and under future conditions. A model of water management similar to the tools used by Electricité De France was calibrated to simulate the behavior of the three reservoirs Serre-Ponçon, Castillon, Sainte-Croix on present-day conditions. This model simulates water releases from reservoir under constraints imposed by rule curves, ecological flows downstream to the dams and water levels in summer for recreational purposes. The results demonstrate the relatively good performance of this simplified model and its ability to represent the influence of reservoir operations on the natural hydrological river flow regime, the decision-making involved in water management and the interactions at regional scale. Four territorial socio-economic scenarios have been also elaborated with the help of stake holders to project water needs in the 2050s for the area supplied with water from the Durance River basin. This presentation will focus on the specific tools developed within the project to simulate water management and water abstractions. The main conclusions related to the risk of water shortage in the 2050s and the level of satisfaction for each water use will be also discussed.

  12. Water data in US: a spatial, temporal and sectoral analysis

    NASA Astrophysics Data System (ADS)

    Josset, L.; Allaire, M.; Rising, J. A.; Thomas, C.; Lall, U.

    2017-12-01

    Water data plays a crucial role in the development and implementation of sustainable water management strategies. Both effective design and assessment hinge on accurate information. This requires environmental, climatic, hydrologic, hydrogeologic, industrial, agricultural, energetic and socio-economic data to accurately characterize and project future supply and demand. In 2001, Vorosmarty et al. painted a stark future for water data, which was qualified as ``a new endangered species". Sixteen years after this publication, we propose a review of the current state of water data in the United States. While considerable progress has been made in data science and model development in the recent years, models are only as good as the data that populate them. After a brief overview of water data aggregated at the national level, we compare datasets from federal agencies with water information collected by individual states. We note in particular the potential gaps in the collected information that would support research beyond water balance accounts to informing regulations, investments, and economic decisions. In addition, we assess the information structures that host and disseminate data as well as data availability and usability (i.e. whether tools are proposed such as metrics, visualization, projections). We conclude our paper with a review of the current technological developments, policies and initiatives that may be transformative and redefine the future of water data. We follow two angles: the progress made in data collection (e.g. remote sensing, datascience, reporting policies) and in data dissemination (frameworks, cyber-infrastructures and standards). We review in particular the current initiatives taking place in US and around the world that promote water data freely available to all.

  13. Computer software tool REALM for sustainable water allocation and management.

    PubMed

    Perera, B J C; James, B; Kularathna, M D U

    2005-12-01

    REALM (REsource ALlocation Model) is a generalised computer simulation package that models harvesting and bulk distribution of water resources within a water supply system. It is a modeling tool, which can be applied to develop specific water allocation models. Like other water resource simulation software tools, REALM uses mass-balance accounting at nodes, while the movement of water within carriers is subject to capacity constraints. It uses a fast network linear programming algorithm to optimise the water allocation within the network during each simulation time step, in accordance with user-defined operating rules. This paper describes the main features of REALM and provides potential users with an appreciation of its capabilities. In particular, it describes two case studies covering major urban and rural water supply systems. These case studies illustrate REALM's capabilities in the use of stochastically generated data in water supply planning and management, modelling of environmental flows, and assessing security of supply issues.

  14. Stakeholders' expectations on connectivity research for water and land management addressed by a survey in the collaborative EU-COST Connecteur network

    NASA Astrophysics Data System (ADS)

    Smetanova, Anna; Paton, Eva N.; Keesstra, Saskia

    2016-04-01

    Transfer of knowledge across the science-society interface is essential for both, ethical and economic reasons, and inevitable for successful climate change adaptation and integrated management of sustainable, resilient landscapes. The transdisciplinary research of connectivity (which is the degree to which a system facilitates the movement of matter and energy through itself. It is an emergent property of the system state, Connecteur web resources,2015) has the potential to supply monitoring, modelling and management tools to land and water managers in order to reach these goals. The research of water and sediment connectivity has received significant and increasing scientific attention across the entire realm of the environmental disciplines, and the COST Action ES 1306 Connecteur facilitates the multi-sectorial collaboration in connectivity research at EU level. In order to appropriately address the transfer of the cutting edge research developments of the Connecteur network, the collaborative research project on stakeholders' perception of connectivity was conducted by the Working Group 5 "Transition of connectivity research towards sustainable land and water management". The questionnaire survey on stakeholder perception was conducted by volunteering scientist involved in the Connecteur network together from 19 European countries. Together 84 stakeholders from all mayor sectors in water and land management were asked about the main challenges of their work, their understanding of connectivity, the desired areas of cooperation with connectivity science, and the best tools for transferring knowledge. The results showed differences between different stakeholders groups in the way they percept and work with connectivity, as well as their requirement of knowledge transfers. While farmers, and (in lower extend) the agricultural administration officers articulated no, or little need for connectivity management, the majority of stakeholders involved in land and water management found it important. The need of scientist involvement in educational activities (targeting farmers), provision of training in newly developed easily usable tools (models or maps) based on existing data and training in this tools (for land and water management) were, together with freely available data, the most frequently expressed desired way of communication. The results of the study help to improve the research pathways of all working groups of COST Action ES 1306 Connecteur, and to identify the important way of transfer of the connectivity science to all relevant stakeholders. The project was supported by COST-STSM-ES1306-011215-063624. Connecteur web resources (2015) http://connecteur.info/wiki/connectivity-wiki/, 07.01.2016

  15. Everglades Depth Estimation Network (EDEN) Applications: Tools to View, Extract, Plot, and Manipulate EDEN Data

    USGS Publications Warehouse

    Telis, Pamela A.; Henkel, Heather

    2009-01-01

    The Everglades Depth Estimation Network (EDEN) is an integrated system of real-time water-level monitoring, ground-elevation data, and water-surface elevation modeling to provide scientists and water managers with current on-line water-depth information for the entire freshwater part of the greater Everglades. To assist users in applying the EDEN data to their particular needs, a series of five EDEN tools, or applications (EDENapps), were developed. Using EDEN's tools, scientists can view the EDEN datasets of daily water-level and ground elevations, compute and view daily water depth and hydroperiod surfaces, extract data for user-specified locations, plot transects of water level, and animate water-level transects over time. Also, users can retrieve data from the EDEN datasets for analysis and display in other analysis software programs. As scientists and managers attempt to restore the natural volume, timing, and distribution of sheetflow in the wetlands, such information is invaluable. Information analyzed and presented with these tools is used to advise policy makers, planners, and decision makers of the potential effects of water management and restoration scenarios on the natural resources of the Everglades.

  16. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  17. Environmental Effects of Agricultural Practices - Summary of Workshop Held on June 14-16, 2005

    USGS Publications Warehouse

    ,

    2006-01-01

    A meeting between the U.S. Geological Survey (USGS) and its partners was held June 14-16, 2005, in Denver, CO, to discuss science issues and needs related to agricultural practices. The goals of the meeting were to learn about the (1) effects of agricultural practices on the environment and (2) tools for identifying and quantifying those effects. Achieving these goals required defining the environmental concerns, developing scientific actions to address assessment of environmental effects, and creating collaborations to identify future research requirements and technical gaps. Five areas of concern were discussed-emerging compounds; water availability; genetically modified organisms; effects of conservation practices on ecosystems; and data, methods, and tools for assessing effects of agricultural practices.

  18. Simulation of unsteady flow and solute transport in a tidal river network

    USGS Publications Warehouse

    Zhan, X.

    2003-01-01

    A mathematical model and numerical method for water flow and solute transport in a tidal river network is presented. The tidal river network is defined as a system of open channels of rivers with junctions and cross sections. As an example, the Pearl River in China is represented by a network of 104 channels, 62 nodes, and a total of 330 cross sections with 11 boundary section for one of the applications. The simulations are performed with a supercomputer for seven scenarios of water flow and/or solute transport in the Pearl River, China, with different hydrological and weather conditions. Comparisons with available data are shown. The intention of this study is to summarize previous works and to provide a useful tool for water environmental management in a tidal river network, particularly for the Pearl River, China.

  19. Linkage of the Soil and Water Assessment Tool and the Texas Water Availability Model to simulate the effects of brush management on monthly storage of Canyon Lake, south-central Texas, 1995-2010

    USGS Publications Warehouse

    Asquith, William H.; Bumgarner, Johnathan R.

    2014-01-01

    The mean monthly offset storages of Canyon Lake during the Drought Quartile were 110 acre-ft (20 percent); 448 acre-ft (40 percent); 754 acre-ft (60 percent); 1,080 acre-ft (80 percent); and 1,090 acre-ft (100 percent). A particular mean was interpreted as follows: the value of 754 acre-ft for the 60-percent brush-management scenario implies that, on average, this scenario indicates an additional 754 acre-ft per month of storage in Canyon Lake relative to the baseline during the Drought Quartile. All of the five scenarios resulted in an increase on average to water supply relative to the baseline scenario during the Drought Quartile through the SWAT-WAM linkage.

  20. Testing tubewell platform color as a rapid screening tool for arsenic and manganese in drinking water wells.

    PubMed

    Biswas, Ashis; Nath, Bibhash; Bhattacharya, Prosun; Halder, Dipti; Kundu, Amit K; Mandal, Ujjal; Mukherjee, Abhijit; Chatterjee, Debashis; Jacks, Gunnar

    2012-01-03

    A low-cost rapid screening tool for arsenic (As) and manganese (Mn) in groundwater is urgently needed to formulate mitigation policies for sustainable drinking water supply. This study attempts to make statistical comparison between tubewell (TW) platform color and the level of As and Mn concentration in groundwater extracted from the respective TW (n = 423), to validate platform color as a screening tool for As and Mn in groundwater. The result shows that a black colored platform with 73% certainty indicates that well water is safe from As, while with 84% certainty a red colored platform indicates that well water is enriched with As, compared to WHO drinking water guideline of 10 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 79%, 77%, and 81%, respectively. However, the certainty values become 93% and 38%, respectively, for black and red colored platforms at 50 μg/L, the drinking water standards for India and Bangladesh. The respective efficiency, sensitivity, and specificity are 65%, 85%, and 59%. Similarly for Mn, black and red colored platform with 78% and 64% certainty, respectively, indicates that well water is either enriched or free from Mn at the Indian national drinking water standard of 300 μg/L. With this guideline the efficiency, sensitivity, and specificity of the tool are 71%, 67%, and 76%, respectively. Thus, this study demonstrates that TW platform color can be potentially used as an initial screening tool for identifying TWs with elevated dissolved As and Mn, to make further rigorous groundwater testing more intensive and implement mitigation options for safe drinking water supplies.

  1. Water Network Tool for Resilience v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-09

    WNTR is a python package designed to simulate and analyze resilience of water distribution networks. The software includes: - Pressure driven and demand driven hydraulic simulation - Water quality simulation to track concentration, trace, and water age - Conditional controls to simulate power outages - Models to simulate pipe breaks - A wide range of resilience metrics - Analysis and visualization tools

  2. The need for monetary information within corporate water accounting.

    PubMed

    Burritt, Roger L; Christ, Katherine L

    2017-10-01

    A conceptual discussion is provided about the need to add monetary data to water accounting initiatives and how best to achieve this if companies are to become aware of the water crisis and to take actions to improve water management. Analysis of current water accounting initiatives reveals the monetary business case for companies to improve water management is rarely considered, there being a focus on physical information about water use. Three possibilities emerge for mainstreaming the integration of monetization into water accounting: add-on to existing water accounting frameworks and tools, develop new tools which include physical and monetary information from the start, and develop environmental management accounting (EMA) into a water-specific application and set of tools. The paper appraises these three alternatives and concludes that development of EMA would be the best way forward. Suggestions for further research include the need to examine the use of a transdisciplinary method to address the complexities of water accounting. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Integrating the simulation of domestic water demand behaviour to an urban water model using agent based modelling

    NASA Astrophysics Data System (ADS)

    Koutiva, Ifigeneia; Makropoulos, Christos

    2015-04-01

    The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.

  4. Development of a lab-on-chip electrochemical immunosensor for detection of Polycyclic Aromatic Hydrocarbons (PAH) in environmental water

    NASA Astrophysics Data System (ADS)

    Felemban, Shifa; Vazquez, Patricia; Dehnert, Jan; Goridko, Vadim; Tijero, Maria; Moore, Eric

    2017-06-01

    The work described in this manuscript focuses on how the integration of immunoassay techniques in combination with electrochemical detection can provide a portable and very accurate solution for detection of water pollutants that are detrimental for human health. In particular, we focus our work on the quantification of polycyclic aromatic hydrocarbons (PAHs) in polluted water. Our integrative approach facilitates a real-time detection of this family of organic compounds, by reducing the time of analysis to less than one hour. Additionally, the use of a lab-on-a-chip platform delivers a portable solution that could be used in situ. Optimization of a displacement assay that investigates the presence and concentration of Benzo[a]pyrene in water, allows with the miniaturization of the standard ELISA format into a highly accurate system that provides fast results. The limits of detection obtained are comparable to those of available state-of-the art tools, and achieve the values set by European Drinking Water Directive, 0.10ng/l, as the limit for PAHs in drinking water.

  5. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  6. User's Manual for BEST-Dairy: Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, T.; Ke, J.; Sathaye, J.

    2011-04-20

    This User's Manual summarizes the background information of the Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2, 2011), including'Read Me' portion of the tool, the sections of Introduction, and Instructions for the BEST-Dairy tool that is developed and distributed by Lawrence Berkeley National Laboratory (LBNL).

  7. Water Quality Analysis Tool (WQAT)

    EPA Science Inventory

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-pro...

  8. The Microbial Fecal Indicator Paradigm: Tools in the Toolbox Applications in Recreational Waters

    EPA Science Inventory

    Summary of ORD’s recent research to develop tools for assessing microbial water quality in recreational waters. Methods discussed include the development of health associations between microbial fecal indicators and the development of culture, and molecular methods for fec...

  9. Multi variate regression model of the water level and production rate time series of the geothermal reservoir Waiwera (New Zealand)

    NASA Astrophysics Data System (ADS)

    Kühn, Michael; Schöne, Tim

    2017-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a water management plan was deployed. The "Auckland Council" established guidelines to enable a sustainable management of the resource [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. For a sustainable water management, it is necessary to be able to forecast the water level as a function of the production rates in the production wells. The best predictions are provided by a multivariate regression model of the water level and production rate time series, which takes into account the production rates of individual wells. It is based on the inversely proportional relationship between the independent variable (production rate) and the dependent variable (measured water level). In production scenarios, a maximum total production rate of approx. 1,100 m3 / day is determined in order to comply with the guidelines of the "Auckland Council". [1] Kühn M., Stöfen H. (2005) A reactive flow model of the geothermal reservoir Waiwera, New Zealand. Hydrogeology Journal 13, 606-626, doi: 10.1007/s10040-004-0377-6 [2] Kühn M., Altmannsberger C. (2016) Assessment of data driven and process based water management tools for the geothermal reservoir Waiwera (New Zealand). Energy Procedia 97, 403-410, doi: 10.1016/j.egypro.2016.10.034

  10. Water Distribution System Risk Tool for Investment Planning (WaterRF Report 4332)

    EPA Science Inventory

    Product Description/Abstract The product consists of the Pipe Risk Screening Tool (PRST), and a report on the development and use of the tool. The PRST is a software-based screening aid to identify and rank candidate pipes for actions that range from active monitoring (including...

  11. Remote sensing of surface water quality in relation to catchment condition in Zimbabwe

    NASA Astrophysics Data System (ADS)

    Masocha, Mhosisi; Murwira, Amon; Magadza, Christopher H. D.; Hirji, Rafik; Dube, Timothy

    2017-08-01

    The degradation of river catchments is one of the most important contemporary environmental problems affecting water quality in tropical countries. In this study, we used remotely sensed Normalised Difference Vegetation Index (NDVI) to assess how catchment condition varies within and across river catchments in Zimbabwe. We then used non-linear regression to test whether catchment condition assessed using the NDVI is significantly (α = 0.05) related with levels of Total Suspended Solids (TSS) measured at different sampling points in thirty-two sub-catchments in Zimbabwe. The results showed a consistent negative curvilinear relationship between Landsat 8 derived NDVI and TSS measured across the catchments under study. In the drier catchments of the country, 98% of the variation in TSS is explained by NDVI, while in wetter catchments, 64% of the variation in TSS is explained by NDVI. Our results suggest that NDVI derived from free and readily available multispectral Landsat series data (Landsat 8) is a potential valuable tool for the rapid assessment of physical water quality in data poor catchments. Overall, the finding of this study underscores the usefulness of readily available satellite data for near-real time monitoring of the physical water quality at river catchment scale, especially in resource-constrained areas, such as the sub-Saharan Africa.

  12. Development of Phaeocystis globosa blooms in the upwelling waters of the South Central coast of Viet Nam

    NASA Astrophysics Data System (ADS)

    Hai, Doan-Nhu; Lam, Nguyen-Ngoc; Dippner, Joachim W.

    2010-11-01

    Blooms of haptophyte algae in the south central coastal waters of Viet Nam often occur in association with upwelling phenomenon during the southwest (SW) monsoon. Depending on the magnitude of the blooms, damage to aquaculture farms may occur. Based on two years of data on biology, oceanography, and marine chemistry, the present study suggests a conceptual model of the growth of the haptophyte Phaeocystis globosa. At the beginning of the bloom, low temperature and abundant nutrient supply, especially nitrate from rain and upwelling, favour bloom development. Diatoms utilize available nitrate and phosphate; subsequently, higher ammonium concentration allows P. globosa to grow faster than the diatoms. At the end of the Phaeocystis bloom, free cells may become available as food for a heterotrophic dinoflagellate species, Noctiluca scintillans. During and after the phytoplankton bloom, remineralization by bacteria reduces dissolved oxygen to a very low concentration at depth, and favors growth of nitrate-reducing bacteria.A Lagrangian Harmful Algal Bloom (HAB) model, driven by a circulation model of the area, realistically simulates the transport of microalgae in surface waters during strong and weak SW monsoon periods, suggesting that it may be a good tool for early warning of HABs in Vietnamese coastal waters.

  13. A tale of integrated regional water supply planning: Meshing socio-economic, policy, governance, and sustainability desires together

    NASA Astrophysics Data System (ADS)

    Asefa, Tirusew; Adams, Alison; Kajtezovic-Blankenship, Ivana

    2014-11-01

    In 1998, Tampa Bay Water, the largest wholesale water provider in South East USA with over 2.3 million customers, assumed the role of planning, developing, and operating water supply sources from six local water supply utilities through an Interlocal Agreement. Under the agreement, cities and counties served by the agency would have their water supply demands met unequivocally and share the cost of delivery and/or development of new supplies based on their consumption, allowing a more holistic approach to manage resources in the region. Consequently, the agency was able to plan and execute several components of its Long-Term Master Water Plan to meet the region's demand, as well as diversify its sources of water supply. Today, the agency manages a diverse and regionally interconnected water supply system that includes 13 wellfields, two surface water supply sources, off-site reservoir storage, a sea water desalination plant, a surface water treatment plant, and 14 pumping/booster stations. It delivers water through 390 km of large diameter pipe to 19 potable water connections. It uses state-of-the-practice computer tools to manage short and long-term operations and planning. As a result, after the agency's inception, groundwater pumpage was reduced by more than half in less than a decade-by far one of the largest cutback and smaller groundwater utilization rate compared to other utilities in Florida or elsewhere. The region was able to witness a remarkable recovery in lake and wetland water levels through the agency's use of this diverse mix of supply sources. For example, in the last three years, 45-65% of water supply came from groundwater sources, 35-45% from surface water sources and 1-9% from desalinated seawater-very different from 100% groundwater only supply just few years ago. As an "on demand" wholesale water provider, the agency forecasts water supply availability and expected water demands from seasonal to decadal time frames using a suite of forecasting tools and a structured decision-making process. This paper presents a case study of the approach taken by Tampa Bay Water to meet the region's growing water demands while satisfying other competing objectives in a sustainable fashion and documents the remarkable environmental improvement observed in the area.

  14. Catchment Models and Management Tools for diffuse Contaminants (Sediment, Phosphorus and Pesticides): DIFFUSE Project

    NASA Astrophysics Data System (ADS)

    Mockler, Eva; Reaney, Simeon; Mellander, Per-Erik; Wade, Andrew; Collins, Adrian; Arheimer, Berit; Bruen, Michael

    2017-04-01

    The agricultural sector is the most common suspected source of nutrient pollution in Irish rivers. However, it is also often the most difficult source to characterise due to its predominantly diffuse nature. Particulate phosphorus in surface water and dissolved phosphorus in groundwater are of particular concern in Irish water bodies. Hence the further development of models and indices to assess diffuse sources of contaminants are required for use by the Irish Environmental Protection Agency (EPA) to provide support for river basin planning. Understanding connectivity in the landscape is a vital component of characterising the source-pathway-receptor relationships for water-borne contaminants, and hence is a priority in this research. The DIFFUSE Project will focus on connectivity modelling and incorporation of connectivity into sediment, nutrient and pesticide risk mapping. The Irish approach to understanding and managing natural water bodies has developed substantially in recent years assisted by outputs from multiple research projects, including modelling and analysis tools developed during the Pathways and CatchmentTools projects. These include the Pollution Impact Potential (PIP) maps, which are an example of research output that is used by the EPA to support catchment management. The PIP maps integrate an understanding of the pollution pressures and mobilisation pathways and, using the source-pathways-receptor model, provide a scientific basis for evaluation of mitigation measures. These maps indicate the potential risk posed by nitrate and phosphate from diffuse agricultural sources to surface and groundwater receptors and delineate critical source areas (CSAs) as a means of facilitating the targeting of mitigation measures. Building on this previous research, the DIFFUSE Project will develop revised and new catchment managements tools focused on connectivity, sediment, phosphorus and pesticides. The DIFFUSE project will strive to identify the state-of-the-art methods and models that are most applicable to Irish conditions and management challenges. All styles of modelling considered useful for water resources management are relevant to this project and a balance of technical sophistication, data availability and operational practicalities is the ultimate goal. Achievement of this objective will be measured by comparing the performance of the new models developed in the project with models used in other countries. The models and tools developed in the course of the project will be evaluated by comparison with Irish catchment data and with other state-of-the-art models in a model-inter-comparison workshop which will be open to other models and the wider research community.

  15. Illicit drugs and the environment--a review.

    PubMed

    Pal, Raktim; Megharaj, Mallavarapu; Kirkbride, K Paul; Naidu, Ravi

    2013-10-01

    Illicit drugs and their metabolites are the latest group of emerging pollutants. Determination of their concentration in environment (such as water bodies, soil, sediment, air) is an indirect tool to estimate the community level consumption of illicit drug and to evaluate potential ecotoxicological impacts from chronic low level exposure. They enter the wastewater network as unaltered drugs and/or their active metabolites by human excretion after illegal consumption or by accidental or deliberate disposal from clandestine drug laboratories. This article critically reviews the occurrence and concentration levels of illicit drugs and their metabolites in different environmental compartments (e.g., wastewater, surface waters, groundwater, drinking water, and ambient air) and their potential impact on the ecosystem. There is limited published information available on the presence of illicit drugs in the environment, reports are available mainly from European countries, UK, USA, and Canada but there is a lack of information from the remainder of the world. Although the environmental concentrations are not very high, they can potentially impact the human health and ecosystem functioning. Cocaine, morphine, amphetamine, and MDMA have potent pharmacological activities and their presence as complex mixtures in water may cause adverse effect on aquatic organisms and human health. However, there is no current regulation demanding the determination of occurrence of these emerging pollutants in treated wastewater, surface water, drinking water, or atmosphere. Thus, critical investigation on distribution pattern of this new group of emerging contaminant and their potential harmful impact on our environment needs immediate attention. Copyright © 2012. Published by Elsevier B.V.

  16. Storm Water Infiltration and Focused Groundwater Recharge in a Rain Garden: Finite Volume Model and Numerical Simulations for Different Configurations and Climates

    NASA Astrophysics Data System (ADS)

    Aravena, J.; Dussaillant, A. R.

    2006-12-01

    Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).

  17. Mapping Seabird Sensitivity to Offshore Wind Farms

    PubMed Central

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N.; Caldow, Richard W. G.; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979–2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species’ ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented. PMID:25210739

  18. Mapping seabird sensitivity to offshore wind farms.

    PubMed

    Bradbury, Gareth; Trinder, Mark; Furness, Bob; Banks, Alex N; Caldow, Richard W G; Hume, Duncan

    2014-01-01

    We present a Geographic Information System (GIS) tool, SeaMaST (Seabird Mapping and Sensitivity Tool), to provide evidence on the use of sea areas by seabirds and inshore waterbirds in English territorial waters, mapping their relative sensitivity to offshore wind farms. SeaMaST is a freely available evidence source for use by all connected to the offshore wind industry and will assist statutory agencies in assessing potential risks to seabird populations from planned developments. Data were compiled from offshore boat and aerial observer surveys spanning the period 1979-2012. The data were analysed using distance analysis and Density Surface Modelling to produce predicted bird densities across a grid covering English territorial waters at a resolution of 3 km×3 km. Coefficients of Variation were estimated for each grid cell density, as an indication of confidence in predictions. Offshore wind farm sensitivity scores were compiled for seabird species using English territorial waters. The comparative risks to each species of collision with turbines and displacement from operational turbines were reviewed and scored separately, and the scores were multiplied by the bird density estimates to produce relative sensitivity maps. The sensitivity maps reflected well the amassed distributions of the most sensitive species. SeaMaST is an important new tool for assessing potential impacts on seabird populations from offshore development at a time when multiple large areas of development are proposed which overlap with many seabird species' ranges. It will inform marine spatial planning as well as identifying priority areas of sea usage by marine birds. Example SeaMaST outputs are presented.

  19. A DECISION SUPPORT TOOL (DST) FOR DISPOSAL OF ...

    EPA Pesticide Factsheets

    Symposium Paper AFTER A BUILDING OR WATER TREATMENT/DISTRIBUTION FACILITY HAS GONE THROUGH DECONTAMINATION ACTIVITIES FOLLOWING A CONTAMINATION EVENT WITH CHEMICAL/BIOLOGICAL WARFARE AGENTS OR TOXIC INDUSTRIAL CHEMICAL, THERE WILL BE A SIGNIFICANT AMOUNT OF RESIDUAL MATERIAL AND WASTE TO BE DISPOSED. A CONTAMINATION EVENT COULD OCCUR FROM TERRORIST ACTIVITY OR FROM A NATURAL DISASTER SUCH AS THE RECENT HURRICANE EVENTS IN THE GULF COAST WHERE MOLD AND POLLUTANTS FROM DAMAGED CHEMICAL AND INDUSTRIAL FACILITIES HAVE RESULTED IN SIGNIFICANT QUANTITIES OF CONTAMINATED MATERIALS. IT iS LIKELY THAT MUCH OF THIS MATERIAL WILL BE DISPOSED OF IN PERMITTED LANDFILLS OR HIGH TEMPERATURE THERMAL INCINERATION FACILITIES. DATA HAS BEEN COLLECTED FROM THE OPEN LITERATURE, FROM STATE AND FEDERAL REGULATORY AGENCIES, AND FROM WASTE MANAGEMENT AND WATER UTILITY INDUSTRY STAKEHOLDER GROUPS, TO DEVELOP TECHNICAL GUIDANCE FOR DISPOSAL OF THESe RESIDUES. THE INFORMATION BECOMES AVAILABLE, AND OLD INFORMATION (SUCH AS CONTACT INFORMATION FOR KEY PERSONNEL) CHANGES. THE PRiMARY AUDIENCE FOR THIS TOOL WILL BE: 1) EMERGENCY RESPONSE AUTHORITIES WHO HAVE TO DECIDE THE MOST APPROPRIATE DECONTAMINATION METHODS AND DISPOSAL OF THE RESULTING RESIDUES; 2)STATE AND LOCAL PERMITTING AGENCIES, WHO HAVE TO MAKE DECISIONS ABOUT WHICH FACILITIES WILL BE ALLOWED TO DISPOSE OF THE MATERIALS: AND 3) THE WASTE MANAGEMENT AND WATER UTILITY INDUSTRY, THAT NEEDS TO SAFELY DISPOSE OF DECONTAMINATION RESIDUE

  20. Mapping Stormwater Retention in the Cities: A Flexible Model for Data-Scarce Environments

    NASA Astrophysics Data System (ADS)

    Hamel, P.; Keeler, B.

    2014-12-01

    There is a growing demand for understanding and mapping urban hydrological ecosystem services, including stormwater retention for flood mitigation and water quality improvement. Progress in integrated urban water management and low impact development in Western countries increased our understanding of how grey and green infrastructure interact to enhance these services. However, valuation methods that account for a diverse group of beneficiaries are typically not made explicit in urban water management models. In addition, the lack of spatial data on the stormwater network in developing countries makes it challenging to apply state-of-the-art models needed to understand both the magnitude and spatial distribution of the stormwater retention service. To fill this gap, we designed the Urban InVEST stormwater retention model, a tool that complements the suite of InVEST software models to quantify and map ecosystem services. We present the model structure emphasizing the data requirements from a user's perspective and the representation of services and beneficiaries. We illustrate the model application with two case studies in a data-rich (New York City) and data-scarce environment. We discuss the difference in the level of information obtained when less resources (data, time, or expertise) are available, and how this affects multiple ecosystem service assessments that the tool is ultimately designed for.

  1. Web-based decision support and visualization tools for water quality management in the Chesapeake Bay watershed

    USGS Publications Warehouse

    Mullinix, C.; Hearn, P.; Zhang, H.; Aguinaldo, J.

    2009-01-01

    Federal, State, and local water quality managers charged with restoring the Chesapeake Bay ecosystem require tools to maximize the impact of their limited resources. To address this need, the U.S. Geological Survey (USGS) and the Environmental Protection Agency's Chesapeake Bay Program (CBP) are developing a suite of Web-based tools called the Chesapeake Online Assessment Support Toolkit (COAST). The goal of COAST is to help CBP partners identify geographic areas where restoration activities would have the greatest effect, select the appropriate management strategies, and improve coordination and prioritization among partners. As part of the COAST suite of tools focused on environmental restoration, a water quality management visualization component called the Nutrient Yields Mapper (NYM) tool is being developed by USGS. The NYM tool is a web application that uses watershed yield estimates from USGS SPAtially Referenced Regressions On Watershed (SPARROW) attributes model (Schwarz et al., 2006) [6] to allow water quality managers to identify important sources of nitrogen and phosphorous within the Chesapeake Bay watershed. The NYM tool utilizes new open source technologies that have become popular in geospatial web development, including components such as OpenLayers and GeoServer. This paper presents examples of water quality data analysis based on nutrient type, source, yield, and area of interest using the NYM tool for the Chesapeake Bay watershed. In addition, we describe examples of map-based techniques for identifying high and low nutrient yield areas; web map engines; and data visualization and data management techniques.

  2. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: supporting policy making in the Green Water Credits program of Kenya.

    PubMed

    Hunink, J E; Droogers, P; Kauffman, S; Mwaniki, B M; Bouma, J

    2012-11-30

    Upstream soil and water conservation measures in catchments can have positive impact both upstream in terms of less erosion and higher crop yields, but also downstream by less sediment flow into reservoirs and increased groundwater recharge. Green Water Credits (GWC) schemes are being developed to encourage upstream farmers to invest in soil and water conservation practices which will positively effect upstream and downstream water availability. Quantitative information on water and sediment fluxes is crucial as a basis for such financial schemes. A pilot design project in the large and strategically important Upper-Tana Basin in Kenya has the objective to develop a methodological framework for this purpose. The essence of the methodology is the integration and use of a collection of public domain tools and datasets: the so-called Green water and Blue water Assessment Toolkit (GBAT). This toolkit was applied in order to study different options to implement GWC in agricultural rainfed land for the pilot study. Impact of vegetative contour strips, mulching, and tied ridges were determined for: (i) three upstream key indicators: soil loss, crop transpiration and soil evaporation, and (ii) two downstream indicators: sediment inflow in reservoirs and groundwater recharge. All effects were compared with a baseline scenario of average conditions. Thus, not only actual land management was considered but also potential benefits of changed land use practices. Results of the simulations indicate that especially applying contour strips or tied ridges significantly reduces soil losses and increases groundwater recharge in the catchment. The model was used to build spatial expressions of the proposed management practices in order to assess their effectiveness. The developed procedure allows exploring the effects of soil conservation measures in a catchment to support the implementation of GWC. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Using an implicitly-coupled hydrologic and river-operations models to investigate the trade-offs of artificial recharge in agricultural areas

    NASA Astrophysics Data System (ADS)

    Morway, E. D.; Niswonger, R. G.; Triana, E.

    2016-12-01

    In irrigated agricultural regions supplied by both surface-water and groundwater, increased reliance on groundwater during sustained drought leads to long-term water table drawdown and subsequent surface-water losses. This, in turn, may threaten the sustainability of the irrigation project. To help offset groundwater resource losses and restore water supply reliability, an alternative management strategy commonly referred to as managed aquifer recharge (MAR) in agricultural regions helps mitigate long-term aquifer drawdown and provides additional water for subsequent withdraw. Sources of MAR in this investigation are limited to late winter runoff in years with above average precipitation (i.e., above average snowpack). However, where winter MAR results in an elevated water table, non-beneficial consumptive use may increase from evapotranspiration in adjacent and down-gradient fallow and naturally vegetated lands. To rigorously explore this trade-off, the recently published MODSIM-MODFLOW model was applied to quantify both the benefits and unintended consequences of MAR. MODSIM-MODFLOW is a generalized modeling tool capable of exploring the effects of altered river operations within an integrated groundwater and surface-water (GW-SW) model. Thus, the MODSIM-MODFLOW model provides a modeling platform capable of simulating MAR in amounts and duration consistent with other senior water rights in the river system (e.g., minimum in-stream flow requirements). Increases in non-beneficial consumptive use resulting from winter MAR are evaluated for a hypothetical model patterned after alluvial aquifers common in arid and semi-arid areas of the western United States. Study results highlight (1) the benefit of an implicitly-coupled river operations and hydrologic modeling tool, (2) the balance between winter MAR and the potential increase in non-beneficial consumptive use, and (3) conditions where MAR may or may not be an appropriate management option, such as the availability of surface-water storage.

  4. Managing water in the West: developing new tools for a critical resource

    USGS Publications Warehouse

    Scoppettone, G.G.; Gadomski, D.; Petersen, J.; Hatten, J.

    2005-01-01

    Rapid population growth in the Western United States over the last century has placed increasing strains on our water supplies and aquatic ecosystems. Historically, water rights have been used to determine the allocation of water in the West, but rules and regulations related to endangered species now often drive how water is released from reservoirs in large rivers such as the lower Colorado and the Columbia. In numerous smaller watersheds, communities are trying to balance the water necessary for human use, irrigation, and the conservation of ecosystems. To assist managers in the face of increasing complexity and uncertainty in water management decision-making, the Western Fisheries Research Center (WFRC) is involved in developing a new generation of integrative tools. Below are some examples of the types of tools that already exist within the WFRC.

  5. Using the SPEI to Estimate Food Production in East Africa

    NASA Astrophysics Data System (ADS)

    Husak, G. J.; Hobbins, M.; Verdin, J. P.; Peterson, P.; Funk, C. C.

    2015-12-01

    The Famine Early Warning Systems Network (FEWS NET) monitors critical environmental variables that impact food production in developing countries. Due to a sparse network of observations in the developing world, many of these variables are estimated using remotely sensed data. As scientists develop new techniques to leverage available observations and remotely sensed information there are opportunities to create products that identify the environmental conditions that stress agriculture and reduce food production. FEWS NET pioneered the development of the Climate Hazards Group InfraRed Precipitation with stations (CHIRPS) dataset, to estimate precipitation and monitor growing conditions throughout the world. These data are used to drive land surface models, hydrologic models and basic crop models among others. A new dataset estimating the reference evapotranspiration (ET0) has been developed using inputs from the ERA-Interim GCM. This ET0 dataset stretches back to 1981, allowing for a long-term record, stretching many seasons and drought events. Combining the CHIRPS data to estimate water availability and the ET0 data to estimate evaporative demand, one can estimate the approximate water gap (surplus or deficit) over a specific time period. Normalizing this difference creates the Standardized Precipitation Evapotranspiration Index (SPEI), which presents these gaps in comparison to the historical record for a specific location and accumulation period. In this study we evaluate the SPEI as a tool to estimate crop yields for different regions of Kenya. Identifying the critical time of analysis for the SPEI is the first step in building a relationship between the water gap and food production. Once this critical period is identified, we look at the predictability of food production using the SPEI, and assess the utility of it for monitoring food security, with the goal of incorporating the SPEI in the standard monitoring suite of FEWS NET tools.

  6. Water fluoridation and the quality of information available online.

    PubMed

    Frangos, Zachary; Steffens, Maryke; Leask, Julie

    2018-02-13

    The Internet has transformed the way in which people approach their health care, with online resources becoming a primary source of health information. Little work has assessed the quality of online information regarding community water fluoridation. This study sought to assess the information available to individuals searching online for information, with emphasis on the credibility and quality of websites. We identified the top 10 web pages returned from different search engines, using common fluoridation search terms (identified in Google Trends). Web pages were scored using a credibility, quality and health literacy tool based on Global Advisory Committee on Vaccine Safety (GAVCS) and Center for Disease Control and Prevention (CDC) criteria. Scores were compared according to their fluoridation stance and domain type, then ranked by quality. The functionality of the scoring tool was analysed via a Bland-Altman plot of inter-rater reliability. Five-hundred web pages were returned, of which 55 were scored following removal of duplicates and irrelevant pages. Of these, 28 (51%) were pro-fluoridation, 16 (29%) were neutral and 11 (20%) were anti-fluoridation. Pro, neutral and anti-fluoridation pages scored well against health literacy standards (0.91, 0.90 and 0.81/1 respectively). Neutral and pro-fluoridation web pages showed strong credibility, with mean scores of 0.80 and 0.85 respectively, while anti-fluoridation scored 0.62/1. Most pages scored poorly for content quality, providing a moderate amount of superficial information. Those seeking online information regarding water fluoridation are faced with comprehensible, yet poorly referenced, superficial information. Sites were credible and user friendly; however, our results suggest that online resources need to focus on providing more transparent information with appropriate figures to consolidate the information. © 2018 FDI World Dental Federation.

  7. THE TWO FACES OF WATER CHEMISTRY: STRESSOR ON, AND INDICATOR OF, THE ECOLOGICAL CONDITION OF THE GREAT RIVERS.

    EPA Science Inventory

    This poster presentation is designed to enlighten the interested masses about water quality assessment tools. It is not intended for policy, rather to stimulate thought on the importance of developing water chemistry as as assessment tool.

  8. PLIP: fully automated protein-ligand interaction profiler.

    PubMed

    Salentin, Sebastian; Schreiber, Sven; Haupt, V Joachim; Adasme, Melissa F; Schroeder, Michael

    2015-07-01

    The characterization of interactions in protein-ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein-ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein-ligand contacts in 3D structures, freely available at projects.biotec.tu-dresden.de/plip-web. The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein-ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Emergence of Applications of the Atmospheric River Concept

    NASA Astrophysics Data System (ADS)

    Ralph, F. M.

    2016-12-01

    This presentation will describe the emergence of applications of the atmospheric river (AR) concept. The term AR was introduced in the 1990s, and after satellite images showing long filaments of large watr vapor content were available, confirmed by research aircraft data to correspond to strong horizontal water vapor transport, the concept became a common subject of scientific papers. By 2005, experiments and programs began pursuing the topic. ARs were identified as a primary cause of heavy precipitation and flooding in key regions. Impacts on drought and water supply became apparent in the Western US, while European and South American scientists began studying their impacts on the west coasts of those continents. While the science community debated and advanced the understanding of the phenomenon, the water management and flood control communities became aware of the topic and quickly recognized its value. So too did climate change researchers, and some ecosystem scientists. As of 2016 many studies are underway to advance the science, field programs are being planned, tailored forecast tools are operating, applications tools are under development, policy makers briefed, etc. From <10 peer-reviewed scientific articles published in the 1990s, to the over 400 published since then, the topic has brought greater attention to the structure, behavior, predictions and importance of the horizontal water vapor transport part of the global water budget. This presentation highlights key applications: emergency preparedness scenarios (ARkStorm), situational awareness enhancement, supported the extension of NWS quantitative precipitation forecasts from a maximum of 5 days lead time to 7 days. Predictive tools and displays focused on ARs have been developed and are being used by the public and decision makers. Water management, flood risk mitigation and even endangered species recovery plans are exploring possible use of AR information in future reservoir operations. The emergence of the AR concept is an example of the complex and often circuitous route that major new research directions take before maturing and having impact through applications. The path provides a telling example of the importance of sustained basic research, and of connecting researchers with people in operational or application-oriented roles.

  10. Changes in continental Europe water cycle in a changing climate

    NASA Astrophysics Data System (ADS)

    Rouholahnejad, Elham; Schirmer, Mario; Abbaspour, Karim

    2015-04-01

    Changes in atmospheric water vapor content provide strong evidence that the water cycle is already responding to a warming climate. According to IPCC's last report on Climate Change (AR5), the water cycle is expected to intensify in a warmer climate as the atmosphere can hold more water vapor. This changes the frequency of precipitation extremes, increases evaporation and dry periods, and effects the water redistribution in land. This process is represented by most global climate models (GCMs) by increased summer dryness and winter wetness over large areas of continental mid to high latitudes in the Northern Hemisphere, associated with a reduction in water availability at continental scale. Observing changes in precipitation and evaporation directly and at continental scale is difficult, because most of the exchange of fresh water between the atmosphere and the surface happens the oceans. Long term precipitation records are available only from over the land and there are no measurement of evaporation or redistribution of precipitation over the land area. On the other hand, understanding the extent of climate change effects on various components of the water cycle is of strategic importance for public, private sectors, and policy makers when it comes to fresh water management. In order to better understand the extent of climate change impacts on water resources of continental Europe, we developed a distributed hydrological model of Europe at high spatial and temporal resolution using the Soil and Water Assessment Tool (SWAT). The hydrological model was calibrated for 1970 to 2006 using daily observation of streamflow and nitrate loads from 360 gauging stations across Europe. A vegetation growth routine was added to the model to better simulate evapotranspiration. The model results were calibrated with available agricultural crop yield data from other sources. As of future climate scenarios, we used the ISI-MIP project results which provides bias-corrected climate data from the GCMs participating in the CMIP5 at 0.5° x 0.5° resolution. Data cover the time period from 1901 to 2099, i.e. the historical period, and future projections for all Representative Concentration Pathways (RCP2.6, RCP 4.5, RCP 6.0, and RCP 8.5). We used four different models output (GFDL, HADGEMES, MIROC, and IPSL) for all RCPs for near (2006-2035) and far (3065-2099) future. Multi-model ensembles (16 scenarios) are then used to study the potential impacts of future climate change on fresh water availability across Europe.

  11. Projecting water resources changes in potential large-scale agricultural investment areas of the Kafue River Basin in Zambia

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Trainor, A. M.; Baker, T. J.

    2017-12-01

    Climate change impacts regional water availability through the spatial and temporal redistribution of available water resources. This study focuses on understanding possible response of water resources to climate change in regions where potentials for large-scale agricultural investments are planned in the upper and middle Kafue River Basin in Zambia. We used historical and projected precipitation and temperature to assess changes in water yield, using the Soil and Water Assessment Tool (SWAT) hydrological model. Some of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model outputs for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios project a temperature warming range from 1.8 - 5.7 °C over the region from 2020 to 2095. Precipitation projection patterns vary monthly but tend toward drier dry seasons with a slight increase in precipitation during the rainy season as compared to the historical time series. The best five calibrated parameter sets generated for the historical record (1965 - 2005) were applied for two future periods, 2020 - 2060 and 2055 - 2095, to project water yield change. Simulations projected that the 90th percentile water yield would be exceeded across most of the study area by up to 800% under the medium-low (RCP4.5) CO2 emission scenario, whereas the high (RCP8.5) CO2 emission scenario resulted in a more spatially varied pattern mixed with increasing (up to 500%) and decreasing (up to -54%) trends. The 10th percentile water yield indicated spatially varied pattern across the basin, increasing by as much as 500% though decreasing in some areas by 66%, with the greatest decreases during the dry season under RCP8.5. Overall, available water resources in the study area are projected to trend toward increased floods (i.e. water yields far exceeding 90th percentile) as well as increasing drought (i.e. water yield far below 10th percentile) vulnerability. Because surface water is a primary source for agriculture in this region, planning must focus on simulating the potential range in spatial and temporal variability of water resources for different agricultural production schemes, their infrastructure requirements, and attendant influence on water resources in the basin.

  12. The primary biodegradation of dispersed crude oil in the sea.

    PubMed

    Prince, Roger C; McFarlin, Kelly M; Butler, Josh D; Febbo, Eric J; Wang, Frank C Y; Nedwed, Tim J

    2013-01-01

    Dispersants are important tools for stimulating the biodegradation of large oil spills. They are essentially a bioremediation tool - aiming to stimulate the natural process of aerobic oil biodegradation by dispersing oil into micron-sized droplets that become so dilute in the water column that the natural levels of biologically available nitrogen, phosphorus and oxygen are sufficient for microbial growth. Many studies demonstrate the efficacy of dispersants in getting oil off the water surface. Here we show that biodegradation of dispersed oil is prompt and extensive when oil is present at the ppm levels expected from a successful application of dispersants - more than 80% of the hydrocarbons of lightly weathered Alaska North Slope crude oil were degraded in 60 d at 8 °C in unamended New Jersey (USA) seawater when the oil was present at 2.5 ppm by volume. The apparent halftime of the biodegradation of the hydrocarbons was 13.8 d in the absence of dispersant, and 11 d in the presence of Corexit 9500 - similar to rates extrapolated from the field in the Deepwater Horizon response. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Advances in multiphase flow measurements using magnetic resonance relaxometry

    NASA Astrophysics Data System (ADS)

    Kantzas, Apostolos; Kryuchkov, Sergey; Chandrasekaran, Blake

    2009-02-01

    When it comes to the measurement of bitumen and water content as they are produced from thermally exploited reservoirs (cyclic steam stimulation or steam assisted gravity drainage) most of the current tools that are available in the market fail. This was demonstrated previously when our group introduced the first concept of a magnetic resonance based water-cut meter. The use of magnetic resonance as a potential tool for fluid cut metering from thermally produced heavy oil and bitumen reservoirs is revisited. At first a review of the work to date is presented. Our recent approach in the tackling of this problem follows. A patented process is coupled with a patented pipe design that can be used inside a magnetic field and can capture fluids up to 260°C and 4.2MPa. The paper describes the technical advances to this goal and offers a first glimpse of field data from an actual thermal facility for bitumen production. The paper also addresses an approach for converting the current discrete measurement device into a continuous measurement system. Preliminary results for this new concept are also presented.

  14. Evaluating Mobile Survey Tools (MSTs) for Field-Level Monitoring and Data Collection: Development of a Novel Evaluation Framework, and Application to MSTs for Rural Water and Sanitation Monitoring

    PubMed Central

    Fisher, Michael B.; Mann, Benjamin H.; Cronk, Ryan D.; Shields, Katherine F.; Klug, Tori L.; Ramaswamy, Rohit

    2016-01-01

    Information and communications technologies (ICTs) such as mobile survey tools (MSTs) can facilitate field-level data collection to drive improvements in national and international development programs. MSTs allow users to gather and transmit field data in real time, standardize data storage and management, automate routine analyses, and visualize data. Dozens of diverse MST options are available, and users may struggle to select suitable options. We developed a systematic MST Evaluation Framework (EF), based on International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) software quality modeling standards, to objectively assess MSTs and assist program implementers in identifying suitable MST options. The EF is applicable to MSTs for a broad variety of applications. We also conducted an MST user survey to elucidate needs and priorities of current MST users. Finally, the EF was used to assess seven MSTs currently used for water and sanitation monitoring, as a validation exercise. The results suggest that the EF is a promising method for evaluating MSTs. PMID:27563916

  15. Evaluating Mobile Survey Tools (MSTs) for Field-Level Monitoring and Data Collection: Development of a Novel Evaluation Framework, and Application to MSTs for Rural Water and Sanitation Monitoring.

    PubMed

    Fisher, Michael B; Mann, Benjamin H; Cronk, Ryan D; Shields, Katherine F; Klug, Tori L; Ramaswamy, Rohit

    2016-08-23

    Information and communications technologies (ICTs) such as mobile survey tools (MSTs) can facilitate field-level data collection to drive improvements in national and international development programs. MSTs allow users to gather and transmit field data in real time, standardize data storage and management, automate routine analyses, and visualize data. Dozens of diverse MST options are available, and users may struggle to select suitable options. We developed a systematic MST Evaluation Framework (EF), based on International Organization for Standardization/International Electrotechnical Commission (ISO/IEC) software quality modeling standards, to objectively assess MSTs and assist program implementers in identifying suitable MST options. The EF is applicable to MSTs for a broad variety of applications. We also conducted an MST user survey to elucidate needs and priorities of current MST users. Finally, the EF was used to assess seven MSTs currently used for water and sanitation monitoring, as a validation exercise. The results suggest that the EF is a promising method for evaluating MSTs.

  16. Hydromentor: An integrated water resources monitoring and management system at modified semi-arid watersheds

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Sidiropoulos, Pantelis; Tzabiras, John; Kokkinos, Konstantinos; Spiliotopoulos, Marios; Papaioannou, George; Fafoutis, Chrysostomos; Michailidou, Kalliopi; Tziatzios, George; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-04-01

    Natural and engineered water systems interact throughout watersheds and while there is clearly a link between watershed activities and the quantity and quality of water entering the engineered environment, these systems are considered distinct operational systems. As a result, the strategic approach to data management and modeling within the two systems is very different, leading to significant difficulties in integrating the two systems in order to make comprehensive watershed decisions. In this paper, we describe the "HYDROMENTOR" research project, a highly-structured data storage and exchange system that integrates multiple tools and models describing both natural and modified environments, to provide an integrated tool for management of water resources. Our underlying objective in presenting our conceptual design for this water information system is to develop an integrated and automated system that will achieve monitoring and management of the water quantity and quality at watershed level for both surface water (rivers and lakes) and ground water resources (aquifers). The uniqueness of the system is the integrated treatment of the water resources management issue in terms of water quantity and quality in current climate conditions and in future conditions of climatic change. On an operational level, the system provides automated warnings when the availability, use and pollution levels exceed allowable limits pre-set by the management authorities. Decision making with respect to the apportionment of water use by surface and ground water resources are aided through this system, while the relationship between the polluting activity of a source to total incoming pollution by sources are determined; this way, the best management practices for dealing with a crisis are proposed. The computational system allows the development and application of actions, interventions and policies (alternative management scenarios) so that the impacts of climate change in quantity, quality and use of water resources could be evaluated and managed. Acknowledgements: This study has been supported by the research project "Hydromentor" funded by the Greek General Secretariat of Research and Technology in the framework of the E.U. co-funded National Action "Cooperation".

  17. Applications of the Atmosphere-Land Exchange Inverse (ALEXI) Model and Highlights of Current Projects

    NASA Astrophysics Data System (ADS)

    Hain, C.; Mecikalski, J. R.; Schultz, L. A.

    2009-12-01

    The Atmosphere-Land Exchange Inverse (ALEXI) model was developed as an auxiliary means for estimating surface fluxes over large regions primarily using remote-sensing data. The model is unique in that no information regarding antecedent precipitation or moisture storage capacity is required - the surface moisture status is deduced from a radiometric temperature change signal. ALEXI uses the available water fraction (fAW) as a proxy for soil moisture conditions. Combining fAW with ALEXI’s ability to provide valuable information about the partitioning of the surface energy budget, which can dictated largely by soil moisture conditions, accommodates the retrieval of an average fAW from the surface to the rooting depth of the active vegetation. Using this approach has many advantages over traditional energy flux and soil moisture measurements (towers with limited range and large monetary/personnel costs) or approximation methods (parametrization of the relationship between available water and soil moisture) in that data is available both spatially and temporal over a large, non-homogeneous, sometimes densely vegetated area. Being satellite based, the model can be run anywhere thermal infrared satellite information is available. The current ALEXI climatology dates back to March 2000 and covers the continental U.S. Examples of projects underway using the ALEXI soil moisture retrieval tools include the Southern Florida Water Management Project; NASA’s Project Nile, which proposes to acquire hydrological information for the water management in the Nile River basin; and a USDA pro ject to expand the ALEXI framework to include Europe and parts of northern Africa using data from the European geostationary satellites, specifically the Meteosat Second Generation (MSG) Series.

  18. Radiation dose estimation for marine mussels following exposure to tritium: Best practice for use of the ERICA tool in ecotoxicological studies.

    PubMed

    Dallas, Lorna J; Devos, Alexandre; Fievet, Bruno; Turner, Andrew; Lyons, Brett P; Jha, Awadhesh N

    2016-05-01

    Accurate dosimetry is critically important for ecotoxicological and radioecological studies on the potential effects of environmentally relevant radionuclides, such as tritium ((3)H). Previous studies have used basic dosimetric equations to estimate dose from (3)H exposure in ecologically important organisms, such as marine mussels. This study compares four different methods of estimating dose to adult mussels exposed to 1 or 15 MBq L(-1) tritiated water (HTO) under laboratory conditions. These methods were (1) an equation converting seawater activity concentrations to dose rate with fixed parameters; (2) input into the ERICA tool of seawater activity concentrations only; (3) input into the ERICA tool of estimated whole organism concentrations (woTACs), comprising dry activity plus estimated tissue free water tritium (TFWT) activity (TFWT volume × seawater activity concentration); and (4) input into the ERICA tool of measured whole organism activity concentrations, comprising dry activity plus measured TFWT activity (TFWT volume × TFWT activity concentration). Methods 3 and 4 are recommended for future ecotoxicological experiments as they produce values for individual animals and are not reliant on transfer predictions (estimation of concentration ratio). Method 1 may be suitable if measured whole organism concentrations are not available, as it produced results between 3 and 4. As there are technical complications to accurately measuring TFWT, we recommend that future radiotoxicological studies on mussels or other aquatic invertebrates measure whole organism activity in non-dried tissues (i.e. incorporating TFWT and dry activity as one, rather than as separate fractions) and input this data into the ERICA tool. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. U.S. Geological Survey continuous monitoring workshop—Workshop summary report

    USGS Publications Warehouse

    Sullivan, Daniel J.; Joiner, John K.; Caslow, Kerry A.; Landers, Mark N.; Pellerin, Brian A.; Rasmussen, Patrick P.; Sheets, Rodney A.

    2018-04-20

    Executive SummaryThe collection of high-frequency (in other words, “continuous”) water data has been made easier over the years because of advances in technologies to measure, transmit, store, and query large, temporally dense datasets. Commercially available, in-situ sensors and data-collection platforms—together with new techniques for data analysis—provide an opportunity to monitor water quantity and quality at time scales during which meaningful changes occur. The U.S. Geological Survey (USGS) Continuous Monitoring Workshop was held to build stronger collaboration within the Water Mission Area on the collection, interpretation, and application of continuous monitoring data; share technical approaches for the collection and management of continuous data that improves consistency and efficiency across the USGS; and explore techniques and tools for the interpretation of continuous monitoring data, which increases the value to cooperators and the public. The workshop was organized into three major themes: Collecting Continuous Data, Understanding and Using Continuous Data, and Observing and Delivering Continuous Data in the Future. Presentations each day covered a variety of related topics, with a special session at the end of each day designed to bring discussion and problem solving to the forefront.The workshop brought together more than 70 USGS scientists and managers from across the Water Mission Area and Water Science Centers. Tools to manage, assure, control quality, and explore large streams of continuous water data are being developed by the USGS and other organizations and will be critical to making full use of these high-frequency data for research and monitoring. Disseminating continuous monitoring data and findings relevant to critical cooperator and societal issues is central to advancing the USGS networks and mission. Several important outcomes emerged from the presentations and breakout sessions.

  20. Dynamic Heights in the Great Lakes using OPUS Projects

    NASA Astrophysics Data System (ADS)

    Roman, D. R.; Li, X.

    2015-12-01

    The U.S. will be implementing new geometric and vertical reference frames in 2022 to replace the North American Datum of 1983 (NAD 83) and the North American Vertical Datum of 1988 (NAVD 88), respectively. Less emphasized is the fact that a new dynamic height datum will also be defined about the same time to replace the International Great Lakes Datum of 1985 (IGLD 85). IGLD 85 was defined concurrent with NAVD 88 and used the same geopotential values. This paper focuses on the use of an existing tool for determining geometric coordinates and a developing geopotential model as a means of determining dynamic heights. The Online Positioning User Service (OPUS) Projects (OP) is an online tool available from the National Geodetic Survey (NGS) for use in developing geometric coordinates from simultaneous observations at multiple sites during multiple occupations. With observations performed at the water level gauges throughout the Great Lakes, the geometric coordinates of the mean water level surface can be determined. NGS has also developed the xGEOID15B model from satellite, airborne and surface gravity data. Using the input geometric coordinates determined through OP, the geopotential values for the water surface at the water level stations around the Great Lakes were determined using the xGEOID15B model. Comparisons were made between water level sites for each Lake as well as to existing IGLD 85 heights. A principal advantage to this approach is the ability to generate new water level control stations using OP, while maintaining the consistency between orthometric and dynamic heights by using the same gravity field model. Such a process may provide a means for determining dynamic heights for a future Great Lakes Datum.

  1. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.

    PubMed

    Pasini, S; Torresan, S; Rizzi, J; Zabeo, A; Critto, A; Marcomini, A

    2012-12-01

    Climate change impact assessment on water resources has received high international attention over the last two decades, due to the observed global warming and its consequences at the global to local scale. In particular, climate-related risks for groundwater and related ecosystems pose a great concern to scientists and water authorities involved in the protection of these valuable resources. The close link of global warming with water cycle alterations encourages research to deepen current knowledge on relationships between climate trends and status of water systems, and to develop predictive tools for their sustainable management, copying with key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution model simulations for the 2071-2100 period, according to IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant outcomes from the described RRA application highlighted that potential climate change impacts will occur with different extension and magnitude in the case study area. Particularly, qualitative and quantitative impacts on groundwater will occur with more severe consequences in the wettest and in the driest scenario (respectively). Moreover, such impacts will likely have little direct effects on related ecosystems - croplands, forests and natural environments - lying along the spring area (about 12% of croplands and 2% of natural environments at risk) while more severe consequences will indirectly occur on natural and anthropic systems through the reduction in quality and quantity of water availability for agricultural and other uses (about 80% of agricultural areas and 27% of groundwater bodies at risk). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Chemical and Isotopic Tracers of Groundwater Sustainability: an Overview of New Science Directions

    NASA Astrophysics Data System (ADS)

    Bullen, T.

    2002-12-01

    Groundwater sustainability is an emerging concept that is rapidly gaining attention from both scientists and water resource managers, particularly with regard to contamination and degradation of water quality in strategic aquifers. The sustainability of a groundwater resource is a complex function of its susceptibility to factors such as intrusion of poor-quality water from diverse sources, lack of sufficient recharge and reorganization of groundwater flowpaths in response to excessive abstraction. In theory the critical limit occurs when degradation becomes irreversible, such that remediative efforts may be fruitless on a reasonable human time scale. Chemical and isotopic tracers are proving to be especially useful tools for assessment of groundwater sustainability issues such as characterization of recharge, identification of potential sources, pathways and impacts of contaminants and prediction of how hydrology will change in response to excessive abstraction. A variety of relatively cost-efficient tracers are now available with which to assess the susceptibility of groundwater reserves to contamination from both natural and anthropogenic sources, and may provide valuable monitoring and regulatory tools for water resource managers. In this overview, the results of several ongoing groundwater studies by the U.S. Geological Survey will be discussed from the perspective of implications for new science directions for groundwater sustainability research that can benefit water policy development. A fundamental concept is that chemical and isotopic tracers used individually often provide ambiguous information, and are most effective when used in a rigorous "multi-tracer" context that considers the complex linkages between the hydrology, geology and biology of groundwater systems.

  3. A Web-Based Validation Tool for GEWEX

    NASA Astrophysics Data System (ADS)

    Smith, R. A.; Gibson, S.; Heckert, E.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Stubenrauch, C.; Kinne, S. A.; Ackerman, S. A.; Baum, B. A.; Chepfer, H.; Di Girolamo, L.; Heidinger, A. K.; Getzewich, B. J.; Guignard, A.; Maddux, B. C.; Menzel, W. P.; Platnick, S. E.; Poulsen, C.; Raschke, E. A.; Riedi, J.; Rossow, W. B.; Sayer, A. M.; Walther, A.; Winker, D. M.

    2011-12-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud assessment was initiated by the GEWEX Radiation Panel (GRP) in 2005 to evaluate the variability of available, global, long-term cloud data products. Since then, eleven cloud data records have been established from various instruments, mostly onboard polar orbiting satellites. Cloud properties under study include cloud amount, cloud pressure, cloud temperature, cloud infrared (IR) emissivity and visible (VIS) optical thickness, cloud thermodynamic phase, as well as bulk microphysical properties. The volume of data and variations in parameters, spatial, and temporal resolution for the different datasets constitute a significant challenge for understanding the differences and the value of having more than one dataset. To address this issue, this paper presents a NASA Langley web-based tool to facilitate comparisons among the different cloud data sets. With this tool, the operator can choose to view numeric or graphic presentations to allow comparison between products. Multiple records are displayed in time series graphs, global maps, or zonal plots. The tool has been made flexible so that additional teams can easily add their data sets to the record selection list for use in their own analyses. This tool has possible applications to other climate and weather datasets.

  4. Statistical forecast of seasonal discharge in Central Asia using observational records: development of a generic linear modelling tool for operational water resource management

    NASA Astrophysics Data System (ADS)

    Apel, Heiko; Abdykerimova, Zharkinay; Agalhanova, Marina; Baimaganbetov, Azamat; Gavrilenko, Nadejda; Gerlitz, Lars; Kalashnikova, Olga; Unger-Shayesteh, Katy; Vorogushyn, Sergiy; Gafurov, Abror

    2018-04-01

    The semi-arid regions of Central Asia crucially depend on the water resources supplied by the mountainous areas of the Tien Shan and Pamir and Altai mountains. During the summer months the snow-melt- and glacier-melt-dominated river discharge originating in the mountains provides the main water resource available for agricultural production, but also for storage in reservoirs for energy generation during the winter months. Thus a reliable seasonal forecast of the water resources is crucial for sustainable management and planning of water resources. In fact, seasonal forecasts are mandatory tasks of all national hydro-meteorological services in the region. In order to support the operational seasonal forecast procedures of hydro-meteorological services, this study aims to develop a generic tool for deriving statistical forecast models of seasonal river discharge based solely on observational records. The generic model structure is kept as simple as possible in order to be driven by meteorological and hydrological data readily available at the hydro-meteorological services, and to be applicable for all catchments in the region. As snow melt dominates summer runoff, the main meteorological predictors for the forecast models are monthly values of winter precipitation and temperature, satellite-based snow cover data, and antecedent discharge. This basic predictor set was further extended by multi-monthly means of the individual predictors, as well as composites of the predictors. Forecast models are derived based on these predictors as linear combinations of up to four predictors. A user-selectable number of the best models is extracted automatically by the developed model fitting algorithm, which includes a test for robustness by a leave-one-out cross-validation. Based on the cross-validation the predictive uncertainty was quantified for every prediction model. Forecasts of the mean seasonal discharge of the period April to September are derived every month from January until June. The application of the model for several catchments in Central Asia - ranging from small to the largest rivers (240 to 290 000 km2 catchment area) - for the period 2000-2015 provided skilful forecasts for most catchments already in January, with adjusted R2 values of the best model in the range of 0.6-0.8 for most of the catchments. The skill of the prediction increased every following month, i.e. with reduced lead time, with adjusted R2 values usually in the range 0.8-0.9 for the best and 0.7-0.8 on average for the set of models in April just before the prediction period. The later forecasts in May and June improve further due to the high predictive power of the discharge in the first 2 months of the snow melt period. The improved skill of the set of forecast models with decreasing lead time resulted in narrow predictive uncertainty bands at the beginning of the snow melt period. In summary, the proposed generic automatic forecast model development tool provides robust predictions for seasonal water availability in Central Asia, which will be tested against the official forecasts in the upcoming years, with the vision of operational implementation.

  5. Modelling the sensitivity of river reaches to water abstraction: RAPHSA- a hydroecology tool for environmental managers

    NASA Astrophysics Data System (ADS)

    Klaar, Megan; Laize, Cedric; Maddock, Ian; Acreman, Mike; Tanner, Kath; Peet, Sarah

    2014-05-01

    A key challenge for environmental managers is the determination of environmental flows which allow a maximum yield of water resources to be taken from surface and sub-surface sources, whilst ensuring sufficient water remains in the environment to support biota and habitats. It has long been known that sensitivity to changes in water levels resulting from river and groundwater abstractions varies between rivers. Whilst assessment at the catchment scale is ideal for determining broad pressures on water resources and ecosystems, assessment of the sensitivity of reaches to changes in flow has previously been done on a site-by-site basis, often with the application of detailed but time consuming techniques (e.g. PHABSIM). While this is appropriate for a limited number of sites, it is costly in terms of money and time resources and therefore not appropriate for application at a national level required by responsible licensing authorities. To address this need, the Environment Agency (England) is developing an operational tool to predict relationships between physical habitat and flow which may be applied by field staff to rapidly determine the sensitivity of physical habitat to flow alteration for use in water resource management planning. An initial model of river sensitivity to abstraction (defined as the change in physical habitat related to changes in river discharge) was developed using site characteristics and data from 66 individual PHABSIM surveys throughout the UK (Booker & Acreman, 2008). By applying a multivariate multiple linear regression analysis to the data to define habitat availability-flow curves using resource intensity as predictor variables, the model (known as RAPHSA- Rapid Assessment of Physical Habitat Sensitivity to Abstraction) is able to take a risk-based approach to modeled certainty. Site specific information gathered using desk-based, or a variable amount of field work can be used to predict the shape of the habitat- flow curves, with the uncertainty of estimates reducing as more information is collected. Creation of generalized physical habitat- discharge relationships by the model allows environmental managers to select the desired level of confidence in the modeled results, based on environmental risk and the level of resource investment available. Hence, resources can be better directed according to the level of certainty required at each site. This model is intended to provide managers with an alternative to the existing use of either expert opinion or resource intensive site- specific investigations in determining local environmental flows. Here, we outline the potential use of this tool by the Environment Agency in routine operational and investigation- specific scenarios using case studies to illustrate its use.

  6. Tampa Bay Water Clarity Model (TBWCM): As a Predictive Tool

    EPA Science Inventory

    The Tampa Bay Water Clarity Model was developed as a predictive tool for estimating the impact of changing nutrient loads on water clarity as measured by secchi depth. The model combines a physical mixing model with an irradiance model and nutrient cycling model. A 10 segment bi...

  7. Modeling interface roughness scattering in a layered seabed for normal-incident chirp sonar signals.

    PubMed

    Tang, Dajun; Hefner, Brian T

    2012-04-01

    Downward looking sonar, such as the chirp sonar, is widely used as a sediment survey tool in shallow water environments. Inversion of geo-acoustic parameters from such sonar data precedes the availability of forward models. An exact numerical model is developed to initiate the simulation of the acoustic field produced by such a sonar in the presence of multiple rough interfaces. The sediment layers are assumed to be fluid layers with non-intercepting rough interfaces.

  8. Data Visualization and Analysis for Climate Studies using NASA Giovanni Online System

    NASA Technical Reports Server (NTRS)

    Rui, Hualan; Leptoukh, Gregory; Lloyd, Steven

    2008-01-01

    With many global earth observation systems and missions focused on climate systems and the associated large volumes of observational data available for exploring and explaining how climate is changing and why, there is an urgent need for climate services. Giovanni, the NASA GES DISC Interactive Online Visualization ANd ANalysis Infrastructure, is a simple to use yet powerful tool for analysing these data for research on global warming and climate change, as well as for applications to weather. air quality, agriculture, and water resources,

  9. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Account 394, Tools, shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Service Company Property Chart of Accounts § 367.3940 Account 394, Tools, shop and garage...

  10. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Account 394, Tools, shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Service Company Property Chart of Accounts § 367.3940 Account 394, Tools, shop and garage...

  11. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Account 394, Tools, shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Service Company Property Chart of Accounts § 367.3940 Account 394, Tools, shop and garage...

  12. 18 CFR 367.3940 - Account 394, Tools, shop and garage equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Account 394, Tools, shop and garage equipment. 367.3940 Section 367.3940 Conservation of Power and Water Resources FEDERAL... NATURAL GAS ACT Service Company Property Chart of Accounts § 367.3940 Account 394, Tools, shop and garage...

  13. Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Tengfang; Flapper, Joris; Ke, Jing

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry – including four dairy processes – cheese, fluid milk, butter, and milk powder.

  14. Assessing a Tool for Self-Monitoring Hydration Using Urine Color in Pregnant and Breastfeeding Women: A Cross-Sectional, Online Survey.

    PubMed

    Rigaud, Marion; Sevalho Corçao, Camila; Perrier, Erica T; Boesen-Mariani, Sabine

    2017-01-01

    Pregnant and breastfeeding women experience great changes in their total body water content and water dynamics. To support the accretion of total body water during pregnancy and compensate for the water lost through breast milk during breastfeeding, increased adequate intakes (AI) for total water have been established by various health authorities. Despite this widespread advice, several studies suggest that pregnant and breastfeeding women do not meet the AI for total water, suggesting the need to raise women's awareness on the importance of adequate water intake, particularly during pregnancy and breastfeeding, as well as to provide them with a simple means of monitoring their hydration on a day-to-day basis. A urine color (UC) scale recently has been validated for hydration monitoring in pregnant and breastfeeding women. We sought to develop a version of a tool based on the UC scale, using only images or illustrations, which could be understood by users of various nationalities and spoken languages. Pregnant and breastfeeding women (n = 1,275) from Brazil, Mexico, and Poland were shown 3 versions of the tool. Understanding, appreciation, simplicity and intent to use were evaluated using a questionnaire consisting of 26 items. Key Messages: Among the 3 versions tested, one tool emerged as the most highly understood (88% spontaneous understanding) and was highly appreciated by users (mean [SD]: 8.40 [2.20] out of 10). There were no differences between countries. Furthermore, 83% reported being very likely to use the tool daily. These results suggest that a simple tool based on the UC scale will help pregnant and breastfeeding women meet the AI for total water. © 2017 The Author(s) Published by S. Karger AG, Basel.

  15. Identification of fecal contamination sources in water using host-associated markers.

    PubMed

    Krentz, Corinne A; Prystajecky, Natalie; Isaac-Renton, Judith

    2013-03-01

    In British Columbia, Canada, drinking water is tested for total coliforms and Escherichia coli, but there is currently no routine follow-up testing to investigate fecal contamination sources in samples that test positive for indicator bacteria. Reliable microbial source tracking (MST) tools to rapidly test water samples for multiple fecal contamination markers simultaneously are currently lacking. The objectives of this study were (i) to develop a qualitative MST tool to identify fecal contamination from different host groups, and (ii) to evaluate the MST tool using water samples with evidence of fecal contamination. Singleplex and multiplex polymerase chain reaction (PCR) were used to test (i) water from polluted sites and (ii) raw and drinking water samples for presence of bacterial genetic markers associated with feces from humans, cattle, seagulls, pigs, chickens, and geese. The multiplex MST assay correctly identified suspected contamination sources in contaminated waterways, demonstrating that this test may have utility for heavily contaminated sites. Most raw and drinking water samples analyzed using singleplex PCR contained at least one host-associated marker. Singleplex PCR was capable of detecting host-associated markers in small sample volumes and is therefore a promising tool to further analyze water samples submitted for routine testing and provide information useful for water quality management.

  16. Methods and approaches to support Indigenous water planning: An example from the Tiwi Islands, Northern Territory, Australia

    NASA Astrophysics Data System (ADS)

    Hoverman, Suzanne; Ayre, Margaret

    2012-12-01

    SummaryIndigenous land owners of the Tiwi Islands, Northern Territory Australia have begun the first formal freshwater allocation planning process in Australia entirely within Indigenous lands and waterways. The process is managed by the Northern Territory government agency responsible for water planning, the Department of Natural Resources, Environment, The Arts and Sport, in partnership with the Tiwi Land Council, the principal representative body for Tiwi Islanders on matters of land and water management and governance. Participatory planning methods ('tools') were developed to facilitate community participation in Tiwi water planning. The tools, selected for their potential to generate involvement in the planning process needed both to incorporate Indigenous knowledge of water use and management and raise awareness in the Indigenous community of Western science and water resources management. In consultation with the water planner and Tiwi Land Council officers, the researchers selected four main tools to develop, trial and evaluate. Results demonstrate that the tools provided mechanisms which acknowledge traditional management systems, improve community engagement, and build confidence in the water planning process. The researchers found that participatory planning approaches supported Tiwi natural resource management institutions both in determining appropriate institutional arrangements and clarifying roles and responsibilities in the Islands' Water Management Strategy.

  17. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  18. Development of an Irrigation Scheduling Tool for the High Plains Region

    NASA Astrophysics Data System (ADS)

    Shulski, M.; Hubbard, K. G.; You, J.

    2009-12-01

    The High Plains Regional Climate Center (HPRCC) at the University of Nebraska is one of NOAA’s six regional climate centers in the U.S. Primary objectives of the HPRCC are to conduct applied climate research, engage in climate education and outreach, and increase the use and availability of climate information by developing value-added products. Scientists at the center are engaged in utilizing regional weather data to develop tools that can be used directly by area stakeholders, particularly for agricultural sectors. A new study is proposed that will combine NOAA products (short-term forecasts and seasonal outlooks of temperature and precipitation) with existing capabilities to construct an irrigation scheduling tool that can be used by producers in the region. This tool will make use of weather observations from the regional mesonet (specifically the AWDN, Automated Weather Data Network) and the nation-wide relational database and web portal (ACIS, Applied Climate Information System). The primary benefit to stakeholders will be a more efficient use of water and energy resources owing to the reduction of uncertainty in the timing of irrigation.

  19. Connectivity research in Iceland - using scientific tools to establish sustainable water management strategies

    NASA Astrophysics Data System (ADS)

    Finger, David

    2015-04-01

    Since the ninth century when the first settlers arrived in Iceland the island has undergone deforestation and subsequent vegetation degradation and soil erosion. Almost the entire birch forest and woodland, which originally covered ~ 25% of the nation, have been deforested through wood cutting and overgrazing. Consequently, soil erosion seriously affects over 40% of the country. During the last 50 years extensive drainage of wetlands has taken place. Furthermore, about 75% of Iceland electricity production comes from hydropower plants, constructed along the main rivers. Along with seismic and volcanic activities the above mentioned anthropogenic impacts continuously altered the hydro-geomorphic connectivity in many parts of the island. In the framework of ongoing efforts to restore ecosystems and their services in Iceland a thorough understanding of the hydro-geomorphic processes is essential. Field observations and numerical models are crucial tools to adopt appropriate management strategies and help decision makers establish sustainable governance strategies. Sediment transport models have been used in the past to investigate the impacts of hydropower dams on sediment transport in downstream rivers (Finger et al., 2006). Hydropower operations alter the turbidity dynamics in downstream freshwater systems, affecting visibility and light penetration into the water, leading to significant changes in primary production (Finger et al., 2007a). Overall, the interruption of connectivity by physical obstructions can affect the entire food chain, hampering the fishing yields in downstream waters (Finger et al., 2007b). In other locations hydraulic connectivity through retreating glaciers assures water transfer from upstream to downstream areas. The drastically retreat of glaciers can raise concerns of future water availability in remote mountain areas (Finger et al., 2013). Furthermore, the drastic reduction of glacier mass also jeopardizes the water availability for hydropower production (Finger et al., 2012). All these factors reveal the importance of a thorough understanding of hydro-geomorphic connectivity to adopt adequate water management strategies. The presentation will conclude by outlining how the above presented methods can be applied to Icelandic study sites to help water managers and policy makers to adopt resilient based policies regarding the challenges of future climate change impacts. References: Finger, D., M. Schmid, and A. Wuest (2006), Effects of upstream hydropower operation on riverine particle transport and turbidity in downstream lakes, Water Resour. Res., 42(8), doi: 10.1029/2005wr004751. Finger, D., P. Bossard, M. Schmid, L. Jaun, B. Müller, D. Steiner, E. Schaffer, M. Zeh, and A. Wüest (2007a), Effects of alpine hydropower operations on primary production in a downstream lake, Aquatic Sciences, 69(2), 240-256, doi: 10.1007/s00027-007-0873-6. Finger, D., M. Schmid, and A. Wüest (2007b), Comparing effects of oligotrophication and upstream hydropower dams on plankton and productivity in perialpine lakes, Water Resour. Res., 43(12), W12404, doi: 10.1029/2007WR005868. Finger, D., G. Heinrich, A. Gobiet, and A. Bauder (2012), Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century, Water Resour. Res., 48, doi: 10.1029/2011wr010733, W02521. Finger, D., A. Hugentobler, M. Huss, A. Voinesco, H. R. Wernli, D. Fischer, E. Weber, P.-Y. Jeannin, M. Kauzlaric, A. Wirz, T. Vennemann, F. Hüsler, B. Schädler, and R. Weingartner (2013), Identification of glacial melt water runoff in a karstic environment and its implication for present and future water availability, Hydrol. Earth Syst. Sci., 17, 3261-3277, doi: 10.5194/hess-17-3261-2013.

  20. Climate change impacts on streamflow and subbasin-scale hydrology in the Upper Colorado River Basin.

    PubMed

    Ficklin, Darren L; Stewart, Iris T; Maurer, Edwin P

    2013-01-01

    In the Upper Colorado River Basin (UCRB), the principal source of water in the southwestern U.S., demand exceeds supply in most years, and will likely continue to rise. While General Circulation Models (GCMs) project surface temperature warming by 3.5 to 5.6°C for the area, precipitation projections are variable, with no wetter or drier consensus. We assess the impacts of projected 21(st) century climatic changes on subbasins in the UCRB using the Soil and Water Assessment Tool, for all hydrologic components (snowmelt, evapotranspiration, surface runoff, subsurface runoff, and streamflow), and for 16 GCMs under the A2 emission scenario. Over the GCM ensemble, our simulations project median Spring streamflow declines of 36% by the end of the 21(st) century, with increases more likely at higher elevations, and an overall range of -100 to +68%. Additionally, our results indicated Summer streamflow declines with median decreases of 46%, and an overall range of -100 to +22%. Analysis of hydrologic components indicates large spatial and temporal changes throughout the UCRB, with large snowmelt declines and temporal shifts in most hydrologic components. Warmer temperatures increase average annual evapotranspiration by ∼23%, with shifting seasonal soil moisture availability driving these increases in late Winter and early Spring. For the high-elevation water-generating regions, modest precipitation decreases result in an even greater water yield decrease with less available snowmelt. Precipitation increases with modest warming do not translate into the same magnitude of water-yield increases due to slight decreases in snowmelt and increases in evapotranspiration. For these basins, whether modest warming is associated with precipitation decreases or increases, continued rising temperatures may make drier futures. Subsequently, many subbasins are projected to turn from semi-arid to arid conditions by the 2080 s. In conclusion, water availability in the UCRB could significantly decline with adverse consequences for water supplies, agriculture, and ecosystem health.

Top